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ABSTRACT

Most wave-equation-based multiple removal algorithms are
based on prediction and subtraction of multiples. Especially for
shallow water, the prediction strongly relies on a correct interpo-
lation of the missing near offsets. The subtraction of predicted
multiples from the data can easily lead to the distortion of prima-
ries if primaries and multiples overlap. Recently, a new approach
for surface-related multiple removal was proposed: the estima-
tion of primaries by sparse inversion �EPSI�, which is based on a
full waveform inversion approach. EPSI is based on the same pri-
mary-multiple model as surface-related multiple elimination
�SRME� and does not require a subsurface model. In contrast to
SRME, EPSI estimates the primaries as unknowns in a multidi-
mensional inversion process rather than a subtraction process.
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he multidimensional primary impulse responses are parameter-
zed by band-limited spikes, which are estimated such that they,
long with their corresponding multiples, match the input data.
n interesting aspect of the EPSI method is that it produces a re-

idual, which is the part of the input data not explained by prima-
ies and multiples. This residual can be analyzed and may pro-
ide useful information on the primary estimation process. Fur-
hermore, it has been demonstrated that EPSI is also capable of
econstructing the missing near offsets from the multiples. The
roposed method is applied to a field data set with moderate wa-
er depth, where it is demonstrated that the results are comparable
ith SRME. This data set is used to illustrate the residual. For a

hallow-water field data set, it is shown that EPSI gives a better
esult than the standard SRME result caused by EPSI’s capability
o reconstruct the missing near offsets.
INTRODUCTION

Surface-related multiples still pose an important problem on ma-
ine seismic data. Over the last two decades, several approaches for
ave-equation-based multiple prediction and subtraction have been
roposed: model-based methods �Berryhill and Kim, 1986; Wig-
ins, 1988; Lokshtanov, 1999� and data-driven methods, such as sur-
ace-related multiple elimination �SRME� �Verschuur et al., 1992;
erkhout and Verschuur, 1997; Weglein et al., 1997�. Both ap-
roaches involve an adaptive subtraction process in which un-
nowns in the method �water-bottom reflectivity or the source wave-
et� are estimated. The subtraction process is not obvious, as prima-
ies can easily be distorted if multiples and primaries overlap �Guit-
on and Verschuur, 2004�.

In van Groenestijn and Verschuur �2009a�, we have introduced
he estimation of primaries by sparse inversion �EPSI� and its appli-
ation to near-offset reconstruction. The main difference with the
raditional prediction and subtraction approaches is that EPSI con-

Manuscript received by the Editor 27 January 2009; revised manuscript rec
1Delft University of Technology, The Netherlands. E-mail: G.J.A.vanGroe
2009 Society of Exploration Geophysicists.All rights reserved.
iders the primary impulse responses as the unknowns in a large-
cale inversion process. The primary impulse responses are parame-
erized by band-limited spikes. They are estimated in such a way that
hey, along with their corresponding multiples, explain the input data
i.e., primaries and multiples�. The residual, the difference between
nput data and estimated primaries plus multiples, is driven to zero
uring the optimization process.

Recasting multiple removal as a large-scale inversion method, in
hich the primaries are unknowns, is not new. Van Borselen et al.

1996� describe a method that estimates primaries as unknowns in an
nversion process, provided that the input wavelet is known.
mundsen �2001� estimates primaries after up/down decomposition
y a multidimensional division of the upgoing by the downgoing
avefields, provided that the direct wave, especially at the near off-

ets, is measured in the downgoing waves. EPSI operates on data
here the direct wave is removed and does not need to know the

ource wavelet because it will estimate it. Other inversion methods
hat operate on data in which the direct wave is removed and do not

9April 2009; published online 11 December 2009.
tudelft.nl; D.J.Verschuur@tudelft.nl.
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R120 van Groenestijn and Verschuur
eed to know the source wavelet are described by Biersteker �2001�
nd by Berkhout �2006�. The 2D-Decon method as described by
iersteker �2001� estimates the �missing� shallow primaries under a
inimum energy constraint of the final primary output. Berkhout

2006� obtains the inverse primaries and the inverse source wavelet
y separating them in the inverse data space, which requires a multi-
imensional inversion. In contrast to 2D-Decon, EPSI estimates all
he primaries simultaneously, not just in the shallow part, and it does
ot assume that the primaries have minimum energy. Finally, unlike
he inverse data-space method �Berkhout, 2006�, EPSI does not re-
uire a transformation to the inverse data space.

