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Abstract
Unexpected disruptions occur frequently in railway systems, during which many train ser-
vices cannot run as scheduled. This paper deals with timetable rescheduling during such
disruptions, particularly in the case where all tracks between two stations are blocked for
a few hours. In practice, the disruption length is uncertain, and a disruption may become
shorter or longer than predicted. Thus, it is necessary to take the uncertainty of the dis-
ruption duration into account. This paper formulates the robust timetable rescheduling as a
rolling horizon two-stage stochastic programming problem in deterministic equivalent form.
The random disruption duration is assumed to have a finite number of possible realization-
s, called scenarios, with given probabilities. Every time a prediction about the range of
the disruption end time is updated, new scenarios are defined, and the model computes the
optimal rescheduling solution for an extended control horizon, which is robust to all these
scenarios. Based on the model, uncertain disruptions can be handled with robust solutions
in a dynamic environment. The stochastic method was tested on a part of the Dutch rail-
ways, and compared to a deterministic rolling-horizon method. The results showed that
compared to the deterministic method, the stochastic method is more likely to generate bet-
ter rescheduling solutions for uncertain disruptions by less train cancellations and/or delays,
while the solution robustness can be affected by the predicted range regarding the disruption
end time.

Keywords
uncertainty, disruption management, rescheduling, stochastic programming, rolling horizon

1 Introduction

Railway systems are vulnerable to unexpected disruptions caused by for instance incidents,
infrastructure failures, and extreme weather. A typical consequence of a disruption is that
the tracks between two stations are completely blocked for a few hours. Under this circum-
stance, trains are forbidden to enter the blocked tracks, and therefore the planned timetable
is no longer feasible. Thus, traffic controllers have to reschedule the timetable for which
they usually apply a pre-designed contingency plan specific to the disruption. Since the
contingency plan is manually designed, its optimality cannot be guaranteed, and sometimes
cannot even meet all operational constraints (Ghaemi et al., 2017a). For this reason, increas-
ing attention is being paid to developing optimization models for computing rescheduling
solutions. A detailed review can be found in Cacchiani et al. (2014).

Until now, many timetable rescheduling models have been proposed to deal with dis-
ruptions, which differ in e.g. the complexity of the network, the infrastructure modelling,
the used dispatching measures, the objective, and the number of disruptions considered. For
instance, Zhan et al. (2015) propose a Mixed Integer Linear Programming (MILP) model to
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reschedule the timetable in case of a complete track blockage by delaying, reordering and
cancelling trains. They focus on a Chinese high-speed railway corridor where seat reser-
vations are necessary for passengers, and therefore the measure of short-turning trains is
not applicable. Veelenturf et al. (2015) propose an ILP model to handle partial or complete
track blockages focusing on a part of the Dutch railway network where short-turning trains
is commonly used during disruptions. They assign each train with the last scheduled stop
before the blocked track as the only short-turn station. If the short-turn station lacks ca-
pacity to short-turn a train then it has to be cancelled completely. To reduce complete train
cancellations, Ghaemi et al. (2018a) propose an MILP model to decide the optimal time
and station of short-turning a train by assigning two short-turn station candidates. This has
also been implemented in Ghaemi et al. (2017b) where the infrastructure is modelled at
a microscopic level to improve solution feasibility in practice. The aforementioned papers
aim to minimize train cancellations and delays. To reduce passenger inconveniences during
disruptions, Zhu and Goverde (2019) propose an MILP model where more short-turn station
candidates are given for each train and also the stopping patterns of trains can be changed
flexibly (i.e. skipping stops and adding stops). Binder et al. (2017) integrate passenger
rerouting and timetable rescheduling into one ILP model where limited vehicle capacity is
taken into account. While most literature focus on a single disruption, Zhu and Goverde
(2019) propose an MILP model to deal with multiple disruptions that have overlapping
periods and are pairwise connected by at least one train line. Most literature share the as-
sumption that the disruption duration is known and will not change over time. However in
practice, a disruption may become shorter or longer than predicted (Zilko et al., 2016), thus
dynamic adjustments are required.

To deal with the uncertainty of the disruption duration, Zhan et al. (2016) embed their
rescheduling model into a rolling horizon framework where the timetable is adjusted grad-
ually with renewed disruption durations taken into account. Ghaemi et al. (2018b) develop
an iterative approach to reschedule the timetable in each iteration when a new disruption
duration is updated. In both cases, deterministic models are used for the rescheduling. To
obtain a robust solution, Meng and Zhou (2011) propose a stochastic programming model
that takes the uncertainty of the disruption duration into account. The model reschedules
the timetable dynamically by a rolling horizon approach for single-track railway lines using
two dispatching measures: delaying and reordering. Quaglietta et al. (2013) also propose a
rolling horizon approach to manage stochastic disturbances (small train delays) using retim-
ing and reordering, where at regular rescheduling intervals the current delays are measured
and the associated conflicts are predicted over a prediction horizon of fixed length. Then
rescheduling solutions are generated for the entire prediction horizon but only the first part
is implemented in the next rescheduling interval.

This paper deals with uncertain disruptions using two methods. We implemented a
deterministic rolling-horizon approach based on the deterministic timetable rescheduling
model of Zhu and Goverde (2019). Also, we propose a stochastic rolling-horizon approach
based on a two-stage stochastic timetable rescheduling model. Different from the existing
literature, both methods are devoted to more complicated conditions, where 1) single-track
and double-tack railway lines both exist; 2) a wide range of dispatching measures is allowed:
delaying, reordering, cancelling, adding stops and flexible short-turning; 3) rolling stock
circulations at terminal stations are considered, and 4) station capacity is taken into account.
The rescheduling solution is computed until the normal schedule has been recovered.

