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Abstract

Electricity can not be stored efficiently in the grid, resulting in a need for demand and supply
to be in balance. The Transmission System Operator operates a real-time electricity market
to acquire extra supply or load. Traditionally, electricity usage is forecast as accurately as
possible a day ahead and deviations from this electricity program are kept to a minimum
as financial risk is involved with these deviations. Deviations from the submitted electricity
program are settled at the real-time electricity market clearing price, which can be profitable
to the parties involved.

The aim of this project is to achieve accurate, real-time and interpretable prediction of the
electricity market price. To this end the Generalised Fuzzy Neural Network formulation
of a Non-linear Auto-Regressive with eXogenous inputs model structure (GFNARX) model
structure is proposed as contribution to existing fuzzy modelling literature. Accuracy of the
proposed model is shown to be comparable to that of state-of-the-art fuzzy models on a
popular literature benchmark, prediction of the Mackey-Glass chaotic time series, while using
computationally cheaper means. As there is no substantial amount of literature on Real-time
Electricity market Price (REP) forecasting which enables comparison of GFNARX predictions
to any other, two other models from time series literature are used to generate comparison
material: Seasonal Auto-Regressive Integrated Moving Average with eXogenous inputs and
Generalized Auto-Regressive Conditional Heteroskedasticity (SARIMAX-GARCH) and Non-
linear Auto-Regressive with eXogenous inputs (NARX).

To assess whether information about the real-time electricity price can be used to reduce
electricity consumption costs for assets in a demand response portfolio, a benchmark method
which simulates control of the cooling motor of a developed cold storage warehouse model
according to the predicted state of the real-time electricity market, is proposed. Using the
GFNARX model to predict the real-time price throughout the year 2015 based on historical
data, a 25.5% reduction in cumulative electricity costs is obtained compared to the reference
case where all electricity consumption is bought on the day ahead market. When comparing
the GFNARX prediction result to using the most recent electricity price observation as naïve
forecast which achieves 16.9% cost reduction, a relative 10.3% cost reduction is achieved.
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Chapter 1

Introduction

This chapter will introduce the topic of research in this thesis project and formulate a problem
statement. Section 1-1 will introduce the problem within its context, before Sections 1-2 and
1-3 provide detail on the research scope and problem statement. Section 1-4 gives an overview
of the thesis outline. A lot of material in this chapter is based on a literature survey performed
during an earlier stage of this thesis assignment[14].

1-1 Research context and scope

In a lot of residential and industrial appliances, electricity is used as a power source. Electricity
is produced at large scale by power stations, transmitted across high voltage lines and then
distributed to consumers through local low voltage networks. Electricity, as opposed to most
other commodities, cannot be stored in the grid in an efficient manner. This indicates a need
for electricity supply and consumption to always be in equilibrium.

Traditionally, consumers subtract energy from the grid whenever there is a need to and
generation is required to match the demand. Generators are thus faced with a predictive
control problem. Conventional generation plants can regulate their output to match demand,
but renewable energy sources are weather dependent and their generation output is hence not
deterministic. The stochastic nature of weather conditions causes an increased volatility in
the required control pattern of conventional generation plants, which are inherently limited
in ramp rate and capacity.

To allow for a greater flexibility, the concept of demand response has been introduced. De-
mand response aims at matching supply and demand by altering the consumption pattern to
match available supply levels[15]. During times when overall demand exceeds the capacity
of generators, the consumption is lowered and this is compensated for in times of abundant
supply. In a demand response framework, consumers are thus faced with a predictive control
problem in which supply forecasts are required in order to control consumption levels.

Master of Science Thesis CONFIDENTIAL I. de Hoogt



2 Introduction

If there is a disturbance to balance in the grid, both supply control and demand response can
restore the equilibrium, combining the separate control problems into one balancing problem.
To avoid unnecessary control action the Transmission System Operator (TSO) governs a real-
time balancing energy market, in which it is the only broker. The marginal price of electricity
bought or sold at the real-time market is applied to any unplanned electricity transaction oc-
curring in a block of fifteen minutes, a Program Time Unit (PTU)[16]. This provides Balance
Responsible Partys (BRPs) with a financial incentive to adjust their electricity program in a
way which balances the grid.

The research for this thesis is performed at Peeeks, a company which investigates ways to
increase grid tolerance to uncertain supply by renewable energy sources through deployment of
flexible demand response services. In order to determine the grid state and thus the direction
in which to steer the demand, the Real-time Electricity market Price (REP) is observed.
REP is published by the TSO, TenneT, in the form of a time series[9] and reflects the price at
which TenneT is buying or selling electricity to balance the grid. However, the measurements
of this time series are not published in real-time, but with a delay of three minutes. This
delay in availability of measured data inherently leads to a delay in demand response control
action. Applying control based on delayed data can lead to undesirable effects like steering
in the wrong direction which aggravates the problem instead of alleviating it. By forecasting
REP, negative effects of this delay can potentially be reduced.

1-2 Scope

Based on the findings of the literature survey performed in an earlier stage of this thesis
project, the scope of this project can be determined. This paragraph will shortly summarise
a few key findings of this literature research. For more details the reader is referred to [14].

In electricity price forecasts, the time scale of interest is usually in terms of days with a time
resolution of hours. These forecasts are done in order to optimise trading strategies on spot
markets like the day-ahead Amsterdam Power Exchange (APX). Traditionally, BRPs try to
forecast their electricity consumption and generation a day ahead as accurately as possible
and avoid the highly volatile real-time market.

It was found that not much has been published about forecasting the real-time electricity
price, which can be attributed to two reasons. The first of these reasons is the fact that
in Europe, only the dutch TSO publishes information about REP within minutes of price
formation. This started in September 2009[17], which is relatively recent. The second is
that the real-time electricity market is structured to only have a single broker, the TSO[18].
Most TSOs choose to discourage BRPs from deliberately causing imbalance in their own
portfolio by having the Settlement Price (SP) be the most penalising between REP and the
day ahead spot market price. The dutch TSO however, allows the SPs to be fully governed
by REP[19], creating opportunities for BRPs to profit from deliberate deviations from the
forecast electricity program. The combination of these two reasons is an exclusive and recent
feature of the dutch real-time electricity market, which explains why there has been so little
research performed in this direction.
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1-3 Problem statement 3

A recent paper aiming at providing a comprehensive overview of real-time electricity price
forecasting methods ([20]) shows that prior work has mainly focused on forecasting SP a
day ahead and it has been determined that existing methods fail to structurally outperform
random guessing. In this research, the focus lies on real-time control of demand response
assets instead of day-ahead optimisation. No published research has been found in the course
of the literature survey which investigate usage of REP to control a demand response asset.
This lead to the decision to focus on identifying models with which to forecast REP.

As REP is published by the TSO in the form of a times series, the literature survey investigated
existing time series models with a focus on models used to forecast related variables like
cumulative grid load and the APX day ahead price. Based on the lack of prior study, the
choice has been made to follow a fuzzy data-driven modelling approach in which the influences
of exogenous factors can be interpreted and assessed on a qualitative basis.

Research regarding model inputs will be limited to investigating publicly available data
sources, as it is not yet known whether these data sources are sufficiently correlated to REP
to use in REP forecasts.

In conclusion, the scope of this thesis research is the development of an interpretable model
to forecast REP with and investigation of the use of REP forecasts to reduce negative effects
of delay in the observations of the time series.

1-3 Problem statement

The real-time market prices for electricity are published in time series format with an ap-
proximate delay of three time steps. As these prices are highly volatile in nature, controlling
assets in a demand response portfolio based on the time-delayed time series can lead to an
aggravation of grid imbalance as well as monetary damages for the BRPs involved. It is thus
of high interest to accurately forecast REP.

It has been established in [14] that forecasting REP has not received proper attention in lit-
erature. Therefore, although accurate predictions of REP are the main interest in controlling
demand response assets, it is also desirable to have an interpretable model in order to gain
enlightenment regarding the influential factors concerning the inner workings of the real-time
market. To this end, fuzzy time series modelling techniques can be employed. To attain
the dual goals of accuracy and interpretability, a novel self-organizing fuzzy neural network
structural algorithm is proposed in which data-driven identification of a rulebase is performed.

The goal of this thesis is to compensate for the delay in REP measurement publishing. This
is done by forecasting the REP time series. Three models are used to do so:

1. A popular model in time series literature: SARIMAX-GARCH

2. A recurrent neural network structure: NARX

Master of Science Thesis CONFIDENTIAL I. de Hoogt



4 Introduction

3. A self-organising fuzzy neural network: GFNARX

The quality of the models is benchmarked against a naïve reference in which the latest REP
observation serves as forecasted value. The benchmark method is a simulation in which the
cooling motor of a Cold Storage Warehouse (CSW) is controlled based on the forecasts, with
the aim of reducing costs of acquiring electricity.

There are four research aims:

• First of all it is investigated whether the proposed data-driven fuzzy modelling technique
is capable of producing time series predictions which are comparable in accuracy to
computationally more expensive models in literature

• Secondly, it is investigated which observable endogenous and exogenous factors can
be used as influential inputs to a REP model identified through time series modelling
techniques

• The third research challenge is to find which model structure of the ones selected in [14]
(SARIMAX-GARCH, NARX, GFNARX) predicts REP most accurately

• The final research aim is to incorporate REP predictions in the demand response control
strategy of Peeeks and investigate how much of the negative effects of the delay in
publishing of REP can be mitigated when using REP forecasts to control the cooling
motor of a CSW

The hypothesis here is that by using Generalised Fuzzy Neural Network formulation of a Non-
linear Auto-Regressive with eXogenous inputs model structure (GFNARX), REP forecasts
can be made which can compensate for the delay. Analysis of historical REP data of 2015
will verify the truth of this hypothesis.

1-4 Outline

Theoretical background of the models used throughout this work is given in Chapter 2. Chap-
ter 3 identifies plausible inputs to the model and explains the experiments used to establish
model performance, after which the results are provided in Chapter 4. The conclusions and
recommendations for further research are found in Chapter 5
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Chapter 2

Theory

The aim of this project is to achieve accurate, real-time and interpretable prediction of the
electricity market price, which is published by the Transmission System Operator (TSO) in
the form of a time series. To achieve this aim, time series models are identified and the
value of their predictions are benchmarked on a cold storage warehouse temperature control
simulation. In this chapter, a data-driven fuzzy time series modelling approach is proposed,
which will be used to forecast the Real-time Electricity market Price (REP). This new method
is coined Generalised Fuzzy Neural Network formulation of a Non-linear Auto-Regressive
with eXogenous inputs model structure (GFNARX). As there is no benchmark available in
literature, the new modelling approach is benchmarked against two well-known time series
models. Seasonal Auto-Regressive Integrated Moving Average with eXogenous inputs and
Generalized Auto-Regressive Conditional Heteroskedasticity (SARIMAX-GARCH) is chosen
as benchmark model because it is a generalized form of the most popular model type used in
econometry, ARIMA. As a neural network alternative benchmark, Non-linear Auto-Regressive
with eXogenous inputs (NARX) is chosen. In Section 2-1, some concepts are introduced which
serve as base to better understand the models introduced in subsequent sections. Section 2-2
discusses the SARIMAX-GARCH structure and the way model orders and parameters are
estimated. The nonlinear alternative, NARX, is described in Section 2-3, before Section 2-4
elaborates on the proposed GFNARX model class.

2-1 Time series modelling concepts

In this section a few base concepts in time series modelling are introduced, starting with
system identification concepts in Section 2-1-1. Section 2-1-2 describes wide sense stationarity
and conditions under which a model can be identified from a single data sample series. Basic
model prototypes which are used to describe time series are Moving Average (MA) and Auto-
Regressive (AR) models. They are introduced in Sections 2-1-3 and 2-1-4. Finally, the Linear
Least Squares (LLS) parameter estimation method is introduced in Section 2-1-5.
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6 Theory

Figure 2-1: Abstract system identification structure where the input-output transfer is modelled
as a box

2-1-1 System identification

When modelling systems, one has to derive a relation between system inputs and system
outputs. In some cases, this relation can be derived from constitutional principles. An
example of this is the simplified relation between driving force F as a single input and particle
acceleration a as output: F = ma. In this example, the relationship can be derived from
principles known from theoretical physics, and as such is called a first principles model.

Another way of viewing this relationship between inputs and outputs is shown in Figure 2-1
and can broadly be put into three categories:

White box modelling The inner workings of the system box can be inspected freely and
the transfer function can be derived by first principles modelling

Grey box modelling The box is not fully transparent, but it is possible to derive a partial
model or a sensible model structure from the parts which can be inspected. A common way
of grey box modelling is to assume model structure a priori and subsequently estimate and
optimise the model parameters

Black box modelling In case the box is fully opaque, the system identification procedure
is called black box modelling. In black box modelling no prior assumptions about model
structure are made. In many applications, the exact relations between inputs and outputs
are irrelevant, as long as the output predicted by the model is accurate

2-1-2 Wide sense stationary series

When analysing time series, stationarity is an important concept. If a stochastic time series
is stationary, its mean and variance do not change over time. Thus, the time at which an
experiment is performed is of no consequence to the experiment results, allowing a time-
invariant model representation. If a time series does have a variance which changes over time,
but its autocovariance does remain constant, it is called Wide Sense Stationary (WSS)[21].

WSS if

{
E[xt] = µx ∀t
Cx(t2, t1) = E[(xt2 − µx)(xt1 − µx)] = E[(xt2−t1 − µx)(x0 − µx)]

(2-1)

with
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2-1 Time series modelling concepts 7

E Expectancy operator

µx Mean of time series x

Cx Autocovariance of x

If the statistical properties of a process can be inferred from a single experiment, it is called
ergodic. For example if one has a bag full of fair, six-sided dice, taking out one die and casting
it a large amount of times will reveal the expected value and distribution of values for all of
the dice in the bag. If part of the bag consists of four-sided dice, it is impossible to deduce
the statistical properties of the entire bag in a single experiment.

In the context of forecasting a WSS time series, if a WSS process is ergodic in the mean,
an unbiased predictor of the time series can be determined from a single long sample of its
stochastic measurements:

E[xt] = lim
T→∞

1
T

T∑
t=0

xt (2-2)

A sufficient condition to establish ergodicity in the mean for a WSS time series, is based on
the autocovariance being a convergent series [22]:

∞∑
j=0

Cx(t, t− j) <∞ (2-3)

2-1-3 Moving average models

When analysing time series, Moving Average(MA) models are commonly used to smooth out
noisy data and recover trends or cycles present within the series. As such, it can be viewed
as being a low-pass filter. A pure MA process of order NMA is described by Equation 2-4.
The autocovariance then reduces to Equation 2-5. It cuts off after lag NMA. The order of
moving average terms can thus be inferred from inspection of the sample autocorrelation.

xt = µ+ εt +
NMA∑
i=1

θiεt−i (2-4)

Cx(t, t− j) = E[(xt − µx)(xt−j − µx)] (2-5)

= E[(1 +
NMA∑
i=1

θiεt−i)(
NMA∑
i=1

θiεt−j−i)]

with

εt Prediction error at time step t. It is often assumed to be white noise

θ Weighting parameter vector for the lagged error terms

Master of Science Thesis CONFIDENTIAL I. de Hoogt



8 Theory

2-1-4 Autoregressive models

If the value of a time series depends on its previous values, but is offset by a random noise
disturbance at every measurable point, it is called an Auto-Regressive (AR) process. A pure
AR process of order NAR is described by Equation 2-6. The model order can now not be
estimated from the sample autocovariance, as the autocorrelation at lag p is influenced by
the propagation of autocovariance present in lagged terms of shorter order. To clarify, an
example of an AR process of order 1 is given in Equation 2-7.

xt = εt +
NAR∑
i=1

φixt−i (2-6)

xt = φxt−1 + εt (2-7)

with

φ Weighting parameter vector for the lagged AR terms

εt Prediction error at time step t. It is often assumed to be white noise

It is easy to see that in Equation 2-7 xt and xt−2 are not directly correlated. However, the
propagation of correlations results in a non-zero correlation coefficient of φ2.

To estimate the order NAR the Partial Autocorrelation Function (PACF) can be inspected.
The PACF estimates the direct correlation between xt and its lagged values by removing
linear dependencies on the lagged values. It has been proven by [23] that the PACF of the
j − th lagged term is equal to the coefficient αj of the optimal linear prediction of xt based
on its lagged values up to xt−j , as is described by Equation 2-8.

x̂t =
j∑
i=1

αixt−i (2-8)

The order of an AR process can thus be inferred by inspection of the PACF. The coefficients
αi can be estimated through a LLS procedure. However, in system identification, these
coefficients are constrained: to have an identified model describe a WSS series, the transfer
function poles, which correspond to the solutions for r to Equation 2-9, have to lie within the
unit circle. For AR models to generalise to out-of-sample predictions, WSS is required.

rNAR −
NAR∑
i=1

φir
NAR−i = 0 (2-9)

2-1-5 Linear Least Squares estimation

When considering a quadratic objective function of the form V (β) = ||y−xβ||2, which repre-
sents a square absolute error for a model which is linear in the parameters β, the parameter

I. de Hoogt CONFIDENTIAL Master of Science Thesis



2-2 SARIMAX-GARCH 9

vector β which minimizes the cost function can analytically be derived by expanding and
differentiating with respect to β:

V (β) = (y − xβ)T (y − xβ)
= yT y − βTxT y − yTxβ + βTxTxβ (2-10)

= yT y − 2βTxT y + βTxTxβ

dS(β)
dβ

= −xT y + (xTx)β = 0 (2-11)

β = (xTx)−1xT y (2-12)

If x has full column rank, xTx is positive definite, which is sufficient to establish the solution
as a minimum.

