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Abstract

In recent years, exciting new low-power design methods have been
introduced, such as: multiple supply voltages, body bias techniques
and power shut-off. In order to use these low power design methods,
strict requirements for both libraries and tools are needed. An addi-
tional challenge is the introduction of more accurate characterization
models for newer technologies (current source models like ECSM and
CCS). This has made the task of library checking a serious issue that
needs to be automated.

The main part of this thesis presents a checker tool that is used to
verify the consistency of the different library formats (views) in stan-
dard cell libraries. The layout consistency checker in our tool checks
the consistency of the layout of pins between GDSII and LEF library
views; we devised a new algorithm,Grid Formation and Centre Inclu-
sion, for this checker. The tool also verifies the pin consistency and
availability of cells across other library formats, such as: Verilog and
Liberty. The tool was tested using different technology libraries (such
as 90nm and 40nm), provided by different vendors (such as GLOB-
ALFOUNDRIES); multiple interfacing errors were caught using our
library checker tool.

A second part at the end of the thesis shows experiments with
some of the low-power design techniques used during the design of
a digital block, using -for implementation- standard cells from one
of the libraries that have been checked with the library checker tool.
Benefits of using these techniques are evaluated and trade-offs are
discussed. Power-Shut Off (PSO) design technique proved to be the
most effective in reducing power consumption, with power savings
that reached 20%.
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Abstract

In recent years, exciting new low-power design methods have been introduced, such
as: multiple supply voltages, body bias techniques and power shut-off. In order to use
these low power design methods, strict requirements for both libraries and tools are
needed. An additional challenge is the introduction of more accurate characterization
models for newer technologies (current source models like ECSM and CCS). This has
made the task of library checking a serious issue that needs to be automated.

The main part of this thesis presents a checker tool that is used to verify the con-
sistency of the different library formats (views) in standard cell libraries. The layout
consistency checker in our tool checks the consistency of the layout of pins between
GDSII and LEF library views; we devised a new algorithm,Grid Formation and Centre
Inclusion, for this checker. The tool also verifies the pin consistency and availabil-
ity of cells across other library formats, such as: Verilog and Liberty. The tool was
tested using different technology libraries (such as 90nm and 40nm), provided by differ-
ent vendors (such as GLOBALFOUNDRIES); multiple interfacing errors were caught
using our library checker tool.

A second part at the end of the thesis shows experiments with some of the low-power
design techniques used during the design of a digital block, using -for implementation-
standard cells from one of the libraries that have been checked with the library checker
tool. Benefits of using these techniques are evaluated and trade-offs are discussed.
Power-Shut Off (PSO) design technique proved to be the most effective in reducing
power consumption, with power savings that reached 20%.
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Introduction 1
In this chapter, we give an introduction about the importance of low-power design in
our life these days, and how reducing the power reflects on our daily use of electronic
products. We also give an overview about how the rest of this thesis work is organized
and presented.

1.1 Motivation

Battery operated devices (cell phones, tablets, laptops) have an increasing demand on
energy. And despite the efforts that have been made in researching new battery tech-
nologies to cover this demand, the need for low-power designs became a necessity, since
battery capacity doubles approximately every 10 years according to Jan Rabaey [1]
(that is 3-7% every year depending on the introduction of new technologies); and such
growth lags behind Moore’s law (which demands doubling the computational complex-
ity every 18 months), and the resulting need for more energy resources to feed those
hungry devices. The computational density of these devices, and hence their power
usage (for computations and cooling), is of growing importance.

From a design perspective, energy usage can be optimized at different levels of
abstraction starting from the system and RTL description level, reaching to the circuit
level. Major gains can be achieved in reducing energy and power consumption of devices
at each level of these levels; and due to the importance of low-power design, considering
the direct impact it has on individuals (battery life) and industries (cooling costs),
design for low-power is becoming increasingly important in the IC-design industry,
making it a key competitive metric in this field, beside the usual metrics such as the
performance (throughput, latency and frequency) and costs (area and packaging), which
have been traditionally grabbing the major portion of attention of the designers.

1.1.1 Low Power in System on Chip (SoC) designs

From the previous discussion in Section 1.1, we can see that managing energy is one
of the most important concerns nowadays. As the power density of SoC increases at
such an alarming rate (as revealed by Figure 1.1), power management has become one
of the major design concerns in SoC design. This has been pointed out by Fred Pollack
of Intel as early as 1999 in his keynote at MICRO-32 [2].

There is an increasingly widening gap between the power density trend and the
power design requirements, as illustrated in Figure 1.2. Aveek Sarkar from Apache
Design Solutions Inc. explains this figure in his article ”An RTL to GDSII approach
for low power design: A design for power methodology” [3] as follows: the red curve
illustrates the increasing levels of power that a design generates to meet advanced func-
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Figure 1.1: SoC Power Density. Courtesy Intel Corporation [2]

tionality needs (assuming no low power approaches are used), versus the yellow curve
that bounds the maximum power consumption allowed in such systems (as specified
by power budgets for these systems to achieve operational and standby power tar-
gets). This wide gap represents a huge problem for the designers of electronic products
(wired and wireless) nowadays. The graph also shows that more design efforts should
be directed towards managing power, which will certainly have a direct impact on
engineering productivity, as it impacts schedules and risks for meeting deadlines and
keeping pace with the fast moving demands of the market.

1.1.2 Wide Range of Applications

The explosive growth of applications depending mainly on batteries also made power
management an inevitable must. Quoting Silicon Integration Initiative Inc. (Si2) in
their book ”A Practical Guide to Low-power Design” [4]: today’s portable products are
expected not only to be small, cool, and lightweight, but also to provide extremely long
battery life; and even wired communications systems must pay attention to heat, power
density and low-power requirements. Jan Rabaey [1] mentioned that in the year 2000,
400 Millions of personal computers worldwide were being used, which was assumed to
consume 0.16 Tera kWh per year, the power equivalent to 26 nuclear power plants; and
this needed over 1 Giga kWh per year just for cooling. He also talked about centralized
data centres, and explained (quoting Luis Barosso from Google) that the cost of a data
centre is determined solely by the monthly power bill, not by the cost of hardware or
maintenance. This bill results from both the power dissipation in the electronic systems
and the cost of removing the dissipated heat –that is, air conditioning. All of this
further proves that power management is becoming a necessity for wired electronics as
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Figure 1.2: IC power trends: actual vs. specified. [3]

much as it is a must for wireless electronics. Si2 also categorizes the products requiring
low-power management in their book [4] as follows:

1. Consumer, wireless, and handheld devices: cell phones, personal digital assistants
(PDAs), MP3 players, global positioning system (GPS) receivers, and digital cam-
eras.

2. Home electronics: game consoles for DVD/VCR players, digital media recorders,
cable and satellite television set-top boxes, and network and telecom devices.

3. Tethered electronics such as servers, routers, and other products bound by pack-
aging costs, cooling costs, and Energy Star requirements supporting the Green
movement to combat global warming.

1.1.3 Effective Low Power Management

Many power reduction efforts have been targeting low levels of abstraction in the design
(circuit level); this has been sufficient for a number of years, since managing power at
low abstraction levels has been paying off, reducing the power within acceptable limits;
however, an effective power and energy management for a System-on-Chip must start

3



at earlier stages of the design, as early as the system and design-architecture phases.
Standard cell methodology plays an important role in implementing designs with mostly
digital-logic features. As explained by Wikipedia [5], ”cell-based methodology (the
general class to which standard cells belong) makes it possible for one designer to focus
on the high-level (logical function) aspect of digital design, while another designer
focuses on the implementation (physical) aspect”.
In order to be able to apply low-power design techniques (some of which are discussed
in later chapters), standard cells have to be adapted to enable this application, and
also new cells (such as retention and isolation cells, which are discussed later in more
details) have to be added to the old standard cell libraries. Caution must be paid in
making sure that standard cells have consistent descriptions and interfaces across all
library formats (discussed in later chapters) present in the standard cell library, since
any inconsistency that may exist across any of those library views can cause serious
troubles for chips, ones that might not even be discovered until the chip is already
put into production, and then the costs for fixing the design flaw resulting from the
inconsistency across library views would be enormous (not to mention losing credibility
of design companies at their customers). All this creates the need for developing Library
Checker tools, which will make sure all library views of standard cells are consistent,
to avoid the risk of design flaws for something that can be fixed in advance.

1.2 Project Sketch

The main contribution of this thesis work will be in the field of standard cell library
checking. Due to the huge size of standard cell libraries, and the new libraries frequently
produced following new process technologies, the process of checking these libraries
manually became an impossible task, and this raised the need for automated tool that
does the job. This will be the primary part of this thesis work -building an automatic
tool which will check the different views of libraries and make sure those views are
all consistent for all the standard cells in those libraries, and report any missing cells
or attributes or any inconsistency that might be found. A number of library views
(explained more in Section 2.2) have been checked for consistency, namely:

• GDSII

• LEF

• Liberty

• Verilog

• Netlist (CDL)

• Redhawk (APL)

The most important and the highest weight checker is the layout-consistency-checker
(LEF-GDSII checker), since it requires a lot of file manipulation and the development
of a new algorithm to compare geometrical shapes. This checker (as will be discussed

4



in more details in Chapter 3 & Chapter 4) mainly checks the consistency and matching
of the layout of pins in the two formats: LEF and GDSII. What we need to do for
checking the consistency of layers between LEF and GDSII is to check that all of the
polygons representing the layout of each pin in LEF are completely included inside
the corresponding GDSII polygons for each layer of each pin in each standard cell.
The approach for such a checker (from algorithm to implementation) is presented and
discussed. A second part of the thesis work employs some of the standard cells (checked
by the checker) from one of the recent standard cell libraries in a simple low-power
incrementer design, using two of the most common low-power design techniques, and
comparing the power figures with the baseline design (the one that does not use any low-
power design techniques), in order to assess the effectiveness of these cells in achieving
the low power intents described by the low-power techniques used.

1.3 Thesis Overview

The organization of the report is as follows: some background about the most common
low-power design techniques and different library views is given in Chapter 2. Chapter 3
discusses the approaches suggested to implement the Library Checker tool, and some
details about preparations for this tool; it also talks more about the different types of
checkers implemented in the Library Checker tool, and results from running the tool on
existing standard cell libraries. Chapter 4 presents the algorithm for implementing the
Layout Consistency Checker. Chapter 5 summarizes the low-power incrementer design
experiment, using actual standard library cells (checked by the Library Checker tool)
to assess the effectiveness of low-power techniques in reducing power consumption, and
the ability of these standard cells in achieving low-power design intents and properly
implementing low-power techniques. At the end, conclusions and possible future work
are discussed in Chapter 6.
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Low-Power Design 2
In order to be able to reduce the power consumption in designs, we have to be aware of
the sources of power dissipation. Equation (2.1) shows the main factors contributing
to power dissipation. This equation reveals the main components of the total power
dissipation in CMOS SoCs as: dynamic power and leakage power.

Power = Pswitching + Pshort−circuit + Pleakage (2.1)

Dynamic power is mainly the sum of switching power and short-circuit power. The
former comes from charging or discharging of internal gate capacitances and net ca-
pacitances, and thus it depends mainly on the switching activity, switching frequency,
supply voltage and effective capacitance, as shown in (2.2); while the latter is dissipated
as a result of the instantaneous short-circuit connection between the supply voltage
and the ground at the switching-time of the gate, and thus depends on the switching
activity, the switching frequency, the supply voltage and the amount of short-circuit
current, as shown in (2.3). Figure 2.1 illustrates the two components of dynamic power
consumption in CMOS.

Pswitching = α × f × V 2

dd × Ceff (2.2)

Pshort−circuit = α × f × Vdd × Isc (2.3)

where α is the switching activity, f is the switching frequency, Vdd is the supply voltage,
Ceff is the effective capacitance and Isc is the average short-circuit current during
switching.

Figure 2.1: Dynamic power in CMOS. Source: A Practical Guide to Low-Power Design [4]

As for the leakage power, this basically depends on the supply voltage Vdd, the
threshold voltage Vth and the sizing (W/L) of the transistor; this can be observed
in (2.4), which represents the value of the subthreshold leakage current for a MOSFET
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device (as explained in [6]), the most important component contributing to leakage in
CMOS.

ISUBTH = I0 × e
Vgs−Vth

nVT × [1 − e
−Vds
VT ] (2.4)

where I0 =
W×µ0×Cox×V 2

T ×e1.8

L
, VT = K×T

q
is the thermal voltage, Vth is the threshold

voltage, Vds and Vgs are the drain-to-source and gate-to-source voltages respectively.
W and L are the effective transistor width and length, respectively. Cox is the gate
oxide capacitance, µ0 is the carrier mobility and n is the subthreshold swing coefficient
and is given by: n = 1 + CD

COX
(according to [7]), where CD is the depletion channel

region capacitance per unit area.

With the shrinking geometrics of process technologies, power management becomes
a must for all designs of 90nm and below. At these small geometrics, leakage cur-
rent becomes of great importance as it becomes comparable with switching currents,
which makes it a primary source of power dissipation in CMOS. This is illustrated in
Figure 2.2.

Figure 2.2: Process technology vs. leakage and dynamic power. Source: A Practical Guide
to Low-Power Design [4]

In order to be able to reduce power consumption in SoCs, we have to tackle each of
the aforementioned parameters of each component contributing to the different types
of power consumption. Low-power design techniques work mainly on reducing one or
more of these parameters, in order to reduce the two components of power consumption,
dynamic and leakage. Keep in mind that leakage currents are becoming of growing
importance (with the developments in process technology and the shrinking geometrics
of CMOS with each new process technology), which makes low-power design techniques
targeting leakage increasingly important at such small geometrics. We will present
some of the common low-power design techniques in the rest of this chapter, along
with some definitions for the different views in standard cell libraries, which contain
the cells helping to put those low-power design techniques in action.

