
Delft University of Technology
Master’s Thesis in Embedded Systems

Intermittent Kernel: A First Attempt

Dimitrios Patoukas

Intermittent Kernel: A First Attempt

Master’s Thesis in Embedded Systems

Embedded Software Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Dimitrios Patoukas
patoukas@gmail.com, d.patoukas@student.tudelft.nl

8th November 2018

mailto:patoukas@gmail.com, d.patoukas@student.tudelft.nl

Author
Dimitrios Patoukas (patoukas@gmail.com, d.patoukas@student.tudelft.nl)

Title
Intermittent Kernel: A First Attempt

MSc presentation
15 November 2018

Graduation Committee
prof. dr. Koen G. Langendoen (chair) Delft University of Technology
dr. Przemys law Pawe lczak (supervisor) Delft University of Technology
dr. Mauŕıcio Aniche Delft University of Technology

mailto:patoukas@gmail.com, d.patoukas@student.tudelft.nl

Abstract

Energy harvesting and battery-free sensing devices show great promise for
revolutionizing computing in every known area while expanding to non-
conventional use-cases. The promise of cheap, dense, and ubiquitous sens-
ing technology brings new applications for the Internet of Things. However,
the future programming model is blurry and complex. With a potential for
trillions of devices, and thousands of devices per person on earth, program-
ming languages and associated operating systems must be usable, flexible,
and resource efficient. Although transiently powered computing is an area of
ample research, no model presented so far has been widely adopted, hinder-
ing widespread use. Because of the thousands of applications and differences
in requirements, a kernel that abstracts the intricacies of intermittency may
be a part of the solution. This thesis explores key concepts that push inter-
mittent systems closer to traditional embedded programming while examin-
ing resources costs, feasibility, and motivation for a kernel for intermittent
systems. As a result a novel persistent micro-kernel is presented which sup-
ports multi-tenancy of applications, a persistent scheduler, networking and
remote updating. In the experiments performed it was observed that pre-
dictive value-based scheduling can be up to 40% better in terms of total
throughput, applications successfully completed per time unit, and that a
node can be updated remotely with maximum speed of 9.13 bytes/s. In
the thesis the full system design of the micro-kernel is presented along with
quantified results for its performance.

iv

Preface

This thesis presents the final step towards obtaining my Master’s degree in
Embedded Systems from Delft University of Technology.

I would like to thank my supervisor Przemys law Pawe lczak for his support
and patience throughout this project on both personal and academic mat-
ters. I also would like to thank Amjad Majid for his continuous support and
engagement. Moreover, I would like to thank Sinan Yıldırım for the trust
he showed me while working for the publication of InK. Additionally, I want
to thank Prof. Koen Langendoen for hosting me at the Embedded Systems
group and Mauŕıcio Aniche for participating as member of my graduation
committee.

Most importantly I would like to thank my good friend Carlo Delle Donne
for being a close companion throughout this journey of my life and my family
for their unending support.

Dimitris Patoukas

Delft, The Netherlands
8th November 2018

v

vi

Contents

Preface v

1 Introduction 1
1.1 Intermittent Execution . 1
1.2 Problem Statement . 3
1.3 Contributions . 4
1.4 Thesis Outline . 4

2 Preliminaries 7
2.1 Challenges . 8

2.1.1 Forward Progress . 8
2.1.2 Memory Consistency 8

3 Related Work 11

4 System Design 15
4.1 Requirements for Intermittent Kernel 15
4.2 Architecture . 17

4.2.1 Application layer . 17
4.2.2 Kernel Layer . 18

5 Evaluation 25
5.1 Use Case Application . 25
5.2 Testing Environment . 26

5.2.1 Performance Metrics 28
5.3 Scheduling Results . 29
5.4 Overhead . 29
5.5 Over-the-Air Update . 30

6 Summary 33
6.1 Conclusion . 33
6.2 Future Work . 35

vii

viii

Chapter 1

Introduction

Ubiquitous computing and ambient intelligence demand un-tethered nodes
that can sense and compute in deeply embedded applications. However, the
major constraint of un-tethered nodes is their finite battery capacity. This
bounds the lifetime of the deployed device, not only hindering deployment
flexibility, but also introducing additional cost and complexity of recharging,
replacing and maintaining batteries. Although low power processors and
new battery materials are increasing the lifespan of embedded systems, en-
ergy density does not scale exponentially like computing power traditionally
has, but linearly [1] bounding the future of battery deployed nodes. Luckily,
research progress on energy harvesting [2] (converting ambient energy into
electrical current powering embedded devices) and transient computing [3]
(executing computing tasks on embedded device that frequently loses power
due to unpredictable energy harvesting source) show the path to a new era
of energy-neutral battery-less computers.

1.1 Intermittent Execution

One of the main areas where battery-free devices could have immediate
impact is in self-sustainable sensor nodes [4]. The main components of such a
system are: an energy harvester that will convert ambient energy (solar, RF,
kinetic, thermal etc.) into electric current, low-consumption computing and
sensing electronics along with the needed peripherals and a low-consumption
communication module. Currently a number of devices that can operate on
harvested energy exist in the market like: the TI MSP430 series [5], WISP [6]
with a number of different variants and applications [6, 7, 8, 9, 10], as well
as commercial platforms like Pyros [11] and Bio-Thermo [12].

Harvested energy is used to fill a typically small energy buffer which is
expended once the capacitance reaches a certain level. Charging times are
generally much slower from discharging times, at the same time ambient en-
ergy is uncertain and harvested energy usually suffers from low conversion

1

Figure 1.1: Intermittent execution during energy buffer discharge.

rates. As a result, harvester powered nodes experience frequent power inter-
rupts (see Figure 1). The frequency of the power outages depends on vari-
ous factors, for example: the size of the energy buffer, current consumption,
ambient energy available and harvester conversion rate. Thus harvesting
systems operate intermittently, computing for the operating period where
energy is available and remain off while recharging [13, 14, 15, 16]. The
software that is hosted on such systems runs in the same intermittent fash-
ion changing the classical paradigm of line-by-line code execution. Once the
node loses power it resets, losing the contents of memory, the state of the
registers and the program counter, forcing the running code to start from
the beginning the next time it is charged.

Although energy harvesting has been explored extensively we can see that
widespread adoption of micro-controllers powered by such systems is still
lacking. The reality being that developing reliable applications for systems
that experience random power interrupts is cumbersome and can be proven
extremely tricky. Developing cost increases as the programmer has to ad-
dress the two key issues that are inherent to the nature of the system,
namely:

1. Forward Progress: Ensuring that the executing program will re-
sume operation from the latest safe point of execution allowing for the
executing program to complete.

2. Data Consistency: Ensuring that the data processed and written
will be kept consistent between power failures and the memory space
will accurately reflect the proper state of execution.

Additionally, key concepts of embedded software like timekeeping and
interrupts need to be re-addressed. Timekeeping without additional hard-

2

ware is impossible in the traditional sense, as with every energy outage the
content of the registers clear and no information is retained. Interrupts
can break the memory model as modifying the contents of global memory
without proper versioning can have a detrimental effect to data consistency.

An ample body of work is currently tackling the intricacies of intermit-
tent computing, for example InK [17], Alpaca [15], Chain [18], DINO [13],
Hibernus [19, 20] and Mementos [21]. A number of solutions have been pro-
posed that ensure forward progress of program execution and maintain data
consistency. Each system takes a different approach providing mixed results
on performance, features and design constraints. These systems focus on
designing monolithic software systems that are being deployed under inter-
mittent conditions with no guarantee over their performance or longevity.
They present simplistic programming models that confine the creation space
for modern software as support for key features is lacking.

1.2 Problem Statement

The trend of software development mandates that hardware acts as a host-
ing node where multiple actors develop and operate software to different
ends, leaving monolithic designs behind and embracing multi-tenancy. This
is demonstrated in maturity of computing systems from sensors, phones,
desktops, and datacenters. Much like other compute paradigms, the process
and resource management as well as scheduling have a significant impact on
the behavior, efficiency, and quality of application of deployed battery-less
embedded systems. However, the design space for enabling multi-tenancy
on intermittent computers has not been explored.