In each iteration, EPSI tries to explain more of the data in terms of
rimaries and their corresponding multiples. It is possible to contin-
e to iterate until the residual between the input data and the predict-
d data is zero. However, it may be interesting to stop before that
oint is reached to leave unexplained energy, e.g., resulting from 3D
ffects or amplitude inconsistencies, in the residual. This is in con-
rast to conventional multiple removal methods, which can only di-
ide the data into primaries and multiples.

Especially in shallow-water situations, the wave-equation-based
rediction suffers from the fact that the near offsets are not measured
nd thus need to be interpolated before the multiple prediction pro-
ess is applied. This means that wrongly interpolated near offsets
ill produce errors in the predicted multiples and therefore limit the
uality of the primary output. As demonstrated by van Groenestijn
nd Verschuur �2009a�, EPSI can use the multiples to reconstruct the
issing near offsets. Therefore, EPSI performs well on estimating

rimaries on shallow-water data. Another data-driven reconstruc-
ion method is the pseudoprimary method �Shan and Guitton, 2004�,
n which a multidimensional autocorrelation of the data is used to fill
he near-offset gap. Curry and Shan �2008� improved the pseudopri-

ary method by extending it with prediction-error filters. However,
his improvement does not exclude crosscorrelation artifacts from
he missing near offsets completely.

After reviewing the EPSI method, we will discuss the role of the
esidual when we apply EPSI to a marine data set with moderate wa-
er depth. Next we will review the modified EPSI method that can re-
onstruct missing near-offset data simultaneously while estimating
he primaries. This algorithm is applied to a shallow-water marine
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igure 1. A schematic illustration of the relations between primaries
nd multiples. �a�A shot gather taken from a data set with one single
eflector. �b� The primary event in the shot gather is the consequence
f firing the source. �c� The upgoing data will reflect at the surface
nd generate the multiples. The same multiples are obtained when in
ach receiver location a secondary source is present, which is fired at
he time the primary event reaches the receiver. These secondary
ources of the primary event are depicted as stars. �d� The multiples
re the result of adding all the delayed primaries. �e� The same shot
ather as in �a�. The shaded area indicates the offset gap in the data.
f� The first-order multiple is built from delayed primaries caused by
econdary sources. The secondary source inside the missing data
ap has not been measured, but its consequences have an effect out-
ide the gap.
Downloaded 01 Oct 2012 to 131.180.130.198. Redistribution subject to S
ata set. The results are compared with iterative SRME applied to
he same data set with interpolated near offsets.

THE PRIMARY-MULTIPLE MODEL
AND ITERATIVE SRME

In the detail-hiding operator notation for 2D data �Berkhout,
982�, a bold quantity represents a prestack data volume for one fre-
uency; columns represent monochromatic shot records, and rows
epresent monochromatic common receiver gathers. With the use of
his notation, we can express the upgoing data, P, as

P�X0S�X0RP, �1�

here X0 is an impulse response from a dipole pressure source to
onopole receivers. The matrix X0 multiplied by the source proper-

ies matrix, S, equals the primaries

P0�X0S . �2�

ote that what are called “primaries” in this paper actually refer to
ll events that have not reflected at the surface, meaning that internal
ultiples and converted waves are also included. The matrix multi-

lication of X0 by the reflection at the surface, R, and the data P will
esult in the surface multiples

M�X0RP . �3�

igure 1a-d illustrates this forward model of primaries and multiples
n terms of secondary or Huygens’ sources �see also Verschuur,
992�.

