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Abstrat

In this paper, we onsider preonditioning for PDE-onstrained optimization prob-

lems. The underlying problems yield a linear saddle-point system. We study a lass of

preonditioners based on multilevel sequentially semiseparable (MSSS) matrix ompu-

tations. The novel global preonditioner is to make use of the global struture of the

saddle-point system, while the blok preonditioner makes use of the blok struture

of the saddle-point system. For the novel global preonditioner, it is independent of

the regularization parameter, while for the blok preonditioner, this property does not

hold. For this MSSS matrix omputation approah, model order redution algorithms

are essential to obtain a low omputational omplexity. We study two di�erent model

order redution approahes, one is the new approximate balaned trunation algorithm

with low-rank approximated Gramians and the other is the standard Hankel bloks

approximation algorithm. We test the global preonditioner and the blok preondi-

tioner for the problem of optimal ontrol of the Poisson equation and optimal ontrol of

the onvetion-di�usion equation. Numerial experiments illustrate that both preon-

ditioners give linear omputational omplexity and the global preonditioner yields the

fewest number of iterations and omputing time. Moreover, the approximate balaned

trunation algorithm onsumes less �oating-point operations (�ops) than the Hankel

bloks approximation algorithm.

Keywords: PDE-onstrained optimization, saddle-point problem, preonditioners,

multilevel sequentially semiseparable matrix, model order redution, low-rank approx-

imation

1 Introdution

Optimal design, optimal ontrol and parameter estimation of systems governed by partial

di�erential equations (PDEs) give rise to a lass of problems known as PDE-onstrained op-

timization. PDE-onstrained optimization problems have a wide appliation suh as optimal

�ow ontrol [1℄ [2℄, di�use optial tomography [3℄, and linear (nonlinear) model preditive

ontrol [4℄. The solution of these problems is aquired by solving a large-sale linear system

of saddle-point type. Muh e�ort has been dediated to �nd e�ient iterative solution meth-

ods for suh systems. Some of the most popular tehniques are the onjugate gradient (CG)

[5℄, minimal residual (MINRES) [6℄, generalized minimal residual (GMRES) and indued
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dimension redution (IDR) [7℄. The performane of these methods highly depends on the

hoie of preonditioners. In this paper, we study a lass of preonditioners that exploits

the multilevel sequentially semiseparable (MSSS) struture of the bloks of the saddle-point

system.

Semiseparable matries appear in several types of appliations, e.g. the �eld of integral

equations [8℄, Gauss-Markov proesses [9℄, boundary value problems [10℄ and rational in-

terpolation [11℄. Semiseparable matries are matries of whih all the sub-matries taken

from the lower-triangular or the upper-triangular part are of rank at most 1 by [12℄. Se-

quentially semiseparable (SSS) matries of whih the o�-diagonal bloks are of low-rank,

not limited to 1, named by Dewilde et. al. in [13℄ generalize the semiseparable matries.

Multi-level sequentially semiseparable generalize the sequentially semiseparable matries to

the multi-dimensional ases. Systems that arise from the disretization of 1D partial di�er-

ential equations typially have an SSS struture. Disretization of higher dimensional (2D

or 3D) partial di�erential equations give rise to matries that have an MSSS struture [14℄

[15℄. Under the multilevel paradigm, generators that are used to represent a matrix of a

higher hierarhy are themselves multilevel sequentially semiseparable of a lower hierarhy.

The usual one-level sequentially semiseparable matrix is the one of the lowest hierarhy.

Operations like the matrix inversion and the matrix-matrix multipliation are still losed

under this struture. The LU fatorization an also be performed in a struture preserving

way. This fatorization results in a growth of the rank of the o�-diagonal bloks of the Shur

omplement. As a result, the LU fatorization is not of linear omputational omplexity.

The model order redution plays a key role in reduing the rank of the o�-diagonal bloks.

Beause of the model order redution operation being performed, it is possible to ompute

an inexat LU deomposition of an MSSS matrix that an be used as a preonditioner.

In [14℄, Gondzio et. al. �rst introdued the preonditioning of PDE-onstrained opti-

mization problems by MSSS matrix omputations. They exploited the MSSS matrix stru-

ture of the bloks of the saddle-point system and performed an LU fatorization method

for MSSS matries to approximate the Shur omplement of the saddle-point system. With

the approximate Shur omplement, onjugate gradient method was performed to solve the

preonditioned saddle-point system blok-by-blok. As aforementioned, the model order

redution plays a vital role in obtaining a linear omputational omplexity of the LU fator-

ization. In [14℄, Gondzio et. al. used a standard model order redution algorithm [16℄ [13℄ to

redue the omputational omplexity. In this paper, our work extends [14℄ in the following

ways. 1) We propose a new model order redution algorithm for SSS matrix omputations

based on the orrespondene between linear time-varying (LTV) systems and bloks of SSS

matries. The new model order redution algorithm is motivated by [17℄. In [17℄, the ap-

proximate balaned trunation was addressed for the model order redution of linear time

invariant (LTI) systems. In this paper, we extend that method to the linear time varying

(LTV) systems. Beause of the orrespondene between MSSS matrix and LTV systems,

it is suitable for model order redution for MSSS matrix omputations. Compared with

the onventional model order redution algorithms in [13℄ [16℄, the approximate balaned

trunation needs less �oating-point operations (�ops). 2) With these model order redution

algorithms, we an ompute an inexat LU fatorization of the MSSS matrix bloks of the

saddle-point system in linear omputational omplexity. This yields blok preonditioners

for the saddle-point systems of the type that are desribed in [18℄ while only single preon-

ditioner for the last blok of the saddle-point system is studied in [14℄. 3) By permuting

the bloks of the saddle-point system, we an also ompute an inexat LU fatorization

of the global system, whih gives a novel global preonditioner. 4) Besides the problem of

optimal ontrol of the Poisson equation, we also study the problem of optimal ontrol of the

onvetion-di�usion equation. 5) We also extend these preonditioning tehnique to the 3D

ases.

Note that the standard blok preonditioners depend on the regularization parameter β
for the PDE-onstrained optimization problem [19℄. By permuting the saddle-point system
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with MSSS matrix bloks to a single MSSS matrix system, we an ompute the inexat

LU fatorization of the global system in linear omputational omplexity, whih is alled

the global preonditioner. Numerial experiments for the optimal ontrol of the Poisson

equation and the onvetion-di�usion equation illustrate that the performane of the global

preonditioner is independent of the regularization parameter β and is also independent of

the mesh size.

The struture of this paper is as follows: we start with formulating a distributed op-

timal ontrol problem onstrained by PDEs. This problem yields a linear system of the

saddle point type. Demand for e�ient preonditioners to solve this type of system with

iterative solution methods motivates this paper. In Setion 3, we brie�y give an overview

of some de�nitions and the widely used omputations of MSSS matries and then disuss

the MSSS preonditioning tehnique. The novel model order redution algorithm is also de-

sribed. Based on the MSSS matrix omputations, we propose three preonditioners for this

saddle-point problem, they are the novel global preonditioner, the standard blok-diagonal

preonditioner and the standard blok lower-triangular preonditioner. In Setion 4, we use

the distributed optimal ontrol of the Poisson equation and the onvetion-di�usion equa-

tion as numerial experiments to illustrate the performane of our method. In Setion 5,

we extend this preonditioning tehnique to the optimal ontrol of 3D problems. Setion 6

draws the onlusion and desribes future work.

2 Problem Formulation

2.1 PDE-Constrained Optimization Problem

Consider the PDE-onstrained optimization problem desribed by

min
u, f

1

2
‖u− û‖2 + β‖f‖2

s.t. Lu = f in Ω

u = uD on ΓD,

(1)

where L is an operator, u is the system state, f is the system input, û is the desired state

of the system, β is the weight of the system input in the ost funtion or regularization

parameter and β > 0. In this paper, we onsider L = −∇2
for optimal ontrol of the

Poisson equation and L = −ǫ∇2 + −→w · ∇ for optimal ontrol of the onvetion-di�usion

equation. Here

−→w is a vetor in Ω, ∇ is the gradient operator, and ǫ is a positive salar.

If we want to solve suh a problem numerially, it is lear that we need to disretize these

quantities involved at some point. There are two kinds of approahes, one is to derive

the optimality onditions �rst and then disretize from there (optimize-then-disretize), the

other is to disretize the ost funtion and the PDE �rst and then optimize that (disretize-

then-optimize). For the problem of optimal ontrol of the Poisson equation, both approahes

lead to equivalent solutions while di�erent answers are reahed for the problem of optimal

ontrol of the onvetion-di�usion equation [19℄. Sine our fous is on multilevel sequentially

semiseparable preonditioners, the disretize-then-optimize approah is hosen in this paper.

By introduing the weak formulation and disretizing (1) using the Galerkin method,

the disrete analogue of the minimization problem (1) is therefore,

min
u, f

1

2
uTMu− uT b+ c+ βfTMf

s.t. Ku = Mf + d,

(2)

where K = [Ki,j] ∈ R
N×N

is the sti�ness matrix, M = [Mi,j ] ∈ R
N×N , Mij =

∫

Ω

φiφjdΩ

is the mass matrix and is symmetri positive de�nite, b = [bi] ∈ R
N , bi =

∫

Ω

ûiφidΩ, c ∈
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R, c =

∫

Ω

û2dΩ, d = [di] ∈ R
N , di = −

N+∂N
∑

j=N+1

uj

∫

Ω

∇φj · ∇φidΩ. The φi (i = 1, 2, . . . N)

and φj (j = 1, 2, . . . N, N + 1, . . . N + ∂N) form a basis of V h
0 and V h

g , respetively.

Consider the ost funtion in (2) and assoiate with the equality onstrain, we introdue

the Lagrangian funtion

J (u, f, λ) = 1

2
uTMu− uT b+ c+ βfTMf + λT (Ku−Mf − d),

where λ is the Lagrange multiplier. Then it is well-known that the optimal solution is given

by �nding u, f and λ suh that

∇uJ (u, f, λ) = Mu− b+KTλ = 0,

∇fJ (u, f, λ) = 2βMf −Mλ = 0,

∇λJ (u, f, λ) = Ku−Mf − d = 0.

This yields the linear system





2βM 0 −M
0 M KT

−M K 0









f
u
λ



 =





0
b
d



 . (3)

The system (3) is of the saddle-point system type [18℄, i.e., the system matrix, whih is

denoted as A, has the following struture

A =

[

A BT

B 0

]

, (4)

where A ∈ R
n×n

, B ∈ R
n×m

. For system (3), we haveA =

[

2βM 0
0 M

]

and B =
[

−M K
]

.

The system matrix of the saddle-point system (3) is large and sparse. Thus it is amenable

to solve suh systems by preonditioned Krylov solvers, suh as MINRES [6℄ and IDR(s) [7℄.

2.2 Preonditioning of Saddle-Point Systems

The performane of iterative solution methods highly depends on the quality of the

preonditioners [20℄. For numerial methods to solve system (3) and onstrution of pre-

onditioners, we refer to [18℄ for an extensive survey of numerial methods for this type of

systems. In this paper, we study three types of preonditioners. The �rst two types ex-

ploit the MSSS struture of the bloks of the saddle-point system, whereas the seond type

exploits the MSSS struture of the permuted saddle-point system.