The organization of the chapter is as follows: some common Low-Power Design
Techniques are presented in Section 2.1. Next, important Standard Cell Library Views
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are explained in Section 2.2. Afterwards, the importance of consistency across different
library views, and the impact of inconsistencies on the design cycle are discussed in
Section 2.3. Finally, a summary of the chapter is presented in Section 2.4.

2.1 Low-Power Design Techniques

As discussed in the introduction, reducing power consumption requires targeting one or
more parameters constituting the different components contributing to the total power
consumption in a SoC design. In this section we discuss some of the most important
low-power techniques, along with the parameters they tackle.

2.1.1 Power Shut Off (PSO)

This low power technique is considered the most effective in reducing power consump-
tion of the design, and it can be applied at early stages of the design (as early as the
RTL level). It allows the designer to completely shut down certain blocks (that are
not in use for a certain period of time) in the design in order to save their power con-
sumption, and consequently, this technique greatly reduces the static (leakage) power
consumption, targeting the Vth parameter.
Having a good idea about the activity figures of instances and functional blocks inside
the design, designers can divide the design into different power domains according to
their activity, and can completely switch off any of these power domains (whenever
they have no activity), which will drastically reduce the power consumption of the de-
sign. Specific power-down and power-up sequences (which are explained shortly) need
to be followed in order to guarantee the correct functionality of the design when using
this low-power technique. Incorrect power-up/down sequences are the main cause for
failures in low-power SoC designs. Power sequences must be aggressively verified by
verification engineers in order to make sure the design functions properly during power
down periods (with the powered-down switchable power domains), and also that the
design continues to function as expected on powering up the switchable power domains
in the design.
Deploying this low-power design technique requires the usage of special low-power cells,
all of which should be readily available in the standard cell library. These are discussed
in the following part, along with the correct power-down & power-up sequences for
correct functionality of the design.

2.1.1.1 Power Switch Cells (Power Gates)

In a design with power switching, either header or footer type power switch cells are
required to supply power for cells that can be powered down. A header type cell con-
nects the power rail (VDD) to the power pins of the cells. A footer type cell connects
the ground rail (VSS) to the ground pins of the cells. An enable signal controls the
connection of the switch to the respective power or ground rail.
The number of power switch cells inserted into the design must be properly chosen dur-
ing design time to satisfy IR drop and current density requirements of the design, since
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an excessive number of power switch cells will waste the silicon area (and consequently
increase the cost of the chip), and also a small number of switch cells might cause a
big amount of rush current (the maximum, instantaneous input current drawn by an
electrical device when first turned on [8]) to flow through the switches at power-up.
Obviously, there will be some power overhead for the insertion of this kind of cells in a
low-power design because these cells need to be always-on, which is another reason why
careful insertion of these cells should be taken into consideration during design. The
insertion of such cells also adds some area overhead to the design, and more verification
efforts in order to ensure their correct operation in switching the power on & off.

2.1.1.2 Retention Cells

Retention flops are sequential cells that can hold their internal state when the primary
power supply is shut down, and that can restore the state when the power is brought
back up. These cells are used (replacing normal flops in the design) in order to save the
state of the design before going into power down (sleep) mode, so that we can restore
the same state of the design after waking up from the sleep mode, and continue the
normal operation of the design without affecting its functionality.
A key area of verification in the design cycle is to make sure that this kind of flops
are actually retaining the state during power down periods, and are correctly restoring
those states at power-up of their respective switchable domains. It is worth mentioning
also that this type of cells requires a secondary power supply to be used during power
down periods, so as not to lose their state when the primary power supply is shut-off.
This is simply illustrated in Figure 2.3.
The insertion of retention cells also has the drawback of adding some power (since they
need to be always powered-up) and area overhead to the design, and also needs a great
deal of effort for verifying their correct operation when integrated within the design.

Figure 2.3: State Retention Power Gating. Source: A Practical Guide to Low-Power Design [4]
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2.1.1.3 Isolation Cells

These are special cells required at the interface between blocks which are shut-down
and always-on blocks to prevent floating states of unpowered signals from propagating
from a power domain that is powered-down to a power domain that remains on. They
clamp the outputs of power-down blocks to a known voltage. These cells can be placed
in always-on or switchable regions, and the enable signals of the isolation cells are
necessary to isolate floating inputs. Clamp values might be 1, 0 or latch (retaining the
final value on the latch before isolation) state. The location where the isolation cells
are placed (source or destination block) is usually provided by the standard cell library
vendor. Figure 2.4 illustrates a simple example for the usage of an isolation cell.
The same arguments (like the ones discussed previously for power-switch and retention
cells) for deployment costs also hold here for isolation cells.

Figure 2.4: Isolation cell and Power Gating. Source: A Practical Guide to Low-Power De-
sign [4]

2.1.1.4 Always-On Cells

Always-on cells are cells that remain active even if the main power for the block where
they are placed is switched off. This is done through the use of a backup power rail
(VDDR in Figure 2.5). These cells are useful for the cases of signals that need to
be always active, regardless of the activity of their respective power domains (like
reset signals passing through an instance in a switchable power domain and feeding a
successive instance in an always-on power domain).

2.1.1.5 Power Cycle Sequence

As we mentioned before, for a correct operation of a design using this low-power design
technique, a certain sequence must be followed during the power-down and power-up
phases. For power-down, the general sequence followed is: first activating isolation

11



Figure 2.5: Always-On Cell

(in order to preserve the outputs of switchable power domains at expected values,
and prevent floating values from propagating to non-switchable power domains); next,
state retention is activated to preserve the states of key control registers in the design
that are required to be restored at power-up; and finally power shut-off, as shown in
Figure 2.6. For the power-up cycle, the reverse sequence needs to be followed. This
way we guarantee the power cycle sequence will complete without any disturbances in
the functionality of the design.

Figure 2.6: Power-down/up sequence. Source: A Practical Guide to Low-Power Design [4]

2.1.2 Multiple Supply Voltage (MSV)

In this technique, the design has more than one static voltage source and each
domain is assigned the lowest voltage that still makes timing; thus this low-power
design technique targets the Vdd parameter. The reduction in the supply voltage has a
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squared effect in reducing the dynamic (active) power consumption (as can be observed
from (2.2)) and also contributes greatly in reducing the leakage power. However,
scaling down the supply voltage has a down-side on degrading the performance, that’s
why designers use different supply voltages for different parts of the chip depending on
their performance requirements, and thus the name: ”Multiple Supply Voltage”. For
the correct application of this low-power design technique, we also need to use special
type of low-power cells to guarantee the correct functionality of the design, and in this
case, we only need to use Level-Shifter cells.

Level-Shifter Cells

In a multi-voltage design, a level shifter is required where a signal crosses from one
power domain having a certain supply voltage to another one having a different supply
voltage. The level shifter operates like a buffer or an inverter with one supply voltage
at the input and a different supply voltage at the output. Thus, a level shifter converts
the voltage of the signal from one level to another, in order to save the logical value of
the signal.
These cells have three categories, namely: up (shifting from low to high voltage), down
(shifting from high to low voltage) and up/down level shifters. The placement of these
level-shifter cells (whether in the source or the destination power domain) also depends
on the constraints imposed by the library-vendor.

2.1.3 Multiple Threshold Voltage

Scaling down the threshold voltage of transistors has a great impact on lowering the
delay in CMOS circuits. However, scaling down Vth is accompanied with an exponential
increase in the sub-threshold leakage currents. To tackle the problem of high leakage,
dual (or multiple) Vth techniques have been proposed. Low-Vth cells are used on the
critical path of signals where speed is of great concern, while high-Vth cells are used
on the non-critical paths. That is why standard cell libraries’ vendors have to provide
libraries that have cells with different threshold voltages. Designers mainly rely on
synthesis tools for choosing the suitable Vth-cells from the available multi-threshold
library-cells in order to achieve the area and performance targets, while minimizing
power dissipation. This technique works on reducing the leakage power, targeting the
parameter Vth.

2.1.4 Dynamic Voltage & Frequency Scaling (DVFS)

Dynamic voltage frequency scaling (DVFS) reduces the power in the chip by scaling
down the voltage and frequency when peak performance is not required. Thus, this
technique mainly aims at reducing dynamic power consumption, and a bit of leakage
power consumption, targeting mainly f and Vdd parameters. A design using DVFS can
be seen as a special case of an MSV design operating in multiple design modes.

• In a pure MSV design different portions of the design operate on different voltages
and these portions remain operating at their respective operating voltage.
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• In a DVFS design, in addition some portions can dynamically change to other
voltages depending on the design mode or can even be switched off.

Consequently, a DVFS design must satisfy different constraints in different design
modes. DVFS designs require variable power supply(ies) that can generate the required
voltage levels with minimal transition energy losses and a quick voltage transient re-
sponse. When scaling the voltage, the frequency must be scaled accordingly to meet
signal propagation delay requirements. A power scheduler is usually used to compute
the appropriate frequency and voltage levels needed to execute the various applications.

2.1.5 Other Low-Power Techniques

Multiple other low-power design techniques exist in the continuous efforts of reducing
the power consumption of SoC designs. Some of them are:

• Clock Gating: in which clock signals are disabled at specific times where there is
no activity to reduce the dynamic power consumption, targeting the parameter
α.

• Body Biasing: substrate is biased to a voltage different from Vdd in PMOS, and
to a voltage different from Vss in NMOS, in order to reduce the leakage power
consumption targeting the parameter Vth.

• Operand Isolation: whenever data-path elements are not active, prevent it from
switching using an enable signal. This reduces the dynamic power consumption,
targeting the parameter α.

2.2 Standard Cell Library Views

It can be easily observed from the previous discussion in Section 2.1 that deploying
low-power design techniques requires some adaptations of standard libraries. These
adaptations include the addition of new low-power cells (like retention, isolation, and
level-shifter cells). Adaptations also include changing the modelling of some cells to
achieve low-power, such as: changing the cell-drive strength and supply/bias pin mod-
elling. Standard Libraries have many different views for describing the different at-
tributes of cells. The following section gives more information about the different
library views in standard libraries.

• Graphic Database System (GDSII) Format: a binary file format representing
planar geometric shapes, text labels, and other information about the layout in
hierarchical form. In standard libraries, GDSII files are used to describe the layout
of each layer for each pin of the cell.

• Library Exchange Format (LEF): includes the abstract of cells and the rules for
routing, but no information about the internal netlist of the cells.
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• Liberty Format: liberty is the gate-level modelling technology; an open industry
standard for longer than a decade, the liberty library format is used as the library
model exchange for timing, noise, power and test behaviour.

• Verilog Format: is most commonly used in the design, verification, and imple-
mentation of digital logic chips at the RTL level of abstraction.

• Netlist (CDL) Format: usually conveys connectivity information and provides
nothing more than instances, nets, and some attributes (such as ’W’ & ’L’ of
transistors).

• RedHawk (APL) Format: a binary file format that provides an integrated envi-
ronment for analysing power, noise and reliability issues in SoC designs.

2.3 Consistency Across Different Library Views

Different library views have to be consistent in their description and specification of
standard cells. Such consistency is represented in checking the following conditions:

• Existence of cells: All functional cells must be present in all library views (for-
mats).

• Consistency of cell names: Each cell must have the exact same name (case-
sensitive) across all formats

• Consistency of pin-interface of each cell: Each cell must have the same pin-count
and exact pin-names in all library formats; also the modelling of pins (pin type,
direction, etc..) must be consistent for each cell across all library formats.

• Matching layout geometrics of pins for each cell: Geometrics of each layer of
each pin in each cell has to be matching in formats describing the layout of cells
(basically LEF & GDSII formats)

Inconsistencies across the different library views might cause errors during the design
cycle at different abstraction levels. Figure 2.7 shows a mismatch in the layout of a
standard cell that was caught by our library checker tool; this kind of mismatches can
cause serious routing problems. Some of these library-inconsistency problems might
not even be caught during verification, and might leak into a design that is already put
into production; this might cause the chip to fail when used by the customers, causing
a potential loss of reputation and credibility for design companies.
Absence of body-bias pin modelling caused a big design company two major failures last
year. In that case there were two different always on cells, one with a separate well for
the PMOS transistors and another with abutted well. Due to the lack of bias modelling,
design tools could not distinguish between the two, and picked (based on smaller area)
the wrong one, effectively making the bias pin operate in forward mode around 0.6
volts, creating too much leakage current. So the designer tried to design a low leakage
design using low power design techniques, ending up with a design that was actually
leaking way more; and this came as a result of lack of consistency of cells’ pin-interface.
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From this discussion, we conclude that the need for a library checker is crucial; one
thing that saves a lot of effort hunting for bugs in the design due to inconsistencies in
the libraries. And due to the huge and ever-increasing size of libraries, these checkers
need to be automated in order to be run directly to check the consistency of libraries
provided from library vendors in a simple run. And this reveals the importance of the
job done here in this thesis work.

Figure 2.7: Example layout mismatch in one of the libraries checked by our tool

2.4 Summary

Various low power design techniques were introduced in this chapter. The deployment
of these low-power design techniques requires certain adaptations for standard libraries.
A brief overview about the most important library views (formats) was introduced. In
the end, the importance of the consistency of the different library formats was discussed,
which calls for an immediate action implementing an automated tool to do the library-
checking job, which is the core of this thesis work.
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Library Checkers 3
The previous discussion in Section 2.3 reveals the importance of verifying the consis-
tency of the description and modelling of standard cells in the different library views.
This verification process needs to be automated, the reason for which is the huge size
of standard libraries. This initiated the idea for building our Library Checker, which is
the core of this thesis work, and the main topic of the rest of this chapter and the next
one as well.