2-2 SARIMAX-GARCH

In the previous section, a few time series modelling concepts were introduced as necessary
background knowledge. In this section a generalized version of Auto-Regressive Integrated
Moving Average (ARIMA) models is described. ARIMA is a very popular grey box modelling
technique in the field of econometry.

SARIMAX-GARCH has a few extensions to the ARIMA structure in order to produce more
accurate forecasts:

Seasonality If there is seasonality present within a time series, regular periodic trends can
be identified which can be subtracted from the time series to enhance stationarity

External inputs Adding external inputs as regressors will frequently provide higher model
accuracy in any forced system

GARCH If a series has a variance which evolves over time, it is called heteroskedastic. The
Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH) structure proposed by
[24] is a way to correct for time-varying volatility in order to more accurately describe the
system dynamics in terms of SARIMAX parameters

In GARCH modelling, it is common practice to first fit the data with a pure AR model with
least squares parameter estimation. Then GARCH terms are added based on heteroskedas-
ticity effects in its residuals and all model parameters are re-estimated. In this thesis, the
underlying prediction model will not be pure AR, but the more general linear regression model
SARIMAX. The overall schematic overview of SARIMAX-GARCH forecasting is depicted in
Figure 2-2.

The rest of this section is structured as follows: the Seasonal Auto-Regressive Integrated
Moving Average with eXogenous inputs (SARIMAX) model structure will briefly be discussed
in Section 2-2-1, before GARCH extension is described in Section 2-2-2. Finally, a parameter
estimation technique for fitting a SARIMAX-GARCH model is given in Section 2-2-3.
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10 Theory

Figure 2-2: Schematic overview of SARIMAX-GARCH model determination (adapted from Fig.
10 in [1])
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2-2 SARIMAX-GARCH 11

2-2-1 SARIMAX model

A popular regression model type for time series forecasting is the SARIMAX structure, which
is linear in the parameters which enables linear regression techniques for estimating those
parameters. SARIMAX type models fall within the category of multivariate regression models
and have been used extensively in short term price predictions[25], which makes it viable to
use SARIMAX as benchmark model when forecasting REP. A SARIMAX type model is an
extension of the Auto-Regressive Moving Average (ARMA) class of models, which is a linear
combination of the AR and MA basic model types described in Sections 2-1-4 and 2-1-3.
The integrated part is introduced because of the requirement ARMA modelling imposes on
a time series: it has to be WSS. A non-stationary series can often be rendered stationary by
differencing the series to a sufficient order. A SARIMAX model is described by Equations
2-13 through 2-17.

∇Nd∇Nds
s yt = θ(z)Θ(zs)

φ(z)Φ(zs)εt + κ(z)ut (2-13)

φ(z) = 1−
NAR∑
i=1

φiz
i (2-14)

Φ(zs) = 1−
NSAR∑
i=1

Φiz
is (2-15)

θ(z) = 1 +
NMA∑
i=1

θiz
i (2-16)

Θ(zs) = 1 +
NSMA∑
i=1

Θiz
is (2-17)

With the denotation s serving to distinguish between seasonal and non-seasonal components
and:

z Lag operator: znyt = yt−n

φ,Φ, θ,Θ Polynomials in z

∇s Difference operator: ∇syt = (1− zs)yt

yt The predicted variable at time t

ut Vector of external inputs

εt Prediction error

κ Input transfer function

NAR Order of auto-regressive terms

NSAR Order of seasonal auto-regressive terms

NMA Order of moving average terms
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12 Theory

NSMA Order of seasonal moving average terms

Nd Order of differencing required to render the series WSS

NDs Order of seasonal differencing

2-2-2 GARCH modelling

In time series where periods of high volatility alternate with periods of low volatility, stand-
alone SARIMAX models which assume a constant variance will yield bad performance. In
the real-time electricity market, volatility is time-dependent and price spikes tend to cluster.
This is shown in Figures 2-3.

(a) 29-03-2016. The volatility is high (b) 31-03-2016. The volatility is low

Figure 2-3: Real-time electricity price for subtracting from the grid (REPc) on two days exhibit-
ing distinctly different volatility profiles

A way to correct for time-varying volatility is the GARCH structure proposed by [24].
GARCH updates the variance based on past squared values of the prediction error and past
variances. As is shown in Equation 2-19, the prediction error is modeled as white noise with
a time-varying variance. The variance σ2

t of the residual error term εt in a GARCH model
is given by Equation 2-19. In order to allow for asymmetric effects of positive and negative
prediction errors, [26] extended the determination of GARCH variance to Equation 2-20.

εt = σtwt (2-18)

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i (2-19)

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i +

r∑
i=1

γiεt−i (2-20)

with

wt Gaussian white noise N (0, 1)

εt Prediction error at time step t

ω Bias parameter

α Weighting vector of lagged prediction errors
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2-2 SARIMAX-GARCH 13

β Weighting vector of previous variance values

γ Weighting vector of lagged prediction errors introduced to allow for asymmetric ef-
fects of positive and negative prediction errors

p, q, r Orders of the GARCH model

If GARCH is used as a model extension, the order of GARCH terms is iteratively determined
in three steps.

• Estimation of underlying model parameters

• Computation of the residual autocorrelation to see if the underlying model is adequate

• Subjecting the squared residual sample autocorrelation to the Ljung-Box test to see if
extra GARCH effects need to be added

The Ljung-box test which is used to test for GARCH effects in the residuals, checks for sta-
tistically significant lags in the squared residual autocorrelation. If there are such significant
lags, GARCH terms are added to explain the correlation structure present in the variance[27].

In the previous section the SARIMAX model structure has been described, while this section
introduced GARCH as an extension to incorporate dynamic time series variance in the model.
The next section will describe the parameter estimation step of Figure 2-2.

2-2-3 Parameter estimation

When the model structure has been determined, the parameters still need to be estimated. For
SARIMAX structures, the model is linear in the parameters, which enables LLS parameter
optimisation. GARCH has been introduced as model extension to correct for a time-varying
variance in the model. As the variance is now modelled in a nonlinear fashion, least squares
optimisation is not applicable, but the principle of maximum likelihood can be exploited.

Maximum Likelihood estimation While LLS is suitable to estimate parameters of the initial
SARIMAX model, model parameters have to be estimated in a different way after adding
GARCH terms. As the prediction error is modelled to have a Gaussian distribution, the
likelihood of a realization of εt is given by Equation 2-21. Realizations are assumed to be
independent, so the joint realization is given by Equation 2-22.

Lt =

 1√
2πσ2

t

 e−ε2t /2σ2
t (2-21)

L =
T∏
t=1

Lt (2-22)

Taking the logarithm of the likelihood transforms the product into a sum, of which the
derivative, and thus the argument of maximum likelihood, is more convenient to calculate.

Master of Science Thesis CONFIDENTIAL I. de Hoogt



14 Theory

The log-likelihood function is given in Equation 2-23. Once the prediction error εt of the
SARIMAX model has been obtained and the GARCH model structure for σt has been selected
(Equation 2-20), the quantities εt and σ2

t can be expanded, after which the parameters which
maximize the log-likelihood function are determined numerically.

lnL = −T2 ln(2π)− 0.5
T∑
t=1

ln σ2
t − 0.5

T∑
t=1

(ε2t /σ2
t ) (2-23)

In this section the model structure of SARIMAX-GARCH, which will be used as a benchmark
model, has been described. A SARIMAX model, which is well known from econometry, is
extended with GARCH effects to incorporate time-varying volatility in time series prediction.
The next section will introduce another benchmark model, NARX.

2-3 Nonlinear Auto-Regression with eXogenous inputs network

The SARIMAX-GARCH model introduced in the previous Section assumes a linear corre-
lation structure between time series values [28] with a nonlinear variance correction term.
Moreover, it requires a model structure to be defined a priori. A popular nonlinear data-
driven alternative is found in Artificial Neural Networks (ANNs). In order to process time
series, feedback ANNs are used in which information about previous network states is fed
to the network along with its external inputs in order to learn patterns. The Non-linear
Auto-Regressive with eXogenous inputs (NARX) model class is reported by [29] to perform
better than other feedback ANN structures in keeping track of long-term dependencies. This
comes without loss of computational accuracy with respect to fully connected networks[30].
A fully connected network is a network in which all nodes are interconnected and the com-
plete network state is fed back as additional input. In a NARX network, only the network
output is used in a feedback loop, rather than the complete network state. The NARX prin-
ciples are elaborated on in Section 2-3-1. Then, Section 2-3-2 elaborates on NARX structure
determination before Section 2-3-3 briefly describes parameter estimation.

2-3-1 NARX modelling

In a NARX network, the estimated output is a function of past outputs and inputs of the
time series, as shown in Equation 2-24.

ŷ(t+ 1) = Γ(y(t), y(t− 1), ..., y(t− dy), u(t+ 1), u(t), ...., u(t− du)) (2-24)

A basic NARX type network is shown in Figure 2-4. External inputs at the current time step,
as well as previous time steps are fed through the hidden layers of the network to produce a
prediction which is looped back to serve as additional input.

The non-linear mapping which needs to be inferred in an identification experiment, Γ, consists
of the connection weights between nodes in subsequent layers and the activation functions in
the hidden and output layers. A commonly used activation function is the sigmoid activation
function described by Equation 2-25. It is used as a continuously differentiable, monotonic
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2-3 NARX network 15

Figure 2-4: NARX type neural network with dy output delays and du input delays and two hidden
layers [2]. Each hidden layer transforms its inputs through activation function A (Equation 2-25).
Each connection from input to hidden layer is weighted with an element from WI . Connection
weights from a hidden layer to the next layer are collected into the matrix WH , of which a single
weight Wh1,(1,1), imposed on the connection of node 1 from the first hidden layer to node 1 of
the second hidden layer, is highlighted

probability that a neuron is activated and the signal should thus be propagated through this
node. The continuously differentiability guarantees gradient-based optimisation approaches
are enabled, while it has been shown that nonlinearity in the activation function enables
neural networks to approximate any continuous function to within arbitrary bounds[31]. A
matrix notation for a single-layer NARX mapping is given in Equation 2-26.

A(νi) = 1
1 + e−νi

(2-25)

Γ = WHA(WI [Y U ]) (2-26)

With

A Sigmoid activation function

Γ Nonlinear mapping from network inputs to network output

WH Connection weights on links between hidden layer nodes and outputs

WI Connection weights on links between inputs to the network and hidden layer nodes

Y Input vector of past outputs

U Vector of current and past control inputs
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The corresponding scalar version of Equation 2-24 with a single hidden layer is thus:

ŷ(t+ 1) =
Nh∑
k=1

[
Whk

(
1 + e

−(
∑du

i=1 WIiu(t−i+1)+
∑dy

j=1 WI,j+duy(t−j+1))
)−1

]
(2-27)

with

Nh Amount of nodes in the hidden layer

Whk Connection weight on the link between hidden layer node k and the output node

du Amount of external input delays

dy Amount of output tap delays

The parameters to optimize in a NARX type neural network, are the connection weights WH

and WI . Since the monotonicity of a sigmoid activation function renders the optimisation
problem convex[32], least squares optimisation techniques are applicable.

2-3-2 Network structure determination

In a SARIMAX-GARCH model, the network structure is determined iteratively. For a NARX
type neural network however, there are only two things to determine beforehand: the amount
of hidden layers and model inputs. As its basis is still an AR model, selecting a relevant
amount of feedback delays can be done based on inspection of the sample PACF.

Selecting the amount of hidden layers affects the severity of the transformation and can usually
be done based on expert knowledge of the amount of transformations needed to go from input
data to output data. If one takes the example of face recognition within a picture, it is nearly
impossible to mark something as a face based on pixel intensities. However, transforming the
raw pixel data into edge detectors and subsequently taking the detected edges as inputs to
another layer piecing these edges together to recognize faces is more feasible. One can add
in more intermediate steps to facilitate ease of detection, like grouping edges to features like
mouths or eyes, then classifying part of a picture as a face if enough of these features are
present within a bounded region.

If such expert knowledge about the amount of transformations from input to output is not
available, there are still guidelines to select the amount of hidden layers in your network.
[33] argues the following about the relationship between the amount of hidden layers and
computational strength:

0 layers Only linearly separable functions or decisions can be represented

1 layer Any function which contains a continuous mapping from one finite space to another
can be approximated

2 layers Arbitrary decision boundaries and smooth mappings can be approximated to arbi-
trary accuracy with rational activation functions
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2-4 GFNARX 17

As the REP does not contain a continuous mapping, but rather an evolving discrete set of
values, two hidden layers will be used.

2-3-3 Parameter estimation

After determination of the NARX network structure, connections weights between subsequent
layers have to be optimised. Since the monotonicity of a sigmoid activation function renders
the optimisation problem convex[32], least squares optimisation techniques are applicable. In
a nonlinear least squares optimisation without constraints, the Levenberg-Marquardt algo-
rithm is a standard technique to obtain a solution for the parameter vector[34]. It is based on
a combination of a gradient descent method and the Gauss-Newton method. The generalized
objective function OF to minimise in a least squares problem formulation, is the squared
error criterion given by Equation 2-28.

OF (β) = (y − ŷ(β))TW (y − ŷ(β)) (2-28)

with

β Parameter vector

W Weighting matrix

The LLS problem is contained in this formulation as a special case: if the estimated function
ŷ(β) is linear in the parameters and the weighting matrix W is set to unity, the objective
function reduces to Equation 2-10.

In the nonlinear case minimisation becomes an iterative process the details of which can be
found in [34].

In this section the NARX neural network has been described. It will be used as a benchmark
model alongside the SARIMAX-GARCH model which was topic of the previous section. The
next section presents the time series prediction model which is proposed in this thesis in order
to forecast REP.

2-4 Generalized Fuzzy Neural Network formulation of a NARX
model structure

The previous sections described SARIMAX-GARCH and NARX which will be used as bench-
mark models. SARIMAX-GARCH assumes a linear correlation between subsequent time se-
ries values, which might not yield accurate predictions in case of the highly nonlinear REP
time series. NARX provides a nonlinear model which is thought to yield more accurate REP
predictions, but has as main drawback that the relation between inputs and output is not
interpretable. It is yet unclear which observable factors contribute to the REP, so an in-
terpretable model is key towards selecting appropriate inputs and learning something about
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the underlying system. As a way to incorporate human reasoning expressed in natural lan-
guage in modelling, fuzzy systems have been developed. Fuzzy systems thus naturally yield
a linguistic interpretation.

In this Section the proposed GFNARX model class is presented. A brief introduction to fuzzy
logic is given before the working principles of the Generalised Fuzzy Neural Network (G-FNN)
algorithm, which serves as a basis for the proposed model, are described. Subsequently,
improvements to this G-FNN model are discussed, leading to the proposed model structure.

2-4-1 Fuzzy logic

In this paragraph, a brief introduction to rule-based fuzzy inference systems will be given,
based on [3]. While fuzzy systems are not limited to rule-based inference, in this thesis only
rule-based fuzzy systems will be addressed.

When using natural language to express quantities which can be used in a model, one will use
imprecise phrases like The temperature is high or The temperature is low. However, transition
between the two is gradual instead of having a crisp boundary. As there is a gradual transition,
there is overlap between the linguistic labels, making it possible for a temperature to partly
belong to both categories. Hence the classification is called fuzzy.

In fuzzy inference systems, reasoning is typically of the general form IF circumstance THEN
consequence, which is called a rule. The circumstances and consequences can be fuzzy propo-
sitions or numerical functions. Fuzzy propositions are characterized by linguistic labels, which
represent a fuzzy set of a variable. An example of a variable with three fuzzy sets and its cor-
responding labels is found in Figure 2-5. The membership functions quantify to which extent
a numerical value of the base variable belongs to a fuzzy set, while rules put a restriction on
the simultaneous occurrences of variable values.

In fuzzy inference systems, the circumstance is always a fuzzy proposition, while the conse-
quence structure can be broadly categorized into two:

• Linguistic reasoning, in which the consequences are also fuzzy propositions which are
derived from the rules and the inputs. A well-known linguistic fuzzy inference model is
the Mamdani model [35]. A visualized example of such a fuzzy inference model with two
inputs and two rules is found in Figure 2-6. The reasoning in Figure 2-6 has as structure
IF circumstance x0 AND circumstance y0 THEN consequence z. The consequence of
each rule is triggered by the minimum fulfilment degree of the two circumstances, while
the final output distribution is governed by the maximum consequence at each point.
If a numerical value is required as output, this can be inferred from the output distri-
bution. For example, when regarding the fuzzy partitioning of temperature in Figure
2-5, with corresponding singleton outputs:
IF temperature is low THEN comfort is 10
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2-4 GFNARX 19

Figure 2-5: Example of a linguistic variable "temperature" with three linguistic terms[3]

Figure 2-6: Example of Mamdani inference in a model with inputs x0 and y0 and output z [4]
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IF temperature is medium THEN comfort is 20
IF temperature is high THEN comfort is 10
Then, if the temperature t = 13, µlow = 0.2, µmedium = 0.7, µhigh = 0; resulting in
comfort = (0.2 ∗ 10 + 0.7 ∗ 20)/0.9) = 17.8.