2.2.1 Blok Preonditioners

Reall from (4), if A is nonsingular, then A admits the following LDU fatorization given

by





2βM 0 −M
0 M KT

−M K 0



 =





I
0 I
− 1

2β I KM−1 I









2βM
M

S









I 0 − 1
2β I

I M−1KT

I



 ,

where S = −
(

1
2βM +KM−1KT

)

is the Shur omplement.

The most di�ult part for this fatorization is to ompute the Shur omplement S
beause of omputing the inverse of a large sparse matrix. Meanwhile, solving the system

Sx = b is also expensive sine S is a large and full matrix. Note that all the matrix bloks
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of (3) have a struture alled multilevel sequentially semiseparable (MSSS), whih will be

introdued later. Then the Shur omplement S also has the MSSS struture. If we exploit

the MSSS struture of S, we an both ompute S and solve the preonditioned system in

linear omplexity.

In this paper, we �rst study two types of blok preonditioners for the saddle-point

system. They are the blok-diagonal preonditioner P1 and the blok lower-triangular pre-

onditioner P2, where

P1 =





2βM̂

M̂

−Ŝ



 , P2 =





2βM̂

0 M̂

−M K Ŝ



 , (5)

where M̂ is an approximation of the mass matrix and Ŝ is an approximation of the Shur om-

plement. For M̂ and Ŝ without approximation, i.e., M̂ = M and Ŝ = S, the preonditioned
system P−1

1 A has three distint eigenvalues and GMRES applied to the preonditioned sys-

tem delivers the solution in at most three steps, while the preonditioned system P−1
2 A

has two distint eigenvalues and GMRES applied to the preonditioned system delivers the

solution in at most two steps [18℄. For the general properties of P1 and P2, we refer to [18℄

for an extensive study.

As pointed out in [19℄, to approximate the Shur omplement S = −
(

1
2βM +KM−1KT

)

,

Ŝ = −KM−1KT
ould be used for big to middle range of β while Ŝ = − 1

2βM ould be

hosen for small β. Thus the blok-diagonal preonditioner is

P1 =





2βM̂

M̂

K̂M−1K̂T



 , (6)

for big or middle range of β, and

P1 =







2βM̂

M̂
1
2β M̂






, (7)

for small β, where M̂ and K̂ are approximated by MSSS matrix omputation. Note that

the sub-bloks of P1 and P2 all have an MSSS matrix struture suh that the linear system

P1y = r or P2y = r an be solved with linear omputational omplexity.

2.2.2 Global Preonditioners

Sine the bloks of the saddle-point system (3) keep the MSSS matrix struture, it is

possible to permute the saddle-point system (3) with MSSS matrix bloks to a linear system

with global MSSS matrix struture, where the details will be introdued in the next setion.

Thus we have the permuted saddle-point system desribed by

Ãx̃ = g̃, (8)

where Ã, x̃ and g̃ are permutations of A,
[

fT uT λT
]T

and

[

0T bT dT
]T

in (3) and

(4), respetively. Sine the global matrix Ã of the permuted saddle-point system is an MSSS

matrix, we an do an inexat LU fatorization of Ã in linear omputational omplexity with

MSSS matrix omputations, i.e.,

Ã ≈ L̃Ũ , (9)

and use this inexat fatorization as a preonditioner. We all this fatorization in (9) the

global preonditioner. Sine no information of β is lost during the permutation and fator-

ization, the global preonditioner is independent of β while for standard blok preonditioner

P1 and P2 in (5) this does not hold. This is a big advantage of the global preonditioner over

the standard blok preonditioner. Numerial examples in Setion 4 verify this statement.
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3 Preonditioning Using Multi-level Sequentially Semisep-

arable Matrix Computations

Matries in this paper will always be real and their dimensions are ompatible for the

matrix-matrix operations and the matrix-vetor operations when their sizes are not men-

tioned.

3.1 Multi-level Sequentially Semiseparable Matries

The generators representation of sequentially semiseparable matries are de�ned by Def-

inition 3.1 [21℄.

De�nition 3.1. Let A be an N × N matrix with SSS matrix struture and let n positive

integers m1, m2, · · · mn with N = m1 +m2 + · · ·+mn suh that A an be written in the

following blok-partitioned form

Aij =







UiWi+1 · · ·Wj−1V
T
j , if i < j;

Di, if i = j;
PiRi−1 · · ·Rj+1Q

T
j , if i > j.

where the supersript

′T ′
denotes the transpose of the matrix.

Table 1: Generator size for the SSS matrix A in De�nition 3.1

Generators Ui Wi Vi Di Pi Ri Qi

Sizes mi × ki ki−1 × ki mi × ki−1 mi ×mi mi × li li−1 × li mi × li+1

The sequenes {Ui}n−1
i=1 , {Wi}n−1

i=2 , {Vi}ni=2, {Di}ni=1, {Pi}ni=2, {Ri}n−1
i=2 , {Qi}n−1

i=1 are

matries whose sizes are listed in Table 1 and they are alled generators of the SSS matrix

A. With the generators representation, the SSS matrix A is denoted as

A = SSS(Ps, Rs, Qs, Ds, Us,Ws, Vs).

Take n = 5 for example, the SSS matrix A is shown by (10),

A =













D1 U1V
T
2 U1W2V

T
3 U1W2W3V

T
4 U1W2W3W4V

T
5

P2Q
T
1 D2 U2V

T
3 U2W3V

T
4 U2W3W4V

T
5

P3R2Q
T
1 P3Q

T
2 D3 U3V

T
4 U3W4V

T
5

P4R3R2Q
T
1 P4R3Q

T
2 P4Q

T
3 D4 U4V

T
5

P5R4R3R2Q
T
1 P5R4R3Q

T
2 P5R4Q

T
3 P5Q

T
4 D5













. (10)

Remark 3.1. The generators of a SSS matrix is not unique, there exists a series of non-

singular transformations between two di�erent sets of generators of the same SSS matrix

A.

With the generators representation of SSS matries, basi operations of the underlying

matries suh as addition, multipliation and inversion are losed under SSS matrix struture

and an be done in linear omputational omplexity. Moreover, deomposition/fatorization

suh as QR fatorization [22℄ [23℄, LU/LDU deomposition [24℄ [14℄, and ULV deompo-

sition [25℄ an also be omputed in a struture preserving way. Many operations on SSS

matries an be performed with linear omputational omplexity. Examples are the matrix-

matrix multipliation [21℄, the matrix-vetor multipliation [21℄, the matrix inversion [24℄,

the QR [22℄, LU [12℄, and ULV fatorization [26℄. To keep a lear struture of this pa-

per, Table 2 lists the most widely used operations for SSS matries and the orresponding

referenes.
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Table 2: Commonly used operations for SSS matries

operations Ax A±B AB A−1 LU Lx = b *

referenes [13℄ [24℄ [21℄ [13℄ [24℄ [21℄ [13℄ [24℄ [21℄ [23℄ [27℄ [28℄ [24℄ [21℄ [21℄

* L is a lower-triangular SSS matrix.

Similar to De�nition 3.1 for SSS matries, the generators representation for MSSS ma-

tries, spei�ally the k-level SSS matries, are de�ned by De�nition 3.2.

De�nition 3.2. The matrix A is said to be a k-level SSS matrix if all its generators are (k−
1)-level SSS matries. The 1-level SSS matrix is the SSS matrix that satis�es De�nition 3.1.

Operations listed in Table 2 for the SSS matries an be extended to the MSSS matries,

whih yields linear omputational omplexity for MSSS matries. MSSS matries have many

appliations, one of them is the disretized partial di�erential equations (PDEs) [15℄ [14℄.

Example 3.1. For the P1 �nite-element disretization of the 2D Laplaian equation with

homogeneous Dirihlet boundary ondition, the sti�ness matrix K is given by

K =

















A B
B A B

B
.

.

.

.

.

.

.

.

.

.

.

. B
B A

















, where A =

















4 −1
−1 4 −1

−1 .

.

.

.

.

.

.

.

.

.

.

. −1
−1 4

















, B = −I, and I is

the identity matrix. The matrix A and B are both SSS matries be denoted by

A = SSS(1, 0, −1, 4, 1, 0, −1),
B = SSS(0, 0, 0, −1, 0, 0, 0).

The matrix K has the MSSS (2-level SSS) matrix struture and is denoted by

K =MSSS(I, 0, BT , A, I, 0, BT ).

Remark 3.2. Similar with SSS matries, for MSSS matrix, its generators are not unique.

There exists a set of nonsingular transformations between two di�erent sets of generators

for a spei�ed MSSS matrix.

Remark 3.3. For SSS or MSSS matries, it is not neessary for their diagonals, sub-

diagonal or super-diagonals to be onstant like that in Example 3.1. Their sizes an even be

di�erent as long as the blok-partitioned representation in De�nition 3.1 is satis�ed.

Note that for a saddle-point system from the PDE-onstrained optimization problem,

all its bloks are MSSS matries, whih enables us to ompute the LU fatorization of all

its bloks with MSSS matrix omputations in linear omputational omplexity. However,

we fail to ompute the LU fatorization of the whole saddle-point system matrix beause

the saddle-point system matrix is not an MSSS matrix but just has MSSS matrix bloks.

The following lemma tells us how to permute a matrix with SSS matrix bloks to a single

SSS matrix. We an easily extend this lemma to the MSSS matrix ases, whih allows us to

permute a matrix with MSSS matrix bloks to a single MSSS matrix.

Lemma 3.1. [29℄ Let A, B, C and D be SSS matries with the generators representations

A = SSS(P a
s , R

a
s , Q

a
s , D

a
s , U

a
s ,W

a
s , V

a
s ),

B = SSS(P b
s , R

b
s, Q

b
s, D

b
s, U

b
s ,W

b
s , V

b
s ),

C = SSS(P c
s , R

c
s, Q

c
s, D

c
s, U

c
s ,W

c
s , V

c
s ),

D = SSS(P d
s , R

d
s , Q

d
s, D

d
s , U

d
s ,W

d
s , V

d
s ).
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Then the relations

[

f
g

]

=

[

A B
C D

] [

a
b

]

, and

[

f
g

]

= T
[

a
b

]

are equivalent with row and olumn permutations of the matrix bloks. The vetors

[

f
g

]

and

[

a
b

]

are permutations of

[

f
g

]

and

[

a
b

]

, respetively. The matrix T is an SSS matrix and has

the generators representation

T = SSS(P t
s , R

t
s, Q

t
s, D

t
s, U

t
s,W

t
s , V

t
s ),

where P t
s =

[

P a
s P b

s 0 0
0 0 P c

s P d
s

]

, Rt
s =









Ra
s

Rb
s

Rc
s

Rd
s









, Qt
s =

[

Qa
s 0 Qc

s 0
0 Qb

s 0 Qd
s

]

, Dt
s =

[

Da
s Db

s

Dc
s Dd

s

]

, U t
s =

[

Ua
s U b

s 0 0
0 0 U c

s Ud
s

]

, W t
s =









W a
s

W b
s

W c
s

W d
s









, V t
s =

[

V a
s 0 V c

s 0
0 V b

s 0 V d
s

]

.