Multi-tenant systems allow multiple software constructs to operate on
the same platform sharing the same resources. When software is executed,
system constraints might force tasks to wait for I/O operations or interac-
tion with other peripherals (ADC, DAC, sensors, actuators, communication
modules etc.). In the case of embedded sensor nodes interaction with the
environment is crucial. As such, stable powered nodes are usually designed
to respond to events by interrupts which trigger the appropriate computa-
tions or by constantly polling the input channels. In intermittent systems
such a capability does not exist as the system is inherently out of sync with
the environment.

As an example consider a wearable motion-sensor node which is triggered
by an interrupt once the detected activity surpasses an acceleration threshold.
In a stable powered node once the interrupt occurs the node samples the
movement for a time window and then process the data. In intermittent
systems if a power failure occurs after the interrupt, sampling for movement
might be irrelevant as the movement window has passed when energy be-
comes available again. As a result the motion sensing has to wait for the

3

event to happen again to capture it. On this downtime, another application
could be executed exploiting the energy availability while the motion sens-
ing task waits for an input. This thesis theorizes that by allowing multiple
tenants to operate on the same node we increase the chance to utilize more
of the available harvested energy, increasing the overall performance and
responsiveness of the system.

Furthermore, self-sustaining systems can be best exploited in applications
where human access is limited or cumbersome. Sensor nodes can be placed
in remote environments [22], on insects [23], or be embedded in building
materials [24]. For example, in the case of sensor nodes embedded in build-
ing infrastructure use-cases and requirements might change multiple times
throughout the life-cycle of the building. As a result multiple operators may
want to modify, maintain, update or enrich the software that is running on
this unaccessible node. It becomes apparent that being able to run and up-
date different applications of remote nodes fits the current direction of the
moder IoT.

This thesis examines the feasibility of a system that can ensure that a
transient node can operate reliably with scalable software while being able
to inter-connect and be updated as modern practices mandate.

Therefore, the research question this work addresses is:

Is it possible for a transiently powered node to host, operate and update
multiple applications effectively?

1.3 Contributions

Current programming models for intermittent nodes only deal with abstract-
ing the difficulties of transient computing for single execution programs not
addressing aspects that will allow the widespread adoption of transient com-
puters. This research explores the feasibility of a rudimentary operating
system, allowing multi-tenacy of applications, interrupt handling, persistent
scheduling and networking.

The list of contributions is as follows:

1. The design of a battery-free system that hosts multiple applications
and ensures their operation under power failures.

2. The design of a battery-free system that can be updated by a novel
tag to tag network.

1.4 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 provides background
information and 3 introduces the related work. The design of the intermit-
tent kernel along with the software implementation and programming model

4

are presented in Chapter 4. This is followed by a performance evaluation
of the intermittent kernel in Chapter 5. Finally, Chapter 6 concludes this
thesis and proposes potential future work.

5

6

Chapter 2

Preliminaries

As mentioned in Chapter 1, research in the domain of energy harvesting
and as well as developments in low-power hardware and accessible FRAM
controllers [25] are enabling self-sustained nodes that can operate relying
solely on harvested energy.

The emergence of such technologies opens the path for a new vision for
IoT devices that do not rely on battery power or their ability to be attached
to a power source. Consequently battery-free devices that are capable to
collect, process and transmit data relying solely on harvested energy, could
be realized. In this reality not only we can monitor in spaces were it was pre-
viously impossible, like building materials, wildlife, remote and inaccessible
environments [24], but we effectively reduce the energy footprint of the IoT
ecosystem as part computation is offloaded to millions of harvesting nodes
and not in energy expensive datacenters [26].

On a high level approach such systems contain four key elements that
enable them to operate under intermittent conditions:

• energy harvester (RF, solar, kinetic, thermal etc.);

• the microprocessor along with needed peripherals;

• A capacitor needed for collecting energy from the harvester and able
to hold enough energy for the micro-controller and the attached peri-
pherals to operate for an arbitrary amount of time.

• An amount of non-volatile memory so that data can be preserved even
without any available energy.

In a typical operating cycle the device is powered-on and thus computation-
capable once the available energy stored in the capacitor surpasses a certain
threshold. After that point, the system executes until the energy storage
is depleted and the system ceases operation. After that point the system
remains in off state until the energy harvester collects enough energy to sur-
pass the set threshold [27, 28]. Harvested energy is a highly unpredictable

7

energy supply as it depends on environmental availability [24], hardware
configuration and conversion rate [29]. Consequently the amount of avail-
able computation per charge varies highly among systems. Although the
size of the capacitor can lead to larger execution times at the same time
charging time grows proportionally, as a result the pattern of execution can
vary among systems. In small sensory nodes where form factor is considered
critical, small fast charging capacitors are used leading to frequent power
failures at a rate of ≈10–100 times per second [30].

Depending on hardware configuration, some systems are capable of sup-
plying harvested energy directly to the discharging capacitor. Discharging
rates are far bigger than harvesting rate in most cases as electronic compon-
ent out-consume small energy buffers [31]. Moreover, extra hardware or ad-
ded software logic can be used to notify the system for imminent death [32],
but for small and constrained devices that this thesis examines the amount
of energy and computation time that is needed for such operations is signi-
ficant and our intuition is every available resource should be utilized for the
computational load of the system and not for auxiliary functions.

2.1 Challenges

It becomes apparent that embedded systems that operate solely on har-
vested energy do not follow the traditional operational scheme and thus
intermittent execution introduces a new set of challenges that need to be
addressed when designing software.

2.1.1 Forward Progress

As the system experiences frequent deaths a purely sequential code execution
cannot guarantee that computation will successfully terminate. At every
power failure the volatile state is lost and the contents of the registers are
cleared.

Consider a transiently powered node with software that takes 100 cycles
to reach successful termination. If the energy provided from the energy
buffer to the node is enough for a maximum of 50 cycles the code will never
reach the termination point, unless some mechanism allows the program to
be split in smaller pieces which can be completed with multiple expenditures
of the energy budget. In this case the node will resume execution from the
last non-executed piece until all are concluded (see Figure 2.1).

2.1.2 Memory Consistency

Although the state of non-volatile memory can be retained the non-sequential
execution of code might lead to memory dependency hazards, most com-
monly write after read dependencies.

8

Figure 2.1: Successful completion of a task over the period of three inter-
mittent execution cycles.

For instance, consider two operations commonly found in software: an
increment operation, (i++;) and using the increment result as an array
index (array[i]=value;). Now consider that a power failure occurs after
i was incremented. When the code restarts (i++;) will be executed for a
second time and the index will be incremented twice before writing into the
array, leading to an inconsistency.

Additionally, interrupt service routines that operate on non-volatile data
might create inconsistencies since the re-executing part of the code is un-
aware of which is the right version of data to access. Moreover if a power
failure occurs while operating in the non-volatile memory the data retained
might be corrupted or incomplete. Since the power outage of the microcon-
troller might occur at any point of its operation it is possible that a death
will occur during a write operation. For example, a power failure during a
register write operation might lead the register to retain either 1 or 0. This
unspecified behavior might lead to inconsistencies.