• Takagi-Sugeno-Kang (TSK) type fuzzy inference, in which the output is a function of
the inputs instead of a fuzzy set. Rule firing strength here can be seen as the validity
of using a local model to approximate the model output. The overall output y(z) for
input z is retrieved from the individual local models as:

y(z) =
∑
i µiyi(z)∑

i µi
(2-29)

2-4-2 Rule base construction

In any fuzzy model, a rule base has to be constructed. The rule base is the agglomeration
of all individual rules which govern the output distribution. Most fuzzy models known from
literature take one of the following three approaches to constructing the rule base:

• Human expert knowledge is translated into linguistic if-then clauses, which are then
described by fuzzy sets in premise and consequent parts[36]

• The input data space is partitioned into clusters. In this approach, either the amount
of clusters is pre-defined[37], or a suitable amount of clusters is found by iteratively
reducing the amount of clusters from an initial partitioning with a redundant amount
of clusters[38]

• Region growing methods. In these kind of methods there is only a single cluster initially,
and incoming data is either added to an existing cluster if it s similarity to this cluster
is larger than a predefined threshold, or results in a new cluster being created around
this data point

If a rule base is constructed based on human expert knowledge, the rules and membership
function implementations are in general static. In an environment which is dynamic and not
fully understood, such an approach is likely to fail. Moreover, as was argued by Zadeh 1973,
"as the complexity of a system increases, our ability to make precise and yet significant state-
ments about its behavior diminishes until a threshold beyond which precision and significance
(relevance) become almost mutually exclusive characteristics"[39].

As a suitable amount of clusters is hard to determine a priori when it is unknown which inputs
are relevant, region growing methods are well suited to identifying a model for the real-time
electricity market while simultaneously assessing input significance.

2-4-3 Generalized Fuzzy Neural Network model building algorithm

In the previous section it was argued that region growing methods are well suited to rule
base construction when identifying a fuzzy model of the real-time electricity market. A data-
driven TSK type region growing method which automatically clusters the input data into

I. de Hoogt CONFIDENTIAL Master of Science Thesis



2-4 GFNARX 21

Figure 2-7: Structure of a fuzzy neural network

fuzzy sets and adapts the rule base online is the G-FNN learning algorithm proposed by [5].
This G-FNN uses fuzzy logic within a neural network framework. The general idea is depicted
in Figure 2-7. Each input has its corresponding fuzzy sets of which a membership grade can
be determined. These membership grades are fed through to the rule activation layer. Then
the inference mechanism determines the output based on the activation of rules.

In a G-FNN, the mapping from inputs to outputs is defined as[5]:

ŷ(t) =
nr∑
j=1

wje
−(u(t)−cj)TVj(u(t)−cj) (2-30)

with

u Input vector of length Nu

wj Connection weights from the inputs to rule j: wj = k0,j +
∑Nu
i=1 ki,jui

cj Center vector of the Gaussian membership functions

Vj Covariance matrix of the Gaussian membership functions of rule j: Vj = diag
(

1
σ2

1,j
, ..., 1

σ2
Nu,j

)

During the training process, both the network structure and parameters are learned iteratively.
A flowchart of the training process is shown in Figure 2-8.
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Figure 2-8: Flowchart of the G-FNN learning algorithm[5]
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Structure learning constitutes determination of the proper amount of fuzzy logic rules and
their corresponding membership function shapes. This is based on two criteria, the prediction
error and completeness of the model. For every new input-output training data pair, there
are three potential cases:

1. εt > Ke and dt > Kd. A new rule is generated

2. εt > Ke and dt ≤ Kd. An existing rule is updated

3. εt ≤ Ke. No structural changes are applied

with

εt Prediction error at time step t: εt = ||yt − ŷt||

Ke Maximum permissible prediction error

Kd Maximum distance between an observation and the nearest cluster:

Kd =
√
ln

1
εc

εc Threshold for membership grade. For each input sample u(t), maxj (µj(z(t))) ≥ εc
should hold

dt Normalised distance from the input observation to the nearest cluster. This distance,
called the Mahalanobis distance, is described by Equation 2-31. A two-dimensional com-
parison to Euclidian distance is shown in Figure 2-9

d(t) = min
j

√
(u(t)− cj)TVj(u(t)− cj) (2-31)

If a new membership function is added, the center and width vectors are determined by
Equations 2-32 through 2-35.

Di,j(t) = ||ui(t)− bi,j || (2-32)
x = argmin

j
Di,j(t) (2-33)

if Di,x(t) < Kmf : ci,nr+1 = bi,x, σi,nr+1 = σi,x (2-34)

if Di,x(t) ≥ Kmf : ci,nr+1 = ui(t), σi,nr+1 = (Di,x

Kd
)2 (2-35)

with

bi,j Boundary point from the set {ci,1, ..., ci,nr , ui,min, ui,max}

nr Amount of fuzzy rules

Kmf Threshold of dissimilarity of neighbouring membership function, which regulates
the maximum amount of partitions of the input space
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Figure 2-9: Comparison of Euclidean and normalised distance measures (Fig. 3 of [6]). In
Euclidian distance, point B is closest to the cluster. Using the normalised Mahalanobis distance
as measure however, point A is noticeably closer to the cluster

In case 2, the new data point falls within an existing cluster, yet the prediction error is too
large. The width of the cluster is reduced according to Equation 2-36 in order to increase the
chance a potential new cluster will emerge if more training data is added.

σi,x := Ksσi,x (2-36)

with

Ks Reduction factor. It is recommended by [5] to choose 0.9 ≤ Ks ≤ 1 based on the
sensitivity of rule x to input dimension i

Redundant clusters are pruned by assessment of cluster influence on the estimated output.
Equation 2-30 can be rewritten as a product of a regression vector Φ with weights w:

ŷ(t) = Φ(t)w (2-37)

with

Φ ∈ Rt x ν

ν = nr(nu + 1)

nr Amount of fuzzy rules

nu Amount of inputs to the network

w ∈ Rν
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Then, performing a QR decomposition, Φ = QR, the Error Reduction Ratio (ERR) term in
Figure 2-8 is calculated as[5]:

ERRk = (qky)2

||qk||2||y||2
(2-38)

with

y output time series

qk kth column of the Q matrix

Finally, all ERRk terms corresponding to rule j are collected in a vector ERR(j), and rule j
is deleted if:

TERR(j) =

√
||ERR(j)||2

nu + 1 < Kerr (2-39)

with

TERR(j) Total ERR due to inclusion of rule j

Kerr A designed threshold. According to [5], it is not tractable to design it analytically
and Kerr = 0.005 is a decent initial guess

Once the structure is in place, the weight vector w is estimated through a LLS procedure as
described by Equation 2-40.

w = (ΘTΘ)−1ΘT y (2-40)

Where Θ = [Φ(1) Φ(2) ...Φ(t)]T . If the consequent TSK models depend linearly on their
parameters, the least-squares solution is optimal.[3]

2-4-4 Issues with G-FNN

G-FNN as described in the previous section has a few shortcomings in its algorithm as well
as theoretical flaws in its description, which leads to believe the authors did not succesfully
implement the algorithm as described in [5]. The computationally inexpensive, dynamically
self-organizing and data-driven nature, however, are attractive as basis to improve upon. In
this section, a few weaknesses of the G-FNN are highlighted.

1. The G-FNN algorithm allows numerical instability. As there is no restriction on addition
of rules, it can happen in G-FNN that the regression matrix becomes singular. Also,
when clusters overlap, the output can potentially become unbounded, as there is no
normalisation of rule activation

2. In the G-FNN algorithm, clusters are only updated in terms of their widths. The cluster
centres are static after initialisation, unless the rule pertaining to these centres is pruned.
This results in a loss of accuracy when compared to any method which optimises the
cluster locations
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3. In G-FNN, pruning of redundant rules is based on the ERR, which ranks rule importance
according to its total contribution to model output in the training data. It has been
proven by [7] that this method can produce an incorrect subset of fuzzy rules, because
it neglects potential redundancy in input partitioning

4. When creating a new rule, minimum distance to existing clusters is defined in G-FNN
by the Euclidian norm, while the need to create a new rule is governed by Mahalanobis
distance. This is inconsistent. A normalised distance like the Mahalanobis distance is
better suited to identify parts of the input space which are already covered, especially
in the case where inputs do not have the same dimensions, because Euclidian distance
will then underestimate deviations from inputs with relatively small values

5. Defining new cluster widths in terms of Euclidian distances suffers from the same limi-
tation imposed by scale differences. The new cluster widths are governed by the most
extreme input dimensions, which either causes the new cluster to cover a very small
part of the input space (governed by smallest dimension) or causes large overlap with
existing clusters (governed by largest dimension)

6. The local models in the consequent part of the G-FNN are TSK style affine models.
This means that at every cluster centre, a locally linear approximation is made to
the signal, between which is interpolated in a nonlinear manner. In case of at least
twice differentiable target signals, Taylor’s theorem suggests that an improvement to
the accuracy of the model, as well as speed of convergence, is achieved by using local
higher order polynomial models

With the weaknesses of G-FNN identified in this section, improvements to the G-FNN algo-
rithm which address these weaknesses can be made. This will be done in the next section.

2-4-5 GFNARX modelling approach

In this section, improvements to the G-FNN algorithm proposed by [5] are suggested. These
improvements solve issues described in Section 2-4-4. At the end of this section, the resulting
GFNARX algorithm is given.

Bounding the amount of rules Issue 1 as described in Section 2-4-4 is that there is no
restriction on the addition of rules. Prediction error and overall dissimilarity to existing rules
are the only two criteria mentioned with regards to updating the rule base in the G-FNN
description. However, there are two scenarios in which new rules should not be added:

• The addition of a new rule would render the regression matrix near singular. As the
weight parameters are determined by the pseudo-inverse of the regression matrix, sin-
gularities in the regression matrix lead to unstable solutions

• The regression problem is underdetermined. Adding a new rule adds nu + 1 columns
to the regression matrix. If there are not enough observations, the amount of rows in
the regression matrix is lower than the amount of columns, hence the matrix can never
have full column rank, as is required for a stable solution to Equation 2-40
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To allow the least squares parameter optimisation to assign meaningful weights to new rules,
the regression matrix is rebuilt with the new fuzzy partitioning whenever a structural change
has been applied. If one of the two cases above would happen, the new rule is not added.

Moving average cluster centring One of the weaknesses of the G-FNN is that it does not
optimise its cluster parameters after creation. This is solved by adapting the cluster center of
the nearest rule through averaging as in Equation 2-41 with every incoming training data pair.
In this fashion, a cumulative moving average implementation of clustering is created which,
combined with the rule base cluster segmentation method, optimises the cluster locations
online.

ci,j =


ci,jncl,j + ui
ncl,j + 1 if j = argminj

√
(u(t)− cj)TVj(u(t)− cj)

ci,j otherwise
(2-41)

with

ci,j Cluster center of rule j at input i

ncl,j Amount of data points attributed to cluster j

u(t) Input vector at time t

Vj Width matrix of the Gaussian membership functions of rule j: Vj = diag
(

1
σ2

1,j
, ..., 1

σ2
Nu,j

)

Mahalanobis Distance as cluster separation criterion G-FNN uses Euclidian distance to
determine whether parts of input space are already covered. Euclidian distance is unsuitable
as distance measure when inputs have different scales. A unitless and scale-invariant distance
measure, which is already used in another part of G-FNN is the Mahalanobis distance, which
measures the distance between a data point and a distribution in terms of standard deviations
from the distribution centroid.[40] Thus, when adding a new rule to the rulebase, a new cluster
is only added when input ui(t) is separated from all existing clusters by more than distance
threshold Kmd standard deviations.

Instead of defining new cluster widths in terms of the geometrically closest neighbouring
cluster center, new cluster widths are determined by calculating the permissible widths for
each dimension based on maximum overlap with neighbouring clusters and selecting the
minimum of these two widths. Since cluster widths can be reduced, but are not expanded
in both G-FNN and GFNARX, it can be considered relatively safe to initialize the cluster
width in such a way that the normalised distance of its maximal intersection with the nearest
neighbour is exactly equal to the separation threshold Kmd. By initializing the cluster in this
manner, maximal coverage of the input space void between existing clusters is achieved while
avoiding redundancy. This solves the problems with using an Euclidian distance threshold as
separation measure.
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The intersection of two membership functions of fuzzy sets A and B, based on the product
t-norm which is the standard t-norm in fuzzy neural networks, is defined as:

µA ∩ µB = µAµB = e

−

((
u− cA
σA

)2

+
(
u− cB
σB

)2
)

(2-42)

The product t-norm intersection of two Gaussian functions is a concave function, and hence
there is a unique global maximum to the intersection which can be found by differentiating
and equating the gradient to zero.

∂µAµB
∂u

=
(

2u− 2cA
σ2
A

+ 2u− 2cB
σ2
B

)
e

−

((
u− cA
σA

)2

+
(
u− cB
σB

)2
)

= 0 (2-43)

In a bounded input space, this means that equating the first bracketed term on the right-hand
side of Equation 2-43 to zero will yield the solution. Solving for u, substituting the solution
into Equation 2-42 and rearranging terms, the following maximum is found:

max(µA ∩ µB) = e
−

(cA − cB)2

σ2
A + σ2

B (2-44)

As the cluster centers as well as one of the width matrices are known, the only unknown
in Equation 2-44 is the width matrix of the new cluster. By similarity to the Mahalanobis
distance (Equation 2-31), the maximum new width in input dimension i can then be solved
for:

σi,nr+1 = min
j

√
|(ci,j − ci,nr+1)2 −Kmd/σi,j ||/Kmd (2-45)

Rule pruning by fraction of activation The ERR which is used in G-FNN to select a
significant subset of rules is prone to overestimating the importance of redundant rules. A
number of methods have been suggested by [7] to either extend the ERR or improve on it by,
amongst others, pivotal QR decomposition, but in the end all of them rely on computationally
relatively expensive orthogonal decompositions. In this work, a simple check, which hardly
requires any memory or computational power, for rule significance is proposed in terms of
fraction of activation: fact,j >= Kact. An additional benefit of doing so, is that it also puts
an interpretable upper limit on the amount of rules the model can have. For example, if
Kact = 0.025, the absolute maximum amount of rules is nr,max = 40. The model will avoid
over-fitting on outliers by pruning rules which have less than Kact chance of activating, based
on historical data. In order to render the model adaptive to changing circumstances, this
activation-based pruning is coupled to a rolling window of historical training data which
gradually forgets old data.

GFNARX algorithm On top of the improvements described in the previous paragraphs, a
few minor improvements to G-FNN are implemented in GFNARX:

• Activation of rules is normalised in order to increase the consistency of predictions in
output space. As the membership support in a fuzzy neural network is not unilaterally
described by

∑
j µj = 1, this is necessary and common practice in most fuzzy models
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• The pseudo-inverse of the regression matrix is calculated by use of a QR-decomposition,
instead of directly computing the inverse in Equation 2-40. This enhances numerical
stability[41]

The overall proposed GFNARX algorithm can thus be described by:

1. Initialize first rule based on first training data pair

2. New incoming training data: calculate prediction error e(t) = ||y(t)− ŷ(t)|| and Maha-
lanobis distance (Equation 2-31)

3. If e(t) ≤ Ke, no structural changes are applied; skip to 8. Otherwise continue to 4

4. If d(t) ≤ Kmd, reduce width matrices of the nearest rule

5. If d(t) > Kmd, generate a new rule candidate

6. If the regression matrix becomes singular, reject candidate; skip to 8. Otherwise con-
tinue to 7

7. Redistribute available data over clusters

8. Attribute new data to clusters; update clusters according to Equation 2-41.

9. If fact,j < Kact, delete rule j

10. Adjust regression matrix

11. Adjust weight matrix through least squares estimation

12. If regression matrix size over the historical data buffer limit: forget oldest data point

13. return to 2

In this section, issues with G-FNN identified in Section 2-4-4 are addressed. As a result,
the improved GFNARX algorithm has been derived. The next section will describe how the
identified fuzzy neural network model can be interpreted in linguistic terms.

2-4-6 Dimensionality reduction and linguistic interpretation

The aim of this project is accurate, real-time and interpretable prediction of the electricity
market price. To achieve accurate, real-time prediction the GFNARX algorithm has been
proposed. In order to retrieve an interpretable subset of the identified model, similarity-driven
rule base simplification as proposed by [7] is employed. The pairwise similarity between fuzzy
sets can be quantified by the fuzzy Jaccard index, defined as the intersection of two sets
divided by the union, which is described in Equation 2-46.

JI(Ali, Ami) = min(|µAli
(ui), µAmi(ui)|)

max(|µAli
(ui), µAmi(ui)|)

(2-46)

where
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JI Jaccard index

µ Membership degree

ui Input i

Ari Fuzzy set of rule r at input i

l,m Rule indices

|·| Cardinality of a fuzzy set, |·| =
∫
uiεZi

·

Sets which are similar to at least degree λs can be merged. If this simplification results in
rules becoming equal, only one of the rules needs to be kept.

In this chapter, the GFNARX algorithm has been proposed as improvement to the G-FNN
algorithm found in literature. As the goal is to predict REP, for which currently no benchmark
method is known, theory has also been provided on models which will be used as benchmark
models. SARIMAX-GARCH is a generalised version of the ARIMA model structure popular
in econometry, while NARX is a neural network structure specifically catered towards time
series prediction. In the next chapter, the experiments which will be used to assess the
performance of GFNARX are described and the REP data is investigated in order to pre-
process it into a time series suitable for identification purposes.
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Chapter 3

Experiments

In this chapter the experiments which have been carried out to validate the performance of
Generalised Fuzzy Neural Network formulation of a Non-linear Auto-Regressive with eXoge-
nous inputs model structure (GFNARX) are described and plausible model inputs towards
forecasting the Real-time Electricity market Price (REP) are found. GFNARX is proposed
as an improvement to Generalised Fuzzy Neural Network (G-FNN) in Section 2-4-4. As there
is no benchmark method found in literature which deals with REP prediction, GFNARX
performance is first benchmarked on a time series prediction problem popular in fuzzy neural
network literature. This time series, the Mackey-Glass series, and the benchmark experiment
corresponding to it are described in Section 3-1.