Remark 3.4. Lemma 3.1 is for a 2 × 2 blok matrix, but it an be extended to matries

with di�erent number of bloks as well.

Remark 3.5. Extending Lemma 3.1 to the k-level SSS matrix ase is also possible. If A,
B, C, and D are k-level SSS matries, then their generators are (k− 1)-level SSS matries.

For the permuted k-level SSS matrix T , its (k− 1)-level SSS matrix generators with (k− 1)-
level SSS matrix bloks are derived from the permutations of rows and bloks to get a single

(k − 1)-level SSS matrix by Lemma 3.1.

For the saddle-point system (3) derived from the 2D PDE-onstrained optimization prob-

lem, disretizing using P1 �nite element method yields a saddle-point system that has MSSS

(2-level SSS) matrix bloks. The struture of the saddle-point system matrix for mesh size

h = 2−3
is shown in Figure 1(a). Permuting the saddle-point system using Lemma 3.1

gives system (8). The saddle-point system matrix struture before and after permutation

are shown in Figure 1.

0 50 100 150
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40

60

80

100

120

140

160

180

nz = 2120

(a) Before permutation.

0 50 100 150

0

20

40

60

80

100

120

140

160

180

nz = 2120

(b) After permutation.

Figure 1: Struture of system matrix of (3) before and after permutation for h = 2−3
.

3.2 Multi-level Sequentially Semiseparable Preonditioners

The ability to solve a linear system with MSSS matrix struture in linear omputational

omplexity is essential for the purpose of this paper. One way is to ompute the LU fa-
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torization of the system matrix with MSSS matrix omputations. In the following part, we

�rst introdue the LU fatorization of MSSS matries and then give a novel model order

redution algorithm for SSS matries that is required in omputing the LU fatorization.

For omparison, the onventional model order redution algorithm is also disussed.

3.2.1 LU Fatorization of Multilevel Sequentially Semiseparable Matries

The semiseparable order de�ned in De�nition 3.3 plays an important rule in the MSSS

matrix omputations. Note that Dewilde et. al. and Golberg et. al. studied this kind

of strutured matries separately, SSS matries named in [21℄ are alled quasiseparable

matries in [24℄. Here we use the MATLAB style of notation for matries, i.e., for a matrix

A, A(i : j, s : t) selets rows of bloks from i to j and olumns of bloks from s to t of A.

De�nition 3.3. [16℄ Let

rank A(k + 1 : n, 1 : k) = lk, k = 1, 2, · · · , n− 1.

The numbers lk(k = 1, 2, · · · , n − 1) are alled the lower order numbers of the matrix A.
Let

rank A(1 : k, k + 1 : n) = uk, k = 1, 2, · · · , n− 1.

The numbers uk(k = 1, 2, · · · , n − 1) are alled the upper order numbers of the matrix A.
Set rl = max lk and ru = max uk, where rl and ru are alled the lower quasi-separable order

and the upper quasi-separable order of A, respetively.

De�nition 3.4. [30℄ The SSS matrix A with lower and upper semiseparable order rl and
ru is alled blok (rl, ru) semiseparable.

The de�nitions in De�nition 3.3 and 3.4 of SSS matries an be diretly extended to the

MSSS matries, whih leads to De�nition 3.5 and 3.6.

De�nition 3.5. Let the matrix A be an N ×N blok k-level SSS matrix with its generators

be M ×M blok (k − 1)-level SSS matries. Let

rank A(k + 1 : N, 1 : k) = lk, k = 1, 2, · · · , N − 1.

The numbers lk(k = 1, 2, · · · , N−1) are alled the k-level lower order numbers of the matrix

A. Let
rank A(1 : k, k + 1 : N) = uk, k = 1, 2, · · · , N − 1.

The numbers uk(k = 1, 2, · · · , N − 1) are alled the k-level upper order numbers of the

matrix A. Set rl = max lk and ru = maxuk, where rl and ru are alled the k-level lower
semiseparable order and the k-level upper semiseparable order of the k-level SSS matrix A,
respetively.

De�nition 3.6. The k-level SSS matrix A with k-level lower and upper semiseparable order

rl and ru is alled k-level blok (rl, ru) semiseparable.

With these de�nitions, we have the following algorithm to ompute the LU fatorization

of a k-level SSS matrix.

Lemma 3.2. [12℄[14℄ Let A be a strongly regular N×N blok k-level sequentially semisepara-

ble matrix of k-level blok (rl, ru) semiseparable and denoted by its generators representation
A = MSSS(Ps, Rs, Qs, Ds, Us, Ws, Vs). Let A = LU be its blok LU fatorization.

Then,

1. The fator L is a k-level sequentially semiseparable matrix of k-level blok (rL, 0)
semiseparable and U is a k-level sequentially semiseparable matrix of k-level blok
(0, rU ) semiseparable. Moreover, rL = rl and rU = ru.

9



2. The fators L and U an be denoted by the generators representation

L = MSSS(Ps, Rs, Q̂s, DL
s , 0, 0, 0),

U = MSSS(0, 0, 0, DU
s , Ûs, Ws, Vs).

where Q̂s, D
L
s , D

U
s and Ûs are (k − 1)-level sequentially semiseparable matries and

omputed by the following algorithm:

Algorithm 1 LU fatorization of a k-level SSS matrix A

Initialize: M1 ← 0 ∈ R
rl×ru

be a (k − 1)-level SSS matrix

Compute the LU fatorization of the (k − 1)-level SSS matrix

D1 = DL
1 D

U
1 , let Û1 = (DL

1 )
−1U1 and Q̂1 = (DL

1 )
−TQ1

for i = 2 : N − 1 do
Mi = Q̂T

i−1Ûi−1 +RiMi−1Wi,

Compute the LU fatorization of the (k − 1)-level SSS matrix

(Di − PiMiVi) = DL
i D

U
i ,

Let, Ûi = (DL
i )

−1(Ui − PiMi−1Wi), Q̂i = (DU
i )

−T (Qi − ViM
T
i−1R

T
i ).

end for

Compute the LU fatorization of the (k − 1)-level SSS matrix

(

Dn − PnMn−1V
T
n

)

= DL
nD

U
n

Output: DL
i , D

U
i , Q̂i, Ûi

Proof. For the proof of the lemma, we refer to [12℄ and [14℄.

Remark 3.6. In Algorithm 1, the LU fatorization of a 0-level SSS matrix is just the LU
fatorization of an ordinary matrix without SSS struture.

For MSSS matries, matrix-matrix operations suh as addition and multipliation will

lead to a growth of the semiseparable order, whih an be veri�ed from the matrix-matrix

operations introdued in [21℄ [24℄. This results in the growth of the omputational omplex-

ity. Take the 1-level SSS matrix A for example, the �ops needed for omputing A2
is 40n3N

where n is the semiseparable order [21℄ and N is the number of bloks of A. To be spei�,
the following lemma is introdued.

Lemma 3.3. [24℄ Let A1, A2 be SSS matries of sizes N×N whih are lower semiseparable

of orders m1, n1 respetively. Then the produt A1A2 is lower semiseparable of order at

most m1+n1. Let A1, A2 be SSS matries of sizes N ×N whih are upper semiseparable of

orders m2, n2 respetively. Then the produt A1A2 is upper semiseparable of order at most

m2 + n2.

Remark 3.7. For k-level SSS matries, sine semiseparable order varies at di�erent levels,

result of Lemma 3.3 holds for the k-level semiseparable order. But we do not know the

(k − 1)-level semiseparable order of the (k − 1)-level SSS generators exatly, we just know

the (k − 1)-level semiseparable order also inreases.

Lemma 3.3 gives rise to the question whether there exists a minimal semiseparable order

for a SSS matrix suh that the SSS matrix with a bigger semiseparable order is equivalent

to an SSS matrix with minimal semiseparable order. De�nition 3.7 and Lemma 3.4 give the

answer to the aforementioned question.

De�nition 3.7. [16℄ We say that the lower generators Pi(i = 2, . . . , N), Qj(j = 1, . . . , N −
1), Rk(k = 2, . . . , N−1) of an SSS matrix A are minimal if all their orders lk(k = 1, . . . , N−
1) are as small as possible among all lower generators of the same matrix A, i.e., for lower
generators of the matrix A with orders l

′

k(k = 1, . . . , N − 1), the inequalities
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lk ≤ l
′

k, k = 1, . . . , N − 1

hold. We also say that the orders lk(l = 1, . . . , N − 1) are the minimal orders of the lower

generators of A.

Lemma 3.4. [16℄ Let A = {Aij}Ni,j=1 be a blok matrix with lower rank numbers rk(k =
1, . . . , N − 1). Then A has lower generators with orders equal to the orresponding rank

numbers. Moreover, for any matries, the rank numbers are the minimal orders of the

generators.

Remark 3.8. Lemma 3.4 an be extended to the k-level SSS matries diretly.

Remark 3.9. Lemma 3.4 shows that there exists a minimal semiseparable order for an SSS

matrix. Thus, for an SSS matrix of semiseparable order bigger than the minimal separable

order, the semiseparable order an be redued to make the redued semiseparable order equal

to or smaller than the minimal semiseparable order suh that the resulting SSS matrix with

redued semiseparable order is equal to or equivalent with the SSS matries without order

redution up to a small tolerane.

The aim of model order redution of a k-level SSS matrix A with its generators represen-

tation A =MSSS(Ps, Rs, Qs, Ds, Us, Ws, Vs) is to �nd (k−1)-level SSS matries P̂s, R̂s,

Q̂s, Ûs, Ŵs, V̂s of smaller size ompared with Ps, Rs, Qs, Us, Ws, Vs, respetively suh that

Â =MSSS(P̂s, R̂s, Q̂s, Ds, Ûs, Ŵs, V̂s) is of k-level semiseparable order smaller than or

equal to the minimal k-level semiseparable order of A. Meanwhile, Â is an approximation

of A up to a small tolerane ǫ, i.e., ‖Â−A‖ < ǫ.

Remark 3.10. In Algorithm 1, for omputing the LU fatorization of a k-level SSS ma-

trix, matrix-matrix operations are performed on its generators whih are (k − 1)-level SSS
matries. Suh operations lead to the growth of semiseparable order of the (k − 1)-level SSS
matries, whih indues growth of omputational omplexity. Model order redution is ne-

essary to redue the semiseparable order or keep the semiseparable order under a threshold

during the LU fatorization, suh as omputation of the reurrene of Mi in Algorithm 1.

Remark 3.11. Sine the LU fatorization of a k-level SSS matrix needs the model order

redution for (k− 1)-level SSS matries, the LU fatorization in Lemma 3.2 is an exat fa-

torization for SSS matries beause no model order redution is needed for ordinary matries

(0-level SSS matries). It is an inexat fatorization for the k-level (k ≥ 2) SSS matries.