The main contributions of this paper are summarized as follows:

• A rolling horizon two-stage stochastic timetable rescheduling model is proposed to
handle uncertain disruptions by robust solutions.

• The proposed model allows delaying, reordering, cancelling, adding stops and flexible
short-turning, and considers station capacity and rolling stock circulations at terminal
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stations.
• We test the stochastic method on a part of the Dutch railways, and compare it to a

deterministic rolling-horizon method.

The remainder of the paper is organized as follows. Section 2 introduces the determin-
istic and stochastic methods. Both methods are tested with real-life instances in Section 3.
Finally, Section 4 concludes the paper.

2 Methodology

A brief introduction is given to the basics considered in the deterministic and stochastic
methods. After that, both methods are explained.

2.1 Basics

Event-activity network
The rescheduling model is based on an event-activity network. An event e is either a train
departure or arrival that is associated with the original scheduled time oe, station ste, train
line tle, train number tre, and operation direction dre. All departure (arrival) events con-
stitute the set Ede (Ear). An activity is a directed arc from an event to another. Multiple
kinds of activities are established, including running activities Arun, dwell activities Adwell,
pass-through activities Apass, headway activities Ahead, short-turn activities Aturn, and OD
turn activities Aodturn. We refer to Zhu and Goverde (2019) for the details.

Decision variables
Any event e ∈ Ede∪Ear corresponds to the following decision variables: 1) the rescheduled
time xe, 2) the delay de, 3) and the binary decision ce with value 1 indicating that e is
cancelled. Particularly for an event e ∈ Eturn

de ∪ Eturn
ar , a binary decision ye is needed, of

which value 1 indicates that train tre is short-turned at station ste. Here, Eturn
de (Eturn

ar ) is
the set of departure (arrival) events that have short-turning possibilities. To deal with station
capacity, for any arrival event e ∈ Ear, two binary decision variables are needed: 1) ue,i
with value 1 indicating that train tre occupies the ith platform of station ste, 2) and ve,j
with value 1 indicating that train tre occupies the jth pass-through track of station ste.

A short-turn (OD-turn) activity a ∈ Aturn (a ∈ Aodturn) corresponds to a binary
decision variable ma with value 1 indicating that a is selected. A pass-through activity
a ∈ Apass corresponds to a binary decision variable sa with value 1 indicating that a is
added with a stop. For any two different events e, e′ ∈ Ede∪Ear, we have a binary decision
variable qe,e′ with value 1 indicating that e occurs before e′.

Note that due to our formulation, once the decisions regarding xe, de, ce and ye are
determined, the other decisions are also determined.

Disruptions
This paper considers a disruption that occurs at tstart and is predicted to end within the
period

[
tmin
end , t

max
end

]
. The disruption duration is a random input that is assumed to have a

finite number of possible realizations, called scenarios, 1, . . .,W , with corresponding prob-
abilities, p1, . . ., pW , satisfying

∑W
w=1 pw = 1. Each scenario w has a unique disruption

duration [tstart, t
w
end] where tmin

end ≤ twend ≤ tmax
end .

During the disruption, the range of the disruption end time may change. At update
phase k, a new range

[
tk,min
end , tk,max

end

]
will be given, and thus a rescheduling model has to

be solved based on the updated information.
This paper is based on the following assumptions:
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• At phase k = 1, the range of the disruption end time
[
tk,min
end , tk,max

end

]
is obtained at

the disruption start time tstart

• At phase k ∈ [2,K − 1], the range of the disruption end time
[
tk,min
end , tk,max

end

]
is

updated before time tk−1,min
end − `

• At final phase K, the exact disruption end time tend is received at time tK−1,min
end − `

• tk−1,min
end ≤ tk,min

end holds for any phase k ∈ [2,K − 1], and tK−1,min
end ≤ tend

Here, ` is a given parameter relevant to the update time, which must ensure a timely im-
plementation of a new rescheduling solution based on the updated information. The value
of ` is relevant to the traffic density of the considered network and the extent of the devia-
tion from the planned timetable. A network that has a denser traffic and the corresponding
rescheduled timetable has more deviations than the planned one may need longer time for
implementing the rescheduled timetable.

For the notation of parameters and sets we refer to the Appendix.

2.2 Deterministic rolling-horizon method

A deterministic rescheduling model can only consider one possible disruption duration[
tstart, t

wk,l

end

]
at phase k, where tk,min

end ≤ t
wk,l

end ≤ tk,max
end , wk,l ∈ {wk,1, . . . , wk,Wk

}. The
choice of twk,l

end depends on the adopted strategy. For example, the value of twk,l

end is chosen as
1) tk,min

end in an optimistic strategy, 2) tk,max
end in a pessimistic strategy, 3) or

∑Wk

l=1 pwk,l
t
wk,l

end

in an expected-value strategy.
In the remainder of this section, we give an example of a rolling horizon approach for a

deterministic rescheduling model with a pessimistic strategy, see Figure 1. Note that a new
phase starts when a new prediction about the range of the disruption ending time is updated.

