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Abstract
Smoothness-increasing accuracy-conserving (SIAC) filtering is an area of increasing interest
because it can extract the “hidden accuracy” in discontinuous Galerkin (DG) solutions. It
has been shown that by applying a SIAC filter to a DG solution, the accuracy order of the
DG solution improves from order k + 1 to order 2k + 1 for linear hyperbolic equations over
uniform meshes. However, applying a SIAC filter over nonuniform meshes is difficult, and
the quality of filtered solutions is usually unsatisfactory applied to approximations defined
on nonuniformmeshes. The applicability to such approximations over nonuniformmeshes is
the biggest obstacle to the development of a SIAC filter. The purpose of this paper is twofold:
to study the connection between the error of the filtered solution and the nonuniform mesh
and to develop a filter scaling that approximates the optimal error reduction. First, through
analyzing the error estimates for SIAC filtering, we computationally establish for the first
time a relation between the filtered solutions and the unstructuredness of nonuniformmeshes.
Further, we demonstrate that there exists an optimal accuracy of the filtered solution for a
given nonuniform mesh and that it is possible to obtain this optimal accuracy by the method
we propose, an optimal filter scaling. By applying the newly designed filter scaling over
nonuniform meshes, the filtered solution has demonstrated improvement in accuracy order
as well as reducing the error compared to the original DG solution. Finally, we apply the
proposed methods over a large number of nonuniform meshes and compare the performance
with existing methods to demonstrate the superiority of our method.

Keywords Discontinuous Galerkin method · Post-processing · SIAC filtering ·
Superconvergence · Nonuniform meshes · Unstructuredness
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1 Introduction

In practical applications, there are strong motivators for the adoption of unstructured meshes
for handling complex geometries and using adaptive mesh refinement techniques. Based on
this practical necessity, it is widely believed that discontinuous Galerkin methods, which pro-
vide high-order accuracy on unstructured meshes, will become one of the standard numerical
methods for future generations. Along with the rapid growth of the DG method, the super-
convergence of the DG method has become an area of increasing interest because of the
ease with which higher order information can be extracted from DG solutions by applying
smoothness-increasing and accuracy-conserving (SIAC) filtering. However, SIAC filters are
still limited primarily to structured meshes. For general nonuniform meshes, the quality of
the filtered solution is usually unsatisfactory. The ability to effectively handle nonuniform
meshes is an obstacle to the further development of a SIAC filter.

This paper focuses on applying a SIAC filter for DG solutions over nonuniform meshes.
Specifically, this study focuses on the barrier to applying SIAC filters over nonuniform
meshes—the scaling. This problem was noted in [3], which extends a postprocessing tech-
nique for enhancing the accuracy of solutions [1] to linear hyperbolic equations. The
postprocessing technique was renamed the Smoothness-Increasing Accuracy-Conserving
filter in [5]. A series of studies of different aspects of SIAC filters are presented in [5,11,20].
For uniformmeshes, it was shown that by applying a SIAC filter to a DG approximation at the
final time, the accuracy order improves from k + 1 to 2k + 1 for linear hyperbolic equations
with periodic boundary conditions [3]. This superconvergence of order 2k + 1 is promising;
however it is limited to uniform meshes. Only for a particular family of nonuniform meshes,
smoothly-varying meshes, have the filtered solutions been proven to have a superconver-
gence order of 2k + 1 [20]. As for general nonuniform meshes, the preliminary theorem in
[3] provides a solution, but it is not very useful in practice. The filtered solutions can still
be improved. Further, the computational results for relatively unstructured triangular meshes
[12] suggest that it is possible to reduce the errors of the DG solutions through a suitable
choice of filter scalings for approximations defined over unstructured meshes. However, in
[12] there is no clear accuracy order improvement and no guarantee of error reduction. Also,
the lack of theoretical analysis makes it difficult to evaluate the quality of the filtered solu-
tions. There has been some work related this topic, such as the nonuniform filter proposed
in [15,16].