Therefore, for disretized one-dimensional PDEs on a regular grid, this fatorization ould

be performed as a diret solver and as an e�ient preonditioner for the disretized two- or

higher- dimensional PDEs on a regular grid.

Remark 3.12. The model order redution algorithm for SSS matries has been studied in

[13℄ [16℄, while for 2− level or even higher-level SSS matries, it is still a big hallenge sine

model order redution of k-level SSS matries where k ≥ 2 needs the redued generators still

be (k − 1)-level SSS matries. The model order redution algorithms in [13℄ [16℄ applied

to the k-level SSS matries will not return struture preserving (k − 1)-level SSS matrix

generators.

3.2.2 Approximate Balaned Trunation

In this paper, we design a novel model order redution algorithm for SSS matries.

With this algorithm, we an onstrut an e�ient preonditioner for two-dimensional PDE-

onstrained optimization problem, whih will be studied in the next setion. The orre-

spondene between SSS matries and the linear time-varying (LTV) systems motivates us

to derive this new model order redution algorithm.
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The SSS matries have a realization of linear time-varying systems, whih is studied by

Dewilde et. al. in [27℄. Consider a mixed-ausal system that is desribed by the following

state-spae model

[

xc
i+1

xa
i−1

]

=

[

Ri

Wi

] [

xc
i

xa
i

]

+

[

Qi

Vi

]

ui

yi =
[

Pi Ui

]

[

xc
i

xa
i

]

+Diui,

(11)

where xc
denotes the ausal system states, xa

represents the anti-ausal system states, ui

is the system input, and yi is the system output. With zero initial system states and stak

all the input and output as ū =
(

uT
1 , uT

2 , . . . uT
N

)T
, ȳ =

(

yT1 , yT2 , . . . yTN
)T
, the

matrixH that desribes the input-output behavior of this mixed-ausal system, i.e., y = Hu,
indues an SSS matrix struture. Take, N = 4 for example, the matrix H is,

H =









Di U1V2 U1W2V3 U1W2W3V4

P2Q1 D2 U2V3 U2W3V4

P3R2Q1 P3Q2 D3 U3V4

P4R3R2Q1 P4R3Q2 P4Q3 D4









. (12)

Remark 3.13. To redue the semiseparable order of the SSS matrix H in (12), the orders

of Ps, Rs, Qs, Us, Ws and Vs need to be redued. This orresponds to redue the order of the

mixed-ausal LTV system (11). Model redution for LTV system (11) ould be performed to

redue the semiseparable order of H.

Model order redution for LTV systems is studied in [31℄ [32℄. In [32℄, a linear matrix

inequality (LMI) was introdued to solve the Lyapunov inequalities for the ontrollability and

observability Gramians. In [31℄, the low-rank Smith method was presented to approximate

the square-root of the ontrollability and observability Gramians.

Sine the ausal LTV system and the anti-ausal LTV system have similar system stru-

ture that orrespond to the stritly lower-triangular part and the stritly upper-triangular

part of the matrix H, respetively. Here we just onsider the ausal LTV system desribed

by the following state-spae model,

{

xk+1 = Rkxk +Qkuk

yk = Pkxk,
(13)

over the time interval [ko, kf ] with zero initial states. The ontrollability Gramian Gc(k) and
observability Gramian Go(k) are omputed from the following Stein reurrene formulas:

Gc(k + 1) = RkGc(k)RT
k +QkQ

T
k , (14)

Go(k) = RT
k Go(k + 1)Rk + PT

k Pk, (15)

with initial onditions Gc(ko) = 0 and Go(kf + 1) = 0.
Note that the ontrollability Gramian Gc(k) and observability Gramian Go(k) are pos-

itive de�nite if the system is ompletely ontrollable and observable or semi-de�nite if the

system is partly ontrollable and observable, thus their eigenvalues are non-negative. Their

eigenvalues often have a large jump at an early stage as pointed out in [17℄ [33℄ [34℄ [35℄,

whih suggests to approximate these two Gramians at eah step by a low-rank approxima-

tion. Below we show how to obtain suh approximations. Sine the ontrollability Gramian

Gc(k) and observability Gramian Go(k) have similar struture, we will only fous on the

ontrollability Gramian Gc(k).
The key point of the low-rank approximation is to substitute the Cholesky fatorization

of the ontrollability Gramian Gc(k)

Gc(k) = LkL
T
k , (16)
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where Lk ∈ R
N×N

in eah step k by its approximate Cholesky fatorization,

G̃c(k) = L̃kL̃
T
k , (17)

with L̃k ∈ R
N×nk

where nk is the numerial rank of Gc(k) and N > nk at eah step k.
Typially, nk is set to be onstant, i.e., nk = n at eah step. Sine Gc(k) is of low numerial

rank, it is reasonable to use the rank nk fator L̃k to approximate Gc(k).
In [17℄, a reursive low-rank Gramian method was introdued to approximate the Grami-

ans of a linear time-invariant system. Here, we extend that method to the linear time-varying

systems, whih is similar with the method in [36℄. This method is shown in Algorithm 2.

From [17℄, we know that G̃c(i) = L̃c(i)L̃c(i)
T
and G̃o(i) = L̃o(i)L̃o(i)

T
in Algorithm 2 are

the best rank n approximations to Gc(i) and Go(i).

Algorithm 2 Low-rank approximation of the Gramians

Initialize: G̃c(1)← 0 ∈ R
M×n

, G̃o(N +1)← 0 ∈ R
M×n

, N is the number of time steps, M
is the unredued order, n is the numerial rank.

for i=2: N do

Compute the singular value deompositions

[

Qi−1 Ri−1G̃c(i− 1)
]

= UcΣcV
T
c ,

[

PT
i RT

i G̃o(i+ 1)
]

= UoΣoV
T
o .

Let

Uc =
[

Uc1 Uc2

]

, Σc =

[

Σc1

Σc2

]

with Uc1 ∈ R
M×n

and Σc1 ∈ R
n×n

.

Uo =
[

Uo1 Uo2

]

, Σo =

[

Σo1

Σo2

]

with Uo1 ∈ R
M×n

and Σo1 ∈ R
n×n

.

Make

L̃c(i) = Uc1Σc1, L̃o(i) = Uo1Σo1.

end for

Output: L̃c(i) ∈ R
M×n

and L̃o(i) ∈ R
M×n

.

With the approximate ontrollability Gramian Gc(i) and observability Gramian Go(i),
the balaned trunation ould be performed to redue the order of the LTV system. For

the approximate balaned trunation, the key is to use the low-rank approximation of the

fators of Gramians to provide an approximation to the balaned trunation.

For the LTV system (13), to do a balaned trunation, �rst the system states are trans-

formed by the nonsingular transformation xk = Tkx̄k to get a "balaned" system,

{

x̄k+1 = T−1
k+1RkTkxk + T−1

k+1Qkuk

yk = PkTkxk,
(18)

where the states x̄k =
(

x̃T
k x̂T

k

)T
. The kept system states are x̃k =

[

In 0
]

x̄k where n is

the system order after redution. The redued LTV system of (13) is

{

x̃k+1 = Πl(k + 1)RkΠr(k)x̃k +Πl(k + 1)Qkuk

yk = PkΠr(k)x̃k,
(19)

where Πl(k + 1) =
[

In 0
]

T−1
k+1 and Πr(k) = Tk

[

In
0

]

.

Next, we extend the balaned trunation algorithm to the linear time-varying ase. This

method is desribed in Algorithm 3.

Remark 3.14. The seond loop of Algorithm 3 ensures that Πl(i) and Πr(i) are "balaned".
This is vital sine we approximate the ontrollability and observability Gramians indepen-

dently.
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Remark 3.15. With Algorithm 2 and Algorithm 3, the LTV system (13) was redued to

(19) by the low-rank approximate balaned trunation.

Remark 3.16. For an SSS matrix A = SSS(Ps, Rs, Qs, Ds, Us, Ws, Vs) with lower

semiseparable order M , Algorithm 2 and Algorithm 3 ould be performed to the stritly lower-

triangular part of A to redue the lower semiseparable order to n, yielding the approximate

SSS matrix Ã = SSS(P̃s, R̃s, Q̃s, Ds, Us, Ws, Vs). For the stritly upper-triangular

part of A, �rst transpose it to be stritly lower-triangular then perform Algorithm 2 and

Algorithm 3. After the redution, transpose the redued stritly lower-triangular part to be

stritly upper-triangular.

Algorithm 3 Approximate balaned trunation for LTV systems

Proedure: Set the numerial rank n.
Use the low-rank approximation Algorithm 2 to ompute the rank n approximations to

the ontrollability Gramian Gc(i) and observability Gramian Go(i), denoted by G̃c(i) and
G̃o(i), respetively.
loop

Compute the singular value deomposition

G̃Tc (i)G̃o(i) = UiΣiV
T
i .

end loop

loop

Let

Πl(i) = G̃o(i)ViΣ
−

1

2

i , Πr(i) = G̃c(i)UiΣ
−

1

2

i .

end loop

End Proedure

Output: Πl(i) ∈ R
n×M

and Πr(i) ∈ R
M×n

.

3.2.3 Hankel Bloks Approximation

The model order redution algorithms for SSS matries in [13℄ [21℄ [27℄ approximate the

Hankel bloks of the SSS matries, where the Hankel bloks of an SSS matrix A are de�ned

by De�nition 3.8.

De�nition 3.8. [13℄ Hankel bloks denote the o�-diagonal bloks that extend from the di-

agonal to the northeast orner (for the upper ase) or to the southwest orner (for the lower

ase).

Take a 4×4 SSS matrix A for example, the Hankel bloks for the stritly upper triangular

part are shown in Figure 2 by H1, H2 and H3.

1,2
A

1,3
A

1,4
A

2,3
A

2,4
A

3,4
A

1
H

2
H

3
H

Figure 2: Hankel bloks of a SSS matrix A

The model order redution algorithms in [13℄ [21℄ [27℄ are Hankel norm optimal order

redution [29℄ algorithms. That is, given an SSS matrix A with a lower semiseparable order

rL and an upper semiseparable order rU , we an get an approximate SSS matrix Â with a

lower semiseparable order r̃L and an upper semiseparable order r̃U where rL > r̃L, rU > r̃U
ahieves

inf ‖A− Â‖H ,
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where ‖A‖H = max
i
‖Hi(A)‖2 andHi(A) are the Hankel bloks of A de�ned in De�nition 3.8.

For omparison, this model order redution algorithm to the stritly upper-triangular

part of SSS matries is listed in Algorithm 4 [13℄.

Algorithm 4 Hankel bloks approximation for SSS matries

Initialize: H ← 0 ∈ R
M×M

, G ← 0 ∈ R
M×M

, M is the upper semiseparable order before

redution, set the redued upper semiseparable order m and the number of bloks N .

perform the forward reursion

for i = 1 : N − 1 do
Compute the singular value deomposition (SVD)

[

H
Ui

]

= UΣV T
and partition U =

[

UT

UK

]

=

[

Ua (·)
(·) (·)

]

with UK ∈ R
nu×(·)

, Ua ∈

R
M×M

, where nu is the number of rows of Ui.

