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Abstract	
	
Fatigue	is	one	of	the	driving	limit	states	in	the	design	of	wind	turbines,	as	they	are	subject	to	varying	loads	
from	winds,	waves	and	gusts.	One	such	governing	area	is	the	butt-welded	connection	from	the	shell	to	the	
ring	flange.	To	optimize	the	tower	design	and	to	help	focus	future	research,	more	insight	on	the	influence	of	
material	properties	and	geometrical	features	on	the	fatigue	life	of	these	butt	welds	is	needed.	Due	to	the	
costs	associated	with	testing,	SGRE	stated	the	need	for	a	model	that	could	assess	the	total	fatigue	life	of	butt	
welds	subject	to	Mode	I	cracking	in	a	rather	quick	way.	After	literature	study,	it	was	proposed	to	use	the	
UniGrow	model.	
	
The	UniGrow	method	is	a	total	fatigue	life	model	in	which	the	material	is	considered	to	consist	of	elementary	
blocks.	Fatigue	is	modelled	as	a	process	of	continuous	crack	initiation	of	the	elementary	block	ahead	of	the	
crack	tip.	In	this	model,	the	plastic	compressive	residual	stress	ahead	of	the	crack	tip	plays	an	important	
role	in	the	determination	of	the	crack	growth	speed.	These	plastic	compressive	residual	stresses	ahead	of	
the	crack	tip	can	either	be	determined	analytically	(analytical	UniGrow)	or	by	using	numerical	methods	
such	as	FEA	 (numerical	UniGrow).	The	plastic	 compressive	 residual	 stresses	 ahead	of	 the	 crack	 tip	 are	
converted	into	a	plastic	residual	SIF	that	is	used	to	reduce	the	applied	residual	stress	intensity	factor	(i.e.	
plasticity	 decreases	 crack	 growth	 speed).	 Due	 to	 the	 application	 of	 a	 number	 of	 methods	 such	 as	 the	
Creager-Paris	equations,	the	current	UniGrow	implementation	is	solely	valid	for	pure	Mode	I	crack	growth.	
	
Validation	of	the	UniGrow	method	in	the	crack	propagation	range	has	been	performed	with	results	from	
experiments	on	CT	specimens	made	of	S355	steel.	Good	correspondence	between	the	experimental	results	
and	 predicted	 crack	 growth	 rates	were	 found	 for	 all	 stress	 ratios	 except	R	 =	 0.25.	 Both	Analytical	 and	
Numerical	 Unigrow	 methods	 have	 been	 analysed.	 Based	 upon	 the	 results	 of	 the	 validation	 it	 was	
recommended	 to	use	a	numerical	method	 (elastoplastic	FEA)	 to	determine	 the	plastic	 residual	 stresses	
ahead	of	the	crack	tip	as	this	provides	more	physically	accurate	results.	The	analytical	method	can	be	used	
to	obtain	an	initial	guess	of	the	elementary	block	size,	as	it	is	a	much	faster	method.	Furthermore,	using	the	
Morrow	method	for	the	determination	of	the	fatigue	life	of	the	elementary	block	ahead	of	the	crack	tip	was	
found	to	provide	more	accurate	results	than	the	SWT	damage	parameter.	This	is	due	to	the	fact	that	in	the	
elementary	block	ahead	of	the	crack	tip,	cyclic	stress	relaxation	occurs	and,	therefore,	mean	stress	effects	
need	not	be	accounted	for.	For	short	cracks,	the	fatigue	life	of	the	elementary	block	is	usually	outside	the	
LCF	range	(Nf	>	5*104	cycles).	Here,	the	use	of	the	Morrow	method	without	considering	residual	stresses	is	
not	recommended	since	cyclic	stress	relaxation	does	not	occur	due	to	limited	plasticity.		
	
The	performance	of	the	UniGrow	method	as	total	fatigue	life	was	studied	using	literature	research	and	a	
comparison	to	another	total	fatigue	life	model:	Two-Stage-Model.	In	the	studied	literature,	researchers	tend	
to	use	 the	weight	 function	method	 to	determine	 the	 SIF	 in	welded	 geometries.	Analysis	 comparing	 the	
weight	 function	 method	 to	 FEA	 results	 showed	 that	 the	 WF	 method	 generally	 overpredicts	 the	 SIFs	
compared	to	FEA.	For	a	flat	plate,	the	difference	was	found	to	be	a	maximum	of	3.5%,	whereas	for	the	welded	
geometry,	the	difference	was	up	to	12%.	
	
From	the	literature	and	the	comparison	of	the	UniGrow	model	to	the	Two-Stage-Model,	it	was	concluded	
that	 the	UniGrow	model	 is	 incapable	of	predicting	proper	 fatigue	crack	 initiation	 lives	as	 it	 is	unable	 to	
capture	 the	complexity	of	short	crack	growth.	The	model	provides	satisfactory	results	 for	cracks	where	
crack	propagation	is	a	dominant	part	of	the	fatigue	life	(such	as	welded	geometries	and	notched	specimens	
in	 the	 LCF	 regime).	 It	 was	 proposed	 to	 use	 the	 UniGrow	model	 to	 determine	 fatigue	 lives	 of	 notched	
specimens	up	to	105	cycles.	It	was	found	that	this	limit	also	depends	on	the	SCF	present	in	the	specimen.	
For	welded	geometries,	available	results	in	literature	showed	good	correspondence.	However,	the	welds	
used	by	SGRE	are	of	better	quality	(lower	SCF)	than	the	ones	used	in	UniGrow	research.	This	means	that	
relatively	more	of	the	fatigue	life	will	be	spent	in	fatigue	crack	initiation.	More	research	is	therefore	needed	
to	examine	whether	this	affects	the	functioning	of	the	UniGrow	method	for	welds.	
	
The	UniGrow	method	was	lastly	used	to	determine	which	of	the	parameters	controlling	the	geometry	of	the	
weld	excess	(the	weld	flank	angle,	weld	toe	radius	and	weld	excess	height)	is	of	greatest	influence	on	the	
fatigue	performance	of	 a	 butt	weld.	 From	 this	 analysis	 it	was	 concluded	 that	 changing	 the	weld	 excess	
height,	followed	by	the	weld	flank	angle	has	the	most	beneficial	effect	on	the	fatigue	life.	The	results	from	
this	parametric	study	should	be	used	with	great	care:	 the	usage	of	 the	UniGrow	method	combined	with	
neglecting	 the	 residual	 stresses	 could	 lead	 to	 incorrect	 predictions	 of	 fatigue	 crack	 initiation	 life.	
Simplifications	of	the	material	and	crack	type	could	also	have	had	an	influence	on	the	results.	 	
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1 Introduction	
	
1.1 Background	Information	
Wind	turbines	are	subject	 to	varying	 loads	coming	 from	gusts	of	winds	or	waves.	 In	steel,	of	which	 the	
towers	are	made,	 these	varying	 loads	can	cause	 fatigue	 failure	even	 if	 the	stresses	are	well	below	yield	
stress.	Fatigue	failure	is	due	to	the	nucleation	of	microcracks	at	the	surface	of	the	material	(crack	initiation)	
and	subsequent	crack	propagation	by	cyclic	loading.	This	is	especially	a	problem	in	welded	areas	because	
the	weld	profiles	can	be	quite	rough,	causing	stress	concentrations.	Also,	the	residual	stresses	caused	by	the	
cooling	of	the	weld	metal	can	cause	fatigue	cracks	in	nominally	compressive	joints.		
	
Fatigue	is	considered	as	one	of	the	limit	states	during	tower	design.	Turbine	tower	design	is,	in	most	of	the	
cases,	 said	 to	be	 fatigue-controlled:	 the	 fatigue	 loads	are	governing	 for	 the	dimensioning	of	 the	 turbine	
tower.	 Currently,	 fatigue	 design	 at	 SGRE	 is	 done	 using	 S-N/FAT	 curves,	 where	 the	 fatigue	 life	 can	 be	
determined	directly	from	the	nominal	stress.	These	have	the	issue	of	being	very	conservative,	with	a	design	
factor	of	1.25	on	 the	 load	side	causing	 the	design	 life	 to	be	up	 to	a	half	 less	 than	 the	characteristic	 life.	
Furthermore,	S-N/FAT	curves	are	based	solely	on	a	lot	of	historical	experimental	results,	all	with	varying	
failure	criteria,	material	data	and	so	forth.	There’s	thus	no	clear	definition	of	fatigue	failure	as	such	and	it	
also	completely	ignores	any	underlying	physical	processes.		
	
SGRE	has	attempted	to	improve	the	fatigue	life	by	crafting	a	new	S-N	curve	specific	for	the	butt	welds	used	
in	their	towers	that	are	fabricated	according	to	their	weld	quality	requirements.	This	S-N	curve,	however,	
still	inherits	the	same	issues	as	mentioned	in	the	previous	paragraph.		
	
The	goal	of	SGRE	is	to	get	more	insight	in	the	physical	process	behind	fatigue	failure	and	the	parameters	
that	control	them.	The	goal	of	SGRE	is	thus	said	to	be	twofold:	implement	and	analyse	a	total	fatigue	life	
model	 capable	 of	 accounting	 for	 geometrical	 features	 of	 butt	 welds	 and	 analyse	 the	 effect	 of	 those	
geometrical	 features.	 This	 can	 be	 a	 valuable	 resource	 for	 SGRE	 in	 order	 to	 further	 focus	 research	 and	
optimize	the	tower	design.			
	
1.2 Research	Objective	
Considering	the	issues	mentioned	in	chapter	1.1,	the	following	objective	has	been	developed	for	this	thesis:	

	
Implement	and	analyse	the	functioning	of	a	total	fatigue	life	model	which	can	be	used	for	analysis	of	the	
effect	of	the	geometry	of	the	weld	excess	on	the	fatigue	life	of	butt-welded	plates	subject	to	Mode	I	cracks.			

	
1.3 Research	Questions	
After	 a	 literature	 study,	 it	was	 concluded	 that	 the	model	 that	will	 be	 implemented	 and	 analysed	 is	 the	
UniGrow	model.	This	has	led	to	the	formation	to	the	following	main	research	question:	
	
To	what	extent	is	the	UniGrow	method	capable	of	predicting	the	influence	of	the	weld	geometry	on	the	total			

fatigue	life	of	butt	welds	subject	to	Mode	I	cracks?	
	
With	the	following	sub-questions:	

1. How	well	does	the	analytical	UniGrow	model	perform	compared	to	the	numerical	UniGrow	model	
in	terms	of	prediction	of	plastic	residual	stresses	ahead	of	the	crack	tip	and	crack	growth	speed	of	
Mode	I	cracks	in	mild	steel	at	various	stress	ratios?		

2. How	well	does	the	UniGrow	method	perform	in	predicting	crack	growth	rates	of	Mode	I	long	cracks	
in	mild	steel	at	various	stress	ratios?		

3. Which	strain-life	method	used	 in	 the	UniGrow	method	 is	most	suitable	 for	predicting	 the	crack	
growth	speed	of	Mode	I	cracks	in	mild	steel	at	various	stress	ratios?	

4. How	well	does	the	weight	function	method	perform	compared	to	FEA	for	predicting	SIF	of	Mode	I	
edge	cracks	in	a	butt	weld	geometry?	

5. What	 are	 the	 results	 from	 other	 research	 that	 have	 used	 the	UniGrow	method	 to	 predict	 total	
fatigue	life	of	Mode	I	cracks?	
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6. How	does	the	UniGrow	method	perform	compared	to	the	Two-Stage-Model	in	predicting	the	total	
fatigue	life	of	butt	weld	geometries	made	of	mild	steel	with	an	edge	crack	loaded	in	tension?	

7. What	are	the	validity	limits	of	use	of	the	UniGrow	model	for	Mode	I	cracks	based	on	the	results	of	
this	study	and	literature	for	the	prediction	of	the	fatigue	life?	

8. Which	 of	 the	 geometrical	 features	 of	 the	weld	 excess	 does	 the	 implemented	 UniGrow	method	
predict	to	be	of	greatest	influence	on	the	fatigue	life	of	Mode	I	edge	cracks	in	butt-welds	made	of	
mild	steel?	

	
1.4 Thesis	Structure	
The	thesis	is	divided	into	six	chapters,	each	with	their	own	purpose.	The	structure	of	the	thesis	can	be	read	
below.	
	
Chapter	2	presents	an	overview	of	the	literature	that	is	relevant	to	the	current	study.	The	literature	study	
starts	with	an	overview	of	fatigue	and	the	relevant	parameters	influencing	the	fatigue	life	of	butt-welded	
geometries.	It	is	continued	by	methods	that	are	used	to	model	the	two	stages	of	fatigue,	after	which	some	
total	fatigue	life	models,	such	as	the	UniGrow	method,	are	presented.			
	
Chapter	3	discusses	 the	 implementation,	verification	and	validation	of	 the	UniGrow	method.	 In	 the	 first	
section	of	the	chapter,	an	analytical	version	of	the	UniGrow	method	will	be	implemented	and	verified.	The	
second	section	is	focused	on	a	numerical	version	of	the	UniGrow	method.	After	verification	of	this	method,	
validation	of	both	 the	analytical	and	numerical	methods	has	been	done	against	crack	growth	data.	This	
validation	is	limited	to	the	crack	propagation	phase.	
	
Chapter	4	analyses	the	functioning	of	the	UniGrow	model	as	a	total	fatigue	life	model.	The	chapter	starts	off	
with	a	literature	study	in	which	previous	research	that	have	used	the	UniGrow	method	to	determine	the	
total	fatigue	life	of	detail	will	be	discussed.	Subsequently,	the	UniGrow	model	will	be	compared	to	the	Two-
Stage-Model	on	prediction	of	total	fatigue	life	of	welded	geometries	without	consideration	of	weld	residual	
stresses.	The	chapter	will	be	concluded	by	a	proposal	of	the	validity	limits	of	the	UniGrow	model.	
	
Chapter	5	presents	the	parametric	study	that	has	been	conducted	using	the	UniGrow	method.	Here,	three	
parameters	 that	 influence	the	geometry	of	 the	weld	excess	will	be	examined	on	their	effect	on	the	total	
fatigue	life	of	butt	welds	made	of	S355	steel.		
	
Chapter	6	present	the	conclusions	of	the	research	and	the	recommendations.		 	
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2 Literature	Overview	
 
2.1 Fatigue	
The	classical	definition	of	fatigue	is:	the	progressive,	localized	and	permanent	structural	change	that	occurs	
in	 a	material	 that	 is	 subject	 to	 cyclic	 fluctuating	 stresses.	These	 stresses	may	well	 be	below	 the	 tensile	
strength	of	the	material.		
	
The	growth	of	a	fatigue	crack	can	be	divided	into	three	stages:	crack	initiation,	crack	propagation	and	final	
fracture	[71],	as	depicted	in	Figure	2.1.	Crack	initiation	starts	with	the	formation	of	microcracks	at	points	
of	 high	 stress	 concentrations	 due	 to	 surface	 flaws,	 geometrical	 discontinuities	 or	 weld	 defects.	 As	
microcracks	grow,	 they	 coalesce	 to	 form	one	principal	 crack.	 In	 contrary	 to	 the	microcracks,	which	are	
governed	by	shear,	the	principal	crack	will	grow	perpendicular	to	the	direction	of	the	stress.	Once	it	is	large	
enough,	the	crack	enters	the	crack	growth	stage.	After	the	propagation	period,	the	crack	growth	becomes	
unstable	and	the	specimen	breaks.	
	

	
Figure	2.1	Stages	of	fatigue	life	[71]	

	
Generally,	at	low	levels	of	stress	and	strains	or	for	unnotched	or	bluntly	notched	specimens,	the	total	fatigue	
life	is	mainly	spent	on	fatigue	crack	initiation	[64].	At	high	levels	of	stresses/strains,	the	crack	propagation	
dominates	[20].	For	welded	specimens,	initial	defects	and	inclusions	cause	a	major	part	of	the	fatigue	life	to	
be	spent	on	crack	propagation.	Ramchandra	et	al	[61]	concluded	that	the	fatigue	propagation	life	was	75	-	
89%	of	the	total	fatigue	life	of	all	welded	specimens	studied,	whereas	other	researchers	indicated	that	this	
could	be	as	low	as	50%	[64].		
 
The	fatigue	stages	have	different	crack	damage	mechanics	and	therefore	Miller	[37]	defined	length	scales	
of	cracks:	

§ Short	 crack	 (SC):	Cracks	 of	 up	 0.5-1	mm	 in	 length.	 The	 short	 cracks	 are	 usually	 divided	 into	
microstructurally	short	crack	(MSC)	and	physically	short	crack	(PSC).	Where	the	MSC	is	in	the	order	
of	the	grain	size	of	the	structure.		

§ Long	crack	(LC):	Cracks	longer	than	0.5-1	mm.	
	
The	0.5	–	1	mm	range	as	transition	point	between	crack	initiation	(SC)	and	crack	propagation	(LC)	reflects	
very	well	what	can	be	found	in	literature:	researchers	often	use	values	in	that	range	to	define	the	end	of	the	
crack	initiation	period	[64].			
	
2.2 Factors	affecting	fatigue	life		
From	literature,	several	factors	that	affect	the	fatigue	life	can	be	identified:	

§ Load	(stresses):	Residual	stresses	caused	by	welding,	the	stress	ratio	and	notch	effect	from	the	
weld	geometry.	

§ Resistance	(material):	The	material	quality,	i.e.	its	grain	size,	fracture	toughness,	yield/ultimate	
strength.	

 
2.2.1 Weld	notch	
After	creating	a	butt	weld,	several	geometrical	features	can	cause	stress	concentrations	in	the	weld	area.	
The	most	important	ones	and	their	effects	are:	

§ Excess	weld	material:	Excess	weld	material	means	a	disruption	in	the	stress	flow	from	one	plate	
to	the	other	[50].	At	the	weld	toe,	stress	concentrations	will	occur	due	to	this	weld	material.		

§ Undercut:	Similar	to	excess	weld	material,	an	undercut	also	causes	a	disruption	in	the	stress	flow	
and	forms	a	stress	concentration	near	the	weld	toe	[50].		

	
The	important	parameters	for	determining	the	effect	that	the	notch	has	on	the	stress	concentration	is	and	
their	 location	 can	 be	 found	 in	 Figure	 2.2.	 A	 lot	 of	 research	 has	 been	 done	 about	 the	 effects	 of	 these	
parameters	and	the	results	of	these	researches	will	be	discussed	for	each	parameter.	
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§ Weld	toe	radius:	A	larger	radius	means	a	smoother	transition	from	one	thickness	to	the	other	and	
thus	less	disruption	in	the	stress	flow.	This	hypothesis	is	supported	by	numerical	studies	on	mild	
steel	butt	welds	[12],	[52],	[56],	[74]	and	also	experimental	research	on	mild	steel	cruciform	joints	
and	 high	 strength	 steel	 butt	 welds	 by	 Lee	 et	 al	 [26]	 and	 Sanders	 et	 al	 [66]	 respectively.	 The	
researchers	harmoniously	conclude	that	a	larger	weld	toe	radius	lowers	the	stress	concentration	
at	the	weld	toe	and	thus	prolongs	fatigue	life.		

§ Weld	 flank	 angle:	 Starting	 from	 the	 stress	 flow	 concept,	 one	 would	 expect	 smaller	 stress	
concentration	for	smaller	weld	flank	angles,	because	the	stress	flow	would	be	disturbed	less.	Both	
numerical	and	experimental	research	on	both	butt	welds	and	cruciform	joints	has	concluded	that	
a	smaller	angle	is	beneficial	for	the	fatigue	life	[52],	[26],	[66].	Ninh	et	al	[52]	found	that	reducing	
the	 flank	 angle	 beyond	 20°	 has	 a	 significant	 effect	 on	 fatigue	 life.	 This	 parameter	 is	 also	 used	
extensively	by	design	codes	in	execution	requirements	of	welds.	

§ Undercut	dimensions:	The	undercut	is	defined	as	an	irregular	groove	along	the	weld	toe	that	is	
formed	when	the	parent	material	is	wasted	and	not	filled	by	weld	metal	[12],	[50].	Undercuts	can	
form	in	butt	welds	but	are	most	commonly	found	in	fillet	welds	[12].	Numerical	studies	on	butt	
welds	by	[74]	and	[7]	found	that	the	governing	parameters	are	the	undercut	depth,	undercut	width	
and	the	undercut	root	radius.	[7]	especially	emphasizes	the	effect	of	the	depth	to	radius	ratio	(h/r	
ratio).	When	the	h/r	increases,	it	was	found	that	the	stress	concentration	increased	dramatically.	
The	 effect	was	more	pronounced	 for	 smaller	undercut	widths.	 [74]	had	 similar	 findings.	These	
numerical	findings	are	supported	by	experiments	done	on	the	fatigue	life	of	butt	welds	in	[50]	and	
[49]	which	show	the	same	effect.	

	

	
Figure	2.2	Schematic	of	typical	butt-weld	geometry	

 
2.2.2 Mean	stress	and	weld	residual	stress	
Residual	stress	fields	result	from	the	welding	and	the	subsequent	cooling	of	a	detail	during	which	the	weld	
metal	contracts	[29].	This	creates	tension	field	in	the	material	that	is	often	assumed	to	be	of	the	magnitude	
of	yield	strength	but	can	have	varying	stress	values	depending	on	certain	parameters	[52],	[29],	[40].		
	
	 𝑅 =

𝜎!"#
𝜎!$%

	 (2.1)	

	 	 	
Residual	stresses	locally	increase	the	mean	stress	that	is	“felt”	by	the	material	during	cyclic	loading.	The	
mean	stress	is	usually	expressed	in	terms	of	the	stress-ratio,	which	is	defined	by	Eq.	(2.1).	Depending	on	
the	type	of	loading,	the	mean	stress	can	have	both	a	positive	and	negative	effect.	Fatigue	life	is	shorter	in	
regions	 where	 mean	 stresses	 are	 tensile,	 the	 opposite	 holds	 for	 regions	 where	 mean	 stresses	 are	
compressive.	Numerical	investigations	validated	with	experimental	results	by	Llavori	et	al	[31]	and	Nguyen	
et	al	 [50],	on	butt	welds	and	experimental	results	on	welded	attachments	with	different	filler	materials.	
Experiments	done	by	Harati	et	al	[17]	confirm	this	influence	of	the	residual	stress	on	the	fatigue.		
 
2.2.3 Thickness	
For	fatigue	testing	on	butt	welds,	it	was	found	that	an	increase	in	thickness	decreases	the	fatigue	life.	In	[58]	
a	review	of	all	experiments	on	butt	welds	was	made.	It	was	concluded	that	the	size	effect	is	a	combination	
of	the	following	three	factors:	

§ Geometrical:	This	effect	is	twofold.	Firstly,	in	thicker	specimens	the	stress	gradient	will	become	
less.	This	causes	the	stress	field	at	the	crack	tip	to	be	more	intense	and	thus	increases	crack	growth	
[51],	 [58].	 Secondly,	 the	 local	 weld	 toe	 geometry	 doesn’t	 scale	 with	 the	 thickness.	 Several	
researchers	have	found	both	numerically	[12]	and	by	reviewing	8	different	experiments	on	butt	
welds	 [58]	 that	 when	 the	 radius	 to	 thickness	 ratio	 (r/t)	 decreases,	 the	 stress	 concentration	
increases	and	thus	causes	a	reduction	in	the	fatigue	life.	 	A	positive	observed	geometric	effect	is	
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that	the	welds	are	less	likely	to	be	overfilled	and	thus	the	flank	angle	is	less	[58].	This,	as	stated	
before	reduces	the	stress	concentration	and	increases	fatigue	life.	

§ Statistical:	In	a	larger	element,	a	higher	probability	of	weak	location	occurs.	However,	it	was	found	
by	[58]	after	reviewing	8	different	experiments	 that	 the	weld	 length	 is	a	better	 indicator	of	 the	
statistical	size	factor.		

§ Technological:	The	technological	size	effect	is	twofold:	it	can	influence	the	residual	stresses	and	
misalignment.	The	residual	stress	is	affected	by	size	since	for	larger	section	size,	more	constraint	is	
provided	and	thus	higher	residual	stresses	are	able	to	build	up	[29],	[58].	The	misalignment	aspect	
is	a	positive	factor	for	increasing	section	sizes:	a	thick	plate	with	the	same	misalignment	as	the	thin	
plate	has	a	smaller	relative	misalignment	and	thus	reduces	secondary	bending	stresses	[58].		

	
2.3 Crack	Initiation	
The	first	stage	of	crack	growth	is	the	crack	initiation	phase,	often	considered	to	be	a	complex	stage	of	the	
crack	growth.	The	preferred	method	 for	modelling	 this	stage	of	 crack	growth	 is	 the	so-called	strain-life	
approach.			
 
2.3.1 Strain-Life	Approach	
The	strain-life	approach	is	based	on	the	assumption	that	the	construction	material	in	a	component	with	a	
notch	under	repeated	cyclic	loading	has	the	same	structural	mechanical	behaviour	as	a	smooth	sample	that	
is	subjected	to	the	same	stress-strain	state	[27].	In	other	words,	it	is	assumed	that	the	material	near	the	
notch	shows	the	same	fatigue	behaviour	as	a	smooth	specimen	undergoing	the	same	cyclic	deformation	
[27].		

	
Figure	2.3	Illustration	of	fundamental	assumption	in	strain-life	approach	[27]	

	
Two	equations	usually	govern	the	relationship	between	the	 local	strain	and	the	number	of	reversals	till	
failure.	These	are	the	Coffin-Manson	equation	[32]	given	in	Eq.	(2.2)	and	the	Basquin	equation	[2]	given	in	
Eq.	 (2.3),	 for	 elastic	 strain	 and	 plastic	 strains	 respectively.	 These	 relations	were	 both	 found	 after	 fully	
reversed	experiments.	
	 ∆𝜀&

2 =
𝜎'(

𝐸 52𝑁'7
)	[𝐶𝑜𝑓𝑓𝑖𝑛 −𝑀𝑎𝑛𝑠𝑜𝑛]	 (2.2)	

	
	 ∆𝜀*

2 = 𝜀'(52𝑁'7
+																						[𝐵𝑎𝑠𝑞𝑢𝑖𝑛]		 (2.3)	

	
The	plastic	strain	range	and	elastic	strain	range	are	usually	added	to	overcome	the	issue	of	separating	elastic	
and	 plastic	 strains.	 The	 total	 fatigue	 life	 can	 subsequently	 be	 determined	 by	 means	 of	 Eq.	 (2.4).	 A	
visualization	of	adding	these	two	equations	is	given	in	Figure	2.4.	The	equation	holds	for	R=-1	(i.e.	zero	
mean	stress)	[28]	and	is	often	referred	to	as	the	Morrow	equation.		
	 ∆𝜀

2 =
𝜎'(

𝐸 52𝑁'7
) + 𝜀'(52𝑁'7

+	 (2.4)	

Where:	
§ ∆𝜀	=	strain	range	
§ 𝜎'(	=	fatigue	strength	coefficient	
§ 𝜀'( 	=	fatigue	ductility	coefficient	
§ 𝑏	=	fatigue	strength	exponent	
§ 𝑐	=	fatigue	ductility	exponent	
§ 𝑁'	=	number	of	reversals	
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Figure	2.4	Typical	strain-life	curve	[27]	

 
2.3.2 Cyclic	Behaviour	
When	steel	is	loaded	with	a	monotonic	load,	the	behaviour	is	described	by	the	Ramberg-Osgood	equation	
[62].	It	describes	both	the	elastic	and	plastic	zones	of	material	behaviour	and	is	derived	from	the	true	stress	
–	 true	 plastic	 strain	 relationship	 as	 given	 in	 Figure	 2.5	which	was	 derived	 from	 experiments.	 Strain	 is	
composed	 of	 elastic	 and	 plastic	 strain,	 by	 rewriting	 the	 formula	 in	 Figure	 2.5	 and	 using	 the	 standard	
definition	for	elastic	strain,	the	Ramberg-Osgood	relationship	given	in	Eq.	(2.5)	can	be	derived.	
	
	

𝜀 = 𝜀&, + 𝜀*, =
-
.
+ G-

/
H
!
"	 (2.5)	

Where:	
§ 𝜀	=	strain		
§ 𝜎	=	stress		
§ K	=	strength	coefficient	
§ 𝑛	=	cyclic	hardening	coefficient	

	

	
Figure	2.5	True	plastic	strain	-	stress	relationship	used	as	input	for	Ramberg-Osgood	relationship	

	
When	the	load	is	reversed,	the	hysteresis	branch	follows	a	path	that	is	governed	by	Masing	behaviour	[64],	
which	yields	Eq.	(2.6).		
	

∆𝜀 = ∆𝜀&, + ∆𝜀*, =
∆-
.
+ 2G∆-

1/
H
!
"	 (2.6)	

	
When	a	metal	is	cyclically	loaded,	the	material	will	tend	to	soften	or	harden,	which	changes	the	stress-strain	
relationship	of	that	material.	The	position	and	shape	of	the	curve	will	change	slightly	to	eventually	reach	a	
steady	state	[24].	The	hardening	or	softening	will	only	take	place	in	the	5-10	percent	of	the	fatigue	life	[64]	
and	therefore	it	is	often	assumed	that	the	full	life	is	spent	in	steady	state	behaviour,	as	is	also	proposed	by,	
[27],	[51],	and	[64]	and	many	others.	The	equation	then	changes	into	the	one	given	in	Eq.	(2.7).	
	
	

∆𝜀 = ∆-
.
+ 2G ∆2

13#
H
!
"# 𝑜𝑟	𝜀 = -

.
+ G 2

3#
H
!
"# 	 (2.7)	

Where:	
§ K(	=	cyclic	strength	coefficient	
§ 𝑛(	=	cyclic	hardening	coefficient	
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2.3.3 Elastoplastic	Stress		
As	the	notch	grows	sharper,	the	SCF	at	the	notch	increases	and	this	could	lead	to	the	stress	surpassing	the	
yield	 limit	 of	 the	material.	 Plasticity	will	 occur	 and	 this	needs	 to	be	 accounted	 for	before	being	 able	 to	
determine	the	strain-life	of	a	model.	Researches	such	as	[28],	[51],	[53],	often	fall	back	on	the	Linear	Elastic	
FEM	and	applying	plastic	 correction	afterwards.	Two	methods	are	conventionally	used	 for	 this:	Neuber	
Hyperbola	or	the	Molsky-Glinka	method	[24].	
	
2.3.3.1 Neuber	Hyperbola		
The	 Neuber	 Hyperbola	 is	 based	 on	 the	 hypothesis	 that	 the	 elastic	 stress	 concentration	 factor	 is	 the	
geometric	mean	of	the	true	stress	and	strain	concentration	factor	[24].			
	
	 𝐾- =

-
4
	and	𝐾5 =

5
&
	which	make	𝐾6 = J𝐾-𝐾5	 (2.8)	

 
If	both	sides	of	the	equation	are	squared	and	with	some	rewriting,	the	Neuber	expression	can	be	obtained.	
This	expression	is	given	in	Eq.	(2.9).	
	
	 𝜎𝜀 = 𝐾61𝑆𝑒 →	∆𝜎∆𝜀 = 𝐾61∆𝑆∆𝑒	 (2.9)	

 
Where:	

§ (∆)𝜀	=	local	true	notch	strain	(range)	
§ (∆)𝜎	=	local	true	notch	stress	(range)	
§ (∆)𝑒	=	nominal	strain	(range)	
§ (∆)𝑆	=	nominal	stress	(range)	
§ 𝐾6	=	elastic	stress	concentration	factor	

	

	
Figure	2.6	Graphical	depiction	of	functioning	of	the	Neuber	Hyperbola	

	
In	 essence,	 this	 formula	 equates	 the	 elastic	 strain	 energy	 density	 (including	 the	 notch	 effect)	 to	 an	
approximation	of	the	elastoplastic	strain	energy	density	(a	triangle).	A	graphical	interpretation	of	this	effect	
can	be	seen	in	Figure	2.6.	For	nominally	elastic	behaviour,	where	plasticity	is	local,	∆𝑒 = ∆𝑆/𝐸.	Which	yields	
Eq.	(2.10).		
	

∆𝜎∆𝜀 =
(𝐾6∆𝑆)1

𝐸 	
	

(2.10)	

Using	Eq.	(2.10)	above	and	the	Ramberg-Osgood	relation	(Eq.	(2.5)),	Eq.	(2.11)	can	be	found:	
	
	

∆
∆𝜎1

𝐸 + 2∆𝜎 P
∆𝜎
2𝐾(Q

7
##
=
(𝐾6∆𝑆)1

𝐸 =
(∆𝜎8.)1

𝐸 	𝑜𝑟	
𝜎1

𝐸 + 𝜎 G
𝜎
𝐾(H

7
## =

(𝐾6𝑆)1

𝐸 =
(𝜎8.)1

𝐸 				(𝑥)	 (2.11)	

	
When	the	stress	is	then	calculated	by	elastic	FEA,	the	𝐾𝑡∆𝑆	factor	can	be	replaced	by	the	stress	that	results	
from	the	model	[51],	[28].	This	is	because	the	stress	concentration	is	already	included	in	the	calculation	of	
the	stress,	due	to	the	geometry	of	the	model.	The	above	equation	can	then	be	solved	for		∆𝜎	and	using	the	
Ramberg-Osgood	relation,	a	value	for	∆𝜀	can	be	obtained.		
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2.3.3.2 Molsky	and	Glinka	
The	Molsky	 and	 Glinka	method	 proposes	 a	 slightly	 different	 assumption.	 Here	 it	 is	 proposed	 that	 the	
elastoplastic	 strain	 energy	density	 at	 the	notch	 root	 is	 related	by	𝐾61 	to	 the	 strain	 energy	density	 from	
elastic	calculation,	the	relation	given	in	Eq.	(2.12)	[24].	As	can	be	seen	in	Figure	2.7,	this	method	is	very	
similar	 to	 the	Neuber	Hyperbola,	 but	 instead	 takes	 the	 full	 area	under	 the	 true	 stress-strain	 curve	 into	
account.			
	
	 𝑊& = 𝐾61𝑊:	 (2.12)	
	

	
Figure	2.7	Graphical	depiction	of	functioning	of	Molsky-Glinka	method	

	
The	strain	energy	density	from	elastic	calculation	can	be	determined	as	given	in	Eq.	(2.13).	
	
	

𝑊: =
1
2𝑆𝑒 =

1
2
𝑆1

𝐸 	𝑜𝑟	∆𝑊: =
1
2∆𝑆∆𝑒 =

1
2
∆𝑆1

𝐸 	 (2.13)	

	
The	strain	energy	from	the	true	stress-strain	curve	cannot	be	determined	by	direct	integration	of	from	zero	
to	 the	 required	strain,	 this	 is	because	no	closed	 form	of	 the	Ramberg-Osgood	relationship	expressed	 in	
strain	is	available.	Therefore,	the	elastoplastic	strain	energy	density	can	be	determined	with	the	integral	
given	in	Eq.	(2.14).	
	
	

𝑊& = 𝜎$𝜀$ −U
𝜎
𝐸 + G

𝜎
𝐾H

7
# 𝑑𝜎

-$

;

	 (2.14)	

Which,	when	using	𝜀$ =
-$
.
+ G-$

/
H
!
"	and	evaluating	the	integral	in	Eq.	(2.14),	yields	the	elastoplastic	strain	

energy	density	given	in	Eq.	(2.15).		
	
	

𝑊& =
𝜎1

2𝐸 +
𝜎

1 + 𝑛 G
𝜎
𝐾(H

7
## 	𝑜𝑟	∆𝑊& =

∆𝜎1

2𝐸 +
2∆𝜎
1 + 𝑛 P

∆𝜎
2𝐾(Q

7
##
	 (2.15)	

	
By	equating	(∆)𝑊&	and	(∆)𝑊:,	the	equations	for	the	determination	of	the	true	stress	from	the	nominal	stress	
are	obtained.	These	are	given	in	Eq.	(2.16).	When	the	stress	is	then	calculated	by	elastic	FEM,	the	𝐾𝑡∆𝑆	factor	
can	be	replaced	by	the	stress	that	results	from	the	model	[51],	[28].	
	
	 ∆𝜎1

𝐸 +
4∆𝜎
1 + 𝑛 P

∆𝜎
2𝐾(Q

7
##
=
(𝐾6∆𝑆)1

𝐸 =
(∆𝜎8.)1

𝐸 	𝑜𝑟	
𝜎1

𝐸 +
2∆𝜎
1 + 𝑛 G

𝜎
𝐾(H

7
## =

(𝐾6𝑆)1

𝐸 =
(𝜎8.)1

𝐸 	 (2.16)	

	
2.3.3.3 Comparison	of	correction	methods	
It	 can	 be	 seen	 from	 the	 equations	 that	 the	 Neuber	 and	 Molsky-Glinka	 method	 provide	 very	 similar	
correction	equations.	The	two	methods	converge	for	small	stress-values;	however,	the	Neuber	Hyperbola	
generates	relatively	higher	elastoplastic	stresses	and	strains	than	the	Molsky-Glinka	method.	This	is	a	direct	
cause	of	the	definition	of	the	Neuber	Hyperbola:	higher	stress	and	strain	are	needed	to	obtain	the	same	
strain	energy	density	as	in	the	Molsky-Glinka	method.	It	 is	usually	said	that	the	Neuber	Hyperbola	is	an	
upperbound	approach,	whereas	the	Molsky-Glinka	method	is	a	lower	bound	approach	[38].	
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2.3.4 Mean	Stress	Correction	
The	strain-life	equations	have	been	derived	for	R=-1,	however,	as	shown	in	section	2.2.2,	the	mean	stress	
plays	a	significant	role	 in	the	fatigue	 life	of	specimens.	Therefore,	correction	needs	to	be	done	for	other	
mean	stresses.	The	most	frequently	used	approach	is	the	Smith-Watson-Topper	damage	formula	[72].	In	
this	method,	it	is	assumed	that	the	equivalent	stress	amplitude	is	equal	to	the	geometric	mean	of	the	stress	
amplitude	and	maximum	stress	[81].	This	is	presented	in	Eq.	(2.17).	
	
	 𝜎$< = J𝜎!$%𝜎$	 (2.17)	
	
After	applying	the	equation	into	the	strain-life	equation,	it	was	found	that	plotting	the	fatigue	life	against	
J𝜎!$%𝜀$𝐸	reduced	the	data	of	tests	with	different	stress	ratios	to	a	single	curve	[72].	It	was	proposed	that	
at	a	given	life,	𝜎$<𝜀$<	for	an	equivalent	fully	reversed	test	is	equal	to	𝜎!$%𝜀$	for	a	mean	stress	test	[72].	After	
equating	and	some	rewriting,	it	yields	Eq.	(2.18).		
	
	

𝑃=4> = J𝜎#,!$%𝜀7,$𝐸 = X𝜎'(
152𝑁'7

1) + 𝜎'(𝜀'(𝐸52𝑁'7
)@+	 (2.18)	

Where:	
§ 𝜎!$%	=	maximum	stress	
§ 𝜀$	=	strain	amplitude	
§ 𝑛*	=	support	factor	
§ 𝜎'(	=	fatigue	strength	coefficient	
§ 𝜀'( 	=	fatigue	ductility	coefficient	
§ 𝑏	=	fatigue	strength	exponent	
§ 𝑐	=	fatigue	ductility	exponent	
§ 𝑁'	=	number	of	reversals	

	
A	limitation	of	this	method	is	the	inability	to	provide	accurate	results	when	the	material	undergoes	nominal	
pressure	[28].	Since	most	fatigue	details	experience	tensile	residual	stress,	it	is	expected	that	this	method	
is	applicable	to	the	butt	weld	in	case.		
	
2.4 Linear	Elastic	Fracture	Mechanics	
Once	the	crack	is	initiated,	it	will	start	growing	in	the	direction	perpendicular	to	the	applied	load.	The	crack	
enters	the	crack	propagation	stage	which	can	be	described	physically	by	fracture	mechanics.		
 
2.4.1 Crack	modes	
There	are	three	modes	in	which	a	crack	can	extend	[67],	an	illustration	of	which	has	been	given	in	Figure	
2.8:	

§ Mode	 I:	 Mode	 in	 which	 the	 crack	 faces	 move	 apart.	 Crack	 growth	 occurs	 due	 to	 stresses	
perpendicular	to	the	crack.	

§ Mode	II:	 In-plane	shearing	or	sliding	mode;	 the	crack	surfaces	slide	apart	perpendicular	 to	 the	
crack	front.	Crack	growth	occurs	due	to	in-plane	shear	stresses.	

§ Mode	III:	Tearing	or	anti-plane	shear	mode;	the	crack	surface	slide	apart	parallel	to	the	crack	front.	
Crack	growth	occurs	due	to	anti-plane	shear	stresses.	

	
In	the	case	of	the	crack	growth	in	butt	welds,	mainly	Mode	I	crack	growth	is	dominating.	This	is	due	to	the	
fact	that	shear	cracks	quickly	grow	to	be	perpendicular	to	the	applied	stress	direction.	
	