GFNARX uses a method of selecting a significant subset of rules which does not rely on
a computationally expensive orthogonal decomposition like G-FNN. To establish that this
subset selection is able to filter redundant and inconsequential rules from the rule base, a
literature problem which deals with identifying insignificant rules from an existing rule base
is described in Section 3-2.

After testing GFNARX performance on literature problems, the real-time market data is
examined in Section 3-3 in order to develop the REP model identification experiment. Finally,
a novel benchmark method for assessing economic value of REP predictions is introduced in
Section 3-4. REP predictions of the models described in Chapter 2 will be used to determine
cooling motor behaviour of a Cold Storage Warehouse (CSW).

3-1 Mackey-Glass chaotic time series

This section presents the Mackey-Glass time series, which will be used to benchmark GFNARX
model accuracy to other fuzzy neural network approaches. The Mackey-Glass chaotic time
series is a well known method found in fuzzy neural network literature to benchmark the
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performance of a time series prediction model. Since it is not known whether the GFNARX
model is capable of predicting the highly volatile REP for which no benchmark is yet avail-
able, the contribution of GFNARX to time series forecasting literature will be supported by
this Mackey-Glass prediction benchmark.

The Mackey-Glass time series is generated from a differential equation which has originally
been used to characterize dynamics of physiological feedback systems [42], and is described by
Equation 3-1. The most common form of this equation, when used for time series prediction
benchmarking purposes, uses as parameters β = 0.2, γ = 0.1, n = 10 and τ = 17.

y(k) = βy(k − τ)
1 + yn(k − τ) + (1− γ)y(k − 1) (3-1)

with y(0) = 1.2.

The values of the time series are predicted by using four past values of the series itself:

ŷ(k) = f(y(k − 24), y(k − 18), y(k − 12), y(k − 6)) (3-2)

The first 123 values generated by the difference equation are used to initialize the series,
after which 500 training samples are seen and the obtained model is validated on 500 more
samples. The model performance metric used is Root-Mean-Square Error (RMSE). RMSE
of GFNARX prediction of the 500 test samples is compared to RMSE scores reported in
literature.

In this section a time series model identification problem popular in fuzzy modelling literature
has been described. The performance of GFNARX will be benchmarked against results
reported in literature for this identification experiment, the results of which are discussed in
Section 4-1. The next section introduces another experiment known from literature, which
will test the ability of GFNARX to clean up inconsequential rules from the rule base.

3-2 Rule base pruning by fraction of activation

During training of the GFNARX model, rules are generated online. To avoid overparametris-
ing the model, which will result in overfitting the training data and thus less prediction
accuracy, it is necessary to also remove rules from the rule base if their significance is low.
As part of GFNARX, a rule pruning method based on total fraction of activation is proposed
in Section 2-4-4. As this method does not make use of orthogonal transforms to rank and
reduce the amount of rules, it has to be validated that this method works well in practice.
A problem found in fuzzy literature dealing with dimensionality reduction by identifying in-
significant rules in an existing rulebase, is provided by [8]. This modelling problem has also
been included in [7] in which it is shown that several existing methods to rank rules, among
which the Error Reduction Ratio (ERR) used in G-FNN are inaccurate.

In this rule subset selection exercise, the modelled system is a nonlinear plant with two
auto-regressive inputs and an unmeasured disturbance, described by Equations 3-3 and 3-4.
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y(k) = f(y(k − 1), y(k − 2)) + u(k) (3-3)

with

f(y(k − 1), y(k − 2)) = y(k − 1)y(k − 2) [y(k − 1)− 0.5]
1 + y2(k − 1) + y2(k − 2) (3-4)

with

f(·) Mapping of the unforced system. It has an equilibrium state at (0,0)

y Plant output

u Disturbance input

k Time step

Following the approach in [8], 1200 data points are generated, 1000 of which are obtained
by using a random disturbance u(k) uniformly distributed in the interval [−1.5, 1.5], followed
by 200 sinusoidal disturbances u(k) = sin(2πk/25), k = 1001, ..., 1200. This constitutes a
signal-to-noise ratio of order -10dB. Starting from a given initial rule base, it is the task to
identify the redundant rules and order the rules in terms of importance.

In this modelling exercise, a fuzzy rule is specified by its corresponding cluster centre and
width parameters. The relevant parameters of the initial rule base are given in Table 3-1,
while the input space partitioning is visualized in Figure 3-1. It can be seen that some rules
are nearly duplicates of one another and there are two rules which are so narrow that they are
essentially fuzzy singletons, which are bound not to contribute much in the presence of strong
noise. It has to be noted that membership function widths σij in Table 3-1 are 0.5

√
2σij of

GFNARX due to the specification of a fuzzy set Aji of rule j at input i as:

Aji(ui(k)) = exp−(ui(k)− cji)2

2σji
(3-5)

In [8] it has been shown that model performance is not degraded by removing one of the rules
of each redundant pair and the two rules with overly narrow clusters. In this experiment it is
the aim to obtain a significance ordering for the rules and verify that if a subset of 20 rules
is selected based on this ordering, there are no more redundant or non-firing rules in the rule
base.
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Table 3-1: Parameters of the Gaussian membership functions in the experiment of [8]. It can
be seen from the bold lines that there are insignificant membership functions due to redundancy
and due to membership functions being too narrow

rule center ci1 center ci2 width σi1 width σi2
1 0.0930 -0.3630 0.7095 0.7095
2 0.0933 -0.3632 0.7095 0.7095
3 1.3828 -0.6617 0.6271 0.6271
4 -1.0414 1.5397 0.7969 0.7969
5 -1.8130 -1.6470 1.3205 1.3205
6 -1.8125 -1.6469 1.3205 1.3205
7 0.7776 -1.1555 0.7800 0.7800
8 0.1898 1.0142 0.6141 0.6141
9 -0.4052 0.2798 0.8099 0.8099

10 -0.6613 -0.4846 0.0100 0.0100
11 -0.6613 -0.4846 0.7051 0.7051
12 0.9529 -0.3965 0.6313 0.6313
13 0.7860 0.7723 0.6177 0.6177
14 0.4329 0.1910 0.6652 0.6652
15 1.2940 1.0740 0.6474 0.6474
16 1.2942 1.0738 0.6474 0.6474
17 0.6801 1.4083 0.6370 0.6370
18 1.2656 0.2698 0.7156 0.7156
19 -0.3846 1.1827 0.6772 0.6722
20 -1.2642 -0.1808 0.0100 0.0100
21 -1.2642 -0.1808 0.7907 0.7907
22 -0.9099 -1.1750 0.7728 0.7728
23 -1.008 -1.1384 0.8046 0.8046
24 -1.1533 0.7037 0.8517 0.8517
25 1.7691 -1.2798 0.8746 0.8746
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Figure 3-1: Clusters in the input space [7]

In this section an experiment, known from fuzzy modelling literature, has been introduced.
This experiment checks whether a metric to assess the significance of rules is able to prune
inconsequential rules from the rules base, the results of which are reported in Section 4-2.
The next section will describe the actual REP forecast, which is the aim of this project.

3-3 Real-time Electricity market

The previous sections of this chapter described experiments known from fuzzy modelling liter-
ature in order to establish GFNARX performance in a known framework. These experiments
are performed because there is no benchmark method available in literature for Real-time
Electricity market Price (REP) forecasts, while the aim of this project is to achieve accurate
and interpretable prediction of REP. In this section, the REP time series is investigated and
pre-processed for model identification.

The remainder of this section is structured as follows. Section 3-3-1 briefly introduces the
way the REP is formed, before Section 3-3-2 explains the relationship between REP and
Settlement Price (SP). Pre-processing of the REP time series to a form suitable for iden-
tification and prediction is topic of Section 3-3-3. Section 3-3-4 investigates available data
to select appropriate model inputs. Finally, the REP prediction experiment is described in
Section 3-3-5.
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3-3-1 Formation of the Real-time Electricity Market Price

Before delving into details of the REP time series and its pre-processing for model identi-
fication purposes, the way REP is formed is introduced in this section. This will provide
fundamental insight into the REP signal, which is required to understand design choices
made with regards to the model. As the REP time series is published on the website of the
Transmission System Operator (TSO) with the aim of transparency regarding the potential
settlement prices, this section will contain some allusion to Section 3-3-2.

To balance the electricity grid, the TSO operates a real-time electricity market in which it is
the only broker. There are three products which are put up for auction on this market:

• Primary Control Reserve (PCR)

• Secondary Control Reserve (SCR)

• Tertiary Control Reserve (TCR)

In this thesis the focus will lie on the influence of these control products on the REP. For a
full description, the reader is referred to [43].

PCR PCR is contracted by the TSO to counteract spontaneous grid disturbances. As PCR
activation is an unpaid service, it does not influence the REP.

SCR SCR constitutes the largest part of the real-time electricity market. Balance Respon-
sible Partys (BRPs) submit price bids (Eur/MWh) at which they are willing to supply or
consume electricity. The minimum power which needs to be available in order to place a bid
is 4MW , but the TSO can choose to partially activate offered power in steps of 1MW . The
amount of MW activated is sent as setpoint signal to the BRP. Activation of bids is done by
aggregating bids into a merit order dubbed as bidding ladder and sequentially activating up
until the required power, thus minimising cost of activation for the TSO. Bid activation is
updated every four seconds and the amount of MW activated per bid is sent out as setpoint
to the BRPs.

TCR TCR is once more split into two categories, reserve power and emergency power.
Emergency power is contracted in advance, so the price involved with activation of emergency
power is known. Reserve power however can be put up for auction by means of bids. BRPs
determine the price at which they are willing to supply or consume electricity as well as the
corresponding volume of electricity. The TSO can opt to activate such a bid during a Program
Time Unit (PTU).

The characteristics of PCR, SCR and TCR are summarized in Table 3-2. Following the
activation of SCR and TCR bids in two possible directions, REP comprises two components,
REPc and REPs, described by Equations 3-6 and 3-7.
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Table 3-2: Characteristics of control products available on the real-time electricity market. Up-
wards regulation refers to the TSO buying electricity from BRPs, while downwards regulation
implies the TSO sells energy to BRPs

Product PCR SCR TCR
Price determination - Most extreme bid activated Most extreme bid activated
Way of activation Automatic, real-time response Activation updated every 4s Manual activation for next PTU

Response to activation linear up to 100% within 30s ≥ 7%/min ramp rate towards setpoint ≤ 15min
Direction upwards and downwards upwards and downwards reserve: upwards and downwards

(simultaneous possible) emergency: upwards only

REPc = max([Bup,SCR, Bup,TCR]) (3-6)
REPs = min([Bdown,SCR, Bdown,TCR]) (3-7)

with

REPc Real-time electricity price for overconsumption. This occurs when the TSO
needs to buy energy from BRPs

REPs Real-time electricity price for oversupply. This occurs when the TSO needs to
sell energy to BRPs

Bup Activated bids in the upwards direction. Upwards regulation refers to the TSO
buying electricity

Bdown Activated bids in the downwards direction. Downwards regulation refers to the
TSO selling electricity

In this section, the formation of the REP has been described. The REP is a result of activated
control energy bids on the real-time electricity market, with the most extreme bids activated
determining the price. As the actual price BRPs have to pay or receive is determined by the
SP rather than REP, the relation between these prices is described in the next section.

3-3-2 Imbalance settlement

In the previous section, the formation of REP has been described. This Section describes the
way REP influences the Settlement Price (SP). In the Netherlands, following the terminology
of [18], a dual pricing system is used in conjunction with an additive component. The latter
is rarely employed and negligible in comparison to the imbalance price at its extremes, so will
be omitted from the pricing scheme analysed in this study. The term dual pricing refers to
there being separate SPs for upwards regulation and downwards regulation.

The imbalance price to be paid by a BRP when overconsuming, ISPc, and the one paid to a
BRP when oversupplying, ISPs, are given in Table 3-3. The concept of the mid price, Pm, as
a function of the bids submitted by the BRPs is given in Equation 3-8 with the subscripts once
again denoting extra consumption or supply. The framework for determining the regulatory
state S is captured by the following rules:
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Table 3-3: The oversupply (ISPs) and overconsumption (ISPc) settlement prices as determined
by the mid price Pm, regulation state S, the REP and the emergency power price Pe. The
parameter α = 1 if emergency power has been dispatched and α = 0 otherwise, while the
subscript i denotes individual values within the Program Time Unit

S ISPs ISPc
-1 min

i
(REPs,i) min

i
(REPs,i)

0 Pm Pm
1 max(max

i
(REPc,i), αPe) max(max

i
(REPc,i), αPe)

2 min(min
i

(REPs,i), Pm) max(max
i

(REPc,i), αPe, Pm)

• If no bids have been activated, S = 0

• If only downwards regulating bids have been activated, S = −1

• If only upwards regulating bids have been activated, S = 1

• If bids have been activated both ways, the balance delta δi = SCRc,i − SCRs,i with
SCRc denoting the extra upwards regulation power and SCRs the extra downwards
regulation power due to activated SCR bids, determines the actual regulation state:

1. If it is continuously decreasing, δi − δi−1 ≤ 0 ∀i ε PTU , S = −1

2. If it is continuously increasing, δi − δi−1 ≥ 0 ∀i ε PTU , S = 1

3. S = 2 otherwise

Pm = max(Bup) +min(Bdown)
2 (3-8)

International Grid Control Cooperation The International Grid Control Cooperation (IGCC)
is a collaboration between a number of TSOs in Central West European countries which is
in effect since 2012[44]. Its basic product is a netting of imbalance, but the dutch TSO has
some more cooperation schemes with TenneT DE and Elia BE, the specifics of which can be
found in [43].

While the other potential points of cooperation hinge on reduction of required overall control
capacity, the netting of imbalance leads to immediate reduction in activated SCR and thus
to reduction in costs. Actual netting of imbalance can happen cross-border between any two
adjacent control areas and the basic idea, as can be found in [44], is shown in Equations 3-9
and 3-10. The settlement price PIGCC is multiplied by the net import volume, defined as
the difference between the sum of imports I and sum of exports E to arrive at a cost J for
participating TSO x. To achieve a fair distribution of the profits of the imbalance netting,
the settlement price is determined as a volume weighted average of the imbalance settlement
prices in each control area.
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PIGCC =

∑
x

(IxISPs,x + ExISPc,x)∑
x

(Ix + Ex) (3-9)

Jx =(Ix − Ex)PIGCC (3-10)

Since imbalance areas with a surplus receive more compensation for the energy they provide
to the IGCC than selling through activating an additional BRP bid, and vice versa pay less
for acquiring extra supply, this imbalance netting exchange is in general very profitable to
the TSO. Information about the IGCC netting is published simultaneously with the REP
time series and is an indication of potentially required SCR. If at any point the IGCC
imbalance netting becomes unavailable, the power which was first netted cross-border needs
to be acquired through activating SCR bids, resulting in more extreme REP.

In this section, the relation between REP and SP has been described. SP is the price at which
electricity program deviations are settled, but it has been established that SP is a result of
REP and SCR trend, which have a finer time resolution. This finer time resolution allows for
improved SP predictions throughout a PTU and hence for better asset regulation. The REP
is thus the time series to forecast and its pre-processing to yield a series suitable for black-box
identification is described in the following section.

3-3-3 Time series representation of the Real-time Electricity Market Price

In the previous section, the relation between REP and SP has been described. It has been seen
that the Dutch balancing market employs a dual pricing system in which SPs for subtracting
electricity from the grid can differ from those for supplying to the grid if the regulation
state S = 2. When forecasting REP it is thus necessary to forecast both elements of REP,
REPc and REPs, separately in order to obtain an implicit intermediate forecast for SP which
governs the actual financial transactions between the TSO and BRPs. The SP forecasts are
not explicit, as this would constitute a many-to-one mapping, with infinite possibilities for
intra-PTU profiles resulting in the same SP.

The resulting model identification scheme is shown in Figure 3-2. The planned supply and
demand profiles are subject to disturbances d resulting in grid imbalance e. A PI controller
is used to determine the desired SCR activation[45]. This desired amount of SCR is then
acquired in a balancing auction. If it is possible, the IGCC is used to net imbalances cross-
border, after which the SCR bids from the bid ladder are activated in sequence to satisfy the
SCR demand (see Section 3-3-1). Information about REP is published once every minute
on the website of the TSO[9]. A PTU comprises 15 minutes, so 15 published REP values
determine the settlement price of a PTU. Yet this signal is not observable in real-time. The
REP time series is published at a three minute delay. This three minute delayed signal is used
as an endogenous input to the autoregressive model structures described in Chapter 2. The
REP forecasts are fed through the imbalance settlement regulation mask in order to detect
regulation state S = 2.
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Figure 3-2: Schematic overview of the model identification problem

Pre-processing REP The endogenous signal published by the TSO consists of REPc and
REPs. However, the TSO does not publish a value for both REPc and REPs at every time
step. If no bid Bup is activated, there is no published value for REPc and similarly if no bid
Bdown is activated, no value for REPs is published. As all time series models described in
Chapter 2 assume uniformly spaced data, the gaps in REPc and REPs data have to be filled.
An intuïve way to fill the gaps can directly be inferred from Table 3-3: if there is no regulation
during a PTU and hence no published values for either REPc or REPs, the settlement price
ISPs = ISPc = Pm. Filling the gaps in the time series data with REPgap = Pm is thus
representative of the actual REP state.