9

10

Chapter 3

Related Work

To address the issues mentioned in Section 2.1 a number of different ap-
proaches were used yielding widely different outcomes. Checkpointing of the
volatile state was one remedies that tried to address the problem of forward
progress, by periodically saving the state of execution to the non-volatile
memory. Such programming models, e.g., Mementos [21], Hibernus [19],
HarvOS [33] save the volatile in non-volatile memory to ensure that the
progress of software will resume from the last saved checkpoint. Unfortu-
nately they do not provide adequate support against inconsistencies that
might occur from re-execution of code [34]. DINO [13] overcomes this prob-
lem by selectively versioning part of the non-volatile memory and other
implementations achieve the same with additional hardware support [20].
By checkpointing the whole system state these runtime environments run
into the danger of becoming un-scalable due to overheads. After a cer-
tain size of volatile memory the energy and time cost might overcome the
available budget [17]. Similar scalable approaches include QuickRecall [35],
Clank [14] and Rachet [36] which are designed for micro-controllers where
all memory is non-volatile and where light checkpointing is applied on the
state of the system. As a result these implementations are considered niche
and not realistically applied in widely adopted market.

Other approaches use task based systems that avoid the un-sustainable
overhead from checkpointing by dividing the executable program in atomic
tasks. Alpaca [15] and Chain [18] introduced a task based control flow where
the program progress to the next task only when the previous has been
competed successfully. Memory consistency is guaranteed by versioning the
non-volatile variables to ensure that the consistent version is used when a
task restarts.

On the same note InK [17] introduced the concept of event-driven exe-
cution from traditional embedded systems to the intermittent domain, by
supporting encapsulated interrupts that do not violate the consistency of
the memory space.

11

Task based approaches appear to be superior to checkpointing in terms
of scalability and overhead but they introduce new complexities.

During development the executable program is decomposed in a collection
of tasks which are executed in explicit order. The software progresses only
after a task has been completed within one ”power-on” period. In reality
complex software is not always decomposable into a set of tasks. Moreover
using popular programming abstractions like pointers and recursion might
not be an option when all computation has to occur within one defined task.

Additionally in order to achieve forward progress each task has to be
completed. For this to happen all tasks have to be able to be executed
within the available energy budget, which requires accurately profiling and
sizing tasks. Large tasks run into the danger of never terminating and
very small tasks significantly increase the overhead from task-switching too
frequently.

On the sensory node domain extensive research has been conducted cover-
ing many of aspects of embedded nodes but without addressing intermittent
execution and the complexities of harvester powered systems. Popular sys-
tems in the embedded domain like tinyOS [37], Contiki [38] and T-kernel [39]
provide an introduction to operating kernels in such constrained environ-
ments. These systems apply operating system techniques to small embed-
ded systems but their architecture if far for applicable to the transient power
domain. Multi-tenancy has been explored[40] for non-intermittent systems
like MantisOS [41] and SOS [42].

Updating remote sensor networks is an active research area with multiple
scopes. In the area of embedded nodes various architectures have been pro-
posed for kernels that contain update support like Tock [43] whereas others
implementations propose architectures that enable dissemination in dense
sensory networks [44] or transmitting code instructions in tiny capsules [45].
The scope of this research focus on systems that are are connected to a
stable supply and thus cannot be adopted for intermittent nodes.

Updating transiently powered systems has been explored mainly in the
scope of computational RFIDs with protocols like Wisent [46] and Stork [47]
where the EPC [48] protocol is exploited to re-flash the transient node with
new firmware. These systems only apply to the case of an RF powered node
and they do not update parts of the system, but the entirety of it. Such
an approach requires large enough memory to host the new uploaded im-
age before the update, making it difficult for memory constrained devices.
Moreover by transmitting the whole software image makes the update pro-
cess longer than needed in cases where only parts of the hosted software
needs to be replaced.

Networking under intermittency remains an undetermined field where
no definitive solution has been presented. Traditional network stacks like
BLE [49] can be deployed if the transient system can sustain enough com-
putation time to successfully meet the protocols requirements. But those

12

requirements are unrealistic to be met by tiny harvesting platforms. Backs-
catter networking [50] has been proposed as a possible solution. It uses
ambient signals to pass messages between intermittent nodes. The low en-
ergy consumption of backscatter networks [51, 52] make them match the
low energy profile that transient nodes need to operate successfully. No
such implementation so far covers the scope of networking for intermittent
systems in a definitive way and it remains an open research area.

13

14

Chapter 4

System Design

This thesis work aims to implement a system that not only addresses the
key problems of intermittent execution but expands on the functionality
of existing systems in a way that provides developers the space to develop
real-world applications on battery-less systems.

4.1 Requirements for Intermittent Kernel

Except from abstracting the key problems of transiently powered computers
(forward progress, memory hazards) we want a system that is capable of
adhering to modern embedded software principles, to the extent that this is
possible.

Namely, we want a kernel that is able to host multiple applications and
can safely and effectively share the constrained resources of a battery-less
system. Moreover is crucial for the usability and longevity of the embedded
node for the kernel to be to remotely updatable either by allowing for new
applications to be loaded or for older applications to be maintained. Addi-
tionally hosting multiple application in the same energy constraint platform
can be proved detrimental for the hosted software from the point of per-
formance.

In intermittent systems no guarantees can be provided either for the avail-
able energy or for the time that every application is allowed to be executed.
This is an inherent problem of the executing environment since harvesting
patterns can be highly unpredictable and accurate timekeeping is currently
unfeasible for most systems.

The problems that arise due to those effects are:

• Resource contention: an application that is significantly large and oc-
cupies the current execution order is able to indefinitely hold the CPU
leading to starvation. Task size plays a crucial role in the behavior of
task based systems and their negative effects can have a detrimental

15

Figure 4.1: Sampling occurs out of sync of the event, leading to resource
waste and incorrect sampling.

role on their performance. Large tasks tend to take more rebooting
cycles to complete and could lead to delays pushing queued tasks fur-
ther forcing the system to respond very late to any external input.

• Resource waste: an application that is extending its execution over a
time where is irrelevant is wasting resources that could be used for
useful computation. Embedded nodes usually interact with the en-
vironment by interrupts which are triggered from outside events. For
example in activity recognition systems, the embedded accelerometers
start sampling only when the acceleration overpasses a set threshold
and lasts for the duration of the movement. If we adapt this example in
the intermittent domain we could experience the possibility that the
accelerometer triggers a measurement but since no guarantees exist
for timing, sampling might occur in a moment irrelevant to the actual
movement we want to observe. Moreover data may sampled which are
irrelevant to our application leading to false results (see Figure 4.1).
The energy expended at the same time could be used in another ap-
plication or conserved for a later event, leading to a more responsive
and reliable system. This problem was initially addressed in InK where
interrupt service routine support for intermittent systems was found
to reduce wasteful computation and as a result increase the reactivity
of the system by almost 14 times [17].

16

Kernel Space Task Space

Task 2
instructions

Task 3
instructions

Task 1
instructions

Task 4
instructions…

Task n
instructions

Scheduler

Persistent
Memory

Protection

Task Manager

OS Libraries

Ta
sk

 F
et

ch
 /

Ca
ll I

nt
er

fa
ce

Application 1

Application 2

Application 3

Figure 4.2: High level task based system architecture and memory space
supporting multi-tenancy. Applications are made up of tasks. Tasks use OS
level libraries and can be shared among applications.

4.2 Architecture

The kernel was designed with intermittency in mind. Thus to be able to
guarantee forward progress and data consistency as well as address the chal-
lenges mentioned earlier a fitting execution and programing model should
be adapted. The system proposed is composed of two distinct layers: (i) the
micro-kernel layer and (ii) the application layer (see Figure 4.2). The layered
design enables a degree of task isolation and protection as in modern op-
erating systems and provides design space for features such network stack,
time-tracking and remote update.

4.2.1 Application layer

This section contains the abstractions that enable the programmer to de-
velop applications to be run on our kernel. Each application is defined as a
graph of tasks which will be executed sequentially and in an order provided
by the programmer. Tasks, and as an extension applications, are fairly easy
to write as they are just C functions which accept no argument and return
nothing. The declaration of such a task is done in the relevant translation
unit along with the information about which application it belongs to and
the order of its execution. A task can be used by different applications while
keeping the application data protected from inter-application accesses. A
task is atomic in the context of intermittency in the sense that in order for

17

the system to progress to the next task the whole task has to be executed
to completion, unless the scheduler evicts the task. Data consistency is pre-
served only for variables and arrays that are explicitly defined as protected
by the appropriate abstractions. Access is also performed through relevant
notation which is an abstraction layer to the Virtual Memory manager which
is responsible for keeping data consistent through power failures. The num-
ber of tasks available for programming is fixed, currently 12 are supported,
and their code size is bounded to a fixed size (1 KB currently). This enables
the micro-kernel to be easily updatable as the scheduler knows beforehand
where in memory to locate the tasks once a task is enabled. Moreover, this
limit also bounds the amount of data that are transmitted over the air for
a possible update.