From equation 1, it can be derived that surface multiples can be
redicted by a multidimensional convolution of the primaries with
he total data and with the surface operator, A,

M�P0AP, �4�

here A�S�1R. Because the primaries are not known beforehand,
he relationship is written as an iteration process �Berkhout and Ver-
chuur, 1997�:

P̂0,i�1�P� Âi�1P̂0,iP, �5�

here i represents the iteration number, A is replaced by A���I and
ˆ

0,1�P. To avoid the use of an obliquity factor �Weglein et al.,
997� no deghosting is done on the data for the sources �Verschuur,
991�. Because there are more unknowns, P̂0,i�1 and Âi�1, than
nowns, P, in equation 5, an extra constraint is needed. Typically, it
s assumed that the primaries have minimum energy �the L2 norm�.
his constraint is used when Âi�1 is estimated as a filter that matches

he predicted multiples, P̂0,iP, to the data in the time domain, result-
ng in the new primary estimation, P̂0,i�1 �Verschuur and Berkhout,
997�. The minimum-energy norm often leads to the correct subtrac-
ion but does not work properly in all cases �Nekut and Verschuur,
998�. Guitton and Verschuur �2004� and van Groenestijn and Vers-
huur �2008� have shown that other minimization norms, such as the
1 norm, or the Cauchy norm can lead to different and sometimes
etter subtraction results.
EG license or copyright; see Terms of Use at http://segdl.org/
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EPSI: marine data applications R121
ESTIMATION OF PRIMARIES
BY SPARSE INVERSION

The proposed EPSI method, described by van Groenestijn and
erschuur �2009a�, estimates primaries through sparse inversion,
nd therefore, it does not involve an adaptive subtraction of the pre-
icted multiples. In fact, primaries and their corresponding multi-
les are predicted such that they explain the total data.
The various steps in the EPSI algorithm are illustrated with a field

ata set with moderate water depth. Figure 2a shows one shot gather
elected from the 2D line. Note that those data are acquired in an area
ith a bottom with moderate water depth. In Appendix A, the pre-
rocessing steps applied to these data are described. Furthermore,
ome implementation details of the SRME and EPSI algorithms can
e found there.

The algorithm is based on the same primary-multiple model, as
iscussed above. If we take S�S���I �meaning a constant source
avelet for all shots and no source directivity effects� and R��I,

quation 1 becomes

P�X0S�X0P . �6�

his equation has more unknowns, X0 and S, than knowns, P, and
herefore, an extra constraint is needed to solve it. We use the con-
traint that X0 is sparse in the time domain. We assume that X0 can be
epresented by a limited number of spikes with large amplitudes
from the major reflecting boundaries� and many small amplitude
pikes �from all other events�.

To ensure that the multiples have enough energy to play a role in
his process, a gain e� t �t is the time and � is positive constant� is ap-
lied to each trace. Note that with such an exponential gain, the con-
olutional relationship between primaries and multiples remains in-
act. The objective function J is introduced as

Ji��
�

�
j,k

�P� X̂0,iŜi� X̂0,iP� j,k
2 , �7�

here i denotes the iteration number, � j,k indi-
ates a summation over all the squared elements
f the matrix �i.e., a summation over all sources
nd receivers�, and �� indicates a summation
ver all the frequencies. Note that the objective
unction will go to zero if the correct X̂0 and Ŝ are
ound. This is in contrast to SRME, in which usu-
lly minimum energy of the primaries is assumed.
he objective function is minimized iteratively
y estimating X̂0 and Ŝ in alternate steps. The ini-
ial values of X̂0 and Ŝ are set to zero. The update,
X0, is a steepest descent step, obtained by taking

he derivative of J with respect to the elements of
ˆ

0:

�X0� �P� X̂0,iŜi� X̂0,iP��ŜiI�P�H,

�8�

here � ŜiI�P�H is the complex adjoint of � ŜiI
P�. The term �P� X̂0,iŜi� X̂0,iP� represents

he unexplained data or the residual. The matrix

Figure 2. �a� I
depth. �b� The
responding u
sparseness ��
tiple at zero of
Downloaded 01 Oct 2012 to 131.180.130.198. Redistribution subject to S
ultiplication �P� X̂0,iŜi� X̂0,iP�� ŜiI�H can be interpreted as infor-
ation of primaries in the residual that has not yet been explained by

he algorithm. The matrix multiplication �P� X̂0,iŜi� X̂0,iP��
P�H can be interpreted as multiples in the residual that are mapped

o the primary locations. Thus, both multiples and primaries are si-
ultaneously used to update the primary impulse responses.
In EPSI, the sparseness is imposed on the update of X̂0. First the

pdate �X0 is calculated according to equation 8. Next, �X0 is di-
ided by ��e�i� /4�, after which it is transformed to the time domain.
igure 2b shows this result for the same shot gather. The term
�e�i� /4� represents the frequency-dependent behavior of a two-di-
ensional dipole source �Berkhout, 1982�. By dividing out this

erm, the events in �X0 will have a zero-phase appearance in the time
omain. Note that because both X̂0 and Ŝ are zero in the first iteration
tep, �X0 equals a multidimensional correlation of the data with it-
elf, �PPH. Next, a suitable time window is placed over �X0 in the
ime domain, and the event�s� per trace with the largest amplitudes
re selected. The result of this procedure is displayed in Figure 2c.
y increasing the size of the window in each iteration, convergence

s improved. In each iteration, the window should exclude strong
vents in the update not associated with primaries �e.g., the event
ointed out by the arrow in Figure 2b� as much as possible. The pri-
aries precede the multiples that they create. A window will allow

s to select mainly primaries. When the window is increased so far
hat it includes the position of the multiples, then the multiples are
argely removed from the residual. The starting size of the window
nd the speed with which the window increases are therefore a func-
ion of the position of the dominant primaries and dominant multi-
les. The window will also exclude noncausal events �t � 0.25 s�.

After bringing �X0 back to the frequency domain, it is multiplied
y the factor ��e�i� /4� to restore the 2D dipole behavior. The sparse
pdate, �X0, is added to the primary impulse response:

X̂0,i�1� X̂0,i���X0, �9�

ot gather with multiples from the marine data with moderate water
ponding update of the primary impulse response ��X0�. �c� The cor-
f the primary impulse response after windowing and applying

oth arrows indicate the position of the first-order water-bottom mul-
nput sh
corres

pdate o
X0�. B
EG license or copyright; see Terms of Use at http://segdl.org/
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R122 van Groenestijn and Verschuur
here � is a positive frequency-independent factor that scales the
pdate step in such a way that the objective function value decreas-
s.For the examples in this paper, we have used the method present-
d in van Groenestijn and Verschuur �2009a� to determine �.Amore
dvanced way to estimate � might be by matching ��X0�Si�P� to
� X̂0,i�Si�P�. Throughout the process, the value of � should not
ary too much. Large variations in the beginning of the process are a
ign of multiples being too weak compared to the primaries. Large
ariations at the end may be an indication that the iteration process is
etter stopped.

The update of Ŝ is executed in the same way as the update of X̂0:

�S� X̂0,i�1
H �P� X̂0,i�1Ŝi� X̂0,i�1P� . �10�

rom the full matrix �S, the diagonal elements are selected and
ummed to get the scalar �S. �S is brought to the time domain,
here its length is limited. After that, the update is scaled to ensure

hat the next objective function of equation 7 is lower than the previ-
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igure 3. The primary estimation, X̂0,iŜi, during different iterations.

T
im

e
(s

)

Offset (m)
0 400 800

0

0.5

1.0

1.5

2.0

T
im

e
(s

)

0 400 800
0

0.5

1.0

1.5

2.0

Offset (m)

T
im

e
(s

)

Offset (m)
0 400 800

0

0.5

1.0

1.5

2.0

T
im

e
(s

)

Offset (m
0 400 8

0

0.5

1.0

1.5

2.0

) b) c) d)

igure 4. �a�Ashot gather of the moderately deepwater marine data se
rimary estimation with iterative SRME. �c� Subtracted multiples w
d� The direct primary estimate obtained with the EPSI method. �e� T
les from the EPSI method.
Downloaded 01 Oct 2012 to 131.180.130.198. Redistribution subject to S
us one. Figure 3 shows the progression of the primary estimation
uring various iterations.