A large influence to the REP time series is the mid price Pm. The mid price is is a direct
average of the first SCR bids to be activated on each side of the bid ladder, as described by
Equation 3-8, and is thus a consequence of subjective BRP behaviour. The fact that the mid
price is not fixed can be seen in Figure 3-3. This means that the REP time series exhibit a
deterministic trend. The mid price is fixed throughout a PTU and as bids cannot be altered
in the hour preceding the PTU of delivery[43], is known prior to the start of a PTU. It
can then be subtracted from the REP time series to yield Real-time Electricity market Price
Premium (REPP):

REPPc = REPc − Pm (3-11)
REPPs = REPs − Pm (3-12)
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Figure 3-3: Mid price Pm throughout 2015. It is clear that Pm is not constant

The premiums described by Equations 3-11 and 3-12 are representative of the potential mon-
etary value or risk for a BRP being in a state of imbalance. As the REPc and REPs series are
forecasted separately, it is possible to specify REPPs in a way which represents the possible
monetary gain if a BRP actively causes imbalance in its portfolio to counteract the overall
grid imbalance. This is described by Equation 3-13.

REPP ∗s = Pm −REPs (3-13)

Figure 3-4: REPP throughout the year 2015. The series exhibit volatility clustering and price
spikes, with REPPc spikes being more extreme

If one looks at the profiles of REPP over the year 2015, shown in Figure 3-4, it is visible
that the overall REPP behaviour is mean-reverting, but there is a surplus of spikes. There
is also a clear interval within which most of the REPP values reside, the interval [0, 200]. To
avoid model overfitting on outliers, the REPP series is clipped. Some statistics about the
REPP series are summarized in Table 3-4. Since only 1% of REPPc values are exceeding
200Eur/MWh, which is approximately the boundary between normal price ranges and price
spikes from a visual inspection of Figure 3-4, REPPc,max = 200Eur/MWh is chosen to clip
the REPPc time series. As the threshold for clipping is based on visual inspection rather
than calculation, optimisation might be possible for specific applications of REP forecasts,
but this is not within the scope of this thesis.
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Table 3-4: Statistics of REPP in 2015. The means are calculated over the values where a REP
signal is published

REPPc REPPs
Percentage > 200 Eur/MWh 1% 0.1%
Percentage < 0 Eur/MWh 4% 4%

Mean 14.84 Eur/MWh 28.29 Eur/MWh
Mean (interval [0, 200]) 14.68 Eur/MWh 26.17 Eur/MWh

The clipping threshold for REPPs is chosen at REPPs,max = 100Eur/MWh for the following
reasons:

• The mean of REPPc is approximately twice as high as the mean of REPPs (see Table
3-4). This is not solely due to the difference in price spike intensity, as clipping both
REPPc and REPPc at the interval [0, 200], on average ¯REPPc ≈ 1.8 ¯REPPs

• From 31-03-2015 through 17-12-2015, the government provided state aid to renewable
electricity sources through the Stimulering Duurzame Energieproductie (SDE). On aver-
age throughout 2015, this constituted ¯SDE = 56.39Eur/MWh[46]. The largest amount
of state aid in terms of Eur/MWh was provided to wind turbines, with the turbines
joining in from 31-03-2015 receiving a base amount of SDEwind = 70.00Eur/MWh[47].
Adding the average mid price P̄m = 35.23Eur/MWh, this indicates that at REPPs =
91.52Eur/MWh it is not attractive for the average renewable energy source to deliver
electricity to the grid. Similarly, at REPPs = 105.23Eur/MWh it is unattractive to
wind parks on land. The clipping threshold of REPPs,max = 100Eur/MWh lies in be-
tween these two values with less than 1% of the values where REPPs > 100Eur/MWh
falling within the range [100, 105]

At the lower end of the REPP spectrum, the time series are clipped at REPPc,min =
REPPs,min = 0Eur/MWh. This is because it is assumed that BRPs with a demand re-
sponse portfolio will not act voluntarily in a way which nets monetary losses. Summarising
the properties of the pre-processed REPP:

REPPc REPPc,min = 0; REPPc,max = 200

REPPs REPPs,min = 0; REPPs,max = 100

In this section a closer look has been taken at the REP time series. As the Dutch TSO employs
a pricing scheme in which settlement prices for overconsumption and oversupply can differ,
REPc and REPs need to be forecast separately. Moreover, to facilitate model identification
with the model structures described in Chapter 2 the REP time series are pre-processed:
REP is detrended by the subtracting the deterministic mid price Pm and clipped to avoid
overfitting on outliers. In the remainder of this thesis, the suffix ’premium’ will be dropped,
so the pre-processed series REPP is implicitly meant whenever actual values are mentioned
with regards to REP forecasts. The next section will investigate available data on exogenous
inputs as well as select auto-regressive model orders.
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(a) PACF of TS (b) PACF of REPc (c) PACF of REPs

Figure 3-5: PACFs of the time series TS, REPc and REPs. They resemble each other closely

3-3-4 Model inputs

The previous section described how REPc and REPs have to be forecast separately and their
pre-processing. The model structures introduced in Chapter 2 which will be used to forecast
REP are not just auto-regressive in nature. They also allow for exogenous influences to be
modelled. REP is a discrete result of the TSO activating bids in the real-time electricity
market auction. Based on the properties of the SCR and TCR control products, described
in Section 3-3-1, these bid activations typically last for a longer time than the three minute
delay at which REP is published. In this section, potential model inputs are reviewed and a
subset is selected to forecast the REP with. First, the Autocorrelation Function (ACF) and
Partial Autocorrelation Function (PACF) of the REP time series are inspected to identify
significant endogenous terms. Then, potential exogenous regressors are addressed.

Endogenous inputs To select appropriate lagged REP values as inputs, the ACF and PACF
of the REP time series are inspected. To avoid continuity issues due to data gaps in REP being
filled with a constant value (and hence overestimation of autocorrelation between subsequent
terms), the modified time series TS = REPc − REPs is regarded. As can be seen in Figure
3-5, the PACF of TS resembles the PACF of REPc and REPs closely, so selection of Auto-
Regressive (AR) terms is not influenced.

The ACF of this modified series is shown in Figure 3-6a. A zoomed version of this ACF is
depicted in Figure 3-6b. Daily, hourly and half-hourly correlation peaks can definitely be
established. The daily correlation peaks are the highest of these three possible seasonalities,
but are low in comparison to shorter lags. While there is thus some evidence towards a
daily seasonality, the significance is low. With some allusion to later sections: including the
daily seasonality in the GFNARX model yielded lower accuracy on the training data set,
after which this particular endogenous input was discarded. Other seasonalities are even less
significant and have thus not been considered.

As was argued in Section 2-1-3, a pure Moving Average (MA) process would have its ACF cut
off after a finite amount of lags, so there are AR influences and the PACF has to be regarded.
Figure 3-5a shows the PACF of the modified time series TS. The PACF cuts off after around
6 lags, with a small extra spike at the 15 minute mark. This extra spike can be attributed
to the mean-reverting step which frequently occurs at PTU borders (see Section 3-3-1). As
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(a) Autocorrelation coefficients of the TS time
series for a week in lags. There are periodic
spikes at multiples of 1440 minutes, which con-
stitute a day

(b) Autocorrelation of the TS time series for
approximately 2 hours in lags. There are mild
spikes at 30 minutes lag and 60 minutes lag

the time series is published by TenneT at a three minute delay, lags 3, 4, and 5 are most
significant towards predicting the REP.

External inputs One property of all the time series models considered in this thesis, is the
optional inclusion of exogenous inputs. In this section, publicly available exogenous inputs
which could influence the REP are analysed.

SCR and TCR As the REP is formed by the TSO dispatching regulatory power to balance
the grid, the activated SCR and TCR have a large influence on the REP. The regulatory state
which ultimately determines the SP, however, is not influenced by the TCR. As described in
Section 3-3-2, the regulatory state is solely governed by the activation of SCR throughout a
PTU.

If the emergency TCR is activated in a PTU, but the SCR activated in the corresponding
direction forms a monotone non-increasing series, while the activated SCR in the opposite
direction has at least one increment in the duration of the PTU, the SP is not influenced by
the activation of TCR at all. An example is found in PTU 61 of 03-03-2015 (15.00-15.15)[9], of
which the relevant quantities as published by the TSO are given in Table 3-5. The emergency
TCR is active and an additional 30MW of TCR is activated at the start of the PTU. However,
the activated SCR is a monotonically non-increasing series throughout the PTU. Hence, the
regulatory state S = −1 and ISPc = ISCs = −35.60Eur/MWh.

This means that including the TCR does not offer insight into the SP and hence has a
deceptive influence on the REP. Moreover, as TCR is activated in blocks of full PTUs, its
influence on the REP will be reflected in the published REP time series itself and there is no
need to include TCR as explanatory variable.

The regulatory state is determined by the trajectory of SCR during a PTU. The published
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Table 3-5: TenneT data for PTU 61 of 03-03-2015[9] for upwards(+) and downwards(-) regu-
lation. The regulatory state S = −1 due to the non-increasing activation of SCR in the upwards
regulation direction

Time IGCC+ [MW] IGCC− [MW] SCR+ [MW] SCR− [MW] TCR+ [MW] REPc [Eur/MWh] REPs [Eur/MWh] Pm [Eur/MWh]
15.00 0 0 229 0 30 366.40 41.96
15.01 0 97 213 0 30 366.40 41.96
15.02 0 132 180 0 30 366.40 41.96
15.03 0 194 166 0 30 366.40 41.96
15.04 0 228 149 0 30 366.40 41.96
15.05 0 50 119 0 30 366.40 41.96
15.06 0 134 104 1 30 366.40 40.39 41.96
15.07 0 119 88 6 30 366.40 38.39 41.96
15.08 0 132 56 14 30 366.40 36.39 41.96
15.09 0 96 45 25 30 366.40 27.39 41.96
15.10 0 55 32 43 30 366.40 27.39 41.96
15.11 0 95 3 64 30 366.40 -35.60 41.96
15.12 0 86 0 88 30 366.40 -35.60 41.96
15.13 0 105 0 125 30 366.40 -35.60 41.96
15.14 0 0 0 156 30 366.40 -35.60 41.96

values reflect the currently active amount of SCR rather than the total amount activated by
the TSO, while the REP time series represent the most extreme bid activated, as described in
Section 3-3-1. As such, the published SCR time series can show a ramp-up of SCR providers
towards their setpoint provided by the TSO. It is also possible for bids lower than the price-
setting bid to be deactivated while leaving the REP unaltered. In that case, the SCR shows a
ramp down and it can be expected that the REP will soon return towards the mid price Pm
as well. As such, the first difference of the SCR time series has been included as explanatory
variable.

Bid price ladder REP is determined by the most extreme bid activated from the bid ladder.
Therefore, it would be possible to create a deterministic mapping from SCR activation to
REP if the bid ladder was completely observable. However, the only values published are:

• min(Bup,SCR)

• max(Bdown,SCR)

• Bup when SCR+ = 100MW

• Bdown when SCR− = 100MW

• Bup when SCR+ = 300MW

• Bdown when SCR− = 300MW

• Bup when SCR+ = 600MW

• Bup when SCR− = 600MW

• max(Bup,SCR)

• min(Bdown,SCR)
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Bids are submitted per individual PTU and can vary in size as well as price. It is thus not
trivial to reconstruct the entire bid ladder over time to obtain a mapping from SCR to REP.
As most of the bid ladder is unobservable, it will not be used as explanatory variable in the
REP prediction models.

IGCC The IGCC, which has been described in Section 3-3-1, was introduced in 2012. When
regarding the statistics of regulatory state occurrence, a discrete step in occurrence of reg-
ulatory state S = 0, which corresponds to no SCR activated, is noticed in 2012, as shown
in Table 3-6. This coincides with the introduction of the IGCC. Due to the netting of im-
balance between countries, sometimes activation of regulatory reserves can be avoided as a
whole, which results in regulatory state S = 0 even though there is local imbalance.

For the IGCC imbalance netting to have an effect, local imbalances between two adjacent
countries have to have opposite signs. Price volatility will be a lot higher if such a netting
can not take place. The IGCC contribution towards imbalance regulation is published on the
website of the TSO and the availability of IGCC is clearly an important explanatory variable.

Table 3-6: Yearly relative occurrence of regulation states per PTU. Regulation states S = −1,
S = 1 refer to the grid being in surplus or deficit; regulation state S = 0 means there was no
regulation necessary and state S = 2 refers to both upwards and downwards regulation being
required within a single PTU

year\S -1 0 1 2
2008 43.94% 0.03% 38.23% 17.79%
2009 51.77% 0.14% 38.25% 9.85%
2010 50.11% 0.23% 40.85% 8.81%
2011 47.33% 0.23% 39.53% 12.91%
2012 45.04% 6.99% 36.44% 11.53%
2013 41.97% 3.39% 42.11% 12.53%
2014 46.04% 5.29% 41.80% 6.88%
2015 43.87% 5.12% 37.27% 13.74%

Weather conditions As renewable energy sources cannot reliably plan their power genera-
tion a day ahead due to dependence on weather conditions, wind farms and solar plants tend
to frequently cause grid imbalance. To counteract the imbalance arising as a result, SCR has
to be activated. It is then plausible to assume a correlation between weather conditions and
the REP.

Available historical data on weather conditions provided by the Koninklijk Nederlands Me-
teorologisch Instituut (KNMI) has a time resolution of an hour. This is a low sample rate
compared to the REP time series. As the REP is highly volatile and the grid balance state
frequently changes sign multiple times within an hour, the correlation between the weather
data provided in hourly intervals and REP published in one minute intervals is thought to
not be significant due to undersampling of the weather data. Table 3-7 shows the corre-
lation coefficients between weather variables and the REP time series. There is no strong
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correlation, with only the correlation between REPs and average wind speed during an hour
Corr(REPs, V̄wind) > 0.05.

Table 3-7: Cross-correlation coefficients between REP and weather conditions. The weather
conditions investigated are the temperature T and average wind speed V̄wind

REPs REPc
Temperature 0.009 0.035

Average wind speed 0.054 0.010

To further investigate this correlation, inclusion of this wind speed in prediction of REPs is
tested within the framework of the prediction experiment described in Section 3-3-5. The
result is that on the training data set, the RMSE of GFNARX prediction is increased from
RMSE(REPs)without,training = 9.78Eur/MWh toRMSE(REPs)wind,training = 10.72Eur/MWh.
As including the statistically most significantly correlated weather variable, wind speed, as a
model input results in a lower model accuracy, weather conditions are not used as exogenous
inputs. In future research, the influence of weather conditions sampled at a higher frequency
can still be investigated, but acquisition of such data by measurement is not within the scope
of this thesis.

Grid frequency The TSO is tasked with balancing the grid through matching electricity
consumption and supply. If these are not in balance, the grid frequency deviates from the
nominal frequency fnom = 50Hz. As control energy is dispatched by the TSO to maintain
the grid frequency at approximately fnom, it is investigated whether the grid frequency is
correlated to REP.

As all of continental Europe is connected to the same electricity grid, the grid frequency is
synchronous throughout Europe. The Mains frequency[48] is measured at an interval of 10
seconds, which is a fine enough time resolution to investigate its influence on REP. Contrary
to initial expectation however, there is little to no correlation between REP and the Mains
frequency deviation from fnom. Figure 3-7 shows the frequency deviation and REP time series
for a couple of hours in 2015. The lack of visible correlation between frequency deviation and
REP trend is observed throughout the rest of the year 2015 as well. The cross-correlation
coefficients for the first 60 lags, corresponding to an hour in lags, are shown in Figure 3-8.
There is no evidence that the series are significantly correlated.
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Figure 3-7: Frequency deviation from the nominal frequency fnom = 50Hz and REP for a couple
of hours in 2015. There seems to be no correlation

(a) (b)

Figure 3-8: Cross-correlation of frequency deviation from fnom = 50Hz and REP for an hour in
lags. There is no evidence that the quantities are correlated

A plausible explanation for this lack of correlation between grid frequency and REP is the
fact that REP is governed by SCR activation. The PCR is used to stabilise the grid frequency
after a frequency deviation occurs anywhere in Europe, while the TSO employs SCR only to
correct for any local imbalance as measured by cross-border electricity flows. As the IGCC
also deals with imbalance netting between adjacent TSO control areas, it might be possible
to find a correlation between frequency deviation and availability of IGCC, but investigating
whether this is possible is not within the scope of this thesis. As no significant evidence has
been found of a correlation between grid frequency deviation and REP, the grid frequency
will not be used as an exogenous input to REP forecasting models.
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Table 3-8: Signals published by the TSO and KNMI which are related to the REP and their
inclusion in or exclusion from the prediction model

Signal Time resolution Included Reason for exclusion
Activated SCR Minute Yes -
Activated TCR Minute No No influence on the regulatory state

IGCC Minute Yes -
Bid price ladder characteristics PTU No Unobservable

Temperature Hour No Correlation too low
Wind speed Hour No Correlation too low

Grid frequency 10 Seconds No Correlation too low

In this section available data sources have been investigated in order to select inputs to the
REP forecasting models described in Chapter 2. As endogenous inputs the three, four and
five minutes delayed REP time series values will be used. This corresponds to the three
most recent observations published by the TSO. The findings on exogenous inputs which
will be used in REP forecasts are summarized in Table 3-8. Exogenous inputs which will be
used are the most recently observed SCR values, trend in SCR, availability of the option to
net imbalances through the IGCC and amount of imbalance netting taking place. The next
section describes the REP model identification and forecasting experiment which will be used
to assess model accuracy.