Knowing that networking is inherently unstable and poor performing un-
der intermittency it is preferable to have smaller packets traveling over the
network to increase the probability of successful completion in a reasonable
time-frame. The task code size can be altered without significant effort by
modifying the linker file, although small task sizes yielded better results as it
is generally easier to complete smaller tasks, especially under very frequent
power failures.

4.2.2 Kernel Layer

This section of the system contains the infrastructure needed to guaran-
tee the execution of the applications under intermittency and provide extra
functionality. More specifically: scheduler, virtual memory manager, net-
working stack, and update system are part of the kernel.

Virtual Memory Management

The Virtual Memory Management (VMM) system handles protected vari-
ables and data sharing between tasks. The VMM abstracts the physical
address space of the non-volatile memory into two regions: ‘safe’ and ‘volat-
ile’:

• Safe: holds the data for which the system can guarantee their consist-
ency.

• Volatile: acts as a buffer where an image of the safe data is manipu-
lated during execution.

On compile time the available non-volatile memory address space is par-
titioned into the an area on which the VMM is operating. During the
execution of a task, the volatile address space is populated with new data
and upon successful termination the volatile buffer is committed to the Safe
area where they can be accessed by the next task. If a death occurs before

18

the successful termination, the buffers are discarded preserving the ”cor-
rect” state of operating memory. When a task is activated the VMM maps
the variables into the correct address space taking also application context
into account. For example, if Application 1 and Application 2 are sharing
SharedTask, when SharedTask attempts to access protected data under the
context of Application 1 the VMM is responsible for addressing the memory
space referring to that application, thus providing not only memory protec-
tion under power failures but also some memory isolation between applica-
tions. Additionally if a new task is inserted through the update mechanism
the VMM maps the new protected variables in the next available address
space in the partitioned memory.

Scheduler

The Scheduler operates simply by executing tasks which are recovered from
a buffer, namely the ready queue. The ready queue is populated by tasks
which are inserted as soon as they become available according to the schedul-
ing policy. Tasks are executed consecutively and task preemption is allowed,
for example in the case a task has exceeded its available computation time.

Persistent Scheduling

Although scheduling is a well researched topic, implementing a scheduler
that performs under frequent interruptions is a challenging task. As with
every intermittent program the flow of execution must respect the constrains
of intermittency. In a typical scheduling scenario a process is released and
posted to a queue. Once the CPU becomes available the next task in the
scheduler queue is executed according to the scheduling algorithm that is
specified. In the intermittent domain in every step of the scheduling pro-
cess we run into the hazard of losing power. As a result a process might
be released but never added to the queue because of a power interrupt.
Moreover when the scheduler calculates the next task that is to be executed
a power failure might incur faults in the execution order. Write after read
dependencies might produce undesired and unpredicted behaviors leading
to undefined behavior of the system (see Figure 4.3). The same risk is intro-
duced by data inconsistencies that might corrupt the schedule leading the
system to an unknown state.

As a result this thesis implements a persistent scheduler that tries to mit-
igates the aforementioned risks. The scheduling part of the kernel operates
in two states:

• Volatile schedule: In the volatile state the scheduling module adds
processes in the ready queue and calculates the executing order based
on the desired algorithm;

19

Figure 4.3: If a power interrupt occurs after a task was removed from the
ready queue, after the reboot the schedule will be inconsistent. Task1 is
removed without having completed.

• Persistent schedule: If the volatile state is concluded safely the schedul-
ing module commits the result to a non-volatile buffer. This buffer is
read only by the scheduler and written only by the commit mechanism.

By creating this level of isolation we can be reassured about the validity
and consistency of our schedule. In that way we can guarantee that things
that are scheduled for execution are going to be processed in the desired
order. As a result selecting appropriate algorithms can lead to a stable
system that will always perform on the desired manner as undefined states
will be avoided by the schedule.

Scheduling Algorithms

Scheduling under intermittency is an active area of research which focuses on
the optimality of schedules under uncertain executing conditions. Research
mainly focus on optimality of the schedule by either applying complex pre-
diction techniques that try to fit the executing load on the predicted avail-
able computational period or try to fit the executed load to the available
stored energy. Both of those techniques cannot be easily adopted under
the context of tiny battery devices that are examined in this thesis. Ex-
ecuting times of tens of milliseconds make the available executing budget

20

very constrained. As a result the priority of the scheduler should be to ex-
ecute the computational load and to not waste unnecessary operating time
in the scheduling itself. In this context of intermittency where the operating
overheads are already high due to the the persistent protection mechanisms,
expensive FRAM memory accesses and low processing speeds the sustainab-
ility of such an approach is questionable. Moreover measuring the amount of
available energy requires to devote resources on additional sensing which can
be costly in terms of computational resources or area since extra hardware
is usually required. Thus, in this thesis we approach scheduling in a naive
manner where common scheduling algorithms with reasonable overhead are
evaluated for their performance under transient power conditions.

One important aspect to be considered is that by the nature of intermit-
tency, scheduling events that rely in input from the environment, namely
interrupt triggered actions, are prone to missed events. As an example a
sensory node which relies to an interrupt from a sensory component to ini-
tiate a measurement might miss the input event as at the time the event
occurred the node could be in a non-powered state. The effects and possible
solutions to this problem were presented in InK [17] where there is a strong
indication that interrupt enabled computation in transient environments sig-
nificantly improve the reactivity of the system to outside events. Although
such an approach mitigates the problems introduced it does not provide any
guarantees that the node will successfully capture all environmental events.
As a result it becomes apparent that intermittent systems are operating
in a best effort fashion which consequently applies to the implementation
approach of this thesis.

The selected algorithms for the kernel presented are:

• First Come First Serve (FCFS): Non-preemptive scheduling of the
applications as soon as they are released. FCFS was selected based on
the intuition that an applications should be executed as soon as they
are released as this can potential lead to lower response times. Since
the execution environment is unpredictable and unstable taking the
opportunity to compute as soon as possible could provide benefits to
the execution of the application.

• Shortest Job First (SJF): Non-preemptive scheduling based on the size
of each application. Following the same reasoning as in FCFS, this
thesis evaluates if prioritizing applications based on their size yields
improvement in the performance of the system. One of the limita-
tions of this approach is that the size of each application has to be
specified and evaluated on compile time increasing the complexity to
the programmer. Additionally the scheduling overhead increases sig-
nificantly as the scheduler has to involve more logic when selecting the
next application in the ready queue, increasing at the same time the
probability of a power failure happening during scheduling.

21

• Value Based Scheduling (VBS): Non-preemptive scheduling based on
values derived by the behavior of the applications. The value of each
application is increasing whenever a task is completed within one dis-
charging cycle. Based on the same principle the value of each applic-
ation is decreasing every time a task fails to complete. Prioritizing
successful tasks the system increases the probability to increase the
number of successful task completions. At the same time, overhead is
increased as selecting the next application takes more computational
time along with keeping track successful completions. Additionally,
the system runs into the potential hazard to only execute high value
tasks as in environments where energy becomes scarce only small task
might be able to execute. As a result a small task might be indefin-
itely prioritized to the expense of bigger tasks that might never get
the chance to execute.