Time

Time

Time

startt

startt

startt

Phase 1

Phase  2

Phase  K

…
…

Rescheduled timetable horizon

1,max

endt

2,max

endt1,max

endt

endt

Control horizon

Time

startt
Phase  3

3,max

endt2,max

endt

Current time point

1R

2R

3R

KR

Recovery horizon

Figure 1: The rolling horizon approach based on deterministic rescheduling model using a
pessimistic strategy
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At phase k ∈ [1,K − 1], the prediction of tk,max
end is updated. A control horizon is de-

fined as
[
tstart + `, tk,max

end

]
if k = 1 or

[
tk−1,max
end , tk,max

end

]
if k ≥ 2, where ` is a time

period ensuring the decisions determined for the control horizon at phase 1 to be suc-
cessfully implemented. It is assumed that the planned timetable is applied for the period
[tstart, tstart + `) during which some trains may have to wait at the last stations before the
blocked tracks. A recovery horizon is defined as

(
tk,max
end , tk,max

end +Rk

]
. Here, Rk repre-

sents the recovery time length after tk,max
end , which is not a given input to the rescheduling

model but an output that can only be known after the rescheduling solution has been com-
puted. The deterministic rescheduling model computes a rescheduling solution over the
combined control and recovery horizons. When k ≥ 2, the rescheduling solution respect-
s the previous disruption management decisions up to tk−1,max

end if tk,max
end ≥ tk−1,max

end , or

tk,max
end if tk,max

end < tk−1,max
end , and thus

[
tstart + `, tk−1,max

end

]
or
[
tstart + `, tk,max

end

]
is re-

garded as the rescheduled timetable horizon. A rescheduling solution is constituted by a
set of disruption management decisions (e.g. cancelling trains and short-turning trains) that
were introduced in Section 2.1.

At the final phaseK, an exact disruption end time tend is assumed to be known. If tend =
tK−1,max
end , the rescheduling solution obtained at phase K − 1 is used without any further

adjustments. If tend 6= tK−1,max
end , the rescheduling model is solved again by respecting the

previous disruption management decisions up to 1) tK−1,max
end if tend ≥ tK−1,max

end , or 2) tend
if tend < tK−1,max

end . In case 1) the control horizon is
[
tK−1,max
end , tend

]
, while in case 2) the

control horizon is zero. In both cases, the recovery horizons are (tend, tend +RK ]
This paper uses the rescheduling model of Zhu and Goverde (2019) for the deterministic

rolling-horizon method, where the dispatching measure of skipping stops is removed due to
the new objective of minimizing train cancellation and delay, and the station capacity part
is reformulated as in Zhu and Goverde (2019) for faster computation.

2.3 Stochastic rolling-horizon method

The robust timetable rescheduling problem is formulated as a rolling horizon two-stage s-
tochastic program in deterministic equivalent form (Birge and Louveaux, 2011). For clarity,
the stochastic timetable rescheduling model is introduced first without considering differ-
ent update phases of the disruption durations, which are included later when describing the
corresponding rolling horizon approach.

Stochastic timetable rescheduling model
The stochastic rescheduling model considers multiple possible disruption durations at each
computation as follows. The set of disruption management decisions are divided into two
groups: 1) the decisions that have to be taken before the exact scenario with a given dis-
ruption duration is known are called control decisions and the horizon when these decisions
are applied is called control horizon, and 2) the decisions that could be taken after the exact
scenario with a given disruption duration is known are called look-ahead decisions with
corresponding look-ahead horizon. In each scenario w,

[
tstart+`, t

min
end

]
is regarded as the

control horizon, while
(
tmin
end , t

w
end +Rw

]
is regarded as the look-ahead horizon, where `

refers to a time period ensuring the control decisions to be implemented, and Rw represents
the recovery time to the planned timetable. The planned timetable is applied for the peri-
od [tstart, tstart + `) where some trains might be forced to wait at the last stations before
the blocked tracks. Recall that Rw can only be known after the disruption management
decisions for scenario w are determined, and so the value may vary across scenarios. A
look-ahead horizon consists of a disruption horizon

[
tmin
end , t

w
end

]
in which the disruption is
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ongoing, and a recovery horizon (twend, t
w
end +Rw] that goes from the end of the disruption

until completely resuming to the planned timetable. The control decisions are the same over
all scenarios, whereas the look-ahead decisions are scenario dependent.

For each scenario w ∈ {1, · · · ,W}, an independent timetable rescheduling model is
established by the method of Zhu and Goverde (2019), of which the constraints are denoted
as Zw . Generating a robust rescheduling solution for a disruption is equivalent to minimiz-
ing the expected consequences measured in train cancellations and arrival delays over all
scenarios, which is formulated as:

Minimize

W∑

w=1

pw ·
(
βc
∑

e∈Ear

cwe +
∑

e∈Ear

dwe

)
, (1)

where pw represents the occurrence probability of scenario w, cwe is a binary cancellation
decision with value 1 indicating that event e is cancelled in scenario w and 0 otherwise, and
dwe refers to the delay of event e in scenario w. Parameter βc is the penalty of cancelling a
train run between two adjacent stations. Ear is the set of arrival events.

Recall that the control decisions are the same over all scenarios. We consider the dis-
ruption management decisions corresponding to the events that were originally planned to
occur during

[
tstart + `, tmin

end

]
as control decisions, and thus establish the so called nonan-

ticipativity constraints (Escudero et al., 2010) as follows:

cwe = cw
′

e , e ∈ E, oe ∈
[
tstart + `, tmin

end

]
, w, w′ ∈ {1, · · · ,W} : w 6= w′, (2)

dwe = dw
′

e , e ∈ E, oe ∈
[
tstart + `, tmin

end

]
, w, w′ ∈ {1, · · · ,W} : w 6= w′, (3)

xwe = xw
′

e , e ∈ E, oe ∈
[
tstart + `, tmin

end

]
, w, w′ ∈ {1, · · · ,W} : w 6= w′, (4)

ywe = yw
′

e , e ∈ Eturn, oe ∈
[
tstart + `, tmin

end

]
, w, w′ ∈ {1, · · · ,W} : w 6= w′, (5)

where xwe represents the rescheduled time of event e in scenario w, and ywe is a binary
decision with value 1 indicating that train tre is short-turned at station ste in scenario w and
0 otherwise. Here, E = Ear ∪Ede, and Eturn = Eturn

ar ∪Eturn
de . Recall that Eturn

ar (Eturn
de )

is the set of arrival (departure) events having short-turning possibilities, and oe represents
the original scheduled time of event e.