The organization of the chapter is as follows: an overview about the studied ap-
proaches for implementing the Library Checker tool is given in Section 3.1, followed by
different types of checkers implemented in the tool given in Section 3.2. Preparations
for the tool from manipulating files to building parsers and similar issues are discussed
in Section 3.3. Some results from running the checkers are presented in Section 3.4. It
is worth mentioning here that this chapter does not discuss the algorithm used for the
Layout Consistency Checker ; this will be discussed in the following chapter -Chapter 4,
since this part is of great importance and contains a lot of details. Results for run-
ning the Layout Consistency Checker are also presented in the following chapter. This
chapter ends with a summary about what has been discussed in Section 3.5.

3.1 Suggested Approaches

The most important part of the checker tool is the Layout Consistency Checker ; that’s
why all the initial thoughts and brainstorming ideas about the implementation of the
tool were directed towards finding the best solution to do the layout consistency job
between LEF & GDSII. These thoughts are briefly discussed in this section.

3.1.1 Using Cadence’s Abstract Generator Tool

The first idea that popped in mind when brainstorming about the layout checker was
to make sure that this work is not already implemented, and to see if there is a work-
ing solution that is readily available already, which could be incorporated inside our
Library Checker tool. Doing some research, we came to know about Virtuoso Abstract
Generator [9] provided by Cadence Design Systems as a part of their tool Virtuoso
Layout Suite. This tool (as described in the manual) ”is a library modelling tool that
lets you create abstracts for standard cells, macro blocks, and IOs from detailed layout
information in Library Exchange Format (LEF), Design Exchange Format (DEF), and
Graphics Design Station II (GDSII) Stream formats”. A first look at this looked like
it was the proper tool for the job. So we first decided to try this path, which will save
us the pain of implementing a new tool that does the job that Cadence’s tool does
already. However, we found multiple issues when comparing the LEF file produced
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from Abstract Generator and the original LEF file of the library, the most critical of
which has to do with discrepancies in the geometry of layers for the power and ground
pins between the two files. We tried to tweak the tool’s options in order to know the
reason for which these differences appeared, but then we decided to drop this path for
the following reasons:

1. This solution will mainly depend on a tool provided by Cadence, the licence for
which is not free, and needs to be purchased from Cadence.

2. The dependency of a big part of our Library Checker tool (the Layout Consis-
tency Checker) on a non-open-source tool limits the ability for further/special
developments, manipulations or enhancements for the tool.

3. The complication of usage of Virtuoso Abstract Generator as an intermediate step
for the implementation of our Library Checker tool was not satisfying.

4. Discrepancies of geometries of layers between original LEF and the LEF gener-
ated from Abstract Generator would not give correct errors about mismatching
geometries, and consequently produce bugs which reduce the reliability of the
tool.

3.1.2 Implementing an Independent Tool

After dropping the direction of using the Abstract Generator for checking the consis-
tency of the layout of cells, and getting no good results from further searches for finding
a solution to do the layout-consistency-checking job, we decided that implementing the
whole tool ourselves will be the best option; especially that there has been already some
development in-house (at NXP) for the basis of the Library Checker tool, which came
as a great aid afterwards in completing our tool. The tool’s input arguments should
be the path (relative or absolute) to the library package that needs verification, and
may also include some optional miscellaneous arguments (discussed in more details in
Section 3.3.5). Output of the tool should be a list of errors for the inconsistencies re-
vealed in the library package being checked. Different parts of the Library Checker tool
are illustrated by the block diagram in Figure 3.1. Numbering the rules of the checker
plays an important role in grouping similar errors, and displaying them consecutively
(according to the rule number), for better categorization of the output errors of the
checker.

3.2 Checkers Implemented

The Library Checker tool needs to verify the consistency of standard libraries through
the verification of the different conditions mentioned in Section 2.3. Based on these
conditions, we built various checkers, as explained in the following section. The checkers
(as well as the whole tool) are built in Tcl [10], to extend the part of the checker already
developed in-house at NXP.
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Figure 3.1: Block diagram of the Library Checker tool

3.2.1 Cell Name Consistency Checker

This checker verifies the consistency of the names of different cells across the different
views of the standard cell library. In each library view, each cell is given a unique
name that gives a hint about the functionality of the cell. This name must be exactly
matching to the corresponding name in other library views, including the case-match
of the cell name, since a case-mismatch in the cell name will be reported as missing
cells by design tools, a scenario that has been reported by designers at NXP for cells
having a name-case-mismatch in some standard cell library formats. For each cell in
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each view, the checker searches for the same exact name of the cell (case-sensitive) in
all other library views; if the exact name was not found, the checker then relaxes the
condition and checks that the name does not exist in a different case; if the name was
found in a different case, the checker reports an error that there is a case-mismatch for
this cell, and reports which library views have the defect. Otherwise (if the cell name
was not found, even with a mismatching case), nothing is displayed. Cell-availability is
checked in a separate checker (explained in Section 3.2.2) due to error-tagging purposes
(grouping similar errors under the same error-tag to be displayed together).

3.2.2 Cell Availability Checker

This checker is very similar to the previous one. It checks the availability of functional
cells in all the different library formats. For each cell in each library format, the checker
first checks the availability of the same cell (with the exact same name) in all other
library formats. If the cell was not found in a specific format, the checker then checks
that the name of the cell does not exist in a mismatching-case (to make sure that the
cell really does not exist), and if that last check gave positive results, the cell is reported
missing in that specific library format where it does not exist.

3.2.3 Pin Consistency Checker

This checker verifies the pin-interface of all cells in the library. It basically carries out
the following checks:

1. Verifying matching number of pins for each cell across all library formats.

2. Verifying matching names (exact names) of each pin in each cell across all library
formats.

3. Verifying the consistent modelling of pins across different library formats. This is
done through verifying that supply pins, bias pins, and signal pins have the same
functionality and direction in all definitions of the same cell in all the different
library formats.

Any pin for any cell that is found missing in any of the library formats is reported
along with the name of its respective cell, the library format that has this discrepancy,
the version of the library and the library package name. Any modelling inconsistency
found (for example a pin defined as a supply pin in one library format, but defined as
a signal pin in another) is reported as well.

3.2.4 Layout Consistency Checker

Each cell has a number of pins, each of which has a number of layers describing its
layout, along with the geometries (coordinates) of these layers. LEF & GDSII are
the only two library formats that have this piece of information. This checker verifies
matching layouts of cells between the two library formats: LEF & GDSII. This checker
is the most important part of our tool, and consumed much time and effort during the
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development of the tool. It also contains a lot of details, and that’s why it will be
further discussed separately in Chapter 4.

3.3 Preparations for the tool

In order to be able to build the checkers discussed in Section 3.2, we needed to capture
important information such as cell names, names of the pins for each cell and the
layout information of each of those pins for each cell in the library. These pieces of
information are the basic building blocks upon which the checkers mainly rely to verify
the consistency of different library formats. For this purpose, multiple parsers were
built to help capturing this important information. Some library formats (GDSII and
Redhawk) required even some pre-processing in order to convert them into readable
formats. All of these details are discussed in the following section.
It is worth mentioning here that the parsers and the checkers and all intermediate file
manipulation were built in Tcl, the reason for which was to extend a part of the library
checker that has been built already in-house at NXP, and also Tcl’s ability to store
arrays as hash tables, which was really useful in storing different cells’ information
which were used by the checkers.

3.3.1 Converting GDS Binary Files into Readable ASCII Files

GDSII files are normally binary files. In order to be able to parse those, we had to find
a way to convert those binary files, into some readable format, for which a parser could
be easily built. Multiple tools were found that do the job, some of which are mentioned
below:

1. GDS Utilities 1.3, from GB Research [11]. But this solution was dropped because
the tool is not free (a licence needs to be purchased), and also the solution works
only for the Windows platform.

2. OwlVision GDSII Viewer [12]. This solution is free, and can be run on all plat-
forms; however it was also dropped for the reason that not all of the GDSII records
are supported.

3. Glade (GDS, LEF And DEF Editor) [13]. This one was not used because it
was more of a Graphical User Interface (GUI) tool that is hard to be used in a
Command Line Interface (CLI).

4. LayoutEditor [14]. This one was not used because it was more of a Graphical User
Interface (GUI) tool that is hard to be used in a Command Line Interface (CLI).

5. KLayout - High Performance Layout Viewer And Editor [15]. This one was found
the best tool because it is a free tool that works on all platforms, and could be
easily used in the CLI mode. It also produced the most readable output ASCII
code representing the GDSII binary files, which made constructing the parsers for
reading this output ASCII code really easy.
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And thus, we settled on using klayout to do the conversion step from Binary-GDSII
into ASCII-GDSII. In order to be able to do this conversion step from within our tool
(without having to invoke klayout’s user interface), we extracted (with the help of
klayout developers) an executable file from the installation package of klayout that can
be used directly from within our Tcl scripts to do the conversion.
We also faced another problem in the representation of filler cells in the output ASCII
code resulting from klayout’s conversion process. Filler cells are used to maintain the
Nwell continuity in the standard cell and to fill the gaps in the rows of the standard
cell. In the output GDSII-ASCII from klayout, these cells are represented as arrays of
an additional smaller cell that is defined implicitly in klayout, but not defined in LEF.
So we needed to get rid of those arrays, and get a single definition for the filler cells,
to match that in LEF. And this required some tweaking to the source code of klayout
in order to produce a definition similar to that in LEF, with no additional cells, and
with no arrays. The tweaking was done (with the help of klayout developers) and we
managed to produce a definition for filler cells, that corresponds to the one in LEF,
which made the job much easier for the layout-checker in verifying the match in the
layout for filler cells, between LEF and GDSII.

3.3.2 Converting Redhawk Binary Files into Readable ASCII Files

Redhawk is also a library format whose files need some manipulation in order to be
parsed easily. Redhawk files are also available in binary format, yet luckily enough,
there exists a utility named ”aplreader” which can convert binary redhawk files into
ASCII files that can be easily parsed afterwards.

3.3.3 Building Parsers

As we previously mentioned in this section’s introduction, building parsers for the
different library formats is a must in order to facilitate the process of capturing the
information required by the checkers in order to do their job. For this purpose, different
parsers have been built. Liberty and Verilog (and partly the LEF) parsers were already
built by people at NXP, and those have been reused in our tool. The contribution of
this thesis work is in building the following parsers:

1. LEF parser: this captures the geometries of layers of each pin in the cell, and the
names of the different pins in the cell, and stores them in a hash table for each
cell in the library.

2. GDSII parser: this one parses the GDSII-ASCII file, which is output from the
klayout conversion process. It mainly captures the same information as that
captured in the LEF parser, for the checker to check the matching between the
geometries of pins of the same cell, between LEF and GDSII formats.

3. CDL parser: it parses the information about the available pins, and their names
from the netlist of each cell.

4. Three Parsers for APL Redhawk: these are the CURRENT, CAPACITANCE &
PWC parsers; each provides different information about the cell behaviour under
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different operating conditions, and each has a different format for the APL file,
and that’s why we had to build a different parser for each of the three types. The
information captured is mainly the names of the pins of each cell in the library
(along with the name of the cell), to check the pin-interfacing and the availability
of cells and their consistent naming with the rest of the library formats.

3.3.4 Building Layer Mapper for the Layout Consistency Checker

In the GDSII library format, layers (metal, poly-silicon, etc..) are represented as layer
numbers plus datatype numbers, while text layers are represented as layer numbers plus
texttype numbers. But this is not the case for the LEF library format, in which layers are
represented by their names directly. And hence some mapping was required, in order
to translate the layer numbers in GDSII into layer names as in LEF. The mapping
file is provided by the library vendor, and has a standard format. A Layer Mapper is
built within our tool, which reads in the mapping file provided by the tool vendor, and
translates the layer numbers and data/text type from GDSII into layer names (matching
those in LEF), so that we can carry out the verification and matching process by the
checker.

3.3.5 Miscellaneous Checker options

Some options are also added to the tool for more convenience of usage. One example
of these options is the ability to specify certain files to be taken into consideration in
the verification process of the library. Normally, the user only specifies the name of
the library package(s), and the tool then searches all the versions of the package for all
the files of different library formats, in order to be parsed and checked for consistency.
But for example, if the library provided by the vendor is missing a certain file that is
found at a different location, then these options (built for all library formats that are
being checked in the tool) will allow the user to specify the path for that missing file,
and then it will be accumulated with the list of files already in the library package, and
checked for consistency as well with the rest of the library formats. These options are
as follows:

1. <-lef ”lef files”>: to specify extra LEF files.

2. <-gds ”gds txt files”>: to specify extra GDSII files.

3. <-liberty ”lib files”>: to specify extra liberty files.

4. <-verilog ”ver files”>: to specify extra verilog files.

5. <-cdl ”cdl files”>: to specify extra netlist files.

6. <-rehawk cap ”redhawk capacitance files”>: to specify extra redhawk-
capacitance files.

7. <-redhawk cur ”redhawk current files”>: to specify extra redhawk-current files.