Let,

Ui = UK , Wi = Ua, Vi+1 = ΣV TVi+1 and H = ΣV TWi+1.

end for

perform the bakward reursion

for i = N : −1 : 2 do
Compute the singular value deomposition (SVD)

[

Vi

GT

]

= UΣV T
and partition U =

[

Ua (·)
Ub (·)

]

with Ua ∈ R
nv×M

, Ub ∈ R
M×M

,

Σ =

[

Σa

(·)

]

with Σa ∈ R
M×M

, where nv is the number of rows of Vi.

Let,

Vi = Ua, Ui−1 = Ui−1V ΣT
a , Wi = UT

b , G = Wi−1V ΣT
a .

end for

do the trunation

for i = 1 : N do

Partition

Ui =
[

Ui1 (·)
]

with Ui1 ∈ R
(·)×m

,

Wi =

[

Wi1 (·)
(·) (·)

]

with Wi1 ∈ R
m×m

,

Vi =
[

Vi1 (·)
]

with Vi1 ∈ R
m×(·)

.

Let,

Ũi = Ui1, W̃i = Wi1, Ṽi = Vi1.

end for

Output: Ũi ∈ R
(·)×m

, W̃i ∈ R
m×m

and Ṽi ∈ R
m×(·)

.

Remark 3.17. With the Hankel bloks approximation, we an also onstrut an e�ient

preonditioner for two-dimensional PDE-onstrained optimization problem, whih will be

studied in the next setion.

Remark 3.18. For an SSS matrix A with lower and upper semiseparable order rl and ru,
respetively. The bigger the semiseparable order r̂l and r̂u after model order redution by

Algorithm 2-3 or 4 is, the loser the redued SSS matrix Â is to A. For a proper semiseparable

order set, the model order redution is aurate enough. This makes the LU fatorization

of the 2-level SSS matrix by Algorithm 1 aurate enough that an be performed as a diret

solver. Numerial experiments in the next setion illustrate this.

Given an SSS matrix A = SSS(PS , Rs, Qs, Ds, Us, Ws, Vs), to ompare the �ops of

the approximate balaned trunation in Algorithm 2-3 and the Hankel bloks approximation

Algorithm 4, we assume that the generators sizes in Table 3.1 are mi = n and ki = li = M
where N is the number of SSS bloks and N ≫ M ≫ n. This is easy to verify from the
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matrix-matrix operations in [13℄ [24℄ suh as the multipliation and addition. The redued

SSS matrix Ã = SSS(P̃S , R̃s, Q̃s, Ds, Ũs, W̃s, Ṽs), where k̃i = l̃i = m, m is the redued

semiseparable order and m≪M . For Algorithm 2-3, the �ops ount FN are

FN = O
(

(3m2 + 4mn+ n2)MN + (m+ n)M2N
)

, (20)

while the �ops ount FC for Algorithm 4 is

FC = O
(

M3N + (2m+ n)M2N + 2mnMN
)

. (21)

Sine N ≫M ≫ m, n, we desribe that

FN = O
(

M2N
)

, (22)

and

FC = O
(

M3N
)

. (23)

Remark 3.19. From (22) and (23), it is obvious that both model order redution algorithm

for SSS matries have linear omputational omplexity O(N), while the approximate balaned

trunation (�ops ount denoted by FN) is omputationally heaper than the Hankel bloks

approximation (�ops ount denoted by FC) for large enough M . This will also be illustrated

by numerial experiments in the next setion.

Remark 3.20. As stated in [32℄, the balaned trunation yields an optimal indued L2-norm

approximation. Thus for the approximate balaned trunation, the redued ontrol system is

lose to the optimal L2-norm approximation. The Algorithm 4 returns the optimal Hankel-
norm approximation. Thus, both algorithms for model order redution of SSS matries will

yield an aurate approximation. Sine the inequality ‖Z‖H 6 ‖Z‖2 6
√
N‖Z‖H for all

Z ∈ R
n×n

holds [29℄, the Hankel bloks approximation Algorithm 4 yields a more aurate

approximation than the approximate balaned trunation Algorithm 2-3 in theory. But the

auray of Algorithm 4 and Algorithm 2-3 are omparable, whih will be shown by numerial

experiments in the next setion.

4 Numerial Experiments

We study two test examples for optimal ontrol of 2D PDEs in this setion, i.e., opti-

mal ontrol of the onvetion-di�usion equation in Example 4.1 and optimal ontrol of the

Poisson equation in Example A.1 in the appendix. We apply the blok-diagonal preon-

ditioner P1 in (5) for the MINRES method and the lower-triangular preonditioner P2 in

(5) for the IDR(s) method to both examples. The global preonditioner Â in (9) is also

performed for the two test examples to show its superior performane over the standard

blok preonditioners for saddle-point system.

Example 4.1. [19℄ Let Ω = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and onsider the problem

min
u,f

1

2
‖u− û‖+ β

2
‖f‖2

s.t. − ǫ∇2u+−→ω .∇u = f in Ω

u = uD on ΓD,

where ΓD = ∂Ω and

uD =

{

(2x− 1)2(2y − 1)2 if 0 ≤ x ≤ 1
2 , and 0 ≤ y ≤ 1

2 ,
0 otherwise.

ǫ is a positive salar,

−→ω is the unit diretional vetor that

−→ω = (cos(θ), sin(θ))T and the

presribed state û = 0.
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The numerial experiments are performed on a laptop of Intel Core 2 Duo P8700 CPU

of 2.53 GHz and 4Gb memory with Matlab R2010b. The stop tolerane of the 2-norm of

the relative residual is set to be 10−6
for all the numerial experiments. The problem sizes

3.07e+03, 1.23e+04, 4.92e+04 and 1.97e+05 orrespond to the mesh sizes h = 2−5
, 2−6

,

2−7
, and 2−8

, respetively. The maximum semiseparable order is in the brakets following

the problem size. The time to ompute the preonditioners and iterative solution methods

time is measured in seonds.

4.1 Comparison of Two Model Order Redution Algorithms

In this part, we test the performane of the two model order redution algorithms. Con-

sider the preonditioning of optimal ontrol of the onvetion-di�usion equation desribed

in Example 4.1. With the blok-diagonal preonditioner P1 by approximate balaned trun-

ation and the Hankel bloks approximation methods, the results for di�erent values of ǫ
and β are shown in Table 3 - 10, while θ was set to be

π
5 . The preonditioning olumn

represents the time to ompute the preonditioners.

Table 3: By approximate balaned trunation for β = 10−1
, ǫ = 10−1

problem size iterations preonditioning MINRES total

3.07e+03 (4) 10 0.43 0.88 1.31

1.23e+04 (6) 10 1.79 2.07 3.86

4.92e+04 (6) 10 4.11 5.95 10.06

1.97e+05 (7) 10 17.05 22.09 39.14

Table 4: By Hankel bloks approximation for β = 10−1
, ǫ = 10−1

problem size iterations preonditioning MINRES total

3.07e+03 (4) 10 0.69 1.32 2.01

1.23e+04 (6) 10 2.59 2.38 4.97

4.92e+04 (6) 10 6.14 5.94 12.08

1.97e+05 (7) 10 26.11 21.59 47.70

Table 5: By approximate balaned trunation for β = 10−1
, ǫ = 10−2

problem size iterations preonditioning MINRES total

3.07e+03 (3) 16 0.29 1.46 1.75

1.23e+04 (4) 14 0.96 3.01 3.97

4.92e+04 (4) 14 2.49 8.17 10.66

1.97e+05 (5) 14 9.43 29.57 39.00

Table 6: By Hankel bloks approximation for β = 10−1
, ǫ = 10−2

problem size iterations preonditioning MINRES total

3.07e+03 (3) 16 0.46 1.48 1.94

1.23e+04 (4) 14 1.40 2.98 4.38

4.92e+04 (4) 14 4.85 7.99 12.84

1.97e+05 (5) 14 20.48 28.24 48.72
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Table 7: By approximate balaned trunation for β = 10−2
, ǫ = 10−1

problem size iterations preonditioning MINRES total

3.07e+03 (3) 18 0.28 1.59 1.87

1.23e+04 (3) 18 0.85 4.02 4.87

4.92e+04 (3) 18 2.26 10.79 13.05

1.97e+05 (5) 18 9.67 35.32 44.99

Table 8: By Hankel bloks approximation for β = 10−2
, ǫ = 10−1

problem size iterations preonditioning MINRES total

3.07e+03 (3) 18 0.47 1.65 2.12

1.23e+04 (3) 18 1.28 3.95 5.23

4.92e+04 (3) 18 4.41 10.38 14.79

1.97e+05 (5) 18 21.14 35.12 56.26

Table 9: By approximate balaned trunation for β = 10−2
, ǫ = 10−2

problem size iterations preonditioning MINRES total

3.07e+03 (3) 30 0.32 2.54 2.86

1.23e+04 (3) 30 0.81 6.04 6.85

4.92e+04 (3) 30 2.28 17.79 20.07

1.97e+05 (5) 30 9.42 58.01 67.43

Table 10: By Hankel bloks approximation for β = 10−2
, ǫ = 10−2

problem size iterations preonditioning MINRES total

3.07e+03 (3) 30 0.49 2.62 3.11

1.23e+04 (3) 30 1.42 6.08 7.50

4.92e+04 (3) 30 4.46 17.43 21.89

1.97e+05 (5) 30 20.39 57.32 77.71

The optimal solution of the system states and input for β = 10−2
, ǫ = 10−1

and h = 2−5

are shown in Figure 3(a) and 3(b).
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(a) Optimal system states u.
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(b) Optimal system input f .

Figure 3: Solution of the system states and input for β = 10−2
, ǫ = 10−1

and h = 2−5
.

Remark 4.1. As shown by (22) and (23), the approximate balaned trunation is om-

putationally heaper than the Hankel bloks approximation and both algorithms have linear

omputational omplexity. This is illustrated by the time to ompute the preonditioner for

the same values of β and ǫ in Table 3 - 10.
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For the results of the blok-diagonal preonditioners with two model redution algorithms

for optimal ontrol of the Poisson equation, please refer to appendix A.1. For the omparison

results of the two model order redution algorithms for the blok lower-triangular preon-

ditioner, please refer to appendix A.2. These results oinide with the onlusions for the

performane of the two model order redution algorithms in Table 3 - 10.

4.2 Comparison of Preonditioners

In this part, we ompare the performane of the blok-diagonal preonditioner and the

global preonditioner. From Table 3 - 10, we see that with the derease of β, the number of
iterations inreases slightly for the same problem size and ǫ. This is due to the

1
2βM term

plays an inreasing important rule with the derease of β. This term is negleted in the

preonditioner P1 in (6) for big and middle value of β [19℄. If we ontinue dereasing β for

the optimal ontrol of the onvetion-di�usion equation, we have the omputational results

in Table 11-12. In this part, the model order redution algorithm is hosen as the Hankel

bloks approximation method. For the results of approximate balaned trunation, please

refer to appendix B.