The stochastic timetable rescheduling model is constituted by constraints (2) - (5) and⋃
w∈{1,...,W} Zw with the objective (1). This model can be seen asW separate optimization

models solved together such that the decisions up to tmin
end are all the same. The notation of

the decision variables shown in (2) - (5) are described in Table 1.

Table 1: Part of decision variables
Notation Description

cwe Binary variable with value 1 indicating that event e is cancelled
in scenario w, and 0 otherwise

dwe Delay of event e in scenario w

xw
e Rescheduled time of event e in scenario w

yw
e Binary variable with value 1 indicating that train tre is short-turned

at station ste in scenario w, and 0 otherwise

Let D denote the set of control decisions, and Dw denote the set of look-head decisions
in scenario w. The control decisions D form the robust rescheduling solution, which will
be delivered to the traffic controllers directly. As for the scenario-dependent look-ahead
decisions, only one of them will be delivered at time tmin

end − ` when the exact scenario with
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a given disruption duration becomes known. ` is set to an appropriate value (e.g. 10 min-
utes) to ensure that the look-ahead decisions can be implemented in time. The look-ahead
decision Dw will be delivered if the exact scenario is foreseen to be scenario w. If none of
the defined scenarios correspond to the exact scenario, the rescheduling model computes a
new solution considering one single scenario with disruption duration of

[
tmin
end , tend

]
, which

should be consistent with the control decisions up to tmin
end . Here, tend represents the exact

disruption end time. Note that in this case, nonanticipativity constraints are not needed.

Rolling horizon approach based on stochastic model
During the disruption, the range of the disruption end time

[
tmin
end , t

max
end

]
may change. Thus,

the stochastic timetable rescheduling model has to be performed every time such a change
occurs. To this end, a rolling horizon approach is applied, based on the assumptions given
in Section 2.1. An example of the rolling-horizon stochastic method is shown in Figure 2.

Time

Time

Time

startt

startt

startt

1,min

endt
1,max

endt

2,max

endt

3,max

endt

2,min

endt

3,min

endt

Phase 1

Phase  2

Phase  3

…
…

Control horizon Disruption horizon

Current time point

1,min

endt

2,min

endt

1, 1

1

Ww
R

2, 2

2

Ww
R

3, 3

3

Ww
R

Time

startt
endt1,min

end

Kt 
Phase  K

KR

Look-ahead horizon

Rescheduled timetable horizon

Recovery horizon

Figure 2: The rolling horizon approach based on stochastic rescheduling model

At phase k ∈ [1,K − 1], the prediction
[
tk,min
end , tk,max

end

]
is updated. Thus, Wk scenar-

ios are defined where each has a unique disruption duration
[
tstart+ `, t

wk,l

end

]
, k = 1, or[

tk−1,min
end , t

wk,l

end

]
, k ≥ 2, and tk,min

end ≤ t
wk,l

end ≤ tk,max
end , wk,l ∈ {wk,1, . . . , wk,Wk

}. Re-
call that the planned timetable is applied for the period [tstart, tstart + `). Based on these
scenarios, the stochastic optimization is performed, and the control decisions Dk from the
optimization are delivered to the traffic controllers directly. The control decisions Dk are
for the period

[
tstart+ `, tk,min

end

]
if k = 1 or the period

[
tk−1,min
end , tk,min

end

]
if k ≥ 2, which

will no longer change at later phases. This is why the period
[
tstart+ `, tk−1,min

end

]
is regard-

ed as the rescheduled timetable horizon when k ≥ 2. The look-ahead decisions Dwk,l

k of

scenario wk,l is for the period
(
tk,min
end , t

wk,l

end +R
wk,l

k

]
that consists of the disruption horizon

(
tk,min
end , t

wk,l

end

]
and the recovery horizon

(
t
wk,l

end , t
wk,l

end +R
wk,l

k

]
. Note that the nonanticipa-

tivity constraints (2) - (5) are formulated for phase k = 1, which should be reformulated for
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2 ≤ k ≤ K − 1 as follows:

c
wk,l
e = c

wk,m
e , e ∈ E, rk−1e ∈

[
tk−1,min
end , tk,min

end

]
, l,m ∈ {1, . . . ,Wk} : l 6= m, (6)

d
wk,l
e = d

wk,m
e , e ∈ E, rk−1e ∈

[
tk−1,min
end , tk,min

end

]
, l,m ∈ {1, . . . ,Wk} : l 6= m, (7)

x
wk,l
e = x

wk,m
e , e ∈ E, rk−1e ∈

[
tk−1,min
end , tk,min

end

]
, l,m ∈ {1, . . . ,Wk} : l 6= m, (8)

y
wk,l
e = y

wk,m
e , e ∈ Eturn, rk−1e ∈

[
tk−1,min
end , tk,min

end

]
, l,m ∈ {1, . . . ,Wk} : l 6= m, (9)

where rk−1e is a known value representing the rescheduled time of event e determined at
the previous phase k − 1.