RESULTS ON MARINE DATA WITH
MODERATE WATER DEPTH

The estimates of X̂0 and Ŝ can be used in two ways to come to a pri-
ary estimation: a direct way, by convolving the estimated impulse

esponses with the estimated wavelets, P̂0� X̂0Ŝ, and a conservative
ay, by creating the multiples and subtracting them from the data,

ˆ
0�P�M̂�P� X̂0P. Note that the estimated multiples are sim-
ly subtracted from the data without any matching filter. The differ-
nce between the two options is that in the second option, the residu-
l data are added to the direct primary estimate. The direct primary
stimation for the shot gather under consideration �Figure 4a� is dis-
layed in Figure 4d. The corresponding estimated multiples are plot-
ed in Figure 4e. Iterative SRME has been applied to the same data
et �Figure 4b and c�. Both SRME and EPSI have removed the water-
ottom multiple. It is interesting to look at the strong reflection at

about 1.0 s in the primaries at the near offsets �in-
dicated by arrows�. One can observe that SRME
has weakened this primary.

The stacks in Figure 5 compare the direct pri-
mary estimate of EPSI with the SRME result. Fig-
ure 6 zooms in on the region between 2.2 and 3.0 s
and shows that there is a diagonal multiple residu-
al in the SRME output at about 2.4 s �top arrow�.
Another multiple is visible at about 2.7 s on the
right side of the stack �bottom arrow�. These mul-
tiples are not very strongly present in the EPSI
output, although none of the events in the EPSI
output in Figure 6b is very strong. This is espe-
cially true for the flat event at 2.6 s �middle ar-
row�.

The stacked residual in Figure 7c shows the
events in the data that are not yet explained by the
model.Agood example is the strong reflector just
above 1.0 s �top arrow�. Note also the residual
dipping multiples at about 3 s �middle arrow� and
the low frequencies below 3.5 s �bottom arrow�.
If we continue to iterate, this residual will go to
zero. Noise in the data is explained as primaries.
These fake primaries will cause multiples at later
times. These fake multiples can then be compen-
sated for by explaining them as primaries. By
continuing the iterations, the errors are pushed
out of the time window.

An answer to this unwanted effect can be to
stop iterating before the residual is zero. Maybe
equation 9 can play a role here. A sparse update,
�X0, without noise will have a bigger impact on
the objective function when added to the primary
impulse responses �it is explaining primaries and
multiples� than the impact of a sparse update with
only noise on the objective function �it is explain-
ing noise in the primaries and is creating noise in
the multiples�. Therefore, a sparse update without
noise will have a bigger scaling factor, �, than a
sparse update with noise. A decrease in the scal-
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EPSI: marine data applications R123
ng factor at the end of the process might therefore be a sign that the
ethod is trying to explain noise.Another answer may be to disallow

he creation of primaries in a certain area, for example below 3 s. The
orrect primary estimation will then leave a residual that would con-
ist of the primaries below 3 s. In fact, the EPSI process can be used
s a quality control tool to check the consistency of the input data. If
he residual goes to zero smoothly, the data are all right. If there are
lear events residing in the residual data, these may be an indication
hat something is not consistent in the data, which may be resolved
y changing the preprocessing sequence. This is a topic for further
nvestigation.
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RECONSTRUCTION OF MISSING
NEAR OFFSETS

In this section, we will review the reconstruction of missing near
ffsets in EPSI, as proposed by van Groenestijn and Verschuur
2009a�. The basic EPSI method is extended to the situation ofmiss-
ng near offsets. Equation 1 shows how data are built from sources,
ata �which can be seen as secondary sources�, and primary impulse
esponses. Although the missing near-offset data are not measured,
he consequences of “firing” the secondary sources in the near-offset
egion are measured in the multiples. Therefore, the near-offset data

rdinate (km) CMP coordinate (km)

20 0 10 20
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
(s

)

c)

multiples. �b� Stack of the primaries obtained with iterative SRME.