 
Figure	2.8	Different	modes	of	crack	growth	[77]	
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2.4.2 Basis	of	Fracture	Mechanics	
Once	a	crack	grows	large	enough	to	become	a	long	crack	(LC),	fracture	mechanics	approaches	can	be	used	
to	 describe	 the	 growth	 of	 the	 crack.	 Fracture	 mechanics	 can	 be	 divided	 into	 Linear	 Elastic	 Fracture	
Mechanics	(LEFM)	and	Elastic	Plastic	Fracture	Mechanics	(EPFM).	LEFM	assumes	 linear	elastic	material	
behaviour:	the	stresses	around	the	crack	tip	are	calculated	with	the	theory	of	elasticity.	EPFM	assumes	non-
linear	material	behaviour	and	thus	accounts	for	plasticity	around	the	crack	tip.	In	LEFM,	the	stresses	around	
the	crack	tip	tend	to	infinity,	which	will	not	be	possible	in	reality	due	to	plasticity.	If	the	plastic	zone	that	is	
formed	is	small	enough,	LEFM	can	be	applied	[67].	The	discussed	theories	are	applicable	to	LEFM.	
	
2.4.2.1 Griffith	Criterion	
The	 Griffith	 Criterion	 is	 as	 follows:	 “crack	 growth	 will	 occur,	 when	 there	 is	 enough	 energy	 available	 to	
generate	new	crack	surface”	[67].	The	criterion	is	based	on	the	energy	balance	of	the	entire	cracked	body	
and	is	therefore	often	considered	to	be	a	global	criterion.	The	energy	balance	as	function	of	the	crack	length	
is	given	by	Eq.	(2.19),	the	external	supplied	energy	must	be	converted	into	several	types	of	internal	energy.	
	
	 𝑑𝑈&

𝑑𝑎 =
𝑑𝑈"
𝑑𝑎 +

𝑑𝑈$
𝑑𝑎 +

𝑑𝑈A
𝑑𝑎 +

𝑑𝑈B
𝑑𝑎 	

(2.19)	

	
	
Where:	

§ 𝑈&		 =	mechanical	energy	supplied	to	a	material	volume	(due	to	work	from	external	forces)	
§ 𝑈" 		 =	internal	elastic	energy	
§ 𝑈$	 =	surface	energy	(due	to	generation	of	new	surfaces)	
§ 𝑈A		 =	dissipated	energy	(due	to	plastic	deformation	and	friction)	
§ 𝑈B	 =	kinetic	energy	(due	to	material	velocity)	

	
The	crack	growth	often	takes	place	at	slow	speeds	and	therefore	the	kinetic	energy	can	often	be	neglected.	
For	brittle	materials,	 the	dissipated	energy	 is	often	neglected	as	 little	 to	no	plasticity	 takes	place	 in	 the	
material.	However,	for	ductile	materials,	the	dissipated	energy	may	not	be	neglected	[67].	Griffith	assumed	
brittle	material	behaviour	and	thus	the	equation	can	be	rewritten	to	Eq.	(2.20),	where	𝑈*	is	the	potential	
energy	of	the	body	[78].	
	
	 𝑑𝑈&

𝑑𝑎 −
𝑑𝑈"
𝑑𝑎 =

𝑑𝑈$
𝑑𝑎 →	−

𝑑𝑈*
𝑑𝑎 =

𝑑𝑈$
𝑑𝑎 	

	

(2.20)	

Where	
	
	 𝑈* = 𝑈" −𝑈&	 (2.21)	

 
Griffith	then	defined	the	energy	release	rate	(𝐺)	and	the	crack	resistance	force	(𝑅)	as	given	in	Eq.	(2.22).	
Here	B	is	the	thickness	of	the	material	and	𝛾	is	the	energy	required	to	form	a	unit	surface	of	material.	
	
	

𝐺 = −
1
𝐵
𝑑𝑈*
𝑑𝑎 	𝑎𝑛𝑑	𝑅 =

1
𝐵
𝑑𝑈$
𝑑𝑎 = 2𝛾	

	

(2.22)	

 
Equating	the	two,	yields	Eq.	(2.23).	Simply	said,	the	equation	above	states	that	sufficient	potential	energy	is	
needed	to	be	able	to	generate	new	free	surfaces	and	thus	grow	the	crack.	
 
	 𝐺 = 𝑅 = 2𝛾	 (2.23)	

 
2.4.2.2 Stress	intensity	factor	
The	crack	growth	criterion	can	also	be	based	on	the	elastic	stress	state	at	the	crack	tip,	the	growth	criterion	
is	 then	 characterized	 by	 the	 so-called	 stress	 intensity	 factor	 (SIF).	 This	 crack	 growth	 criterion	 is	 often	
classed	as	local,	since	solely	the	stress	state	at	the	crack	tip	is	considered	[67].	The	stress	intensity	factor	is	
a	measure	of	the	stress	intensity	at	the	crack	tip.	This	parameter	depends	on	the	applied	stress,	geometry	
(often	accounted	for	by	𝑌)	and	crack	length	and	can	be	described	by	Eq.	(2.24).	
	
	 𝐾 = 𝑌𝜎√𝜋𝑎	 (2.24)	
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The	SIF	at	which	the	crack	growth	becomes	unstable	and	the	critical	energy	release	rate	(Gc)	is	reached	is	
called	the	fracture	toughness	(Kc).	The	local	crack	growth	parameter	𝐾	can	be	related	to	the	global	crack	
growth	parameter	𝐺.	This	relation	is	found	by	equating	the	released	energy	by	extending	the	crack	by	𝛿𝑎	to	
the	work	required	to	close	the	small	opening	again	without	any	external	work	variation	[67].	This	results	
in	the	relation	as	given	in	Eq.	(2.25)	and	Eq.	(2.26).	
	
	 𝐺 =

1
𝐸
(𝐾C1 +𝐾CC1) +

1 + 𝑣
𝐸 𝐾CCC1 	 (2.25)	

	
	

𝐺 =
1 − 𝑣1

𝐸
(𝐾C1 +𝐾CC1) +

1 + 𝑣
𝐸 𝐾CCC1 	

	
(2.26)	

2.4.3 Paris	Law	
Several	phenomenological	models	have	been	formulated	to	predict	the	fatigue	life	of	structures.	The	crack	
growth	rate	𝑑𝑎/𝑑𝑁	is	related	to	a	certain	load,	which	is	often	expressed	by	the	stress	intensity	factor.	Since	
fatigue	is	often	assumed	to	occur	in	the	high	cycle	fatigue	regime,	stresses	are	low	and	the	use	of	LEFM	is	
justified	[67].		
	
In	LEFM,	the	crack	growth	rate	𝑑𝑎/𝑑𝑁	is	mostly	related	to	∆𝐾	through	the	Paris	Law,	introduced	by	Paris	
and	Erdogan	[57].	After	conducting	experiments,	Paris	and	Erdogan	found	that	the	crack	growth	could	be	
divided	into	three	regions:	

§ Region	I:	Threshold	crack	propagation	regime	
§ Region	II:	Stable	crack	propagation	regime	/	Paris	region	
§ Region	III:	Unstable	crack	propagation	regime	

	
	 𝑑𝑎

𝑑𝑁 = 𝐶(∆𝐾)!	 (2.27)	

 
The	Paris	Law,	a	linear	log-log	relationship	given	by	Eq.	(2.27)	(and	illustrated	in	Figure	2.9),	is	only	valid	
for	 Region	 II	 crack	 growth.	 In	 the	 threshold	 crack	 propagation	 regime,	 the	 crack	 grows	 slower	 than	
predicted	by	the	Paris	Law.	Stress	intensity	factor	ranges	below	the	vertical	threshold	asymptote	denoted	
by	∆𝐾6D	are	considered	to	be	too	low	to	cause	crack	growth.	In	the	unstable	propagation	regime,	the	stress	
intensity	 factor	𝐾 	slowly	 reaches	 the	 critical	 stress	 intensity	 factor	𝐾+ 	(i.e.	material	 toughness)	 and	 the	
material	fails.	The	crack	growth	accelerates	and	is	higher	than	predicted	by	the	Paris	Law.	The	parameters	
𝐶	and	𝑚	can	be	determined	from	tests	and	depend	on	the	material	and	stress	ratio	𝑅.	

	
Figure	2.9	Graphical	depiction	of	Paris-Law	crack	growth	

	
2.4.4 Similitude	concept	and	short	cracks	
In	Fracture	Mechanics	the	implicit	assumption	is	made	that	cracks	of	different	lengths,	subject	to	different	
stresses,	will	have	the	same	crack	growth	speed	as	long	as	the	applied	SIF	range	is	the	same.	This	notion	is	
called	 the	similitude	concept	and	 is	 fundamental	 for	crack	growth	calculations.	However,	 the	similitude	
concept	breaks	down	in	the	case	of	[75]:	

§ Crack	sizes	that	approach	microstructural	dimensions	
§ Crack	sizes	that	are	comparable	to	the	extent	of	local	plasticity	
§ Different	out	of	plane	stresses	
§ Different	crack	extension	mechanisms	
§ Different	fatigue	crack	closure	
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This	list	is	not	complete	but	lists	some	of	the	important	instances.	The	focus	of	this	part	will	be	on	the	first	
two:	short	cracks.	It	has	been	widely	accepted	that	a	SC	subject	to	a	certain	SIF	range	will	have	a	higher	
crack	growth	speed	than	a	LC	subject	to	that	same	SIF	range.	This	can	be	seen	in	Figure	2.10	where	the	crack	
growth	rates	are	several	orders	of	magnitude	higher	than	that	would	be	predicted	if	one	would	extrapolate	
Paris	Law	to	SC.	As	can	be	seen	from	Figure	2.10,	cracks	can	also	grow	below	the	typical	threshold	SIF.	For	
shorter	cracks,	this	threshold	is	said	to	decrease;	for	very	short	cracks	it	even	approaches	the	fatigue	limit	
stress	of	a	smooth	bar.			

	
Figure	2.10	Crack	growth	rates	of	SC	compared	to	LC	[1]	

	
In	literature,	one	can	find	several	explanations	for	this	short	crack	phenomena,	two	of	which	will	be	shortly	
discussed	 here.	 These	 are	 the	 crack	 closure	 concept,	 first	 postulated	 by	Newman	 [43],	 and	 the	Unified	
Approach	that	was	postulated	by	Vasadavon	et	al	[76].		
	
According	to	the	crack	closure	concept,	the	higher	crack	growth	speeds	can	partly	be	explained	by	crack	
closure	and	partly	by	microstructural	features	[75].	The	effect	of	crack	closure	would	be	caused	by	smaller	
cracks	having	a	smaller	plastic	wake	and	therefore	experiencing	almost	no	crack	closure,	similar	to	crack	
growth	speeds	of	specimens	at	high	R.	This	can	also	be	used	to	explain	why	crack	growth	speeds	tend	to	
decrease	as	SC	grows	longer.	Microstructural	features	such	as	grain	boundaries	also	impede	crack	growth	
[19].	As	the	crack	size	increases,	and	so	the	size	of	the	plastic	wake,	some	cracks	will	arrest	due	to	low	stress	
and	crack	closure	effects,	others	will	decrease	in	crack	growth	speed.	The	behaviour	of	the	cracks	is	highly	
dependent	on	the	maximum	stress	that	is	applied.	According	to	this	theory,	the	crack	growth	speed	can	be	
defined	by	 the	parameter	∆𝐾	which	 is	corrected	 to	∆𝐾&''	by	subtracting	 the	SIF	(𝐾E)	at	which	 the	crack	
opens.		
	
Sadananda	et	al	argue	that	the	crack	closure	concept	views	LC	as	being	the	anomaly,	since	crack	growth	
speed	for	LC	has	to	be	corrected	due	to	crack	closure	effects.	The	SC	growth	is	then	viewed	as	being	intrinsic	
to	fatigue.	However,	Sadananda	et	al	[65]	argue	that	larger	scatter	in	SC	growth	results	than	in	LC	growth	
results,	means	that	it	could	not	possibly	intrinsic	material	behaviour,	since	one	would	expect	less	scatter	as	
it	is	free	of	crack	closure.	Furthermore,	the	effect	would	be	caused	by	plastic	crack	closure	effects,	which	
have	been	experimentally	shown	to	not	be	a	major	contributing	factor	to	the	crack	closure	effect	[76].		
	
According	to	Sadananda	et	al	[65],	SC	show	anomalous	behaviour	due	to	augmented	internal	stresses.	These	
internal	stresses	arise	from	notches	or	holes	and	as	the	crack	grows	away	from	them,	their	effect	decreases	
and	thus	the	crack	growth	speed	decreases.	If	the	applied	stress	is	not	high	enough,	the	driving	force	from	
the	increasing	crack	length	will	not	increase	fast	enough	and	thus	the	crack	will	arrest,	which	can	be	seen	
in	Figure	2.10.	Since	the	internal	stresses	increase	the	maximum	and	minimum	SIF,	the	local	stress	ratio	
will	increase	as	compared	to	the	nominal	applied	stress	ratio.	This	could	be	the	reason	why	short	cracks	
show	similar	crack	growth	speeds	as	cracks	at	high	R-ratios.	According	to	this	theory,	the	crack	speed	can	
be	 defined	by	 two	parameters:	∆𝐾 	and	𝐾!$% 	that	 are	 augmented	by	 internal	 stresses	 due	 to	notches	 or	
inclusions.	The	theory	is	called	the	Unified	Approach.	
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2.4.5 Determination	of	stress	intensity	factor	
When	 using	 LEFM,	 accurate	 determination	 of	 the	 stress	 intensity	 factor	 is	 needed	 to	 provide	 proper	
estimation	of	the	crack	growth	rate	using	for	example	the	Paris	Law.	Over	the	years,	several	methods	for	
the	determination	of	the	stress	intensity	factor	have	been	developed.	Some	of	these	methods	will	now	be	
discussed.	
	
2.4.5.1 Newman-Raju	Equation	
The	Newman-Raju	equation,	Eq.	 (2.28),	was	one	of	 the	 first	empirical	 relationships	 for	determining	 the	
stress-intensity	factor	as	a	function	of	angle	(𝜑),	crack	depth	(𝑎),	crack	width	(𝑐),	plate	thickness	(𝑡)	and	
distance	to	nearest	edge	(𝑏)	[47].	An	overview	of	the	geometry	is	given	in	Figure	2.11.	It	has	been	derived	
for	semi-elliptical	surface	cracks	in	flat	plates.	The	stress-intensity	factors	needed	to	form	these	equations	
were	obtained	using	3D	finite	element	analysis.		
	
	

𝐾C = (𝑆6 +𝐻𝑆))e
𝜋𝑎
𝑄 𝐹 G

𝑎
𝑐 ,
𝑎
𝑡 ,
𝑐
𝑏 , 𝜑H	 (2.28)	

 

 
Figure	2.11	Dimensions	of	the	semi-elliptical	crack	used	in	the	Newman-Raju	equation	

 
Tensile	 (𝑆6 )	 and	 bending	 (𝑆) )	 stress	 components	 of	 the	 applied	 stress	 are	 considered	 separately.	 The	
complete	equations	for	the	bending	factor	(𝐻),	boundary-correction	factor	(𝐹)	and	the	shape	factor	(𝑄)	are	
given	in	Appendix	A.1.	The	validity	limits	of	the	equation	are	given	below.	Interesting	to	see	here	is	that	the	
equations	 are	 also	 valid	 for	𝑎/𝑐	 = 	0,	which	 can	be	 considered	an	 edge	 crack.	The	 semi-elliptical	 crack	
results	and	edge	crack	were	within	5%	of	the	finite	element	results	[47].	

§ 0 ≤ 𝑎/𝑐 ≤ 1	
§ 0 ≤ 𝑎/𝑡 ≤ 0.8	
§ 𝑐/𝑏 < 0.5		
§ 0 ≤ 𝜑 ≤ 𝜋	

	
2.4.5.2 Weld	Magnification	Factor	
Stress	 concentration	 caused	by	 for	 example	 the	presence	of	welds	 increases	 the	 stress-intensity	 factor.	
Bowness	and	Lee	[4]	defined	this	increase	by	the	magnification	factor	as	defined	in	Eq.	(2.29).		
	
	 𝑀B =

𝐾("#	*,$6&	H"6D	:6<&::	+E#+&#6<$6"E#)
𝐾("#	:$!&	*,$6&	)J6	H"6D	#E	:6<&::	+E#+&#6<$6"E#)

	 (2.29)	

	
This	 factor	 is	 usually	 combined	 with	 an	 analytical	 solution	 for	 a	 flat	 plate	 (such	 as	 the	 Newman-Raju	
equation)	to	obtain	SIF	values	for	welded	geometries.	The	general	equation	for	determining	stress-intensity	
factors	in	plates	with	stress	concentrations	has	been	derived	by	Hobbacher	[18]	as	in	Eq.	(2.30).	
	
	 𝐾 = √𝜋𝑎5𝜎!𝑌!𝑀B,! + 𝜎)𝑌)𝑀B,)7	 (2.30)	

 
Geometry	 factors	Y	and	magnification	 factors	Mk	 can	be	 found	 in	 literature,	an	example	of	which	 is	 the	
Newman-Raju	equation	that	was	discussed	in	the	previous	section.	
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2.4.5.3 Weight	Function	
Bueckner	[5]	and	Rice	[63]	have	first	introduced	the	weight	function	method.	The	most	important	feature	
of	the	weight	function	method	lies	in	the	fact	that	once	the	weight	function	for	a	cracked	body	is	determined,	
the	stress-intensity	factor	for	another,	possibly	more	complex	stress	field	can	be	determined	by	means	of	
evaluating	the	integral	given	in	Eq.	(2.31)	[16].	
	
	 𝐾 = U 𝜎(𝑥)𝑚(𝑥, 𝑎)𝑑𝑥

$

;
	 (2.31)	

	
If	a	reference	stress-intensity	factor	𝐾<	and	a	corresponding	reference	displacement	field	𝑢<	are	known,	the	
weight	 function	can	simply	be	determined	 [16].	The	 issue	 lies	not	 in	determining	 this	 reference	 stress-
intensity	 factor,	 but	 in	 the	 displacement	 field,	 which	 is	 often	 unknown.	 Petroski	 and	 Achenbach	 [59]	
proposed	a	general	approximate	crack	opening	displacement	function	𝑢<(𝑥, 𝑎)	as	given	in	Eq.	(2.32).	
	
	

𝑢<(𝑥, 𝑎) =
𝜎;
𝐻√2

n4𝐹J𝑎(𝑎 − 𝑥) +
𝐺(𝑎 − 𝑥)

K
1

√𝑎
o 					𝑤ℎ𝑒𝑟𝑒				𝐹 =

𝐾<
𝜎;√𝜋𝑎

	 (2.32)	

 
It	 can	be	 shown	 that	 this	 leads	 to	 the	weight	 function	 in	Eq.	 (2.33),	which	 can	be	used	 to	 approximate	
analytical	weight	functions	[16].	
	
	 𝑚(𝑥, 𝑎) =

2
J2𝜋(𝑎 − 𝑥)

r1 +𝑀7 G1 −
𝑥
𝑎H +𝑀1 G1 −

𝑥
𝑎H

1
s	 (2.33)	

	
Eq.	(2.33)	has	been	shown	to	not	yield	accurate	results	for	very	non-uniform	or	discontinuous	reference	
stress	fields	[16].	Furthermore,	it	was	found	that	the	three-term	variant	didn’t	always	yield	accurate	results,	
leading	to	a	more	general	form	of	this	weight	function	given	in	Eq.	(2.34)	derived	by	Fett	et	al	[13]	
	 𝑚(𝑥, 𝑎) =

2
J2𝜋(𝑎 − 𝑥)

r1 +𝑀7 G1 −
𝑥
𝑎H +𝑀1 G1 −

𝑥
𝑎H

1
+. . . +𝑀# G1 −

𝑥
𝑎H

#
s	 (2.34)	

 
Sha	and	Yang	[68],	alternatively	proposed	a	weight	function	in	the	form	of	Eq.	(2.35).	
	
	

𝑚(𝑥, 𝑎) =
2

J2𝜋(𝑎 − 𝑥)
t1 +𝑀7 G1 −

𝑥
𝑎H

7/1
+𝑀1 G1 −

𝑥
𝑎H+. . . +𝑀# G1 −

𝑥
𝑎H

#/1
u	 (2.35)	

	
Eq.	(2.34)	and	Eq.	(2.35)	have	been	shown	to	be	able	to	approximate	weight	functions	of	one-	and	two-
dimensional	cracks,	such	as	edge	cracks	in	finite	bodies.	These	weight	functions	are	therefore	usually	called	
the	Universal	Weight	Functions	[16].	To	derive	the	weight	function	for	a	semi-elliptical	crack,	a	typical	crack	
type	emanating	 from	the	weld	 toe,	Shen	et	al	 [70]	based	 their	derivation	on	 the	analytical	solution	of	a	
weight	function	for	an	embedded	circular	crack	in	an	infinite	body.		
	
For	a	semi-elliptical	crack	in	a	 finite	body,	 it	was	proposed	to	use	the	four-term	version	of	Eq.	(2.34)	to	
approximate	the	weight	function	in	the	deepest	point	of	the	crack	[70].	This	was	proposed	because	the	form	
of	the	weight	function	of	the	embedded	circular	crack	in	an	infinite	body	is	similar	to	that	of	Eq.	(2.34).	For	
that	same	reason,	Shen	et	al	[70]	proposed	to	use	the	Eq.	(2.36)	to	approximate	the	weight	function	for	the	
surface	point	of	the	crack.	
	
	

𝑚(𝑥, 𝑎) =
2
√𝜋𝑥

t1 +𝑀7 G
𝑥
𝑎H

7/1
+𝑀1 G

𝑥
𝑎H +𝑀K G

𝑥
𝑎H

K/1
u	 (2.36)	

	
The	values	for	M1,	M2,	M3	have	been	determined	by	Shen	and	Glinka	[69]	by	solving	a	set	of	equations	for	
the	surface	and	deepest	point.	These	were	subsequently	validated	with	numerical	data,	yielding	an	accuracy	
of	better	than	2%	for	the	surface	points	and	better	than	5%	for	the	deepest	point	of	the	crack	[69].		
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2.5 Total	Fatigue	Life	Modelling	
In	previous	sections,	methods	for	the	determination	of	crack	initiation	life	and	crack	propagation	life	have	
been	discussed.	This	section	will	discuss	some	of	the	methods	that	are	used	to	determine	the	total	fatigue	
life	of	a	specimen.		
 
2.5.1 S-N	Method	
The	current	practice	for	calculation	of	fatigue	life	is	by	using	so-called	S-N	or	Wöhler-curves.	S-N	curves	
describe	the	relationship	between	the	applied	stress	range	(S)	and	the	number	of	cycles	till	failure	(Nf).	The	
curves	are	based	on	curve	fitting	a	line	to	fatigue	experiments	done	on	(welded)	details.	An	example	of	such	
an	S-N	curve	is	given	in	Figure	2.12.	In	EN	1993-1-9	[41],	14	equally	spaced	S-N	curves	are	given.	Welded	
details	are	subsequently	assigned	to	a	given	detail	category,	of	which	the	number	relates	to	the	stress	range	
at	2	million	cycles.	

 
Figure	2.12	Example	of	S-N	curve	

	
The	S-N	method	is	a	so-called	global	fatigue	approach:	the	nominal	stress	in	the	cross	section	is	used	to	
determine	 the	 fatigue	 life.	 Stress-raising	 effects	 from	 local	 eccentricity,	 misalignment	 or	 other	 macro-
geometric	features	should	be	considered	when	determining	this	stress.	All	other	influencing	parameters	are	
taken	into	account	by	the	detail	category.	These	can	include	weld	shape,	discontinuities,	imperfections	and	
weld	residual	stresses.	Some	disadvantages	of	this	method	are:	

§ Failure	definition:	It	is	not	defined	clearly	whether	S-N	curves	define	the	fatigue	crack	initiation	
life	 or	 the	 total	 fatigue	 lifetime.	 The	 most	 common	 viewpoint	 is	 that	 the	 S-N	 curves	 describe	
initiation	life.	However,	in	the	many,	mostly	historical,	experimental	results	on	which	the	curves	
are	based,	many	different	failure	definitions	may	have	been	used.	

§ No	insight	in	fatigue	process:	Considering	the	aforementioned	point,	S-N	curves	are	therefore	
also	not	able	 to	determine	 the	extent	of	a	 fatigue	crack	at	a	given	point	 in	 time	and	 ignore	any	
underlying	physical	processes	at	work.	

§ Conservative:	 S-N	 curves	 are	 based	 solely	 on	 a	 lot	 of	 historical	 experimental	 results.	 The	
uncertainty	in	the	experiments	increases	scatter	of	the	data	and	thus	lowers	the	fatigue	strength	of	
the	detail	category.		

	
2.5.2 Two-Stage	Model	
The	two-stage	model	was	proposed	by	Röscher	and	Knobloch	[64].	It	is	a	local	model,	capable	of	modelling	
the	entire	fatigue	process.	The	basis	of	the	model	is	considering	the	fatigue	life	as	two	distinct	stages	with	
each	their	own	modelling	approach.	By	adding	the	fatigue	life	of	the	crack	of	the	two	stages,	fatigue	crack	
initiation	(Ni)	and	fatigue	crack	propagation	(Np),	the	total	fatigue	life	can	be	found.	The	following	methods	
were	used	for	the	determination	of	the	fatigue	life	in	the	two	respective	stages:	

§ Fatigue	Crack	Initiation:	This	stage	is	modelled	using	the	strain-life	approach.	The	crack	initiation	
location	is	identified	from	linear	FEA	as	the	point	where	the	highest	principal	stress	is	observed.	
Using	Neuber’s	rule	and	the	Smith-Watson-Topper	damage	parameter,	the	crack	initiation	life	is	
determined.	

§ Fatigue	Crack	Propagation:	This	stage	 is	modelled	using	LEFM	combined	with	eXtended	FEM.	
The	 crack	 propagation	 phase	 is	 assumed	 to	 start	 at	 a	 crack	 length	 of	 0.5	 mm.	 This	 crack	 is	
introduced	 in	 the	 model	 where	 the	 highest	 principal	 stress	 was	 observed,	 its	 direction	 being	
perpendicular	to	the	principal	stress	direction.	Crack	growth	is	based	on	Paris	Law.	XFEM	is	used	
to	be	able	to	model	the	crack	growth	independent	from	the	mesh.	The	crack	direction	is	governed	
by	the	principal	stress	direction	ahead	of	the	crack	tip.	
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2.5.3 UniGrow	model	
The	UniGrow	model	was	first	introduced	by	Noroozi	et	al	[53].	It	 is	a	local,	residual-stress	based	model,	
based	on	the	Unified	Approach	that	was	postulated	by	Vasedavan	et	al	[76].	It	is	based	on	the	idea	that	the	
fatigue	process	near	cracks	and	notches	 is	governed	by	concentrated	strains	and	stress	 in	 the	crack	 tip	
region	[34].	It	uses	the	stress	and	strain	ahead	of	the	crack	tip,	combined	with	the	strain	life	approach	to	
determine	the	fatigue	life.		
	
2.5.3.1 Basis	of	the	model	
The	model	is	based	on	the	following	assumptions	and	computational	rules	[53]:	

§ The	material	is	a	medium	made	of	elementary	blocks:	An	elementary	block	has	been	defined	
by	Neuber	[42]	as	the	smallest	material	volume	to	which	the	mechanics	of	continuum	and	bulk	
material	properties	can	be	applied.	The	assumed	material	characteristics	are	displayed	in	Figure	
2.13.	It	is	often	postulated	that	the	elementary	block	size	is	related	to	the	grain	size	[8],	however,	
no	clear	relationship	has	been	defined.	This	same	 idea	has	been	postulated	by	Forsyth	[15].	An	
important	consequence	of	these	assumptions	is	that	the	size	of	these	elementary	blocks	controls	
the	 fatigue	 crack	 propagation	 rates.	 The	 elementary	 block	 size	 is	 thus	 an	 important	 tuning	
parameter	for	the	UniGrow	method.		

	
Figure	2.13	Material	and	crack	assumptions	[53]	

	
§ The	crack	tip	assumed	to	have	a	finite	radius	(rho*)	equal	to	the	elementary	block	size:	In	

classical	fracture	mechanics	solutions,	crack	tips	are	assumed	to	be	sharp.	This	leads	to	a	singular	
point	which	cannot	be	used	for	the	determination	of	the	stresses	and	strains	ahead	of	the	crack	tip.	
To	overcome	this	issue,	Noroozi	et	al	[53]	postulated	to	model	the	crack	tip	as	having	a	finite	radius.	
Notch	theories	can	now	be	applied,	such	as	the	Creager-Paris	equations,	which	yield	non-singular	
solutions	for	stresses	and	strains	ahead	of	the	crack	tip.		

§ The	fatigue	crack	growth	can	be	considered	as	a	process	of	successive	crack	initiations:	The	
crack	 tip	 shape	 in	 this	model	 is	 similar	 to	 that	 of	 a	 small	 notch.	 Therefore	 it	was	 proposed	by	
Noroozi	et	al	[53]	to	determine	the	fatigue	crack	life	of	the	first	elementary	block	ahead	of	the	crack	
tip	using	the	strain-life	approach.	

§ Stress	 distribution	 ahead	 of	 crack	 tip	 is	 altered	 by	 residual	 stresses:	When	 a	 load	 is	 first	
applied	on	a	cracked	body,	the	first	reversal	can	cause	plastic	deformations	at	the	crack	tip.	The	
material	will	start	to	plastically	deform	at	point	B’	in	Figure	2.14.	In	the	subsequent	reversal,	the	
load	is	released,	and	the	material	will	deform	back.	However,	due	to	the	Bauschinger	effect,	 the	
plastic	deformation	in	this	reversal	will	be	smaller	than	in	the	initial	reversal.	This	causes	a	part	
near	the	crack	tip	to	stay	plastically	deformed	[53].		

	
Figure	2.14	SIF	as	a	function	of	time	and	stress-strain	curve	
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The	 increased	stiffness	of	 this	plastic	zone	at	 the	crack	 tip	prevents	closure	of	 the	material	 just	
behind	 the	 crack	 tip	 [54].	 This	 phenomenon	 has	 been	 observed	 both	 experimentally	 and	
numerically	[53],	[54].	One	way	of	modelling	this	crack	opening	is	by	symmetrically	applying	the	
compressive	part	of	the	residual	stress	ahead	of	the	crack	tip	onto	the	crack	faces	just	behind	the	
circular	crack	tip	[53].	

	
Figure	2.15	Mirroring	of	the	residual	stress	ahead	of	the	crack	tip	to	the	crack	surface	behind	the	crack	tip	

	
Due	to	the	residual	stresses	created	in	the	first	two	reversals,	 the	maximum	stress	ahead	of	the	
crack	tip	can’t	be	reached	in	the	third	reversal	[54].	This	can	be	modelled	by	quantifying	the	effect	
of	 the	 residual	 stress	as	 a	 stress	 intensity	 factor	Kr.	Kr	 is	determined	using	 the	weight	 function	
method	and	the	stress	applied	to	the	crack	faces	just	behind	the	crack	tip.	The	maximum	stress-
intensity	factor	that	is	‘felt’	by	the	material	at	the	crack	tip	is	given	by	Eq.	(2.37).	
	

	 𝐾!$%,6E6 = 𝐾!$% +𝐾<&:	 (2.37)	
	
The	resultant	minimum	stress-intensity	 factor	 is	unaltered.	This	means	that	 the	stress-intensity	
factor	range	now	has	to	be	determined	using	Eq.	(2.38).	

	
	 ∆𝐾6E6 = 𝐾!$%,6E6 −𝐾!"#,6E6 = ∆𝐾 + 𝐾<&:	 (2.38)	
	 	 	
Note	that	this	method	is,	in	its	basis,	very	similar	to	the	one	proposed	in	the	Unified	Approach.	In	the	Unified	
Approach,	it	is	assumed	that	the	crack	growth	speed	can	be	described	by	two	driving	variables,	𝐾!$%	and	
∆𝐾.	It	is	then	postulated	that	internal	stresses	augment	𝐾!$%	and	𝐾!"#.	As	∆𝐾	remains	the	same,	the	local	
stress	ratio	at	the	crack	tip	alters	as	opposed	to	the	nominally	applied	one.		
	
2.5.3.2 Calculation	Procedure	
The	calculation	procedure	proposed	by	Noroozi	et	al	[53]	can	be	divided	into	roughly	five	steps.	These	are	
given	in	Figure	2.16	and	described	below.	

1. Determination	of	the	stress-intensity	factor:	Noroozi	et	al	[53]	propose	evaluating	the	stress-
intensity	factor	using	the	weight	function	method.	First,	the	stresses	in	the	proposed	crack	plane	
have	 to	 be	 determined	 using	 LE	 FEA.	 Then	 the	 SIF	 can	 be	 determined	 by	 applying	 the	weight	
function.	

2. Determination	of	the	elastoplastic	stress	distribution	ahead	of	the	crack	tip:	In	the	UniGrow	
model,	the	crack	tip	is	assumed	to	have	a	finite	radius.	Therefore,	Noroozi	et	al	[53]	argue	that	the	
Creager-Paris	equations	can	be	used	to	determine	the	elastic	stress	distribution	ahead	of	the	crack	
tip.	FEA	calculations	by	De	Jesus	et	al	[10]	show	this	to	be	a	good	assumption.	It	is	subsequently	
proposed	 to	 transfer	 these	 elastic	 stresses	 into	 elastoplastic	 stresses	 by	 using	 the	 multiaxial	
plasticity	correction	postulated	by	Moftakhar	et	al	[38].	General	uniaxial	Neuber	correction	is	not	
applicable,	because	the	stress	state	ahead	of	the	crack	tip	is	multiaxial.	

3. Determination	of	the	residual	stress	distribution	and	residual	SIF	ahead	of	the	crack	tip:	The	
residual	stress	distribution	ahead	of	the	crack	tip	can	be	determined	with	Eq.	(2.39)	[53].	

	 𝜎<(𝑥) = 𝜎!$%(𝑥) − 𝛥𝜎(𝑥)	 (2.39)	
This	is	then	symmetrically	applied	to	the	crack	face,	as	has	been	discussed	before.	Using	the	same	
weight	function	as	in	the	first	step,	the	residual	stress	intensity	factor	can	be	determined.	

4. Determination	of	the	elastoplastic	stress	and	strain	on	first	elementary	block	ahead	of	the	
crack	tip:	After	calculating	the	corrected	maximum	SIF	and	SIF	range	according	to	the	formulas	
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before,	the	Creager-Paris	equations	can	again	be	used	to	determine	the	linear	elastic	stress	ahead	
of	the	crack	tip.	Noroozi	et	al	[53]	then	proposes	to	take	the	average	of	the	elastic	stress	on	the	first	
elementary	block.	This	can	subsequently	be	converted	into	an	elastoplastic	stress	and	strain	range	
using	the	uniaxial	Neuber	Method	[53].	

5. Determination	of	the	initiation	life	of	the	elementary	block	ahead	of	the	crack	tip:	Using	the	
elastoplastic	 stresses	 and	 strains,	 the	 fatigue	 life	 can	be	determined	using	 a	 strain-life	method.	
Noroozi	et	al	[53]	propose	to	use	the	Smith-Watson-Topper	damage	parameter.		

6. Extend	crack	by	one	elementary	block	and	go	back	to	step	1.	
	

	
Figure	2.16	Global	procedure	used	in	the	UniGrow	method	as	proposed	by	Noroozi	et	al	[53]	
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3 Implementation,	Verification	and	Validation	of	the	
UniGrow	Method	

	
Before	any	calculations	can	be	made	using	the	UniGrow	method,	the	model	first	needs	to	be	implemented.	
Even	more	important	is	the	verification	of	the	model	with	previous	research	to	make	sure	it	functions	well.	
One	such	research	has	been	conducted	by	De	Jesus	and	Correia	[10]:	the	UniGrow	method	was	implemented	
to	generate	crack	growth	results	for	CT	specimens	made	of	P355NL1	steel.	Detailed	data	from	this	research	
is	available	and	will	be	used	for	the	verification	of	the	implemented	UniGrow	method.		
	
Two	versions	of	the	UniGrow	method	will	be	implemented	to	see	how	the	two	versions	behave	compared	
to	each	other.	The	main	difference	between	the	two	being	the	method	for	calculating	the	plastic	residual	
stress	ahead	of	the	crack	tip.	This	can	be	done	analytically	(relatively	quick	method)	or	numerically	(more	
thorough,	 time-consuming	 method).	 The	 analytical	 UniGrow	 implementation	 (referred	 to	 as	 analytical	
UniGrow)	will	be	based	on	 the	original	UniGrow	method	by	Noroozi	et	al	 [53].	The	numerical	UniGrow	
implementation	(referred	to	as	numerical	UniGrow)	is	based	on	the	UniGrow	method	that	has	been	used	by	
De	Jesus	and	Correia	[10].		
	
Both	analytical	and	numerical	UniGrow	implementation	will	then	be	used	to	predict	crack	growth	rates	in	
CT	specimens	made	from	S355	steel.	This	is	the	validation	part	of	this	chapter.	The	data	on	the	specimens	
and	crack	growth	rates	will	be	taken	from	De	Jesus	et	al	[11],	which	have	conducted	fatigue	tests	at	several	
stress	ratios	from	R	=	0.0	to	R	=	0.75.		
	

	
Figure	3.1	Dimensions	of	a	CT	specimen	[11]	

	
The	main	 geometry	 that	will	 be	 researched	 in	 this	 chapter	 is	 the	 Compact	 Tension	 (CT)	 specimen.	 CT	
specimens	are	 rectangular	plates	of	 steel	with	a	pre-cut	 slot	and	 two	holes	where	a	 load	 is	 applied.	An	
example	of	a	CT	specimen	is	given	in	Figure	3.1.	Due	to	their	geometry,	low	forces	cause	high	SIF	values.	
Combined	with	their	relatively	small	size,	they	are	especially	suitable	for	fatigue	testing.	CT	specimens	are	
used	to	evaluate	the	crack	growth	rates	in	materials	and	determine	the	Paris	Law	parameters.		
	
The	highly	standardized	testing	and	fabrication	procedure	and	the	absence	of	weld	residual	stresses	mean	
that	data	from	these	tests	provides	an	excellent	starting	point	for	the	evaluation	of	the	UniGrow	method.	
Pre-cracking	of	the	CT	specimens	means	that	the	crack	is	always	in	the	crack	propagation	or	LC	regime.	
Verification	and	validation	done	in	this	chapter	is	thus	solely	valid	for	crack	growth	rate	prediction	when	
the	crack	is	in	the	crack	propagation	stage.	
	
This	 chapter	 is	 divided	 into	 four	 parts.	 It	 will	 start	 with	 the	 verification	 of	 the	 analytical	 UniGrow	
implementation,	 followed	 by	 the	 verification	 of	 the	 numerical	 UniGrow	 implementation.	 Lastly,	 the	
validation	of	the	UniGrow	method	against	experimental	results	from	De	Jesus	et	al	[11]	will	be	presented.	
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3.1 Verification	of	analytical	UniGrow	implementation	
As	one	of	the	main	objectives	of	this	research	is	to	obtain	a	method	which	can	be	used	for	quick	computation	
of	the	fatigue	life,	the	analytical	version	of	the	UniGrow	method	is	implemented	first.	This	implementation	
determines	crack	growth	rates	without	the	aid	of	FEA	and	is	based	solely	on	analytical	methods.	First	the	
validation	data	will	be	presented,	then	the	implemented	UniGrow	model	is	discussed	and	lastly	the	results	
are	presented	and	discussed.	
 
3.1.1 Model	description	and	model	data	
De	 Jesus	 et	 al	 [10]	 have	 done	 fatigue	 tests	 on	 CT	 specimens	 made	 of	 P355NL1	 steel,	 its	 dimensional	
characteristics	are	given	in	Figure	1.	The	material	data	is	given	in	Table	3.1.	The	strain	life	parameters	and	
the	material	properties	were	determined	from	43	fatigue	tests	on	smooth	specimens	under	R	=	0	and	R	=	-
1.	The	correlation	between	the	fitted	parameters	and	the	data	was	high:	R2	>	0.91	for	𝜎'(	and	𝑏	and	R2	>	0.95	
for	the	other	parameters.	The	material	block	size,	𝜌∗,	was	found	to	be	3	x	10-5	m.	This	will	be	taken	as	true,	
since	this	section	is	aimed	at	verifying	the	model	rather	than	validating	the	model.	
	

Dimensions	 Material	parameters	 Strain-life	parameters	
	𝑾	 40	mm	 𝐸	 205.2	GPa	 𝜎'(	 1005.5	MPa	
𝒂𝒏	 8	mm	 𝑣	 0.275	 𝑏	 -0.1033	
𝑩	 4.35	mm	 𝐾(	 948.35	MPa	 𝜀'( 	 0.3678	
𝑳 50	mm	 𝑛′	 0.1533	 𝑐	 -0.5475	
𝑯 48	mm	 	 	 	 	
𝒉 22	mm	 	 	 	 	

	
Table	3.1	Material	parameters	and	dimensions	of	the	CT	specimens	[10]	

	
The	Paris	 law	constants	were	obtained	from	tests	on	a	total	of	five	CT	specimens:	two	under	R	=	0,	two	
under	R	=	0.5	and	one	under	R	=	0.7.	Correlation	between	fitted	parameters	and	the	data	is	high:	R2	>	0.95	
for	all	stress	ratios.	
	