For the final phase K, the exact disruption end time tend is received. If a disruption
end time of a scenario wK−1,l defined at the previous phase is equal to tend (i.e. twK−1,l

end =
tend), then the corresponding look-ahead decision DwK−1,l

K−1 will be delivered to the traffic
controllers directly. If none of the previous scenarios corresponds to the exact scenario,
the rescheduling model can simply compute a new solution considering the single scenario
with the disruption duration

[
tK−1,min
end , tend

]
, which should be consistent with the previous

control decisions up to tK−1,min
end . In this case, nonanticipativity constraints are not needed

in the rescheduling model.

3 Case study

The deterministic and stochastic methods are tested on a part of the Dutch railway network.
Section 3.1 investigates the impact of the range of the disruption end time, and Section 3.2
analyses the computation performances of both methods.

Figure 3 shows the schematic track layout of the considered network with 38 stations
and both single-track and double-track railway lines.
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Figure 3: The schematic track layout of the considered network

In the considered network, 10 train lines operate half-hourly in each direction. Figure 4
shows the scheduled stopping pattern of each train line. Table 2 lists the terminals of the
train lines that are located in the considered network, while the terminals outside the con-
sidered network are neglected. The deterministic and stochastic rescheduling models both
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consider trains turning at the terminals to operate the return direction (i.e. OD turnings).
We distinguish between intercity (IC) and local (called sprinter (SPR) in Dutch) train lines.
Both rescheduling models were developed in MATLAB and solved using GUROBI release
7.0.1 on a desktop with Intel Xeon CPU E5-1620 v3 at 3.50 GHz and 16 GB RAM.

The penalty βc of cancelling a train run between two neighbouring stations is set to 100
min, and the time period ` that ensures a new rescheduling solution to be implemented is set
to 10 min. Besides, we set the minimum duration required for short-turning or OD turning
to 300 s, the minimum duration required for each headway to 180 s, the maximum delay
allowed for each train departure/arrival to 15 min, and the minimum dwell time of an extra
stop to 30 s.

Ei
nd
ho
ve
n

Roermond

Venlo

Gp

Hz
e

M
z

W
t

Tg

Rv

Sm

Hm
bv

Hm
h

Hm Hm
bh

Dn

Hr
t

Br

Sittard

Ec

Srn

Maastricht

He
er
le
n

Lut

Bk

Bde

Gl
n

Sb
k

Nh

Hb

Hrlw
Vdl

Km
r

Sog
VkSgl

M
es

M
tn

Sn

Start at 
7:56

IC800

IC1900

IC3500

SPR6400

SPR6900

SPR9600

SPR32000

IC32100

SPR6800

SPR32200

Figure 4: The train lines operating in the considered net-
work

Table 2: Train lines in the considered
network

Train line Terminals in the considered network

IC800 Maastricht (Mt)
IC1900 Venlo (Vl)
IC3500 Heerlen (Hrl)
SPR6400 Eindhoven (Ehv) and Wt
SPR6800 Roermond (Rm)
SPR6900 Sittard (Std) and Hrl
SPR9600 Ehv and Dn
SPR32000 —
IC32100 Mt and Hrl
SPR32200 Rm

We consider a complete track blockage between station Bk and station Lut starting at
7:56 (see Figure 4). The range of the disruption end time update at each phase is indicat-
ed by Table 3, which is uniformly distributed to 7 scenarios with the same probabilities:
1/7. Three cases are considered: cases I and II differ in the range of the disruption end
time update at the 1st phase, and cases II and III differ in the range of the disruption end
time update at the 2nd phase. At each phase, the stochastic method considers 7 disruption
scenarios simultaneously, whereas the deterministic method considers one single disruption
scenario of which the corresponding end time using optimistic, expected-value, and pes-
simistic strategies are colored in green, blue and red, respectively. Recall that the optimistic
strategy considers the minimum disruption end time tk,min

end , the pessimistic strategy consid-
ers the maximum disruption end time tk,max

end , and the expected-value strategy considers the
expected disruption end time

∑Wk

l=1 pwk,l
t
wk,l

end at update phase k.
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Table 3: The predicted disruption end times at each phase of three cases

Case Phase Disruption end time
k tk,min

end
tk,max
end

I 1 9:51 9:56 10:01 10:06 10:11 10:16 10:21
2 10:36 10:41 10:46 10:51 10:56 11:01 11:06

II 1 10:06 10:11 10:16 10:21 10:26 10:31 10:36
2 10:36 10:41 10:46 10:51 10:56 11:01 11:06

III 1 10:06 10:11 10:16 10:21 10:26 10:31 10:36
2 10:51 10:56 11:01 11:06 11:11 11:16 11:21

Optimistic; Expected-value; Pessimistic

3.1 The influence of the range of the disruption end time

Table 4 shows the results of the deterministic method at phase 1, including the objective
values, the numbers of cancelled services, and the total train delays. Cases II and III have
the same result since the range of the disruption times are the same to both cases at phase
1. No matter which case, the optimistic strategy generated the best solution, the pessimistic
strategy generated the worst solution, and the expected-value strategy was in between. It is
obvious that for the deterministic method the optimal solution considering one disruption
duration satisfies the shorter the better.

Table 5 shows the results of the stochastic method at phase 1. In each case, 7 rescheduled
timetables are obtained, where the services rescheduled up to 9:51 are forced to be the same
in case I, and the services rescheduled up to 10:06 are forced to be the same in case II and III.
In case I, the first 4 scenarios have the same result, although the corresponding disruption
end times are different. The reason is that no further train services were affected when the
disruption end time was extended from 9:51 up to 10:06, due to the service pattern of the
planned timetable. In this paper, we use a cyclic planned timetable that has a cycle time
of 30 minutes, which is why we observed a similar phenomenon in case II and III that no
changes happened to the results when the disruption end time was extended from 10:21 up
to 10:36.