• Round Robin (RR): Preemptive scheduling circularly switching among
applications when their available time quantum expires. Although op-
portunistic scheduling might yield better results when the applications
are able to successfully end within few execution cycles, the system
faces the risk of starvation if an application is unable conclude. Round
robin provides a sense of fairness as it enables applications to run for
a predefined time quantum. If the application fails to conclude in the
allocated time it get evicted from the execution queue and the next
application is inserted. That way there is a fair allocation of computa-
tional resources to the system. Moreover, by allowing preemption the
system deals with handling smaller execution units, tasks, which are
easier to complete in the limited computational time that is available
in transient conditions.

Network Stack

The network stack is adopted from a novel tag-to-tag network protocol de-
veloped in the TU Delft Embedded Systems group. Tag-to-tag networks
intuitively are linked with intermittent nodes as they provide a highly en-
ergy efficient way of communicating by using ambient electromagnetic waves
as carrier signals. In principal the protocol floods the channel with messages
which are relayed by receiving nodes to effectively increase the overall range
of the network. Frames have fixed length and deliver a payload of 4 bytes
per frame. The operation of the network relies on ISRs to complete a suc-
cessful transmission or reception and the only requirement for such is that
sufficient execution time is available (Section 5.5). The details of the net-
work implementation is beyond of the scope of this work and will be covered
in future publication.

22

Update System

The update system module is implemented on the application layer of the tag
to tag network stack. Although the current implementation of the network
is not optimized for intermittent operation we implement an application
capable of exploiting the flooding operation of the protocol. The update
mechanism relies on the successful transmission of a task over the air. Once
the new task is received it is incorporated in the application layer of the
kernel and is treated as part of the executing schedule.

The transmission occurs in three stages:

1. Stage 1 : An initial message informs the system to be updated about
the incoming task. Upon reception the node pauses the execution of
the schedule and allocates a buffer according to the size of the incoming
task.

2. Stage 2 : The node is now on the receiving state where it populates
the buffer with the incoming messages. Since we consider intermittent
operation the messages might arrive in non-serial manner, this is why
each message indicates its place in the buffer, effectively reducing the
usable payload of the frame from 4 to 3 bytes. After a number of
sending iterations and once the receive buffer contains all the messages
that are expected the system waits for a finalizing message to indicate
the stop of the transmission process.

3. Stage 3 : The finalizing message contains information about where in
memory the new task will be stored and about how its going to be
executed. More specifically, in which application it belongs and what
is its order of execution relative to the already existing tasks. After
finalization, the node returns to the normal state of execution where
the schedule is processed.

It is also important to note that in this research the communication is con-
sidered to be one way, from the transmitter node to the transient receiving
node. As a result the transmitter has no way to verify if the all the mes-
sages have been received and as a consequence multiple retransmissions of
the same message are needed in order for one successful transmission to be
completed.

23

24

Chapter 5

Evaluation

Evaluating a complex system as a whole is difficult, as no definitive answer
can be easily produced that accurately encapsulates the overall performance.
Moreover since no other such system exists that follows the architecture of
our kernel it is not possible to quantify it in relative terms by comparing to
an existing implementation.

5.1 Use Case Application

Benchmarking is performed by developing an experimental application as a
model use-case for such an intermittent node. As mentioned in Chapter 1
harvester powered nodes could be potential used in deeply embedded ap-
plications in building materials. As an example case, we present a system
that could be embedded inside double glass panes. These insulating panes
are used in windows and are consisted from two glass panes attached with
a light aluminum frame. The frame is hollow with opening of 3 mm height
and 4–25 mm width (see Figure 5.1). The frame is enclosed with insulating
glue, but during assembly a small sensor node can be inserted. The node
can monitor the state and the environmental status of each window.

Depending on the requirements of the application the node can be powered
either by a small solar panel positioned in the internal metal frame of the
glazing unit or by an RF harvester. That way the sensing node can be
completely disengaged from the need of a power supply. No special window
frames or cabling is required as the sensor can be self sustainable. Moreover
with the added update ability the node can be maintained without the need
for physical access.

An update could be required changing the environmental monitor from
summer to winter calibration. Additional software could be added later, if
new monitoring needs occur. For example using the sound sensor to detect
high wind bursts that could damage the window if it is not secured.

25

Figure 5.1: A sectioned diagram of a fixed insulating glass unit. Number 1
indicates the hollow aluminum frame.By NcLean - Own work, CC BY-SA
3.0

5.2 Testing Environment

Our prototype which consists the system under test in comprised of a TI
MSP430FR5969 MCU [5] which hosts the intermittent kernel. The MCU
is connected to a sound sensor, an accelerometer and environmental sensors
which provide temperature and humidity values. We develop three applica-
tions:

1. Sound Detection: This application is used to detect glass breakage by
sensing the ambient sound. The application is triggered by an inter-
rupt signal from the accelerometer. The application is split in three
tasks: A sampling task which used the ADC to sample 128 samples.
A filtering task that performs Fourier transform on the sample. Lastly
a a task which classifies the filtered sample as glass breakage or not.

2. State detection: This application is used to determine if the window
is closed or open. Using an accelerometer triggered interrupt the ap-
plication classifies the window in one of the two states. The first task
samples the accelerometer. The second task applies averaging filter
and the third task classifies the window to the correct state (open or
closed).

3. Environment Sensing: This application gathers data for temperature
and humidity inside the double glazing unit and determines if they
have exceeded or fallen below a certain limit. That way we can monitor
the thermo-insulating performance of the glazing pane and replace it
once it degrades. The first task samples the sensor and collects data

26

for temperature and humidity. The data are sorted and the two limit
values are stored. The third task classifies the sample to acceptable or
not according a preset limit.

Testing the current setup in a concise and repeatable manner requires
a predefined execution environment. To simulate intermittency, it is re-
quired to allow the microcontroller to execute for a limited period of time
before forcing the system to reboot. To that purpose a software library
was developed that could simulate the energy environment under which the
system operates. In reality, harvesting environments contain a huge range
of cases under which the system can be evaluated. More specifically the
amount of execution time available, time spent while dead, recharge time,
energy availability are variables that will change depending on hardware
design, deployed environment, time of the day and a number of unaccoun-
ted factors. On compile time, an array of pseudo-random generated values
define the available executing time after each reset. The timing values are
produced by a python script for random number generation [53].

For each iteration of the experiment for the same scheduling policy the
minimum and maximum range of the random values is modified to simulate
more energy-constrained or energy-rich environments. The following cases
where evaluated:

• Normal Execution: The node runs on stable power supply. This is the
base performance of the systems and the results are used to normalize
the intermittent values. Moreover from this case metrics are extracted
for overheads as well as baseline application profiling when determining
the size and the expected behavior of the system.

• Intr-18 : The node experiences power interrupts at a random moment
in time, allowing for execution periods in the range 1–30 ms with
average period of 18.03 ms.

• Intr-26 : The node experiences power interrupts at a random moment
in time, allowing for execution periods in the range 1–50 ms with
average period of 26.81 ms.

• Intr-32 : The node experiences power interrupts at a random moment
in time, allowing for execution periods in the range 1–65 ms with
average period of 32.69 ms.

The interrupt that occurs after the available time expires incurs a brown-
out reset (BOR) which leads to a power on reset (POR) and power up clear
(PUC) which puts the micro-controller to its initial power-on state with the
contents of its registers cleared [5]. After the reset the library sets the new
power interrupt to occur by picking a new random value.

27

Normal Intr-32 Intr-26 Intr-18
0

2

4

6

8

10

Executing Environment

R
es

po
ns

e
[s

]

Sound Detection
State Detection
Environment Sensing

Normal Intr-32 Intr-26 Intr-18
0

0.5

1

1.5

2

Executing Environment

T
hr

ou
gh

pu
t

Sound Detection
State Detection
Environment Sensing

Figure 5.2: Round Robin: response time and throughput for all three hosted
applications for each of the simulated environments.