De	Jesus	et	al	[10]	have	implemented	the	five	steps	of	the	UniGrow	model	as	follows:	

1. Determination	of	the	elastoplastic	stress	distribution	ahead	of	the	crack	tip:	Has	been	done	
using	a	2D	elastoplastic	FEA	model	of	half	the	CT	specimen.	The	authors	used	plane	stress	quadratic	
triangular	elements,	Mises	yield	theory	with	multilinear	kinematic	hardening	to	model	the	plastic	
behaviour.	

2. Determination	of	the	plastic	residual	stress	intensity	factor:	Using	the	residual	stress	from	the	
previous	step,	Kres	was	determined	using	the	universal	weight	function.		

3. Determination	of	the	elastoplastic	stress	and	strain	on	first	elementary	block	ahead	of	the	
crack	tip:	This	has	been	done	using	the	Creager-Paris	equations	in	combination	with	the	Neuber	
uniaxial	plasticity	correction.	

4. Determination	 of	 the	 initiation	 life	 of	 the	 first	 elementary	 block	 ahead	 of	 crack	 tip:	The	
initiation	life	was	determined	using	the	Smith-Watson-Topper	damage	parameter.	

	
The	 verification	 data	 has	 been	 determined	 with	 a	 more	 advanced,	 numerical	 implementation	 of	 the	
UniGrow	model.	However,	the	difference	is	limited	to	the	determination	of	the	plastic	residual	SIF.	If	the	
outcome	of	this	step	shows	large	differences	with	the	model	by	De	Jesus	et	al	[10],	the	relations	given	by	De	
Jesus	et	al	can	be	used	to	verify	the	last	step.	
	
3.1.2 Global	UniGrow	implementation	
The	global	steps	of	the	UniGrow	method	will	be	performed	as	follows:	

1. Determination	of	the	applied	stress	intensity	factor:	The	applied	stress	intensity	factor	will	be	
established	using	an	analytical	equation	derived	by	Newman	and	Srawley	[73].	This	topic	will	be	
further	addressed	in	chapter	3.1.3.1.	

2. Determination	 of	 the	 elastoplastic	 stress	 distribution	 ahead	 of	 the	 crack	 tip:	The	 elastic	
stresses	ahead	of	the	stress	tip	will	be	determined	using	Creager-Paris	equations.	These	will	then	
be	 corrected	 for	 using	 analytical	 elastoplastic	 correction	 method.	 This	 topic	 will	 be	 further	
addressed	in	chapter	3.1.3.2.	
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3. Determination	of	the	residual	stress	intensity	factor:	Using	the	weight	function	method	and	the	
elastoplastic	stresses	from	the	previous	step,	the	plastic	residual	SIF	will	be	determined.	Further	
background	on	this	will	be	given	in	chapter	3.1.3.3.	

4. Determination	of	the	elastoplastic	stress	and	strain	on	first	elementary	block	ahead	of	the	
crack	tip:	This	will	be	done	using	 the	Creager-Paris	equations	 in	combination	with	 the	Neuber	
uniaxial	plasticity	correction.	This	will	be	further	discussed	in	chapter	3.1.3.4	for	background.	

5. Determination	 of	 the	 initiation	 life	 of	 the	 first	 elementary	 block	 ahead	 of	 crack	 tip:	The	
initiation	life	will	be	determined	using	the	Smith-Watson-Topper	damage	parameter.	This	will	be	
further	addressed	in	chapter	3.1.3.5.	

	
These	steps	have	been	discussed	in	more	detail	in	section	2.5.3	and	apart	from	the	first	step,	all	steps	will	
be	implemented	as	recommended	by	Noroozi	et	al	[53]	in	order	to	see	how	the	initially	proposed	UniGrow	
method	performs.	Moreover,	the	initially	proposed	UniGrow	method	is	almost	analytical	and	therefore	also	
the	computationally	least	intensive	method.			
	
	The	first	step	will	be	altered	because	the	determination	of	the	stress	intensity	factor	of	the	CT	specimen	
with	a	weight	function	is	considered	outside	of	the	scope	of	this	research.	The	weight	function	method	will	
be	replaced	by	an	empirical	formula	derived	by	Newman	[44]	and	Srawley	[73].	This	can	be	seen	in	the	
altered	calculation	procedure	in	Figure	3.2.	

	
Figure	3.2	Global	calculation	procedure	of	analytical	UniGrow	method	

	
3.1.3 Implemented	methods	
The	UniGrow	model	 roughly	 consists	 of	 five	modules	 for	 the	 determination	 of	 the	 instantaneous	 crack	
growth	rate,	the	implementation	of	the	modules	for	this	case	is:		
	
3.1.3.1 Determination	of	stress	intensity	factor	
Analytical	formulas	are	available	for	the	determination	of	the	stress	intensity	factor	of	a	CT	specimen.	The	
most	commonly	used	equation	is	the	empirical	relation	by	Newman	[44]	and	Srawley	[73]	given	in	Eq.	(3.1).	
This	equation	 is	 recommended	by	ASTM	E647	Standard	 for	use	 in	 fracture	mechanics	calculations.	The	
determination	of	the	stress	intensity	factor	from	2D	equations	is	a	slight	simplification	of	the	actual	case:	in	
actuality	the	SIF	varies	along	the	crack	front	[80],	where	the	centre	value	is	slightly	higher	than	the	values	
on	the	edges.	The	Newman-Srawley	equation	presents	an	average	over	the	thickness.	
	
The	equation	is	fitted	to	data	from	three	papers	that	have	conducted	an	analytical	evaluation	of	the	stress	
intensity	factor	of	a	CT	Specimen.	It	has	been	based	on	the	assumption	that	crack	growth	takes	place	at	the	
end	of	the	slot	perpendicular	to	the	applied	force,	which	is	generally	the	case	for	CT	specimens.	The	accuracy	
of	the	equation	proposed	by	Srawley	[73]	is	±0.4%.	The	equation	is	valid	in	the	range	0.2 < 𝛼 < 1.	
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	 𝐾C =

𝐹
𝐵√𝑊

2 + 𝛼

(1 − 𝛼)
K
1
(0.886 + 4.64𝛼 − 13.32𝛼1 + 14.72𝛼K − 5.6𝛼O)	𝑤ℎ𝑒𝑟𝑒	𝛼 =

𝑎
𝑊	 (3.1)	

	
3.1.3.2 Determination	of	elastoplastic	stress	distribution	ahead	of	crack	tip		
The	second	step	in	the	analytical	UniGrow	model	is	the	determination	of	the	elastoplastic	stresses	ahead	of	
the	crack	tip.	These	play	a	vital	role	in	the	determination	of	the	plastic	residual	SIF.	In	the	analytical	method,	
the	 elastic	 stresses	 are	 determined	 first,	 after	 which	 a	 correction	 method	 is	 used	 to	 determine	 the	
elastoplastic	stresses.	
 
Elastic	Stress	
The	 elastic	 stress	 ahead	 of	 the	 crack	 tip	will	 be	 determined	 using	 the	 Creager-Paris	 equations,	 as	was	
proposed	by	Noroozi	 et	 al	 [53].	The	Creager-Paris	 equations	have	been	derived	after	observations	 that	
blunting	of	the	crack	tip	takes	place	in	stress	corrosion	cracks	(cracks	caused	by	stress	and	environmental	
factors)	[9].	Blunting	of	the	crack	tip	has	also	been	observed	in	cracks	that	undergo	cyclic	plasticity,	hence	
it	has	been	proposed	by	Noroozi	et	al	[53]	to	use	these	formulas	for	the	calculation	of	elastic	stresses	ahead	
of	the	crack	tip.	

	
Figure	3.3	Model	of	elliptical	crack	used	for	determination	of	Creager-Paris	equations	

	
The	analytical	equations	are	based	on	a	crack	in	the	shape	of	an	elliptical	notch,	as	displayed	in	Figure	3.4.	
Here,	the	tip	of	the	notch	with	a	radius	of	𝜌,	resembles	the	blunt	crack	tip.	The	origin	of	the	equations	lies	at	
the	focal	point	of	the	ellipse,	which,	if	𝜌 ≪ 𝑎,	lies	at	approximately	𝜌/2.	The	equations	are	therefore	only	
considered	to	be	valid	for	long	cracks	with	a	notch	of	a	finite	radius.	For	mode	I	cracking,	the	formulas	are	
given	in	Eq.	(3.2)	-	(3.4)	[9].	
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These	stress	fields	are	very	similar	to	the	Westergaard	solution	for	a	Mode	I	sharp	crack	in	an	infinite	plane	
[79]	given	in	Eq.	(3.5)	-	(3.7).	They	differ	only	by	the	last	term,	which	is	dependent	on	the	radius	of	curvature	
of	the	crack	tip.	For	𝑟 ≫ 𝜌,	the	term	can	be	neglected.	This	implies	that	blunting	of	the	notch	disturbs	the	
stress	field	of	a	planar	crack	in	the	region	near	the	notch.	Further	away	from	the	notch,	the	stress	field	is	
similar	to	the	one	described	by	the	Westergaard	equations	for	sharp	crack	tips.	
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A	simplification	of	the	Creager-Paris	equations	can	be	made	based	upon	the	fact	that	solely	the	stresses	in	
a	straight	line	ahead	of	the	crack	tip	(i.e.	𝜃	=	0)	are	considered	to	drive	fatigue	crack	growth.	The	Creager-
Paris	equations	reduce	to	a	simple	 function	of	 the	distance	ahead	of	 the	crack	tip	as	given	 in	Eq.	(3.8)	 -	
(3.10).		
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	 𝜏%P = 0	 (3.10)	
	
Shear	stress	is	responsible	for	changes	in	crack	direction	by	altering	the	direction	of	the	principal	stresses	
ahead	of	the	crack	tip.	By	only	considering	the	stresses	in	the	plane	directly	ahead	of	the	crack	tip	(𝜃	=	0),	
the	 shear	 stress	 reduces	 to	 zero.	The	 calculated	 stresses	 ahead	of	 the	 crack	 tip,	𝜎% 	and	𝜎P ,	 are	 thus	 the	
principal	stresses.	This	leads	to	the	following	implication:	due	to	the	absence	of	shear	stresses,	the	crack	is	
only	able	to	grow	in	a	straight	line.	This	implication	fits	well	with	the	UniGrow	method;	if	the	crack	would	
change	direction,	the	weight	function	method,	would	no	longer	be	applicable.	The	current	implementation	
of	 the	UniGrow	method	thus	seems	solely	suitable	 for	crack	growth	 in	one	plane,	 i.e.	pure	Mode	I	crack	
propagation.		

	
Figure	3.4	Elliptical	crack	with	x-y	coordinate	system	at	the	tip	

	
Elastoplastic	stress	
From	Eq.	(3.8)	it	becomes	clear	that	the	stress	at	the	crack	tip	is	uniaxial,	since	the	𝜎%	reduces	to	zero	at	the	
crack	tip	(free	surface).	The	stress	state	ahead	of	the	crack	tip,	however,	is	multiaxial:	biaxial	for	plane	stress	
cases	and	triaxial	for	plane	strain	cases,	the	directions	given	in	Figure	3.5.	This	implies	that	the	uniaxial	
Neuber	rule,	introduced	in	section	2.3.3.	cannot	be	applied	to	determine	the	plastic	stresses	ahead	of	the	
crack	tip.	Two	widely	applied	methods	are	available	for	this	correction:	the	Hoffmann-Seeger	method	[24]	
and	the	method	by	Moftakhar	et	al	[38].		

	
Figure	3.5	Stress	state	ahead	of	the	crack	tip	

	
The	two	methods	are	very	similar	in	their	basis,	both	extend	the	Neuber	rule,	albeit	in	different	ways:	

§ Hoffmann-Seeger:	 Based	 on	 equating	 the	 Von	 Mises	 equivalent	 elastic	 strain	 density	 to	 the	
equivalent	plastic	strain	density.	The	Neuber	rule	is	modified	by	changing	the	elastic	and	plastic	
stresses/strains	to	Von	Mises	equivalent	elastic	and	plastic	stresses/strains.		
	

	 𝜎&Q$ 𝜀&Q$ = 𝜎&Q& 𝜀&Q& 	 (3.11)	
	

§ Moftakhar	et	al:	Based	on	equating	the	total	elastic	strain	energy	density	to	the	total	plastic	strain	
energy	density.	The	Neuber	rule	is	applied	as	a	summation	of	all	strain	energy	density.	

	
	 𝜎"R$𝜀"R$ = 𝜎"R&𝜀"R& 	 (3.12)	

	
For	the	principal	directions,	this	equation	reduces	to:	
	

	 𝜎7$𝜀7$ + 𝜎1$𝜀1$ + 𝜎K$𝜀K$ = 𝜎7&𝜀7& + 𝜎1&𝜀1& + 𝜎K&𝜀K&	 (3.13)	
	
The	two	methods	shall	now	be	discussed.	
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Hoffmann-Seeger	method	
Hoffmann	 and	 Seeger	 developed	 a	method	 to	 determine	 the	 notch	 stresses	 and	 strains.	 The	 following	
assumptions	have	been	made	by	the	authors:	

§ Hencky’s	flow	rule	holds	
§ Equivalent	stress:	Von	Mises	equivalent	stress	is	generally	assumed	to	hold	for	steels.	
§ Proportional	loading:	This	means	that	it	is	assumed	that	the	ratio	of	in-plane	principal	strains	is	

constant.	This	generally	holds	for	notch	strains	[38],	but	not	for	other	situations.		
§ Plane	stress:	Out-of-plane	principal	stress	is	zero.	
§ Principal	stresses	and	strain	axes	are	fixed	in	orientation:	Since	plane	stress	is	assumed,	the	

out-of-plane	shear	stresses	are	zero.	The	in-plane	shear	stress	directly	ahead	of	the	crack	tip	is	zero	
(see	Eq.	(3.10)).	This	means	that	the	elastic	stresses	are	in	fact	principal	stresses.	

	
First,	the	Von	Mises	equivalent	elastic	stress	and	strain	has	to	be	determined	using	Eq.	(3.14)	and	(3.15).	
	
	 𝜎&Q& = J(𝜎7&)1 + (𝜎1&)1 − 𝜎7&𝜎1&	 (3.14)	
	
	

𝜀&Q& =
𝜎&Q&

𝐸 	 (3.15)	

	
The	equivalent	elastic-plastic	stress	and	strain	can	be	determined	by	solving	the	modified	Neuber	rule	in	
combination	with	the	modified	Ramberg-Osgood	as	given	in	Eq.	(3.16)	and	(3.17).	
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Using	the	equation	above	and	the	Ramberg-Osgood	relation,	Eq.	(3.18)	and	(3.19)	can	be	found.	
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Now,	this	equivalent	stress	needs	to	be	converted	into	the	principal	stresses.	It	is	assumed	that	Hencky’s	
flow	rule	holds,	which	means	that	the	maximum	principal	strain	𝜀7	can	be	expressed	as	in	Eq.	(3.20).	
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The	terms	on	the	right	side	of	Eq.	(3.20)	can	be	rewritten	as	given	in	Eq.	(3.21)	and	(3.22).	
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�𝜎1$ = �

1
2 −

G12 − 𝑣H 	𝜎&Q
$

𝐸𝜀&Q$
			� 𝜎1$	 (3.22)	

	
This	leads	to	Eq.	(3.23).	
	 𝜀7 =

𝜀&Q$

𝜎&Q$
(𝜎7$ − 𝑣( ∗ 𝜎1$)	 (3.23)	
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Where:	
	 𝑣( =

1
2 − P

1
2 − 𝑣Q

	𝜎&Q$

𝐸𝜀&Q$
	 (3.24)	

	
In	a	similar	way,	the	strain	in	the	other	principal	direction	can	be	determined.	This	yields	Eq.	(3.25).	
	
	 𝜀1 =

𝜀&Q$

𝜎&Q$
(𝜎1$ − 𝑣( ∗ 𝜎7$)	 (3.25)	

	
The	ratio	between	the	stresses	can	then	be	determined	as	in	Eq.	(3.26).	
	
	

𝑎 =
𝜎1$

𝜎7$
=

𝜀1
𝜀7
+ 𝑣(

1 + 𝑣( 𝜀1𝜀7
	 (3.26)	

	
The	assumption	of	a	constant	surface	strain	ratio	leads	to	Eq.	(3.27).	
	
	

𝜀1
𝜀7
=
𝜀1&

𝜀7&
→ 	𝑎 =

𝜎1$

𝜎7$
=

𝜀1&
𝜀7&
+ 𝑣(

1 + 𝑣( 𝜀1
&

𝜀7&
	 (3.27)	

	
The	principal	stresses	and	strains	can	then	be	calculated	from	the	equivalent	stress	as	given	in	Eq.	(3.28)	
and	(3.29).	
 
	 𝜎7$ = 𝜎&Q$

1
√1 − 𝑎 + 𝑎1

	 (3.28)	

 
	 𝜎1$ = 𝑎𝜎7$	 (3.29)	

 
Moftakhar	method		
Moftakhar	 et	 al	 [38]	 developed	 a	 method	 to	 determine	 the	 notch	 stresses	 and	 strains.	 The	 following	
assumptions	have	been	made	by	the	authors:	

§ Hencky’s	flow	rule	holds	
§ Equivalent	stress:	Von	Mises	equivalent	stress	is	generally	assumed	to	hold	for	steels.	
§ Proportional	loading:	This	means	that	it	is	assumed	that	the	ratio	of	in-plane	principal	strains	is	

constant.	This	generally	holds	for	notch	strains	[38],	but	not	for	other	situations.		
§ Principal	stresses	and	strain	axes	are	fixed	in	orientation:	It	is	assumed	that	the	stresses	and	

strains	ahead	of	the	crack	tip	are	in	the	principal	direction.		
§ Masing	behaviour:	It	is	implicitly	assumed	in	this	method	that	the	material	experiences	Masing	

behaviour	
	
The	Moftakhar	method	use	nearly	the	same	assumptions	as	the	Hoffman-Seeger	method,	but	is	also	suitable	
for	plane	strain	situations.	Another	difference	is	that	the	method	is	instead	based	on	equating	the	plastic	
strain	energy	density	to	the	elastic	strain	energy	density	of	each	direction,	as	given	in	Eq.	(3.30)	-	(3.32).	
	
	 𝜎77$ 𝜀77$ = 𝜎77& 𝜀77& 	 (3.30)	
	
	 𝜎11$ 𝜀11$ = 𝜎11& 𝜀11& 	 (3.31)	
	
	 𝜎KK$ 𝜀KK$ = 𝜎KK& 𝜀KK& 	 (3.32)	
	
	
Using	Hencky’s	 total	deformational	equations	are	 then	used	 to	be	able	 to	define	 the	strains	 in	different	
directions.	This	yields	Eq.	(3.33).	
	
	

𝜀"R =
1 + 𝑣
𝐸 𝜎"R$ −

𝑣
𝐸 𝜎BB

$ 𝛿"R +
3
2
𝜀&Q
*

𝜎&Q$
𝑆"R 	 (3.33)	
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Where:	
	 𝜎&Q$ =

1
√2

J(𝜎77$ − 𝜎11$ )1 + (𝜎11$ − 𝜎KK$ )1 + (𝜎KK$ − 𝜎77$ )1	 (3.34)	

	
	 𝜎BB$ = 𝜎77$ + 𝜎11$ + 𝜎KK$ 	 (3.35)	
	
	 𝑆"R = 𝜎"R$ −

1
3𝜎BB

$ 𝛿"R 	 (3.36)	

	
	 𝛿"R = 1	𝑓𝑜𝑟	𝑖 = 𝑗	𝑎𝑛𝑑	𝛿"R = 0	𝑓𝑜𝑟	𝑖 ≠ 𝑗		 (3.37)	
	
	 𝜀&Q

* = 𝑓(𝜎&Q$ )	 (3.38)	
	
It	 is	 assumed	 that	𝑓5𝜎&Q$ 7	is	 identical	 to	 the	 relationship	 between	 stress	 and	plastic	 strain	 in	 a	 uniaxial	
tension	or	compression	test.	Which	means	that	the	equivalent	plastic	strain	can	be	determined	as	given	in	
Eq.	(3.39).	
	

𝜀&Q
* = �

𝜎&Q$

𝐾( �

7
##
	 (3.39)	

	
Using	the	Hencky’s	total	deformational	equations	and	the	Neuber,	a	set	of	six	equations	with	six	unknowns	
can	 be	 formed,	 given	 in	 Eq.	 (3.40).	 These	 equations	 hold	 for	 a	 general	 tri-axial	 stress	 state	 and	 can	 be	
reduced	when	e.g.	plane	stress	is	assumed.	In	that	case	𝜀KK$ 	becomes	a	function	of	𝜎77$ 	and	𝜎11$ ,	making	it	a	
redundant	variable.	The	last	equation	also	reduces	to	zero,	 leaving	four	functions	and	four	variables.	By	
solving	these	equations,	one	can	find	the	plastic	stresses	and	strains	at	a	given	point	ahead	of	the	crack	tip.	
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𝜎KK$ 𝜀KK$ = 𝜎KK& 𝜀KK&

	 (3.40)	

	
Determination	of	residual	stress	
Once	the	elastoplastic	stresses	ahead	of	the	crack	tip	are	determined,	the	plastic	residual	stress	at	a	given	
point	𝑥" 	ahead	of	the	crack	tip	can	be	determined	using	Eq.	(3.41).			
	
	 𝜎<(𝑥") = 𝜎P$(𝑥") − 	𝛥𝜎%$(𝑥")	 (3.41)	
	
It	has	been	proposed	by	Noroozi	et	al	[53],	that	only	the	compressive	part	of	the	residual	stress	ahead	of	the	
crack	tip	has	to	be	mirrored	onto	the	crack	faces	to	mimic	the	crack	opening.	The	compressive	region,	𝑥"#6	
in	Figure	3.6,	is	also	called	the	integration	domain	[33].	The	conversion	of	the	x-coordinate	of	the	stress	to	
the	coordinate	on	the	r-axis	(starting	at	the	crack	end)	is	given	by	Eq.	(3.42).	The	r-coordinate	at	which	the	
compressive	residual	stress	becomes	tensile	is	denoted	as	rstart.		
	
	 𝑟" = 𝑎 − 2𝜌∗ − 𝑥" 	 (3.42)	
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Figure	3.6	Depiction	of	mirroring	of	plastic	residual	stresses	ahead	of	the	crack	tip	onto	crack	face	

	
Programming	flowchart	
The	flowchart	for	this	part	of	the	UniGrow	model	is	presented	in	Figure	3.7.	It	has	been	converted	into	a	
separate	module	that	is	part	of	the	larger	UniGrow	model.	The	model	consists	of	a	loop	starting	at	x = 0	and	
ending	at	x = a − 2ρ∗,	since	this	denotes	the	length	of	the	crack	face.	On	each	point,	first,	the	elastic	stresses	
are	 determined	 and	 subsequently	 converted	 to	 elastoplastic	 stresses.	With	 these	 stresses,	 the	 residual	
stress	can	be	determined.	If	the	residual	stress	is	compressive,	the	stress	is	added	to	the	stress	on	the	crack	
face.	Once	the	residual	stress	is	tensile,	the	loop	stops	and	a	starting	point	(rstart)	is	defined.	
	
At	the	same	time,	a	checking	parameter	(xcheck)	is	defined.	This	parameter	is	used	to	check	whether	the	data	
consists	of	more	than	one	point.	If	this	is	not	the	case,	no	integration	can	be	performed	and	thus	the	KWXY =
0.	If	the	data	consists	of	more	than	one	point,	integration	can	be	done	and	the	residual	stress	values	and	
corresponding	r-values	will	be	used	 to	create	 the	 function	σWXY(x).	This	 function	 is	 created	by	means	of	
linear	interpolation	of	the	values.	

	
Figure	3.7	Flowchart	for	the	Stress	Module	
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3.1.3.3 Determination	of	plastic	residual	stress	intensity	factor	
The	determination	of	the	plastic	residual	stress	intensity	factor	has	to	be	done	using	the	weight	function	
method,	as	recommended	by	Noroozi	et	al	[53].	The	basis	for	the	determination	of	Kres	is	the	integral	given	
by	Eq.	(3.43).	The	residual	stress	(σWXY(x))	from	the	previous	section	will	be	used	together	with	the	weight	
functions	(m(x, a))	that	will	be	discussed	below.	
	
	

𝐾<&: = U 𝜎<&:(𝑥)𝑚(𝑥, 𝑎)𝑑𝑥
($Z1[∗)

<'($)(
	 (3.43)	

	
Weight	Function	
It	is	common	practice	to	use	the	weight	function	related	to	the	geometry	and	crack	type	in	question.	In	the	
case	of	a	CT	specimen,	 this	would	be	the	weight	 function	by	Fett	and	Munz	[14],	given	 in	Eq.	 (3.44).	 Its	
validity	is	0 < 𝛼 = $

=
< 0.85.		
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]_7
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\_7

�	 (3.44)	

		
𝜼	 𝝁 = 𝟏 2	 3	 4	 5	
1	 2.673	 -8.604	 20.621	 -14.635	 0.477	
2	 -3.557	 24.9726	 -53.398	 50.707	 -11.837	
3	 1.230	 -8.411	 16.957	 -12.157	 -0.940	
4	 -0.157	 0.954	 -1.284	 -0.393	 1.655	

	
Table	3.2	Values	of	𝜂	and	𝜇	used	in	Fett	and	Munz	weight	function	

	
However,	it	was	proposed	by	Mikheevskiy	[33]	that	the	universal	one-dimensional	weight	function	can	be	
used	to	make	the	determination	of	the	plastic	residual	stress	intensity	factor	geometrically	independent.	
The	universal	weight	function,	given	in	Eq.	(3.45),	has	been	shown	to	provide	good	estimations	for	weight	
functions	of	one-	and	two-dimensional	cracks	[16].	
	
	 𝑚(𝑥, 𝑎) =

2
J2𝜋(𝑎 − 𝑥)

r1 +𝑀7 G1 −
𝑥
𝑎H +𝑀1 G1 −

𝑥
𝑎H

1
+. . . +𝑀# G1 −

𝑥
𝑎H

#
s	 (3.45)	

	
Mikheevskiy	 [33]	 argues	 that,	 if	 the	 integration	 domain	 (xint	 in	 Figure	 3.6)	 is	 relatively	 small,	 the	 term	
(1 − 𝑥/𝑎) 	in	 Eq.	 (3.45)	 tends	 to	 zero.	 Since	 (1 − 𝑥/𝑎) 	is	 multiplied	 with	 the	 geometry-related	 terms	
𝑀7…𝑀#,	these	terms	will	fall	away.	This	leaves	a	geometrically	independent	weight	function	as	given	in	Eq.	
(3.46).	Both	the	geometrically	independent	and	geometry-specific	weight	function	will	be	tested	to	see	the	
difference	between	the	application	of	the	two.		
	
	 𝑚(𝑥, 𝑎) =

2
J2𝜋(𝑎 − 𝑥)

	 (3.46)	

	
Integration	
The	plastic	residual	SIF,	𝐾<&:,	can	be	determined	by	evaluating	the	integral	given	in	Eq.	(3.47.	However,	since	
the	residual	stress	isn’t	definable	by	an	equation,	evaluation	of	this	integral	has	to	be	done	numerically.	To	
do	this,	both	curves	are	split	up	into	a	number	of	intervals	on	which	they	are	assumed	to	be	linear.	The	
intervals	are	0.001	mm	wide,	meaning	that	this	assumption	approximately	holds.	The	following	assumption	
is	then	used	[39]:	
	
	

𝐾<&: = U 𝑚(𝑥, 𝑎)𝜎<&:(𝑥)𝑑𝑥
$

$*
=�𝜎$`a ∗ 𝑆

"

R_7

	 (3.47)	

	
If	𝑚(𝑥, 𝑎)	and	𝜎<&:(𝑥)	depend	on	variable	x	only,	then	the	integral	in	Eq.	(3.47)can	be	replaced	by	a	

summation	given	in	Eq.	(3.47).	Here	S	represents	the	area	under	the	curve	𝑚(𝑥, 𝑎)	and	𝜎$`a	represents	the	
value	of	the	function	𝜎<&:(𝑋")	corresponding	to	the	coordinate	Xi	of	the	centroid	of	the	area	S.		
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Figure	3.8	Integration	of	a	multiplication	two	functions	

	
An	overview	of	the	statement	above	is	given	in	Figure	3.8.	The	curves	are	both	linearized	on	the	intervals	
to	 assure	 easy	 determination	 of	 the	 centroid	 of	 the	 area	 S,	 when	making	 the	 interval	 very	 small,	 this	
approximation	holds.	The	residual	stress	at	the	centroid	of	area	S	can	be	determined	with	Eq.	(3.48).	

	
	

𝜎$`a =
𝜎<&:(𝑥") +	𝜎<&:(𝑥"@7)

2 	 (3.48)	

	
	

As	recommended	by	[60],	the	value	of	the	integral	of	the	weight	function,	will	be	determined	using	Gaussian	
Quadrature.	This	will	be	done	due	to	the	singularity	at	𝑥 = 𝑎	of	the	weight	function.	[60]	recommends	using	
Gaussian	Quadrature	with	50	points	on	the	singular	intervals	to	assure	proper	convergence.	
		
Programming	flowchart	
The	flowchart	for	this	part	of	the	UniGrow	model	is	presented	in	Figure	3.9.	It	has	been	converted	into	a	
separate	module	that	is	part	of	the	larger	UniGrow	model.	The	model	consists	of	a	loop	starting	at	r = 0	or	
r = rYbcWb	(depending	on	the	previous	step)	and	ending	at	r = a − 2ρ∗,	since	this	denotes	the	length	of	the	
crack	face.	On	each	interval,	 first,	the	average	residual	stress	is	determined.	Subsequently,	the	area	S,	or	
integral	of	 the	weight	 function	on	 the	 interval	 is	determined.	These	 two	values	are	 then	multiplied	and	
added	to	the	plastic	residual	SIF.		

	
Figure	3.9	Flowchart	for	Residual	Weight	Function	module	
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3.1.3.4 Determination	of	elastoplastic	stress	and	strain	on	first	block	ahead	of	crack	tip		
The	elastoplastic	stresses	ahead	of	the	crack	tip	will	be	determined	using	the	Creager-Paris	equations	with	
Neuber	uniaxial	plasticity	correction.	Instead	of	first	determining	the	elastoplastic	stress	distribution	ahead	
of	 the	 crack	 tip,	 first	 the	 average	 elastic	 stress	 on	 the	 first	 elementary	 block	 ahead	 of	 the	 crack	 tip	 is	
determined	according	to	Eq.	(3.49)	and	(3.50)[53].		
	
	 𝜎¤P& =

1.633𝐾!$%,6E6
J2𝜋𝜌∗

	 (3.49)	

	
	 𝛥𝜎¤P& =

1.633𝛥𝐾$**,6E6
J2𝜋𝜌∗

	 (3.50)	

	
This	average	elastic	stress	ahead	of	the	crack	tip	will	then	be	corrected	to	the	average	elastoplastic	stress	
on	the	first	elementary	block	ahead	of	the	crack	tip.	This	is	done	using	the	uniaxial	Neuber	method,	the	use	
of	which	is	justified	by	the	fact	that	the	stress	in	x-direction	at	the	crack	tip	has	to	be	zero.	The	average	
elastoplastic	stress	on	the	first	elementary	block	ahead	of	the	crack	tip	can	be	determined	by	solving	Eq.	
(3.51)	and	(3.52).	
	 𝜎"!"
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𝐸 	 (3.51)	

	
	 𝛥𝜎"!"

#

𝐸 + 2𝛥𝜎"!" %
𝛥𝜎"!"

2𝐾$'

%
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=
𝛥𝜎"!'

#

𝐸 	 (3.52)	

Using	 the	 elastoplastic	 stress	 range	 (𝛥𝜎"!" ),	 the	 strain	 amplitude	 can	 be	 determined	 by	 using	 the	
Ramberg-Osgood	relationship,	as	is	shown	in	Eq.	(3.53).		
	
	

𝜀P̃$ =
𝛥𝜎¤P$

2𝐸 + �
𝛥𝜎¤P$

2𝐾(�

7
##
	 (3.53)	

	
3.1.3.5 Determination	of	the	initiation	life	of	the	elementary	block	ahead	of	the	crack	tip		
Using	the	strain	amplitude	𝜀P̃$,	combined	with	𝜎"!"	and	the	Smith-Watson-Topper	damage	parameter,	the	
initiation	 life	 of	 the	 first	 elementary	 block	 ahead	 of	 the	 crack	 tip	 can	 be	 calculated.	 This	 can	 be	
determined	by	solving	Eq.	(3.54)for	𝑁' .		
	
	

J𝜎¤P$𝜀P̃$𝐸 = X𝜎'(
152𝑁'7

1) + 𝜎'(𝜀'(𝐸52𝑁'7
)@+	 (3.54)	

	
Programming	flowchart	
In	 Figure	 3.10	 the	 flowchart	 for	 the	 implementation	 of	 this	 section	 in	 Python	 can	 be	 found.	 The	
determination	of	the	stress	on	the	first	elementary	block	ahead	of	the	crack	tip	and	the	determination	of	the	
initiation	life	of	the	first	elementary	block	have	been	combined	into	one	module.	It	has	been	converted	into	
a	separate	module	that	is	part	of	the	larger	UniGrow	model.	The	model	starts	by	the	determination	of	the	
elastic	and	subsequently	the	elastoplastic	stresses	on	the	first	block.	Then	the	strain	range	and	fatigue	life	
can	be	determined.	
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Figure	3.10	Flowchart	for	the	Initiation	Life	module	(left)	and	total	implemented	analytical	UniGrow	

method	(right)	
	
	
3.1.3.6 Implementation	of	the	total	UniGrow	method	in	Python	
Implementation	of	the	UniGrow	model	has	been	performed	in	Python,	the	flowchart	of	which	is	given	in	
Figure	3.10.	It	consists	of	a	linear	program	that	calls	separate	modules	for	determination	of	variables.	The	
steps	largely	match	those	given	in	the	previous	section	and	Figure	3.2.	The	mode	starts	off	with	some	input	
definition,	 such	 as	 loads,	 geometrical	 data	 etc.	 Then	 the	 applied	 SIF	 is	 determined	 using	 the	Newman-
Srawley	equations.	Using	the	Stress	Module,	the	residual	stress	ahead	of	the	crack	tip	is	calculated.		
	
If	the	parameter	𝐾<&:;e&<E		is	set	to	1	in	the	Stress	Module,	it	means	that	no	compressive	residual	stress	is	
observed	in	the	model	and	thus	𝐾<&:	is	set	to	zero.	If	this	is	not	the	case,	then	the	Residual	Weight	Function	
Module	is	used	to	determine	𝐾<&:.	After	this,	the	total	SIFs	are	determined	which	are	then	used	to	determine	
the	fatigue	life	of	the	first	elementary	block	ahead	of	the	crack	tip.	The	crack	growth	rate	can	then	simply	be	
calculated.	The	model	will	be	run	multiple	times	for	the	same	geometry,	each	time	varying	the	crack	length	
to	generate	data	for	the	da/dN	curves.		
	
3.1.3.7 Modelling	input	
The	crack	growth	rate	and	𝐾<&:	results	are	generated	by	applying	maximum	force	of	2000	N,	the	minimum	
force	depending	on	the	stress	ratio.	This	is	kept	constant	and	the	crack	length	is	increased	from	its	initial	
length	of	8	mm	using	crack	increments	of	1	mm.	For	the	verification	of	the	elastoplastic	stresses,	the	same	
load	values	have	been	used	as	De	Jesus	et	al	[10].	These	are	a	maximum	force	of	1614	N	and	a	crack	length	
of	8	mm	or	25	mm.		
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3.1.4 Results	and	discussion	
In	this	section	the	results	from	the	verification	of	the	analytical	UniGrow	are	presented	and	discussed.	The	
section	will	start	by	discussing	the	elastic,	elastoplastic	and	residual	stresses	produced	by	the	implemented	
UniGrow	method.	This	 is	 followed	by	a	discussion	of	 the	 calculated	plastic	 residual	 SIFs.	The	 section	 is	
closed	off	by	a	discussion	of	the	determined	crack	growth	rates.	
	
3.1.4.1 Determination	of	elastoplastic	stress	ahead	of	crack	tip	
Firstly,	the	implementation	of	the	Creager-Paris	equations	has	been	verified.	This	has	been	done	for	a	crack	
length	of	8	and	25	mm	and	a	force	of	1614	N	(definition	of	local	x-	and	y-direction	is	presented	in	Figure	
3.4).	The	results,	given	in	Figure	3.11,	match	exactly	with	the	curves	provided	by	Jesus	et	al	[10],	meaning	
correct	implementation.		

	
Figure	3.11	Elastic	stress	distribution	ahead	of	the	crack	tip:	comparison	of	Creager-Paris	results	and	

results	from	De	Jesus	et	al	[10]	
	
Once	 the	 elastic	 stress	 distribution	 has	 been	 determined,	 a	 correction	 needs	 to	 be	 done	 to	 obtain	 the	
elastoplastic	 stresses.	 De	 Jesus	 et	 al	 [10]	 corrected	 the	 elastic	 stresses	 by	 using	 a	 multiaxial	 Neuber	
correction,	it	has	not	been	specified	explicitly	which	procedure	has	been	used.	Elastoplastic	FEA	was	also	
used	to	obtain	elastoplastic	stresses.	In	Figure	3.12	and	Figure	3.13,	the	resulting	elastoplastic	stresses	from	
both	the	Hoffmann-Seeger	and	Moftakhar	correction	method	are	presented	in	comparison	to	values	from	
De	Jesus	et	al	[10].		
	
In	y-direction,	the	results	are	in	quite	good	agreement	with	the	results	calculated	by	De	Jesus	et	al	[10].	The	
stress	predicted	by	both	Hoffman-Seeger	and	Moftakhar	methods,	is	slightly	too	high	at	the	crack	tip	and	
too	low	further	away	from	the	crack	tip.	This	is	mainly	caused	by	the	fact	that	analytical	correction	methods	
are	 unable	 to	 account	 for	 the	 redistribution	 of	 the	 stresses	 due	 to	 plasticity.	 Both	 of	 the	 elastoplastic	
correction	models	use	a	form	of	the	Neuber	method	and	therefore	are	upper	bound	methods.	This	also	plays	
a	part	 in	 the	overestimation	of	 the	 stresses	 at	 the	 crack	 tip.	 	Directly	 at	 the	 crack	 tip,	 the	 stress	 in	 the	
Moftakhar	method	makes	 a	 sudden	drop.	This	will	 be	discussed	 in	 the	next	paragraph.	 	 The	difference	
between	 the	Neuber	method	used	by	De	 Jesus	 et	 al	 [10]	 and	 the	 generated	 results	 could	 result	 from	a	
different	 specification	 of	 the	 correction	method.	 Despite	 these	 differences,	 the	 overall	 results	 are	 very	
similar.	
	

	
Figure	3.12	Elastoplastic	stress	distribution	in	y-direction	ahead	of	the	crack	tip:	comparison	of	analytical	
results	and	results	by	De	Jesus	et	al	[10]	for	crack	lengths	of	8	mm	(left)	and	25	mm	(right)	(F	=	1614	N)	
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Figure	3.13	Elastoplastic	stress	distribution	in	x-direction	ahead	of	the	crack	tip:	comparison	of	analytical	
results	and	results	by	De	Jesus	et	al	[10]	for	crack	lengths	of	8	mm	(left)	and	25	mm	(right)	(F	=	1614	N)	
	 	
In	x-direction,	several	interesting	things	can	be	observed.	The	most	noteworthy	being	an	inexplicable	spike	
in	the	stress	in	the	Moftakhar	method	near	the	crack	tip.	The	same	phenomena,	however	less	pronounced,	
is	also	observed	in	the	Neuber	results	from	De	Jesus	et	al	[10]	but	is	not	present	in	FEA	results.	The	spike	in	
x-direction	allows	the	stress	in	y-direction	to	get	higher	(as	hydrostatic	stress	doesn’t	cause	yielding).	The	
sudden	decrease	in	stress	from	the	spike	to	zero	stress	in	x-direction,	also	forces	the	stress	in	y-direction	to	
drop.	
	

	
Figure	3.14	Influence	of	step	size	on	stress	in	x-direction	

	
The	spike	is	an	inaccuracy	in	the	analytical	method	and	the	magnitude	of	it	depends	on	how	refined	the	
elastoplastic	 analysis	 is.	 The	 results	 in	 Figure	 3.13	 have	 been	 determined	 by	 determining	 the	 stress	 at	
intervals	of	0.001	mm.	In	Figure	3.14	it	is	demonstrated	that	when	the	step	size	is	increased	to	0.01	mm,	the	
spike	nearly	completely	disappears.	This	leaves	a	curve	that	is	more	representative	of	the	physical	reality	
and	resembles	the	Hoffman-Seeger	curve	quite	well.	Therefore,	it	has	been	decided	to	henceforth	use	a	step	
size	of	0.01	mm.		
	