3-3-5 Prediction of the Real-time electricity price

In this section the experiment regarding REP model identification and subsequent forecast is
described. The primary aim of forecasting REP in this thesis work is to reduce overall cost
of operation of electrical assets in a demand response portfolio, for which forecast accuracy
is not necessarily the most descriptive metric. To extend the applicability of identified REP
models to general use cases and acquire insight into the real-time electricity market system
dynamics, however, it is required to forecast REP as accurately as possible.

As REP data is published by the TSO with a frequency of once per minute, acquiring enough
data to perform an identification experiment by real-time observation is infeasible. Therefore,
historical data which can be downloaded from the website of the TSO[9] is used. As 2015 is at
the moment of writing the most recent complete year of which historical data is available, REP
data of the year 2015 is used to identify prediction models and evaluate their performance.

In system identification it is normal to split the data into training and validation sets, for
instance using 2/3 of the data samples to identify a model and the remaining data to evaluate
performance. In this experiment, data is split in a more skewed fashion: the first two weeks
of 2015 are used to identify a model, while the remainder of 2015 is used for validation
purposes. This choice for training on two weeks of data was made because of the rule of
thumb in identification experiment design that the length of the identification experiment
should be approximately ten times the longest time constant of interest in the system[49]. As
was seen in Section 3-3-4, the longest time constant of interest in the system is a day. Two
weeks constitute fourteen times this time constant, which satisfies the rule of thumb.
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This project is carried out at Peeeks B.V. which mainly uses Python as software platform to
operate its systems. To be compatible with the existing software framework of the company,
the models described in Chapter 2 are implemented in Python 3.4.

SARIMAX-GARCH, NARX and GFNARX all use least squares optimisation methods to es-
timate their parameters and as such, the Root-Mean-Square Error (RMSE) metric, described
by Equation 3-14, is a fair method to compare model performance. As reference prediction
model the naïve model ŷ(t) = y(t− 3) is used.

RMSE =

√∑T
t=1 ||y(t)− ŷ(t)||

T
(3-14)

In this section, the Real-time Electricity market Price (REP) time series has been analysed.
From the relation between REP and Settlement Price (SP), it has been inferred that it is
necessary to forecast REPc and REPs separately. The deterministic trend in REP stemming
from the mid price Pm has been subtracted from the series and they have been clipped to
avoid model overfitting on outliers. Based on REP autocorrelation and available data on
exogenous factors influencing REP, model inputs have been selected. As endogenous inputs
the three, four and five minutes delayed REP time series values will be used. This corresponds
to the three most recent observations published by the TSO. Exogenous inputs which will be
used in both REPc and REPs forecasts are the most recently observed SCR values, trend in
SCR, availability of the option to net imbalances through the IGCC and amount of imbalance
netting taking place. The models described in Chapter 2 are trained on historical data of
the first two weeks of 2015 and subsequently used to predict REP for the entire year 2015.
Results of this REP prediction experiment are reported in Section 4-2-2. In this thesis work,
the main aim of REP prediction is to reduce cost of operation of electrical assets within
a demand response portfolio. The next section proposes a benchmark method based on
operation of a typical asset within such a portfolio.

3-4 Thermal control of a Cold Storage Warehouse

In this section, a benchmark method is proposed which simulates application of simple control
strategies to a modelled CSW. The CSW is a prime example of an asset with a thermal buffer,
which can be used in a demand response portfolio. In order to produce sensible results, a heat
loss model based on first principles is included. This section is structured as follows: first,
the heat loss model is described, after which flaws in dimensioning of CSW models found in
literature are corrected based on load data from an actual CSW. Then, the cost of CSW
operation is described and ultimately, the resulting benchmark is presented in which it is the
objective to minimise cost of CSW operation based on historical data of the year 2015.

3-4-1 First principles modelling of a cold storage warehouse

A CSW typically stores frozen products at an approximate maximum temperature of -18◦C.
This temperature ensures product quality does not degrade while stored, so it is imperative

I. de Hoogt CONFIDENTIAL Master of Science Thesis



3-4 Thermal control of a Cold Storage Warehouse 51

to keep the temperature below this threshold when dealing with long term storage of frozen
goods.

Because the temperature in a CSW is lower than the environmental temperature, there will be
heat losses to the environment. Heat losses through all outside surface areas are governed by
conduction, but the walls connected to outside air also suffer from convective losses. Moreover,
there is heat production whenever there is activity inside, because fork-lift trucks and people
produce heat. Based on these considerations, the thermal energy balance of a CSW is given
by Equation 3-15. It is assumed that the ground has the same temperature as the outside
air.

dET
dt

=
∑
i

UiAi(Tout − T )− VC (δηPC + Pprod) (3-15)

with

ET Thermal energy: ET = CCVCT

CC Heat capacity of the CSW [J/m3K]

VC Volume of the CSW [m3]

T Temperature [K]

t Time [s]

Ui Heat transfer coefficient through surface i [W/m2K]

Ai Area of surface i [m2]

Tout Environment temperature [K]

δ Dummy variable for the activation of cooling power (δ = 1 if cooling, δ = 0 otherwise)

η Coefficient of Performance (COP) of the cooling power. COP = |QC |/PCt, with as
theoretical limit COPmax = T

Tout − T
, based on the first law of thermodynamics

QC Actual heat subtracted from the CSW [J/m3]

PC Rated power of the cooling installation [J/m3s]

Pprod Heat production by activity inside the CSW [J/m3s]

Discretizing to obtain a time series model, Equation 3-15 becomes:

T (k + 1) = T (k) + ts
CC

(∑
i

(
UiAi
VC

(Tout(k)− T (k))
)
− δηPC + Pprod

)
(3-16)

with ts the time resolution of the series.
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3-4-2 Realistic dimensioning of model parameters

Throughout literature, various models of CSWs have been used. As representatives, the
models used in an MSc internship previously performed at Peeeks [13] will be considered.
The parameters of these CSW models are given in Table 3-9.

Table 3-9: CSW parameters for three models [10, 11, 12] completed with parameters determined
in [13]

Lukasse Verzijlbergh Stoeckle,
et al, 2009 [10] and Lukszo, 2013 [11] 2001 [12]

Size (l x w x h) [m] 20 x 25 x 5 200 x 190 x 30 95.94 x 95.94 x 9.6
Volume VC [m3] 2500 1.14 · 106 8.84 · 104

Heat capacity CC [J/m3K] 5 · 105 7895 5.57 · 105

Heat transfer coefficient U [J/m2Ks] Uf = 0.21 0.2 0.3
(floor, walls, roof) Uw = 0.16 0.2 0.26

Ur = 0.13 0.2 0.26
Cooling power PC [J/m3s] 21.7 1.75 13.6

Rated cooling power P ∗ [kW ] 54 1995 1202
COP η 1.5 3 2.6

Heat production Pprod [J/m3s] 20 0 3.6

In the experiment performed in [13], the nominal behaviour of these CSWs is to have δ take
values corresponding to:

daytime (07.00 - 23.00) δ is regulated to keep the temperature−18.1◦C <= T < −18.0◦C.
If T < −18.1◦C, δ = 0

nighttime (23.00 - 07.00) δ is regulated to keep the temperature between −21.9◦C >=
T > −22◦C. If T > −21.9◦C, δ = 1

This leads to temperature profiles as seen in Figure 3-9. It can be seen that the CSW obtained
from [10] operates within a really small range of the maximum temperature allowed. This
CSW thus has very little flex available. On top of that, it is small, with a total rated power
of P ∗ = 54kW . On the other hand, the CSW modelled by [11] is larger than any realistic
scenario and does not take into account heat production within the storage itself. Moreover,
the cooling is too efficient, causing the cooling power to be active slightly above ten percent
of the time, which is unrealistic. The CSW which is described by [12] is the opposite of the
first one, it is a large CSW which operates within a range around its minimum temperature,
which again leaves very little room for flexible operation.

To arrive at a CSW model which has realistic operational parameters and has enough flexibil-
ity in the thermal buffer to serve as benchmark, a real world CSW, owned by A2 coldstorage,
is regarded. This A2 CSW has the following specifications:

Volume VC [m3 ] 1.3 · 105
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(a) Nominal operation of the CSW described by
[10] from 08-01-2015 through 14-01-2015

(b) Nominal operation of the CSW described by
[12] from 08-01-2015 through 14-01-2015

(c) Nominal operation of the CSW described by
[11] from 08-01-2015 through 14-01-2015

Figure 3-9: Temperature profiles of the CSW models under nominal operation
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Rated cooling power P ∗ [kW ] 440

fraction of time actively cooling (2014) E(δ) 0.65

The other operational parameters, such as heat loss and production, are not known.

Starting from the most realistic CSW described in Table 3-9, the cooling power PC is scaled
to have P ∗ = 1MW . This is for ease of interpretability, since the REP is settled in terms of
Eur/MWh. The other parameters are also slightly adjusted in a manner which ensures that
the fraction of time actively cooling E(δ) ≈ 0.6, which is of the correct order of magnitude.
The final CSW model parameters are given in Table 3-10.

Table 3-10: Operational parameters of the benchmark CSW model

Size (l x w x h) [m] 95.94 x 95.94 x 9.6
Volume VC [m3] 8.84 · 104

Heat capacity CC [J/m3K] 2.57 · 105

Heat transfer coefficient U [J/m2Ks] Uf = 0.4
(floor, walls, roof) Uw = 0.4

Ur = 0.4
Cooling power PC [J/m3s] 11.32

Rated cooling power P ∗ [kW ] 1000
COP η 1.9

Heat production Pprod [J/m3s] 10
Maximum Temperature allowed Tmax [◦C] -18.0
Minimum Temperature allowed Tmin [◦C] -22.0

3-4-3 Cost of operation and Naïve control

To obtain a benchmark for the cost of operating the CSW as modelled in the previous para-
graph, a baseline cost has to be established. In the reference case, perfect consumption fore-
cast is assumed, which means that all electricity is bought at the APX day-ahead auction[50].
This way, no imbalance is generated. The CSW consumption forecast is based on the control
regulations given in [13], which keep the temperature −22.0◦C ≤ T ≤ −18.0, while trying to
adhere to the control scheme δ = 1 from 23.00-06.59, δ = 0 otherwise, each day.

A reference control method which does utilise the imbalance market and the possibility of
buying electricity during times of favourable SPs, is created by regulating the CSW without
modelling the REP. The REP forecasts in this reference method are the most recently
obtained delayed REP values as published by the TSO[9], and as such, this method is called
naïve forecasting.

With the operational limits given in Table 3-10, the naïve forecasting CSW control method
exhibits the following properties and behaviour:

• Average power consumption required: L̄ = 0.6MW
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• Maximum load: Lmax = 1MW

• Minimum load: Lmin = 0MW

• Ramp speed: ∆L
∆t = αMW/min; in our modelled CSW, α =∞

• If the REP for overconsumption, REPc ≥ ∆Pthreshold, the asset will ramp up towards
maximum load. δ = 1

• If the REP for oversupply, REPs− ≥ ∆PThreshold, the asset will ramp down towards
minimum load. δ = 0

• If ∆Pthreshold ≥ max(REPc, REPs), the asset will ramp up or down corresponding to its
current temperature, which is a function of its internal imbalance ∆E =

∫ T
0 L(t)dt−L̄T .

If T > −18.5◦C, δ = 1; if T < −19.5◦C, δ = 0

• If T <= −22.0, δ = 0

• If T >= −18.0, δ = 1

• If none of the above apply, follow the baseline behaviour

Generalising cost of operation to include REP forecasts, the overall block scheme of deter-
mining the costs of operating the simulated CSW is shown in Figure 3-10. Deviations from
baseline operation, the electricity of which is bought at the day-ahead Amsterdam Power
Exchange (APX) auction, are settled at the relevant SP (see Section 3-3-2) and the total cost
is equal to the reference cost modified by the imbalance transactions.

3-4-4 Benchmarking cost of thermal control of a cold store

If no overriding control signal is given, the modelled CSW is run according to the principles
described in [13]:

If the current time is between 07.00 and 22.59:

• If T < −18.1, δ = 1
• If T >= −18.0, δ = 0

If the current time is between 23.00 and 06.59:

• If T > −21.9, δ = 1
• If T <= −22.0, δ = 0

The energy required to operate the CSW in this way is bought on the APX day-ahead market
and is assumed to be perfectly forecast. No imbalance is generated in the process. Operating
the CSW according to this regulation scheme for the entire year 2015, leads to total electricity
costs given in Table 3-11.
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Figure 3-10: Block scheme of the overall cost of operation benchmark method. The Real-time
electricity market prices (REP) are determined from their delayed values and external inputs.
These predictions, along with the planned consumption and current internal consumption surplus
or deficit are used to determine actual consumption levels. The deviations from the planned usage
are settled at the relevant Imbalance Settlement Prices SP

Table 3-11: Cumulative electricity costs of operating the CSW in 2015 based on historical data.
Nominal operation refers to buying all energy at the APX day-ahead auction with perfect forecasts.
The three minute delay corresponds to the delay at which the TSO publishes REP data

Costtot [Eur] Costavg [Eur/MWh]
Nominal operation 195682 37.12

Naïve strategy (3 minutes delay) 162547 30.86
Peeeks strategy (3 minutes delay) 153076 29.03

When testing CSW regulation with REP forecasts, deviations from the forecasted usage in
the reference case are settled at the appropriate SP. The performance measure is the total
costs of acquiring electricity to run the CSW. To provide contrast, the electricity costs of
CSW operation when utilizing the control strategy currently implemented at Peeeks is also
shown in Table 3-11, as well as the naïve control implementation which is described in the
previous paragraph. The results of applying REP predictions to regulate CSW cooling power
are reported in Section 4-3-2.

This chapter introduced the experiments which are used in this thesis. To show the con-
tribution of GFNARX to fuzzy modelling literature, a model identified with the GFNARX
algorithm is applied to a literature benchmark. The benchmark method has been described
in Section 4-1 and the results are presented in Section 3-1. GFNARX builds its network
structure online, which can result in overparametrisation if there is no method to prune in-
significant rules from the fuzzy rule base. To show that GFNARX is capable of identifying a
significant subset of rules, a literature experiment in which the task is to weed out redundant
and inconsequential rules from an existing rule base has been described in Section 3-2. The
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results of this rule subset selection are presented in Section 4-2.

The aim of this thesis is to achieve accurate, real-time and interpretable prediction of the
electricity market price, which is published by the TSO in the form of a time series, REP.
GFNARX is proposed to achieve this aim. Based on the real-time market specifics with
regard to Settlement Prices (SPs), the two components of REP, REPc and REPs, are forecast
separately. As endogenous inputs the three, four and five minutes delayed REP time series
values will be used. This corresponds to the three most recent observations published by
the TSO. Exogenous inputs which will be used in both REPc and REPs forecasts are the
most recently observed SCR values, trend in SCR, availability of the option to net imbalances
through the IGCC and amount of imbalance netting taking place. Other exogenous inputs
which were thought to be influential are not included due to the following:

Wind speed The sampling rate of available historical data is too low to yield a significant
correlation to REP. A preliminary test including the KNMI hourly data on wind speed as an
exogenous input variable did not result in an improvement of model accuracy

Temperature As with wind speed, the hourly sampling rate of available historical data is
too low to yield a significant correlation to REP. As the correlation is lower than that of
wind speed, the KNMI hourly data on temperature has not been used as exogenous input

Frequency The real-time electricity market is mainly used to maintain the electricity grid
frequency at fnom = 50Hz. However, disturbances to the grid frequency occurring anywhere
in Europe are resolved with PCR which does not influence REP. The TSO activates SCR
and TCR to resolve local disturbances, which are not necessarily proportional to the overall
grid disturbance. As a result, no evidence has been found of a significant correlation between
measured grid frequency and REP

TCR TCR is one of the three control products the TSO employs to balance the electricity
grid. Together with SCR, activation of TCR governs REP. As described in Section 3-3-2
however, the regulation state which influences SP is completely determined by SCR, rather
than TCR. Therefore, information contained within the TCR time series is redundant

As no REP prediction benchmark method is known from literature, SARIMAX-GARCH
(Section 2-2)and NARX (Section 2-3) models are used to create a comparison. Models are
identified based on historical data of the first two weeks of 2015 and tested on prediction
accuracy throughout the rest of 2015. The economic value of REP prediction is benchmarked
with a newly created benchmark method which simulates application of simple control strate-
gies on a Cold Storage Warehouse (CSW) based on REP predictions. The results of REP
prediction accuracy and economic value are presented in Section 4-3.
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Chapter 4

Results

In this chapter, the results of the experiments described in Chapter 3 are presented. The
Generalised Fuzzy Neural Network formulation of a Non-linear Auto-Regressive with eXoge-
nous inputs model structure (GFNARX) algorithm described in Section 2-4-4 is used to fore-
cast the Real-time Electricity market Price (REP). As there is no known benchmark method
for REP forecasts, a benchmark method simulating a Cold Storage Warehouse (CSW) has
been developed in Section 3-4. Two models from time series literature, described in Sections
2-2 and 2-3, have been implemented to serve as reference results on this benchmark.

Benchmarking GFNARX performance with a self-developed benchmark method does not es-
tablish that GFNARX contributes to fuzzy time series forecasting literature. As such, it is
first used to forecast a time series benchmark popular in fuzzy time series models literature.
The results of this literature benchmark prediction are presented in Section 4-1. As deter-
mining the appropriate amount of fuzzy rules in GFNARX is part of the training process, a
rule pruning method which identifies and deletes inconsequential rules is required. Validation
of the activation-based rule pruning method used in GFNARX is described in Section 4-2.
The actual REP prediction and its application to load regulation of a CSW model is then
described in Section 4-3.