Table 11: By the blok-diagonal preonditioner in (6) for β = 10−3
, ǫ = 10−1

problem size iterations preonditioning MINRES total

3.07e+03 (3) 34 0.43 2.91 3.34

1.23e+04 (3) 34 1.31 7.61 8.92

4.92e+04 (3) 34 4.26 19.83 24.09

1.97e+05 (5) 34 17.39 61.82 79.21

Table 12: By the blok-diagonal preonditioner in (6) for β = 10−4
, ǫ = 10−1

problem size iterations preonditioning MINRES total

3.07e+03 (3) 82 0.45 4.91 5.36

1.23e+04 (3) 82 1.31 11.91 13.22

4.92e+04 (3) 80 4.34 34.83 39.17

1.97e+05 (5) 80 17.89 133.28 141.17

As shown in Table 11-12, with the derease of β from 10−3
to 10−4

, the number of itera-

tions inrease from 34 to 82. It is not di�ult to imagine that when β ontinues dereasing,

the performane of the blok-diagonal preonditioner P1 in (6) annot give satis�ed perfor-

mane. Next we test the performane of the preonditioner P1 in (7) for β = 10−4
. The

omputational results are shown in Table 13. The maximum number of iterations is set to

100.

Table 13: By the blok-diagonal preonditioner in (7) for β = 10−4
, ǫ = 10−1

problem size iterations preonditioning MINRES onvergene

3.07e+03 (5) 100 0.35 6.73 no onvergene

1.23e+04 (5) 100 1.17 17.97 no onvergene

4.92e+04 (5) 100 4.19 44.93 no onvergene

1.97e+05 (5) 100 15.72 156.89 no onvergene

As shown by Table 12-13, the blok-diagonal preonditioner does not work well for small

β. Sine the global preonditioner does not neglet any information of β, we test the

performane of the global preonditioner in the following part.

Reall that in Setion 2, we an permute the saddle-point system with MSSS matrix

bloks to a single MSSS matrix system. Sine the saddle-point system is inde�nite, the
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global preonditioner is also inde�nite. Thus the MINRES method is not suitable for the

preonditioned system with the global preonditioner. Here we use the IDR(s) method to

solve the saddle-point system. Table 14-15 show the omputational results of β = 10−3

and 10−4
for omparison with the results of the blok-diagonal preonditioner in Table

11-13. Results of di�erent values of β for the optimal ontrol of the onvetion-di�usion

equation and the Poisson equation with the global preonditioner and the bloks-diagonal

preonditioner an be found in appendix B.2.

Table 14: By the global preonditioner for β = 10−3
and ǫ = 10−1

problem size iterations preonditioning IDR(4) total

3.07e+03 (4) 2 0.38 0.13 0.51

1.23e+04 (6) 2 1.16 0.24 1.40

4.92e+04 (8) 2 4.46 0.66 5.12

1.97e+05 (10) 2 18.29 2.21 20.50

Table 15: By the global preonditioner for β = 10−4
and ǫ = 10−1

problem size iterations preonditioning IDR(4) total

3.07e+03 (4) 2 0.38 0.13 0.51

1.23e+04 (6) 2 1.15 0.24 1.39

4.92e+04 (7) 2 4.23 0.64 4.87

1.97e+05 (9) 2 17.87 2.21 20.08

Remark 4.2. Compare the omputational results of the global preonditioner in Table 14-

15 with the results of the blok-diagonal preonditioner in Table 11-13, it an be seen that

the number of iterations is redued signi�antly and independent of β for the global preon-

ditioner. Even the global preonditioner onsumes more time in preonditioning than the

blok-diagonal preonditioner, it needs less time in IDR(4) time and the total time is muh

less than that of the blok-diagonal preonditioner. Numerial experiments results in the

appendix for the optimal ontrol of the Poisson equation also support that advantage of the

the global preonditioner over the blok-diagonal preonditioner.

5 Preonditioning for Optimal Control of 3D Problems

As analyzed in Setion 3.1, to do an LU fatorization of a k-level SSS matrix, the model

order redution of (k − 1)-level SSS matrix is needed. Sine the model order redution for

2-level and higher level SSS matries is a big hallenge, there exist no method that works

well to the best knowledge of the authors, some �rst-step work for optimal ontrol of 3D

Poisson equation in Example 5.1 are disussed in this setion.

Example 5.1. Consider the problem of optimal ontrol of the Poisson equation

min
u,f

1

2
‖u− û‖+ β

2
‖f‖2

s.t.−∇2u = f in Ω

u = uD on ∂Ω,

(24)

where Ω = {(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1} and

uD =







sin(2πy), if x = 0, 0 ≤ y ≤ 1, z = 0;
− sin(2πy), if x = 1, 0 ≤ y ≤ 1, z = 0;
0, elsewhere.
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The disretized analog of problem (24) is

min
u, f

1

2
‖u− û‖2 + β‖f‖2

s.t. Ku = Mf + d,

(25)

where

K =

















D −L
−L D −L

−L D
.

.

.

.

.

.

.

.

. −L
−L D

















, (26)

and the matries D and L in K are 2-level SSS matries. To get the optimal solution of

Example 5.1, the type of saddle-point system (3) needs to be solved. Here we also have two

types of preonditioners, one is the blok-diagonal preonditioner and the other is the global

preonditioner.

5.1 Blok-Diagonal Preonditioners

In this subsetion, we test the blok-diagonal preonditioners for big and middle size of

β, then the blok-diagonal preonditioner P1 is hosen as in (6) where K̂ is approximated

by MSSS matrix omputations.

To ompute the LDU fatorization of the matrix K with MSSS matrix omputations,

the Shur omplement at the k − th step is

{

S0 = D,

Sk+1 = D − LS−1
k L.

(27)

SineD and L are 2-level SSS matries, Sk is also a 2-level SSS matrix. During the reurrene
of omputing the Shur omplement Sk, both the 2-level and 1-level semiseparable orders

inrease. Model order redution for 2-level and 1-level SSS matries are neessary, of whih

the 2-level model order redution is still an open problem. Here we use another method to

approximate the Shur omplement with lower 2-level semiseparable order.
As pointed out in [37℄, for a symmetri positive de�nite matrix from disretization of

PDEs with onstant oe�ients, all subsequent Shur omplements are also symmetri pos-

itive de�nite and will onverge to a �xed point matrix S∞ with a fast onvergene rate. In

[15℄, Dewilde et. al. used the hierarhial partition of the matrix K and omputed the Shur

omplement at the �rst ks(ks ≤ 3) iteration steps. Then replae the Shur omplements Sk

(k > ks) with Sks
to approximate the Shur omplements afterwards for the preonditioning

of the Poisson equation on an 8× 8× 8 regular grid. Due to limited (only ks) steps for om-
putation of the Shur omplements, the 2-level semiseparable order is bounded by a small

number. Note that in [15℄, there are no numerial experiments to test the performane of

the preonditioners for the Krylov subspae method.

In this paper, we extend the methods in [15℄ for hierarhial partition of the matrix to

the 3-level SSS matrix partition ase to ompute the blok-diagonal preonditioner. Here we

just ompute the Shur omplements of the �rst four steps and use S4 to approximate the

Shur omplements afterwards, whih orresponds to the third order approximation in [15℄.

With the blok-diagonal preonditioner P1 in (6) and solve the preonditioned system by the

MINRES method, the omputational results are shown in Table 16-17. The problem sizes

1.54e+03, 1.23e+04, 9.83e+04, and 7.86e+05 orrespond to the mesh size 2−3
, 2−4

, 2−5
,

and 2−6
, respetively. The maximum semiseparable order is in the brakets that follow the

problem size. Here for the blok-diagonal preonditioner, we test two model order redution
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algorithms and the MOR olumns of Table 16-17 list the time spent in model order redution

of orresponding algorithms.

Table 16: By approximate balaned trunation for β = 10−1

problem size iterations Preonditioning MOR MINRES total

1.54e+03 (4) 4 4.83 1.83 3.15 8.03

1.23e+04 (4) 8 12.28 5.71 23.93 36.21

9.83e+04 (8) 20 38.13 22.24 263.93 302.06

7.86e+05 (8) 34 178.41 116.04 2351.70 2530.11

Table 17: By Hankel bloks approximation for β = 10−1

problem size iterations Preonditioning MOR MINRES total

1.54e+03 (4) 4 16.27 13.52 3.01 19.28

1.23e+04 (4) 8 39.76 33.50 23.85 63.61

9.83e+04 (8) 16 122.98 106.03 213.31 336.29

7.86e+05 (8) 34 551.25 490.16 2277.50 2828.75

Sine we just ompute the Shur omplements of the �rst ks steps with MSSS matrix

omputations, the omputational omplexity is less than linear. The growth rate of the

time to ompute the preonditioner in Table 16-17 is smaller than 8, whih illustrate this

property. The omputational results in Table 16-17 also verify that the approximate bal-

aned trunation is omputationally heaper than the Hankel bloks approximation and the

preonditioners omputed by these two model order redution algorithms give almost the

same number of iterations. This overs the results in Setion 4.1.

5.2 Global Preonditioners

In the previous part, we extend the methods in [15℄ for symmetri positive de�nite by hi-

erarhial partition to the 3-level SSS partitioned symmetri positive de�nite matrix. In this

part, we extend this method to the 3-level SSS partitioned symmetri but inde�nite matrix.

For the global preonditioner, we also ompute the �rst 4 steps of the Shur omplements

in the LDU fatorization of the global 3-level SSS matrix. The omputational results are

shown in Table 18. Due to the inde�niteness of the global preonditioner, IDR(16) was

hosen as the iterative solver. Compare results of the global preonditioner by the Hankel

bloks approximation in Setion 4.2 with that by the approximate balaned trunation in

appendix A.3, the Hankel bloks approximation perform better. Thus, in this setion the

model order redution algorithm for the global preonditioner is hosen as the Hankel bloks

approximation.

Table 18: By the global preonditioner for β = 10−1

problem size iterations preonditioning IDR(16) total

1.54e+03 (6) 15 6.89 3.81 10.70

1.23e+04 (6) 25 18.21 40.68 58.89

9.83e+04 (6) 45 119.23 863.73 982.96

Due to limited steps for omputing the Shur omplements, the time to ompute the

global preonditioner is also less than linear, whih is illustrated by Table 18. Due to

the inde�niteness of the sallde-point system matrix, the Shur omplements in the LDU
fatorization is also inde�nite. As pointed out in [15℄, the Shur omplements for symmetri

positive de�nite matries from disretized PDEs of onstant oe�ients are also symmetri

positive de�nite and have a fast rate of onvergene, while the onvergene of the Shur
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omplements for the inde�nite matrix is not guaranteed. This is illustrated by the number

of iterations for the global preonditioner in Table 18 is bigger than that of the blok-diagonal

preonditioner in Table 16-17.

Comparing the results of the blok-diagonal preonditioner in Table 16-17 with the re-

sults of the global preonditioner in Table 18, we will onlude that for the optimal ontrol

of 3D problems with MSSS matrix omputations, the blok-diagonal preonditioner is re-

ommended. If the model order redution algorithm for 2- or higher- level SSS matries are

well-established, we believe that the global preonditioner will perform better than the blok

preonditioner for 3D problems.