Table 4: Results of the rescheduled timetables by the deterministic method at phase 1

Approach
Case I Case II or III

Predicted Obj # Cancelled Total train Predicted Obj # Cancelled Total train
end time [min] services delay [min] end time [min] services delay [min]

O 9:51 2,967 26 367 10:06 3,078 28 278
E 10:06 3,078 28 278 10:21 3,641 32 351
P 10:21 3,641 32 441 10:36 3,751 34 351

O: optimistic; E: expected-value; P: pessimistic

Table 5: Results of the rescheduled timetables by the stochastic method at phase 1
Case I Case II or III

Predicted Obj # Cancelled Total train Predicted Obj # Cancelled Total train
end time [min] services delay [min] end time [min] services delay [min]

9:51 3,078 28 278 10:06 3,394 30 394
9:56 3,078 28 278 10:11 3,394 30 394

10:01 3,078 28 278 10:16 3,399 30 399
10:06 3,078 28 278 10:21 3,751 34 351
10:11 3,122 28 322 10:26 3,751 34 351
10:16 3,192 28 392 10:31 3,751 34 351
10:21 3,641 32 441 10:36 3,751 34 351

At phase 1, the stochastic method generated solutions that were no better than the de-
terministic method, due to the robustness towards longer disruptions that was considered.
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Just because of the robustness, at later phases when the ranges of the disruption end times
are updated, better solutions can be obtained by the stochastic method compared to the de-
terministic method. The results of both methods at the final phase are shown in Table 6,
Table 7 and Table 8 for cases I, II, and III, respectively, including the average performances.

We consider 7 different actual disruption end times, 10:36, 10:41, 10:46, 10:51, 10:56,
11:01, 11:06, in cases I and II that have the same range of the disruption end time at phase
2. As for case III which has a different range of the disruption end time at phase 2, the
considered actual disruption end times are: 10:51, 10:56, 11:01, 11:06, 11:11, 11:16, 11:21.
Recall that the actual end time tend updated at the final phase K is not smaller than the
minimum end time tK−1,min

end updated at the previous phase. Under such settings of actual
end times, the stochastic method obtained the final rescheduled timetables at phase 2, while
in most situations the deterministic method needed to recompute new solutions based on the
solutions from phase 2 and thus the final phases were phase 3 (see Tables 6 to 8).

Table 6: Results of the final rescheduled timetables in Case I
Actual Approach Obj # Cancelled Total train Final

end time [min] services delay [min] phase

10:36

S 4,452 40 451 2
O 4,135 38 335 2
E 4,135 38 335 3
P 4,452 40 451 3

10:41

S 4,452 40 451 2
O 4,180 38 380 3
E 4,667 42 467 3
P 4,808 44 408 3

10:46

S 4,457 40 457 2
O 4,250 38 450 3
E 4,685 42 485 3
P 4,808 44 408 3

10:51

S 4,808 44 408 2
O 4,698 42 498 3
E 4,698 42 498 2
P 4,808 44 408 3

10:56

S 4,808 44 408 2
O 5,193 48 393 3
E 5,509 50 509 3
P 4,808 44 408 3

11:01

S 4,808 44 408 2
O 5,193 48 393 3
E 5,509 50 509 3
P 4,808 44 408 3

11:06

S 4,808 44 408 2
O 5,193 48 393 3
E 5,509 50 509 3
P 4,808 44 408 2

Average performance

S 4,656 42 428 –
O 4,691 43 406 –
E 4,959 45 473 –
P 4,757 43 414 –

S: stochastic; O: optimistic; E: expected-value; P: pessimistic

In case I (Table 6), the optimistic strategy performed better than the stochastic method
when the actual disruption end time was from 10:36 up to 10:51, whereas the stochastic
method performed no worse than any deterministic strategy when the actual disruption end
time was from 10:56 up to 11:06. On average, the stochastic method is the best, which is
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slightly better than the optimistic strategy which is the best among all deterministic strate-
gies.

Compared to case I (Table 6), in case II (Table 7) the stochastic method performed much
better than the deterministic method: for each considered actual disruption end time (except
10:36), the stochastic method was better than any deterministic strategy. This is because
the ranges of the disruption end times update at phase 1 are different in cases I and II, and
thus result in different robust solutions by the stochastic method at phase 1, which further
affect the robust solutions at phase 2. The pessimistic strategy resulted in the best solution
when the actual end time was 10:36, because it was the optimal solution obtained at phase 1
where 10:36 is the considered disruption end time for the pessimistic strategy (see Table 3).

Table 7: Results of the final rescheduled timetables in Case II
Actual Approach Obj # Cancelled Total train Final