8. <-redhawk pwc ”redhawk pwc files”>: to specify extra redhawk-pwc files.
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Another example of extra options is the one that provides the capability to
skip checking certain directories for consistency. This option is provided as: <-
skip directories ”comma-separated-directory-list”>. This option is mainly implemented
in order to overcome some memory problems that we faced while running the checker
on some libraries; the checker complained that there is a memory overflow problem,
because of the huge size of the libraries. The important thing is that some of the
directories in the library package were just duplications of other files, but with some
variations in operating conditions or modelling style, and had nothing to do with the
interface description (the main target of our library checker tool). An example for these
is liberty files, which have multiple duplications, such as: ECSM, CCS and SI. This
option is practical in these cases; we can check those duplicate files sequentially (one
at a time, depending on their directories) with the rest of the library formats, in order
to overcome the memory problems; and consequently, we implemented this option in
order to avoid a potential tool-crash, and to provide a work-around for the memory
problem, in case this was a limitation in the run-environment.

3.4 Results

As we pointed out previously in this chapter’s introduction, the results for running the
Layout Consistency Checker are presented in the next chapter, along with the algorithm
used for implementing this checker.
Here we present some of the results we obtained from running the different types of
checkers on the latest GLOBALFOUNDRIES 40nm Low-Power (GF40LP) library.

3.4.1 Cell Name Consistency Checker

Following is a snippet of the errors produced by this checker:

ERROR 2-2 Package ’GF40LP gf40npkhdst/a02p4’ Cell ’SEH TIE0 G 1’ in LEF
has a name case mismatch with redhawk CAP (’seh tie0 g 1’) !
ERROR 2-2 Package ’GF40LP gf40npkhdst/a02p4’ Cell ’SEH TIE0 G 1’ in LEF has
a name case mismatch with redhawk PWC (’seh tie0 g 1’) !
ERROR 2-2 Package ’GF40LP gf40npkhdst/a02p4’ Cell ’SEH TIEDIN G 1’ in LEF
has a name case mismatch with redhawk CAP (’seh tiedin g 1’) !
ERROR 2-2 Package ’GF40LP gf40npkhdst/a02p4’ Cell ’SEH TIEDIN G 1’ in LEF
has a name case mismatch with redhawk PWC (’seh tiedin g 1’) !
ERROR 2-2 Package ’GF40LP gf40npkhdst/a02p4’ Cell ’SEH DCAP16’ in LEF has
a name case mismatch with redhawk CAP (’seh dcap16’) !
ERROR 2-2 Package ’GF40LP gf40npkhdst/a02p4’ Cell ’SEH DCAP16’ in LEF has
a name case mismatch with redhawk PWC (’seh dcap16’) !

Here, we tag the error resulting from this checker with the tag ”2-2”; this tagging
helps to group similar errors in one place, which is already done by the tool, grouping
similar errors and displaying them at once following their error tag. The error shows
the mismatch between LEF and Redhawk formats in the naming of some cells (mainly
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case-mismatch). This error has been causing troubles to designers with design tools
complaining about the absence of these cells in redhawk format, because the tools
expect the exact same name in all library formats. The error mentions the package
(library name) and the version (GF40LP gf40npkhdst/a02p4 ), and the expected cell
name (for example SEH DCAP16 in LEF), and the wrong cell name (seh dcap16 in
redhawk). This helps the designer to easily spot this kind of errors, and report them
to the library vendor or fix them himself as a workaround.

3.4.2 Cell Availability Checker

Here is a snippet of the errors produced by this checker:

ERROR 2-1 Package ’GF40LP gf40npkhdst/a02p4’ Cell ’SEH RAIL3T16’ exists
in LEF but not in GDS
ERROR 2-1 Package ’GF40LP gf40npkhdst/a02p4’ Cell ’SEH RAIL3T16’ exists in
LEF but not in redhawk CAP
ERROR 2-1 Package ’GF40LP gf40npkhdst/a02p4’ Cell ’SEH RAIL3T16’ exists in
LEF but not in redhawk PWC

As we can see, we tag the error resulting from this checker with the tag ”2-1”. The
error shows the existence of some filler cells only in the LEF library format, and their
absence in other formats (GDSII and some redhawk formats where this kind of cells
are expected to be available). The error mentions the package (library name) and the
version (GF40LP gf40npkhdst/a02p4 ), the cell that has the error (SEH RAIL3T16 ),
and the formats having the problem (GDS and redhawk in this example).

3.4.3 Pin Consistency Checker

Following is a snippet of the errors produced by this checker:

ERROR 3-1 Library package ’GF40LP gf40npkhdet/a02p3’ Bias pin ’VBP’ of
cell ’EEH DCAP1’ in LEF is not found in Liberty
ERROR 3-1 Library package ’GF40LP gf40npkhdet/a02p3’ Bias pin ’VBP’ of cell
’EEH DCAP1’ in LEF not found in GDS
ERROR 3-1 Library package ’GF40LP gf40npkhdet/a02p3’ Bias pin ’VBN’ of cell
’EEH DCAP1’ in LEF is not found in Liberty
ERROR 3-1 Library package ’GF40LP gf40npkhdet/a02p3’ Bias pin ’VBN’ of cell
’EEH DCAP1’ in LEF not found in GDS

The error resulting from this checker is tagged with the tag ”3-1”. The er-
ror shows the absence of bias pins in some library formats (GDS and Liberty in
the example here). The error mentions the package (library name) and the version
(GF40LP gf40npkhdet/a02p3 ), the name of the cell having the error (EEH DCAP1 ),
and the format having the problem (GDS and Liberty in this example). We should
point out here that these are just some examples of the defects that the checker found
in one standard cell library. Multiple similar errors were also found in the GF40LP
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library and other standard libraries that were tested. The errors reported here are just
for illustration.

3.4.4 Run time

Here we give an idea about the run time of the Library Checker tool. Running the tool
with all of the 4 checkers discussed in Section 3.2 on GF40LP library, we found that the
tool takes approximately 8 minutes in order to give the results for this example library,
which contains around 1500 standard cells. We think this is an acceptable run-time for
this tool.

3.5 Summary

In this chapter, we introduce some of the thoughts we have for implementing the layout
consistency checker. Relying on other tools as an intermediate stage in our tool turns
out not to be such a good idea, especially if the tool is not free and/or not open source.
That’s why we decided to implement our own tool without relying on intermediate tools.
The chapter presented next the different types of checkers implemented in our Library
Checker tool with some hints about the implementation of each checker. Afterwards,
the preparations for the tool were discussed; from file manipulation to building parsers
for parsing the different formats of the standard cell library, and the layer mapper for
translating layer numbers in GDSII to layer names matching those defined in LEF.
Finally, some results from running our tool on the latest GF40LP library are presented
to show how the tool behaves, and how it displays the different errors encountered in
standard libraries.
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Layout Consistency Checker

Algorithm 4
Different layers in LEF are represented in the form of rectangles using the RECT
construct; and thus, in LEF we have a set of corner points defining the rectangles
representing the polygons of each layer. These corner points are parsed by the LEF
parser for all the layers representing each pin, and saved in a hash table (for each cell),
along with the name of each layer, pin-name, pin-direction and pin-type for each pin
of each cell in the standard cell library. An illustrating example of a hash table for one
standard cell is shown below:

SEH_TIEDIN_G_1 {
layers {T3 NW M1 M2 CA}
site GF45_DST

name SEH_TIEDIN_G_1

pins {
X {layers {CA {110 .0 360 .0 170 .0 420 .0 110 .0 220 .0 170 .0 280 .0}

M1 {105 .0 170 .0 175 .0 1050.0}} direction input name X}
VSS {layers {M1 {0 .0 −35.0 280 .0 35 .0} M2 {0 .0 −35.0 280 .0 35 .0}}

use ground direction inout name VSS}
VBP {layers {NW {0 .0 560 .0 280 .0 1260.0}} use power direction

inout name VBP}
VDD {layers {M1 {0 .0 1225 .0 280 .0 1295 .0} M2 {0 .0 1225 .0 280 .0

1295.0}} use power direction inout name VDD}
VBN {layers {T3 {0 .0 0 . 0 280 .0 560 .0}} use ground direction inout

name VBN}
}
class {CORE ANTENNACELL}

}

In GDSII, layers are represented by a set of points drawing the shape of the
polygon for each layer of each pin in the cell. The GDSII parser reads in these points
and saves them (along with the name of each layer) in hash tables (one for each cell).
The pieces of information collected by the LEF and GDSII parsers are then used to
verify the matching of layouts for standard cells, between LEF and GDSII library
formats. In this chapter, we discuss the layout consistency checker (responsible for
layout-matching verification) in more details.

The organization of the chapter is as follows: Section 4.1 describes the main task
for the layout consistency checker. Different algorithms, which were explored for imple-
menting this consistency checker are presented in Section 4.2. Next, the final algorithm
upon which we settled for implementing the checker is presented in Section 4.3. After-
wards, some results from running this checker on the latest GF40LP library are given
in Section 4.4. Finally, a summary of the chapter is presented in Section 4.5.
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4.1 Problem Formulation

GDSII library format is the actual format used to describe the layout of standard cells,
and it is the format used for manufacturing chips. However, GDSII files have a huge
size, and they cannot be used during the routing phase, because they are not easily
manipulated. That is why the LEF format is used, in order to capture the necessary
information of the standard cell’s layout, in a small-size file that can be used and easily
manipulated by the router.
What we need to do for checking the layers’ consistency between LEF and GDSII is to
check that all of the polygons of LEF are completely included inside GDSII polygons
for each layer of each pin in each standard cell. This is because LEF should be just
an abstraction for the layout of the standard cell described in GDSII. At the routing
phase, the router uses the LEF library format; and thus if any part of the LEF polygon
is located outside of the corresponding GDSII polygon, then the router might use this
part as a contact, which will result in an open connection. But if the LEF polygon
is completely included inside the GDSII polygon, we can guarantee that this open-
connection case will not happen.
On the other hand, if GDSII polygons are larger than LEF polygons (such that LEF
polygons are still included inside GDSII polygons), this will not create a problem for the
router, because it will still use the LEF library format for routing, and thus a contact
at any point in the LEF polygon, will still be a valid (correct) connection because it
will be inside the GDSII polygon. And consequently, the criterion for an error that
should be produced by the checker is: any point that is inside LEF and outside GDSII.
Having matching layouts guarantees that we will not have any problems during the
routing phase of the design, and consequently we reduce the risks of bugs, which will cost
designers a lot of time to discover, and which might leak through verification processes
and into production, resulting in faulty chips that would be rejected by customers,
costing design companies a lot of money.
Our quest here was to find a suitable algorithm that will do the matching-procedure in
a precise and efficient way, and make sure to report any inconsistency between the two
layouts in LEF and GDSII.

4.2 Explored Algorithms

Before reaching the final algorithm that we used for implementation, we considered
multiple other algorithms, which proved to have pitfalls that did not make them suitable
for usage in our implementation of the consistency checker; however, those algorithms
were useful in reaching the final algorithm used for implementation. We discuss these
algorithms in this section.

4.2.1 Corner Points’ Inclusion

Our first thought was to take each of the corner points defining the LEF rectangles,
and make sure that each of them is included inside the corresponding GDSII polygon.
This inclusion problem is known in the field of computational geometry as the Point
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In Polygon (PIP) problem. As defined by wikipedia [16], the point-in-polygon (PIP)
problem asks whether a given point in the plane lies inside, outside, or on the boundary
of a polygon.
This algorithm is simple and least time consuming from the implementation point
of view, since this problem is widely known in the field of computational geometry,
having multiple algorithms for solution (like the Ray Casting and Winding Number
algorithms); however, deeper analysis for the correct functionality of this algorithm in
solving our layout-matching problem revealed some scenarios that act as counter exam-
ples for this proposed algorithm, two of which are shown in Figure 4.1 and Figure 4.2.

Figure 4.1: Corner Points’ Inclusion; Counter Example 1

We notice here from the example in Figure 4.1 that despite having all of the corner
points of the LEF rectangle completely included inside the GDSII polygon, the dotted
part still represents an error that should be reported by our checker, because this part
is not covered inside the GDSII polygon; we can also see from Figure 4.2 that the whole
LEF polygon is outside the GDSII polygon, but yet the algorithm will not report this
error, because the points on the border of the GDSII polygon are considered inside
it, and consequently, this simple Corner Points’ Inclusion algorithm fails to catch and
report the errors for these two counter examples, and thus, we had to think of another
algorithm that will solve this problem; which brings us to our next thought.

4.2.2 Polygon Overlap and Area Subtraction

We thought of this algorithm in order to solve the problem we had in the previously
mentioned counter examples in Section 4.2.1. So what this algorithm aims at is to
subtract the area of the GDSII polygon (for the same layer of the same pin) from that
of the LEF polygon, and keep track of the resulting areas (which now represents the
parts of the LEF polygon that are not covered by GDSII polygons); we then collect
all the subtraction results, and use the results to confirm that the whole LEF polygon
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Figure 4.2: Corner Points’ Inclusion; Counter Example 2

is contained inside the GDSII polygon, by simply making sure that the subtraction
results are always empty, indicating that there are no LEF areas existing outside the
GDSII polygons. However, the practical implementations of this algorithm deal only
with the case of Convex Polygons. A convex polygon (as explained by Wikipedia [17])
is a simple polygon whose interior is a convex set, for which the following properties of
a simple polygon apply:

1. Every internal angle is less than or equal to 180 degrees.

2. Every line segment between two vertices remains inside or on the boundary of the
polygon.

Figure 4.3 shows a simple example of a convex polygon. Using this algorithm
for solving our problem will be too complex, since the overhead of converting all the
concave polygons of GDSII into convex ones will represent a great deal of effort that is
not aimed at solving the main problem (the layout consistency checking), which will in
turn complicate the algorithm to an unacceptable extent. So, we decided to drop this
idea as well; which brings us to our third thought described in the next section.

4.2.3 Crossing Points and Centre Inclusion

In this algorithm, we try to find all the crossing points between GDSII and LEF poly-
gons, then depending on the results of these crossings, we can determine whether the
LEF polygon is completely included inside the GDSII polygon or not.