6 Conlusions

In this paper, we have studied the global preonditioner and the blok preonditioners

for the saddle-point systems from the PDE-onstrained optimization problems. By exploit-

ing the multilevel sequentially semiseparable (MSSS) struture of the bloks of the saddle-

point systems, we have onstruted preonditioners and solved the preonditioned system in

linear omputational omplexity. To ompute the preonditioners with MSSS matrix om-

putations, the approximate balaned trunation model order redution algorithm for MSSS

matrix omputations has been proposed. The standard model order redution algorithm,

i.e., the Hankel bloks approximation is also studied. Numerial experiments illustrate that

for the optimal ontrol of 2D PDEs, the global preonditioner redued the number of itera-

tions signi�antly ompared with the blok preonditioners, while both preonditioners yield

results independent of the mesh size. Moreover, the global preonditioner is independent

of the regularization parameter while the blok preonditioners are not. Thus, for optimal

ontrol of 2D PDEs, the global preonditioner by the Hankel bloks approximation is reom-

mended. Sine well-established model order redution algorithm for 2- or higher- level SSS

matries is still an open problem, blok preonditioners by approximate balaned trunation

are preferred for the optimal ontrol of 3D problems.

The next step of this researh is to apply this preonditioning tehnique to the optimal

ontrol of the �ow in a domain, suh as optimal ontrol of the Stokes equation and optimal

ontrol of the Navier-Stokes equation. This has a wide range of appliations suh as ontrol

of the wind farms to optimize the output power.
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Appendix

A Comparison of Two Model Order Redution Algorithms

A.1 Blok-Diagonal Preonditioner

Consider the problem of optimal ontrol of the Poisson equation in Example A.1,

Example A.1. [14℄ Let Ω = [0, 1]2 and onsider the problem

min
u,f

1

2
‖u− û‖+ β

2
‖f‖2

s.t. −∇2u = f in Ω

u = uD on ΓD

∂u

∂−→n = uN on ΓN ,

where ΓN = {x = 0, 0 ≤ y ≤ 1} and ΓD = ∂Ω\ΓN ,
−→n is the normal vetor on the bounds

that point outwards, û = 0 is the presribed system state, uN = sin(2πy) and

uD =

{

− sin(2πy) if x = 1, 0 ≤ y ≤ 1,
0 otherwise.

The omputational results for optimal ontrol of the Poisson equation by MINRES

method with the preonditioner P1 by the approximate balaned trunation Algorithm 2-3

and the Hankel bloks approximation Algorithm 4 for di�erent values of β are shown in

Table 19 - 24.

Table 19: By approximate balaned trunation for β = 10−1

problem size iterations preonditioning MINRES total

3.07e+03 (3) 6 0.20 0.61 0.84

1.23e+04 (3) 8 0.57 1.76 2.33

4.92e+04 (5) 8 2.09 5.06 7.15

1.97e+05 (6) 8 8.92 18.90 27.82

Table 20: By Hankel bloks approximation for β = 10−1

problem size iterations preonditioning MINRES total

3.07e+03 (3) 6 0.46 0.59 1.03

1.23e+04 (3) 8 0.69 1.79 2.48

4.92e+04 (5) 6 2.83 4.20 7.03

1.97e+05 (6) 8 10.81 18.79 29.60

Table 21: By approximate balaned trunation for β = 10−2

problem size iterations preonditioning MINRES total

3.07e+03 (4) 8 0.21 0.78 0.99

1.23e+04 (4) 8 0.72 2.00 2.72

4.92e+04 (5) 8 2.53 6.28 8.81

1.97e+05 (6) 10 9.53 25.12 34.65
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Table 22: By Hankel bloks approximation for β = 10−2

problem size iterations preonditioning MINRES total

3.07e+03 (4) 8 0.31 0.83 1.14

1.23e+04 (4) 8 0.98 2.07 3.05

4.92e+04 (5) 6 3.49 4.67 8.16

1.97e+05 (6) 8 14.67 20.31 34.98

Table 23: By approximate balaned trunation for β = 10−3

problem size iterations preonditioning MINRES total

3.07e+03 (4) 12 0.23 1.14 1.37

1.23e+04 (4) 12 0.67 2.92 3.59

4.92e+04 (6) 12 2.75 7.89 10.64

1.97e+05 (7) 12 11.50 28.92 40.42

Table 24: By Hankel bloks approximation for β = 10−3

problem size iterations Preonditioning MINRES total

3.07e+03 (4) 12 0.34 1.23 1.57

1.23e+04 (4) 12 0.76 2.97 3.73

4.92e+04 (6) 12 3.68 8.59 12.27

1.97e+05 (7) 12 14.43 28.94 43.37

The optimal solution of the system states and input for β = 10−2
and h = 2−6

are shown

in Figure 4(a) and 4(b).
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Figure 4: Solution of the system states and input when β = 10−2
and h = 2−6

.

Remark A.1. Table 19 - 24 show that the number of iterations for the blok-diagonal pre-

onditioner with approximate balaned trunation and the Hankel bloks approximation are

virtually independent of the mesh size. For the same semiseparable order setup, omputa-

tion of the preonditioner with approximate balaned trunation is omputationally heaper

than preonditioning with the Hankel bloks approximation, while both algorithms have linear

omputational omplexity with respet to the problem size. The time of the MINRES method

is also linear with respet to the problem size for both model order redution algorithms.

Remark A.2. As shown in remark 3.20, the Hankel bloks approximation Algorithm 4 yields

a more aurate approximation than the approximate balaned trunation Algorithm 2-3 while
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both methods return an approximate of satis�ed auray. This is illustrated in Table 19-24.

For the same problem size, the number of iterations is very limited while the average number

of iterations of the Hankel bloks approximation is equal to or a little smaller than that of

the approximate balaned trunation.

A.2 Blok Lower-Triangular Preonditioner

This part gives the performane of the blok lower-triangular preonditioner for optimal

ontrol of the onvetion-di�usion equation in Example 4.1. Take the blok lower-triangular

preonditioner P2 in (5) by the approximate balaned trunation Algorithm 2-3 and the

Hankel bloks approximation Algorithm 4, solve the unsymmetri preonditioned system

with IDR(s) method. The omputational results are shown in Table 25 - 34.

Table 25: By approximate balaned trunation for β = 10−1
, ǫ = 10−1

problem size iterations preonditioning IDR(16) total

3.07e+03 (3) 12 0.34 1.09 1.43

1.23e+04 (6) 12 0.99 2.61 3.60

4.92e+04 (6) 11 4.07 7.02 11.09

1.97e+05 (10) 12 18.05 24.09 42.14

Table 26: By Hankel bloks approximation for β = 10−1
, ǫ = 10−1

problem size iterations preonditioning IDR(16) total

3.07e+03 (3) 13 0.56 1.29 1.85

1.23e+04 (6) 9 1.77 2.01 3.78

4.92e+04 (6) 16 9.02 9.89 18.91

1.97e+05 (10) 10 28.28 19.76 48.04

Table 27: By approximate balaned trunation for β = 10−1
, ǫ = 10−2

problem size iterations preonditioning IDR(32) total

3.07e+03 (3) 15 0.26 1.20 1.46

1.23e+04 (3) 13 0.70 2.74 3.14

4.92e+04 (4) 13 2.43 7.76 10.19

1.97e+05 (10) 13 25.06 30.67 55.73

Table 28: By Hankel bloks approximation for β = 10−1
, ǫ = 10−2

problem size iterations preonditioning IDR(32) total

3.07e+03 (3) 15 0.45 1.23 1.68

1.23e+04 (3) 17 1.29 3.39 4.68

4.92e+04 (4) 17 4.77 9.97 14.74

1.97e+05 (10) 14 48.20 32.40 80.60

Table 29: By approximate balaned trunation for β = 10−1
, ǫ = 10−2

problem size iterations preonditioning IDR(16) total

3.07e+03 (3) 18 0.37 1.51 1.43

1.23e+04 (3) 16 0.68 3.17 3.85

4.92e+04 (4) 15 2.38 7.95 10.33

1.97e+05 (8) 18 13.61 35.46 49.07
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Table 30: By Hankel bloks approximation for β = 10−1
, ǫ = 10−2

problem size iterations preonditioning IDR(16) total

3.07e+03 (4) 20 0.51 1.62 2.13

1.23e+04 (3) 27 1.24 5.44 6.68

4.92e+04 (4) 16 4.77 8.19 12.96

1.97e+05 (8) 19 24.70 36.75 59.45

Table 31: By approximate balaned trunation for β = 10−2
, ǫ = 10−1

problem size iterations preonditioning IDR(32) total

3.07e+03 (6) 16 0.42 1.41 1.83

1.23e+04 (6) 17 1.17 3.65 4.82

4.92e+04 (7) 19 4.41 11.80 16.21

1.97e+05 (10) 18 25.33 41.86 67.19

Table 32: By Hankel bloks approximation for β = 10−2
, ǫ = 10−1

problem size iterations preonditioning IDR(32) total

3.07e+03 (6) 17 0.66 1.49 2.15

1.23e+04 (6) 19 2.22 4.03 6.25

4.92e+04 (7) 21 9.81 12.81 22.62

1.97e+05 (10) 16 49.78 36.75 86.53

Table 33: By approximate balaned trunation for β = 10−2
, ǫ = 10−2

problem size iterations preonditioning IDR(32) total

3.07e+03 (6) 30 0.39 2.65 3.04

1.23e+04 (6) 32 1.12 6.85 7.97

4.92e+04 (7) 32 4.32 20.65 24.97

1.97e+05 (10) 31 25.08 71.03 96.11

Table 34: By Hankel bloks approximation for β = 10−2
, ǫ = 10−2

problem size iterations preonditioning IDR(32) total

3.07e+03 (6) 30 0.68 2.59 3.27

1.23e+04 (6) 36 2.37 7.75 10.12

4.92e+04 (7) 31 9.55 19.55 39.10

1.97e+05 (10) 32 48.78 72.58 121.36

Remark A.3. From Table 25-34, we an see that for the �xed values of β and ǫ, the

number of iterations is very limited, almost onstant and independent of the mesh size.

Meanwhile, both preonditioners have linear omputational omplexity, whih is illustrated

by the preonditioning time olumns. The preonditioned system an also be solved in linear

omplexity, whih is veri�ed by the IDR(s) time olumns.

Remark A.4. From the preonditioning olumns of Table 25-34 for the same experiment

settings, we an see that the approximate balaned trunation method for SSS matries is

omputationally heaper than the Hankel bloks approximation method.

Remark A.5. Compare the omputational results of the blok-diagonal preonditioner P1

and MINRES in Table 3-10 with that of the blok lower-triangular preonditioner P2 and
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IDR(s) in Table 25-34, we an see that both preonditioners are omparable. For the same

settings of β and ǫ, the semiseparable order needs to be set bigger for the IDR(s) method

with P2 than the MINRES method with P1. This makes the preonditioning time and the

iterative solution time of P2 bigger than that of P1.

A.3 Global Preonditioner

For the global preonditioner by the approximate balaned trunation, the omputational

results for the optimal ontrol of the Poisson equation is shown in Table 35-36.