In	the	Hoffman-Seeger	method,	another	type	of	anomaly	is	present.	In	this	method,	the	stress	in	x-direction	
doesn’t	reduce	to	zero	at	the	crack	tip.	Since	the	crack	tip	is	a	free	surface,	the	stress	should	reduce	to	zero.	
This	 means	 that	 the	 Hoffman-Seeger	 method	 produces	 less	 physically	 accurate	 results.	 According	 to	
Moftakhar	et	al	[38],	this	is	caused	by	the	Hoffman-Seeger	equations	becoming	too	rigid	for	the	uniaxial	
case.	 An	 overestimation	 of	 the	 stresses	 in	 x-direction	 at	 the	 crack	 tip,	 allows	 for	 higher	 stresses	 in	 y-
direction	to	occur	and	therefore	will	most	likely	lead	to	an	overestimation	of	the	plastic	residual	stresses	at	
the	crack	tip.	
	
3.1.4.2 Determination	of	plastic	residual	stress	ahead	of	crack	tip	
Using	the	elastoplastic	stresses,	one	can	determined	the	plastic	residual	stress	ahead	of	the	crack	tip.	The	
results	for	a	crack	length	of	8	mm	and	25	mm	and	R	=	0	have	been	given	in	Figure	3.15.	The	general	trend	
is	that,	compared	to	FEA	results	from	De	Jesus	et	al	[10],	the	residual	stress	is	overestimated.	The	Hoffman-
Seeger	method	procures	slightly	higher	results	than	the	Moftakhar	et	al	method.	At	the	crack	tip,	the	same	
drop	is	observed	as	in	the	elastoplastic	results	for	the	Moftakhar	et	al	method.		
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Further	away	from	the	crack	tip,	the	stress	asymptotically	decreases	to	zero.	This	is	caused	by	the	fact	that	
here,	both	stress	range	and	maximum	stress	are	in	the	elastic	regime.	Therefore,	at	R	=	0,	𝜎P$ ≈ 	𝛥𝜎%$	and	
thus	the	residual	stress	reduces	to	zero.	However,	this	is	not	physically	accurate	because	the	cross	section	
as	a	whole	would	be	out	of	balance	due	to	there	only	being	compressive	stresses.	This	is	caused	by	the	fact	
that	the	analytical	methods	are	unable	of	redistributing	the	stresses.	

	

	
Figure	3.15	Plastic	residual	stress	ahead	of	the	crack	tip:	comparison	of	analytical	results	and	results	by	

De	Jesus	et	al	[10]	for	crack	lengths	of	8	mm	(left)	and	25	mm	(right)	(F	=	1614	N)	
	

3.1.4.3 Determination	of	plastic	residual	stress	intensity	factor		
Using	the	previously	obtained	residual	stress	distributions	and	the	weight	function,	one	can	determine	the	
plastic	 residual	 SIF.	 According	 to	 Noroozi	 et	 al	 [53],	 this	 relationship	 should	 be	 linear.	 De	 Jesus	 et	 al	
calculated	the	plastic	residual	stress	intensity	factor	based	upon	the	residual	stress	results	from	FEA,	as	
they	deemed	it	to	be	more	physically	accurate	than	the	analytical	method.		
	
The	weight	functions	have	been	determined	using	both	the	plasticity	corrections	by	Hoffmann-Seeger	and	
Moftakhar	 et	 al.	 Furthermore,	 both	 the	 weight	 function	 for	 the	 CT	 specimen	 and	 the	 geometrically	
independent	weight	function	have	been	applied.	The	results	of	these	calculations	are	given	in	Figure	3.16,	
Figure	3.17	and	Figure	3.18.	Overall,	it	can	be	said	that	the	Hoffmann-Seeger	and	Moftakhar	et	al	yield	very	
similar	results,	with	the	Hoffman-Seeger	method	predicting	slightly	higher	𝐾<&:	values	(due	to	prediction	of	
higher	residual	stress).		
	
When	using	the	CT	weight	function	the,	results	match	quite	well	for	low	applied	SIF	ranges	for	R	=	0	and	R	
=	0.5.	For	higher	applied	SIF	ranges,	 the	results	start	 to	deviate,	and	both	the	analytical	method	predict	
higher	𝐾<&:-values	than	De	Jesus	et	al	[10].	This	difference	is	mainly	caused	by	the	inability	of	the	methods	
to	redistribute	the	stresses	away	from	the	crack	tip,	causing	an	overestimation	of	the	stresses	at	the	crack	
tip.	This	overestimation	is	more	pronounced	for	higher	applied	SIFs	as	can	be	seen	in	Figure	3.15,	explaining	
the	deviation	of	the	analytical	results	from	De	Jesus	et	al	[10].		
	
At	R	=	0,	another	effect	causes	additional	deviation	from	the	results	by	De	Jesus	et	al	[10].	This	is	caused	by	
the	residual	stress	asymptotically	decreasing	to	zero	when	using	analytical	results.	As	∆𝐾$**	increases,	the	
residual	stress	further	away	from	the	crack	tip	keep	increasing,	never	becoming	tensile.	This	adds	to	the	
overestimation	of	𝐾<&:.	
	
The	universal	weight	function	has	a	more	singular	character	and	therefore,	most	of	its	weight	is	attributed	
to	the	part	of	the	residual	stress	distribution	closest	to	the	crack	tip.	The	residual	stress	close	to	the	crack	
tip	is	quite	similar	to	the	one	predicted	by	FEA	(still	observing	some	overestimation).	The	expectation	is	
that	the	𝐾<&:	at	R	=	0	will	be	overestimated	to	a	lesser	extent	than	when	using	the	CT	weight	function.	This	
means	 that	 the	WF	 corrects	 the	 physically	 inaccurate	 solution	 provided	 by	 the	 analytical	 elastoplastic	
correction	method.	Furthermore,	De	Jesus	et	al	[10]	have	also	used	the	universal	weight	function,	which	
would	explain	better	correspondence.	
	
The	predicted	plastic	residual	SIF	seems	to	be	nonlinear	for	low	∆𝐾$**,	slowly	decreasing	to	zero.	This	could	
be	caused	by	the	fact	that	the	relationships	determined	by	De	Jesus	et	al	[10]	have	been	sampled	at	specific	
points,	away	from	this	 low	limit.	Also,	𝐾<&:	is	severely	underestimated	for	R	=	0.7.	However,	the	relative	
different	might	be	large,	but	the	absolute	difference	is	fairly	limited.	
	



 35 

	 	
Figure	3.16	Plastic	residual	SIF	as	a	function	of	the	applied	SIF	range	(R=0)	for	CT	WF	(left)	and	universal	

WF	(right)	compared	to	results	predicted	by	De	Jesus	et	al	[10]	
	

	 	
Figure	3.17	Plastic	residual	SIF	as	a	function	of	the	applied	SIF	range	(R=0.5)	for	CT	WF	(left)	and	

universal	WF	(right)	compared	to	results	predicted	by	De	Jesus	et	al	[10]	
		

	 	
Figure	3.18	Plastic	residual	SIF	as	a	function	of	the	applied	SIF	range	(R=0.75)	for	CT	WF	(left)	and	

universal	WF	(right)	compared	to	results	predicted	by	De	Jesus	et	al	[10]	
		

3.1.4.4 Determination	of	the	crack	growth	rate	
The	crack	growth	as	predicted	by	the	UniGrow	method	has	then	be	determined	for	each	stress	ratio.	Also,	
here,	the	effect	of	the	plasticity	correction	method	and	the	weight	function	method	has	been	considered.	
The	results	are	given	in	Figure	3.19,	Figure	3.20	and	Figure	3.21.	
	
Overall,	good	correspondence	is	found	between	the	results	from	the	analytical	UniGrow	implementation	
and	the	UniGrow	method	by	De	Jesus	et	al	[10].	For	R	=	0,	deviation	from	results	by	De	Jesus	et	al	[10]	can	
be	found,	especially	when	using	the	CT	weight	function.	This	is	due	to	overestimation	of	the	plastic	residual	
SIF,	as	was	presented	in	the	previous	section.	The	SIF	that	is	“felt”	by	the	material	at	the	crack	tip	is	less	
than	expected	and	therefore	crack	growth	rates	are	underestimated.	This	difference	is	especially	present	
for	higher	values	of	∆𝐾$**.	Results	for	R	=	0	when	using	the	universal	weight	function	are	much	better,	as	
the	plastic	residual	SIF	values	match	the	ones	from	De	Jesus	et	al	[10].	This,	again,	signifies	the	importance	
of	proper	determination	of	this	variable.		
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In	the	previous	section,	it	was	also	noted	that,	for	R	=	0.7	and	R	=	0.5,	there	were	relatively	large	differences	
between	the	∆𝐾$**	-	𝐾<&:	relationship	predicted	by	current	research	and	De	Jesus	et	al	[10].	However,	as	
was	postulated	before,	the	absolute	value	of	the	plastic	residual	SIF	is	low	and	therefore	the	impact	of	this	
difference	on	the	crack	growth	rate	is	limited.	This	confirms	the	prediction	of	Noroozi	et	al	[53]	that	for	high	
stress	ratios	(R	>	0.5),	one	could	leave	out	the	residual	stress,	since	this	would	have	an	insignificant	effect	
on	the	crack	growth	rate.	
	
Moftakhar	et	al	and	Hoffman-Seeger	correction	methods	yield	nearly	the	same	results,	as	𝐾<&:	predictions	
were	also	similar	for	both	methods.	For	the	same	𝐾<&:	predictions,	the	implemented	UniGrow	method	in	
this	study	and	the	one	by	De	Jesus	et	al	yield	the	same	result.	It	can	thus	be	concluded	that	the	determination	
of	the	fatigue	life	of	the	elementary	material	block	ahead	of	the	crack	tip	has	been	properly	implemented.		
	

	 	
Figure	3.19	Crack	growth	speed	as	a	function	of	the	applied	SIF	range	(R=0)	for	CT	WF	(left)	and	universal	

WF	(right)	
		

	 	
Figure	3.20	Crack	growth	speed	as	a	function	of	the	applied	SIF	range	(R=0.5)	for	CT	WF	(left)	and	

universal	WF	(right)	
		

	 	
Figure	3.21	Crack	growth	speed	as	a	function	of	the	applied	SIF	range	(R=0.75)	for	CT	WF	(left)	and	

universal	WF	(right)	
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3.1.4.5 Discussion	
As	was	discussed	 in	 the	previous	sections,	 the	analytical	UniGrow	 implementation	has	been	completely	
verified	with	the	model	by	De	Jesus	et	al	[10].	Even	though	the	model	is	verified,	still	some	limitations	can	
be	found	when	comparing	it	to	the	more	advanced	implementation	by	De	Jesus	et	al	[10].	Especially	the	
determination	of	one	of	the	most	vital	parameters	in	the	UniGrow	method,	𝐾<&:,	lacks	accuracy	when	using	
this	method.	This	 lack	of	 accuracy	 is	most	 important	 for	 lower	 stress	 ratios,	where	 the	effect	of	plastic	
residual	stresses	ahead	of	the	crack	tip	on	the	crack	growth	rates	can	be	significant.	
	
The	 inaccurate	predictions	of	𝐾<&:	can	be	attributed	to	the	 inability	of	 the	elastoplastic	stress	correction	
methods	 to	 properly	 predict	 the	 elastoplastic	 stresses	 ahead	 of	 the	 crack	 tip.	 These	 are	 very	 often	
overestimated,	 especially	near	 the	 crack	 tip.	 Since	 the	 residual	 stresses	near	 the	 crack	 tip	are	 the	main	
contributors	for	slowing	down	the	crack	growth,	overestimation	of	these	stresses	causes	underprediction	
of	crack	growth	rates.	In	the	elastoplastic	FEA	model	that	was	run	by	De	Jesus	et	al	[10],	it	is	visible	that	
stress	 is	 normally	 distributed	 away	 from	 the	 crack	 tip.	 The	 analytical	model	 is	 incapable	 of	 doing	 this,	
leading	to	under	prediction	of	the	compressive	residual	stress	further	away	from	the	crack	tip.	At	R	=	0,	the	
stresses	are	even	compressive	along	the	entire	cross	section,	asymptotically	reducing	to	zero.	
	
The	elastoplastic	correction	methods	itself	also	showed	anomalous	behaviour.	The	elastoplastic	correction	
method	 by	Moftakhar	 et	 al	 produced	 a	 spike	 at	 the	 crack	 tip	 in	 x-direction,	 which	wasn’t	 observed	 in	
elastoplastic	FEA	results	by	De	Jesus	et	al	[10].	This	was	corrected	for	using	larger	increments	between	the	
locations	where	the	stresses	were	determined.		The	Hoffman-Seeger	method,	on	the	other	hand,	produced	
nonzero	 stress	 results	 of	 the	 stress	 in	 x-direction	 at	 the	 crack	 tip.	 This	 method	 therefore	 also	 yields	
physically	inaccurate	results,	as	the	crack	tip	is	a	free	surface	and	thus	the	stress	should	be	zero.	
	
When	using	the	universal	weight	function,	better	results	were	obtained	for	𝐾<&:.	Especially	for	R	=	0,	where	
the	singular	weight	function	acts	as	a	scissor	to	“cut	off”	the	inaccurate,	asymptotically	decreasing	tail	of	the	
predicted	plastic	residual	stress	distribution.	This,	however,	doesn’t	fix	the	underlying	issue	of	improper	
determination	of	the	plastic	residual	stresses,	but	simply	corrects	the	consequence.		
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3.2 Verification	of	numerical	UniGrow	implementation	
As	 could	 be	 seen	 in	 the	 previous	 chapter	 and	what	 has	 also	 been	 observed	 by	De	 Jesus	 et	 al	 [10],	 the	
analytical	 determination	 of	 the	 elastoplastic	 stresses	 ahead	 of	 the	 crack	 tip	 leaves	 some	 room	 for	
improvement.	De	Jesus	et	al	[10]	proposed	to	use	elastoplastic	FEA	as	a	more	appropriate	alternative	for	
the	determination	of	the	elastoplastic	stresses.	When	using	this	method,	the	relationship	between	∆𝐾$**	
and	𝐾<&:	is	determined	first,	after	which	this	relationship	serves	as	input	for	the	UniGrow	model.		
	
In	this	section,	the	numerical	method	as	proposed	by	De	Jesus	et	al	[10]	will	be	implemented	and	verified.	
First,	 the	 verification	 data	will	 be	 presented.	 Then	 the	 details	 of	 the	 numerical	 implementation	will	 be	
discussed.	Lastly,	the	crack	growth	results	are	presented	and	discussed.	
	
3.2.1 Model	description	and	model	data	
The	data	that	was	used	in	section	is	the	same	as	used	in	section	5.1.	The	dimensions	and	parameters	used	
in	this	section	are	presented	in	Table	3.3.		
	

Dimensions	 Material	parameters	 Strain-life	parameters	
	𝑾	 40	mm	 𝐸	 205.2	GPa	 𝜎'(	 1005.5	MPa	
𝒂𝒏	 8	mm	 𝑣	 0.275	 𝑏	 -0.1033	
𝑩	 4.35	mm	 𝐾(	 948.35	MPa	 𝜀'( 	 0.3678	
𝑳 50	mm	 𝑛′	 0.1533	 𝑐	 -0.5475	
𝑯 48	mm	 	 	 	 	
𝒉 22	mm	 	 	 	 	

	
Table	3.3	Material	parameters	and	dimensions	of	the	CT	specimens	[10]	

	
3.2.2 Global	UniGrow	implementation	
The	calculation	method,	globally,	consists	of	about	5	steps,	of	which	a	summary	is	given	in	Figure	3.22.	The	
implemented	method	is	similar	to	the	one	in	chapter	5.1	and	are	given	below:		

1. Determination	of	the	applied	stress	intensity	factor:	The	applied	stress	intensity	factor	will	be	
established	using	an	analytical	equation	derived	by	Newman	and	Srawley	[73].	This	topic	will	not	
be	further	addressed,	reference	is	made	to	section	3.1.3.1	for	further	background.	

2. Determination	 of	 the	 elastoplastic	 stress	 distribution	 ahead	 of	 the	 crack	 tip:	The	 elastic	
stresses	ahead	of	the	stress	tip	will	be	determined	using	elastoplastic	FEA.	The	CT	specimen	will	be	
modelled	and	loaded	and	unloaded	once,	after	which	the	residual	stress	is	recorded	in	the	model.	
This	will	be	used	to	determine	the	plastic	residual	stress	intensity	factor.	This	will	be	addressed	
further	in	section	3.2.3.1.	

3. Determination	of	the	residual	stress	intensity	factor:	Using	the	weight	function	method	and	the	
elastoplastic	 stresses	 from	the	previous	step,	 the	plastic	 residual	SIF	will	be	determined.	These	
values	 will	 be	 used	 to	 determine	 the	 linear	 relationship	 between	 ∆𝐾$** 	and	 𝐾<&: .	 Further	
background	on	this	will	be	given	in	section	3.2.3.2.	

4. Determination	of	the	elastoplastic	stress	and	strain	on	first	elementary	block	ahead	of	the	
crack	tip:	This	will	be	done	using	 the	Creager-Paris	equations	 in	combination	with	 the	Neuber	
uniaxial	 plasticity	 correction.	 This	 will	 not	 be	 further	 addressed;	 reference	 is	made	 to	 section	
3.1.3.4	for	further	background.	

5. Determination	 of	 the	 initiation	 life	 of	 the	 first	 elementary	 block	 ahead	 of	 crack	 tip:	The	
initiation	life	will	be	determined	using	both	the	Smith-Watson-Topper	damage	parameter	as	the	
Morrow	damage	method.	This	will	be	further	addressed	in	section	3.2.3.3.	
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Figure	3.22	Global	calculation	procedure	of	the	numerical	UniGrow	method	

	
3.2.3 Implemented	methods	
Most	 of	 the	 implemented	 methods	 are	 similar	 to	 the	 ones	 used	 in	 section	 3.1,	 therefore,	 solely	 the	
determination	of	𝐾<&:	using	elastoplastic	FEA	will	be	discussed	in	this	section.	Lastly,	the	flowchart	for	the	
implementation	in	Python	is	given.		
 
3.2.3.1 Determination	of	Kres	using	elastoplastic	FEA	
The	CT	specimen	is	modelled	similar	to	the	one	by	De	Jesus	et	al	[10],	a	summary	of	the	modelled	geometry	
is	given	in	Figure	3.23.	Half	of	the	CT	specimen	is	modelled	due	to	symmetry	and	to	save	computational	
time.	The	geometry	is	simplified,	removing	the	initial	notch	that	is	present	in	a	CT	specimen,	since	the	sole	
interest	is	the	effect	of	the	crack	length	and	the	notch.	This	is	similar	to	the	model	proposed	by	De	Jesus	et	
al	[10].	The	crack	tip	is	modelled	as	a	quarter	circle.		
	
The	pin	that	is	used	to	load	the	CT	specimen	is	modelled	as	a	rigid	body	that	is	controlled	by	a	remote	point.	
The	remote	point	is	loaded	by	a	force.	The	remote	point	is	restrained	in	its	sideways	movement	and	angular	
rotation.	 The	 contact	 surface	 between	 the	 pin	 and	 the	 CT	 specimen	 is	 modelled	 as	 frictionless.	 The	
commercial	software	package	ANSYS	18.2	was	used	to	model	the	specimen.	The	CT	specimen	is	modelled	
with	the	sizes	specified	in	Table	3.3,	with	varying	crack	lengths	and	loads.	
	

	
Figure	3.23	Boundary	and	load	conditions	for	the	modelled	CT	specimen	in	ANSYS	
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Plasticity	
Plasticity	has	been	accounted	for	using	the	built-in	multi-linear	kinematic	hardening	module	in	ANSYS	18.2	
and	Von-Mises	yield	theory.	Kinematic	hardening	was	used	as	it	is	deemed	the	most	appropriate	to	describe	
the	plasticity	in	steel.	The	Ramberg-Osgood	relationship	using	the	parameters	determined	by	testing	from	
De	 Jesus	 et	 al	 [10]	 served	 as	 input	 for	 the	 multi-linear	 kinematic	 hardening.	 In	 Figure	 3.24	 the	 input	
Ramberg-Osgood	relationship	and	the	stress-strain	relationship	that	was	found	in	FEA	are	presented.	
	

	
Figure	3.24	Comparison	between	stress-strain	curves	generated	with	Ramberg-Osgood	relationship	and	

FEA	using	multi-linear	kinematic	hardening	
	

Mesh	Convergence	
Similar	to	De	Jesus	et	al	[10],	triangular	quadratic	plane	stress	elements	have	been	used	(due	to	the	limited	
thickness).	The	overall	mesh	size	has	been	set	to	1	mm	and	the	meshing	is	done	using	an	advancing	front	
method	to	produce	well-formed	elements	with	less	distortion.	The	mesh	size	near	the	crack	tip	is	reduced	
using	an	edge	sizing	method	that	is	refined	to	obtain	convergence.	2	mm	away	from	the	crack	tip	on	the	
crack	plane,	0.5	mm	edge	sizing	has	been	used.	An	overview	of	the	mesh	design	is	given	in	Figure	3.25.		
	

	
Figure	3.25	Mesh	dimensioning	of	the	CT	specimen	

	
Several	mesh	sizes	near	the	crack	tip	were	tried,	starting	from	a	mesh	size	equal	to	the	elementary	block	
size	(0.03	mm)	down	to	0.003	mm,	where	convergence	was	found.	Both	for	stresses	in	y	and	x	direction,	but	
also	for	the	crack	tip	stress	in	x-direction	which	should	be	zero	as	this	is	a	free	surface.	The	results	of	the	
FEA	are	presented	 in	Table	3.4.	The	refined	mesh	around	the	crack	tip	can	be	 found	 in	Figure	3.26	and	
Figure	3.27.	
	

Element	size	 Maximum	𝝈𝒚	[MPa]	 Maximum	𝝈𝒙	[MPa]	 Crack	tip	𝝈𝒙	[MPa]	
0.03	mm	 1603.7	 420.8	 188.3	
0.01 mm	 1760.1	 400.9	 31.6	
0.005	mm	 1791.8	 398.7	 3.3	
0.003	mm	 1790.4	 398.2	 1.7	

	
Table	3.4	Maximum	elastic	stress	for	distinct	mesh	sizes	(a	=	8	mm,	F	=	1614	N)	
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Figure	3.26	Mesh	size	at	the	crack	tip	for	an	edge	size	of	0.03	mm	(left)	and	0.01	mm	(right)	

	

	 	
Figure	3.27	Mesh	size	at	the	crack	tip	for	an	edge	size	of	0.005	mm	(left)	and	0.003	mm	(right)	

		
3.2.3.2 Determination	of	∆𝐾!""	vs.	𝐾#$%	
The	 (linear)	 relationship	 between	∆Kchh 	and	KWXY 	has	 been	 determined	 by	 modelling	 the	 elastoplastic	
model	of	the	CT	specimen	with	various	crack	sizes	and	forces,	as	specified	in	Table	3.5.	Using	the	Newman-
Srawley	equation,	∆Kchh	is	determined	for	each	of	the	variations.		
	

Stress	ratio	 a	=	8	mm	 a	=	14	mm	 a	=	20	mm	
R	=	0.0	 Fmax	=	1614	N	 Fmax	=	1614	N	 Fmax	=	1614;	2000;	2500	N	
R	=	0.5	 Fmax	=	1614	N	 Fmax	=	1614	N	 Fmax	=	1614;	2000;	2500	N	
R	=	0.7	 Fmax	=	1614	N	 Fmax	=	1614	N	 Fmax	=	1614;	2000;	2500	N	

	
Table	3.5	Modelled	combinations	of	crack	sizes	and	loads	for	the	determination	of	Kres	

	
From	the	model,	the	residual	stress	ahead	of	the	crack	tip	can	be	determined.	The	model	is	loaded	with	the	
maximum	load	and	then	unloaded	to	the	minimum	load	level.	The	stress	at	the	end	of	the	unloading	step	is	
defined	as	the	plastic	residual	stress.	Using	both	the	CT	weight	function	and	the	universal	weight	function,	
the	plastic	residual	SIF	can	then	be	determined.	The	five	data	points,	each	representing	one	crack	size-force	
combination,	are	then	used	to	derive	the	∆Kchh-KWXY	relationship.		
	
The	implementation	of	this	procedure	in	Python	is	given	in	Figure	3.28.	The	procedure	is	combination	of	
the	residual	stress	module	and	the	weight	function	module	presented	in	chapter	5.1.	The	procedure	starts	
by	exporting	plastic	residual	stress	data	to	Python,	mirroring	it	and	placing	it	on	the	r-axis.	Again,	only	the	
compressive	 plastic	 residual	 stresses	 are	 considered	 in	 the	model.	 Once	 the	 import	 is	 complete,	 a	𝜎<&:	
function	 is	 produced	 by	 linearly	 interpolating	 the	 stress	 between	 the	 data	 points	 from	 FEA.	 The	 same	
method	for	the	determination	of	the	plastic	residual	SIF	as	presented	in	chapter	5.1.3.3	is	then	used.	At	the	
same	 time,	 the	Newman-Srawley	equation	 is	used	 to	determine	∆Kchh .	The	data	will	 then	be	written	 to	
Excel,	where	the	relationship	between	∆Kchh	and	KWXY	will	be	derived.	
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Figure	3.28	Flowchart	used	for	the	determination	of	the	∆𝐾$**-𝐾<&:	relation	

	
3.2.3.3 Determination	of	the	initiation	life	of	the	elementary	block	ahead	of	the	crack	tip		
In	previous	chapter,	the	Smith-Watson-Topper	(SWT)	damage	parameter	has	been	used	to	determine	the	
crack	 growth	 results.	 According	 to	 De	 Jesus	 et	 al	 [10],	 the	 use	 of	 the	 Smith-Watson-Topper	 damage	
parameter	implicitly	means	that	the	influence	of	the	mean	stress	is	taken	into	account	twice:	once	through	
the	influence	on	the	plastic	residual	stress	intensity	factor	and	once	by	the	SWT	damage	parameter.	De	Jesus	
et	al	[10]	argue	that	this	could	lead	to	overestimation	of	the	stress	ratio	effect.	They	propose	to	use	the	
method	proposed	by	Morrow,	given	in	Eq.	(3.55),	instead.		
	
	 ∆𝜀

2 =
𝜎'(

𝐸 52𝑁'7
) + 𝜀'(52𝑁'7

+	 (3.55)	

	
Notice	how	here,	no	mean	stress	correction	has	been	applied.	De	Jesus	et	al	[10]	argue	that	the	number	of	
cycles	 necessary	 to	 fail	 the	 elementary	 block	 ahead	 of	 the	 crack	 tip	 is	 in	 the	 Low	 Cycle	 Fatigue	 range	
(according	to	De	Jesus	et	al	[10]	this	is	defined	as	𝑁' < 5 ∗ 10O).	It	was	observed	by	Koh	et	al	[23]	and	Lin	
et	al	[30]	that	in	the	LCF	range,	the	mean	stresses	in	specimens	with	large,	constant	strain	amplitude	tend	
to	decrease	quickly	to	zero	mean	stress.	This	is	due	to	rapid	cyclic	stress	relaxation	caused	by	plastic	strains	
in	the	specimen.	This	is	the	reason	why	no	mean	stress	effect	is	considered	in	the	calculations.			
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3.2.3.4 Implementation	of	the	total	UniGrow	method	in	Python	
The	implementation	of	the	numerical	UniGrow	method	differs	very	slightly	from	the	implementation	of	the	
analytical	UniGrow	method,	as	can	be	seen	in	Figure	3.29.	The	Stress	Module	and	Residual	Weight	Function	
Module	have	been	replaced	by	one	function	that	determines	the	plastic	residual	SIF	based	on	the	applied	
SIF	range.	The	rest	of	the	model	remains	the	same.	

	
Figure	3.29	Flowchart	for	the	numerical	implementation	of	the	UniGrow	method	

	
3.2.3.5 Modelling	input	
The	crack	growth	rate	results	are	generated	by	applying	maximum	force	of	2000	N,	 the	minimum	force	
depending	on	the	stress	ratio.	This	is	kept	constant	and	the	crack	length	is	increased	from	its	initial	length	
of	8	mm	using	crack	increments	of	1	mm.	For	the	verification	of	the	elastoplastic	stresses,	the	same	load	
values	have	been	used	as	De	Jesus	et	al	[10].	These	are	a	maximum	force	of	1614	N	and	a	crack	length	of	8	
mm	or	25	mm.	𝐾<&:	values	have	been	determined	at	stresses	and	crack	lengths	specified	in	Table	3.5.		
	
3.2.4 Results	and	discussion	
In	this	section	the	results	from	the	verification	of	the	numerical	UniGrow	are	presented	and	discussed.	The	
section	will	start	by	discussing	the	elastic,	elastoplastic	and	residual	stresses	produced	by	the	implemented	
UniGrow	method.	This	 is	 followed	by	a	discussion	of	 the	 calculated	plastic	 residual	 SIFs.	The	 section	 is	
closed	off	by	a	discussion	of	the	determined	crack	growth	rates.	
 
3.2.4.1 Elastic	results	
The	first	step	of	verifying	the	functioning	of	the	FEA	model	is	comparing	the	resulting	elastic	stresses	to	the	
Creager-Paris	equations	(presented	in	Figure	3.30)	and	the	elastic	results	by	De	Jesus	et	al	(presented	in	
Figure	 3.31).	 The	 elastic	 stress	 as	 determined	 by	 the	 FEA	 model	 is	 very	 similar	 to	 the	 Creager-Paris	
equations	in	y-direction,	however	a	difference	is	found	in	x-direction.	This	difference	was	also	found	by	De	
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Jesus	et	al	[10],	which	means	that	it	might	possibly	a	limitation	of	the	Creager-Paris	equation.	The	results	
from	the	elastic	FEA	do	match	very	closely	with	the	results	from	De	Jesus	et	al	[10]	albeit	that	the	peak	of	
the	stresses	in	x-direction	from	FEA	is	slightly	higher	than	predicted	by	De	Jesus	et	al	[10].	This	could	be	
due	to	slight	difference	between	the	two	models.		
	

	 	
Figure	3.30	Elastic	stress	distribution	ahead	of	the	crack	tip:	comparison	of	Creager-Paris	results	to	FEA		

(F	=	1614	N)	
		

	 	
Figure	3.31	Elastic	stress	distribution	ahead	of	the	crack	tip:	comparison	of	Creager-Paris	results	and	

results	from	De	Jesus	et	al	[10]	(F	=	1614	N)	
	
3.2.4.2 Elastoplastic	stress	results	
The	elastoplastic	results	have	been	calculated	for	a	crack	length	of	8	mm	and	compared	to	the	results	by	De	
Jesus	et	al	[10],	the	results	are	presented	in	Figure	3.32.	The	plastic	results	from	the	FEA	match	the	results	
from	De	Jesus	et	al	[10]	quite	closely,	however	in	x-direction	the	results	from	the	FEA	seems	to	be	slightly	
higher	compared	to	De	Jesus	et	al.	The	same	trend	was	also	found	for	the	elastic	model.	Higher	stress	in	x-
direction	could	possibly	cause	a	deviation	from	results	by	De	Jesus	et	al	[10]	when	looking	at	the	residual	
stress	fields	as	the	observed	plastic	strain	will	be	higher	at	the	maximum	force.	When	unloading	the	model,	
this	could	then	lead	to	an	overestimation	of	the	plastic	residual	stresses.	
	

	 	
Figure	3.32	Elastoplastic	stress	distribution	in	y-direction	(left)	and	x-direction	(right)	ahead	of	the	crack	

tip:	comparison	of	FEA	results	and	results	by	De	Jesus	et	al	[10]	(F	=	1614	N)	
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As	can	be	seen	in	Figure	3.33,	the	residual	stresses	closely	match	the	results	from	De	Jesus	et	al	[10]	for	R	=	
0.	The	results	being	much	better	than	the	results	from	analytical	UniGrow.	What	is	especially	clear,	is	that	
the	residual	stress	doesn’t	asymptotically	decrease	to	zero.	Instead,	the	compressive	residual	stresses	are	
balanced	by	tensile	stresses.	As	expected,	the	residual	stress	predicted	by	the	numerical	UniGrow	model	is	
slightly	too	high,	possibly	due	to	aforementioned	issue	of	the	stresses	in	x-direction	being	overestimated.		

	
Figure	3.33	Plastic	residual	stress	ahead	of	the	crack	tip:	comparison	of	FEA	results	and	results	by	De	

Jesus	et	al	[10]	(F	=	1614	N)	
	
3.2.4.3 Residual	SIF	results	
The	weight	functions	have	been	determined	using	both	the	weight	function	for	the	CT	specimen	and	the	
geometrically	independent	(universal)	weight	function.	The	results	of	these	calculations	are	given	in	Figure	
3.34,	Figure	3.35	and	Figure	3.36.	Generally,	good	correlation	can	be	found	between	the	results	from	the	
elastoplastic	FEA	and	De	 Jesus	et	al	 [10]	and	very	 little	difference	can	be	seen	between	 the	 two	weight	
functions.	Interesting	is	that	also	here,	nonlinearity	is	observed	for	low	values	of	∆𝐾$**,	meaning	that	the	
assumption	of	linearity	breaks	down	in	this	regime.	Fortunately,	the	𝐾<&:	values	are	relatively	low	in	this	
region,	indicating	that	assuming	a	linear	relationship	won’t	have	a	serious	effect	on	the	crack	growth	speeds.	
	
The	only	difference	between	the	two	weight	functions	can	be	observed	for	R	=	0,	where	the	results	for	the	
CT	weight	 function	 start	 to	 diverge	 for	 high	∆𝐾$** .	 In	 the	 usage	 of	 the	 universal	weight	 function,	 it	 is	
assumed	that	the	integration	domain	(the	size	of	the	zone	where	compressive	residual	stress	is	found)	is	
small.	 This	 assumption	 could	 start	 to	 break	 down	 at	 higher	 applied	 forces,	 therefore	 causing	 deviating	
results	(as	De	Jesus	et	al	 [10]	have	also	used	the	universal	WF).	By	using	the	universal	weight	 function,	
results	match	much	better.	
	
For	 R	 >	 0,	 the	 plastic	 residual	 SIF	 is	 slightly	 overestimated.	 In	 terms	 of	 relative	 difference,	 this	
overestimation	is	quite	large.	However,	the	absolute	difference	is	relatively	small,	and	the	plastic	residual	
SIF	 is	also	relatively	 low	compared	to	∆𝐾$**.	 It	 is	 therefore	expected	that	 this	difference	has	 little	 to	no	
impact	on	the	predicted	crack	growth	rates.	The	predicted	relations,	however,	do	match	the	model	from	De	
Jesus	et	al	much	better	than	the	ones	predicted	by	the	analytical	UniGrow	method.	
 

	 	
Figure	3.34	Plastic	residual	SIF	as	a	function	of	the	applied	SIF	range	for	CT	WF	(left)	and	universal	WF	

(right)	(R=0)	compared	to	results	from	De	Jesus	et	al	[10]	
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Figure	3.35		Plastic	residual	SIF	as	a	function	of	the	applied	SIF	range	for	CT	WF	(left)	and	universal	WF	

(right)	(R=0.5)	compared	to	results	from	De	Jesus	et	al	[10]	
		

	 	
Figure	3.36	Plastic	residual	SIF	as	a	function	of	the	applied	SIF	range	for	CT	WF	(left)	and	universal	WF	

(right)	(R=0.7)	compared	to	results	from	De	Jesus	et	al	[10]	
	
3.2.4.4 Crack	growth	results	
The	crack	growth	as	predicted	by	the	UniGrow	method	was	corrected.	Since	the	weight	function	for	the	CT	
specimen	and	the	universal	weight	function	yielded	similar	results,	solely	the	universal	weight	function	has	
been	used	to	determine	the	crack	growth	speed.	The	results	of	the	calculations	using	both	SWT	and	Morrow	
damage	parameter	are	given	in	Figure	3.37,	Figure	3.38	and	Figure	3.39.	Overall,	very	good	correspondence	
is	found	between	the	results	from	the	numerical	UniGrow	implementation	and	the	UniGrow	method	by	De	
Jesus	et	al	[10],	confirming	proper	implementation	of	the	UniGrow	method.	
 

  
Figure	3.37	Crack	growth	speed	as	a	function	of	the	applied	SIF	range	when	using	the	SWT	damage	
parameter	(left)	and	Morrow	damage	(right)	for	R	=	0	compared	to	the	results	by	De	Jesus	et	al	[10]	
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Figure	3.38	Crack	growth	speed	as	a	function	of	the	applied	SIF	range	when	using	the	SWT	damage	
parameter	(left)	and	Morrow	damage	(right)	for	R	=	0.5	compared	to	the	results	by	De	Jesus	et	al	[10]	

	

	 	
Figure	3.39	Crack	growth	speed	as	a	function	of	the	applied	SIF	range	when	using	the	SWT	damage	
parameter	(left)	and	Morrow	damage	(right)	for	R	=	0.7	compared	to	the	results	by	De	Jesus	et	al	[10]	

	
3.2.4.5 Discussion	
As	was	presented	in	the	previous	sections,	the	use	of	elastoplastic	FEA	yields	much	more	physically	accurate	
results	in	elastoplastic	stress	prediction.	This	yielded	crack	growth	predictions	that	matched	much	better	
with	the	UniGrow	model	by	De	Jesus	et	al	[10].	This,	once	again,	confirms	the	need	for	accurate	prediction	
of	the	plastic	residual	stress	ahead	of	the	crack	tip.		
	
In	some	cases,	the	use	of	analytical	methods	might	lead	to	𝐾<&:	results	that	are	very	similar	to	elastoplastic	
FEA.	This	was	also	observed	in	the	previous	sections,	where	crack	growth	speed	predictions	made	with	the	
analytical	method,	matched	 quite	well	with	 the	 numerical	 results.	 However,	 use	 of	 analytical	 functions	
doesn’t	 guarantee	 this.	 When	 material	 parameters	 change,	 difference	 between	 these	 rather	 simplified	
analytical	 and	 more	 detailed	 numerical	 methods	 can	 change.	 It	 is	 therefore	 recommended	 to	 turn	 to	
elastoplastic	FEA	for	the	determination	of	the	∆𝐾$**	-	𝐾<&:	relation.		
	
Concerning	the	∆𝐾$**	-	𝐾<&:	results:	both	the	CT	weight	function	and	the	universal	weight	function	yielded	
very	 similar	 results	 when	 using	 elastoplastic	 FEA.	 Usage	 of	 the	 universal	 WF	 in	 combination	 with	
elastoplastic	FEA	would	be	valid.	This	makes	it	possible	to	determine	the	relationship	between	∆𝐾$**	and	
𝐾<&:	from	any	geometry.	For	high	values	of	∆𝐾$**,	the	CT	weight	function	produced	higher	values	of	𝐾<&:	
than	 the	 universal	 weight	 function.	 This	 can	 be	 explained	 by	 the	 fact	 that	 the	 assumption	 of	 a	 small	
integration	domain	breaks	down	when	the	applied	stress/force	becomes	rather	large.		
	
The	current,	numerical,	implementation	of	the	UniGrow	method	has	been	verified	with	the	UniGrow	method	
that	was	presented	by	De	Jesus	et	al	[10].	Predictions	of	crack	growth	speed	and	plastic	residual	SIF	were	
accurate,	whereas	elastoplastic	 stresses	 in	 x-direction	were	overestimated	 to	 some	extent.	This	 is	most	
likely	due	to	slight	differences	in	the	specification	of	the	FEA	model,	rather	than	actual	differences	in	the	
implemented	methods.			
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3.3 Validation	of	analytical	and	numerical	UniGrow	implementation	
The	 UniGrow	 method	 has	 been	 previously	 implemented	 and	 verified.	 In	 this	 section,	 the	 previously	
implemented	UniGrow	method	will	be	used	to	predict	crack	growth	speeds	in	CT	specimens	made	of	S355	
steel.	 This	 is	 to	 see	 how	 well	 the	 implemented	 UniGrow	 model	 performs.	 As	 a	 comparison	 of	 the	
performance	of	the	numerical	UniGrow	method,	the	analytical	model	as	presented	in	chapter	5.1	will	be	run	
as	well.		
		
Research	by	Carvalho	et	al	[6]	and	De	Jesus	et	al	[11]	will	be	used	for	the	validation.	They	have	performed	
crack	growth	tests	on	CT	specimens	made	of	S355	steel	with	very	similar	properties,	which	makes	it	suitable	
for	analysis	with	one	model.	CT	specimens	are	mainly	suited	for	the	determination	of	long	crack	growth	
speeds,	limiting	this	validation	to	the	LC	region.	In	the	next	chapter,	performance	of	the	UniGrow	model	in	
the	 short	 crack	 region	 is	 evaluated.	 First	 the	 validation	 data	 will	 be	 presented,	 then	 the	 implemented	
UniGrow	model	is	discussed	and	lastly	the	results	are	presented	and	discussed.		
 
3.3.1 Experimental	data	
Experimental	data	has	been	taken	from	two	different	sources:	De	Jesus	et	al	[11]	and	Carvalho	et	al	[6].	Both	
researches	 have	 performed	 crack	 growth	 tests	 on	 CT	 specimens	 made	 of	 S355	 steel	 and	 both	 have	
performed	strain	life	tests	on	the	steel	used	in	the	experiments.	This	makes	the	researches	extremely	useful	
for	 validation	 of	 the	UniGrow	method.	 This	 forthcoming	 section	provides	 a	 summary	 of	 the	 performed	
researches	and	the	data	coming	from	the	research.	
 