0 10 20
2.2

2.7

CMP coordinate (km)

� Enlargement of the stack of the EPSI primaries �Figure 5c�.
MP coo

10

ta with
T
im

e
(s

)

b)

5b�. �b
EG license or copyright; see Terms of Use at http://segdl.org/



c
t
m
o

�

e

s

F

c

t
m
t

u
w
v

T
t

F
s

E
m
w
u
o

d
u
t
fi

F
m

R124 van Groenestijn and Verschuur
an be reconstructed from the multiples. Figure 1e and f illustrates
his. We will discuss the points in the EPSI algorithm for data with

issing near offsets that differ from the algorithm for the data with-
ut missing near offsets.

The total data obtained in iteration i consists of two subsets: Pi

P̂i��P�, where P� are the data that do not need to be reconstruct-

d, and P̂i� are the missing near-offset data that have to be recon-

tructed. In the objective function P̂�, X̂0, and Ŝ are the unknowns:

Ji��
�

�
j,k

�Pi� X̂0,iŜi� X̂0,iPi� j,k
2 . �11�

or the first iteration, the values for X̂0, Ŝ, and P̂� are set to zero.
It is interesting to point out that the difference between the 2D-De-

on method described by Biersteker �2001� and EPSI is in essence

he term X̂0Ŝ in equation 11 that is not present in 2D-Decon. This
eans that 2D-Decon relies on the minimum energy assumption of

he primaries.
The iteration process consists of three consecutive steps. First the

pdate of X0 is calculated. It is the same as in equation 8 except that
e use the data Pi �with reconstructed near-offset data from the pre-
ious iteration� instead of P:

�X0� �Pi� X̂0,iŜi� X̂0,iPi��ŜiI�Pi�H. �12�
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he same substitution, Pi for P, is also the only thing that changes for
he update of S:

�S� X̂0,i�1
H �Pi� X̂0,i�1Ŝi� X̂0,i�1Pi� . �13�

inally, the update of P̂� is applied, which is given by the following
teepest descent step:

�P̂��� �I� X̂0,i�1�H�Pi� X̂0,i�1Ŝi�1� X̂0,i�1Pi� .

�14�

vents that arrive before the primary water-bottom reflection are re-
oved from �P� in the time domain along with parts of the data
edo not want to reconstruct �because they are already in P��. The
pdate of P̂� is scaled to ensure that the next objective function value
f equation 11 is lower than the previous one.

RESULTS ON SHALLOW-WATER MARINE DATA

We demonstrate the above procedure on a shallow-water field
ata set. The preprocessing steps can be found in Appendix A. Fig-
re 8a shows one shot record after this preprocessing sequence. Note
hat the near offsets have been filled by interpolation except for the
rst 0.4 s.
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The modified EPSI algorithm, described in the previous section,
s applied with P� being the measured data outside the near-offset
ap and the interpolated data in the lower part of the missing near-
ffset gap �such as shown in Figure 8a�. Thus, P̂� is the top part of the
ear-offset data that are reconstructed. Figure 8a-d shows the result
f the first iteration of the EPSI algorithm. Note the amount of multi-
les in Figure 8c that is predicted by a small part of the first reflection
nly �Figure 8b�. From this result, the importance of having the shal-
ow near-offset data for predicting the multiples becomes clear.
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igure 8. The EPSI result for one iteration. �a� Shot gather with the to
ion. �c� The explained part of the data after one iteration. �d� The re
olely based on the estimated first primary in �b�. This illustrates the i
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ets are set to zero. �b� Primary estimation with iterative SRME. �c� S
PSI. �e� Estimated multiples by EPSI.
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Figure 9 show the final EPSI and SRME results for one shot gath-
r. Because the parabolic Radon interpolation underestimates the
trengths of the water-bottom reflection, iterative SRME cannot pro-
ide good results. For example, the peg-leg multiple at about 0.7 s is
ot properly removed �lower arrows�. Note that the wavelet stretch
hat can be seen in the data �upper arrow� is not present in the EPSI
esult. Also note that the near offsets in the primary estimation of
PSI are discontinuous in some parts. When these discontinuous
arts in the primary impulse responses are convolved with the data,
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after one iteration. Note the significant reduction of multiples in �d�
nce of a correct near-offset reconstruction.
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R126 van Groenestijn and Verschuur
hey will sum up to create continuous multiples that will match the
ontinuous multiples in the data. So the discontinuous primary im-
ulse responses are a solution of the equations. A smoothing con-
traint may be used to force the primary impulse responses to be con-
inuous. However, the stack of the primary impulse responses �Fig-
re 10c� shows that a process such as stacking is not hindered by
uch discontinuous primaries.