Table 35: By approximate balaned trunation for β = 10−1

problem size iterations preonditioning IDR(4) total

3.07e+03 (10) 4 0.48 0.19 0.67

1.23e+04 (13) 4 1.69 0.43 2.12

4.92e+04 (16) 4 6.39 1.34 7.73

1.97e+05 (20) 6 29.34 10.28 39.62

Table 36: By approximate balaned trunation for β = 10−2

problem size iterations preonditioning IDR(4) total

3.07e+03 (11) 3 0.50 0.16 0.66

1.23e+04 (14) 4 1.75 0.43 2.18

4.92e+04 (16) 3 5.96 1.52 7.48

1.97e+05 (22) 4 31.84 8.08 39.92

Due to the ill-ondition of the saddle-point system, it is di�ult to ompute a good

approximation of the inde�nite saddle-point system. To get a good approximation of the

saddle-point system with MSSS matrix omputations, bigger semiseparable order is needed.

Based on remark 3.20, the approximate balaned trunation yields a redued SSS matrix less

aurate than the Hankel bloks approximation, bigger semiseparable order is needed for the

approximate balaned trunation than the Hankel bloks approximation. This is illustrated

by the results in Table 45-46 for the Hankel bloks approximation with the results in Table

35-36 for the approximate balaned trunation. The inrease of the semiseparable order

leads to the inrease of omputational omplexity. This makes the global preonditioner by

the approximate balaned trunation more omputationally expensive than the global pre-

onditioner by the Hankel bloks approximation. Here we do not ompare the performane

of the two di�erent model order redution algorithms for other experiment setup.

B Comparison of Preonditioners

B.1 Blok-Diagonal Preonditioner

In this part, the performane of the blok-diagonal preonditioner for small size of β for

the optimal ontrol of the Poisson equation and the onvetion-di�usion equation is studied.

Table 37-40 show the results of the blok-diagonal preonditioner P1 in (6) for the optimal

ontrol of the Poisson equation.

30



Table 37: With P1 in (6) by approximate balaned trunation for β = 10−5

problem size iterations preonditioning MINRES total

3.07e+03 (5) 42 0.28 2.51 2.79

1.23e+04 (5) 42 0.76 6.52 7.28

4.92e+04 (5) 42 2.48 21.23 23.71

1.97e+05 (5) 42 11.13 83.34 94.47

Table 38: With P1 in (6) by Hankel bloks approximation for β = 10−5

problem size iterations preonditioning MINRES total

3.07e+03 (5) 42 0.28 2.45 2.73

1.23e+04 (5) 42 0.81 6.57 7.38

4.92e+04 (5) 42 3.48 21.28 24.76

1.97e+05 (5) 42 12.43 84.75 97.18

Table 39: With P1 in (6) by approximate balaned trunation for β = 10−6

problem size iterations preonditioning MINRES total

3.07e+03 (5) 100 0.27 5.31 5.58

1.23e+04 (5) 96 0.87 14.71 15.58

4.92e+04 (5) 95 2.87 49.32 52.19

1.97e+05 (5) 90 11.27 195.47 206.74

Table 40: With P1 in (6) by Hankel bloks approximation for β = 10−6

problem size iterations preonditioning MINRES total

3.07e+03 (5) 100 0.27 5.31 5.58

1.23e+04 (5) 96 0.96 14.60 15.56

4.92e+04 (5) 95 3.60 49.68 53.28

1.97e+05 (5) 90 12.33 195.35 207.68

From Table 37-40, we an see that with the derease of β, the number of iterations is
onstant with the mesh size but inreases dramatially. As introdued in [19℄, for "smaller"

β (β ≤ 10−5
), the blok-diagonal onditioner ould be hosen as P1 in (7). With this

preonditioner, the omputational results are shown in Table 41-42. The maximum number

of iterations is set to 100.

Table 41: With P1 in (7) by Hankel bloks approximation for β = 10−5

problem size iterations preonditioning MINRES onvergene

3.07e+03 (5) 100 0.33 6.62 no onvergene

1.23e+04 (5) 100 1.08 14.66 no onvergene

4.92e+04 (5) 100 3.93 38.04 no onvergene

1.97e+05 (5) 100 15.65 118.32 no onvergene
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Table 42: With P1 in (7) by Hankel bloks approximation for β = 10−6

problem size iterations preonditioning MINRES onvergene

3.07e+03 (5) 100 0.33 6.52 no onvergene

1.23e+04 (5) 100 1.07 14.57 no onvergene

4.92e+04 (5) 100 3.93 39.25 no onvergene

1.97e+05 (5) 100 15.14 118.92 no onvergene

Remark B.1. As shown in Table 41-42, the blok diagonal preonditioner P1 in (7) does

not work well for the smaller β. This preonditioner annot yield the satis�ed solution of

the saddle-point system within the maximum number of iterations.

For small size of β of the optimal ontrol of the onvetion-di�usion equation, the ompu-

tational results of the blok-diagonal preonditioner P1 in (6) by the approximate balaned

trunation are shown in Table 43-44.

Table 43: With P1 in (6) by approximate balaned trunation for β = 10−3
, ǫ = 10−1

problem size iterations preonditioning ) MINRES total

3.07e+03 (3) 34 0.34 2.93 3.27

1.23e+04 (3) 34 0.94 7.31 8.25

4.92e+04 (3) 34 2.34 19.38 21.72

1.97e+05 (5) 34 10.39 61.12 71.51

Table 44: With P1 in (6) by approximate balaned trunation for β = 10−4
, ǫ = 10−1

problem size iterations preonditioning MINRES total

3.07e+03 (3) 82 0.35 5.02 5.37

1.23e+04 (3) 82 0.91 11.78 12.69

4.92e+04 (3) 80 2.67 33.98 36.65

1.97e+05 (5) 80 10.81 132.98 143.79

B.2 Global Preonditioners

For optimal ontrol of the Poisson equation, the omputational results of the global

preonditioner by Hankel bloks approximation are shown in Table 45-49.

Table 45: Global Preonditioner for β = 10−1

problem size iterations preonditioning IDR(4) total

3.07e+03 (4) 2 0.39 0.13 0.52

1.23e+04 (4) 3 1.13 0.34 1.47

4.92e+04 (6) 3 3.98 0.96 4.94

1.97e+05 (6) 3 14.39 3.11 17.50

Table 46: Global Preonditioner for β = 10−2

problem size iterations preonditioning IDR(4) total

3.07e+03 (4) 3 0.38 0.15 0.52

1.23e+04 (4) 3 1.08 0.31 1.39

4.92e+04 (6) 3 3.87 0.89 4.76

1.97e+05 (6) 3 14.58 3.13 17.71
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Table 47: Global Preonditioner for β = 10−3

problem size iterations preonditioning IDR(4) total

3.07e+03 (4) 3 0.38 0.15 0.52

1.23e+04 (5) 3 1.12 0.31 1.43

4.92e+04 (7) 2 4.19 0.64 4.76

1.97e+05 (7) 4 15.95 4.11 20.06

Table 48: Global Preonditioner for β = 10−5

problem size iterations preonditioning IDR(4) total

3.07e+03 (5) 2 0.39 0.12 0.51

1.23e+04 (7) 3 1.20 0.31 1.51

4.92e+04 (7) 3 4.12 0.89 5.01

1.97e+05 (9) 4 15.86 4.44 20.30

Table 49: Global Preonditioner for β = 10−6

problem size iterations preonditioning IDR(4) total

3.07e+03 (4) 3 0.37 0.15 0.52

1.23e+04 (6) 2 1.12 0.33 1.45

4.92e+04 (8) 3 4.20 1.64 5.84

1.97e+05 (10) 3 17.94 6.63 24.57

Remark B.2. Table 45-49 show that the global preonditioner has linear omputational

omplexity that makes time to ompute the preonditioner and IDR(4) time sale linearly

with the problem size. Furthermore, the performane of the global preonditioner is mesh

size independent.

Remark B.3. As shown in Table 45-49, the global preonditioner is independent of the

regularization parameter β. For di�erent β, the number of iterations is independent of β.
Compared with the results for the blok-diagonal preonditioner, the global preonditioner is

omputationally heaper than the blok-diagonal preonditioner.

Remark B.4. As the ondition number of the saddle-point system is proportional to

1
β
,

with the derease of β, for the same problem size, the saddle-point system beomes more

ill-onditioned. This makes it muh more di�ult to ompute an aurate approximate LU
fatorization of the global saddle-point system. This is illustrated by the slightly inrease

of the maximum semiseparable order in this fatorization for the same problem size with

derease of β in Table 45-49. Due to this slightly inrease of the semiseparable order, the

time to ompute the preonditioner and iterative solution method also inrease slightly, but

they are still linear with the problem size.

With the global preonditioner, the omputational results for optimal ontrol of the

onvetion-di�usion equation for big β are shown in Table 50-53.

Table 50: Global Preonditioner for β = 10−1
and ǫ = 10−1

problem size iterations preonditioning IDR(4) total

3.07e+03 (4) 2 0.38 0.15 0.53

1.23e+04 (4) 2 1.11 0.23 1.34

4.92e+04 (6) 3 3.92 0.91 4.83

1.97e+05 (6) 3 14.84 3.15 17.99
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Table 51: Global Preonditioner for β = 10−2
and ǫ = 10−1

problem size iterations preonditioning IDR(4) total

3.07e+03 (4) 2 0.38 0.13 0.51

1.23e+04 (4) 3 1.11 0.32 1.43

4.92e+04 (6) 2 3.92 0.63 4.55

1.97e+05 (6) 3 15.11 3.12 18.23

Table 52: Global Preonditioner for β = 10−1
and ǫ = 10−2

problem size iterations preonditioning IDR(4) total

3.07e+03 (4) 1 0.38 0.09 0.47

1.23e+04 (4) 1 1.11 0.15 1.26

4.92e+04 (6) 1 3.89 0.36 4.25

1.97e+05 (6) 2 14.77 2.14 16.91

Table 53: Global Preonditioner for β = 10−2
and ǫ = 10−2

problem size iterations preonditioning IDR(4) total

3.07e+03 (4) 1 0.38 0.09 0.47

1.23e+04 (4) 1 1.11 0.15 1.26

4.92e+04 (6) 1 3.95 0.36 4.31

1.97e+05 (6) 2 14.92 2.14 17.06

Remark B.5. In Table 52 and 53, with a small maximum semiseparable setup for the

problems in the �rst three rows, the global preonditioner is already aurate enough that an

be performed as a diret solver.

Remark B.6. Due to the ondition number of the saddle-point system is proportional to

1
β
, the saddle-point system beomes ill-onditioned with the derease of β. This makes it

di�ult to ompute an aurate approximation lose to the saddle-point system. Thus the

maximum semiseparable should be inreased slightly. The slightly inrease of the maximum

semiseparable order does not hange the linear omputational omplexity. This is illustrated

in Table 50-53.

Remark B.7. Aording to Table 50-53, the number of iterations for the global preondi-

tioner is independent of the regularization parameter β, while for the blok-diagonal preon-
ditioner, this property does not hold.
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