5.2.1 Performance Metrics

For examining the implications of power failures in scheduling algorithms
we consider the following performance metrics:

• Response Time: the time it takes for an application to finish from its
release;

• Throughput : the amount of successful completions per unit of time;

• Wasted Time: the amount of time spent on computation that is lost
due to power failures.

The results vary per different execution environment. In Figure 5.2 the
different results per simulated environment are demonstrated, for all three
applications in the case of Round Robin scheduling. The three simulated
environments are denoted by the average on-time that the microcontroller
executes. The trend that appears is that, as expected the response time
of an application is increasing as the available energy becomes more scarce.
Additionally throughput decreases as less applications successfully terminate
per time unit.

28

VBS SJF FCFS RR
0

0.5

1

1.5

2

2.5

Scheduling Algorithm

T
hr

ou
gh

pu
t

Sound Detection
State Detection
Environment Sensing

Figure 5.3: Average throughput (successful completions per time unit) per
application for each evaluated algorithm.

VBS SJF FCFS RR
0

2

4

6

8

10

12

Scheduling Algorithm

R
es

po
ns

e
Sl

ow
do

w
n Sound Detection

State Detection
Environment Sensing

Figure 5.4: Average slowdown in response time per application for each
evaluated algorithm.

5.3 Scheduling Results

The results of the three different energy environments are averaged and
normalized over the non-interrupted execution. The end result provides an
overview of the systems performance based on the three harvesting patterns
mentioned in Section 5.2.

Attempting to better quantify the overall performance of the system we
measure the overall throughput of the system as the total amount of suc-
cessful application completions per time unit (Figure 5.5).

5.4 Overhead

Performance metrics provide a clear indicator for the performance of the
system as is. As mentioned earlier though, overheads in intermittent oper-
ation is crucial to determine if such a system is feasible and able to scale
into a more usable use-cases. As it appears in Figure 5.7 the scheduling

29

VBS SJF FCFS RR
0

0.3

0.6

0.9

1.2

1.5

Scheduling Algorithm

T
hr

ou
gh

pu
t

Figure 5.5: Overall throughput of the transient node.

VBS SJF FCFS RR
0

0.1

0.2

0.3

Scheduling Algorithm

W
as

te
d

C
om

pu
ta

tio
n Sound Detection

State Detection
Environment Sensing

Figure 5.6: Wasted computation per application for each evaluated al-
gorithm.

overhead increases as the complexity of the policy increased.

5.5 Over-the-Air Update

Key aspect of the system is the networking interface. The tag-to-tag stack
and hardware was developed as part of different work and its evaluation is
beyond the scope of the current thesis. Both receiver and transmitter are
composed by a TI MSP430FR5969 MCU [5] connected to a ADG904 [54]
wideband multiplexer which is used to modulate the ambient RF signals for
the transmission protocol. For the evaluation the signals are provided by
a BPSG4 [55] signal generator. The receiver hosts the intermittent kernel
and the transmitter hosts a transmission application which continuously
broadcasts the intended payload data. The three devices are aligned in a
straight line with no obstructions. The transmitter was placed 5 cm from
the signal generator and the receiver was placed in distances 5–30 cm, with
increments of 5 cm. Transmission beyond that range was impossible. The
transmitting node was connected to the standard 5 V supply while the

30

RR FCFS SJF VBS
0

0.1

0.2

Scheduling Algorithm

O
ve

rh
ea

d

Figure 5.7: Scheduling overhead per evaluated scheduling algorithm.

Table 5.1: Over-the-Air update performance

Stable Power Transient Power

Bytes/s 14.69 9.13
Reception Time(s) 69.7 112.14
Re-transmissions 3.2 5.21

receiving node was operating intermittently.

To correctly implement a tag-to-tag update service as mentioned in Sec-
tion 4.2.2 the application layer was developed. This is the part that we are
going to quantify based on the constrains imposed by the tag-to-tag network
design. Transmission bandwidth, throughput and range hugely vary on near
conditions, obstacles and characteristics of the carrier signal.

The amount of time that a successful reception needs depends on a number
of unaccounted factors that cannot be controlled. The average time that
is needed for a successful 4 bytes reception is 89 ms, although the value
ranges from 4 s to 50 ms. Experimentation for intermittent operation was
conducted with execution times ranging from 100 ms to 1 s with average
execution times of 400 ms. Smaller execution times made it impossible
for the transmission to complete. The transmitter on stable power supply
needed 21.51 s to transmit a complete task of 1024 bytes.

As mentioned in Chapter 4 the network operates based on the flooding
principle, meaning that multiple retransmissions of the complete payload
are required for a successful reception. Notably, throughout the experiments
both in stable and transient reception ≈90% of the payload was received in
the first two transmissions. The average amount of transmissions needed
are presented in Table 5.1.

The update operation itself where the received data are installed as a
new task, lasts for an average of 15.59 ms. This involves transferring the
received task code from the receive buffer to the task-hosting part of memory

31

as well as updating the status of the scheduler to reflect the changes in the
composition of the applications.

32

Chapter 6

Summary

This thesis is surmised by a conclusion in Section 6.1 and in Section 6.2
possibilities for future work are presented.

6.1 Conclusion

In this thesis a software kernel for transiently powered systems is designed,
implemented and evaluated. The kernel supports the features mentioned in
Chapter 4 that enable an intermittent node to run multiple applications at
the same time. The multi-tenant node can schedule the hosted applications
using Round Robin, First Come First Serve, Shortest Job First, and Value-
based Scheduling. Based on the evaluation section it becomes clear that no
optimal scheduling policy exists, out of the ones examined, that can provide
a definitive better result. Given the restrictions of intermittent computing
and the wide variety of harvesting conditions a viable transient system can
only be designed by taking into account the ambient harvesting conditions
and the computational demands of the hosted applications.

For the use-case of the glass embedded sensor that was examined in this
thesis it is noted that if the system designer requires to optimize for response
times predictive value based scheduling provides the best possible results.
The response times in this case are ≈1.45 times better than the base case. In
contrast the other algorithms have larger response times ranging from small
differences as in the case of FCFS to substantial as in RR. More details are
provided in 6.1

Additionally if the system is not expected to perform in an environment
where response time or throughput is important. The RR algorithm provides
a low overhead solution that will evenly distribute the available CPU time
regardless of other constraints. As it appears in Figure 5.6 the amount of
wasted computation in round robin is relatively high in all three applica-
tions but remains in the same level when comparing to the other scheduling
policies, where the State Detection application suffers the most penalty.

33

Table 6.1: Slowdown of response times in comparison to stable power supply
execution

Sound Detection State Detection Environment Sensing

VBS 1.45 1.48 1.43
FCFS 1.49 1.60 1.58
SJF 1.82 1.89 1.79
RR 10.96 5.34 10.81

Fairness might be important for systems where multiple operators want to
host their applications in the same node and want to be ensured that no
”greedy” application will hijack their operating time.

If the focus of the system is throughput then Figure 5.3 shows that Value-
based Scheduling might fit the requirements of the designer better. Further
quantifying the overall throughput of the intermittent node in Figure 5.5, be-
comes clear that regardless of the increased overhead, predictive scheduling
performs better in terms of completions per time unit for the given system.

In terms of networking this thesis proves that transient nodes can be
successfully updated remotely, providing ample design space for developers
to expand on the usability of transient powered nodes throughout their
lifespan. Most importantly this is feasible by a very low energy tag to tag
network designed for such constrained processors. Although transmission
speed remains low in comparison to modern standards based on the data
provided in Table 5.1 it is considered to be satisfying for the nature of the
implementation.

As conclusion this thesis proves the feasibility of a low overhead multi-
tenant transiently powered node. The node can host multiple applications
which can be run by different scheduling algorithms according to the re-
quirements of the system designer. The applications are protected from
the effects of intermittency and are able to share the available memory and
CPU time with the other tenants. Moreover the fundamental units of the
applications, tasks, can be shared by different applications providing an ex-
tra level of programming flexibility which has not been introduced for such
systems yet. With the added functionality of remote updating, the kernel
introduced here, is a highly versatile and modular system that can be used
to deploy transient sensing nodes in remote environments. Removing the
need for immediate access unattended transient computing comes one step
closer to its realization.