3.3.1.1 De	Jesus	et	al	[11]	
De	Jesus	et	al	[11]	have	done	fatigue	tests	on	CT	specimens	made	of	S355	steel.	The	material	data	is	given	
in	Table	1.	The	strain	life	parameters	and	the	material	properties	were	determined	from	10	fatigue	tests	on	
smooth	 specimens	 under	 R	 =	 -1.	 The	 correlation	 between	 the	 fitted	 strain-life	 parameters	 and	 the	
experimental	data	was	not	very	high	for	S355:	R2	>	0.7634	for	the		𝜎'(	and	𝑏	and	R2	=	0.8087	for	the	other	
parameters.	The	 correlation	between	 the	 cyclic	parameters	K’	 and	n’	was	poor	 for	 the	S355	 steel:	R2	 =	
0.4881.	This	is	mainly	due	to	the	fact	that	no	real	Masing	behaviour	was	observed	in	the	S355	steel,	which	
means	that	no	clear	unique	cyclic	stress-strain	relation	was	observed.	Furthermore,	a	higher-than-average	
ultimate	stress	of	732	MPa	was	observed.	
	

Dimensions	 Material	parameters	 Strain-life	parameters	
	𝑾	 50	mm	 𝐸	 210.5	GPa	 𝜎&'	 952.2	MPa	
𝒂𝒏	 10	mm	 𝑣	 0.3	 𝑏	 -0.089	
𝑩	 8	mm	 𝐾'	 595.85	MPa	 𝜀&' 	 0.7371	
𝑳 62.5	mm	 𝑛′	 0.0757	 𝑐	 -0.664	
𝑯 60	mm	 	 	 	 	
𝒉 27.5	mm	 	 	 	 	

	
Table	3.6	Material	parameters	and	dimensions	of	the	CT	specimens	tested	by	De	Jesus	et	al	[11]	

	
The	crack	growth	speed	tests	were	obtained	from	tests	on	a	total	of	nine	CT	specimens:	two	at	R	=	0,	two	at	
R	=	0.25,	two	at	R	=	0.5	and	one	at	R	=	0.75.		
	 	
3.3.1.2 Carvalho	et	al	[6]	
Carvalho	et	al	[6]	have	done	fatigue	tests	on	CT	specimens	made	of	S355	steel.	The	strain	life	parameters	
and	the	material	properties	were	determined	from	13	fatigue	tests	on	smooth	specimens	under	R	=	-1.	The	
correlation	between	the	cyclic	parameters	K’	and	n’	for	the	S355	steel	was	better	than	De	Jesus	et	al	found,	
but	still	poor:	R2	=	0.6493.	The	material	tested	by	Carvalho	et	al	[6]	performs	very	similar	as	De	Jesus	et	al	
in	terms	of	strain-life	and	cyclic	parameters,	as	can	be	seen	in	Figure	3.40.	The	curves	for	both	properties	
of	the	material	are	very	similar,	justifying	the	assumption	that	the	same	material	was	used.	No	information	
on	the	ultimate	strength	of	the	material	was	provided	by	Carvalho	et	al	[6].			
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Dimensions	
	𝑾	 40	mm	
𝒂𝒏	 8	mm	
𝑩	 4	&	8	mm	
𝑳 50	mm	
𝑯 48	mm	
𝒉 22	mm	

	
Table	3.7	Dimensions	of	the	CT	specimens	tested	by	Carvalho	et	al	[6]	

	
The	crack	growth	speed	tests	were	obtained	from	tests	on	a	total	of	eight	CT	specimens:	four	with	a	width	
of	4	mm	and	four	with	a	width	of	8	mm.	Out	of	the	four	specimens	for	each	width,	two	were	tested	at	R	=	
0.01	and	two	at	R	=	0.5.	The	dimensions	of	the	CT	specimen	are	given	in	Table	3.7.		
	

 
Figure	3.40	Strain	life	curves	comparing	the	values	measured	by	De	Jesus	et	al	[11]	and	Carvalho	et	al	[6]	
for	S355	steel	(left)	and	the	relationship	between	plastic	strain	amplitude	and	stress	found	by	the	two	

researchers	for	S355	(right)	[6]	
 
3.3.2 Global	UniGrow	implementation	
Both	the	numerical	and	analytical	UniGrow	method	will	be	implemented	in	this	section.	The	global	steps	
used	in	these	models	will	be	described	below.	
	
3.3.2.1 Numerical	UniGrow	method	
In	this	validation	step,	the	method	as	given	in	Figure	3.41	will	be	used.	The	method	that	is	implemented	in	
this	section	is	the	same	method	that	was	used	for	the	verification	of	the	numerical	UniGrow	method.		In	
short,	this	entails:	

1. Determination	of	the	applied	stress	intensity	factor:	Will	be	done	using	the	Newman-Srawley	
equation.	 This	will	 not	 be	 further	 addressed	 in	 this	 chapter	 as	 this	 has	 been	 discussed	 before,	
reference	is	made	to	chapter	3.1.3.1	for	background.		

2. Determination	of	 the	elastoplastic	stress	distribution	ahead	of	 the	crack	tip:	Will	be	done	
using	a	2D	elastoplastic	FEA	model	of	half	the	CT	specimen.	Chapter	3.3.3.1	will	further	address	
this	topic.	

3. Determination	 of	 the	 residual	 stress	 intensity	 factor:	 Using	 the	 residual	 stress	 from	 the	
previous	step,	𝐾<&:was	determined	using	the	universal	weight	function.	To	ease	calculations,	the	
relationship	 between	𝐾<&: 	and	∆𝐾$** 	is	 determined	 separately	 and	 used	 as	 input	 for	 the	 global	
calculation	of	the	crack	growth	speed.	Chapter	3.3.3.1	will	further	address	this	topic.	

4. Determination	of	the	elastoplastic	stress	and	strain	on	first	elementary	block	ahead	of	the	
crack	tip:	This	will	be	done	using	 the	Creager-Paris	equations	 in	combination	with	 the	Neuber	
uniaxial	plasticity	correction.	This	will	not	be	further	addressed	in	this	chapter	as	this	has	been	
discussed	before,	reference	is	made	to	chapter	3.1.3.4	for	background.	

5. Determination	 of	 the	 initiation	 life	 of	 the	 first	 elementary	 block	 ahead	 of	 crack	 tip:	The	
initiation	life	was	determined	using	the	Smith-Watson-Topper	damage	parameter	and	the	Morrow	
damage	method.	 This	will	 not	 be	 further	 addressed	 in	 this	 chapter	 as	 this	 has	 been	 discussed	
before,	reference	is	made	to	chapter	3.1.3.5	for	background.	
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Figure	3.41	Global	calculation	procedure	of	the	numerical	UniGrow	method	used	for	validation	

 
3.3.2.2 Analytical	UniGrow	method	
The	global	steps	of	the	analytical	UniGrow	method	will	be	performed	as	follows:	

1. Determination	of	the	applied	stress	intensity	factor:	The	applied	stress	intensity	factor	will	be	
established	using	an	analytical	equation	derived	by	Newman	and	Srawley	[73].	This	topic	has	been	
addressed	in	section	3.1.3.1.	

2. Determination	 of	 the	 elastoplastic	 stress	 distribution	 ahead	 of	 the	 crack	 tip:	 The	 elastic	
stresses	ahead	of	the	stress	tip	will	be	determined	using	Creager-Paris	equations.	These	will	then	
be	corrected	for	using	analytical	elastoplastic	correction	method.	This	topic	has	been	addressed	in	
section	3.1.3.2.	

3. Determination	of	the	residual	stress	intensity	factor:	Using	the	weight	function	method	and	the	
elastoplastic	stresses	from	the	previous	step,	the	plastic	residual	SIF	will	be	determined.	 In	this	
case,	the	universal	weight	function	will	be	used.	This	topic	has	been	addressed	in	section	3.1.3.3.	

4. Determination	of	the	elastoplastic	stress	and	strain	on	first	elementary	block	ahead	of	the	
crack	tip:	This	will	be	done	using	 the	Creager-Paris	equations	 in	combination	with	 the	Neuber	
uniaxial	plasticity	correction.	This	topic	has	been	addressed	in	section	3.1.3.4.	

5. Determination	 of	 the	 initiation	 life	 of	 the	 first	 elementary	 block	 ahead	 of	 crack	 tip:	The	
initiation	life	will	be	determined	using	solely	the	Smith-Watson-Topper	damage	parameter.	This	
topic	has	been	addressed	in	section	3.1.3.5.	

 
3.3.3 Implemented	methods	
Most	 of	 the	 implemented	 methods	 are	 similar	 to	 the	 ones	 used	 in	 section	 3.2,	 therefore,	 solely	 the	
determination	of	𝐾<&:	using	elastoplastic	FEA	and	the	determination	of	the	elementary	block	size	will	be	
discussed	in	this	section.	Lastly,	the	flowchart	for	the	implementation	in	Python	is	given.		
	
3.3.3.1 Determination	of	Kres	using	elastoplastic	FEA	
The	modelled	CT	specimen	is	identical	to	the	one	used	in	the	previous	section;	a	summary	of	the	modelled	
geometry	 is	 given	 in	 Figure	 3.42.	 Half	 of	 the	 CT	 specimen	 is	 modelled	 due	 to	 symmetry	 and	 to	 save	
computational	time.	The	geometry	is	simplified,	removing	the	initial	notch	that	is	present	in	a	CT	specimen,	
since	the	sole	interest	is	the	effect	of	the	crack	length	and	the	notch.	The	crack	tip	is	modelled	as	a	quarter	
circle.	The	pin	that	is	used	to	load	the	CT	specimen	is	modelled	as	a	rigid	body	that	is	controlled	by	a	remote	
point.	The	remote	point	is	loaded	by	a	force.	The	remote	point	is	restrained	in	its	sideways	movement	and	
angular	rotation.	The	contact	surface	between	the	pin	and	the	CT	specimen	is	modelled	as	frictionless.	The	
commercial	software	package	ANSYS	18.2	was	used	to	model	the	specimen.	The	CT	specimen	is	modelled	
with	the	sizes	specified	in	Table	3.6	and	Table	3.7,	with	varying	crack	lengths	and	loads.	
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Figure	3.42	Boundary	and	load	conditions	for	the	modelled	CT	specimen	in	ANSYS	

	
Plasticity	
Plasticity	has	been	accounted	for	using	the	built-in	multi-linear	kinematic	hardening	module	in	ANSYS	18.2	
and	Von-Mises	yield	theory.	Kinematic	hardening	was	used	as	it	is	deemed	the	most	appropriate	to	describe	
the	plasticity	in	steel.	The	Ramberg-Osgood	relationship	using	the	parameters	determined	by	testing	from	
De	 Jesus	 et	 al	 [10]	 served	 as	 input	 for	 the	 multi-linear	 kinematic	 hardening.	 In	 Figure	 3.43	 the	 input	
Ramberg-Osgood	relationship	and	the	stress-strain	relationship	from	FEA	are	presented.	
	

	
Figure	3.43	Comparison	between	stress-strain	curves	generated	with	Ramberg-Osgood	relationship	and	

FEA	using	multi-linear	kinematic	hardening	
	
Mesh	Convergence	
Similar	 to	 the	 previous	 section,	 triangular	 quadratic	 plane	 stress	 elements	 have	 been	 used	 (due	 to	 the	
limited	thickness).	The	overall	mesh	size	has	been	set	to	1	mm	and	the	meshing	is	done	using	an	advancing	
front	method	to	produce	well-formed	elements	with	 less	distortion.	The	mesh	size	near	 the	crack	 tip	 is	
reduced	using	an	edge	sizing	method	that	is	refined	to	obtain	convergence.	2	mm	away	from	the	crack	tip	
on	the	crack	plane,	0.5	mm	edge	sizing	criterion	has	been	used.	An	overview	of	the	mesh	design	is	given	in	
Figure	3.44.		
	

	
Figure	3.44	Mesh	dimensioning	of	the	CT	specimen	
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Several	mesh	sizes	near	the	crack	tip	were	tried,	starting	from	a	mesh	size	of	0.01	refined	to	0.0009	mm,	
where	convergence	was	found.	Both	for	stresses	in	y	and	x	direction,	but	also	for	the	crack	tip	stress	in	x-
direction	which	 should	be	zero.	The	 results	 for	various	mesh	sizes	 for	a	 crack	 length	of	10	mm	and	an	
applied	force	of	1000	N	can	be	found	in	Table	3.8.	The	used	elementary	block	size,	and	thus	radius	of	the	
crack	tip	was	0.045	mm.	This	was	found	to	yield	the	best	crack	growth	results.	The	mesh	around	the	crack	
tip	is	presented	in	Figure	3.45	and	Figure	3.46.	
	

Element	size	 Maximum	𝝈𝒚	[MPa]	 Maximum	𝝈𝒙	[MPa]	 Crack	tip	𝝈𝒙	[MPa]	
0.01	mm	 471.2	 103.3	 1.98	
0.005	mm	 468.9	 103.1	 0.474	
0.003	mm	 463.5	 102.7	 0.212	
0.0009	mm	 465.7	 102.7	 0.02	

	
Table	3.8	Maximum	elastic	stress	for	distinct	mesh	sizes	(a	=	10	mm,	F	=	1000	N)	

	

	 	
Figure	3.45	Mesh	size	at	crack	tip	for	an	edge	size	of	0.01	mm	(left)	and	0.005	mm	(right)	(𝜌∗	=	0.045	mm)	

	

	 	
Figure	3.46	Mesh	size	at	crack	tip	for	an	edge	size	of	0.003	mm	(left)	and	0.0009	mm	(right)	(𝜌∗	=	0.045	

mm)	
		
K)**	vs.	K+,-	
The	 (linear)	 relationship	 between	∆𝐾$** 	and	𝐾<&: 	has	 been	 determined	 by	 modelling	 the	 elastoplastic	
model	of	the	CT	specimen	with	various	crack	sizes	and	forces,	as	specified	in	Table	3.9.	Using	the	Newman-
Srawley	equation,	∆𝐾$**	is	determined	for	each	of	the	variations.		
	

Stress	ratio	 a	=	20	mm	
R	=	0.0	 Fmax	=	1000;	1500;	3000;	4000;	6000;	8000	N	
R	=	0.25	 Fmax	=	1500;	3000;	4000;	6000;	8000	N	
R	=	0.5	 Fmax	=	1500;	3000;	4000;	6000;	8000;	10000	N	
R	=	0.75	 Fmax	=	4000;	6000;	8000;	10000;	12000	N	

	
Table	3.9	Modelled	combinations	of	crack	sizes	and	loads	for	the	determination	of	Kres	

	
From	the	model,	the	residual	stress	ahead	of	the	crack	tip	can	be	determined.	The	model	is	loaded	with	the	
maximum	load	and	then	unloaded	to	the	minimum	load	level.	The	stress	at	the	end	of	the	unloading	step	is	
defined	as	the	plastic	residual	stress.	Using	both	the	CT	weight	function	and	the	universal	weight	function,	
the	plastic	residual	SIF	can	then	be	determined.	The	five	or	six	data	points,	each	representing	one	crack	size-
force	 combination,	 are	 then	 used	 to	 derive	 the	∆𝐾$** -𝐾<&: 	relationship.	 The	 implementation	 of	 this	
procedure	 in	Python	is	given	in	Figure	3.28	in	and	for	 further	background,	reference	 is	made	to	section	
3.2.3.2.		
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3.3.3.2 Implementation	of	the	total	UniGrow	method	in	Python	
The	implementation	of	the	numerical	UniGrow	method	is	the	same	as	used	in	chapter	3.2	and	the	analytical	
model	that	is	used,	is	the	same	as	implemented	in	chapter	3.1.	The	flowcharts	for	implementation	can	be	
found	in	Figure	3.10	and	Figure	3.29	
 
3.3.3.3 Determination	of	elementary	block	size	
The	elementary	block	size	is	a	key	parameter	that	has	to	be	determined	before	the	UniGrow	method	can	be	
used.	In	this	section,	several	methods	that	can	be	used	to	determine	this	block	size	are	discussed.		
 
Threshold	Method	
According	to	Noroozi	et	al	[53],	the	elementary	block	size	can	be	determined	by	using	the	threshold	SIF	
∆𝐾6D	and	fatigue	limit	∆𝜎6D.	The	crack	doesn’t	grow	at	the	threshold	SIF	if	the	local	stress	at	the	crack	tip	is	
equal	to	the	fatigue	limit.	This	is	given	in	Eq.	(3.56).	Since	the	fatigue	limit	is	below	the	yield	stress,	elastic	
stress-strain	analysis	can	be	used.		
	
	 ∆𝜎6D =

∆𝐾6D𝜓P,7
J2𝜋𝜌∗

	 (3.56)	

	
This	can	subsequently	be	rewritten	to	Eq.	(3.57)	to	obtain	the	necessary	elementary	block	size.	The	fatigue	
limit	and	the	threshold	SIF	must	be	determined	at	the	same	stress	ratio.	Furthermore,	care	must	be	taken	
that	the	fatigue	may	not	grow	due	to	either	𝐾!$% 	or	∆𝐾	being	below	their	respective	threshold	values.	To	
make	sure	that	∆𝐾	is	governing,	but	to	prevent	plasticity,	Noroozi	et	al	[53]	propose	to	use	0.2	<	R	<	0.3.	
 
	

𝜌∗ =
5𝜓P,77

1

2𝜋 P
∆𝐾6D
∆𝜎6D

Q
1

	 (3.57)	

 
Fitting	method	
The	other,	more	empirical	method	is	the	fitting	method.	In	this	method,	data	from	crack	growth	tests	is	used	
to	find	the	appropriate	elementary	block	size.	In	this	study,	this	is	the	preferred	method	since	other	data	of	
the	material	is	not	available.	To	provide	the	UniGrow	method	with	an	extra	challenge,	the	elementary	block	
size	will	be	fitted	to	the	R	=	0.0	case.	It	is	then	possible	to	see	how	well	the	UniGrow	method	will	predict	the	
crack	growth	rates	for	the	other	stress	ratios.	
 
3.3.4 Results	and	discussion	
In	this	section	the	results	from	the	validation	of	the	analytical	and	numerical	UniGrow	are	presented	and	
discussed.	The	section	will	start	by	discussing	the	plastic	residual	stresses	produced	by	the	implemented	
UniGrow	method.	This	is	followed	by	a	discussion	of	elementary	block	size.	The	section	is	closed	off	by	a	
discussion	of	the	determined	crack	growth	rates.	
 
3.3.4.1 Plastic	Residual	Stress	Results	
Plastic	residual	stresses	have	been	determined	for	all	stress	ratios	at	a	crack	length	of	20	mm	and	at	various	
applied	 forces.	This	has	been	done	using	both	 the	analytical	 and	numerical	methods.	The	 results	of	 the	
calculations	are	given	in		Figure	3.47	and	Figure	3.48.		
	
Near	the	crack	tip,	 in	the	first	0.02	mm,	the	analytical	and	numerical	UniGrow	method	match	very	well.	
However,	the	two	methods	start	deviating	from	this	point,	the	numerical	method	predicting	higher	residual	
stress	values.	This	 is	due	 to	 the	redistribution	of	stresses.	Qualitatively,	 the	difference	between	the	 two	
methods	is	similar	as	presented	in	section	3.1	and	therefore	it	can	be	concluded	that	the	elastoplastic	FEA	
seems	to	function	properly.	
	
Integration	lengths	(i.e.	the	length	of	the	compressive	part	of	the	plastic	residual	stress	distribution)	are	
very	similar	for	both	methods.	Except	for	R	=	0,	where	the	analytical	method	predicts	no	tensile	residual	
stress	in	the	cross	section	and	the	plastic	residual	stress	asymptotically	decreases	to	zero.	It	is	expected	
that,	due	to	the	slightly	higher	stress	prediction,	the	plastic	residual	SIF	of	the	numerical	method	will	be	
slightly	higher	than	the	one	predicted	by	the	analytical	method.	
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Figure	3.47	Plastic	residual	stress	ahead	of	the	crack	tip:	comparison	of	analytical	results	and	FEA	results	

for	R	=	0	(left)	and	R	=	0.25	(right)	(a	=	20	mm)	
	

	 	
Figure	3.48	Plastic	residual	stress	ahead	of	the	crack	tip:	comparison	of	analytical	results	and	FEA	results	

for	R	=	0.5	(left)	and	R	=	0.75	(right)	(a	=	20	mm)	
	

3.3.4.2 Elementary	Block	Size	
The	elementary	block	size	has	been	determined	by	fitting	the	crack	growth	curve	for	R	=	0	to	the	found	data.	
This	meant	 that	 it	 was	 possible	 to	 analyse	 the	 effect	 of	 the	 elementary	 block	 size	 on	 two	 of	 the	most	
important	outcomes	of	the	UniGrow	method:	𝐾<&:	and	the	crack	growth	curve.	The	results	for	an	elementary	
block	size	of	10,	30	and	50	µm	and	R	=	0	and	R	=	0.5	can	be	found	in	Figure	3.49	and	Figure	3.50.		
	
As	can	be	seen,	a	smaller	elementary	block	size	leads	to	higher	values	of	the	plastic	residual	SIF.	This	is	most	
likely	due	to	the	assumption	that	the	crack	tip	radius	is	equal	to	this	elementary	block	size.	Reducing	the	
size	leads	to	a	higher	stress	concentration	and	thus	more	plasticity	at	the	crack	tip,	which	in	turn	causes	the	
plastic	residual	stresses	to	increase.	With	increased	plasticity	ahead	of	the	crack	tip,	one	would	expect	the	
crack	growth	rate	to	be	lower.	However,	from	Figure	3.50,	this	seems	to	not	be	the	case.	The	crack	growth	
speed	increases	as	the	material	block	size	decreases,	this	effect	being	especially	present	in	the	regions	of	
lower	∆𝐾$**	or	threshold	region.	This	is	because	the	average	stress	on	the	elementary	block	ahead	of	the	
crack	tip	increases	as	it	gets	smaller,	this	effect	being	dominant	over	the	effect	of	increased	plasticity.	

	 	
Figure	3.49	Influence	of	the	elementary	block	size	on	the	∆𝐾$**-𝐾<&:	relation	for	R	=	0	(left)	and	R	=	0.5	

(right)	
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Figure	3.50	Influence	of	the	elementary	block	size	on	the	crack	growth	rate	for	R	=	0	(left)	and	R	=	0.5	(right)	
	
The	elementary	block	size	was	determined	by	fitting	the	UniGrow	results	for	R	=	0.0	to	the	experimental	
data.	The	found	elementary	block	sizes	is	45	𝜇m	for	S355.	The	microstructure	of	the	steel	that	was	provided	
by	 De	 Jesus	 et	 al	 [11]	 is	 given	 in	 Figure	 3.51.	 From	 this	 figure,	 it	 becomes	 clear	 that	 the	 determined	
elementary	block	size	looks	to	be	of	the	same	order	of	magnitude	as	the	grains	of	the	material.	This	further	
strengthens	the	hypothesis	that	the	elementary	block	size	is	related	to	the	grain	size	of	the	material.	
	

	
Figure	3.51	Measured	grain	size	in	the	S355	material	[11]	

	
3.3.4.3 Kres	vs.	Kapp	
The	weight	functions	have	been	determined	using	both	the	analytical	and	numerical	UniGrow	method.	The	
results	of	these	calculations	are	given	in	Figure	3.52	and	Figure	3.53.	The	found	relation	between	Kres	and	
∆Kapp	is	linear	in	all	cases,	similar	as	predicted	by	[10],	[53]	and	[54].	At	all	stress	ratios	except	R	=	0,	the	
numerical	UniGrow	yields	slightly	higher	𝐾<&:	values	than	the	analytical	UniGrow.	The	difference	is	caused	
by	the	underestimation	of	the	residual	stress	ahead	of	the	crack	tip	by	the	analytical	UniGrow.	The	small	
difference	between	the	two	methods	R	=	0	can	be	explained	by	the	asymptotical	decrease	of	the	residual	
stress	to	zero	when	using	the	analytical	method.	This	causes	higher	𝐾<&:	values.		
	

	 	
Figure	3.52	Plastic	residual	SIF	as	a	function	of	the	applied	SIF	range	for	R	=	0	(left)	and	R	=	0.25	(right)		
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Figure	3.53	Plastic	residual	SIF	as	a	function	of	the	applied	SIF	range	for	R	=	0.5	(left)	and	R	=	0.75	(right)	
		
In	Figure	3.54	the	fitted	relationships	for	the	numerical	𝐾<&:	–	results	are	presented.	All	curves	have	high	R2	
values,	indicating	good	fit.	For	R	=	0.5,	the	material	still	seems	to	experience	quite	significant	plastic	residual	
stresses	ahead	of	the	crack	tip.	This	contradicts	the	prediction	by	Noroozi	et	al	[53]	who	have	proposed	that	
for	 R	 ≥	 0.5,	 the	 plastic	 residual	 stresses	 are	 negligible.	 For	 0.75,	 the	 plastic	 residual	 stresses	 have	
significantly	decreased.		
	

	
Figure	3.54	Plastic	residual	SIF	as	a	function	of	the	applied	SIF	range	for	S355	at	various	stress	ranges	

	
3.3.4.4 Crack	Growth	Results	
The	crack	growth	results	using	the	analytical	and	numerical	UniGrow	method	have	been	compared	to	the	
crack	growth	data	obtained	by	De	Jesus	et	al	[11].	The	results	have	been	given	in	Figure	3.55	and	Figure	
3.56.	Overall,	the	predicted	crack	growth	rates	match	very	well	with	the	crack	growth	results.	However,	for	
R	=	0.25,	the	crack	growth	rate	is	underestimated.	Also,	at	higher	applied	SIFs,	the	crack	growth	rate	seems	
to	be	underestimated	slightly	by	the	UniGrow	method	when	compared	to	the	experimental	results.	
	
The	crack	growth	results	using	the	numerical	and	analytical	UniGrow	implementation	are	very	similar,	the	
analytical	crack	growth	curve	being	slightly	higher	 than	 the	numerical	one.	This	 is	solely	caused	by	 the	
difference	in	estimation	of	plastic	residual	SIF	by	the	two	methods.	In	contrary	to	what	was	concluded	in	
the	previous	chapter,	this	material	seems	to	be	modelled	quite	well	by	both	methods.	Still,	it	is	advised	to	
solely	use	the	numerical	method,	as	it	provides	more	consistent	results.	
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Figure	3.55	Crack	growth	speed	predicted	by	the	UniGrow	model	compared	to	experimental	results	by	De	

Jesus	et	al	[11]	for	R	=	0	(left)	and	R	=	0.25	(right)		
		

	
Figure	3.56	Crack	growth	speed	predicted	by	the	UniGrow	model	compared	to	experimental	results	by	De	

Jesus	et	al	[11]	for	R	=	0.5	(left)	and	R	=	0.75	(right)		
	
Results	 comparing	 the	 numerical	 UniGrow	 model	 using	 the	 SWT	 damage	 parameter	 and	 the	 Morrow	
method	to	experiments	from	De	Jesus	et	al	[11]	are	given	in	Figure	3.57	and	Figure	3.58.	Results	from	the	
Morrow	and	SWT	methods	are	very	 similar,	 the	only	 significant	deviation	being	at	R	=	0.75,	where	 the	
UniGrow	+	Morrow	method	predicts	better	results	than	the	UniGrow	+	SWT	method.	Apart	from	R	=	0.75,	
no	significant	overestimation	of	the	crack	growth	rates	is	observed	when	using	the	SWT	parameter.	
	

	
Figure	3.57	Crack	growth	speed	predicted	by	the	UniGrow	model	compared	to	experimental	results	by	De	

Jesus	et	al	[11]	for	R	=	0	(left)	and	R	=	0.25	(right)	
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Figure	3.58	Crack	growth	speed	predicted	by	the	UniGrow	model	compared	to	experimental	results	by	De	

Jesus	et	al	[11]	for	R	=	0.5	(left)	and	R	=	0.75	(right)	
	
For	 the	 calculated	 crack	 growth	 speeds	 in	 the	 validated	 ranges,	 it	was	 found	 that	 for	 the	 failure	 of	 the	
elementary	block	ahead	of	the	crack	tip,	Nf	was	always	below	104.	De	Jesus	et	al	[10]	have	defined	the	LCF	
range	to	be	𝑁' < 5 ∗ 10O.	Since	all	 found	fatigue	 lives	are	 in	the	LCF	range,	rapid	cyclic	stress	relaxation	
occurs	and	thus	mean	stress	has	a	small	effect	on	the	fatigue	life	of	the	elementary	block	ahead	of	the	crack	
tip.	This	justifies	the	use	of	the	Morrow	method	without	correction	of	mean	stress.		
	
Carvalho	et	al	[6]	have	tested	CT	specimens	made	of	different	widths.	The	crack	growth	rate	predictions	
together	with	the	experimental	results	have	been	presented	in	Figure	3.60,	solely	the	numerical	results	are	
provided.	 The	 results	 for	 R	 =	 0.01	 at	 high	∆𝐾$** 	are	 slightly	 underestimated	 by	 the	 UniGrow	 model.	
However,	here	better	results	are	obtained	when	the	UniGrow	+	Morrow	method	has	been	used.	The	same	
effect	can	be	observed	for	the	R	=	0	results	from	De	Jesus	et	al	[11]	in	Figure	3.57.		
	
Crack	growth	predictions	for	R	=	0.5	results	match	very	well	with	the	experimental	results	for	specimens	of	
4	and	8	mm	thickness.	Furthermore,	both	the	UniGrow	+	Morrow	and	UniGrow	+	SWT	method	seem	to	
provide	 crack	 growth	 predictions	 that	 match	 the	 experimental	 results.	 Neither	 of	 the	 two	 performing	
significantly	better	than	the	other.			
	

	
Figure	3.59	Crack	growth	speed	as	a	function	of	the	applied	SIF	range	compared	to	experimental	results	

by	Carvalho	et	al	[6]	for	B	=	4	mm	
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Figure	3.60	Crack	growth	speed	as	a	function	of	the	applied	SIF	range	compared	to	experimental	results	

by	Carvalho	et	al	[6]	for	B	=	8	mm	
	
3.3.4.5 Discussion	
The	results	presented	in	the	previous	section	show	good	correspondence	between	the	UniGrow	method	
and	the	experimental	results	by	Carvalho	et	al	[6]	and	De	Jesus	et	al	[11].	Matching	results	weren’t	only	
observed	for	the	R	=	0,	which	was	used	to	determine	the	elementary	block	size,	but	also	for	other	stress	
ratios.	This	is	a	good	indication	that	the	UniGrow	model	is	able	to	predict	the	crack	growth	rates	in	mild	
steel	CT	specimens	subject	to	Mode	I	crack	growth.	
	
Analytical	UniGrow	implementation	
Even	though	some	discrepancy	has	been	found	in	the	values	of	the	plastic	residual	SIF,	the	analytical	and	
numerical	 UniGrow	 method	 predict	 very	 similar	 crack	 growth	 speeds.	 However,	 the	 methods	 for	
determination	of	the	elastoplastic	stresses	remains	physically	inaccurate	and	thus	should	be	used	with	care.	
It	 is	 therefore	recommended	to	solely	use	the	analytical	method	to	obtain	an	approximate	value	 for	the	
elementary	block	size.	After	an	estimate	has	been	found,	the	numerical	UniGrow	method	can	be	used	to	
obtain	the	exact	residual	stresses	ahead	of	the	crack	tip.	This	prevents	having	to	repeatedly	do	extensive	
elastoplastic	FEA	for	different	elementary	block	sizes.				
	
Morrow	vs.	SWT	
De	Jesus	et	al	[10]	proposed	to	use	the	Morrow	method	instead	of	the	SWT	damage	parameter	to	determine	
the	fatigue	life	of	the	elementary	block	ahead	of	the	crack	tip.	In	section	3.3.4	it	has	been	shown	that	both	
damage	methods	seem	to	perform	equally	well	and	predict	a	similar	effect	of	the	stress	ratio	on	the	crack	
growth	speed.	Except	for	R	=	0.75,	where	usage	of	the	Morrow	method	resulted	in	a	significantly	better	
determination	of	the	crack	growth	speed.			
	
These	results	contradict	those	found	by	De	Jesus	et	al	[10]	where	it	was	found	that	the	Morrow	method	was	
better	at	accounting	for	the	stress	ratio	effect	than	the	SWT	damage	parameter.	To	investigate	what	might	
cause	this	difference,	the	fatigue	lives	of	the	elementary	block	ahead	of	the	crack	tip	of	P335NL1	and	S355	
were	calculated.	The	materials	were	 loaded	with	 the	same	nominal	stress	ratio,	elastoplastic	stress	and	
strain	amplitude.	The	resulting	strain-life	curves	for	R	=	0	and	R	=	0.5	have	been	displayed	in	Figure	3.61.	
The	range	applicable	to	crack	growth	(Nf	<	5	*	104)	is	especially	of	interest.	In	Figure	3.62,	the	crack	growth	
rate	as	a	function	of	the	applied	SIF	range	for	R	=	0,	R	=	0.5	and	R	=	0.75	is	given	for	both	steels.	
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In	Figure	3.61,	it	can	be	seen	that	for	R	=	0,	Morrow	and	SWT	results	match	quite	closely	for	both	S355	and	
P355NL1	steel.	This	effect	can	then	also	be	observed	in	the	calculated	crack	growth	rates	for	R	=	0	in	Figure	
3.62:	for	this	stress	ratio	the	SWT	and	Morrow	method	produce	very	similar	results.	For	the	P355NL1	steel,	
a	larger	discrepancy	is	observed	in	the	strain	life	curve	using	SWT	and	Morrow	at	a	stress	ratio	of	R	=	0.5.	
This	then	also	results	in	large	differences	in	the	predict	crack	growth	rate.	For	the	S355,	this	is	not	the	case	
and	therefore	crack	growth	rates	match	much	better.	
	

	 	
Figure	3.61	Number	of	cycles	to	failure	as	function	of	the	applied	strain	amplitude	for	P355NL1	steel	[10]	

(left)	and	S355	steel	[11]	(right)		
	

	 	
Figure	3.62	Crack	growth	rate	as	a	function	of	the	applied	SIF	range	for	P355NL1	steel	[10]	(left)	and	S355	

steel	[11]	(right)		
	
The	root	cause	of	the	difference	between	the	results	by	De	Jesus	et	al	[10]	and	the	results	of	this	study	can	
thus	be	related	to	the	fit	between	the	SWT	and	Morrow	strain	life	curves	in	the	LCF	range.	This	seems	to	be	
dependent	on	the	material	properties.	However,	as	the	Morrow	approach	has	shown	good	results	for	both	
S355	 and	P355NL1	 steel	 and	 its	 use	 is	 physically	 grounded,	 it	 seems	 to	 be	 the	 preferred	 approach	 for	
determining	the	crack	growth	rates.	The	applicability	of	the	SWT	method	has	to	be	determined	on	a	case-
by-case	basis.	
	
However,	the	validity	of	the	application	of	the	Morrow	method	without	mean	stress	correction	for	applied	
SIF	ranges	in	the	HCF	range	is	questionable.	It	was	noted	by	Koh	et	al	[23]	and	Lin	et	al	[30]	that	in	specimens	
subjected	to	strain	ranges	where	no	plasticity	was	observed,	cyclic	stress	relaxation	did	not	occur.	In	these	
specimens,	 significant	 influence	 of	 the	mean	 stress	 on	 the	 fatigue	 life	was	 found.	 Figure	 3.61	 seems	 to	
support	these	observations:	for	𝑁' > 5 ∗ 10O,	deviation	between	SWT	and	Morrow	method	starts	to	occur.		
	
Based	on	these	considerations,	 it	 is	recommended	to	only	use	the	Morrow	method	when	the	number	of	
cycles	required	to	fail	the	elementary	block	ahead	of	the	crack	tip	is	in	the	LCF	range.	A	limit	of	this	range	
could	be	𝑁' < 5 ∗ 10O	as	defined	by	De	Jesus	et	al	[10].	In	practice	this	will	come	down	to	only	using	the	
Morrow	method	to	predict	crack	propagation	rates	and	thus	makes	it	inapplicable	for	the	crack	initiation	
phase.		
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4 Total	Fatigue	Life	
	
In	 the	 previous	 chapter,	 it	 has	 been	 shown	 that	 the	 UniGrow	 method	 is	 able	 to	 provide	 satisfactory	
predictions	of	crack	growth	speed	in	the	long	crack	regime	for	different	stress	ratios.	The	fatigue	life	of	steel	
specimens,	 however,	 also	 consists	 of	 short	 crack	 growth	 and	 the	UniGrow	model	 thus	 requires	 further	
validation	before	it	can	be	used	to	predict	fatigue	lives.	Validation	of	the	UniGrow	method	for	short	crack	
growth	is	rarely	discussed	in	literature.	Instead,	research	often	focusses	on	validating	crack	growth	speeds	
of	LC.	Therefore,	it	needs	to	be	made	sure	that	the	model	also	provides	accurate	SC	growth	rate	predictions.	
Several	 studies	have	been	done	where	 the	UniGrow	method	has	been	used	 to	predict	 the	 fatigue	 life	of	
specimens.	The	results	from	these	studies	form	the	basis	for	this	chapter.	
	
Additionally,	the	performance	of	the	UniGrow	as	total	fatigue	model	will	be	compared	to	the	Two-Stage-
Model,	another	total	fatigue	model	first	proposed	by	Röscher	et	al	[64].	In	this	research,	the	fatigue	life	of	
different	 butt	 weld	 geometries	 was	 determined	 using	 the	 Two-Stage-Model,	 accounting	 solely	 for	 the	
geometry	effect	and	neglecting	the	weld	residual	stresses.	It	is	interesting	to	see	how	the	UniGrow	model	
performs	 compared	 to	 the	 Two-Stage-Model	 in	 the	 prediction	 of	 the	 fatigue	 lives	 of	 these	 butt-welded	
geometries.	This	will	provide	further	insight	into	the	performance	of	the	UniGrow	model	as	a	total	fatigue	
life	model.		
	
First,	literature	on	fatigue	life	calculations	using	UniGrow	will	be	discussed.	Subsequently,	the	Two-Stage-
Model	and	the	data	from	the	research	by	Röscher	et	al	[64]	will	be	discussed.	Then	the	implementation	of	
the	UniGrow	model	that	will	be	used	for	this	part	of	the	research	will	be	described	and	lastly,	the	results	
will	be	presented	and	discussed.		
	
4.1 Literature	on	fatigue	life	calculations	using	UniGrow	
Whereas	much	of	 the	 literature	on	the	UniGrow	method	 focusses	on	validating	crack	growth	rates	with	
experimental	results,	some	research	has	been	done	where	the	fatigue	life	of	specimens	is	calculated.	An	
overview	and	discussion	of	the	literature	that	has	used	the	UniGrow	method	to	determine	the	fatigue	life	of	
Mode	I	cracks	and	their	conclusions	will	be	given	in	this	section.		
	
4.1.1 Mikheevskiy	et	al	[35]	(2012)	
The	first	research	attempting	to	use	the	UniGrow	method	to	predict	the	fatigue	life	of	a	detail,	in	contrary	
to	previous	research	that	focused	solely	crack	growth	speeds,	was	done	by	Mikheevskiy	et	al	[35]	in	2012.	
The	UniGrow	model	was	used	to	predict	the	fatigue	crack	growth	of	a	corner	crack	in	an	attachment	lug	
made	of	Al	7050-T7451	loaded	with	a	variable	load.	Two	different	spectra	of	variable	load	were	applied.	
The	crack	introduced	into	the	specimen	was	a	corner	crack	with	dimensions	of	1	mm	in	both	directions.	The	
crack	slowly	transitioned	into	a	through-thickness	edge	crack.	An	overview	of	the	detail	that	was	modelled	
is	given	in	Figure	4.1.	

	
Figure	4.1	Attachment	lug	geometry	with	initial	corner	crack	(W	=	22	mm,	Ri	=	13	mm,	Ro	=	35	mm	and	t	=	

20	mm)	[35]	
	
The	UniGrow	model	was	first	calibrated	so	that	good	crack	growth	results	were	obtained	for	different	stress	
ratios.	 	 After	 this,	 the	 crack	 growth	 in	 the	model	 using	 variable	 amplitude	 loading	was	modelled.	 The	
resulting	 crack	 growth	 curve,	 compared	 to	 experimental	 results,	 can	 be	 seen	 in	 Figure	 4.2.	 The	 curve	
generated	with	the	UniGrow	model	matches	the	experimental	curve	very	well,	especially	in	the	early	stages	
of	fatigue	crack	growth.	The	main	benefit	of	using	the	UniGrow	model	over	a	Paris	Law-based	method	is	
that	the	different	stress	ratios	and	over	and	under	loading	can	be	accounted	for	by	the	same	model.	This	is	
impossible	 when	 using	 LEFM.	 Unfortunately,	 this	 usage	 of	 the	 model	 only	 validates	 the	 crack	 growth	
prediction	in	the	crack	propagation	stage,	as	the	initial	crack	size	was	1	mm.	
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Figure	4.2	Fatigue	growth	prediction	and	experimental	data	for	the	two	applied	variable	loading	[35]	

	
4.1.2 Mikheevskiy	et	al	[36]	(2015)	
In	 2015,	Mikheevskiy	 et	 al	 [36],	 predicted	 the	 total	 fatigue	 life	 of	 a	 welded	 t-connection	made	 of	 A36	
(mild/low	carbon)	steel.	The	geometry	that	was	used	in	experiments	can	be	seen	in	Figure	4.3.	As	welding	
has	been	performed	on	the	specimen,	weld	residual	stresses	will	be	present	inside	the	structure.	These	were	
measured	 using	 x-ray	 diffraction	 technique.	 Both	 measured	 residual	 stress	 and	 a	 modified,	 assumed	
residual	stress	distribution	were	used	 in	 the	determination	of	 the	 fatigue	 life.	The	applied	SIF	has	been	
calculated	using	the	weight	function	method	and	the	elastic	stress	in	the	critical	cross	section	taken	from	
FEA.	 Total	 fatigue	 life	was	 determined	 assuming	 an	 initial	 semi-circular	 crack	with	 a	 size	 equal	 to	 the	
elementary	block	size	𝜌∗.	