end time [min] services delay [min] phase

10:36

S 4,067 36 467 2
O 4,135 38 335 2
E 4,452 40 452 3
P 3,751 34 351 3

10:41

S 4,067 36 467 2
O 4,180 38 380 3
E 4,808 44 408 3
P 4,808 44 408 3

10:46

S 4,073 36 473 2
O 4,250 38 450 3
E 4,808 44 408 3
P 4,808 44 408 3

10:51

S 4,424 40 424 2
O 4,698 42 498 3
E 4,808 44 408 2
P 4,808 44 408 3

10:56

S 4,424 40 424 2
O 5,193 48 393 3
E 4,808 44 408 3
P 4,808 44 408 3

11:01

S 4,424 40 424 2
O 5,193 48 393 3
E 4,808 44 408 3
P 4,808 44 408 3

11:06

S 4,424 40 424 2
O 5,193 48 393 3
E 4,808 44 408 3
P 4,808 44 408 2

Average performance

S 4,272 38 443 –
O 4,691 43 406 –
E 4,757 43 415 –
P 4,657 43 400 –

S: stochastic; O: optimistic; E: expected-value; P: pessimistic

The stochastic method also performed much better than any deterministic strategy for
each considered actual disruption end time in case III (Table 8), which has the same range
of the disruption end time at phase 1 as in case II. The average performance of the stochastic
method in case III is even better than the one in case I (Table 6), although case III considers
longer actual disruption end times. The reason is related to the robust solution obtained at
phase 1, which is affected by the corresponding range of the disruption end time. In case
III (Table 8) the result of the stochastic method is all the same when the actual end time is
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10:51 up to 11:06, and the result of any deterministic strategy is all the same when the actual
end time is 10:56 up to 11:06. These also happen in case I (Table 6) or case II (Table 7).
The reason is that no further train services were affected when the disruption end time was
extended from 10:51 up to 11:06 for the stochastic method, or from 10:56 up to 11:06 for
the deterministic method. Recall that this is due to to the service pattern of the timetable.

Table 8: Results of the final rescheduled timetables in Case III
Actual Approach Obj # Cancelled Total train Final

end time [min] services delay [min] phase

10:51

S 4,424 40 424 2
O 4,698 42 498 2
E 4,808 44 408 3
P 4,808 44 408 3

10:56

S 4,424 40 424 2
O 5,509 50 509 3
E 4,808 44 408 3
P 4,808 44 408 3

11:01

S 4,424 40 424 2
O 5,509 50 509 3
E 4,808 44 408 3
P 4,808 44 408 3

11:06

S 4,424 40 424 2
O 5,509 50 509 3
E 4,808 44 408 2
P 4,808 44 408 3

11:11

S 4,469 40 469 2
O 5,509 50 509 3
E 4,853 44 453 3
P 5,340 48 540 3

11:16

S 4,539 40 539 2
O 5,514 50 514 3
E 4,923 44 523 3
P 5,358 48 558 3

11:21

S 4,987 44 587 2
O 5,866 54 466 3
E 5,371 48 571 3
P 5,371 48 571 2

Average performance

S 4,527 41 470 –
O 5,445 49 502 –
E 4,912 45 454 –
P 5,043 46 472 –

S: stochastic; O: optimistic; E: expected-value; P: pessimistic

Tables 6 to 8 indicate that compared to the deterministic method, the stochastic method
is more likely to generate better rescheduling solutions for uncertain disruptions by less
cancelled train services and/or train delays. This is mainly because the stochastic method
generates solutions that are robust to the short-turning patterns under different disruption
durations. We explain this by the example of the actual disruption end time of 10:36 in case
II as follows.

Figures 5 and 6 show the time-distance diagrams of the rescheduled timetables obtained
by the deterministic method for the optimistic strategy at phase 1 and 2 in case II, respec-
tively. The dashed (dotted) lines represent the original scheduled services that are cancelled
(delayed) in the rescheduled timetables, while the solid lines represent the services sched-
uled in the rescheduled timetables. The red triangles indicate extra stops. Compared to
phase 1 (Figure 5), more services were cancelled at phase 2 (Figure 6) due to the extended
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disruption. At phase 1, the operation of a dark blue train from stations Mt to Bk is cancelled
(Figure 5), which is why the operation of another dark blue train from stations Bk to Mt has
to be cancelled at phase 2 (Figure 6) to keep consistent control decisions.
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Figure 5: The rescheduled timetable by the optimistic strategy at phase 1 in case II (disrup-
tion end time: 10:06)
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Figure 6: The rescheduled timetable by the optimistic strategy at phase 2 in case II (disrup-
tion end time: 10:36)

Figures 7 and 8 show the time-distance diagrams of the rescheduled timetables obtained
by the stochastic method at phase 1 and 2 in case II, respectively. Compared to the solution
of the optimistic strategy at phase 1 (Figure 5), more services were cancelled/delayed in the
solution of the stochastic method at phase 1 (Figure 7) due to the robustness towards longer
disruption durations in consideration. Just because of the robustness, at phase 2, the solution
of the stochastic approach resulted in less cancelled services and train delays, compared to
the solution of the optimistic strategy (Figure 8).
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Figure 7: The rescheduled timetable by the stochastic approach at phase 1 in case II (dis-
ruption end time: 10:06)
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Figure 8: The rescheduled timetable by the stochastic approach at phase 2 in case II (dis-
ruption end time: 10:36)

It is found that the robustness of the solution by the stochastic method can be affected
by the range of the disruption end time update. An example is given as follows. Figures 9
and 10 show the time-distance diagrams of the rescheduled timetables obtained by the s-
tochastic method at phase 1 and 2 in case I, respectively. Recall that cases I and II have
different ranges of the disruption end times at phase 1, but the same range of the disruption
end times at phase 2 (see Table 3).

At phase 1, compared to the solution of case II (Figure 7) that considered the end time
range of [10:06,10:36], the solution of case I (Figure 9) resulted in less cancelled services
and train delays due to an earlier end time range of [9:51,10:21] considered. In case II
(Figure 7) the cancelled operation of a dark blue train from stations Mt to Bk was after the
minimum end time of phase 1, 10:01, and thus this cancellation decision was a look-ahead
decision at phase 1, which did not need to be respected at phase 2 (see Figure 8); while in
case I (Figure 9) the cancelled operation of a dark blue train from stations Mt to Bk was
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before the minimum end time of phase 1, 9:51, and thus this cancellation decision was a
control decision at phase 1, which had to be respected at phase 2 (see Figure 10) causing
the operation of another dark blue train from stations Bk to Mt cancelled at phase 2.