34

6.2 Future Work

This thesis deals with questions of feasibility for multi-tenant, updatable
transiently powered systems. Moreover it deals with the performance of
common embedded system scheduling techniques for the transient powered
domain. Here we summarize the list of further action items and associated
research challenges.

Identifying Properties of Deployed Embedded Software: To be
able to exploit multi-tenancy at intermittently-powered devices to the fullest,
we need to know more about the characteristics of the real applications run-
ning on intermittently-powered devices. The information of the underlying
software will provide input to the design of new schedulers. Points of interest
include:

• Which applications are the most widespread among existing deployed
nodes?

• What are the minimum operational requirements of such a system?

• Are there any bottlenecks or limitations introduced by multi-tenancy?

Identifying Potential Benefits of Task-Sharing: By identifying com-
mon software patterns in sensing nodes, the kernel can introduce a number of
predefined tasks that can be shared by applications or be used to remotely
configure new applications. As example common filters (FFT, averaging,
etc.) and sampling tasks can be used to configure new sensing applications
without the need to access and re-flash the node.

Bringing Time to Scheduling: Any scheduling algorithm would benefit
from notion of time. This is however difficult in the context of intermittently-
powered domain, where energy required for keeping time is unavailable at
times of device “death”. One idea is to measure time with remanence
timekeepers, such as [56]. More specifically, utilizing timekeeping enables
scheduling deadlines and periodic tasks which we are currently unable to
cover sufficiently in this work as the timekeeping used by the current kernel
only keep tracks of successful computation time.

Definition of Realistic Energy Availability Models: A rigid classific-
ation of common energy availability environments and harvesting techniques
is required to design realistic intermittent systems. This will provide an
opportunity of better framing the problem and more adequately providing
possible solutions for scheduling and multi-tenancy. Utilizing and improving
tools like Ekho [29] for emulating realistic harvesting scenarios and apply-
ing possible results to real-life scenarios is fundamental for this task. We

35

note that definitions of realistic energy availability models is a more broad
problem applied to any sub-domains of intermittent computing.

Adaptive Scheduling Algorithms: Value-based Scheduling results hint
that benefits might come by scheduling algorithms that are able to adapt
to the harvesting environment they are deployed. By adapting to energy
availability with low overhead cost we might be able to further improve
performance of transient nodes.

Tag to Tag Network: Low energy passive radios might be the key to
interconnected transient nodes. Network enabled transient devices might
hold the key to a truly energy neutral IoT. The network stack utilized by
this thesis has ample room for optimization for the intermittent use-case and
the results presented here suggest that further research is required towards
that direction.

36

Bibliography

[1] J. A. Paradiso and T. Starner, “Energy scavenging for mobile and wire-
less electronics,” IEEE Pervasive Computing, vol. 4, no. 1, pp. 18–27,
Jan.-Mar. 2005.

[2] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes: Sur-
vey and implications,” IEEE Communications Surveys and Tutorials,
vol. 13, no. 3, pp. 443–461, Third Quarter 2011.

[3] G. V. Merrett, “Invited: Energy harvesting and transient computing:
A paradigm shift for embedded systems?” in Proc. ACM/EDAC/IEEE
Design Automation Conference, 2016.

[4] F. K. Shaikh, S. Zeadally, and E. Exposito, “Enabling technologies for
green internet of things,” IEEE Syst. J., vol. 11, no. 2, pp. 983–994,
Jun. 2017.

[5] Texas Instruments Inc., “MSP430FR59xx mixed-signal microcontrol-
lers (Rev. F),” http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf,
Mar. 2017, last accessed: Jul. 26, 2017.

[6] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R.
Smith, “Design of an RFID-based battery-free programmable sensing
platform,” IEEE Trans. Instrum. Meas., vol. 57, no. 11, pp. 2608–2615,
Nov. 2008.

[7] A. Parks, I. in ’t Veen, S. Naderiparizi, and J. Tan, “WISP 5.0 firmware
git,” https://github.com/wisp/wisp5, 2014, last accessed: Jul. 10, 2017.

[8] Y. Zhao, J. R. Smith, and A. Sample, “NFC-WISP: A sensing and
computationally enhanced near-field RFID platform,” in Proc. RFID.
San Diego, CA, USA: IEEE, Apr. 15–17, 2015.

[9] J. Holleman, D. Yeager, R. Prasad, J. R. Smith, and B. Otis, “Neural-
WISP: An energy-harvesting wireless neural interface with 1-m range,”
in Proc. IEEE BioCAS. Baltimore, MD, USA: IEEE, Nov. 20–22,
2008.

37

http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf
https://github.com/wisp/wisp5

[10] S. Naderiparizi, A. N. Parks, Z. Kapetanovic, B. Ransford, and J. R.
Smith, “Wispcam: A battery-free rfid camera,” in Proc. IEEE RFID,
San Diego, CA, USA, Apr. 15–17, 2015, pp. 166–173.

[11] Farsens, “Farsense pyros-0373 product description,” http://www.
farsens.com/en/products/pyros-0373, 2016, last accessed: Jul. 31,
2017.

[12] D. Fearing, “Equine microchips product website,” http://www.
destronfearing.com/our-products/equine/index.html, 2017, last ac-
cessed: Jul. 31, 2017.

[13] B. Lucia and B. Ransford, “A simpler, safer programming and execution
model for intermittent systems,” in Proc. PLDI. Portland, OR, US:
ACM, Jun. 13–17, 2015.

[14] M. Hicks, “Clank: Architectural support for intermittent computa-
tion,” in Proc. ISCA. Toronto, ON, Canada: ACM, Jun. 24–28, 2017.

[15] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution
without checkpoints,” Proc. OOPSLA, vol. 1, no. OOPSLA, pp. 96:1–
96:30, Oct. 2017.

[16] B. Lucia and B. Ransford, “A simpler, safer programming and execution
model for intermittent systems,” SIGPLAN Not., vol. 50, no. 6, pp.
575–585, June 2015.

[17] K. S. Yildirim, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak, and
J. Hester, “Ink: Reactive kernel for tiny batteryless sensors.” ACM,
2018, pp. 41–53.

[18] A. Colin and B. Lucia, “Chain: Tasks and channels for reliable inter-
mittent programs,” SIGPLAN Not., vol. 51, no. 10, pp. 514–530, Oct
2016.

[19] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi,
D. Brunelli, and L. Benini, “Hibernus: Sustaining computation during
intermittent supply for energy-harvesting systems,” IEEE Embedded
Syst. Lett., vol. 7, no. 1, pp. 15–18, Mar. 2015.

[20] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-
Hashimi, G. V. Merrett, and L. Benini, “Hibernus++: a self-calibrating
and adaptive system for transiently-powered embedded devices,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 12, pp.
1968–1980, Dec. 2016.

[21] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for
long-running computation on RFID-scale devices,” in Proc. ASPLOS.
Newport Beach, CA, USA: ACM, Mar. 5–11, 2012, pp. 159–170.

38

http://www.farsens.com/en/products/pyros-0373
http://www.farsens.com/en/products/pyros-0373
http://www.destronfearing.com/our-products/equine/index.html
http://www.destronfearing.com/our-products/equine/index.html

[22] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in Proceedings of
the 1st ACM international workshop on Wireless sensor networks and
applications. Acm, 2002, pp. 88–97.

[23] S. J. Thomas, R. R. Harrison, A. Leonardo, and M. S. Reynolds, “A
battery-free multichannel digital Neural/EMG telemetry system for fly-
ing insects,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 5, Oct.
2012.

[24] M. Piñuela, P. D. Mitcheson, and S. Lucyszyn, “Ambient RF energy
harvesting in urban and semi-urban environments,” IEEE Trans. Mi-
crow. Theory Techn., vol. 61, no. 7, pp. 2715–2726, Jul. 2013.