	
Figure	4.3	Geometry	of	welded	specimen	made	of	A36	steel	[36]	

	
Weld	residual	stresses	were	included	by	means	superposition	of	the	weld	residual	SIF	on	the	applied	SIF.		
The	weld	residual	SIF	was	calculated	by	means	of	the	weight	function	method	and	the	given	weld	residual	
stress	distributions.	Very	few	experimental	results	were	performed:	six	at	R	=	0.1,	two	at	R	=	0.3	and	four	
at	R	=	0.5.	For	all	the	stress	ratios,	the	experiments	were	done	at	two	stress	ranges.	The	S-N	curves	generated	
by	 the	 UniGrow	 calculations	 and	 the	 fatigue	 life	 results	 from	 experiments	 are	 given	 in	 Figure	 4.4.	
Correspondence	 between	 UniGrow	 results	 and	 experiments	 is	 quite	 good	 for	 all	 stress	 ratios.	 Some	
difference	was	 found	between	using	the	simplified	and	measures	residual	stresses,	but	both	were	more	
accurate	then	when	no	residual	stress	was	used.		
	

	
Figure	4.4	Fatigue	life	predicted	by	the	UniGrow	method	and	the	experimental	data	[36]	
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4.1.3 Bogdanov	et	al	[3]	(2015)	
In	 2015,	 Bogdanov	 et	 al	 [3]	 predicted	 the	 fatigue	 life	 of	 a	misaligned,	welded	 cruciform	 joint	made	 of	
15G2ANb	(low-alloy	steel).	A	schematization	of	the	geometry	has	been	given	in	Figure	4.5.	It	has	not	been	
discussed	by	the	authors	whether	weld	residual	stresses	have	been	taken	into	account.	The	applied	SIF	has	
been	calculated	using	the	weight	function	method	and	the	elastic	stress	in	the	critical	cross	section	taken	
from	FEA.	Total	fatigue	life	was	determined	assuming	an	initial	semi-circular	crack	with	a	size	equal	to	the	
elementary	block	size	𝜌∗.	

	
Figure	4.5	Geometry	of	the	misaligned	cruciform	joint	(t	=	8	mm)	[3]	

	
This	 was	 also	 the	 first	 paper	 to	 account	 for	 effects	 of	 the	 crack	 being	 short.	 It	 has	 been	 proposed	 by	
Bogdanov	et	al	[3]	to	correct	the	applied	SIF	for	short	cracks.	This	is	method	is	loosely	based	on	the	Unified	
Approach.	When	a	crack	is	short,	the	Creager-Paris	equations	predict	stresses	that	are	too	low	and	start	to	
deviate	from	the	values	for	an	elliptical	notch.	The	correction	will	be	done	based	on	correcting	the	SIF	so	
that	 the	Creager-Paris	equations	(Eq.	 (4.1))	predict	 the	same	maximum	stress	values	as	 for	an	elliptical	
notch	(Eq.	(4.2)).		
	

𝜎ij =
2𝐾
J𝜋𝜌∗

=
2𝑆√𝜋𝑎
J𝜋𝜌∗

	 (4.1)	

	
	

𝜎&,,"*:& = 𝑆�1 + 2e
𝑎
𝜌∗	�	 (4.2)	

	
The	ratio	between	these	two	stresses	is	given	in	Eq.	(4.3).	It	is	suggested	by	Bogdanov	et	al	[3]	to	increase	
the	applied	SIF	with	this	factor.		
	
	 𝜎&,,"*:&

𝜎ij
= 1 +

1
2
e
𝜌∗

𝑎 	
(4.3)	

	
Again,	many	similarities	with	the	Unified	Approach,	as	discussed	in	section	2.4.4.	can	be	seen.	Both	methods	
propose	 the	 augmentation	 of	 the	 applied	 SIF	 with	 a	 factor	 that	 decreases	 as	 the	 crack	 grows	 longer.	
However,	 the	 UniGrow	method	 does	 this	 by	multiplying	 the	 values	with	 a	 factor,	 whereas	 the	 Unified	
Approach	adds	a	value	to	𝐾!$%	and	𝐾!"#.	This	increases	the	local	stress	ratio	and	with	this,	the	crack	growth	
speed.		
	
Seven	fatigue	life	tests	have	been	performed	at	a	constant	amplitude	range	of	quite	low	nominal	stress	𝜎 <
80𝑀𝑃𝑎.	However,	since	the	SCF	of	the	welded	detail	is	quite	high	(SCF	≈	12),	the	stress	at	the	crack	is	high	
and	therefore	fatigue	lives	are	short	and	are	spent	mainly	in	the	crack	propagation	phase.	The	S-N	curve	
generated	by	the	UniGrow	calculations	and	the	fatigue	life	results	from	experiments	are	given	in	Figure	4.6.	
There	seems	to	be	an	excellent	fit	between	UniGrow	and	the	experimental	results.		
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Figure	4.6	Results	from	fatigue	model	compared	to	experimental	data	[3]	

	
4.1.4 Bang	et	al	[1]	(2018)	
In	2018,	Bang	et	al	[1]	predicted	the	fatigue	life	of	2024-T3	aluminium,	7075-T561	aluminium	and	Ti-6Al-
4V	titanium	alloys.	Fatigue	tests	from	literature	were	used	to	assess	the	performance	of	the	UniGrow	model.	
These	 tests	 were	 done	 using	 smooth	 specimens,	 Single-Edge	 Notched	 Tension	 (SENT)	 specimens	 and	
Double-Edge	 Notched	 Tension	 (DENT)	 for	 2024-T3	 aluminium,	 7075-T561	 aluminium	 and	 Ti-6Al-4V	
titanium	alloys	respectively.	A	schematization	of	the	geometries	has	been	given	in	Figure	4.7.	It	has	not	been	
stated	by	Bang	et	al	[1]	which	method	has	been	used	for	the	determination	of	the	applied	SIF.	
	

	
Figure	4.7	Typical	geometry	of	a	smooth	specimen	(a),	SENT	specimen	(b)	and	DENT	specimen	(c)	

	
In	the	literature	from	which	the	experimental	data	was	taken,	fatigue	calculations	have	also	been	done	and	
thus	 initial	 crack	 sizes	were	 proposed.	 These	 initial	 sizes	 have	 also	 been	 used	 by	Bang	 et	 al	 [1]	 in	 the	
determination	of	the	fatigue	life	of	the	specimens.	For	the	7075-T561	Al	alloy,	the	initial	crack	sizes	were	
based	on	the	initial	flaws	often	detected	in	the	structure	[48].	The	initial	crack	sizes	for	the	other	two	alloys	
were	based	trial-and-error	fitting	[46],	[45].		
	
Additionally,	Bang	et	al	[1]	proposed	criteria	for	the	UniGrow	method	for	distinguishing	between	long	and	
short	crack	growth.	Three	parameters	were	used	as	 threshold	parameters,	 if	 the	crack	at	any	point	has	
values	 lower	than	the	threshold	values,	 the	crack	 is	considered	to	be	a	short	crack.	The	three	threshold	
criteria	are:	

§ Threshold	crack	size	(𝒂𝒄𝒓):	The	threshold	crack	size	is	the	size	where	the	physically	short	crack	
transitions	to	a	physically	long	crack.	This	is	usually	assumed	to	be	somewhere	between	0.5	–	1	
mm	[37],	where	Bang	et	al	[1]	use	0.5	mm.		

§ Threshold	SIF	(∆𝑲𝒄𝒓):	Differs	per	material	and	stress-ratio	and	is	related	to	the	cut-off	limit	used	
in	the	Paris-Law.		

§ Threshold	 crack	 growth	 (da/dNcr):	 Bang	 et	 al	 [1]	 have	 not	 clearly	 defined	 this	 parameter.	
However,	it	is	expected	that	this	is	the	crack	growth	rate	at	the	threshold	SIF.	

	
Bang	et	al	[1]	investigated	the	use	of	using	the	short	crack	correction	factor	introduced	by	Bogdanov	et	al	
[1].	Also,	a	method	based	on	using	short	crack	growth	data	was	used.	This	consists	of	making	two	separate	
UniGrow	models:	one	fitted	to	the	long	crack	growth	data,	the	other	to	short	crack	growth	data.	The	short	
crack	model	is	then	used	to	determine	crack	growth	rates	when	the	crack	is	in	the	short	crack	regime,	as	
soon	as	it	enters	the	long	crack	regime,	the	long	crack	model	is	used.	
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Results	of	these	calculations	are	shown	in	the	form	of	S-N	curves	in	Figure	4.8.	It	was	found	that	the	UniGrow	
model	predicted	good	total	fatigue	lives	for	cracks	under	high	stress	range.	However,	when	the	predicted	
fatigue	life	gets	in	the	range	of	105	–	106	cycles,	the	results	start	to	deviate.	For	predictions	of	fatigue	life	
>105	–	106,	underprediction	of	the	total	fatigue	life	is	observed	when	using	the	UniGrow	method.	Bang	et	al	
[1]	attributed	this	to	poor	prediction	of	short	crack	growth	speeds.	The	correction	method	showed	better	
results	than	the	curve	fitting	method.	This	is	most	likely	due	to	the	fact	that	the	fitting	method	was	defined	
as	an	average	over	the	short	crack	growth	experimental	results.	However,	the	crack	growth	speed	of	short	
cracks	should	depend	on	maximum	applied	stress.		

	
Figure	4.8	S-N	curves	for	2024-T3	aluminium,	Ti-6Al-4V	titanium,	and	7075-T561	aluminium	alloys	

compared	to	analytical	results	[1]	
	
4.1.5 Discussion	
From	the	previous	section,	it	can	be	noted	that	good	fatigue	life	predictions	were	done	using	the	UniGrow	
model	for	crack	propagation	regime	[35],	welded	specimens	[3],	[36]	and	the	LCF	fatigue	regime	for	notched	
and	 unnotched	 specimens	 [1].	 Poor	 results	 were	 obtained	 for	 fatigue	 lives	 >105	 in	 the	 (un)notched	
specimens	studied	by	Bang	et	al	 [1].	 In	this	range,	 the	UniGrow	method	showed	underestimation	of	 the	
fatigue	life	compared	to	experiments.	
	
The	cases	where	decent	predictions	of	the	UniGrow	model	were	found	have	one	common	denominator:	the	
predicted	fatigue	lives	are	all	in	a	range	that	is	dominated	by	fatigue	crack	propagation.	Welded	specimens	
usually	 spent	 a	 significant	portion	of	 their	 total	 fatigue	 life	 in	propagating	 the	 crack	due	 to	 initial	weld	
defects	 and	 high	 stress	 concentrations	 at	 the	 weld	 toe	 [61].	 Furthermore,	 the	 model	 also	 predicted	
reasonably	good	results	in	LCF	range.	In	LCF,	the	stress	ranges	are	relatively	high,	in	which	case	most	of	its	
life	is	spent	in	fatigue	crack	propagation	[20].		 	
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4.2 The	Two-Stage-Model	
It	 is	 often	 proposed	 by	 researchers	 that	 fatigue	 consists	 of	 two	 stages:	 crack	 initiation	 and	 crack	
propagation.	This	phenomenological	model	is	at	the	basis	of	the	Two-Stage-Model,	a	total	life	fatigue	model,	
that	was	first	introduced	by	Röscher	et	al	[64]	in	2019.	First,	a	description	of	the	model	will	be	given,	after	
which	the	data	that	will	be	used	to	compare	the	UniGrow	method	against	is	presented.			
	
4.2.1 Model	description	
As	 described	 before,	 the	 Two-Stage-Model	 consists	 of	 two	 main	 steps:	 crack	 initiation	 and	 crack	
propagation.	Each	stage	is	described	by	a	separate	model,	yielding	an	initiation	life	(Ni)	and	propagation	life	
(Np).	These	two	are	then	added	to	obtain	the	total	fatigue	life	(Nf).	The	two	steps	are	modelled	with	the	
following	models	and	assumptions:	

§ Crack	initiation:	This	fatigue	stage	is	modelled	using	the	strain-life	method.	As	stated	before,	this	
method	is	often	assumed	to	be	able	to	model	fatigue	crack	initiation.	It	is	thus	implicitly	assumed	
that	the	fatigue	life	of	a	smooth	specimen	represents	the	number	of	cycles	it	takes	for	the	crack	to	
grow	0.5	mm.		
	
First,	a	linear	elastic	FEA	model	is	made	of	the	weld,	from	which	the	stress	concentration	factor	(Kt)	
can	be	obtained.	Kt	is	defined	as	in	Eq.	(4.4),	where	𝜎7,!$%	is	the	maximum	principal	stress	and	𝜎#E!	
is	the	nominally	applied	stress.	The	FEA	model	uses	linear	plane	stress	elements	with	a	size	of	0.167	
to	0.25	mm	as	defined	by	IIW	recommendation.		
	

	 𝐾6 =
𝜎7,!$%
𝜎#E!

	 (4.4)	

	
A	modified	Neuber	approach,	that	is	valid	for	mild	notches	such	as	the	weld	toe,	where	the	cross	
section	could	show	yielding	has	been	applied.	After	the	elastic	stresses/strains	are	converted	to	
elastoplastic	stresses/strains,	the	Smith-Watson-Topper	damage	parameter	is	used	to	predict	the	
fatigue	life	of	the	initiation	stage.	
	
An	important	note	to	make	here	is	that	the	initiation	life	results	by	Röscher	et	al	[64]	have	been	
calculated	on	the	basis	of	a	linear	elastic	FEA	model	that	was	based	on	linear	elements	of	0.17	–	
0.25	mm.	This	means	that	some	underestimation	of	the	stress	could	also	be	present	in	the	model	
by	Röscher	et	al	[64],	which	in	turn	could	cause	overestimation	of	the	initiation	life.			

§ Crack	propagation:	This	fatigue	stage	is	modelled	using	a	LEFM-based	method	using	the	eXtended	
Finite	Element	Method	(XFEM).	XFEM	allows	for	modelling	a	crack	in	FEA	separate	from	the	mesh	
of	the	model,	which	prevents	the	need	for	extensive	remeshing.	It	also	allowed	Röscher	et	al	[64]	
to	let	the	crack	grow	on	a	non-predefined	path,	 i.e.	the	crack	can	grow	freely.	The	FEA	model	is	
slightly	refined	to	elements	of	0.1	mm	in	the	expected	crack	area.		
	
An	energy-based	method	(Virtual	Crack	Closure	Technique)	was	used	to	determine	 the	energy-
release	rate.	The	energy-release	rate	was	used	to	determine	the	crack	growth	speed	using	the	Paris-
law.	A	crack	increment	of	0.1	mm	is	used.	The	initial	location	of	the	crack	is	the	location	where	the	
highest	principal	stresses	were	observed.	The	initial	crack	direction	is	set	as	perpendicular	to	the	
direction	of	the	highest	principal	stress,	with	an	initial	crack	length	of	0.5	mm.		

	
What	becomes	clear	from	the	model	description	is	that	the	two	methods	are	completely	separate	from	each	
other,	the	only	thing	linking	them	is	the	location	of	crack	initiation.	The	end	of	the	fatigue	life	is	defined	as	
the	point	where	the	critical	energy	release	rate	is	reached	or	when	the	crack	length	has	reached	5	mm.	This	
was	done	to	save	on	computation	time	[64].		
	
4.2.2 Model	data	
The	 Two-Stage-Model	 has	 been	 applied	 to	 several	 weld	 geometries,	 where	 the	 following	 fundamental	
assumptions	have	been	made	by	Röscher	et	al	[64]:	

§ Weld	residual	stresses:	Weld	residual	stresses	have	been	neglected	in	the	calculations.	Solely	the	
influence	of	geometry	is	of	consideration	in	this	research.	

§ Material	parameters:	The	base	material,	weld	material	and	heat	affected	zone	are	assumed	to	
made	from	the	same	material	and	thus	have	the	same	material	parameters.	This	is	a	simplification,	
as	 it	 has	often	been	 shown	 that	 the	material	 structure	 is	 altered	by	welding	 and	 that	 the	weld	
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material	 and	HAZ	 show	considerable	different	behaviour.	The	material	parameters	 are	derived	
from	the	UML	(Uniform	Material	Law)	and	are	given	in	Table	4.1.	

§ Crack	type:	The	crack	type	that	is	considered	in	this	model	is	a	through	thickness	edge	crack.	The	
plate	is	considered	to	be	0.1	mm	wide.	A	2D	model	has	been	used.	

	
Material	parameters	 Strain-life	parameters	 Paris-Law	parameters	
𝒇𝒚	 355	MPa	 𝜎'(	 735	MPa	 𝐶	 3.39 ∗ 10Z7O	
𝒇𝒖	 490	MPa	 𝑏	 -0.087	 𝑚	 3.18	
𝑬	 210000	MPa	 𝜀'( 	 0.59	 𝐾C+	 2000	N/mm3/2	

𝒗	 0.3	 𝑐	 -0.58	 ∆𝐾;	 180	N/mm3/2	
𝑲(	 808.5	MPa	 	 	 	 	
𝒏′	 0.15	 	 	 	 	

	
Table	4.1	Material,	strain-life	and	Paris-Law	parameter	for	the	modelled	S355	steel	by	Röscher	et	al	[64]	

	
Röscher	et	al	[64]	have	defined	4	different	weld	qualities,	ranging	from	A	to	D,	in	decreasing	quality.	Weld	
quality	A	is	a	high	weld	quality	and	has	been	based	upon	weld	quality	B	from	EN	ISO	5817:2014.	The	weld	
will	be	modelled	as	an	arc	defined	by	a	weld	excess	(𝑒).	Furthermore,	weld	quality	B,	C	and	D	experience	
misalignment	(𝑣E)	between	the	two	plates.	The	assumed	weld	geometry	can	be	seen	in	Figure	4.9.	Both	weld	
excess	and	misalignment	have	been	defined	relative	to	the	thickness	(𝑡)	of	the	plate,	the	exact	definitions	
are	given	 in	Table	4.2.	The	weld	toe	 is	modelled	with	a	 fictitious	radius	of	1	mm	and	the	weld	 length	 is	
assumed	equal	to	the	thickness	of	the	specimen.	
	

Weld	 Misalignment	(𝒗𝒐)	 Weld	Excess	(𝒆)	
A	 0	 1	+	0.1t	
B	 0.05t	 0.5	+	0.05t	
C	 0.1t	 1	+	0.1t	
D	 0.15t	 1	+	0.15t	

	
Table	4.2	Various	weld	qualities	modelled	by	Röscher	et	al	[64]	and	their	misalignment	and	weld	excess	

	

	
Figure	4.9	Assumed	geometry	used	by	Röscher	et	al	[64]	in	the	modelling	of	the	welds		

	
For	each	weld	quality,	Röscher	et	al	[64]	have	analysed	five	different	weld	thicknesses	for	each	weld	quality,	
ranging	from	10	to	30	mm.	More	detailed	results	were	available	for	welds	of	a	thickness	of	20	mm;	therefore,	
it	 has	been	 chosen	 to	model	 the	weld	quality	A20,	B20,	C20	and	D20.	 For	A	 and	C	quality	welds,	 plate	
thicknesses	 of	 10	mm	 and	 30	mm	will	 also	 be	modelled.	 This	will	 be	 done	 to	 investigate	whether	 the	
UniGrow	 model	 can	 account	 for	 the	 effect	 of	 the	 thickness.	 The	 modelled	 geometries	 with	 their	
misalignment,	weld	excess	and	SCF	can	be	found	in	Table	4.3.	The	specimens	are	loaded	with	a	stress	ratio	
of	R	=	0.	

Weld	 Thickness	
(𝒕)	

Misalignment	
(𝒗𝒐)	

Weld	
Excess	(𝒆)	

Stress	Concentration	
Factor	(Kt)	

A10	 10	mm	 0	mm	 2	mm	 1.69	
A20	 20	mm	 0	mm	 3	mm	 1.93	
A30	 30	mm	 0	mm	 4	mm	 2.13	
B20	 20	mm	 1	mm	 1.5	mm	 2.33	
C10	 10	mm	 1	mm	 2	mm	 2.71	
C20	 20	mm	 2	mm	 3	mm	 3.37	
C30	 30	mm	 3	mm	 4	mm	 3.78	
D20	 20	mm	 3	mm	 4	mm	 4.17	

Table	4.3	Weld	geometries	modelled	in	this	study	[64]	
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4.3 Global	UniGrow	implementation	
To	match	the	model	by	Röscher	et	al	[64],	the	following	assumptions	have	been	done:	

§ Crack	type:	It	is	assumed	that	an	edge	crack	is	present	in	the	weld.	The	crack	initiates	from	the	
point	where	the	principal	stresses	are	the	highest	and	grows	straight	down	(at	right	angles	to	the	
applied	 stress	direction).	 It	 is	 assumed	 that	 pure	Mode	 I	 crack	 growth	 is	 applicable	here,	 even	
though	 shear	 stresses	 might	 be	 present.	 A	 comparison	 of	 the	 crack	 growth	 predicted	 by	 the	
UniGrow	model	and	the	Two-Stage-Model	is	presented	in	Figure	4.10.	

§ Weld	residual	stresses:	Weld	residual	stresses	will	be	neglected	 in	 the	calculations.	Solely	 the	
influence	of	geometry	is	of	consideration	in	this	research.	

§ Material	parameters:	The	base	material,	weld	material	and	heat	affected	zone	are	assumed	to	
made	from	the	same	material	and	thus	have	the	same	material	parameters.	

	

	
Figure	4.10	Schematic	of	assumed	crack	growth	in	UniGrow	method	and	Two-Stage-Model	

	
In	this	validation	step,	the	method	as	given	in	Figure	4.11	will	be	used.	The	calculation	procedure	is	largely	
the	same	as	the	one	used	in	section	3.3,	the	largest	difference	being	that	the	model	will	be	looped.	This	will	
be	discussed	in	further	detail	in	section	4.4.	The	global	steps	of	the	UniGrow	method	will	be	performed	as	
follows:	

1. Determination	of	the	applied	stress	intensity	factor:	The	applied	stress	intensity	factor	will	be	
established	using	the	weight	function	method.	A	linear	elastic	FEA	model	will	be	made	to	determine	
the	normal	stresses	(stresses	perpendicular	to	crack	direction)	in	the	critical	crack	cross	section.	
This	is	the	cross	section	where	the	principal	stress	was	found	to	be	the	highest.	Since	the	use	of	the	
weight	function	method	to	determine	SIFs	in	welded	geometries	has	not	been	validated,	the	applied	
SIF	at	discrete	intervals	will	also	be	determined	using	FEA.	This	topic	will	be	addressed	further	in	
section	4.4.1.	

2. Determination	 of	 the	 elastoplastic	 stress	 distribution	 ahead	 of	 the	 crack	 tip:	 It	 has	 been	
established	 that	 the	 relation	 between	𝐾<&: 	and	∆𝐾$** 	can	 be	 considered	 to	 be	 independent	 of	
geometry.	For	this	reason,	this	relationship	is	established	by	modelling	a	flat	plate	with	a	crack,	
since	accurate	analytical	formulas	for	the	determination	of		∆𝐾$**	are	available.	The	elastoplastic	
stresses	will	be	determined	using	a	2D	elastoplastic	FEA	model.	No	analytical	method	will	be	used,	
since	it	is	unable	to	account	for	the	redistribution	of	the	stress.	Section	4.4.2	will	further	address	
this	topic.		

3. Determination	 of	 the	 residual	 stress	 intensity	 factor:	 Using	 the	 residual	 stress	 from	 the	
previous	step,	𝐾<&:	was	determined	using	the	universal	weight	function.	To	ease	calculations,	the	
relationship	 between	𝐾<&: 	and	∆𝐾$** 	is	 determined	 separately	 and	 used	 as	 input	 for	 the	 global	
calculation	of	the	crack	growth	speed.	This	will	not	be	further	addressed	in	this	chapter	as	this	has	
been	discussed	before,	reference	is	made	to	section	3.2.3.2	for	background.		

4. Determination	of	the	elastoplastic	stress	and	strain	on	first	elementary	block	ahead	of	the	
crack	tip:	This	will	be	done	using	 the	Creager-Paris	equations	 in	combination	with	 the	Neuber	
uniaxial	plasticity	correction.	This	will	not	be	further	addressed	in	this	chapter	as	this	has	been	
discussed	before,	reference	is	made	to	section	3.1.3.4	for	background.	

5. Determination	 of	 the	 initiation	 life	 of	 the	 first	 elementary	 block	 ahead	 of	 crack	 tip:	The	
initiation	life	was	determined	using	the	Smith-Watson-Topper	damage	parameter.	No	use	will	be	
made	of	the	Morrow	method	as	this	is	not	valid	for	SC.	This	will	not	be	further	addressed	in	this	
chapter	as	this	has	been	discussed	before,	reference	is	made	to	section	3.1.3.5	for	background.	
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Figure	4.11	Global	calculation	procedure	of	the	numerical	UniGrow	method	

	
4.4 Calculation	methods	
In	 this	 section,	 attention	will	 be	 given	 to	 some	methods	 that	 are	 specific	 to	 this	 implementation	of	 the	
UniGrow	 method.	 First,	 the	 determination	 of	 the	 applied	 SIFs	 will	 be	 discussed,	 after	 which	 the	
determination	of	the	plastic	residual	SIF	will	be	discussed.	Finally,	the	full	implementation	of	the	UniGrow	
model	will	be	presented.		
	
4.4.1 Determination	of	the	applied	stress	intensity	factor	
As	discussed	before,	two	methods	will	be	used	for	the	determination	of	the	applied	SIF:	the	weight	function	
method	and	FEA.	The	advantage	of	the	weight	function	method	over	FEA	are	the	low	calculation	times	and	
the	use	of	relatively	simple	methods	(it	solely	requires	linear	elastic	FEA	and	Python).	The	weight	function	
is,	however,	usually	defined	for	use	in	a	flat	plate.	Bogdanov	et	al	[3]	and	Mikheevskiy	et	al	[36]	have	used	
the	weight	function	to	determine	the	applied	SIFs	in	welded	geometries.	They	argue	that	the	weight	function	
for	a	flat	plate	can	be	used	for	a	welded	specimen	and	that	the	effect	of	the	weld	is	accounted	for	through	an	
altered	stress	distribution	(due	to	the	effect	of	the	notch).		
	
This	method	has	been	applied	by	the	authors	without	showing	whether	the	use	of	the	method	is	valid.	To	
investigate	whether	the	use	of	the	weight	function	method	for	welded	geometries	is	valid,	also	FEA	software	
is	employed	to	determine	the	SIF.	These	results	will	then	be	used	to	justify	the	use	of	the	weight	function	
method.	
	
4.4.1.1 Weight	Function	
In	order	to	determine	the	stress	intensity	factor	using	the	weight	function	method	(given	in	Eq.	(4.5)),	two	
elements	are	required:	the	proper	weight	function	(𝑚(𝑥, 𝑎))	and	an	elastic	stress	distribution	(𝜎(𝑥)).	These	
two	elements	will	be	discussed	after	which	the	method	for	integration	and	implementation	in	Python	will	
be	discussed.		
	
	 𝐾$** = U 𝜎(𝑥)𝑚(𝑥, 𝑎)𝑑𝑥

$

;
	 (4.5)	
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Weight	Function	
The	weight	 function	 for	an	edge	crack	 in	a	 finite	width	plate	has	been	analytically	derived	by	Kaya	and	
Erdogan	 [22]	 and	 is	 given	 in	 Eq.	 (4.6).	 The	 full	 formula	 for	 G	 can	 be	 found	 in	 Appendix	 A.2.	 No	 clear	
validation	of	the	use	of	this	weight	function	have	been	found,	however,	the	use	of	it	has	been	proposed	by	
many	authors.	
	
	

𝑚.i(𝑥, 𝑎) =
2
√𝜋𝑎

𝐺 G𝑥𝑎 ,
𝑎
𝑡H

G1 − 𝑎𝑡H
K/1

XP1 − G𝑥𝑎H
1
Q	
	 (4.6)	

	
Determination	of	stress	in	cross	section	
To	determine	the	stress	in	the	critical	cross	section	(i.e.	the	cross-section	perpendicular	to	the	applied	stress	
where	the	highest	principal	stress	is	found),	a	linear	elastic	FEA	model	has	been	made.	The	model	follows	
the	sizes	specified	by	Röscher	et	al	[64].	The	model	is	relatively	simple	and	consists	of	a	modelled	weld	with	
fixed	boundary	conditions	on	one	side	and	a	uniform	stress	on	the	other	side.	The	length	of	the	plate	on	
either	side	of	 the	model	 is	equal	 to	 twice	 the	 thickness	 to	ensure	proper	 introduction	of	 the	stresses.	A	
summary	of	the	model	can	be	found	in	Figure	4.12.		

	
Figure	4.12	Constraints	and	loads	on	the	linear	elastic	FEA	model	of	the	weld	

	
The	overall	mesh	size	used	in	the	model	is	0.5	mm	with	a	more	refined	mesh	around	points	where	stress	
concentrations	might	occur;	 the	weld	toes	 in	this	case.	 In	the	radius	of	 the	weld	toe,	edge	sizing	will	be	
applied	with	various	sizes	until	the	model	is	converged.	Quadratic,	triangular	plane	stress	elements	will	be	
used	due	to	the	limited	thickness	of	the	model.	Advancing	front	method	will	be	used	to	limit	distortion	in	
the	elements.	A	summary	of	the	mesh	sizing	is	given	in	Figure	4.13.		

	
Figure	4.13	Mesh	controls	for	the	FEA	model	of	the	weld	

	
Mesh	sensitivity	was	studied	using	the	B20	geometry.	The	weld	was	loaded	with	a	uniform	stress	of	100	
MPa	and	the	element	size	was	varied	from	0.25	to	0.025	mm.	An	overview	of	the	mesh	is	given	in	Figure	
4.14,	here,	the	aforementioned	mesh	controls	can	be	seen.	
	

	
Figure	4.14	Overview	of	the	mesh	for	the	FEA	model	of	the	weld	

	
A	more	detailed	picture	of	 the	mesh	at	 the	crack	 tip	can	be	viewed	 in	Figure	4.15	and	Figure	4.16.	The	
maximum	principal	stress	reported	in	each	model	is	reported	in	Table	4.4.	From	this,	it	can	be	seen	that	the	
mesh	can	be	considered	to	converge	at	an	element	size	of	0.05	mm.		



 71 

	
Element	size	 𝝈𝟏	[MPa]	 %	change	
0.25	mm	 260.4	 -	
0.1	mm	 267.8	 2,84	
0.05	mm	 269.4	 0,60	
0.025	mm	 269.9	 0,19	

	
Table	4.4	Maximum	elastic	principal	stress	for	distinct	mesh	sizes	for	B20	geometry	(𝜎	=	100	MPa)	

	

					 	
Figure	4.15	Mesh	size	at	weld	toe	for	an	edge	size	of	0.25	mm	(left)	and	0.1	mm	(right)	

								

					 	
Figure	4.16	Mesh	size	at	weld	toe	for	an	edge	size	of	0.05	mm	(left)	and	0.025	mm	(right)	

						
To	verify	that	the	modelled	geometries	match	the	ones	that	have	been	used	by	Röscher	et	al	[64],	all	weld	
geometries	 have	 been	 re-modelled	 with	 linear	 plane	 stress	 elements	 of	 0.25	 mm.	 The	 SCF-value	 of	 a	
specimen	was	defined	as	in	Eq.	(4.7).	The	observed	SCF-values	can	be	found	in	Table	4.5.	Here,	it	can	be	
seen	that	 they	almost	exactly	match	the	ones	 found	by	Röscher	et	al	 [64],	confirming	that	 the	modelled	
geometries	are	identical.	
	
	 𝐾6 =

𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙	𝑠𝑡𝑟𝑒𝑠𝑠
𝑎𝑝𝑝𝑙𝑖𝑒𝑑	𝑠𝑡𝑟𝑒𝑠𝑠 	 (4.7)	

	
Weld	 Kt	(Röscher	et	al)	 Kt	FEA	
A10	 1.69	 1.70	
A20	 1.93	 1.92	
A30	 2.13	 2.13	
B20	 2.33	 2.34	
C10	 2.71	 2.74	
C20	 3.37	 3.33	
C30	 3.78	 3.72	
D20	 4.17	 4.22	

	
Table	4.5	SCF	found	by	Röscher	et	al	[64]	and	current	study	for	the	weld	geometries	
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Integration	
The	 plastic	 residual	 stress	 intensity	 factor	 is	 determined	 in	 a	 similar	 fashion	 as	 in	 section	 3.2.3.2.	 The	
integral	in	Eq.	(4.8)	can	be	replaced	with	a	summation	simplified	to	allow	for	easy	integration	into	Python.	
Here,	 S	 is	 the	area	under	 the	 curve	𝑚(𝑥, 𝑎)	and	𝜎$`a 	is	 the	value	of	 the	 function	𝜎< 	at	 the	x-value	of	 the	
centroid	of	the	area	under	the	curve	𝜎<(𝑥)	[39].	
	
	

𝐾<&: = U 𝑚(𝑥, 𝑎)𝜎<(𝑥)𝑑𝑥
$

$*
=�(𝜎$`a ∗ 𝑆)

"

R_7

	 (4.8)	

	
To	assure	easy	calculation	of	the	centroid	of	the	stress	curve,	one	can	linearly	approximate	the	curve	on	
each	interval	𝑥" 	to	𝑥"@7,	by	which	𝜎$`a	can	be	found	as	given	in	Eq.	(4.9).	
	
	 𝜎$`a =

𝜎<(𝑥") +	𝜎<(𝑥"@7)
2 	 (4.9)	

	
As	recommended	by	Prime	[60],	the	value	of	the	integral	of	the	weight	function,	will	be	determined	using	
Gaussian	Quadrature.	This	will	be	done	due	to	the	singularity	at	𝑥 = 𝑎	of	the	weight	function.	Prime	[60]	
recommends	 using	 Gaussian	 Quadrature	 with	 50	 points	 on	 the	 singular	 intervals	 to	 assure	 proper	
convergence.		
	
Programming	flowchart	
The	programming	flowchart	of	this	part	of	the	program	is	given	in	Figure	4.17.	It	has	been	separated	from	
the	main	UniGrow	model	as	a	separate	module.	The	module	consists	of	a	loop	that	starts	at	x	=	0	and	runs	
until	x	=	a.	The	model	is	relatively	simple	and	follows	the	exact	steps	that	have	been	introduced	above.	First,	
for	each	interval,	the	average	stress	will	be	determined.	Then	the	integral	of	the	weight	function	on	this	
interval	is	determined	and	multiplied	with	the	average	stress.	This	is	then	added	to	the	total	stress.	A	step	
size	of	0.001	mm	is	used	to	make	sure	that	accurate	SIFs	are	determined.	
	

	
Figure	4.17	Flowchart	for	the	determination	of	the	applied	SIF	range	

	
4.4.1.2 Finite	Element	Method	
To	justify	the	use	of	the	weight	function	method	for	welded	geometries,	SIFs	have	also	been	determined	
with	FEA.	The	Fracture	Tool	in	ANSYS	18.2	has	been	used	for	this.	This	tool	is	used	to	define	a	pre-meshed	
crack	in	the	model.	The	SIF	is	evaluated	at	the	crack	front	through	contour	integration	(J-integral	method).	
The	model	is	linear	elastic	and	split	in	two	sections	on	either	side	of	the	crack.	The	two	bodies	are	connected	
through	a	bonded	connection.	The	meshes	of	the	two	sections	are	connected	as	well	through	the	Mesh	Edit	
method.	
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An	overall	mesh	size	of	0.5	mm	has	been	used	and	in	the	region	of	the	crack,	a	region	of	1	mm	around	the	
crack	tip,	the	mesh	size	was	reduced	to	0.05	mm.	Quadratic,	triangular	plane	stress	elements	have	been	
employed	in	the	model.	The	model	is	loaded	in	the	same	way	as	the	linear	elastic	model	used	for	the	weight	
function	method.	The	crack	 is	also	 in	 the	 same	 location	as	 the	critical	 cross	 section	used	by	 the	weight	
function	method.	A	summary	of	the	model	can	be	found	in	Figure	4.18,	an	example	of	the	mesh	is	given	in	
Figure	4.19.		

	
Figure	4.18	FEA	model	used	for	the	determination	of	the	SIF	with	mesh	controls	for	a	welded	geometry	

	

	
Figure	4.19	Example	of	mesh	used	near	the	crack	tip	for	a	welded	geometry	

	
4.4.1.3 Flat	Plate	Verification	
As	a	baseline	measurement	of	the	performance	of	both	the	weight	function	method	and	the	ANSYS	Fracture	
Tool,	first	SIFs	in	a	flat	plate	will	be	derived.	Both	methods	will	be	compared	to	results	from	the	Newman-
Raju	equations.	These	equations	for	semi-elliptical	surface	cracks	can	also	be	used	to	determine	the	SIF	in	
an	edge	crack	by	setting	a/c	=	0.	The	calculations	have	been	performed	for	a	flat	plate	of	10	mm	and	30	mm	
with	crack	lengths	of	0.5,	1,	2,	3,	4	and	5	mm.		

	
Figure	4.20	FEA	model	used	for	the	determination	of	the	SIF	with	mesh	controls	for	a	flat	plate	

	
No	FEA	model	is	required	for	the	weight	function	method,	as	the	stress	is	uniform.	For	the	Fracture	Tool,	a	
similar	model	as	for	the	welds	has	been	made.	The	model	is	fixed	on	one	end	and	loaded	by	a	uniform	stress	
on	the	other	end.	A	summary	of	the	model	is	given	in	Figure	4.20.	An	overall	mesh	size	of	0.5	mm	has	been	
used	and	in	the	region	of	the	crack,	a	region	of	1	mm	around	the	crack	tip,	the	mesh	size	was	reduced	to	
0.05	mm.	Quadratic,	triangular	plane	stress	elements	have	been	used	in	the	model.	An	example	of	the	mesh	
used	is	provided	in	Figure	4.21.	The	model	is	linear	elastic	and	split	in	two	sections	on	either	side	of	the	
crack.	The	two	bodies	are	connected	through	a	bonded	connection.	The	meshes	of	the	two	sections	are	also	
connected	using	a	mesh	edit.	
	

 
Figure	4.21	Example	of	mesh	used	near	the	crack	tip	for	a	flat	plate	
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4.4.1.4 Short	crack	correction	
Bogdanov	et	al	[3]	proposed	a	correction	of	the	applied	SIF	for	short	fatigue	cracks	to	account	for	the	higher	
stresses.	Bang	et	al	[1]	then	proposed	another	method	that	entailed	curve	fitting	a	separate	UniGrow	model	
to	short	crack	fatigue	data.	Considering	the	fact	that	the	curve	fitting	method	performed	rather	poorly	as	it	
couldn’t	account	for	effects	of	maximum	stress	and	the	fact	that	no	experimental	short	crack	data	is	available	
for	this	case	an,	the	option	of	correcting	the	SIFs	will	be	used.		
	
This	means	 that	 one	UniGrow	model	will	 be	 used	 in	which	𝐾!$% 	and	𝐾!"# 	will	 be	 augmented	 for	 short	
cracks.	This	means	that	for	R	=	0,	𝐾!$%	and	∆𝐾$**	will	change	as	the	𝐾!"#	will	remain	zero.	This	can	be	seen	
in	Eq.	(4.10)	and	(4.11).	
	
	

𝐾∗ = �1 +
1
2
e
𝜌∗

𝑎 �𝐾	 (4.10)	

	
	

∆𝐾$**∗ = �1 +
1
2
e
𝜌∗

𝑎 �∆𝐾$**	 (4.11)	

	
The	criteria	from	Bang	et	al	[1]	for	separating	the	short	and	long	crack	growth	regime	will	be	used	in	the	
calculations.	The	three	separating	criteria	are:	

§ Threshold	crack	size	(𝒂𝒄𝒓):	This	is	usually	assumed	to	be	somewhere	between	0.5	–	1	mm,	where	
Bang	et	al	[1]	use	0.5	mm.	As	Röscher	et	al	[64]	also	use	0.5	mm	as	the	starting	point	for	the	crack	
propagation	calculation,	the	threshold	crack	size	is	set	to	0.5	mm.	

§ Threshold	SIF	(∆𝑲𝒄𝒓):	In	this	case,	the	value	is	taken	from	Table	4.1:	∆𝐾+< = 180	N/mmK/1	.	
§ Threshold	crack	growth	(da/dNcr):	As	the	definition	of	this	parameter	was	not	described	by	Bang	

et	al	[1],	this	parameter	has	not	been	used	in	this	study.	
	