The fact that SRME needs correct near-offset data is known �see,
.g., Verschuur, 2006�. To bypass the influence of the shallow near-
ffset reflections, it is common practice to remove multiples related
o shallow primaries with a deconvolution first �Biersteker, 2001�
nd then apply SRME to those data without the shallow primaries.
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igure 10. �a� Stacked section of the shallow-water marine data with
rimary estimate of EPSI.
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owever, deconvolution relies on minimum energy, and the decon-
olution and SRME processes are two separate steps, although their
ultiples interfere with each other. This can provide suboptimum re-

ults. This is in contrast to EPSI that does not rely on minimum ener-
y in the primaries and estimates all primaries and multiples in one
tep.

Stacks were made for the complete line, as shown in Figure 10.
he estimated near offsets have been included in the stacking pro-
ess. Except for the shallow events, the result was similar to stacking
ithout the near offsets. This was done to further emphasize the ef-

ect of the near offsets as reconstructed by the EPSI method. As can
e observed, the water bottom has had a tremendous impact on the
ultiple-removal results. The area between 1.0 and 1.5 s is a lot

leaner in the EPSI result �Figure 10c� as compared to the SRME re-
ult �Figure 10b�. Furthermore, the structure at about 1.7 s just right
f the middle is much more visible for the EPSI result.Azoom on the
ater-bottom area is made in Figure 11. A residual of the first-order
ater-bottom multiple �between the arrows� is clearly visible in the
RME result �Figure 11a�, whereas the EPSI result �Figure 11b� now
eveals the reflector that was partly covered by the first-order multi-
le in the data.

DISCUSSION

To gain some insights in the convergence of the method, we calcu-
ate the effect of varying the final estimated Ŝ and X̂0 in the objective
unction

J��,����
�

�
j,k

�P���X̂0Ŝ��X̂0P� j,k
2 , �15�

here � is a scalar that scales the final estimated X̂0, and � is a scalar
hat scales the final estimated Ŝ. To save computation time, we will
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ot calculate equation 15 for the total data �P�, direct primaries
X̂0Ŝ�, and multiples �X̂0P� but for the stacked data and primaries in
igure 10 after 0.4 s and stacked multiples. In Figure 12, the effects
f varying both � and � between 0.1 and 10 can be seen. There ap-
ears to be a clear minimum in ��1 and ��1. The dominant di-
ection of the contour lines is the line ����constant. This line will
eep the scaled primaries, ��X̂0Ŝ, constant. For values of � 	 �, the
caled multiples �X̂0P will deviate the contours.

Although the number of iterations in EPSI is higher �for the ma-
ine data with moderate water depth 180 iterations and for the shal-
ow water marine data 240 iterations� than the number of iterations
n SRME �for both data sets three iterations�, we see reasons to as-
ume that the calculation time does not have to be bigger by a factor
f 60–80. First, because X̂0 is spiky in the time domain, its convolu-
ion with the total data can be carried out in the time domain, saving
n the costs of going through a Fourier transform. Second, the corre-
ation PPH has to be calculated only once. Furthermore, the number
f iterations can be decreased by making the number of events that
re selected from �X0 a function of the iteration number. Also note
hat it takes a lot of iterations to build the direct primary estimation;
owever, the conservative primary estimation takes its form much
aster because most of the multiples are the result of a few dominant
rimaries that are estimated in the beginning of the process.