We start by finding the crossing points between LEF and GDSII polygons through
comparing each side of the LEF polygon, with all of the sides of the GDSII polygon
to determine if there exists any sort of intersection , as shown in Figure 4.4. This
means that the complexity of this algorithm is of order O(m × n), considering ’n’ as
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Figure 4.3: An example of a convex polygon: a regular pentagon. Source: Wikipedia [17]

the number of sides of the LEF polygon, and ’m’ as the number of sides of the GDSII
polygon. Depending on the resulting crossing points, we proceed as follows:

• If no crossings are detected, we check the inclusion of any point (a corner for
example) of the LEF polygon inside the GDSII polygon using one of the PIP
algorithms; if this point is included inside the GDSII polygon, then the LEF
polygon is included entirely inside the GDSII polygon; otherwise, the whole LEF
polygon will be outside the GDSII polygon which can be flagged as an error
afterwards.

• If there exists some crossings, we find the centre of the resulting collection of
points (weather it is a polygon or a line), then we make sure that the centre of
this shape is included inside the GDSII polygon.

Figure 4.4: Intersection cases for the Crossing points Algorithm. Completely intersecting
(left) and partially intersecting (right) lines.

This algorithm solves the problems we had in the counter examples illustrated previ-
ously in Section 4.2.1; however, after deeper analysis, we found another counter example
(illustrated in Figure 4.5) that shows the flaw in this algorithm, and its inability to solve
our layout-matching problem.

We can see from this example that even though the centre of the LEF polygon
(which is also the result of the crossing-points process between LEF and GDSII in this
example) is inside the GDSII polygon, still some parts of the LEF polygon are not
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Figure 4.5: Crossing points Algorithm - Counter Example

included inside the GDSII polygon, and these will not be flagged as errors, while they
really should! And this brings us to the fourth algorithm, which we actually used for
implementing our layout consistency checker. This is described in the following section.

4.3 Implementation Algorithm: Grid Formation and Centre
Inclusion

Keeping all the previous counter examples in mind, we reached this final algorithm, Grid
Formation and Centre Inclusion, which succeeds in solving the problems encountered
by the previous algorithms. The algorithm is best explained through an example, as
follows in the next section.

4.3.1 Steps of the algorithm

Here we describe the steps we follow to implement the algorithm, illustrated with some
graphical figures to make things easier to comprehend:

1. Collect all X-coordinates of LEF and GDSII polygons, as shown in Figure 4.6

2. Collect all Y-coordinates of LEF and GDSII polygons, as illustrated in Figure 4.7

3. Make a grid-like structure from the collected X and Y coordinates from LEF and
GDSII polygons.

4. Get the centre of each grid element (rectangle), and check the inclusion of each
of those centres inside the GDSII polygon, as shown in Figure 4.8. It is worth
mentioning here that in order to save wasted time on processing grid elements that
might be outside the LEF boundary, scanning in our algorithm is done only within
the LEF coordinates. As we can see from Figure 4.9, the hatched grid elements
will be flagged as errors, since the centre of their respective grid elements are not
included inside the GDSII polygon, which is exactly what we need; however, we
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Figure 4.6: Grid Formation and Centre Inclusion Algorithm - Step 1

Figure 4.7: Grid Formation and Centre Inclusion Algorithm - Step 2

can see that some rectangles of the grid (the dotted ones in Figure 4.9) might be
within the coordinates of LEF, but they are not actually inside the LEF polygon,
which might give us incorrect errors; and thus, to solve this problem we decided to
check the inclusion of grid elements inside the LEF polygon first, and then check
their inclusion inside the GDSII polygon.

5. If all the centres of the grid elements are inside the GDSII polygon, no errors are
reported, which implies that LEF and GDSII polygons are matching; i.e. we have
matching layouts.

6. If any of the centres are not included inside the GDSII shape, we collect the
coordinates of the grid elements whose centres are not inside the GDSII shape,
and eventually (after we check all of the grid elements for inclusion) we flag an
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Figure 4.8: Grid Formation and Centre Inclusion Algorithm - Step 4

Figure 4.9: Grid Formation and Centre Inclusion Algorithm - Application results

error displaying the coordinates of the grid elements that are causing problems,
to be examined more closely by the user.

4.3.2 Ray Casting Algorithm for PIP problem

From the steps of the algorithm described in the previous section, we can easily see
that we need to solve the Point In Polygon (PIP) problem described in Section 4.2.1 in
order to be able to tell if a certain point is included inside the LEF and GDSII polygons
or not. In our implementation, we chose the Ray Casting Algorithm to solve the PIP
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problem.
This algorithm tests the inclusion of a certain point (the centres of the grid-elements in
our case) inside a polygon (LEF and GDSII polygons) by counting the number of times
that a ray, starting from the point of interest and going in any fixed direction, intersects
the edges of the polygon under test. An even number of intersections implies that the
tested point is outside the polygon of interest, while an odd number of intersections
means that the point is inside the polygon. This algorithm is also known as crossing
number algorithm or even-odd rule algorithm. Figure 4.10 illustrates the application of
the algorithm on a random polygon.

Figure 4.10: Ray Casting Algorithm - Application example. Source: Wikipedia [16]

This algorithm is based on the observation that if a point moves on a ray coming
from infinity and reaching to the point of interest, then it will intersect the polygon
under test a number of times before it reaches the point of interest. Considering that
the travelling point initially comes from infinity, zero number of crossings (intersections
with the polygon of interest) would imply that the point of interest is outside the
polygon. This point travelling on the ray will then alternately go inside and outside
of the polygon until it reaches the point of interest, which implies that the travelling
point becomes outside the polygon after every two border crossings. And thus, an odd
number of crossings means that the point is inside the polygon, while an even number
of crossings implies that the point is outside the polygon.

For implementing the algorithm, we first did some searching on the internet to avoid
redundant efforts on something that is already implemented, and we found a readily-
available implementation to solve this problem. The implementation is provided by
GE Global Research [18], and it handles the cases where the point of interest is inside,
outside or on the boundary of a polygon. Bob Stein (who used to be a writer/developer
at Galacticomm) presented a great deal of help providing us with this readily available
Tcl-implementation of the solution for the PIP problem using the ray-casting algorithm.
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4.3.3 Implementation: Sneak peek

In this section, we try to give a simple overview of the way we implemented the grid
formation algorithm. The following pseudo code outlines the implementation of the
algorithm.

GridFormationAndCentreInclusion

{
Gather X & Y coordinates of LEF

Gather X & Y coordinates of GDSII

Combine , Sort & Trim ( within LEF ) X&Y coordinates

for each {x1 x2} in X

{
for each {y1 y2} in Y

{
get centre of the grid element [ x1 y1 x2 y2 ]
if ( centre inside LEF )

{
if ( centre NOT inside GDSII )

{
Save coordinates to ”mismatched_polygon” and report

them as errors

}
}

}
}

}

4.3.4 Testing Examples

We tested the implementation of the algorithm through different scenarios to ensure
the reliability of the algorithm and the implementation. Our algorithm showed a good
robustness against all the scenarios that we tried in order to discover bugs or failures in
the algorithm (or the implementation). We tested the algorithm using all the counter
examples presented in Section 4.2, all of which correctly passed the tests, and mis-
matched parts of the layout between LEF and GDSII were properly reported. Beside
these cases, we also tested our algorithm with other examples, as follows:

• LEF polygon is completely included inside GDSII polygon (Figure 4.11). In this
case, the checker reported no errors.

• LEF polygon is completely outside the GDSII polygon (Figure 4.12). In this
case, the checker reported the complete LEF polygon as a mismatched polygon,
as expected.

• A single point match between LEF and GDSII polygons (Figure 4.13). In this case
also, the checker reported the complete LEF polygon as a mismatched polygon,
as expected.

• LEF polygon and GDSII polygon completely coincide (Figure 4.14). In this case,
the checker reported no errors as expected, since the complete LEF polygon is
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Figure 4.11: Grid Algorithm - Testing Example 1

Figure 4.12: Grid Algorithm - Testing Example 2

Figure 4.13: Grid Algorithm - Testing Example 3
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considered to be included inside the GDSII polygon. No routing problems will
occur from this example.

Figure 4.14: Grid Algorithm - Testing Example 4

4.3.5 Algorithm Limitations

The limitation of our algorithm lies mainly in its inability to handle irregular shapes. In
other words, our algorithm can only handle rectangular and rectilinear shapes (mainly
polygons having boundaries represented only by vertical and horizontal lines), but not
shapes having inclined lines. An example of those is shown in Figure 4.15. However,
we found this limitation to be acceptable for our application (Library Checker), since
standard cells only have vertical and horizontal lines in both LEF and GDSII layouts.
Studies also showed that using inclined lines in the layout has a lot of drawbacks that the
usage of such inclined lines in layout is discouraged because they produce unpredictable
impedances.

Figure 4.15: Grid Formation and Centre Inclusion Algorithm - Limitations

To increase the robustness and reliability of our checker, we also added a Checking
Condition within our Layout Consistency Checker that would display a warning to the
user if any irregular shapes (ones having inclined lines) were encountered, in order to
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give the user a hint that these kinds of shapes are not properly handled with the current
implementation of the tool.

4.4 Results

Here we present some of the results we obtained from running our layout consistency
checker on the latest GLOBALFOUNDRIES 40nm low-Power (GF40LP) library.
The checker discovered multiple mismatches in the layout of Supply Pins for cells.
Following is a snippet of the errors displayed for some level shifter cells:

ERROR 5-1 Library package ’GF40LP gf40npkhpdt/a05p3’ Geometrics of layer ’T3’
pin ’VSS’ of cell ’PEH LVLDINVE1 Y2 8’ in LEF does not match GDS
Mismatched polygon is : 1020.0 400.0 1270.0 400.0 1270.0 560.0 1020.0 560.0
ERROR 5-1 Library package ’GF40LP gf40npkhpdt/a05p3’ Geometrics of layer ’T3’
pin ’VSS’ of cell ’PEH LVLDINVE1 PY2 12’ in LEF does not match GDS
Mismatched polygon is : 1710.0 1960.0 1960.0 1960.0 1960.0 2120.0 1710.0 2120.0
ERROR 5-1 Library package ’GF40LP gf40npkhpdt/a05p3’ Geometrics of layer ’T3’
pin ’VSS’ of cell ’PEH LVLDINVE1 PY2 16’ in LEF does not match GDS
Mismatched polygon is : 1020.0 1960.0 1270.0 1960.0 1270.0 2120.0 1020.0 2120.0

Here, we tag the error resulting from this checker with the tag ”5-1”; this tagging
helps to group similar errors in one place, which is already done by the tool, grouping
layout errors and displaying them at once following their error tag. The error mentions
the package (library name) and the version (GF40LP gf40npkhpdt/a05p3 ), the layer
having the layout mismatches (T3 in the examples here), the pin of the cell that is
having the layout mismatches (VSS in the examples above), the name of the cell having
the layout discrepancy (PEH LVLDINVE1 Y2 8 as an example here) and finally the
coordinates of the mismatched area between LEF and GDSII layouts (the ones tagged
with Mismatched polygon in the errors above). This helps the designer to easily spot
these kinds of errors, and report them to the library vendor or fix them himself as a
workaround, to avoid potential hazards in later stages of the design.

The checker also discovered some mismatches in the layout of Bias Pins, as shown
in the following snippet of the checker’s output:

ERROR 5-1 Library package ’GF40LP gf40npkhpdt/a05p3’ Geometrics of layer ’T3’
pin ’VBN’ of cell ’PEH CKGTPLT PWY2 4’ in LEF does not match GDS
Mismatched polygon is : 2900.0 1720.0 2910.0 1720.0 2910.0 1820.0 2900.0 1820.0
ERROR 5-1 Library package ’GF40LP gf40npkhdst/a02p4’ Geometrics of layer ’NW’
pin ’VBP’ of cell ’SEH MUX2 1’ in LEF does not match GDS
Mismatched polygon is : 170.0 530.0 180.0 530.0 180.0 560.0 170.0 560.0
ERROR 5-1 Library package ’GF40LP gf40npkhdst/a02p4’ Geometrics of layer ’T3’
pin ’VBN’ of cell ’SEH AN2 12’ in LEF does not match GDS
Mismatched polygon is : 170.0 560.0 180.0 560.0 180.0 640.0 170.0 640.0

We should also point out here that these are just some examples of the defects that
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the checker found in one standard library. Multiple similar errors were also found in
the GF40LP library and other standard libraries that we tested. The errors reported
here are just for illustration.

4.5 Summary

In this chapter, we started by formulating the problem we have in the layout consistency
checker. Next we introduced some of the thoughts we had for a proper algorithm for
implementing the layout consistency checker. Multiple algorithms of the ones explored
proved to be unsuitable, because they cannot handle some special cases, as illustrated
by counter examples through the chapter. The failure of these algorithms brought us
to the final algorithm, the Grid Formation and Centre Inclusion Algorithm, which we
believe to be the most suitable one for implementing our checker. The chapter also
presented more details about the algorithm, including steps and limitations. Finally,
some results from running the layout consistency checker on the latest GF40LP library
are presented to show how the tool behaves, and how it displays the different errors
encountered in standard libraries.
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Low-Power Design Techniques

Experiment 5
As a final part of this thesis work, we present here some experiments for the actual
usage of some of the low-power design techniques, which we discussed in Section 2.1, on
a simple incrementer design. The application of these low-power design techniques will
be done at an early stage of the design (high abstraction level, as early as system and
RTL level); this gives the designer an overview about the expected power consumption
in the design, which in turn enables the modification of the design at such early
stages to conform with the desired or planned power budget. This early modification
saves a lot of time and costs when compared to the case of applying low-power design
techniques at lower abstraction levels (circuit level for example). We will also study the
power consumption of exactly the same incrementer design without the application of
any low-power techniques (called ”baseline design” throughout the rest of the chapter)
in order to be able to assess the effect of usage of the low-power design techniques
in reducing the power consumption of the design. For implementation, we will use
standard cells from one of the libraries we checked using our Library Checker tool.
Further details are given throughout the rest of the chapter.