4-1 Mackey-Glass chaotic time series

In this thesis GFNARX is proposed with which to forecast REP. Performance of GFNARX
within the context of time series prediction has not yet been established and is topic of this
section. REP forecasting has not been studied extensively yet, and there are no benchmark
methods known from literature for prediction of REP. Therefore, a popular time series
prediction benchmark method known from fuzzy modelling literature, described in Section
3-1, is used to support the contribution of GFNARX to fuzzy modelling literature.

In this experiment, 1000 input-output data pairs are available. The first 500 samples are used
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(a) Test data prediction with offline training (b) Full prediction with online training

Figure 4-1: Mackey-Glass time series prediction with GFNARX

as training data after which the final 500 samples are predicted without applying any changes
to the model. The Mackey-Glass time series and GFNARX model predictions on the test
data are shown in Figure 4-1a. After 500 training steps the GFNARX model predictions are
hardly distinguishable from the real time series.

Modelling accuracy of GFNARX is compared to various (fuzzy) neural networks found in
literature in Table 4-1. As GFNARX is intended to be used as online data-driven modelling
algorithm, the performance of GFNARX with online training up to the latest measured output
y(k − 6) has also been included and shown in Figure 4-1b. To keep the comparison fair, the
training window is limited to 500 training samples. In this way, the amount of training samples
is kept equal to the original benchmark method where training is performed offline on the
first 500 data samples. It can be seen that the accuracy of the proposed GFNARX algorithm
is comparable to state-of-the-art fuzzy neural networks which have higher computational
complexity or can only be trained offline.

The very best model found in literature (IRSFNN-FuL[51]) uses a trigonometric functional
link expansion to create local higher order nonlinear models and reports an accuracy which is
significantly better than that of any other model found in literature. However, this IRSFNN-
FuL model includes prior knowledge about the range spaces of inputs to statically map these
to the domain [0, 1] in advance. In a dynamically changing environment like the real-time
electricity market for which GFNARX is proposed, it is not trivial to accomplish a sensible
mapping which correctly represents the total input range spaces at all times, as statistical
properties of inputs can change over time. Although it might be possible to create a dynamic
mapping to the domain [0, 1], it is known from image reconstruction literature that this
can result in alteration of observable contrast[70]. In the least squares weight estimation
framework of GFNARX, this would impact the singular values of the regression matrix, which
in turn influences the model parameter estimation. Investigating whether such a dynamic
mapping can stably be achieved or whether it can enhance accuracy of identified models, is
outside of the scope of this thesis.

Implementing such a functional link consequent inference model in the GFNARX algorithm
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Table 4-1: Performance of GFNARX and other models on prediction of the Mackey-Glass time
series sorted by RMSE with the best model at the top

Paper Model name RMSE
Lin, Chang and Lin, 2013 [51] IRSFNN-FuL 0.0002
Yilmaz and Oysal, 2010 [52] FWNN 0.0023

This thesis GFNARX (online training) 0.0026
Juang, Lin and Tu, 2010 [53] RSEFNN-LF 0.0031
Juang and Tsao, 2008 [54] SEIT2FNN 0.0034

Chen, Yang and Dong, 2006 [55] LLWNNH 0.0036
Lin, Chang and Lin, 2013 [51] IRSFNN-TSK 0.0039

This thesis GFNARX 0.0049
Paul and Kumar, 2002 [56] SuPFuNIS 0.0057

Juang, Chung and Hsu, 2007 [57] CSPSO 0.0064
Russo, 2000 [58] GEFREX 0.0067

Lin, Chen and Lin, 2008 [59] SEELA 0.0068
Wu and Er, 2000 [60] D-FNN 0.008

Lin, Chen and Lin, 2009 [61] FLNFN-CCPSO 0.0084
Kim and Kasabov, 1999 [62] HyFIS 0.01

Soto et al., 2013 [63] Ensemble type-2 ANFIS 0.0119
Juang, 2002 [64] TRFN-S 0.0124

Cho and Wang, 1996 [65] RBF-AFS 0.0128
Pulido et al., 2013 [66] Ensemble ANN 0.0173

Sapankeveych and Sankar, 2013 [67] SVR-PSO 0.0379
Nauck and Kruse, 1999 [68] NEFPROX 0.0533
Gaxiola et al., 2014 [69] Type-2 FNN 0.055
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to predict the Mackey-Glass time series, did not result in an improvement in model accu-
racy. Applying the same trigonometric functional link expansion to the GFNARX inference
mechanism as was used in [51], RMSE of the prediction was increased to RMSEFL = 0.0061,
which constitutes a 24.5% relative increase in error. This might be due to the Linear Least
Squares (LLS) weight estimator being incapable of producing unbiased weight parameter es-
timates in the case where the consequent inference model is nonlinear. This warrants further
investigation though, which is not within the scope of this thesis.

It is possible to apply a functional link consequent model which does not make assumptions
about the input and output space, to the proposed algorithm. This requires all possible
input combinations uiuj to be fed through the network, resulting in (N2

u − Nu)/2 weights
being required per rule. Convergence is then slow and the computational load renders it
intractable for online dynamic estimation. Trying a functional link expansion with all possible
input combinations, no model convergence has been achieved within the training data set.
The computation time also extended to over a day as opposed to approximately one minute
with the linear TSK-style inference. This linear Takagi-Sugeno-Kang (TSK)-style model
interpolates in a nonlinear manner described by Equation 2-30 between local affine models.

Although a short experiment with functional link inference models did not yield an improve-
ment in this thesis, in theory it should be possible to improve the prediction accuracy of
continuous signals by mapping the inputs to a higher order feature space. Taylor’s theorem
suggests that for continuous functions which are at least twice differentiable, higher accuracy
is achieved by approximating with higher order polynomials than first order affine models.
On the other hand, regression also becomes slower, as more parameters are involved. For
example, when using local quadratic polynomials as inference basis functions, the amount
of regression parameters approximately doubles. This leads to the connection weights wj in
Equation 2-30 being described by Equation 4-1 and the regression matrix width (Equation
2-37) ν = nr(2nu + 1)

wj = k0,j +
Nu∑
i=1

ki,jui +
Nu∑

i=Nu+1
ki,ju

2
i (4-1)

with

ki,j Individual weights

u Input vector of length Nu

The application of different functional link basis functions which incorporate higher order
dynamics into the GFNARX inference mechanism still requires more study.

In this section, the accuracy of GFNARX has been benchmarked on a reference time series
prediction problem posed in literature. The RMSE of dynamically trained GFNARX predic-
tions ranks among the top fuzzy models found in literature. Only the fuzzy neural network
proposed by [51] with a nonlinear inference mechanism is reported to have a significantly bet-
ter performance. GFNARX performance is thus comparable to state-of-the-art fuzzy neural
networks found in literature while using computationally cheaper means. In this thesis the
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output was constructed from interpolating between local affine models. A possible improve-
ment to GFNARX which was not within the scope of this thesis is to find an efficient nonlinear
inference structure in which the output is constructed from local nonlinear models as was done
in the IRSFNN-FuL network[51]. The next section will describe results on another literature
experiment in which inconsequential rules are pruned from an existing corrupted rule base.

4-2 Activation-based rule subset selection

In this section, results of the experiment described in Section 3-2 are given. The experiment
is to find an importance ordering of rules in an existing corrupted rulebase with as goal to
assign the least importance to redundant and inconsequential rules. Then, if a subset of rules
is chosen to represent the system in a more sparse way, the reduced rulebase will not contain
these redundant or inconsequential rules. GFNARX ranks rule importance by the simple
metric of fraction of activation, instead of assessing explanatory influence on the model fit.
The rule ranking by fraction of activation is discussed in Section 4-2-1. As the importance
ordering obtained by GFNARX does not resemble the ordering obtained by using orthogonal
decomposition methods or rank-revealing methods as described by [7], the prediction accuracy
of GFNARX when using a subset of rules based on the importance ordering is scrutinised in
Section 4-2-2.

4-2-1 Ranking rules based on fraction of activation

In this section, the capability of the GFNARX method of ranking rule importance to assess
which rules are least influential with regards to model predictions, is investigated. Starting
with the 25 numbered rules in the initial rulebase given in the modeling problem of [8] (see
Table 3-1), the first 1000 noisy data pairs obtained by the data generating system described in
Equations 3-3 and 3-4 are used to initialise the GFNARX regression matrix, after which the
rules are ordered by their fraction of activation fact. This ordering, along with the importance
orderings obtained by using the methods described in [7], are shown in Table 4-2.

It can be seen from Table 4-2 that the bottom five rules in the importance ordering based
on fact correspond to the bottom five rules in the importance ordering of the P-QR method
which is acclaimed by [7] to yield the best generalising performance. As the experiment was
designed to have three redundant and 2 non-firing rules, this is the desired result. To select
an appropriate cut-off threshold Kact, a closer look is taken at the fractions of activation of
the redundant and inconsequential rules. Table 4-3 shows fact for the bottom 10 rules in the
importance ordering shown in Table 4-2. Based on these values, Kact = 0.025 is chosen as
threshold for fraction of rule activation.

It can be seen though that the importance ordering obtained by fact differs from the ones
obtained by output contribution (OLS, E-OLS) and rank-revealing methods (SVD-QR, P-
QR). This can partly be attributed to the random disturbance, which results in slightly
different rule activation fractions each time the experiment is run, but there is no evidence
yet that the ordering makes sense. The rule ordering obtained by SVD-QR is claimed by [7]
to be qualitatively close to a random approach in selecting rules, so lack of resemblance to
this ordering is not a bad thing. The orderings obtained by OLS and E-OLS however, are
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Table 4-2: Importance ordering of the rules, referred to by number, provided in Table 3-1
according to various ordering methods (most important at top). It is known that there are 3
duplicate and 2 non-firing rules, so the bottom five rules are deleted from the rule base

SVD-QR E-OLS OLS P-QR fact
25 5 5 24 8
4 24 24 25 6
19 25 25 6 12
7 16 16 15 21
3 8 8 23 23
24 21 21 8 22
8 23 23 4 25
13 11 11 12 18
23 3 3 11 9
14 22 22 14 2
21 7 6 18 19
17 9 7 19 7
22 19 15 22 14
18 4 19 17 11
12 14 4 7 4
9 18 9 21 17
11 1 17 3 3
2 17 13 13 15
5 13 18 9 24
16 12 12 2 13
15 2 1 20 1
10 6 2 5 5
20 10 14 16 10
6 15 10 1 16
1 20 20 10 20

Table 4-3: Fraction of activation fact for the bottom 10 rules in the importance ordering shown
in Table 4-2

Rule number 17 3 15 24 13 1 5 10 16 20
fact 0.030 0.029 0.028 0.026 0.025 0.020 0.004 0.000 0.000 0.000
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based on their estimated contributions to the overall model fit. In P-QR rules are ordered in
terms of generalisation ability, as columns from the regression matrix which contribute the
most are picked first. The fact importance ordering is also based on generalisation ability, so
the ordering should intuitively resemble the one obtained with P-QR. This is not the case.
Redundant and non-firing rules are assigned the lowest importance though, which establishes
the capability of fact importance ordering to filter out corrupted rules from a rule base. The
next section investigates prediction accuracy using a subset of rules chosen based on the fact
based importance ordering to show that the ordering makes sense.

4-2-2 Prediction accuracy

In the previous section, it was shown that fact based ordering of rule importance results in
assigning the least importance to redundant and non-firing rules as expected. The importance
ordering obtained, however, differs from that obtained by other importance ranking methods
described in [7]. Therefore a closer look is taken at the importance ordering obtained with
GFNARX in this section.

Estimating GFNARX weight parameters based on the noisy training data, results in a model
fit on the evaluation data as shown in Figure 4-2a. It can be seen that the weights are not
estimated correctly, resulting in a bad fit. Due to the extremely low signal-to-noise ratio
the GFNARX algorithm, which assumes a high signal-to-noise ratio, is unable to produce a
good estimation of the plant output. When estimating the parameters online, the model fit
increases in accuracy during the duration of the evaluation experiment, when the disturbance
is no longer random. Figure 4-2b shows this increasingly accurate model fit with online
parameter estimation for the rulebase with fact ≥ 0.025, which constitutes the cut-off between
redundant and significant rules in this experiment (see Table 4-3).

To then establish that the obtained rule importance ordering makes sense, model accuracy is
tested starting with only the most important rule and subsequently adding rules according
to the ordering shown in Table 4-2. GFNARX weight parameters are estimated in an online
fashion, while the structure remains unchanged. Table 4-4 shows final model accuracy on
the evaluation data when using a subset of rules. The result is not quite apparent when
including the noisy data, but when the noisy data is discarded, it is seen that the selected
rules generalise very well and fit accuracy is very high even with a small subset of rules.

In this section, the ability of the proposed fact method of rulebase pruning to reject redundant
or insignificant rules is shown. On top of that, the importance ordering obtained by this
method shows good generalisation capabilities. Evaluation data is fitted well even with a
small subset of the rulebase selected from an importance ordering obtained from training
data, as long as the weights are estimated correctly. In the REP time series considered in
the real-time electricity market, the published REP time series is noise-free, so the inability
of the algorithm to properly identify a model under noisy circumstances is not thought to
be of consequence in the intended use case. The ability of GFNARX to properly identify
a model and extend predictions to out-of-sample data in a noise-free environment has been
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(a) Model fit based on parameters estimated
from noisy training data

(b) GFNARX model accuracy steadily increases
by continuing to estimate weight parameters on-
line

Figure 4-2: GFNARX prediction for the evaluation data of the experiment described in Section
3-2

Table 4-4: Model accuracy with online weight estimation from either all data samples or just the
samples with sinusoidal disturbance when using a subset of rules according to the fact importance
ordering of Table 4-2. The metric used is Root-Mean-Square Error

Amount of rules Noisy+sinusoidal (RMSE) Sinusoidal only (RMSE)
1 0.45 0.230
2 0.38 0.145
3 0.36 0.066
4 0.26 0.030
5 0.24 0.012
6 0.23 0.009

benchmarked in the previous section. The next section will report on application of GFNARX
to forecast REP, which is the aim of this project.

4-3 Real-time market price time series prediction

In this section results of forecasting the Real-time Electricity market Price (REP) are pre-
sented. As prediction accuracy and economic value of using predictions are not correlated in a
one-to-one fashion, results pertaining to accuracy and value are presented separately. Section
4-3-1 describes the prediction of REP itself, while section 4-3-2 presents results of operating
the CSW described in Section 3-4 based on REP predictions.

4-3-1 Model accuracy

Forecasting REP time series has not been done in literature. In this section, the accuracy
of REP predictions obtained by GFNARX are investigated and benchmarked against NARX
and SARIMAX-GARCH predictions.
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As described in Section 3-3-5, the training data consists of the first two weeks of January 2015,
the rest of 2015 is used as test data. Prediction accuracies of the various models are given in
Table 4-5. These values are visualised in Figure 4-3. As the time series data is published by the
Transmission System Operator (TSO) with a 3 minute delay, the shortest prediction horizon
considered, is three steps ahead. It can be seen that REPc prediction errors are consistently
higher than REPs prediction errors. This is to be expected due to REPc being more volatile
and the pre-processing of the series, where REP is clipped at REPc,max = 200Eur/MWh,
while REPs,max = 100Eur/MWh, as described in Section 3-3-3.

Figure 4-4 shows a single peak event of the REPc signal, along with its prediction by the
models. It is clear that model predictions are more accurate than the naïve reference for each
model, as all models show a quicker response to changes in the REPc than the naïve model.
The nonlinear networks show a quicker response than SARIMAX-GARCH, with GFNARX
fitting the REPc shape best, as NARX predictions have more overshoot. This is not an
artefact of this single peak, as is seen in Figure 4-5 where REPc prediction over the course
of half a day is shown.

Figure 4-3: Prediction accuracies of various models for the training data and test data
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Figure 4-4: Predictions of REPc for a single market peak event by SARIMAX-GARCH, NARX
and GFNARX. The solid lines denote the real REPc signal and its naïve forecast. All models
outperform the naïve reference forecast

Table 4-5: Prediction errors of the various models on training data and test data of REPc and
REPs. It can be seen that GFNARX is the most accurate model and predicting 5 steps ahead
still yields more accurate predictions than the naïve reference. All values are given in [Eur/MWh]

Model (prediction horizon) Training RMSE REPs Training RMSE REPc Test RMSE REPs Test RMSE REPc
Naïve (3 steps) 13.71 22.13 11.44 19.25

SARIMAX-GARCH (3 steps) 12.50 20.58 10.81 18.22
NARX (3 steps) 10.84 20.09 9.77 17.90

GFNARX (3 steps) 10.51 17.25 9.78 16.21
GFNARX (4 steps) 12.38 19.25 11.00 17.61
GFNARX (5 steps) 13.69 21.80 12.42 19.47
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Figure 4-5: Predictions of REPc by SARIMAX-GARCH, NARX and GFNARX over the course
of half a day. It can be seen that the predicted values differ significantly from each other with
NARX predictions producing the largest overshoot

There are two things of particular note in the REP predictions:

RMSE on training data is higher than on test data This is due to the first two weeks
of January, which are used as training data, being more volatile than average. The standard
deviation SDc ofREPc equals SDc,training = 39.80Eur/MWh, while SDc,test = 32.35Eur/MWh.
Similarly, SDs,training = 20.77Eur/MWh and SDs,test = 16.54Eur/MWh

Model performance is consistent, with GFNARX outperforming the benchmark models
Only REPs test data prediction sees NARX slightly outperforming GFNARX, but overall
GFNARX yields the most accurate predictions of both training and evaluation data

In this section, REP prediction accuracy has been investigated for GFNARX, NARX and
SARIMAX-GARCH models. All of the models beat the naïve reference model which assumes
ŷ(t) = y(t−3), with GFNARX yielding the best accuracy. If GFNARX prediction is extended
to five steps ahead, the forecasts are still more accurate than this naïve reference. The next
section describes results of using REP predictions to apply thermal control to a simulated
Cold Storage Warehouse.