Beside	 the	 issues	 with	 short	 crack	 growth	 speed	 prediction,	 some	 other	 assumptions	 in	 the	 UniGrow	
method	require	further	attention	when	discussing	short	crack	growth:		

§ Creager-Paris	equations:	In	the	formulation	of	the	Creager-Paris	equations	it	was	assumed	that	
the	origin	of	the	equations	lies	at	𝜌/2	from	the	crack	tip.	This	assumption	is	only	valid	if	𝜌 ≪ 𝑎,	so	
for	long	cracks.	This	could	cause	deviation	in	the	results.	

§ LEFM:	For	SC,	the	size	of	the	plastic	zone	might	be	in	the	same	order	of	magnitude	as	the	crack	
length	and	therefore	conventional	LEFM	approaches	might	not	be	applicable	[75].	The	higher	order	
terms	in	the	elastic	singularity	that	is	used	to	characterize	the	local	stresses	based	on	KI	might	have	
an	appreciable	effect	on	the	stresses.		

	
4.4.2 Determination	of	Kres	using	elastoplastic	FEA	
In	this	section	the	determination	of	the	plastic	residual	stress	intensity	factor	using	elastoplastic	FEA	will	
be	discussed.	First,	 the	used	elastoplastic	model	will	be	presented	and	subsequently	the	method	for	the	
determination	of	the	∆𝐾$**	-	𝐾<&:	relation	will	be	discussed.	
	
4.4.2.1 Basis	of	the	model	
Considering	the	near-geometrical	independency	of	the	relationship	between	𝐾<&:	and	∆𝐾$**,	the	model	of	a	
flat	plate	was	used	to	determine	this	relationship.	The	plate	is	10	mm	thick	and	1	mm	in	width.	It	has	been	
modelled	with	a	crack	length	of	4	mm	and	has	been	loaded	with	various	stresses.	A	summary	of	the	model	
is	 given	 in	 Figure	 4.22.	 The	model	 consists	 of	 half	 a	 plate	with	 the	 crack	 on	 the	 left	 side,	 symmetry	 is	
considered	here	to	reduce	calculation	times.	The	crack	has	been	modelled	as	a	quarter	circle,	similar	to	the	
model	used	in	chapter	5.3.	The	right-hand	side	of	the	plate	is	loaded	with	a	uniform	stress.	The	length	of	the	
plate	 is	 twice	 the	 thickness	 to	 ensure	 proper	 introduction	 of	 the	 stresses	 into	 the	 geometry.	 The	 CT	
specimen	has	been	modelled	with	the	software	package	ANSYS	18.2.		
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Figure	4.22	Boundary	and	load	conditions	for	the	elastoplastic	flat	plate	model	in	ANSYS	

	
4.4.2.2 Plasticity	
Plasticity	was	accounted	for	using	the	built-in	multi-linear	kinematic	hardening	module	in	Ansys	and	Von-
Mises	yield	theory.	This	was	chosen	as	it	is	the	most	accurate	to	describe	plasticity	in	steel.	The	Ramberg-
Osgood	relationship	using	the	parameters	determined	by	Röscher	et	al	[64]	served	as	input	for	the	multi-
linear	kinematic	hardening.	 In	Figure	4.23	 the	 input	Ramberg-Osgood	relationship	and	the	stress-strain	
relationship	from	FEA	are	presented.	
	

	
Figure	4.23	Comparison	between	stress-strain	curves	generated	with	Ramberg-Osgood	relationship	and	

FEA	using	multi-linear	kinematic	hardening	for	S355	steel	
	
4.4.2.3 Mesh	Convergence	
Meshing	of	the	model	has	been	done	using	1	mm	size	elements,	using	an	advancing	front	method	to	decrease	
distortions	in	the	mesh.	The	mesh	close	to	the	crack	tip	has	been	refined	with	an	edge	sizing	method	with	
various	size	in	the	2	mm	around	the	crack	tip.	Further	along	the	crack	front,	0.5	mm	edge	sizing	criterion	
has	been	used.	Quadratic,	triangular	plane	stress	elements	have	been	used	due	to	the	limited	thickness	of	
the	specimen.	An	overview	of	the	mesh	parameters	is	given	in	Figure	4.24.		

	
Figure	4.24	Mesh	dimensioning	of	the	elastoplastic	of	the	flat	plate	

	
Several	mesh	sizes	near	the	crack	tip	were	tried,	starting	from	a	mesh	size	of	0.01	mm	down	to	0.001	mm.	
In	Figure	4.25,	a	detailed	overview	of	the	mesh	around	the	crack	tip	is	given.	As	can	be	seen	here,	the	mesh	
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is	well-structured	and	refined	near	the	crack	tip.	The	used	elementary	block	size,	and	thus	radius	of	the	
crack	tip	was	0.09	mm.	This	was	found	to	yield	the	best	crack	growth	results.	
	

	
Figure	4.25	Mesh	size	at	crack	tip	for	an	edge	size	of	0.01	mm	(left),	0.005	mm	(centre)	and	0.001	mm	

(right)	
	
In	Table	4.6	the	maximum	stress	in	y-	and	x-direction	found	in	each	model	have	been	given.	Also,	the	stress	
in	x-direction	at	the	crack	tip	has	been	measured	as	this	is	supposed	to	be	equal	to	zero.	As	can	be	seen	in	
the	table,	the	mesh	is	sufficiently	converged	at	0.005	mm.	
	

Element	size	 Maximum	𝝈𝒚	[MPa]	 Maximum	𝝈𝒙	[MPa]	 Crack	tip	𝝈𝒙	[MPa]	
0.01	mm	 2083.9	 419.26	 2.753	
0.005	mm	 2082.5	 419.24	 0.699	
0.001	mm	 2082	 419.12	 0.029	

	
Table	4.6	Maximum	elastic	principal	stress	for	distinct	mesh	sizes	for	B20	geometry	(𝜎	=	100	MPa)	

	
4.4.2.4 Determination	of	∆𝐾!""	vs.	𝐾#$%	
In	this	implementation	of	the	UniGrow	model,	the	relationship	between	𝐾<&:	and	∆𝐾$**	will	be	input	for	the	
crack	growth	model.	This	decreases	computation	time.	Several	stress	ranges	(∆𝜎 = 10, 25, 50, 100, 150,
200 	MPa)	 are	 applied	 to	 the	 model	 and	 the	 residual	 stress	 after	 one	 loading	 and	 unloading	 cycle	 is	
subsequently	exported	to	Excel.	This	serves	as	input	for	the	residual	SIF	module,	of	which	a	summary	has	
been	given	in	Figure	4.26.		
	
The	module	starts	with	importing	the	data	from	Excel	and	mirroring	the	stresses	ahead	of	the	crack	tip	to	
the	 axis	 behind	 the	 crack	 tip.	Once	 the	 residual	 stress	becomes	positive	or	 the	 end	of	 the	 crack	 face	 is	
reached,	this	loop	stops	and	a	𝜎<&:(𝑥)	curve	is	generated	by	linearly	interpolating	the	data	from	Excel.	After	
this,	∆𝐾$** 	is	 determined	 using	 the	 Newman-Raju	 equations.	 The	 final	 part	 of	 the	 model	 consists	 of	
determining	the	𝐾<&:.	This	 is	done	 in	a	similar	 fashion	as	the	determination	of	 the	applied	SIF.	Once	the	
model	is	done,	𝐾<&:	and	∆𝐾$**	are	written	to	an	Excel	file.	When	all	the	results	have	been	obtained,	a	linear	
trendline	is	drawn	through	the	data	to	obtain	the	relationship	between	𝐾<&:	and	∆𝐾$**.		
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Figure	4.26	Flowchart	for	the	determination	of	the	plastic	residual	SIF	from	elastoplastic	FEA	results	and	

the	corresponding	applied	SIF	range	
	
	
4.4.3 Implementation	in	Python	
The	full	implementation	of	the	UniGrow	method	in	Python	is	very	similar	to	the	implementation	used	in	
section	3.3.	The	major	difference	is	the	fact	that	the	current	implementation	consists	of	a	loop	in	which	the	
crack	grows	with	a	certain	crack	increment	(∆𝑎).	The	flowchart	of	the	model	is	given	in	Figure	4.27	and	
matches	with	the	proposed	methods	in	the	previous	sections.	
	
First,	 the	𝐾<&: 	-	∆𝐾$** 	relation	 and	 the	 stress	 distribution	 is	 loaded	 in.	 The	 UniGrow	model	 then	 starts	
growing	the	crack	from	an	initial	crack	size	that	is	equal	to	the	elementary	block	size.	The	loop	starts	off	by	
determining	 the	 applied	 SIFs,	 checking	whether	𝐾!$% 	is	 smaller	 than	 the	 rupture	 SIF	 and	 determining	
whether	the	crack	can	be	considered	as	short.	Then	follows	the	determination	of	𝐾<&:	after	which	the	total	
SIFs	and	thus	the	initiation	life	of	the	first	elementary	block	can	be	determined.	With	this,	the	instantaneous	
crack	growth	rate	can	be	determined	which	can	be	used	to	determine	the	number	of	cycles	needed	to	grow	
the	crack	by	the	crack	increment	∆𝑎.	
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Figure	4.27	Flowchart	used	for	the	determination	of	the	total	fatigue	life	of	a	welded	specimen	

	
4.5 Results	and	discussion	
In	this	section,	the	results	from	the	analysis	that	was	described	in	the	previous	section	will	be	given.	It	will	
start	with	a	comparison	of	the	weight	function	results	to	FEA	results.	Then	the	predicted	crack	growth	speed	
by	the	UniGrow	method	will	be	given,	after	which	the	total	fatigue	life	results	are	presented.	The	chapter	
will	end	with	a	discussion	of	the	results.	
 
4.5.1 Weight	Function	vs.	FEA	
In	this	section,	the	resulting	SIFs	from	the	weight	function	method	will	be	compared	to	the	ones	calculated	
using	FEA	(ANSYS	Fracture	Tool).	The	flat	plate	case	will	first	be	discussed,	after	which	the	results	for	weld	
geometries	are	presented.			
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4.5.1.1 Flat	Plate	
The	calculated	SIFs	as	a	function	of	the	crack	length	for	the	three	methods	(Newman-Raju,	FEA	and	weight	
function)	are	presented	in	Figure	4.28.	The	numerical	results	for	the	plates	with	a	thickness	of	10	mm	and	
30	mm	are	presented	in	Table	4.7	and	Table	4.8	respectively.	
	

	
Figure	4.28	Calculated	SIF	as	a	function	of	crack	length,	determined	with	three	different	methods	

	
In	 general,	 the	 results	 from	both	methods	match	 very	well	with	 the	Newman-Raju	 results.	 FEA	 results	
differentiate	from	the	Newman-Raju	results	with	a	maximum	of	5%	and	3.5%	for	t	=	10	mm	and	t	=	30	mm	
respectively.	 Weight	 function	 results	 are	 slightly	 poorer	 and	 differ	 from	 Newman-Raju	 results	 with	 a	
maximum	of	6%	and	5.5%	for	t	=	10	mm	and	t	=	30	mm	respectively.	The	fitted	equations	by	Newman-Raju	
[47]	had	a	maximum	error	of	5%	on	the	original	FEA	results.	Considering	this	error,	the	results	obtained	
using	FEA	and	the	WF	are	approximately	within	this	error	range.	This	indicates	proper	functioning	of	both	
of	the	methods.	
	
Another	 interesting	 thing	 to	 take	 away	 from	Figure	 4.28,	 is	 that	 results	 from	FEA	 and	weight	 function	
method	match	very	well,	 the	difference	being	no	more	than	3.5%.	Both	methods	follow	the	same	global	
trends	for	overestimation/underestimation	of	the	SIF	when	compared	to	the	Newman-Raju	solution.		
	

Crack	
length	

SIF	Newman-Raju	
[MPa*mm0.5]	

SIF	FEA	
[MPa*mm0.5]	

Difference	FEA	
and	NR	[%]	

SIF	WF	
[MPa*mm0.5]	

Difference	WF	
and	NR	[%]	

0.5	 285.7	 285.6	 -0.04	%	 289.8	 1.44	%	
1	 421.4	 414.9	 -1.5	%	 429.2	 1.8	%	
2	 655.3	 683.9	 4.4	%	 693.2	 5.8	%	
3	 974.3	 1018.8	 4.6	%	 1023.5	 5.0	%	
4	 1479.9	 1492.3	 0.8	%	 1503.8	 1.6	%	
5	 2312.7	 2237.6	 -3.3	%	 2264.4	 -2.1	%	

	
Table	4.7	Calculated	SIF	for	a	flat	plate	of	t	=	10	mm	using	three	different	methods		

	
	

Crack	
length	

SIF	Newman-Raju	
[MPa*mm0.5]	

SIF	FEA	
[MPa*mm0.5]	

Difference	FEA	
and	NR	[%]	

SIF	WF	
[MPa*mm0.5]	

Difference	WF	
and	NR	[%]	

0.5	 283.5	 279.8	 -1,3%	 283.2	 -0,1%	
1	 402.1	 398.1	 -1,0%	 404.9	 0,7%	
2	 575.3	 574.8	 -0,09%	 587.8	 2,2%	
3	 718.6	 726.3	 1,1%	 743.4	 3,5%	
4	 853.3	 872.8	 2,9%	 891.9	 4,5%	
5	 989.7	 1023.1	 3,4%	 1042.3	 5,3%	

	
Table	4.8	Calculated	SIF	for	a	flat	plate	of	t	=	30	mm	using	three	different	methods	
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4.5.1.2 Butt-Welded	Plate	
Similar	simulations	have	also	been	performed	for	butt-welded	plates	excluding	the	effect	of	weld	residual	
stresses	and	only	considering	Mode	I	crack	propagation.	The	results	for	six	geometries	are	presented	in	
Figure	4.30,	Figure	4.31	and	Figure	4.32.	At	first	glance,	it	can	be	noticed	that	the	results	for	both	methods	
follow	the	same	trend	when	the	weld	geometry	is	varied.	This	holds	for	both	variations	in	thickness	when	
going	from	A10	to	A30	and	simultaneous	variations	in	weld	excess	and	misalignment	when	going	from	A20	
to	D20.	The	general	effect	of	weld	geometry	is	portrayed	very	well	by	the	weight	function	method.	
	
Looking	closer	at	the	results,	a	very	clear	trend	can	be	identified:	weight	function	predictions	are	generally	
higher	 than	 results	 from	 FEA.	 This	 can	 clearly	 be	 seen	 from	 Figure	 4.29.	 Differences	 between	 the	 two	
methods	were	found	to	be	as	high	as	12%	for	the	calculated	data	points.	The	relative	differences	between	
the	methods	are	smallest	when	the	crack	is	small	but	grow	larger	as	it	extends.	The	difference	between	the	
methods	 is	quite	significant	and	since	 the	difference	between	the	 two	methods	 is	mainly	present	 in	 the	
propagation	regime,	the	propagation	life	can	be	seriously	affected	by	this	discrepancy	in	SIF	prediction.	The	
difference	between	the	two	methods	is	also	higher	than	for	the	flat	plate,	where	the	two	methods	varied	a	
maximum	of	3.5%.		

	
Figure	4.29	Correlation	between	weight	function	results	and	FEA	results	

	
Even	though	the	differences	between	the	 two	methods	can	be	quite	significant,	accounting	 for	 the	weld	
geometry	can	be	done	using	of	the	weight	function	method.	Especially	for	an	initial	calculation,	the	method	
provides	accurate	enough	results.	Since	this	validation	has	only	been	performed	for	edge	cracks,	the	use	of	
the	weight	function	for	semi-elliptical	cracks	to	predict	SIFs	of	weld	geometries	(as	done	by	Mikheevskiy	et	
al	[36])	is	still	not	justified.	However,	based	on	these	results,	the	expectation	is	that	a	similar	conclusion	can	
be	drawn	for	this	case.		

  
Figure	4.30	Calculated	SIF	as	a	function	of	crack	length	for	weld	geometry	A10	(left)	and	A20	(right)	
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Figure	4.31	Calculated	SIF	as	a	function	of	crack	length	for	weld	geometry	A30	(left)	and	B20	(right)	

	

	 	
Figure	4.32	Calculated	SIF	as	a	function	of	crack	length	for	weld	geometry	C20	(left)	and	D20	(right)	

	
4.5.2 Crack	growth	speed	
From	the	elastoplastic	calculations	on	a	flat	plate	with	a	notch,	the	relation	between	Kres	and	∆Kapp	as	given	
in	Figure	4.33	has	been	found.	The	relation	is,	again,	linear	with	a	high	R2	value	of	0.9973.	The	linearity	of	
this	relation	matches	with	the	predictions	and	findings	of	other	authors	[10],	[53],	[54].		
	

	
Figure	4.33	Plastic	residual	SIF	as	a	function	of	the	applied	SIF	range	for	R	=	0	

	
The	relation	between	Kres	and	∆Kapp	was	determined	for	an	elementary	block	size	of	0.09	mm,	which	has	
been	found	to	yield	the	best	crack	growth	results	compared	to	the	Paris	crack	growth	curve	that	has	been	
used	by	Röscher	et	al	[64].	Again,	looking	at	the	size	of	the	grains	in	Figure	3.51	from	a	comparable	material	
(S355	steel	from	De	Jesus	et	al	[11]),	this	elementary	block	size	in	the	same	order	of	magnitude	as	the	grains	
in	this	material.	Reinforcing	the	suspicion	that	the	elementary	block	size	is	in	some	shape	or	form	related	
to	the	material	grain	size.		
	
Calibrating	the	UniGrow	model	to	Paris-Law	and	subsequently	using	it	for	validation	of	fatigue	life	would,	
at	first,	seem	to	be	poor	practice.	However,	in	the	previous	chapter	it	has	been	established	that	the	UniGrow	
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model	predicts	good	crack	growth	speed	results	for	LC.	The	main	interest	of	this	chapter	is	how	well	the	
UniGrow	model	performs	for	the	total	 fatigue	life.	The	fatigue	range	of	 interest	 for	SGRE	being	the	High	
Cycle	Fatigue	range,	where	most	of	 the	 fatigue	 life	 is	spent	on	 initiating	 the	crack.	 It	 is	 thus	valuable	 to	
investigate	how	well	the	model	performs	for	SC.	Fitting	the	curve	to	the	crack	propagation	results	means	
that	the	crack	propagation	life	will	match	with	the	life	calculated	by	Röscher	et	al	[64],	which	means	a	proper	
comparison	 between	 the	 predictions	 of	 SC	 growth	 can	 be	 done.	 Calibrating	 the	model	 to	 Paris-Law	 is	
justified	in	this	way.	
	
The	crack	growth	speed	determined	by	the	model	 is	shown	in	Figure	4.34.	As	was	also	observed	 in	 the	
previous	chapter,	is	that	the	crack	growth	curve	calculated	by	the	UniGrow	method	is	slightly	curved	rather	
than	the	linear	Paris-Law	data.	This	means	that,	compared	to	Paris-Law	data,	the	crack	growth	rates	in	low	
and	high	SIF	ranges	are	overestimated	and	the	crack	growth	rates	in	the	mid-ranges	are	overestimated.	
However,	overall,	the	crack	growth	results	match	very	well	with	the	Paris-Law	crack	growth.		
	

	
Figure	4.34	Crack	growth	speed	as	a	function	of	the	applied	SIF	range	for	R	=	0	compared	to	Paris	Law	

data	from	Röscher	et	al	[64]	
4.5.3 Crack	propagation	
In	Figure	4.35	the	results	for	the	calculation	of	the	crack	propagation	life	using	the	SIFs	calculated	by	the	
weight	function	method	can	be	seen.	In	Figure	4.35	the	S-N	curves	for	crack	propagation	for	the	different	
geometries	are	given.	Crack	propagation	was	defined	to	start	at	a	crack	length	of	0.5	mm,	with	crack	growth	
steps	of	0.1	mm	to	mimic	 the	propagation	calculation	of	Röscher	et	al	 [64].	 In	 the	determination	of	 the	
propagation	life	for	these	results,	no	short	crack	correction	factor	has	been	applied.	This	has	been	done	to	
assure	a	proper	comparison	between	the	results	from	the	UniGrow	method	and	the	Two-Stage-Model.	
	

	
Figure	4.35	S-N	curves	for	crack	propagation	generated	by	the	Two-Stage-Model	and	UniGrow	model	

	
The	results	 in	Figure	4.36	present	differences	 in	the	predicted	fatigue	 life	by	the	two	models.	The	crack	
propagation	life	seems	to	be	underestimated	in	the	LCF	region	and	overestimated	in	the	HCF	region.	Also,	
the	 threshold	 for	 crack	 propagation	 is	 absent	 in	 the	 UniGrow	 method.	 Three	 possible	 causes	 for	 the	
discrepancies	between	the	two	models	have	been	identified	which	will	be	discussed	further:	
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§ Applied	Stress	Intensity	Factors:	 In	Figure	4.29	 it	can	be	seen	that	the	predicted	SIFs	by	the	
weight	function	method	are	higher	than	the	ones	predicted	by	FEA.	This	could	lead	to	a	shorter	
prediction	of	crack	propagation	life.	

§ Predicted	 crack	growth	 speed:	 In	 Figure	4.34	 it	 can	be	 seen	 that	 the	 crack	 growth	 speed	 is	
slightly	overestimated	by	 the	UniGrow	model.	This	 could	 lead	 to	a	 shorter	prediction	of	 crack	
propagation	life.	However,	since	the	overestimation	is	rather	small,	it	is	expected	to	not	have	a	big	
impact	on	crack	propagation	life.	

§ Limitations	of	current	model:	The	current	implementation	of	the	UniGrow	model	is	limited	to	
crack	 growth	 in	 one	 plane,	 based	 on	Mode	 I	 crack	 growth	 only.	 In	 the	 fatigue	model	 used	 by	
Röscher	et	al	[64],	the	crack	is	allowed	to	grow	freely.		

	

	
Figure	4.36	Crack	length	as	a	function	of	number	of	cycles	generated	by	the	Two-Stage-Model	[64]	and	

UniGrow	model	
4.5.3.1 Applied	Stress	Intensity	Factors	
A	cause	for	the	discrepancy	between	UniGrow	and	Two-Stage-Model	results	could	be	the	overestimation	of	
the	SIFs	by	 the	weight	 function	method,	as	was	determined	 in	 the	previous	chapter.	To	 investigate	 this	
effect,	the	calculated	SIFs	using	FEA	as	a	function	of	crack	length	(given	in	Figure	4.30	-	Figure	4.32)	has	
been	converted	to	a	curve.	This	curve	was	used	as	input	for	the	UniGrow	model.		
	
The	S-N	curves	for	crack	propagation	life	can	be	found	in	Figure	4.37.	From	this	figure	it	becomes	clear	that	
the	results	are	now	much	closer	to	the	fatigue	propagation	lives	determined	by	Röscher	et	al	[64].	This	is	
especially	true	in	the	LCF	range.	However	due	to	the	shape	of	the	S	–	N	curve,	some	difference	is	found	in	
the	HCF	range.	
	

	
Figure	4.37	S-N	curves	for	crack	propagation	generated	by	the	Two-Stage-Model	and	UniGrow	model	

using	the	SIF	from	FEA	
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4.5.3.2 Predicted	crack	growth	speed	
The	difference	from	the	results	by	Röscher	et	al	[64]	in	the	HCF	range	can	most	likely	be	explained	by	the	
fact	that	the	predictions	of	crack	growth	speed	by	the	UniGrow	method	are	not	linear	like	the	Paris-Law.	
Like	stated	before,	the	UniGrow	model	slightly	underpredicts	crack	growth	rates	for	high	and	low	SIFs	and	
lightly	overpredicts	crack	growth	rates	for	medium-range	SIFs.	In	the	HCF	range,	the	geometries	spent	most	
of	their	propagation	life	in	lower	SIF	ranges	and	thus	have	a	slightly	higher	propagation	life	than	expected.		
	
If	this	were	true,	when	the	SIFs	determined	with	FEA	are	used	in	combination	with	the	Paris-Law	results,	
the	propagation	life	should	match	closely	to	the	one	determined	by	Röscher	et	al	[64].	The	results	of	this	
calculation	are	presented	as	S-N	curves	for	crack	propagation	life	in	Figure	4.38.	In	this	figure,	the	crack	
propagation	life	of	the	four	geometries	almost	exactly	match	results	by	Röscher	et	al	[64].	Still,	some	slight	
deviations	from	the	results	are	present,	as	can	for	example	be	seen	in	the	C20	geometry.		
	

	
Figure	4.38	S-N	curves	for	crack	propagation	generated	by	the	Two-Stage-Model	and	a	model	that	uses	SIF	

from	FEA	and	Paris-Law	
	
4.5.3.3 Limitation	of	current	model	
The	final	contributing	factor	for	differences	between	the	results	from	the	UniGrow	method	and	the	Two-
Stage-Model	are	the	assumptions	on	crack	growth.	In	the	UniGrow	model,	it	is	assumed	that	the	crack	grows	
straight	down	from	the	point	of	initiation.	In	the	Two-Stage-Model,	it	is	assumed	that	crack	grows	freely	
from	the	point	of	 initiation,	with	 the	 initial	direction	being	determined	by	 the	direction	of	 the	principal	
stresses.	The	point	of	initiation	is	defined	as	the	point	in	the	weld	toe	where	the	highest	principal	stress	is	
found,	this	is	the	same	in	both	models.	
	

	
Figure	4.39	Crack	shape	for	A20	geometry	predicted	by	Röscher	et	al	[64]	

	
Due	to	the	weld	and	the	misalignment,	some	in-plane	shear	stresses	will	be	present.	In-plane	shear	stresses	
affect	the	direction	of	the	crack	growth	and	thus	the	assumption	of	pure	Mode	I	crack	growth	that	is	used	
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in	the	UniGrow	method	is	violated.	As	can	be	seen	in	Figure	4.39,	the	crack	shape	predicted	by	the	Two-
Stage-Model	 is	 lightly	curved:	the	crack	doesn’t	grow	in	a	straight	 line.	However,	the	deviation	from	the	
crack	shape	predicted	by	the	UniGrow	model	is	limited	and	therefore	it	is	expected	that	for	geometries	with	
limited	misalignment	or	weld	excess,	the	effect	on	the	fatigue	propagation	life	is	minimal.	
	
4.5.4 Total	fatigue	life	
The	main	interest	of	this	chapter	is	the	ability	of	the	UniGrow	method	to	determine	the	total	fatigue	life	of	
welded	details.	In	Figure	4.40	and	Figure	4.41,	the	S-N	curves	for	welds	A20,	B20,	C20	and	D20	are	given	
for	both	total	 fatigue	life	(Nf),	propagation	life	(Np)	and	initiation	life	(Ni).	These	results	were	calculated	
using	SIFs	determined	with	 the	weight	 function	method	and	with	 the	short	crack	correction	method	as	
proposed	by	Bogdanov	et	al	[3].		
	
4.5.4.1 Total	Fatigue	Life	
The	total	fatigue	life	matches	very	well	with	the	Two-Stage-Model	for	the	Low	Cycle	Fatigue	regime	(when	
Nf	<	 105	 –	 106),	 but	 in	 the	High	 Cycle	 Fatigue	 regime,	 the	models	 produce	 vastly	 different	 results.	 The	
discrepancy	between	the	two	models	is	mainly	caused	by	the	determination	of	the	crack	initiation	life,	as	
can	be	seen	in	Figure	4.40	and	Figure	4.41.		
	
For	high	stress	ranges,	the	weld	spends	most	of	its	life	in	crack	propagation	and	therefore	total	fatigue	lives	
match	quite	closely	to	those	by	Röscher	et	al	[64]	(as	predicted	crack	growth	rates	match	very	well).	For	
low	stress	ranges,	however,	the	weld	spends	most	of	its	life	in	the	initiation	phase	and	therefore	total	fatigue	
lives	deviate	from	the	ones	predicted	by	the	Two-Stage-Model.	It	can	also	be	seen	that	as	the	SCF	gets	higher	
(when	going	from	A20	to	D20),	the	stress	range	where	the	Two-Stage-Model	and	the	UniGrow	method	tend	
to	deviate	gets	lower.	This	phenomenon	can	also	be	explained	that	for	welds	with	a	high	SCF,	relatively	more	
of	its	fatigue	life	is	spent	on	propagation	rather	than	initiation.		
	
	

	 	
Figure	4.40	S-N	curves	for	crack	initiation,	propagation	and	total	fatigue	life	generated	by	the	Two-Stage-

Model	[64]	and	UniGrow	model	for	A20	geometry	(left)	and	B20	geometry	(right)	
	

	 	
Figure	4.41	S-N	curves	for	crack	initiation,	propagation	and	total	fatigue	life	generated	by	the	Two-Stage-

Model	[64]	and	UniGrow	model	for	C20	geometry	(left)	and	D20	geometry	(right)	
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As	 an	 illustration	 of	 the	 difference	 between	 the	 two	 results,	 the	 total	 fatigue	 lives	 for	 the	 different	
geometries	at	50	MPa	is	given.	This	is	the	same	order	of	magnitude	that	is	used	as	Damage	Equivalent	Load	
by	SGRE.	As	can	be	seen	in	Table	4.9,	the	differences	between	the	two	methods	are	very	large	and	deviate	
as	much	 as	 two	 orders	 of	magnitude.	 This	 difference	 does	 become	 smaller	 as	 the	 SCF	 increases,	 since	
relatively	more	life	is	spent	on	crack	propagation	and	thus	results	are	bound	to	match	better.		
	

Geometry	 Fatigue	life	 	
UniGrow	

Fatigue	life	Two-
Stage-Model		

A20	 1.8	*	108		 2.8	*	1010		
B20	 4.8	*	107		 3.6	*	109	
C20	 9.8	*	106		 1.4	*	108		
D20	 4.3	*	106		 3.6	*	107		

	
Table	4.9	Fatigue	life	predictions	at	a	stress	range	of	50	MPa	

	
4.5.4.2 Relative	Difference		
The	relative	difference	between	the	S-N	curves	describes	the	influence	of	weld	geometry	on	the	fatigue	life	
of	the	detail.	The	results	for	total	fatigue	life	for	welds	A20,	B20,	C20	and	D20,	welds	A10,	A20	and	A30	and	
C10,	C20	and	C30	are	given	in	Figure	4.42	and	Figure	4.43	respectively.		
	
In	Figure	4.42	it	becomes	clear	that	the	influence	of	weld	geometry,	e.g.	misalignment,	weld	toe	radius	and	
angle,	is	accounted	for	fairly	well	in	the	UniGrow	model	in	the	higher	stress	ranges.		There,	the	difference	
between	 the	S-N	curve	 is	 in	 the	same	order	of	magnitude	as	predicted	by	 the	Two-Stage-Model.	Larger	
differences	between	A20/B20	and	C20/D20	can	be	explained	by	the	differences	that	have	been	described	
in	the	section	on	crack	propagation:	a	combination	of	the	usage	of	the	weight	function	method	and	different	
crack	growth	speed	prediction.		
	
When	looking	at	the	influence	of	thickness	on	the	S-N	curve,	it	can	be	seen	in	Figure	4.43	that	the	deviation	
from	Two-Stage-Model	in	the	LCF	range	gets	smaller	as	the	thickness	increases.	The	spacing	between	the	
curves	is	less	than	predicted	by	Röscher	et	al	[64].	Indicating	that	the	effect	of	the	thickness	doesn’t	seem	
to	be	properly	accounted	for	by	the	UniGrow	method.	The	higher	difference	between	curves	for	a	thickness	
of	10	mm	could	partly	be	the	relatively	larger	role	of	in-plane	shear	stresses,	altering	the	direction	of	crack	
growth.	For	all	curves,	it	can	be	seen	that	total	fatigue	lives	in	the	HCF	regime	are	underestimated	compared	
to	the	Two-Stage-Model.	With	increasing	SCF,	the	number	of	cycles	where	the	though	the	stress		
	

		
Figure	4.42	S-N	curves	for	total	fatigue	life	generated	by	the	Two-Stage-Model	[64]	and	UniGrow	model	

for	using	SIF	from	WF	method		
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Figure	4.43	S-N	curves	total	fatigue	life	generated	by	the	Two-Stage-Model	[64]	and	UniGrow	model	at	
different	thicknesses	for	A	quality	(left)	and	C	quality	(right)	welds	using	the	SIF	from	WF	method	

	
In	Figure	4.44	and	Figure	4.45,	the	relative	difference	in	fatigue	life	between	various	weld	geometries	as	
predicted	by	the	UniGrow	method	and	the	Two-Stage-Model	are	presented.	Here,	it	can	be	seen	that,	indeed,	
at	high	stress	ranges,	the	two	models	predict	very	similar	differences	between	two	geometries.	However,	
as	the	stress	range	gets	lower,	the	predicted	relative	difference	between	two	geometries	by	the	two	models	
starts	to	deviate.	This	is	caused	by	underestimation	of	the	fatigue	crack	initiation.	
	

	 	
Figure	4.44	Relative	difference	between	predicted	fatigue	lives	of	A20	and	B20	(left)	and	B20	and	C20	

(right)	predicted	by	the	UniGrow	model	and	the	Two-Stage-Model	[64]	
		

	
Figure	4.45	Relative	difference	between	predicted	fatigue	lives	of	C20	and	D20	predicted	by	the	UniGrow	

model	and	the	Two-Stage-Model	[64]	
	
The	same	effect	can	be	seen	when	comparing	the	relative	difference	between	welds	of	different	thicknesses	
as	 is	 depicted	 in	 Figure	 4.46	 and	 Figure	 4.47.	 Here,	 the	 relative	 difference	 between	 the	 geometries	 of	
different	thicknesses	is	vastly	underestimated	by	the	UniGrow	method	for	low	stress	ranges.	The	different	
between	the	two	methods	is	much	larger	than	when	comparing	geometries	of	the	same	thickness.	For	high	
stress	ranges,	however,	the	two	models	are	in	better	agreement.	
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Figure	4.46	Relative	difference	between	predicted	fatigue	lives	of	A10	and	A20	(left)	and	A20	and	A30	

(right)	predicted	by	the	UniGrow	model	and	the	Two-Stage-Model	[64]	
	

	 	
Figure	4.47	Relative	difference	between	predicted	fatigue	lives	of	C10	and	C20	(left)	and	C20	and	C30	

(right)	predicted	by	the	UniGrow	model	and	the	Two-Stage-Model	[64]	
	
4.5.4.3 Discussion	
In	 the	previous	 section,	 results	of	 the	 calculations	using	 the	UniGrow	model	have	been	presented.	This	
section	will	now	present	a	discussion	of	those	results	in	two	sections:	crack	growth	rates	and	total	fatigue	
life.	
 
Crack	growth	rates	
From	the	 first	 section	of	 the	 results,	 it	was	concluded	 that	 the	differences	between	 the	 two	models	are	
caused	 by	 a	 combination	 of	 three	 factors:	 the	 applied	 SIFs,	 crack	 growth	 speed	 determination	 and	 a	
simplified	crack	shape.		
	
The	UniGrow	model	doesn’t	necessarily	perform	worse	than	the	Two-Stage-Model	in	the	crack	propagation	
regime:	simplifications	have	also	been	made	on	the	side	of	the	Two-Stage-Model	by	e.g.	using	the	Paris-Law	
to	describe	the	crack	growth.	Speaking	of	over-	or	underestimation	when	comparing	crack	growth	speed	
predictions	by	UniGrow	and	Two-Stage-Model	might	thus	lead	to	unjust	conclusions.	This	is	because	other	
results	(e.g.	Figure	3.55)	have	also	shown	that	experimental	crack	growth	speed	curves	don’t	exactly	follow	
the	linear	log-log	Paris-Law	but	are	actually	curved.		
	
Differences	between	the	two	crack	growth	speed	curves	and	thus	the	predicted	fatigue	crack	propagation	
life	can	thus	be	said	to	be	intrinsic	to	the	two	methods	and	is	something	that	cannot	be	altered.	However,	
something	that	can	be	improved	is	the	determination	of	the	applied	SIF	when	using	the	UniGrow	method.	
Currently,	 it	 is	 recommended	 to	 determine	 this	with	 the	weight	 function	method,	 however	 it	 has	 been	
shown	that	the	FEA	results	provide	slightly	better	comparison	to	results	by	Röscher	et	al	[64].		
	
Total	fatigue	life	
In	section	4.1,	several	researches	where	the	UniGrow	method	was	used	to	determine	the	total	fatigue	life	of	
a	specimen	were	discussed.	From	this	research,	it	could	be	concluded	that	the	UniGrow	model	was	only	able	
to	predict	satisfactory	fatigue	lives	of	specimens	which	spent	most	of	their	life	in	crack	propagation	regime	
(i.e.	welded	specimens	with	high	SCF	and	the	LCF	range	for	notched	specimens).	
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This	hypothesis	seems	to	be	further	confirmed	by	the	results	that	have	been	presented	in	section	4.1.	The	
UniGrow	fatigue	life	results	match	quite	well	with	the	results	by	Röscher	et	al	[64]	for	predicted	fatigue	lives	
lower	than	105.	However,	between	105	–	106	cycles,	the	total	fatigue	life	predictions	start	to	deviate	from	
the	Two-Stage-Model.	This	difference	could	mainly	be	attributed	to	the	inaccuracy	in	predicting	the	fatigue	
crack	initiation	life	of	the	specimens,	as	the	predicted	fatigue	crack	propagation	lives	matched	very	well	
with	the	Two-Stage-Model	(which	can	be	seen	in	Figure	4.35).	This	is	similar	to	what	was	predicted	by	Bang	
et	al	[1].	
	
When	talking	about	the	shortcomings	of	the	UniGrow	method	and	thus	points	of	improvement,	focus	should	
really	be	on	the	SC	growth.	The	general	crack	growth	curve	that	is	generated	by	using	the	UniGrow	method	
in	combination	with	the	correction	method	is	displayed	in	Figure	4.48.	The	shape	of	this	curve,	somewhat,	
resembles	that	found	in	experiments.	However,	still	a	relatively	big	jump	between	the	SC	and	LC	regime	is	
found,	whereas	the	two	curves	should	slowly	merge.	As	shown	before,	short	crack	growth	is	very	complex:	
crack	growth	speeds	show	more	scatter	and	usually	depend	on	the	maximum	stress	that	is	applied.	Cracks	
can	even	fully	arrest.	Even	though	the	currently	implemented	model	has	many	similarities	with	the	Unified	
Approach,	at	its	current	state,	the	model	is	not	capable	to	fully	capture	the	short	crack	complexities.		
	

	
Figure	4.48	Typical	crack	growth	curves	for	short	cracks	when	using	different	methods	

	
When	 looking	 at	 the	 capability	 of	 the	 currently	 implemented	 UniGrow	method	 to	 predict	 the	 relative	
differences	between	welds	of	different	quality	and	thickness,	the	model	shows	the	same	trends	as	predicted	
by	Röscher	et	al	[83].	Similar	relative	difference	between	weld	qualities	have	especially	been	found	when	
comparing	 the	geometries	with	 the	same	 thickness	but	with	different	weld	qualities,	although	UniGrow	
usually	predicts	a	lower	relative	difference	at	low	stress	ranges.	This	is	most	probably	directly	related	to	
the	underestimation	of	the	crack	initiation	life.	When	the	weld	quality	remains	the	same,	but	the	thickness	
changes,	UniGrow	tends	to	predict	a	lower	relative	difference	at	low	stress	ranges	compared	to	the	Two-
Stage-Model.	 However,	 since	 the	 Two-Stage-Model	 is	 also	 a	 model,	 it	 is	 impossible	 to	 draw	 any	 hard	
conclusions	from	this	comparison.		
	
Validity	limit	of	the	UniGrow	model	
Based	on	the	current	study	and	the	literature	that	was	presented	in	section	4.1.5,	it	is	reasonable	to	propose	
that	the	UniGrow	model	for	Mode	I	cracks	is	solely	valid	for	cracks	where	crack	propagation	is	a	dominant	
part	of	the	fatigue	life.	This	includes	welded	details	with	high	SCF	as	was	studied	by	Bogdanov	et	al	[3]	and	
Mikheevskiy	et	al	[36]	and	the	Low	Cycle	Fatigue	range	for	notched	geometries	without	weld	as	was	studied	
by	Bang	et	al	[1]	and	the	current	study.		
	
For	notched	geometries,	no	clear	transition	point	in	terms	of	applied	stress	can	be	defined	due	to	varying	
SCF	and	materials	that	have	been	used.	However,	from	Figure	4.8	and	Figure	4.42,	the	upper	bound	of	the	
validity	of	the	UniGrow	model	for	notched	geometries	with	various	SCF	varies	between	105	and	106	cycles.	
A	safe	validity	limit	would	in	this	case	be	105	cycles,	which	is	often	stated	as	the	boundary	between	LCF	and	
HCF.	However,	 the	validity	 limit	 could	be	 lower	 for	notches	and	welds	 that	have	a	 lower	SCF.	This	was	
observed	in	Figure	4.42,	where	the	point	of	deviation	shifts	to	the	left	as	the	SCF	gets	lower	(going	from	D	
to	A	weld	quality).		
	