The organization of the chapter is as follows: low-power design techniques used
in our experiment are presented in Section 5.1. The incrementer design used in this
experiment is described in Section 5.2. Section 5.3 talks about the standard cell library
that is used for implementing the design. Test vectors, which are used to test the
design and produce the activity figures, are discussed in Section 5.4. Experimental
results and power figures for both the baseline and the low-power designs are presented
in Section 5.5. Comparisons between the results of the baseline and the low-power
designs are given in Section 5.6. Some recommendations for an efficient usage of low-
power design techniques are given in Section 5.7. At the end, a summary of the chapter
is presented in Section 5.8.

5.1 Power Techniques Used

Two of the most common low-power design techniques are used in our design, namely
Power Shut-Off (PSO) and Multiple Supply Voltages (MSV). These two techniques
have a huge role in reducing power consumption in SoC designs, because they either
completely shut-off or reduce the supply voltage of instances, which in turn has a great
effect in reducing both the leakage and active power consumption, as discussed in Sec-
tion 2.1.
As mentioned in the introduction, low-power design techniques will be used in early
stages of the design, starting at the RTL level of abstraction. Low-power design intent
is described in Si2 Common Power Format (CPF) [19]. CPF is a Tcl-based format.
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As mentioned by Si2 ’s CPF guide, the CPF file specifies the power characteristics of a
design, describing the design and its intended use such that tools may determine what
additional elements must be added to support the correct operation of the design in a
variety of power conditions. The CPF files for a design complement the RTL and/or
netlist description of the design, and can be used throughout different phases of the
design process, such as: implementation and verification, as shown in Figure 5.1. This
means that CPF acts like a wrapper around the golden RTL description of the design;
this wrapper defines the power/voltage islands in the design and the power supply
network to the RTL; and thus, CPF helps designers in adding low-power descriptions
to an already existing design, without having to modify the RTL description to insert
additional elements related to the low-power design methodology used (like isolation
or level-shifter cells); this in turn saves a lot of time during the design cycle, since
the golden RTL descriptions of already existing designs can be reused directly, without
having to be verified again, simply because they were not changed. This is illustrated
in Figure 5.2. The additional items that need to be verified are only the correct power
sequences (during powering up/down different parts of the design), the correct func-
tionality of the chip with parts of the design turned off and the proper recovery of the
state of the design when powering up the switched-off parts.

Figure 5.1: CPF-enabled flow: Power is connected in a holistic manner [19]
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Figure 5.2: Exploring power intent with CPF while preserving RTL [19]

5.2 Design Description

In order to test the application of the aforementioned power techniques in Section 5.1,
we use a simple 64-bit incrementer design with load and reset capabilities. The verilog
code for this incrementer is as follows:

module incrementer(in , acc , clk , load , reset_in , reset_out) ;
input [ 6 3 : 0 ] in ;
input clk , reset_in , load ;

4 output [ 6 3 : 0 ] acc ;
reg [ 6 3 : 0 ] acc ;
output reset_out ;
wire reset ;

9 assign reset_out = reset_in & ˜load ;

always @ ( posedge clk )
begin

if ( reset_out)
14 acc <= 0 ;

else if ( load )
acc <= in ;
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else

acc <= acc + 1 ;
19 end

endmodule

The synchronous reset capability of the incrementer allows the user to reset the output
of the incrementer ”acc” whenever the ”reset in” signal is active and the ”load” signal
is inactive. The synchronous load capability enables the incrementer to be loaded with
a predefined values that are present on the input port ”in” at periods when the reset
signal is not active and the ”load” signal is active. If both ”reset in” and ”load” signals
are inactive, the output of the incrementer is incremented by one step at each rising
edge of the clock signal ”clk”.
We then cascade a number of instances of this incrementer to make up a larger in-
crementer, so that we can simulate the situation of different blocks having different
activity figures; and hence we can place each of those instances in a different power
domain (PD), each having different power characteristics (such as: supply voltage,
shut-off periods, etc.). This will allow us to test the insertion of the different types of
low-power design cells (such as: retention, isolation and level-shifter cells), and observe
their effect in reducing the power consumption of the design, when compared to the
baseline design.

5.2.1 Baseline Design

This design contains only the functional blocks, without any low-power design tech-
niques involved. It basically puts the whole incrementer design (with all the hierarchical
instances) in a single power domain with the same power characteristics for all blocks
in the design. Figure 5.3 shows the organization of the incrementer instances inside
the baseline design. It consists of 3 instances, namely: ”incr1”, ”incr2” and ”incr3”;
the top-level design containing the three instances is named ”incrementer cascaded 3”.
The whole design lies in a single power domain named ”PD AON ” (an always-on power
domain, coloured in green in the figure) which runs on a voltage of 1.2 volts.

5.2.2 Using PSO low-power technique

In this design, we used only the PSO low-power design technique. The design in this
case consists of two power domains (both operating at a voltage of 1.2 volts):

• An always-on (AON) power domain: ”PD AON”

• A switchable power domain: ”PD SW”

Figure 5.4 illustrates the incrementer design using PSO. In the figure, solid lines rep-
resent the functional blocks, while dashed lines represent power domains. Table 5.1
explains the organization of the instances within the two available power domains, as
illustrated by Figure 5.4. As we can observe, the two instances ”incr1” and ”incr2”
required the insertion of retention logic due to their placement in a switchable power
domain; and hence, retention cells are required to save the state of these two instances
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Figure 5.3: Schematic of the Baseline design

during shut-off periods. We also tried the PSO technique without the insertion of re-
tention cells, to see the effect of their insertion on power consumption; of course in the
latter case (PSO with no retention logic), a reset is required for the instances in the
switchable power domain ”PD SW ” in order to make sure we get rid of any floating
values that might propagate from the switchable domain on power-up.

We can also observe the insertion of isolation logic in the instance ”incr3” for the
obvious reason of isolating the outputs of ”incr2” during power-down periods, and
protecting the inputs of ”incr3” by keeping them at expected levels using the isolation
cells. We can also see that the isolation logic is inserted in the always-on domain (the
”to” domain), and this is just a restriction imposed by the library vendor.

5.2.3 Using MSV low-power technique

In this design, we used only the MSV low-power design technique. The design in this
case consists of two power domains (both are always-on domains):
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Figure 5.4: Schematic of the incrementer design using PSO

Table 5.1: Organization of PDs and instances in the incrementer design using PSO

Comparison Power Domains
Point PD AON PD SW

Instances incrementer cascaded 3+incr3 incr1+incr2

Power State Always-on Switchable

Schematic Colour Green Yellow

Operating Voltage 1.2v 1.2v

• A high voltage power domain: ”PD HIGH AON”, operating at a voltage of 1.2
volts.
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• A low voltage power domain: ”PD LOW AON”, operating at a voltage of 1.1
volts.

Note that the usage of the two operating voltages is also imposed by the library vendor,
since the characterization of the standard cell library is only done at these two volt-
ages. Figure 5.5 illustrates the incrementer design using MSV. In the figure, solid lines
represent the functional blocks, while dashed lines represent power domains. Table 5.2
explains the organization of the instances within the two available power domains, as
illustrated by Figure 5.5. As we can observe, the insertion of level-shifters is essential
in this case, due to the existence of different voltage islands in the design, and hence
we need to preserve the logic value of signals as they travel through different voltage
islands, to prevent any undesired change in these logic values of signals due to the
different voltage levels between the two power domains. Red level-shifters in the figure
are up (low-to-high) level-shifters, while blue ones are down (high-to-low) level-shifter
cells.

We can also observe that the level-shifter cells are inserted in the destination (the
”to”) domain, and this is also a restriction imposed by the library vendor.

Table 5.2: Organization of PDs and instances in the incrementer design using MSV

Comparison Power Domains
Point PD LOW AON PD HIGH AON

Instances incrementer cascaded 3+incr1 incr2+incr3

Power State Always-on Always-on

Schematic Colour Green Yellow

Operating Voltage 1.1v 1.2v

5.2.4 Using PSO and MSV low-power techniques

In this design, we used both PSO and MSV low-power design techniques combined.
The design in this case consists of four power domains:

• A low-voltage always-on power domain: ”PD LOW AON”, operating at a voltage
of 1.1 volts.

• A low-voltage switchable power domain: ”PD LOW SW”, operating at a voltage
of 1.1 volts.

• A high-voltage switchable power domain: ”PD HIGH SW”, operating at a voltage
of 1.2 volts.

• A high-voltage always-on power domain: ”PD HIGH AON”, operating at a volt-
age of 1.2 volts.

Figure 5.6 illustrates the incrementer design using both PSO and MSV. In the figure,
solid lines represent the functional blocks, while dashed lines represent power domains.
Table 5.3 explains the organization of the instances within the four available power
domains, as illustrated by Figure 5.6. As we can observe, in this case we require the
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Figure 5.5: Schematic of the incrementer design using MSV

usage of retention, isolation and level-shifter cells; and consequently, this organization
has the highest overhead due to the big amount of extra cells that needs to be inserted
in order to preserve the correct functionality of the design.

5.3 Libraries used for Implementation

In our experiment, we used one of the libraries we checked for consistency using our Li-
brary Checker tool. The library package we used is the GLOBALFOUNDRIES 40nm
low-power library. The library provides the designers with the needed functionality
(extra cells) to add power management features to their design. This library provides
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Figure 5.6: Schematic of the incrementer design using PSO and MSV

Table 5.3: Organization of PDs and instances in the incrementer design using PSO and MSV

Comparison Power Domains
Point PD LOW AON PD LOW SW PD HIGH SW PD HIGH AON

Instances incrementer cascaded 3 incr1 incr2 incr3

Power State Always-on Switchable Switchable Always-on

Schematic Colour Green Yellow Orange Brown

Operating Voltage 1.1v 1.1v 1.2v 1.2v
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new standard cells, and also updated old standard cells, to support the different activ-
ities required by low-power design techniques, such as: the creation of different voltage
islands, power gating of switchable blocks and state retention of powered-down blocks
during shut-off periods. The library contains more than 200 new standard cells serving
the low-power design techniques, including:

1. Power Switch Cells: Power gates to supply power to switchable blocks.

2. Isolation Cells.

3. Level Shifters.

• Up Level Shifters.

• Down Level Shifters.

4. Always-On Cells.

5. Retention Flops.

It is worth mentioning that studying the characteristics of the library is very
important in order to be able to use the low-power design cells included in the library
in an easy manner, and avoid difficulties that may arise when inserting these kinds of
low-power design cells. An example for these difficulties is a problem that we faced
in our design during Gate Level Simulation (GLS); we had a problem with replacing
normal registers in the design with retention flops from the low-power library because
the tool (mentioned in Section 5.5) did some optimizations for the registers so as to
include more functionality, and hence the tool would be able to pick more optimized
cells (for area purposes) from the available standard cells in the library. However, when
we incorporated the CPF file with the original RTL files, the tool started complaining
about its inability to replace registers in the switchable domains with retention flops.
After some debugging and tracing, we found out that the retention cells provided by
the library are only simple flops, and cannot replace a combined block (of a register
and a multiplexer for example) that is produced by the tool’s optimization process
during synthesis. Turning off the optimization of the tool would be a complete waste,
because other parts of the design (other than registers inside switchable domains) still
need to be optimized; and thus, we forced the tool to use simple registers (turn off
optimization for registers) in those switchable domains, in order to be able to use
retention flops afterwards during the insertion of low-power design cells, to properly
implement the low-power intent described in CPF. This reveals the importance of
studying the library characteristics, and the cautious usage of the tool’s optimization
capabilities.

It is worth mentioning also that we have been faced with some problems in the
modelling of retention cells at the phase of powering-up switchable domains, which
also ate a lot of time for debugging the problem, to find out that some primitives inside
the retention flops do not restore their values correctly when activating the restore
signal; this is illustrated by a simple schematic in Figure 5.7. In this figure, the signal
”int res b2” represents the ”restore” signal, while the signal ”int res lq” represents the
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restoration value that should appear on the output port ”int res iq” at power up. The
schematic clearly shows that activating the restore signal (0 to 1 transition) has no effect
in restoring the correct value (’1’ in this case) at the output port. We had to modify
the description of the retention cell in the library in order to get correct behaviour. Our
Library Checker tool does not catch this type of modelling problems, and this would
be something for verification engineers to catch; which again shows the importance of
aggressive verification for low-power designs, as discussed in Section 2.1.1.

Figure 5.7: Schematic of the problem with retention flops

5.4 Test Vectors

For testing the design, a testbench is constructed; this testbench instantiates the
top-level design ”incrementer cascaded 3”, and drives the test vectors for testing the
design. Test vector stimuli have been manually generated in order to test the correct
functionality of the design without applying any low-power design techniques (for the
case of the baseline design), and also with applying the different low-power design
techniques mentioned in Section 5.1, in order to verify the correct power-sequences
in case of switchable domains, and guarantee the correct functionality of the design
after applying those low-power design techniques. These test vectors are also used to
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generate ”activity-figures” files, which are used by design tools in order to analyse the
power consumption of different design cases.