4-3-2 Application of predictions to naïve control of a cold storage warehouse

In the previous section, model accuracy with regards to REP predictions has been investi-
gated. As these REP predictions are only useful if one uses them to trade on the real-time elec-
tricity market, this Section benchmarks the result of adjusting electricity usage in a simulation
of a CSW according to the forecasted REP. This CSW model simulation has been described
in Section 3-4. Deviations from the reference case, which entails the electricity program be-
ing perfectly forecast and the electricity transactions transpiring at the Amsterdam Power
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Exchange (APX) day ahead price, are traded at their corresponding Settlement Price (SP).
The relation between SP and REP can be found in Section 3-3-2.

The rest of this section is structured as follows. First, the actual result in terms of cost of
operation is given, before discussing the applicability of this result to other types of assets
and other periods of time.

Cost of CSW operation Reduction in cost of CSW operation is what is benchmarked in
this simulation. As described in Section 3-4, the models are trained on two weeks of data and
subsequently tested on data of the rest of the year 2015. This constitutes an out-of-sample
period which is 25 times as large as the training period. This coincides with the training
and test periods of the prediction accuracy benchmark, the results of which are presented in
Section 4-3-1.

The cumulative electricity costs of operating the simulated CSW in 2015 based on model
predictions, are given in Table 4-6. The Naïve strategy refers to regulating the asset directly
according to the most recently published REP values with the strategy currently implemented
at Peeeks, the company where this project is carried out. The hypothetical situation where
the TSO would publish REP with a delay less than three minutes has also been included.

Table 4-6: Cumulative electricity costs of operating the CSW in 2015 based on model predictions.
Whenever it is not explicitly mentioned, the strategy used is the Peeeks strategy. The models are
ordered by descending costs

Strategy (prediction horizon) Costtot [Eur] Costavg [Eur/MWh] Cost reduction [%]
Nominal operation 195682 37.12 0.0

Naïve strategy (3 minutes) 162547 30.86 16.9
SARIMAX-GARCH prediction (3 minutes) 159883 30.45 18.3

GFNARX prediction (6 minutes) 156412 29.68 20.1
GFNARX prediction (5 minutes) 151584 28.75 22.5
GFNARX prediction (4 minutes) 150190 28.49 23.3
NARX prediction (3 minutes) 150134 28.48 23.3
Naïve prediction (2 minutes) 149538 28.36 23.6
Naïve prediction (1 minute) 146624 27.81 25.1

GFNARX prediction (3 minutes) 145871 27.67 25.5
Perfect forecast 142563 27.03 27.1

When regarding the prediction horizon corresponding to the actual delay at which REP is
published, nearly the same model ranking is obtained as would be expected from model
accuracy (see Table 4-5). However, SARIMAX-GARCH predictions perform poorly when
used to control electricity usage of the simulated CSW, as these predictions show slow response
to market events (see Figure 4-5).

Whereas none of the models was able to outperform naïve forecasts at a hypothetical two
minute prediction horizon in terms of RMS prediction error, controlling the CSW according
to predictions obtained by GFNARX results in a lower cost of operation. As GFNARX
predictions are quick at following the trend, yet tend to overshoot the actual REP, this result
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was to be expected. The cost of operation with GFNARX predictions is also lower than
using the control strategy in conjunction with a naïve forecast in the hypothetical situation
where the REP publish delay is only one minute. As the RMS prediction error in this same
hypothetical situation is only 62% of the RMS error of GFNARX at a three step delay, it is
clear that GFNARX predictions capture REP trends better than is reflected in the prediction
accuracy alone.

The cost reduction obtained by using the hypothetical situation of perfectly forecast REP data
is the optimal cost reduction obtainable with the strategy used. Controlling CSW cooling
power according to GFNARX forecasts results in 93.8% of this optimal cost reduction, which
is considered a good result. It outperforms controlling according to the hypothetical situation
of 1 minute delay in REP publishing.

Robustness of prediction method To establish that the 25% reduction in costs of operating
the simulated CSW according to REP forecasts by GFNARX is obtained in a stable way, the
profit and loss progression throughout the year is investigated. Figure 4-6a shows a rolling
cumulative profit line throughout the year 2015. It can be seen that over the course of the
year the reduction in costs increases steadily. On shorter time scales the profit line fluctuates
a bit more and sometimes losses are incurred. Figure 4-6b shows the profit line for part of July
2015. Although sometimes dynamically controlling the CSW results in losses, it is apparent
that profitable actions occur more frequently and with larger impact.

This is also confirmed when looking at Figure 4-7. Figure 4-7a shows the value of all individual
transactions on the real-time electricity market. It is clear that the magnitude of profitable
transactions on the real-time electricity market exceeds the magnitude of disadvantageous
transactions. The distribution of transaction values can be seen in Figure 4-7b. The chance
of regulating according to REP predictions resulting a profitable transaction occurring, vastly
exceeds the chance of incurring a loss when doing so.

(a) Profit and loss line for the year 2015 when
regulating the CSW according to GFNARX REP
forecasts

(b) Profit and loss line for 3 days in July 2015
when regulating the CSW according to GFNARX
REP forecasts

Figure 4-6: Cumulative profit over time
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(a) Value per transaction (b) Distribution of value per transaction

Figure 4-7: Value of individual transactions on the real-time electricity market. (a) shows the
value in sequence per transaction while (b) shows the probability distribution. The rightmost bin
agglomerates all transactions netting a profit more than 5 Euro, while the leftmost bin does the
same for all transactions incurring losses greater than 5 Euro

There are two reasons that some transactions on the real-time electricity market turn out
negative:

Due to the standard behaviour of the modelled CSW If the threshold price premium
∆Pthreshold ≥ max(REPc, REPs), the asset will ramp up or down corresponding to its current
temperature, which is a function of its internal imbalance. The internal balance is specified
by the cumulative electricity usage deviation from its forecasted value. A full description of
the standard CSW behaviour can be found in Section 3-4

Due to the discretisation of ISP It is possible due to the difference in time resolution
between REP and SP that until halfway through a PTU, the cooling motor will be given advice
to scale up its electricity consumption. However, if at the end of the PTU the single instance
of REPc > 0 causes the SP to be settled according to the regulation state S = 2 pricing
scheme (see Section 3-3-2), this means that the extra electricity consumption throughout the
Program Time Unit (PTU) is settled at a disadvantageous price

The year 2015 is not an exception. Although the market does change over time, the fact that
there is added value to predicting REP is consistent over the years. Using the same GFNARX
trained on the first 2 weeks of January 2015 to predict REP in 2014 and 2016 yields 17.8%
and 25.0% reduction in costs when compared to nominal operation of the CSW. The costs
are summarized in Table 4-7.

Applicability to other types of assets A CSW is an asset which has a relatively large thermal
buffer and is thus well suited to be an asset in a demand response portfolio. Although the
CSW model has been derived from first principles and not specifically catered to fit REP
predictions, the model does make a few assumptions which are not applicable to all possible
assets in such a portfolio:

• Infinite ramp speed in load. The cooling power is either on or off and there are no states
in between
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Table 4-7: Cost of operating the simulated CSW according to REP predictions with GFNARX
over the years

Year Mode of operation Total costs [Eur] Average costs [Eur/MWh] Cost reduction [%]
2014 Nominal operation 202376 38.14 0.0
2014 GFNARX prediction 166165 31.32 17.9
2015 Nominal operation 195682 37.12 0.0
2015 GFNARX prediction 145871 27.67 25.5
2016 Nominal operation 156558 29.65 0.0
2016 GFNARX prediction 117477 22.26 25.0

• Full availability. The cooling motor can switch between off and on states without limit
as long as the temperature stays within operational bounds. In practice there will often
be a limit to the amount of times a device can switch states within a short period

Both of these issues pertain to persistence in REP. If changes from REPc spikes to REPs
spikes and vice versa occur frequently, then changes in regulation advice can outpace the
switch limit of a device. Moreover, in case of a cooling motor with finite ramp speed, rapid
changes in REP cannot be tracked. There are situations where the electricity grid is clearly
in a state of overconsumption or oversupply and hence have a regulation state (see Section
3-3-2 for specifics about regulation states) which persists for long times. As can be seen in
Figure 4-8 however, the grid state most frequently changes between subsequent PTUs.

To then establish whether REP predictions can be used in conjunction with other assets,
the cost reduction obtained by using GFNARX predictions to operate a CSW with a motor
which takes five minutes to fully ramp between states is investigated. The resulting cost of
operation is Cost = 150229Eur. This is indeed slightly more than the Cost = 145871Eur
under ideal motor conditions, but the cost reduction is still 23.2%. Thus even when motor
conditions or asset limitations are not ideal, a cost reduction can be achieved when predicting
REP.

Figure 4-8: Normalized occurence of regulation state length of persistence. The sudden increase
in persistence of regulation state S = 0 from 2012 onwards is attributed to the introduction of
IGCC. It can be seen that the state most frequently changes from PTU to PTU
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Chapter 5

Conclusion

5-1 Conclusions

The aim of this project is to compensate for the delay with which Real-time Electricity market
Price (REP) is published by the Transmission System Operator (TSO) by using models to
forecast REP.

From this vantage point fuzzy logic models, which have been developed to incorporate human
reasoning into modelling, have been investigated. Currently existing fuzzy models are often
trained offline with batch data. The initial amount of data clusters is overestimated and
subsequently shrunk to the optimal amount. In a dynamic environment like the electricity
market, the optimal amount of clusters need not be static in time. An existing approach which
adaptively builds a model based solely on incoming data is Generalised Fuzzy Neural Network
(G-FNN). However, G-FNN has some flaws which are fatal to its accuracy. Data clusters are
formed around the first point attributed to the cluster instead of optimised to represent the
cluster in its entirety. Moreover, there is no cap on the amount of rules generated, which can
lead to instability due to singularity of the regression matrix due to overparametrisation.

In this thesis, Generalised Fuzzy Neural Network formulation of a Non-linear Auto-Regressive
with eXogenous inputs model structure (GFNARX) is proposed as an improvement to G-FNN.
The improvements constitute:

Bounding the amount of rules If addition of a rule would render the regression matrix
singular, it is not added. Instability due to overparametrisation is avoided by doing so

Moving average cluster centring When attributing a data point to an existing cluster,
the cluster centre is recalculated as the average position of all points within the cluster. In
this way, cluster locations optimised in an online fashion
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Normalised distance as cluster separation criterion G-FNN uses Euclidian distance
as distance norm between adjacent clusters, but using a normalised distance instead yields a
better description of the feature space

Identifying unnecessary rules by fraction of activation The metric to assess rule im-
portance in G-FNN overestimates the importance of redundant rules. Assessing rule impor-
tance by their overall fraction of activation is computationally less expensive and solves this
problem

The following conclusions are made about four research aims posed in Section 1-3:

1. First of all it is investigated whether the proposed data-driven fuzzy modelling tech-
nique is capable of producing time series predictions which are comparable in accuracy
to computationally more expensive models in literature. There is no known benchmark
method for REP forecasting. To then verify whether GFNARX produces accurate mod-
els, it has been used on a benchmark time series prediction experiment which is popular
in fuzzy modelling literature, the Mackey-Glass time series. GFNARX model predic-
tions result in a Root-Mean-Square Error (RMSE) of RMSE = 0.0026, which ranks
GFNARX performance on this benchmark near the top of fuzzy modelling algorithms
found in literature.

2. Secondly, it is investigated which observable endogenous and exogenous factors can
be used as influential inputs to a REP model identified through time series modelling
techniques. As endogenous inputs the three, four and five minutes delayed REP time
series values are used. This corresponds to the three most recent observations published
by the TSO. Exogenous inputs which need to be used in REP forecasts are the most
recently observed Secondary Control Reserve (SCR) values, trend in SCR, availability
of the option to net imbalances through the International Grid Control Cooperation
(IGCC) and amount of imbalance netting taking place

3. The third research challenge is to find which model structure of the ones selected in [14]
(SARIMAX-GARCH, NARX, GFNARX) predicts REP most accurately. Historical
data of the year 2015 has been used with which to forecast REP. The first two weeks of
data are used as training data, the rest of the year as evaluation data. All three models
yield predictions which are more accurate than the naïve reference which assumes the
most recently observed REP value to be equal to the current value. Out of these three
models, GFNARX yields the most accurate REP forecasts. Up to five steps ahead
prediction, REP forecasts by GFNARX are more accurate than the naïve reference

4. The final research aim is to incorporate REP predictions in the demand response control
strategy of Peeeks and investigate how much of the negative effects of the delay in
publishing of REP can be mitigated when using REP forecasts to control the cooling
motor of a Cold Storage Warehouse (CSW). In this thesis, a CSW model has been
derived from literature models and data from an actual CSW in order to create a
simulation benchmark for economical value of REP forecasts. The baseline cost is
defined by avoiding use of the real-time market at a strategic resource as is done in
literature. All electricity is bought at the day-ahead auction. Using this benchmark
method with historical data of 2015, a 25.5% reduction in electricity costs is achieved

I. de Hoogt CONFIDENTIAL Master of Science Thesis



5-2 Recommendations for further research 77

by using GFNARX to forecast REP. For historical data of 2014 and 2016, reductions
in cumulative electricity costs of 17.8% and 25.0% are observed. It is concluded that
dynamically controlling the CSW based on REP forecasts using GFNARX yields a
robust reduction in electricity costs. Controlling the CSW cooling motor based on the
naïve reference forecast yields a 16.9% reduction in costs compared to the baseline. The
relative reduction in costs by using GFNARX to forecast REP is thus 10.3% of the
naïve reference model costs

The aim of this project is to compensate for the delay with which REP is published by
means of forecasting. The REP is published by the TSO as a time series with an approx-
imate delay of three minutes. The hypothesis was that negative effects of this delay can
be compensated for by forecasting REP. Controlling a simulated CSW according to GF-
NARX forecasts of REP, the average electricity costs are 27.67Eur/MWh. The reference
which uses the delayed observations as naïve forecast acquires electricity at an average cost
of 30.86Eur/MWh. If REP would be perfectly forecast, the average costs of acquiring elec-
tricity would be 27.03Eur/MWh. This means that 83% of the effect of delay is compensated
for in this simulation.

5-2 Recommendations for further research

In this thesis GFNARX has been proposed as an improvement to G-FNN with the aim
of achieving accurate, real-time and interpretable prediction of the electricity market price.
Although the added value of using GFNARX to predict REP has been shown, there are still
some topics which can benefit from further research.

• The cut-off for fraction of activation fact ≥ 0.025 has been selected based on a literature
experiment. The assumption that this cut-off is rigorous enough to reject redundant
rules from the rulebase requires more analysis. This could be tested by devising more
experiments in which rulebases are corrupted

• In the analysis of exogenous variables which are potentially related to REP, it has been
seen that REP correlation to publicly available data on temperature and wind speed is
low due to the low sampling frequency of these weather conditions. As electricity supply
by renewable energy sources and electricity consumption are dependent on weather
conditions, it is plausible to assume that a correlation between weather conditions and
REP exists. This correlation needs to be studied further by using weather data sampled
at a higher frequency

• The actual control input which determines SCR activation is the measured cross-border
electricity flow. If data on these cross-border flows can be observed, it might be possible
to obtain more accurate REP forecasts by predicting the cross-border flow and reverse
engineering REP

• Applications of REP forecasts have not received enough attention in literature. This
thesis investigates application of REP forecasts to thermal control of a simulated CSW
which results in a reduction in electricity costs, but a challenge in the future will be to
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find and document other applications of REP forecasts. A useful application could be
to apply REP forecasts to control the charging process of an electric car if time is not
the critical factor
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Glossary

List of Acronyms

DCSC Delft Center for Systems and Control

NARX Non-linear Auto-Regressive with eXogenous inputs

SARIMAX Seasonal Auto-Regressive Integrated Moving Average with eXogenous inputs

SARIMAX-GARCH Seasonal Auto-Regressive Integrated Moving Average with
eXogenous inputs and Generalized Auto-Regressive Conditional
Heteroskedasticity

SCR Secondary Control reserve Power

TSO Transmission System Operator

WSS Wide Sense Stationary

IGCC International Grid Control Cooperation

GFNARX Generalised Fuzzy Neural Network formulation of a Non-linear
Auto-Regressive with eXogenous inputs model structure

ARMA Auto-Regressive Moving Average

ARIMA Auto-Regressive Integrated Moving Average

GARCH Generalized Auto-Regressive Conditional Heteroskedasticity

MA Moving Average

AR Auto-Regressive

LLS Linear Least Squares

PACF Partial AutoCorrelation Function

G-FNN Generalised Fuzzy Neural Network
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86 Glossary

ANN Artificial Neural Network

SP Settlement Price

REP Real-time Electricity market Price

REPP Real-time Electricity market Price Premium

ERR Error Reduction Ratio

TSK Takagi-Sugeno-Kang

CSW Cold Storage Warehouse

COP Coefficient of Performance

APX Amsterdam Power Exchange

ACF Autocorrelation Function

PACF Partial Autocorrelation Function

PTU Program Time Unit

PCR Primary Control Reserve

SCR Secondary Control Reserve

TCR Tertiary Control Reserve

KNMI Koninklijk Nederlands Meteorologisch Instituut

BRP Balance Responsible Party

RMSE Root-Mean-Square Error

SDE Stimulering Duurzame Energieproductie
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