For	welded	 geometries,	 including	weld	 residual	 stresses,	 additional	 research	 is	 needed.	 The	model	 has	
shown	 proper	 functioning	 for	 fillet	 welded	 details,	 but	 it	 is	 questionable	 whether	 the	 UniGrow	model	
functions	properly	for	the	butt	welds	used	by	SGRE,	which	are	generally	of	quite	high	quality	(i.e.	higher	
contribution	of	crack	initiation	to	total	fatigue	life)	



 90 

5 Parametric	Study	
	
Currently,	SGRE	is	working	on	optimising	the	design	of	the	turbine	towers.	One	of	the	governing	limit	states	
in	design	is	the	fatigue	of	the	welds	in	the	structure.	Welds	are	generally	considered	to	be	weak	spots	due	
to	three	aspects:	

§ Welding	causes	high	tensile	residual	stresses	in	the	material	
§ Welding	often	leaves	discontinuities	in	the	material	which	can	decrease	the	crack	initiation	life	
§ The	discontinuity	 in	 the	 plates	 caused	 by	 the	weld	 excess	 causes	 a	 stress	 concentration	which	

locally	increases	the	stresses	around	the	weld	toe	
	
Various	methods	of	improvement	have	been	proposed	to	solve	the	issues	mentioned	above.	The	focus	of	
this	chapter	will	be	on	the	geometry	of	the	weld	excess	of	a	butt	weld.	In	section	2.2,	four	main	parameters	
were	found	to	influence	the	fatigue	life.	The	influence	of	three	of	those	parameters	(given	in	Figure	5.1):	the	
weld	flank	angle,	weld	toe	radius	and	weld	excess	height,	on	the	fatigue	life	of	butt-welded	geometries	will	
be	studied	in	this	chapter.	The	analysis	will	be	performed	with	the	previously	introduced	UniGrow	method.	
	

	
Figure	5.1	Parameters	of	the	weld	excess	that	will	be	studied	in	this	chapter	

	
In	the	previous	chapter,	it	was	concluded	that	the	UniGrow	predict	the	same	trends	as	the	Two-Stage-Model	
when	comparing	the	relative	difference	between	welds	of	the	same	thickness	but	different	quality.	Even	for	
stress	ranges	where	the	 fatigue	 life	was	over	105	 cycles,	 the	UniGrow	method	predicted	similar	relative	
difference,	although	they	were	generally	lower	than	predicted	by	the	Two-Stage-Model.	With	this	in	mind,	
the	UniGrow	model	will	be	used	to	examine	the	effect	changing	the	weld	toe	radius,	weld	flank	angle	and	
weld	excess	height.			
	
First	 the	 data	 used	 in	 the	 model	 and	 the	 parametric	 study	 will	 be	 introduced.	 Subsequently,	 the	
implemented	UniGrow	model	and	its	assumptions	will	be	discussed.	This	is	followed	by	further	explanation	
of	the	methods	used	in	this	UniGrow	method.	Lastly,	the	results	are	presented	and	discussed.		
	
5.1 Model	data	
In	this	section,	the	material	data	used	in	the	parametric	study	will	first	be	introduced.	This	is	followed	by	a	
description	 of	 the	 parametric	 study	 that	will	 be	 done	 including	 argumentation	 as	 to	 the	 bounds	 of	 the	
parameters	that	are	varied.	
	
5.1.1 Material	data	
The	material	used	in	the	turbine	towers	is	a	mild	steel,	the	parametric	study	should	reflect	that.	Therefore,	
the	material	used	in	the	parametric	study	will	be	the	S355	steel	examined	in	chapter	4,	the	same	one	that	
was	used	by	Röscher	et	al	[64].	As	these	material	properties	were	based	on	the	Uniform	Material	Law	from	
average	S355	properties,	these	will	be	representative	for	an	average,	synthetic	S355	steel.	Furthermore,	
this	prevents	having	to	redetermine	the	∆𝐾$**	-	𝐾<&:	relationship.	The	material	data	is	given	in	Table	5.1.	
 

Material	parameters	 Fatigue	parameters	
𝒇𝒚	 355	MPa	 𝜎'(	 735	MPa	
𝒇𝒖	 490	MPa	 𝑏	 -0.087	
𝑬	 210000	MPa	 𝜀'( 	 0.59	
𝒗	 0.3	 𝑐	 -0.58	
𝑲(	 808.5	MPa	 𝐾C+	 2000	N/mm3/2	
𝒏′	 0.15	 ∆𝐾;	 180	N/mm3/2	

	
Table	5.1	Material	parameters	for	the	S355	steel	
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5.1.2 Parametric	study	
As	discussed	before,	three	parameters	will	be	varied	in	the	parametric	study:	weld	toe	radius,	weld	flank	
angle	 and	 weld	 excess	 height.	 The	 modelled	 geometry	 will	 have	 a	 thickness	 of	 40	 mm,	 as	 this	 is	
representative	of	the	thicknesses	used	in	the	turbine	towers.	The	width	of	the	weld	is	assumed	to	be	equal	
to	the	thickness	of	the	plate.	This	is	due	to	the	fact	that	plates	are	often	bevelled	at	45	degrees,	resulting	in	
a	length	width	which	is	approximately	the	same	as	the	thickness.	The	global	model	with	the	parameters	that	
can	be	varied	is	given	in	Figure	5.2.	
	

	
Figure	5.2	Model	of	weld	used	in	the	parametric	study	

	
5.1.2.1 Weld	flank	angle	
In	theory,	the	weld	flank	angle	can	vary	between	90	and	180	degrees.	In	EN	1090-2:2018,	for	welds	used	in	
structural	 components,	 execution	 class	EXC3	 is	 required.	This	 requires	 the	weld	 angle	 to	be	 larger	 than	150	
degrees.	However,	at	SGRE	internally,	for	DC90	curves	130	degrees	is	a	manufacturing	requirement.	Recently,	
SGRE	have	proposed	a	new	S-N	curve	which	does	require	weld	flank	angles	larger	than	150	degrees.	Based	on	
these	values,	it	was	chosen	to	vary	the	weld	flank	angle	between	120	and	160	degrees,	with	increments	of	10	
degrees.	This	allows	evaluation	of	 the	effect	of	going	 from	130	to	150	degrees	and	allows	evaluation	of	what	
occurs	if	the	weld	flank	angle	is	further	increased.		
	
5.1.2.2 Weld	toe	radius	
The	most	commonly	assumed	value	for	the	weld	toe	radius	is	1	mm.	This	is	taken	as	center	value	for	the	
weld	toe	radius.	The	weld	toe	radius	has	been	varied	between	0.5	mm	and	1.5	mm	with	increments	of	0.25	
mm.	This	range	was	chosen	as	it	gave	approximately	the	same	range	of	SCF	as	the	other	two	parameters,	
which	made	for	good	comparison.	
	
5.1.2.3 Weld	excess	
In	EN	1993-1-9	[41],	welds	in	detail	class	90	have	a	limitation	on	the	weld	excess	maximum	10%	of	the	weld	
width.	Since	in	this	case	the	weld	with	is	equal	to	the	thickness	of	the	plate,	this	would	be	a	maximum	of	4	
mm.	This	is	taken	as	outer	value	since	welds	are	not	allowed	to	have	a	higher	excess.	The	weld	excess	height	
has	been	varied	between	2	and	4	mm	with	increments	of	0.5	mm.		
	
5.1.2.4 Overview	of	modelled	geometries	
In	Table	5.2,	an	overview	of	the	ranges	of	the	parameters	are	given.	The	base	case	is	defined	as	the	weld	
with	all	parameters	at	the	middle	value.	The	parametric	study	will	subsequently	be	done	by	varying	one	of	
the	parameters	of	the	base	case	each	time.	This	will	result	in	13	different	simulations.		
	
Parameter	 Low	

value	
Medium-
low	value	

Middle	
value	

Medium-
high	value	

High	
value	

Other	parameters	

Weld	excess	 2	mm	
	
	

2.5	mm	 3	mm	 3.5	mm	 4	mm	 Weld	toe	radius	=	1	mm	
Weld	flank	angle	=	140°	

Weld	toe	radius	 0.5	mm	
	
	

0.75	mm	 1	mm	 1.25	mm	 1.5	mm	 Weld	excess	=	3	mm	
Weld	flank	angle	=	140°	

Weld	flank	
angle	

120°	
	
	

130°	 140°	 150°	 160°	 Weld	toe	radius	=	1	mm	
Weld	excess	=	3	mm	

	
Table	5.2	Ranges	of	the	parameters	used	in	the	parametric	study	
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5.1.2.5 Performance	indicator	
To	determine	the	performance	of	the	weld	geometries,	a	performance	indicator	has	to	be	specified.	In	the	
section	4.5.4.3,	the	validity	limit	of	the	UniGrow	method	for	notched	geometries	was	specified	as	lower	than	
100,000	-	1,000,000	cycles.	Since	the	validity	range	is	given	in	terms	of	number	of	cycles,	it	is	opted	to	use	
the	applied	stress	range	at	a	given	number	of	cycles	as	performance	indicator.	The	stress	range	resulting	in	
a	fatigue	life	of	100,000	cycles	will	be	determined	(as	this	is	the	validity	limit	of	the	UniGrow	method).		
	
Furthermore,	stress	range	resulting	in	a	fatigue	life	of	2,000,000	cycles	will	be	determined.	This	is	slightly	
outside	 the	 proposed	 validity	 limit	 but	 is	 a	 value	 that	 is	 often	 used	 to	 define	 the	 fatigue	 detail	 classes.	
However,	 it	 is	approximately	known	how	the	model	behaves	 for	stresses	slightly	outside	of	 the	validity	
range,	which	can	be	used	to	assess	the	results.	
	
5.2 Global	UniGrow	implementation	
The	crack	growth	is	modelled	in	a	similar	way	as	has	been	done	in	chapter	4.	This	means	that	the	following	
assumptions	will	be	made:	

§ Crack	type:	It	is	assumed	that	an	edge	crack	is	present	in	the	weld.	The	crack	initiates	from	the	
point	where	the	principal	stresses	are	the	highest	and	grows	straight	down	(at	right	angles	to	the	
applied	 stress	direction).	 It	 is	 assumed	 that	 pure	Mode	 I	 crack	 growth	 is	 applicable	here,	 even	
though	 shear	 stresses	 might	 be	 present.	 A	 comparison	 of	 the	 crack	 growth	 predicted	 by	 the	
UniGrow	model	and	the	Two-Stage-Model	is	presented	in	Figure	4.10.	

§ Weld	residual	stresses:	Weld	residual	stresses	will	be	neglected	 in	 the	calculations.	Solely	 the	
influence	of	geometry	is	of	consideration	in	this	research.	

§ Applied	stress:	The	applied	stress	is	assumed	to	have	a	constant	stress	range	and	a	stress	ratio	of	
R	=	0.		

§ Material	parameters:	The	base	material,	weld	material	and	heat	affected	zone	are	assumed	to	
made	from	the	same	material	and	thus	have	the	same	material	parameters.	

§ Failure:	Failure	of	the	specimen	is	specified	as	reaching	the	toughness	of	the	material	or	a	crack	
length	of	20	mm.	

	

	
Figure	5.3	Schematic	of	assumed	crack	growth	in	UniGrow	method	and	Two-Stage-Model	

	
In	this	validation	step,	the	method	as	given	in	Figure	5.4	will	be	used.	The	calculation	procedure	is	largely	
the	same	as	 the	one	used	 in	chapter	3.3.	The	global	steps	of	 the	UniGrow	method	will	be	performed	as	
follows:	

1. Determination	of	the	applied	stress	intensity	factor:	The	applied	stress	intensity	factor	will	be	
established	 using	 the	weight	 function	method.	 The	 edge	 crack	weight	 function	will	 be	 used	 to	
determine	 the	SIF.	 In	previous	chapter	 it	has	been	shown	to	yield	proper	results.	Furthermore,	
determining	the	SIF	for	13	cracks	at	multiple	crack	lengths	would	require	a	tremendous	amount	of	
time,	which	is	unfortunately	not	available.		
	
A	linear	elastic	FEA	model	will	be	made	to	determine	the	normal	stresses	(stresses	perpendicular	
to	crack	direction)	in	the	critical	crack	cross	section.	This	is	the	cross	section	where	the	principal	
stress	was	found	to	be	the	highest.	This	topic	will	be	addressed	further	in	section	5.3.1.	

2. Determination	of	the	elastoplastic	stress	distribution	ahead	of	the	crack	tip:	Since	the	same	
material	 has	 been	 used	 as	 in	 the	 previous	 chapter,	 the	 relationship	 between	𝐾<&: 	and	∆𝐾$**	
determined	in	section	4.5.2	will	be	used.	



 93 

3. Determination	of	the	residual	stress	intensity	factor:	Since	the	same	material	has	been	used	as	
in	the	previous	chapter,	the	relationship	between	𝐾<&:	and	∆𝐾$**	determined	in	section	4.5.2	will	
be	used.	

4. Determination	of	the	elastoplastic	stress	and	strain	on	first	elementary	block	ahead	of	the	
crack	tip:	This	will	be	done	using	 the	Creager-Paris	equations	 in	combination	with	 the	Neuber	
uniaxial	plasticity	correction.	This	will	not	be	further	addressed	in	this	chapter	as	this	has	been	
discussed	before,	reference	is	made	to	section	3.1.3.4	for	background.	

5. Determination	 of	 the	 initiation	 life	 of	 the	 first	 elementary	 block	 ahead	 of	 crack	 tip:	The	
initiation	life	was	determined	using	the	Smith-Watson-Topper	damage	parameter.	No	use	will	be	
made	of	the	Morrow	method	as	this	is	not	valid	for	SC.	This	will	not	be	further	addressed	in	this	
chapter	as	this	has	been	discussed	before,	reference	is	made	to	section	3.1.3.5	for	background.	

	

	
Figure	5.4	Global	calculation	procedure	of	the	numerical	UniGrow	method	

	
5.3 Calculation	methods	
In	 this	 section,	 attention	will	 be	 given	 to	 some	methods	 that	 are	 specific	 to	 this	 implementation	of	 the	
UniGrow	method.	First,	the	determination	of	the	stress	in	the	crack	plan	for	the	determination	of	the	applied	
SIF	will	be	discussed,	after	which	the	full	implementation	of	the	UniGrow	model	will	be	presented.		
	
5.3.1 Determination	of	stress	in	crack	plane	
An	important	part	in	the	determination	of	the	applied	SIF	is	the	elastic	stress	in	the	crack	plane.	This	section	
will	discuss	how	the	geometries	are	modelled	in	the	commercial	software	package	ANSYS	18.2.		
	
5.3.1.1 Modelling	the	geometry	
To	determine	the	stress	in	the	critical	cross	section	(i.e.	the	cross-section	perpendicular	to	the	applied	stress	
where	the	highest	principal	stress	is	found),	a	linear	elastic	FEA	model	has	been	made.	The	model	follows	
the	sizes	specified	in	Table	5.2.	Since	specific	sizes	of	the	weld	excess	were	necessary,	it	was	impossible	to	
model	the	weld	as	a	perfect	arc.	A	different	method	using	splines	was	therefore	used,	as	was	also	proposed	
by	other	authors	such	as	Pachoud	et	al	[55].		
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In	this	method,	first	the	required	weld	toe	has	to	be	inserted	into	the	model.	Subsequently	a	spline	was	used	
to	connect	either	side	of	the	weld.	The	spline	was	set	to	be	tangent	to	the	ends	of	the	weld	toes	as	to	prevent	
stress	concentrations.	At	the	top	of	the	weld,	the	spline	was	set	to	be	tangent	to	the	plates.	An	example	of	
the	spline	and	the	spline	points	is	given	in	Figure	5.5.	It	was	made	sure	that	the	spline	controls	on	the	top	
were	always	on	one	horizontal	line.	
	

	
Figure	5.5	Example	of	spline	used	to	model	the	weld	

	
Due	to	symmetry,	only	a	quarter	of	the	weld	was	required	to	be	modelled.	One	end	of	the	mode	is	loaded	
with	a	uniform	stress.	The	length	of	the	plate	in	the	model	is	equal	to	twice	the	thickness	to	ensure	proper	
introduction	of	the	stresses.	A	summary	of	the	model	can	be	found	in	Figure	5.6.		
	

	
Figure	5.6	Constraints	and	loads	on	the	linear	elastic	FEA	model	of	the	weld	

 
5.3.1.2 Mesh	size	
The	overall	mesh	size	used	in	the	model	was	0.5	mm	with	a	more	refined	mesh	around	points	where	stress	
concentrations	might	occur:	the	weld	toes	in	this	case.	In	the	radius	of	the	weld	toe,	edge	sizing	has	been	
applied	 with	 various	 sizes	 until	 the	 model	 had	 converged	 as	 specified	 in	 Figure	 5.6.	 The	 commercial	
software	package	ANSYS	18.2	was	used	to	model	 the	welds.	Quadratic,	 triangular	plane	stress	elements	
have	been	used	due	 to	 the	 limited	 thickness	of	 the	model.	Meshing	was	done	using	 the	advancing	 front	
method	to	limit	distortion	in	the	elements.	A	summary	of	the	mesh	sizing	is	given	in	Figure	5.7.		
	

	
Figure	5.7	Overview	of	the	mesh	for	the	FEA	model	of	the	weld	

	
Mesh	sensitivity	was	studied	using	the	0.5	mm	weld	toe	radius	geometry.	This	geometry	was	chosen	as	the	
transition	from	the	plate	to	the	weld	was	the	most	sudden	and	thus	requires	the	smallest	element	size.	The	
weld	was	loaded	with	a	uniform	stress	of	1	MPa	and	the	element	size	was	varied	from	0.5	to	0.025	mm.	An	
overview	of	the	model	and	mesh	in	ANSYS	is	given	in	Figure	4.14,	here,	the	aforementioned	mesh	controls	
can	be	seen.	A	more	detailed	picture	of	the	mesh	at	the	crack	tip	can	be	viewed	in	Figure	4.15	and	Figure	
4.16.	The	maximum	principal	stress	reported	in	each	model	is	reported	in	Table	4.4.	From	this,	it	can	be	
seen	that	the	mesh	can	be	considered	to	converge	at	an	element	size	of	0.025	mm.		
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Element	size	 𝝈𝟏	[MPa]	 %	change	
0.5	mm	 2.44	 -	
0.1	mm	 3.08	 26,2	
0.05	mm	 3.11	 0,97	
0.025	mm	 3.11	 0,0	

	
Table	5.3	Maximum	elastic	principal	stress	for	distinct	mesh	sizes	for	the	geometry	with	0.5	mm	weld	toe	

radius	(𝜎	=	1	MPa)	
	

		 	
Figure	5.8	Mesh	size	at	weld	toe	for	an	edge	size	of	0.5	mm	(left)	and	0.1	mm	(right)	

	

		 	
Figure	5.9	Mesh	size	at	weld	toe	for	an	edge	size	of	0.05	mm	(left)	and	0.025	mm	(right)	

	
5.3.2 Implementation	in	Python	
The	full	implementation	of	the	UniGrow	method	in	Python	is	the	same	as	the	one	used	in	section	4.4.3.	The	
flowchart	of	the	model	is	given	in	Figure	4.27	and	further	background	is	provided	in	section	4.4.3.	The	step	
size	used	in	the	previous	model	has	been	changed	to	0.1	mm	in	these	calculations.		
	
A	large	difference	between	the	UniGrow	model	used	in	section	4.4.3	and	the	one	used	in	this	chapter	is	the	
inclusion	of	an	additional	loop	around	the	whole	model.	This	loop	allows	easy	determination	of	the	constant	
amplitude	stress	range	corresponding	to	either	100,000	or	2,000,000	cycles.	The	model	starts	at	an	initial	
maximum	stress	(the	minimum	stress	is	zero,	since	R	=	0)	which	results	in	a	fatigue	life	higher	than	100,000	
or	2,000,000	cycles.	The	model	then	increases	the	nominal	stress	until	the	stress	range	is	found	at	which	
the	fatigue	drops	below	the	number	of	cycles.	Linear	interpolation	is	subsequently	used	to	determine	the	
exact	constant	amplitude	stress	range	at	which	a	fatigue	life	of	the	given	number	of	cycles	is	reached.	

	
Figure	5.10	Flowchart	used	for	the	determination	of	the	total	fatigue	life	of	a	welded	specimen	
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5.4 Results	and	Discussion	
In	this	section,	the	result	of	the	parametric	study	will	be	presented	and	discussed.	First,	the	stress	profiles	
resulting	from	the	various	geometries	are	presented.	Followed	by	the	effect	of	each	parameter	on	the	fatigue	
performance	and	a	comparison	of	all	the	parameters	on	the	fatigue	performance.		
	
5.4.1 Stress	Profiles	
The	stress	profiles	of	the	prospect	crack	plane	resulting	from	the	linear	elastic	FEA	analyses	are	given	in	
Figure	5.11	-	Figure	5.13.	The	first	thing	that	can	be	noticed	from	this	is	that	varying	a	certain	parameter	
has	a	very	different	effect	on	the	stress	in	the	crack	plane.	Changing	the	weld	toe	radius,	for	example,	has	a	
rather	local	change	of	the	stress	concentration	(only	the	first	0.5	mm),	whereas	changing	the	weld	excess	
impacts	the	stress	distributions	up	to	a	depth	of	2.5	mm.		
	
Based	on	these	observations,	it	is	expected	that	changing	the	weld	excess	will	have	the	biggest	effect	on	the	
total	fatigue	life,	with	the	weld	toe	radius	having	the	smallest	effect.	Furthermore,	since	the	effect	of	the	
weld	toe	radius	on	the	stress	distribution	is	so	localized,	it	is	expected	that	it	mainly	affects	the	length	of	the	
fatigue	crack	initiation	phase.		
	

	
Figure	5.11	Influence	of	the	weld	flank	angle	on	the	stress	concentration	in	the	crack	plane		

	

	
Figure	5.12	Influence	of	the	weld	toe	radius	on	the	stress	concentration	in	the	crack	plane		

	

	
Figure	5.13	Influence	of	the	weld	excess	on	the	stress	concentration	in	the	crack	plane		
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5.4.2 Influence	of	geometrical	parameters	
The	 weld	 flank	 angle,	 weld	 toe	 radius	 and	 weld	 excess	 height	 all	 have	 varying	 effects	 on	 the	 fatigue	
performance	of	 the	weld.	These	 effects	will	 be	presented	 in	 this	 section,	 after	which	 the	 effects	will	 be	
compared.	
	
5.4.2.1 Weld	flank	angle	
The	constant	amplitude	stress	range	resulting	in	a	fatigue	life	of	100,000	and	2,000,000	cycles	as	a	function	
of	the	flank	angle	is	given	in	Figure	5.14.	Relative	differences	have	been	determined	upon	comparison	to	
the	base	case.	The	change	in	performance	relative	to	the	base	case	has	also	been	determined.	Very	little	
change	 in	 the	 stress	 range	 is	 observed	when	decreasing	 the	 flank	 angle	 below	130	degrees,	whereas	 a	
significant	 improvement	of	 the	 fatigue	performance	 is	observed	 for	 flank	angles	>150	degrees.	Relative	
results	for	100,000	and	2,000,000	cycles	are	very	similar,	whereas	a	relatively	 larger	relative	difference	
between	the	models	is	expected	at	2,000,000	cycles,	which	was	observed	in	for	example	Figure	4.44.	
	

	 	
Figure	5.14	Influence	of	the	weld	flank	angle	on	the	constant	amplitude	stress	range	needed	to	obtain	a	

fatigue	life	of	100,000	(left)	and	2,000,000	cycles	(right)	
	
5.4.2.2 Weld	toe	radius	
The	constant	amplitude	stress	range	resulting	in	a	fatigue	life	of	100,000	and	2,000,000	cycles	as	a	function	
of	the	flank	angle	is	given	in	Figure	5.15.	Relative	differences	have	been	determined	upon	comparison	to	
the	base	case.	The	change	in	performance	relative	to	the	base	case	has	also	been	determined.	Very	little	
influence	of	changing	the	radius	on	the	fatigue	life	is	observed,	just	a	mere	2%	in	both	directions.	Here,	the	
relative	difference	at	100,000	and	2,000,000	cycles	is	also	very	similar.	
 

	 	
Figure	5.15	Influence	of	the	weld	toe	radius	on	the	constant	amplitude	stress	range	needed	to	obtain	a	

fatigue	life	of	100,000	and	2,000,000	cycles		
	
5.4.2.3 Weld	excess	height	
The	constant	amplitude	stress	range	resulting	in	a	fatigue	life	of	100,000	and	2,000,000	cycles	as	a	function	
of	the	flank	angle	is	given	in	Figure	5.16.	Relative	differences	have	been	determined	upon	comparison	to	
the	base	case.	The	change	in	performance	relative	to	the	base	case	has	also	been	displayed	in	this	figure.	
Changing	the	weld	excess	height	has	a	substantial	effect	on	the	fatigue	life.	Almost	a	15%	total	increase	of	
fatigue	 performance	 is	 observed	 when	 reducing	 the	 weld	 excess	 from	 4	 to	 2	 mm.	 Here,	 the	 relative	
difference	at	100,000	and	2,000,000	cycles	is	also	very	similar.	
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Figure	5.16	Influence	of	the	weld	excess	on	the	constant	amplitude	stress	range	needed	to	obtain	a	fatigue	

life	of	100,000	and	2,000,000	cycles		
	
5.4.2.4 Comparing	influence	of	parameters	
As	could	be	seen	in	the	previous	section,	the	parameters	have	varying	influence	on	the	fatigue	performance	
of	the	weld.	To	be	able	to	compare	the	three	parameters,	the	SCF	(defined	as	in	Eq.	(4.7))	of	each	geometry	
was	determined.	The	results	are	given	in	Table	5.4.	This	then	allows	for	comparing	the	effect	of	the	three	
parameters.	A	plot	of	the	stress	range	required	to	reach	100,000/2,000,000	cycles	as	function	of	the	SCF	of	
the	weld	geometries	is	given	in	Figure	5.17	and	Figure	5.18.	Since	the	relative	differences	between	the	weld	
geometries	was	approximately	the	same	at	100,000	and	2,000,000	cycles,	the	graphs	are	very	much	alike.	
	

Parameter	 Low	
value	

Medium-
low	value	

Middle	
value	

Medium-
high	value	

High	
value	

Weld	excess	 2	mm	 2.5	mm	 3	mm	 3.5	mm	 4	mm	
SCF	 2.3	 2.44	 2.55	 2.66	 2.75	

Weld	toe	radius	 0.5	mm	 0.75	mm	 1	mm	 1.25	mm	 1.5	mm	
SCF	 3.1	 2.76	 2.55	 2.41	 2.3	

Weld	flank	angle	 120°	 130°	 140°	 150°	 160°	
SCF	 2.66	 2.64	 2.55	 2.43	 2.19	

	
Table	5.4	SCF	belonging	to	each	of	the	analysed	geometries	

	

	 	
Figure	5.17	Change	in	constant	amplitude	stress	needed	to	obtain	a	fatigue	life	of	100,000	cycles	as	

function	of	SCF	generated	for	the	various	weld	geometries	
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Figure	5.18	Change	in	constant	amplitude	stress	needed	to	obtain	a	fatigue	life	of	2,000,000	cycles	as	

function	of	SCF	generated	for	the	various	weld	geometries	
	
In	Figure	5.17	and	Figure	5.18	it	can	be	observed	that	even	though	changing	the	weld	toe	radius	has	a	major	
influence	on	the	local	SCF	at	the	weld	toe,	the	UniGrow	method	predicts	that	the	improvement	in	fatigue	
performance	 is	 limited.	 This	 is	 due	 to	 the	 fact	 that	 the	 stress	 only	 changes	 very	 locally	 at	 the	 surface.	
Changing	the	weld	excess,	on	the	other	hand,	has	limited	influence	on	the	observed	SCF,	but	increases	the	
fatigue	performance	significantly.	This	is	due	to	the	fact	that	the	stress	in	the	crack	plane	changes	to	a	much	
deeper	depth,	influencing	more	of	the	crack	growth.		
	
5.4.2.5 Contribution	of	crack	growth	stages	
As	stated	before,	it	is	expected	that	the	local	effect	on	the	stress	caused	by	changing	the	weld	toe	radius	only	
affects	the	fatigue	initiation	life.	To	further	investigate	the	effect	of	changing	parameters	on	the	change	in	
fatigue	crack	initiation	and	propagation	life,	all	weld	geometries	were	modelled	with	an	applied	stress	range	
of	200	MPa	(at	R	=	0).	Fatigue	crack	initiation	life	was	defined	as	the	crack	being	smaller	than	0.5	mm,	similar	
to	what	was	used	in	chapter	4.	Failure	was	defined	similarly	as	before.	The	results	for	each	of	the	parameters	
are	given	in	Figure	5.19	-	Figure	5.21.	Relative	differences	have	been	determined	upon	comparison	to	the	
base	case.	
	
From	Figure	5.20,	it	becomes	clear	that	the	weld	toe	radius	indeed	only	affects	the	fatigue	crack	initiation	
life.	The	crack	propagation	life	varies	very	lightly,	whereas	the	crack	initiation	life	changes	significantly.	For	
the	other	two	parameters,	the	highest	relative	change	is	also	observed	in	the	fatigue	crack	initiation	life.	
This	 is	 due	 to	 the	 fact	 that	 the	 change	 in	 the	 stress	 distribution	 only	 affects	 the	 first	 few	mm	of	 crack	
propagation,	therefore	the	effect	on	the	crack	propagation	is	limited.	
 

 
Figure	5.19	Number	of	cycles	till	failure	in	the	two	crack	stages	for	varying	weld	flank	angles	(∆𝜎 =

200𝑀𝑃𝑎,	R	=	0)	
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Figure	5.20	Number	of	cycles	till	failure	in	the	two	crack	stages	for	varying	weld	toe	radius	(∆𝜎 =

200𝑀𝑃𝑎,	R	=	0)	
	

	
Figure	5.21	Number	of	cycles	till	failure	in	the	two	crack	stages	for	varying	weld	excess	height	(∆𝜎 =

200𝑀𝑃𝑎,	R	=	0)	
	
5.4.2.6 Comparison	to	Detail	Class	curve	
To	obtain	a	sense	of	how	much	the	results	produced	by	the	UniGrow	method	differed	from	the	actual	detail	
class	curves,	a	specimen	with	weld	excess	height	of	4	mm	and	weld	flank	angle	of	150	degrees	(worst	case	
scenario	for	a	Detail	Class	90	butt	weld)	was	modelled.	The	resulting	S-N	curve	compared	to	the	DC90	curve	
is	presented	in	Figure	5.22.	It	can	be	seen	that	the	curve	is	in	the	correct	ballpark,	albeit	not	completely	
accurate	due	to	mentioned	effects	 from	using	the	UniGrow	method,	neglecting	residual	stresses	and	the	
simplified	crack	shape	and	material	model.	
	

	
Figure	5.22	S-N	curves	of	the	worst-case	scenario	butt	weld	modelled	with	UniGrow	compared	to	the	

Detail	Class	90	curve	
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5.4.3 Discussion	
In	this	section,	the	results	present	in	the	previous	sections	will	be	discussed.		
	
5.4.3.1 Uncertainties	in	the	model	
The	presented	results	should	be	observed	with	care,	as	several	assumptions	and	simplifications	have	been	
made.	Firstly,	no	weld	residual	stresses	have	been	accounted	for	in	this	parametric	study.	Weld	residual	
stresses	cause	an	increase	of	the	maximum	and	minimum	SIF	and	thus	locally	increase	the	stress	ratio.	This	
usually	increases	crack	rates,	and	it	could	lead	to	a	decrease	of	the	contribution	of	fatigue	crack	initiation	to	
the	total	fatigue	life.	This	could	therefore	influence	the	effect	of	parameters	on	the	fatigue	performance	of	
welds.		
	
Secondly,	the	usage	of	the	UniGrow	method	provides	some	uncertainty.	It	has	been	shown	in	the	previous	
chapter	that	the	UniGrow	method	underestimates	the	fatigue	crack	initiation	lives.	This	could	mean	that	the	
effect	of	parameters	that	derive	the	improved	fatigue	performance	from	the	crack	initiation	phase	(like	the	
weld	 toe	 radius)	 could	 be	 underestimated	when	 using	 the	 UniGrow	method.	 Furthermore,	 the	 relative	
difference	at	2,000,000	cycles	is	most	likely	larger	than	predicted	and	not	exactly	the	same	as	the	relative	
difference	at	100,000	cycles.	This	is	due	to	the	fact	that	the	UniGrow	method	tends	to	predict	lower	relative	
differences	between	curves	at	a	lower	stress	range,	as	has	been	shown	in	Figure	4.44.		
	
Lastly,	 in	this	model,	solely	an	edge	crack	has	been	considered.	However,	 in	real	weld	geometries,	semi-
elliptical	cracks	are	present.	The	effect	of	this	on	the	results	is	unclear	and	requires	further	study	but	has	to	
be	considered	when	the	results	are	interpreted.		Another	simplification	of	which	the	effects	are	unclear	is	
the	modelling	of	the	HAZ,	weld	material	and	plate	material	as	the	same	material.	Cracks	usually	grow	in	the	
HAZ,	which	can	have	different	material	properties	than	the	material	examined	in	this	chapter.	This	could	
have	its	effect	on	the	influence	of	the	weld	geometry	parameters	on	the	fatigue	performance.		
	
5.4.3.2 SCF	of	the	welded	geometry	
What	has	can	also	be	observed	in	this	chapter	is	that	the	weld	geometries	that	are	usually	employed	by	
SGRE	have	relatively	low	SCF.	They	vary	around	2.5,	which	is	better	than	the	welded	geometries	that	have	
been	analysed	using	UniGrow	by	e.g.	Mikheevskiy	et	al	[36]	which	have	shown	good	results.	This	could	again	
pose	limits	on	the	validity	of	the	UniGrow	method,	as	the	better	the	quality	of	the	welded	connection,	the	
more	of	its	life	is	spent	on	fatigue	crack	initiation.		
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6 Conclusion	and	Recommendation	
	
6.1 Conclusion	
From	the	research	that	has	been	performed,	the	following	conclusions,	related	to	the	research	questions	
stated	in	section	1.3	can	be	drawn:		

• The	UniGrow	model	 showed	very	 good	 correspondence	with	 experimental	 crack	 growth	 speed	
results	of	CT	specimens	made	from	S355	steel	performed	by	De	Jesus	et	al	[11]	and	Carvalho	et	al	
[6].	Good	predictions	of	the	crack	growth	rate	were	observed	for	all	tested	stress	ratios	except	R	=	
0.25.	As	was	also	found	by	previous	research,	the	UniGrow	method	is	capable	of	predicting	crack	
growth	rates	in	the	crack	propagation	regime	for	various	stress	ratios.	It	is	recommended	to	use	a	
numerical	method	(elastoplastic	FEA)	to	determine	the	plastic	residual	stresses	ahead	of	the	crack	
tip	as	this	provides	more	physically	accurate	results.	

• De	 Jesus	et	al	 [10]	proposed	 to	use	 the	Morrow	method	 instead	of	 the	SWT	damage	method	to	
determine	the	fatigue	life	of	the	elementary	block	ahead	of	the	crack	tip.	Results	in	this	research	
confirmed	the	hypothesis	that	the	Morrow	method	without	considering	the	mean	stress	yielded	
better	 results	 than	 the	 SWT	damage	 parameter	 in	 predicting	 the	 crack	 growth	 rates	 of	 the	 CT	
specimens.	This	is	because	the	predicted	fatigue	initiation	lives	of	the	elementary	block	ahead	of	
the	crack	are	often	in	the	LCF	regime	(𝑁' < 5 ∗ 10Ocycles).	In	this	regime,	the	specimen	undergoes	
cyclic	stress	relaxation.	However,	for	small	cracks	the	fatigue	life	of	the	elementary	block	is	much	
higher	and	use	of	the	Morrow	method	without	considering	residual	stresses	is	not	recommended	
since	cyclic	stress	relaxation	does	not	occur.	

• In	the	studied	literature,	researchers	tend	to	use	the	weight	function	method	to	determine	the	SIF	
in	welded	geometries.	Analysis	comparing	the	weight	function	method	to	FEA	results	showed	that	
for	a	flat	plate,	the	WF	method	produced	slightly	higher	(up	to	3.5%)	SIF	predictions	than	FEA.	For	
welded	geometries,	the	WF	method	predicted	significantly	higher	SIFs	than	FEA	with	difference	up	
to	 12%.	 Usage	 of	 FEA	 to	 determine	 the	 SIF	 also	 showed	 better	 correspondence	 between	 the	
UniGrow	model	and	Two-Stage-Model.	Therefore,	it	is	recommended	to	use	FEA	to	determine	the	
SIF	where	precise	fatigue	life	predictions	are	needed.	For	an	initial	estimation,	however,	the	WF	
can	be	used	without	issues,	as	it	is	significantly	faster	and	provides	relatively	accurate	results.		

• Based	on	the	observations	from	literature	and	the	comparison	to	the	Two-Stage-Model	the	validity	
limit	of	 the	currently	 implemented	UniGrow	model	 for	Mode	 I	 cracks	was	defined.	The	current	
implementation	 of	 the	 UniGrow	 method	 produces	 satisfactory	 results	 for	 cracks	 where	 crack	
propagation	is	a	dominant	part	of	the	fatigue	life	(i.e.	welded	details	or	notched	specimens	in	LCF	
regime).	From	the	analysis	of	notched	geometries	with	various	SCF,	the	UniGrow	model	was	found	
to	be	valid	up	to	a	range	between	105	and	106	cycles.	The	limit	seeming	to	depend	on	the	SCF	of	the	
geometry.	It	is	recommended	to	use	the	UniGrow	method	for	notched	specimens	for	fatigue	lives	
up	 to	105	 cycles.	For	welded	details,	no	clear	 conclusion	could	be	drawn	yet,	 as	more	 research	
specific	to	butt	welded	geometries	(including	weld	residual	stresses)	is	required.	

• Results	of	the	parametric	study	have	shown	that	the	parameters	controlling	the	shape	of	the	weld	
excess	 have	 various	 effects	 on	 the	 fatigue	 life.	 Changing	 the	 weld	 toe	 radius	mainly	 led	 to	 an	
increase	in	the	fatigue	crack	initiation	life,	whereas	changing	the	weld	excess	height	affected	both	
crack	stages	quite	significantly.	The	results	of	the	parametric	study	were,	however,	subject	to	a	lot	
of	uncertainty	from	both	the	UniGrow	model	and	neglecting	the	weld	residual	stresses.	

	
6.2 Recommendations	
For	future	research,	the	following	recommendations	can	be	done:	

§ In	order	to	get	a	better	understanding	of	the	influencing	properties	of	the	weld	geometry	on	the	
fatigue	performance	of	butt	welds,	a	more	advanced	version	of	the	UniGrow	method	needs	to	be	
implemented.	This	version	should	be	able	to	take	into	account	the	weld	residual	stresses	and	be	
able	to	model	a	semi-elliptical	crack	instead	of	the	edge	crack	that	was	modelled	currently.	

§ This	model	can	then	be	used	to	evaluate	butt	welded	geometries	used	by	SGRE.	SGRE	butt	welds	
are	 usually	 of	 quite	 high	 quality	 and	 therefore	 different	 from	 the	 fillet	welds	 used	 in	 previous	
experiments.	It	is	thus	recommended	to	perform	additional	validation	of	the	UniGrow	method	for	
the	welded	geometries	used	by	SGRE.		

§ It	would	be	interesting	to	do	further	research	into	the	relation	between	the	elementary	block	size	
and	the	grain	size,	as	it	could	provide	a	means	for	using	the	UniGrow	model	without	calibration	to	
crack	growth	data.	This	would	mean	that	the	crack	growth	speed	can	be	predict	solely	from	strain-
life	tests	and	measurement	of	the	grain	sizes.	 	
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A. Empirical	formulas	from	literature	
	
A.1	Newman-Raju	Equation	[47]	
Newman-Raju	proposed	to	use	Eq.	(A.1)	to	determine	the	SIF	of	a	semi-elliptical	crack	in	a	finite	width	plate.	
	
	

𝐾C = (𝑆6 +𝐻𝑆))e
𝜋𝑎
𝑄 𝐹 G

𝑎
𝑐 ,
𝑎
𝑡 ,
𝑐
𝑏 , 𝜑H	 (A.1)	

	
The	equations	below	are	valid	for	a/c<1.	The	complete	elliptic	integral,	Q,	may	be	determined	from	Eq.	(A.2)	
or	from	standard	tables.	
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(A.2)	

	
The	tension	factor	F	is	defined	as	in	Eq.	(A.3).	
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Where:	
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(A.7)	

	
𝑓r	corrects	for	the	crack	tip	plasticity,	assuming	it	is	very	small.	Its	value	is	given	in	Eq.	(A.8).	
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(A.8)	

	
𝑓H	corrects	for	the	finite	width	of	the	plate.	Its	value	is	given	in	Eq.	(A.9).	
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(A.9)	

	
𝐻	is	called	the	bending	factor	and	can	be	determined	by	Eq.	(A.10).	
	
	 𝐻 = 𝐻7 + (𝐻1 −𝐻7) sin[ 𝜙	

	

(A.10)	
	
Where: 
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A.2	Weight	Function	Edge	Crack	[22]		
The	weight	function	for	an	edge	crack	in	a	finite	width	plate	as	defined	by	Kaya	and	Erdogan	is	given	in	Eq.	
(A.16).	
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