Test vectors first tests the functionality of the incrementer in the different modes:
reset, load and simple increment. Afterwards, control signals (as specified by the CPF
file) for different low-power design activities (such as: turning off/on switchable power
domains and activating & deactivating isolation and retention cells) are used to drive
the correct power sequences (described in Section 2.1.1.5) to test the correct operation
of the design when applying the low-power design techniques.
The incrementer has been designed (and tested) with a 100 MHz clock frequency as a
constraint; this frequency is useful for low-power applications, such as some embedded
processors and wireless sensor networks. The verilog code for the testbench module
used for analysing and testing the incrementer design is included in Chapter A in the
appendix.

A snap-shot of the simulation waveform for the baseline (and the similar MSV)
design case is shown in Figure 5.8. Also a snap-shot of the simulation waveform for the
PSO (and the similar PSO+MSV) design case is shown in Figure 5.9. Shut-off period is
coloured red in the waveforms, to indicate the ”corruption” of data during this period.

Figure 5.8: Simulation waveform for Baseline design
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Figure 5.9: Simulation waveform for PSO design

5.5 Experimental Results

In this section, we present the simulation results for running the incrementer designs
described in Section 5.2. Results include different metrics, namely: power and en-
ergy consumption figures, cell-count, total area, critical path delay and maximum fre-
quency. We also present here the theoretical expected reduction percentage in power
consumption, along with the actual reduction percentage, which is obtained from the
experimental results; this will be further explained in Section 5.6.

We first start off by presenting the results of the baseline incrementer design. Next
we introduce the results when applying only the PSO low-power technique. Afterwards,
results with the application of only the MSV low-power technique are introduced. Fi-
nally the results of applying both PSO and MSV low-power techniques are presented.

Note that for the case of PSO we have two different cases; the first includes adding
retention cells to the design, and the second does not add any retention cells to
the design (and consequently will need a reset on power-up). For each of these two
PSO designs, we shut-off the power for different periods of time during simulation
(specifically for ∼ 25% and ∼ 65% of the simulation time) in order to have more
insight about the effect of turning off the power for different periods of time. And
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thus, for the fairness of comparison, we run the design in all cases for two different
simulation periods; a short one for 787ns (in which we shut-off the power for ∼ 25% of
the time in switchable domains), and a long one for 1587ns (in which we shut-off the
power for ∼ 65% of the time in switchable domains).

Cadence Encounter Rtl Compiler [20] is used for RTL design synthesis and power
analysis, while Cadence Incisive Design Team Simulator [21] is used for simulation and
generation of activity figures. All measurements are done at the gate-level.
Wire-load models are used to estimate the effect of wire length and fanout on the resis-
tance, capacitance, and area of nets. As explained by the Digital Electronics Blog [22]:
”A wire load model attempts to predict the capacitance and resistance of nets in the
absence of placement and routing information. The estimated net capacitance and re-
sistance are used for delay calculation. Technology library vendors supply statistical
wire load models to support estimation of wire loads based on the number of fanout pins
on a net”. Default wire load model is used during synthesis, and thus RTL Compiler
extracts the required information from the technology library.

5.5.1 Baseline Results

Table 5.4 shows the simulation results in the baseline design.

Table 5.4: Baseline Power Results

Power Simulation time
Figure 787ns 1587ns

Leakage Power (nW) 327.586 327.987

Dynamic Power (µW) 64.896 32.304

Total Power (µW) 65.224 32.632

Total Energy (pJ) 51.33 51.787

Cell Count 739 739

Total Area (µm2) 1528.153 1528.153

Critical path delay (ns) 8.974 8.974

Maximum frequency (MHz) 111.433 111.433

5.5.2 PSO Results

In this case, we have two simulation cases:

1. Using retention cells; results of which are shown in Table 5.5.

2. Using no retention cells; results of which are shown in Table 5.6.

5.5.3 MSV Results

Table 5.7 shows the simulation results in MSV design.
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Table 5.5: PSO (using retention) Power Results

Power Simulation time
Figure 787ns 1587ns

Leakage Power (nW) 359.802 236.245

Dynamic Power (µW) 59.989 25.852

Total Power (µW) 60.349 26.089

Power Reduction (actual) 7.5% 20%

Power Reduction (theoretical) 16.25% 42.25%

Total Energy (pJ) 47.495 41.403

Cell Count 805 805

Total Area (µm2) 2163.193 2163.193

Critical path delay (ns) 9.271 9.271

Maximum frequency (MHz) 107.863 107.863

Table 5.6: PSO (using no retention) Power Results

Power Simulation time
Figure 787ns 1587ns

Leakage Power (nW) 298.413 211.281

Dynamic Power (µW) 62.157 27.674

Total Power (µW) 62.455 27.885

Power Reduction (actual) 4.2% 14.5%

Power Reduction (theoretical) 16.25% 42.25%

Total Energy (pJ) 49.153 44.255

Cell Count 805 805

Total Area (µm2) 1598.008 1598.008

Critical path delay (ns) 8.974 8.974

Maximum frequency (MHz) 111.433 111.433

Table 5.7: MSV Power Results

Power Simulation time
Figure 787ns 1587ns

Leakage Power (nW) 364.005 364.329

Dynamic Power (µW) 63.664 31.685

Total Power (µW) 64.028 32.049

Power Reduction (actual) 1.8% 1.8%

Power Reduction (theoretical) 6.6% 6.6%

Total Energy (pJ) 50.39 50.862

Cell Count 902 902

Total Area (µm2) 1816.920 1816.920

Critical path delay (ns) 9.99 9.99

Maximum frequency (MHz) 100.1 100.1
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5.5.4 PSO+MSV Results

Table 5.8 shows the simulation results when using PSO+MSV low-power techniques
combined.

Table 5.8: PSO+MSV Power Results

Power Simulation time
Figure 787ns 1587ns

Leakage Power (nW) 399.320 318.463

Dynamic Power (µW) 64.781 31.706

Total Power (µW) 65.180 32.024

Power Reduction (actual) 0.067% 1.86%

Power Reduction (theoretical) 48.1% 48.6%

Total Energy (pJ) 51.297 50.823

Cell Count 977 977

Total Area (µm2) 2504.351 2504.351

Critical path delay (ns) 10 10

Maximum frequency (MHz) 100 100

The previously mentioned results are graphically represented as follows:

1. Leakage power consumption in Figure 5.10

2. Dynamic power consumption in Figure 5.11

3. Total power consumption in Figure 5.12

4. Total energy consumption in Figure 5.13

All of the charts (except for the leakage power chart) shows that using PSO with
retention saves the most on power and energy consumption; however, this comes at
the expense of a huge overhead in area usage (as shown in Figure 5.14, and as will
be emphasized in the next section). PSO with no retention saves the most on leakage
power consumption, with a much smaller area overhead than the case of PSO with
retention cells, and no degradation in speed (as shown in Figure 5.14). This shows that
the individual usage of the PSO low-power design technique is the most effective in
reducing both components of power consumption, leakage and dynamic.

5.6 Comparison with Baseline

In this section, we will try to verify the effectiveness of low-power design techniques by
comparing the power results of designs using those techniques to the power results of
the baseline design.
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Figure 5.10: Leakage power consumption in different designs

5.6.1 Baseline VS PSO

For the PSO design case, we expect a theoretical reduction in power consumption that
amounts to the fraction of time during which the power is shut off (0.25 for the short
simulation period, and 0.65 for the long simulation period) multiplied by the fraction
of power consumed by the blocks inside the switchable power domains. In our design,
we have the two instances ”incr1” and ”incr2” inside switchable power domains, and
these represents ∼ 65% of the cells of the design (245 cells for the first and 245 for the
second); consequently, these two blocks should consume ∼ 65% of the power of the
design.
Thus, for the short simulation period, we expect a power reduction of
0.25 × 0.65 = 16.25%; while for the long simulation period, we expect a power
reduction of 0.65 × 0.65 = 42.25%.

In this case we have two comparison cases; PSO with retention logic and PSO with
no retention logic.

5.6.1.1 With retention logic

For the short-period simulation, we find that the leakage power is not reduced (as
expected), but rather increased by ∼ 9% (normalized to baseline); this happened
because of the insertion of around 66 extra isolation cells (∼ 9% of the total cell
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Figure 5.11: Dynamic power consumption in different designs

count of the baseline design), and the usage of retention cells in the design, which
leak more than the normal flip-flops (FFs) used in the baseline design. The result
of the usage of these two types of cells adds around 32.2nW to the leakage power
consumption; however, if we only looked at the combinatorial parts of the design
(basically the adders) we will find that the leakage power is reduced from 101.72nW to
86.664nW, that is ∼ 15% reduction in leakage power of combinatorial logic, which is
approximately our theoretical expectation for power consumption in this design case.
As for the dynamic power, we find that it is reduced by ∼ 7.5% compared to baseline;
obviously the reduction in power consumption is smaller than the expected theoretical
reduction, the reason for which is again attributed to the usage of extra isolation
cells, and also the usage of retention cells, both of which needs to be always-on (even
during shut-off periods), and thus they consume a fraction of the power that should
be reduced using the PSO technique. For the energy consumption, we find that the
total energy has been reduced by ∼ 7.5% compared to baseline.

For the long-period simulation, we find that the leakage power is reduced by ∼ 28%
(normalized to baseline); this happened because of the long period of power-down,
which compensated for and outweighed the overhead in leakage power caused by
adding isolation and retention cells. This reduction is again smaller than the expected
theoretical power reduction; however, looking again at only the combinatorial power
consumption of the incrementer, we find that the leakage power consumption was
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Figure 5.12: Total power consumption in different designs

reduced from 101.717nW to 64.157nW, that is ∼ 37% reduction in leakage power of
combinatorial logic, which is closer to our theoretical expectation for power reduction
in this design case. As for the dynamic power, we find that is has been reduced by
around 20% compared to baseline, because of the long shut-off period of switchable
domains, which is smaller than the theoretical expectations, again for the same reasons
mentioned for the short simulation period. Also the energy consumption has been
reduced by 20% over baseline.

This reduction in power consumption comes at the expense of an increase in area of
about 41.5%, and a reduction in speed of around 3.5 MHz (3% speed degradation). And
this shows that this low-power design technique should only be used with big designs,
in which the reduction in power consumption will outweigh the overhead in area usage
and speed degradation.

5.6.1.2 Without retention logic

For the short-period simulation, we find that the leakage power is reduced by ∼ 9%
(normalized to baseline); this is because of the obvious reason of not using retention
cells in this design case. Examining the combinatorial parts of the design, we find that
the leakage power is reduced from 101.72nW to 86.59nW, that is ∼ 15% reduction
in leakage power of combinatorial logic, which is approximately our theoretical
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Figure 5.13: Total energy consumption in different designs

expectation for power consumption in this design case.
As for the dynamic power, we find that it is reduced by ∼ 3% compared to baseline,
which is odd since we expected a bigger reduction in dynamic power compared to the
case of using PSO with retention cells in the design. However, this can be explained by
the fact that we had to change the input stimuli for this specific case, because we need
a reset signal before deactivating the isolation signal, so that we won’t have floating
values on the nets after getting out of the power down period. So, in an attempt
to see the effect of the reset signal here, we tried simulating the baseline design and
the PSO design with retention cells, using the same stimuli as that in PSO without
retention cells; we found that the dynamic power consumption in the PSO design
with retention cells case became 72.917 µW, and the dynamic power consumption for
the baseline became 70.291 µW; which means that we had an increase in dynamic
power consumption of around 3.7% over baseline for the case using retention cells,
but ∼ 14.8% reduction over baseline in the case when not using retention cells; which
explains the fact that dynamic power consumption did not get much reduced when
using PSO with no retention cells; that is because of the need for a reset signal at
power up.
For the energy consumption, we find that it has been reduced by 2.75% over baseline,
for the same reason of the extra reset stimuli; this reduction becomes ∼ 11% when
using the same stimuli with the baseline design.
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(a) Area overhead in different designs

(b) Speed degradation in different designs

Figure 5.14: Overhead due to the usage of low-power design techniques

For the long-period simulation, we find that the leakage power is reduced by ∼ 36%
(normalized to baseline); this happened because of the long period of power-down,
which compensated for and outweighed the overhead in leakage power caused by
adding isolation cells. It also becomes clear how much leakage power is consumed by
retention cells, since the reduction in leakage power for the current case is much more

61



than the case using retention cells.
As for the dynamic power, we find that is has been reduced by around ∼ 14%
compared to baseline; the reason for this small reduction (compared to the theoretical
expectation) is attributed to the usage of a reset signal at power up and the usage
of extra isolation cells. We also found a similar reduction of ∼ 14% for energy
consumption.

This reduction in power consumption comes at the expense of an increase in area
usage of about 4.6%, and no reduction in speed. Which shows that this technique
has a lower overhead on both area usage and speed degradation, but it has a smaller
reduction of power consumption (due to the need of an extra reset at power up) and it
also cannot be used except for the cases where preserving the state of the design during
shut-off periods is not necessary.