[25] Texas Instruments, Inc., “FRAM faqs,” http://www.ti.com/lit/ml/
slat151/slat151.pdf, 2014, last accessed: Jul. 28, 2017.

[26] S. Guruacharya and E. Hossain, “Self-sustainability of energy harvest-
ing systems: concept, analysis, and design,” IEEE Transactions on
Green Communications and Networking, vol. 2, no. 1, pp. 175–192,
2018.

[27] M. Gorlatova, A. Wallwater, and G. Zussman, “Networking low-
power energy harvesting devices: Measurements and algorithms,” IEEE
Trans. Mobile Comput., vol. 12, no. 9, pp. 1853–1865, Sep. 2013.

[28] D. Gündüz, K. Stamatiou, N. Michelusi, and M. Zorzi, “Designing in-
telligent energy harvesting communication systems,” IEEE Commun.
Mag., vol. 52, no. 1, pp. 210–216, Jan. 2014.

[29] M. Furlong, J. Hester, K. Storer, and J. Sorber, “Realistic simulation
for tiny batteryless sensors,” in Proc. International Workshop on En-
ergy Harvesting and Energy-Neutral Sensing Systems, ser. ENSsys 2016,
2016, pp. 23–26.

[30] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for
long-running computation on rfid-scale devices,” in Proc. ACM AS-
PLOS, New York, NY, USA, Mar. 5–11, 2011, pp. 159–170.

[31] S. Rodriguez, S. Ollmar, M. Waqar, and A. Rusu, “A batteryless sensor
ASIC for implantable bio-impedance applications,” IEEE Trans. Bio-
med. Circuits Syst., vol. 10, no. 3, pp. 533–544, Jun. 2016.

[32] G. V. Merrett and B. M. Al-Hashimi, “Energy-driven computing: Re-
thinking the design of energy harvesting systems,” in Proceedings of
the Conference on Design, Automation & Test in Europe. European
Design and Automation Association, 2017, pp. 960–965.

39

http://www.ti.com/lit/ml/slat151/slat151.pdf
http://www.ti.com/lit/ml/slat151/slat151.pdf

[33] N. Bhatti and L. Mottola, “HarvOS: Efficient code instrumentation for
transiently-powered embedded devices,” in Proc. IPSN. Pittsburgh,
PA, USA: ACM/IEEE, Apr. 18–21, 2017.

[34] B. Ransford and B. Lucia, “Nonvolatile memory is a broken time ma-
chine,” in Proc. MSPC. Edinburgh, United Kingdom: ACM, Jun. 14,
2014, pp. 5:1–5:3.

[35] H. Jayakumar, A. Raha, and V. Raghunathan, “QuickRecall: A low
overhead HW/SW approach for enabling computations across power
cycles in transiently powered computers,” in Proc. International Con-
ference on Embedded Systems Design. Mumbai, India: IEEE, Jan.
5–9, 2014, pp. 330–335.

[36] J. Van Der Woude and M. Hicks, “Intermittent computation without
hardware support or programmer intervention,” in Proc. OSDI. Sa-
vannah, GA, USA: ACM, Nov. 2–4, 2016, pp. 17–32.

[37] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, “TinyOS: An oper-
ating system for sensor networks,” in Ambient intelligence, W. Weber,
J. M. Rabaey, and E. Aarts, Eds. Berlin, Germany: Springer, 2005,
pp. 115–148.

[38] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in Proc. LCN.
Tampa, FL, USA: IEEE, Nov. 16–18, 2004.

[39] L. Gu and J. A. Stankovic, “T-kernel: Providing reliable OS support to
wireless sensor networks,” in Proc. SenSys. Boulder, CO, USA: ACM,
Nov. 1–3, 2006.

[40] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” ACM SIGOPS
operating systems review, vol. 34, no. 5, pp. 93–104, 2000.

[41] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker,
C. Gruenwald, A. Torgerson, and R. Han, “Mantis os: An embedded
multithreaded operating system for wireless micro sensor platforms,”
Mob. Netw. Appl., pp. 563–579, 2005.

[42] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dy-
namic operating system for sensor nodes,” in Proc. MobiSys. Seattle,
WA, USA: ACM, Jun. 6–8, 2005, pp. 163–176.

[43] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta,
and P. Levis, “Multiprogramming a 64kb computer safely and effi-

40

ciently,” in Proceedings of the 26th Symposium on Operating Systems
Principles. ACM, 2017, pp. 234–251.

[44] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemina-
tion protocol for network programming at scale,” in Proceedings of the
2nd international conference on Embedded networked sensor systems.
ACM, 2004, pp. 81–94.

[45] P. Levis and D. Culler, “Maté: A tiny virtual machine for sensor net-
works,” in Proc. ASPLOS. San Jose, CA, USA: ACM, Oct. 5–9, 2002,
pp. 85–95.

[46] J. Tan, P. Pawe lczak, A. Parks, and J. R. Smith, “Wisent: Robust
downstream communication and storage for computational RFIDs,” in
Proc. INFOCOM. San Francisco, CA, USA: IEEE, Apr. 10–15, 2016.

[47] H. Aantjes, A. Y. Majid, P. Pawe lczak, J. Tan, A. Parks, and J. R.
Smith, “Fast downstream to many (computational) RFIDs,” in Proc.
INFOCOM. Atlanta, GA, USA: IEEE, May 1–4, 2017.

[48] “Epc radio-frequency identity protocols generation-2 uhf rfid version
2.0.1 2015,” 2018. [Online]. Available: http://www.gsl.org/sites/
default/files/docs/epc/Gen2 Protocol Standard.pdf

[49] S. L. Hearndon, “An analysis of bluetooth low energy in the context of
intermittently powered devices,” Master’s thesis, 2016.

[50] K. Finkenzeller, RFID Handbook. West Sussex, United Kingdom: John
Wiley & Sons, Ltd., 2010.

[51] Y. Chouchang, J. Gummeson, and A. Sample, “Riding the airways: Ul-
trawideband ambient backscatter via commercial broadcast systems,”
in Proc. INFOCOM. IEEE, 2017, pp. 1–9.

[52] P. Zhang and D. Ganesan, “Enabling bit-by-bit backscatter commu-
nication in severe energy harvesting environments,” in Proc. NSDI.
USENIX, 2014.

[53] “The python standard library ¿¿ 9. numeric and mathematical
modules ¿¿,” 2018. [Online]. Available: https://docs.python.org/2/
library/random.html

[54] Aaronia AG, “Portable signal generators bpsg series,”
https://www.aaronia.com/Datasheets/Generators/Aaronia-Signal-
Generators.pdf, 2015, last accessed: Jul. 26, 2018.

[55] A. Devices, “Wideband 2.5 ghz, 37 db isolation at 1 ghz,,”
https://www.analog.com/media/en/technical-documentation/data-
sheets/adg904.pdf, 2018, last accessed: Jun. 26, 2018.

41

http://www.gsl.org/sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf
http://www.gsl.org/sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf
https://docs.python.org/2/library/random.html
https://docs.python.org/2/library/random.html

[56] J. Hester, K. Storer, and J. Sorber, “Timely execution on intermittently
powered batteryless sensors,” in Proc. 15th ACM Conference on Em-
bedded Network Sensor Systems, ser. SenSys 2017, 2017, pp. 17:1–17:13.

42

	Preface
	Introduction
	Intermittent Execution
	Problem Statement
	Contributions
	Thesis Outline

	Preliminaries
	Challenges
	Forward Progress
	Memory Consistency

	Related Work
	System Design
	Requirements for Intermittent Kernel
	Architecture
	Application layer
	Kernel Layer

	Evaluation
	Use Case Application
	Testing Environment
	Performance Metrics

	Scheduling Results
	Overhead
	Over-the-Air Update

	Summary
	Conclusion
	Future Work