EPSI is a very open method in the sense that it is easy to build in
ther applications, such as the reconstruction of missing near offsets,
r to apply it to other forms of data, such as blended �van Groenestijn
nd Verschuur, 2009c� or passive data �van Groenestijn and Vers-
huur, 2009d�. Therefore, we think that EPSI can also be extended to
he full 3D marine case in which the missing data between the
treamer lines might be treated in a similar way as the missing near
ffsets in the 2D method.

Furthermore, we see possibilities to incorporate source-directivi-
y effects and direct wave estimation for the shallow-water case. In-
tead of selecting and summing the elements of the main diagonal of
Ŝ in equation 10, the main diagonal and its neighboring diagonals
an be selected to capture the source directivity. If the acquisition is
one in such a way that an upgoing and a downgoing wavefield can
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igure 12. Logarithmic contour plot of the objective function as
unction of the final estimated primary impulse responses, X̂0, and
he final estimated source wavelet, Ŝ; J��,������ j,k�P���X̂0Ŝ

�X̂0P� j,k
2 . The parameter � varies X̂0, and the parameter � varies Ŝ.

he contour plot has a minimum in point, ��1, ��1. Away from
his point, each contour line represents an increase of 0.7 dB.
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e obtained and the direct wave is only present in the downgoing
avefield, then EPSI can be rewritten as a division of the upgoing by

he downgoing data to include the direct wave in its formulations
van Groenestijn and Verschuur, 2009b�. This direct wave will cap-
ure the source directivity very nicely.

CONCLUSIONS

We have discussed the theory and algorithm behind EPSI and its
pplication to the reconstruction of missing near offsets on a detailed
evel. We have illustrated the theory with two marine data sets. The
esults obtained with EPSI and iterative SRME for marine data with
oderate water depth were similar in quality. An interesting proper-

y of EPSI is the residual, which can be used as a quality-control tool
o see if certain events are not properly explained, indicating an in-
onsistency in the data.

For the shallow-marine data, EPSI showed a much better result
han iterative SRME. This is mainly because the reconstruction of

issing near offsets can be incorporated into EPSI so that they ex-
lain the multiples observed in the data.
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APPENDIX A

PREPROCESSING OF FIELD DATA
AND IMPLEMENTATION DETAILS

To apply a 2D algorithm to a 3D data set, some preprocessing was
one on both field data sets described in this paper. Here follows a
ist of the preprocessing steps that were taken:

removal of random noise
deconvolution for the source bubble effects
removal of the direct wave by a muting operation
differential NMO to bring the receivers and sources on the same
grid because each line was selected from a 3D survey
f-k interpolation of missing shots in the common-offset domain.
The moderately deepwater marine data set has a shot spacing of
50 m and a receiver spacing of 12.5 m. Therefore, three extra
shots per shot needed to be interpolated. The shallow-water ma-
rine data set has a shot spacing of 37.5 m and a receiver spacing of
12.5 m so that two extra shots per shot were interpolated.
parabolic Radon domain-based interpolation of missing near off-
sets �Kabir and Verschuur, 1995�. For the shallow-marine data
set, the first 0.4 s were set to zero again because the interpolated
near offsets are not reliable there; they were part of the data to be
estimated by the EPSI process. The same data set, but without the
first 0.4 s set to zero, was used as input for iterative SRME.
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R128 van Groenestijn and Verschuur
A factor �t was applied to the data as a 3D to 2D amplitude cor-
rection.
Reciprocity was used to convert the data from a marine end-on
geometry to a split-spread geometry.

Because the current implementation of the EPSI algorithm is
ased on matrices, the data had to be fed to EPSI in blocks. The max-
mum offset present in these blocks �148
12.5 m�1850 m for
oth field data sets� was also used as the maximum offset fed into it-
rative SRME. The blocks overlapped in such a way that a primary
stimate was present for all the offsets between 0 m and 49

2.5 m�612.5 m. For a proper comparison of both the EPSI and
terative SRME results, only these offsets were stacked.

Iterative SRME �Verschuur and Berkhout, 1997� was used in
hree iterations using a wavelet of 31 samples for the global match-
ng and a filter of three samples for the local matching in windows of
50 samples by 25 traces.
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