5.6.2 Baseline VS MSV

For the MSV design case, we try to calculate the theoretical reduction in dynamic
power consumption using the equations (2.2) and (2.3) given in Chapter 2. We can
see that the dynamic power consumption has a quadratic dependence on the supply
voltage, and consequently we get the first order derivative to evaluate the effect of the
difference in supply voltage on the dynamic power consumption, which gives us a linear
dependence of [2×∆Vdd] (assuming that all other factors contributing to the dynamic
power consumption are kept constant), where ∆Vdd is the difference in supply voltage.
In our design, we have a 100mV reduction in the supply voltage of the instance
”incr1”; and since this instance represents ∼ 33% of the cells of the design (245 cells
out of 739 cells), this block should consume ∼ 33% of the power of the design. Thus,
we expect a dynamic power reduction of 2 × 100mV × 33% = 2 × 0.1 × 0.33 = 6.6%.
As for the leakage power consumption, we use equation (2.4) in order to pre-
dict the power savings. Here we have a mixed linear and exponential de-
pendence on the supply voltage that might roughly be approximated as:

Vdd×ISUBTH ≈ Vdd× [1−e
−Vdd

Vt ]; differentiating this formula with respect to the supply

voltage, we get: [Vdd × e
−Vdd

Vt ] + [1 − e
−Vdd

Vt ]. Substituting by Vdd = ∆Vdd = 0.1, and
multiplying by 0.33 which represents the fraction of cell count of the instance inside
the low-voltage power domain, we get a leakage power reduction expectation of ∼ 6%.

For the short-period simulation, we find that the leakage power is not reduced (as
expected), but rather increased by ∼ 11% (normalized to baseline); this happened
because of the insertion of around 134 extra level-shifter cells (∼ 18% of the total
cell count of the baseline design); the result of the usage of this type of cells adds
around 58.536nW to the leakage power (∼ 18% of the total baseline leakage power
consumption). However, if we only looked at the combinatorial parts of the design
(basically the adders) we will find that the leakage power is reduced from 101.72nW
to 95.196nW, that is ∼ 6.5% reduction in leakage power of combinatorial logic, which
meets our expectation of leakage power reduction in the design. As for the dynamic
power, we find that it is reduced by ∼ 2% compared to baseline (which shows that
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PSO low-power technique saved more than MSV). Looking at the dynamic power
consumption of the adders, we find that it went from 1.9516 µW in baseline, to 1.8651
µW here in MSV, which means we had ∼ 4.5% dynamic power reduction; which is
close to our power reduction expectation, but does not match it exactly due to the
multiple approximations we did for the expression of ISUBTH . Comparing the total
energy reduction for the MSV design, we find that it is around ∼ 2% reduction over
baseline.
The same results were obtained for the long-period simulation, since we did not change
anything that would affect the power consumption in this case.

This reduction in power consumption comes at the expense of an increase in area
of about 19%, and a reduction in speed of around 11.3MHz (10% speed degradation).
From these results we conclude that the MSV low-power technique is only suitable for
application with large designs, because the overhead of insertion of level-shifter cells
outweighs the benefit in power reduction that we might get from the reduction of supply
voltages, not to mention the area overhead and the performance degradation that the
application of this technique causes (as explained earlier).
We can also see that power-savings using the PSO technique is much more than those
using MSV (at the expense of bigger area overhead for the PSO case); on the other
hand, MSV has an advantage over PSO in that it does not completely shut down some
power domains (as in PSO), but only reduces the supply voltage of some domains that
does not require high performance, and the whole design remains completely functional
the whole time.

5.6.3 Baseline VS PSO+MSV

For this design case, the theoretical reduction in power consumption should be the
combined expectations of reduction in the Section 5.6.1 and Section 5.6.2. Thus, for
the leakage power consumption, we expect a reduction of 16.25 + 6 = 22.25% for the
short simulation period, and a reduction of 42.25 + 6 = 48.25% for the long simulation
period.
As for the dynamic power consumption, we expect a reduction of 16.25+6.6 = 22.85%
for the short simulation period, and a reduction of 42.25 + 6 = 48.85% for the long
simulation period.

For the short-period simulation, we find that the leakage power is not reduced (as
expected), but rather increased by ∼ 22% (normalized to baseline); this happened
because of the insertion of all extra logic for low power; retention cells + isolation cells
+ level shifter cells. However, if we only looked at the combinatorial parts of the design
(basically the adders) we will find that the leakage power is reduced from 101.72nW
to 81.272nW, that is ∼ 20% reduction in leakage power, which is within the range of
our expectations for leakage power reduction (exact matching is not achieved again
because of the approximations we made in calculating the theoretical leakage power
reduction). As for the dynamic power, we find that it is reduced by ∼ 0.18% compared
to baseline; which shows that PSO and MSV low-power techniques saved more when
applied separately, better than PSO and MSV combined. This mainly happened
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due to the insertion of a huge amount of extra standard cells (238 extra standard
cell, with a percentage of 32.2% of the total cell count of the baseline design) to
preserve the correct functionality of the design when using these low-power design tech-
niques combined. As for the total energy consumption, it has been reduced by ∼ 0.17%.

For the long-period simulation, we find that the leakage power is reduced by ∼ 3%
(normalized to baseline), and the dynamic power has been reduced by around ∼ 2%
compared to baseline. As for the energy consumption, it has been reduced by ∼ 2%
over baseline.

The previous analysis shows that PSO and MSV low-power design techniques
saved more when applied individually than when applied combined. This case is not
the general case, but it only happened in our case because we are examining a really
small design; and thus, we should not just use all the power techniques we know about
in the design without careful analysis, because as we can see from our incrementer
design example, using combined low-power design techniques can sometimes have
worse results than those using individual low-power design techniques.

The overhead of the combined application of these two techniques is the area increase
of ∼ 64%, and the speed reduction of 11.43MHz (∼ 10% speed degradation).

5.7 Recommendations for the Efficient Usage of Low-Power

Techniques

As we can observe from the comparisons in Section 5.6, the usage of low-power design
techniques has to be done wisely. Those techniques cannot be used for small designs,
because then the overhead power consumption added due to the insertion of low-power
design cells (retention, isolation and level-shifters) will outweigh the benefits that we
might have in reducing the power consumption of the chip due to the usage of these
low-power design techniques, and in some cases, the usage of the these techniques may
even increase the power consumption. Consequently, these low-power design techniques
are best suited for big designs, in which the added low-power design cells represent a
small fraction of the complete design cell-count.
Also attention has to be made to the overhead in area usage, and the performance
degradation due to the usage of these low-power design techniques. Careful trade-offs
analysis has to be made in order to meet the power budget of the design, without
violating the area and performance constraints.

5.8 Summary

In this chapter we tried to exercise the application of different low-power design tech-
niques on an incrementer design. PSO and MSV low-power design techniques were
used in this experiment, since they play a very important role in reducing both leakage
and active power consumption. Low-power standard cells were used from the GF40LP
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library, which is one of the libraries we verified using our Library Checker tool. De-
scriptions and schematics of the different design experiments have been introduced,
along with the results of simulation showing different power, area and speed figures
for each case. Comparisons between the baseline design and designs using low-power
design techniques were presented. Results showed that the usage of low-power design
techniques is best suited for big designs; also the insertion of retention logic must be
done only when needed. This way, we can make sure that the reduction in power con-
sumption of the chip will outweigh the increase in power consumption caused by the
overhead of low-power design cells (such as: retention and level-shifter cells) that have
to be inserted into the design.
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Conclusion 6
After almost one year of hard and dedicated work, a great deal of progress has been
made in this thesis project. Summary and future work related to this project are
discussed in this chapter.

6.1 Summary

This thesis work presents a complete checker for the consistency of the different
formats of standard cells in standard cell libraries. Different checkers implemented in
the tool are specified, along with their function. Preparations needed for building the
checkers have been discussed, such as building parsers for the different library formats
in order to capture the pieces of information required by the checkers to do their job.
A complete algorithm (which we named Grid Formation & Centre Inclusion) for the
verification of the layout consistency of standard cells between the LEF and the GDSII
library formats has been proposed and discussed (along with its implementation) to
avoid any routing problems that might occur in chip design due to inconsistencies in
layouts of standard cells between these two library formats.
The checker has been tested using small testcases created to test the implementation
statically. The checker has also been used to verify the consistency of different standard
cell libraries (such as CMOS 140nm, 90nm and 40nm libraries), and some results from
running the checkers on the latest GLOBALFOUNDRIES low-power 40nm (GF40LP)
standard cell library have been presented in the thesis.

A final chapter of this thesis discusses the effectiveness of the application of common
low-power design techniques, using the GF40LP standard cell library that we verified
using our Library Checker tool, on a simple incrementer design.
Two of the most common low-power design techniques are used in this design experi-
ment, namely: PSO (power shut-off) and MSV (Multiple Supply Voltage) techniques.
Simulation results about area usage, speed and power & energy consumption for dif-
ferent design cases are presented. Furthermore, design cases using low-power design
techniques are compared to the baseline design (that does not use any low-power de-
sign techniques) in order to calculate the actual reduction in power consumption; also
comparisons between the actual power reduction obtained from simulation and the
expected theoretical power reduction have been conducted.

6.2 Future Work

The algorithm used for layout consistency checking has a limitation that lies mainly
in its inability to handle irregular shapes, such as shapes with inclined lines. We had
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some ideas about solving this limitation, but time was not really on our side. We
believe that fixing this limitation would allow our layout consistency checker to be
used to verify the layout of complete designs, instead of being used only for standard
cells.
Another improvement that we thought of for our tool is building a simple Graphical-
User-Interface (GUI) for using our tool, instead of running it only from the Command
Line Interface (CLI).
A further improvement also is to draw the mismatches in layout between LEF and
GDSII in a simple graphical form (using Tk), in order to help the user better visualize
the errors in the layout, and help the user to fix them easily. All of these improvements
are left as a future work for our Library Checker tool.

Further work on the experimentation of the low-power design techniques is also
needed. Trying more low-power design techniques such as: Dynamic Voltage, Frequency
Scaling (DVFS) and Body-biasing and more low-power techniques is needed in order
to further reduce the power consumption in SoC designs, and study the trade-offs for
area usage and performance.
Also large designs need to be used since it proved from our experiments in this thesis
work that those low-power design techniques are not effective for small designs.
High frequencies also need to be tested (around 1 to 2GHz frequency range) with the
usage of these low-power design techniques, since these frequencies represent the average
operating frequency of processors in mobile and hand-held devices.
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Testbench Code A
// Testbench for module ”incrementer_cascaded_3”

‘ timescale 100ps / 1ps

5 module tb_incrementer_3_PSO_MSV ;

reg [ 1 : 0 ] pg_test ;
reg [ 1 : 0 ] iso_test ;
reg [ 1 : 0 ] save_test ;

10 reg [ 1 : 0 ] restore_test ;
reg [ 6 3 : 0 ] in_test ;
reg clk_test , load_test , reset_in_test ;
wire [ 6 3 : 0 ] out_test ;
wire reset_out_test ;

15
reg clk_gate , clk ;

// Instantiation

incrementer_cascaded_3 incr_test ( pg_test , iso_test , save_test ,
restore_test , in_test , out_test , clk , load_test ,

20 reset_in_test , reset_out_test) ;

‘ ifdef dump_vcd

initial

25 begin

$dumpfile(” tb_activity . vcd”) ;
$dumpvars ;

end

‘ endif
30

// Generating clock

always

#5 clk_test = ˜clk_test ;
35

// Clock gating procedure

always @ ( clk_gate , clk_test)
begin

clk = clk_test & clk_gate ;
40 end

initial // Stimulus

begin
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pg_test = 0 ; // Shutoff condition de−asserted
45 iso_test = 0 ;

save_test = 0 ;
restore_test = 0 ;
in_test = 0 ;
clk_test = 0 ;

50
clk_gate = 1 ;
load_test = 0 ;
reset_in_test = 0 ;

55 // Checking reset

#1 reset_in_test = 1 ;
@ ( posedge clk ) ; // Waiting for the next rising_edge of the clock (

since reset is synchronous)
#2;
@ ( posedge clk ) ;

60 #2;
// Checking normal counting

reset_in_test = 0 ;
@ ( posedge clk ) ; // Each rising_edge of the clock increments the

output count by one

#2;
65 @ ( posedge clk ) ;

#2;
@ ( posedge clk ) ;
#2;
@ ( posedge clk ) ;

70 #2;
@ ( posedge clk ) ;
#2;
@ ( posedge clk ) ;
#2;

75 @ ( posedge clk ) ;
#2;
@ ( posedge clk ) ;
#2;
@ ( posedge clk ) ;

80 #2;
@ ( posedge clk ) ;
#2;

// Checking load

85 load_test = 1 ;
in_test = 64 ’ d50 ;
@ ( posedge clk ) ; // Waiting for the next rising_edge of the clock (

since load is synchronous)
#2;
@ ( posedge clk ) ;

90 #2;
@ ( posedge clk ) ;
#2;
// Checking normal counting
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load_test = 0 ;
95 @ ( posedge clk ) ;

#2;
@ ( posedge clk ) ;
#2
@ ( posedge clk ) ;

100 #2;
// Checking power features

// Gating the clock

clk_gate = 0 ;
// Saving using retention signals

105 #10 save_test = 2 ’ b11 ;
#2;
// Isolating the powered down outputs

#10 iso_test = 2 ’b11 ;
// De−asserting the save signals

110 save_test = 0 ;
#2;
// Powering down switchable domains

#10 pg_test = 2 ’b11 ;
#2;

115 #100; // Waiting for some period , to simulate a period of inactivity in

switchables domains .
#100;
// Powering up switchable domains

#10 pg_test = 2 ’b00 ;
in_test = 64 ’d60 ;

120 #2;
#100;
#100;
// De−asserting retention ( Restoring)
#10 restore_test = 2 ’b11 ;

125 #2;
// De−asserting isolation

#10 iso_test = 2 ’b00 ;
#2;
// De−asserting restore

130 #10 restore_test = 2 ’b0 ;
#2;
// Ungating the clock

#10 clk_gate = 1 ;
@ ( posedge clk ) ; // Checking normal counting after powering up

switchable domains

135 #2;
@ ( posedge clk ) ;
#2;

// Ending Simulation

140 #100 $finish ;
end

endmodule
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