This shows that the range of the disruption end time affects the robustness of a solution,
which is relevant to short-turning patterns. Smooth short-turning patterns for possible longer
disruptions like in case II (Figures 7 and 8) help to reduce cancelled train services. Case II
has an later range of the disruption end time at phase 1 than case I, while both cases have
the same range of the disruption end time at phase 2. In that sense, compared to case I, case
II considers that longer disruption durations are more likely to happen at phase 1, which
turns to be true due to another range update at phase 2. From the results of both cases,
we infer that in the situations where longer disruption durations are more likely to happen,
short-turning the last train services approaching to the predicted minimum disruption end
time (e.g. Figure 7 corresponding to case II) rather than cancelling them (e.g. Figure 9
corresponding to case I) might be helpful to improve solution robustness.
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Figure 9: The rescheduled timetable by the stochastic approach at phase 1 in case I (disrup-
tion end time: 9:51)
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Figure 10: The rescheduled timetable by the stochastic approach at phase 2 in case I (dis-
ruption end time: 10:36)
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3.2 Computation analysis

Table 9 shows the computation times for the stochastic method and the deterministic method
for different strategies at phase 1 and 2 for all cases. In each case, the computation time of
each approach to phase 1 is longer than the one to phase 2. This is because at a later phase
only the dispatching decisions for the new control and look-ahead horizons (for the extended
duration) need to be made. The deterministic method for each strategy costs much less
computation time than the stochastic method, as it considers a single disruption scenario
at each computation. Although the stochastic method is relatively time-consuming, the
rescheduling solutions are robust to uncertain disruption durations.

Table 9: Computation times [sec] at each update phase

Approach Case I Case II Case III
Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

S 234 66 244 51 244 51
O 10 3 9 3 9 3
E 10 3 11 3 11 3
P 11 3 10 2 11 3

S: stochastic; O: optimistic; E: expected-value; P: pessimistic

4 Conclusions

This paper proposed a rolling horizon two-stage stochastic timetable rescheduling model to
manage uncertain disruptions with robust solutions. It was tested on a part of the Dutch
railways and compared to a deterministic rolling horizon timetable rescheduling model.
The results showed that compared to the deterministic method, the stochastic method is
more likely to generate better rescheduling solutions for uncertain disruptions by less train
cancellations and/or delays, due to the robustness towards the short-turning patterns under
different disruption durations. The robustness of a solution by the stochastic method can
be impacted by the range of the disruption end time. From the results we infer that in the
situations where longer disruption durations are more likely to happen, short-turning the
last train services approaching to the predicted minimum disruption end time rather than
cancelling them might be helpful to improve solution robustness. This will be examined in
near future. The stochastic programming model considers several scenarios simultaneously,
is therefore larger and thus takes more computation time. The computation time might be
reduced without affecting the solution quality by optimizing the number of scenarios, the
size of the network, the length of the look-ahead horizon, or exploiting the periodic structure
of the (rescheduled) timetable. This is subject of current research.
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Appendix

The notation of sets and parameters is described in Table 10.
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Table 10: Sets and parameters
Notation Description

D Set of control decisions

Dw Set of look-ahead decisions in scenario w ∈ {1, . . . ,W}
Dk Set of control decisions at update phase k ∈ {1, . . . ,K}
D

wk,l

k Set of look-ahead decisions in scenario wk,l, l ∈ {1, . . . ,Wk} at update phase k ∈ {1, . . . ,K}
Ear Set of arrival events

Ede Set of departure events

E Set of events: E = Ear ∪ Ede

Eturn
ar Set of arrival events that have short-turning possibilities

Eturn
de Set of departure events that have short-turning possibilities

Eturn Set of events that have short-turning possibilities: Eturn = Eturn
ar ∪ Eturn

de

oe The original scheduled time of event e ∈ Ear ∪ Ede

pw The occurrence probability of scenario w ∈ {1, . . . ,W}
pwk,l The occurrence probability of scenario wk,l, l ∈ {1, . . . ,Wk}
rk−1
e The rescheduled time of event e determined at phase k − 1, which is a known value at phase k

Rk The recovery time length at phase k ∈ {1, . . . ,K}
R

wk,l

k The recovery time length of scenario wk,l, l ∈ {1, . . . ,Wk} at update phase k ∈ {1, . . . ,K}
ste The station corresponding to event e ∈ Ear ∪ Ede

tre The train corresponding to event e ∈ Ear ∪ Ede

tstart The actual disruption starting time

tend The actual disruption ending time

tmin
end The predicted minimal disruption ending time

tmax
end The predicted maximal disruption ending time

twend The predicted disruption ending time of scenario w ∈ {1, . . . ,W}: tmin
end ≤ twend ≤ tmax

end

tk,min
end The predicted minimal disruption ending time at updating phase k ∈ {1, . . . ,K}
tk,max
end The predicted maximal disruption ending time at updating phase k ∈ {1, . . . ,K}
t
wk,l

end The predicted disruption ending time of scenario wk,l, l ∈ {1, . . . ,Wk}: tk,min
end ≤ twk,l

end ≤ t
k,max
end

Zw Set of constraints for disruption scenario w in the deterministic rescheduling model

` A given time period ensuring a timely implementation of a new rescheduling solution

βc The penalty of cancelling a train run between two adjacent stations
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Escudero, L.F., Garı́n, M.A., Merino, M., Pérez, G., 2010. “An exact algorithm for solving
large-scale two-stage stochastic mixed-integer problems: Some theoretical and experi-
mental aspects”, European Journal of Operational Research, vol. 204, pp. 105–116.

Ghaemi, N., Cats, O., Goverde, R.M.P., 2017a. “Railway disruption management challenges

Proceedings of the 8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 1986
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