The primary goal of this paper is to address these challenges and try to improve the quality
of the DG solutions over general nonuniform meshes. Our main contributions are:
Optimal accuracy First, we study the error estimates of the SIAC filter for uniform and
nonuniform meshes and point out the difficulties for the filter over nonuniform meshes.
Then, we computationally establish for the first time a relation between the filtered solutions
and the unstructuredness of nonuniform meshes. Further, we demonstrate that for a given
nonuniform mesh, there exists an optimal accuracy (optimal error reduction) of the filtered
solution.
Optimal scaling To approximate this optimal accuracy, we first analyze the relation between
the filter scaling and the error of filtered solutions for different nonuniformmeshes. Then, we
introduce a measure of the unstructuredness of nonuniform meshes and propose a procedure
that adjusts the scaling of a SIAC filter according to the unstructuredness of the given nonuni-
form mesh. Also, we demonstrate that with the newly designed optimal scaling, the filtered
solution has a higher accuracy order, and the errors are reduced compared to the original DG
solutions even for the worst nonuniform meshes.
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Scaling performance validation Finally, to ensure the proposed scaling is a robust algorithm
that can be used in practice, we validated the performance of the proposed scaling over a
large number of nonuniform meshes and compared with other commonly used scalings to
illustrate that the accuracy of the DG solution is improved by using the proposed scaling and
its superiority compared to existing methods.

This paper is organized as follows. In Sect. 2, we review the DG method and SIAC filters
as well as the relevant properties. In Sect. 3, we investigate the effects of the filter scaling on
the accuracy of the filtered solution. We then introduce a measure of the unstructuredness of
nonuniform meshes and provide an algorithm to approach the optimal accuracy in Sect. 4.
Also, in Sect. 4, we provide a scaling performance validation for the proposed scaling along
with other commonly used scalings. Numerical results for different one- and two-dimensional
nonuniform meshes are given in Sect. 5. The conclusions are presented in Sect. 6.

2 Background

In this section,we review the necessary properties of discontinuousGalerkinmethods, the def-
inition of nonuniform meshes for the purposes of this article, and the Smoothness-Increasing
Accuracy-Conserving (SIAC) filter.

2.1 Construction of NonuniformMeshes

Before introducing the discontinuous Galerkin method, we introduce the structure of the
nonuniform meshes that will be used in this paper. The main construction of the nonuniform
meshes are similar to those meshes used in [11]:

Mesh 2.1

x 1
2

= 0, xN+ 1
2

= 1, x j+ 1
2

=
(
j + b · r j+ 1

2

)
h, j = 1, . . . , N − 1

where
{
r j+ 1

2

}N−1

j=1
are random numbers between (−1, 1), and b ∈ (0, 0.5] is a constant

number. Here, h =
x
N+ 1

2
−x 1

2
N is a function of N, in this way, one can reduce the structure

added by increasing the number of elements. The size of element �x j = x j+ 1
2

− x j− 1
2
is

between ((1− 2b)h, (1+ 2b)h). In order to save space, we present an example with b = 0.4
only. Other values of b such as 0.1, 0.2 and 0.45 have also been studied and are consistent
with the results presented herein.

Mesh 2.2 We distribute the element interface, x j+ 1
2
, j = 1, . . . , N − 1, randomly for the

entire domain and only require

�x j = x j+ 1
2

− x j− 1
2

≥ b · h, j = 0, . . . , N .

In this paper (except the performance tests in Sect. 4), we present the case where b = 0.5
for this mesh. Other values of b such as 0.6, 0.8 have also been studied and are consistent
with the results presented herein.

Remark 2.3 Mesh 2.1 is a quasi-uniformmesh since �xmax
�xmin

≤ 1+2b
1−2b .Mesh 2.2 ismore unstruc-

tured than Mesh 2.1 since in the worst case �xmax
�xmin

≈ 1−b
b N which is unbounded as N → ∞.
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Mesh 2.1

Mesh 2.2

Fig. 1 Illustration of Meshs 2.1 and 2.2. Here the largest-to-smallest element ratio is about 4.5 for Mesh 2.1
(top), and 33.1 for Mesh 2.2 (bottom)

It is expected that the DG approximation and the filtered solution are of better quality for
Mesh 2.1 than for Mesh 2.2. Illustrations of these meshes are given in Fig. 1.

We will analyze the applicability of the SIAC filter scaling factor utilizing these meshes.

2.2 Discontinuous Galerkin Methods

Here, we briefly describe the discontinuous Galerkin method; more details can be found in
[2,4]. As an illustrative example, we consider a multi-dimensional linear hyperbolic equation
of the form

ut +
d∑

i=1

Aiuxi + A0u = 0, (x, t) ∈ � × [0, T ],

u(x, 0) = u0(x), (2.1)

where u0 is sufficiently smooth, the coefficients Ai are constants and � = [a1, b1] × · · · ×
[ad , bd ] ⊂ R

d . Let K represent an element in a quadrilateral tessellation Th of the domain
�. Discontinuous Galerkin methods seek an approximation uh in the space of piecewise
polynomials of degree ≤ k,

V k
h =

{
ϕ : ϕ|K ∈ P

k, ∀K ∈ Th
}

,

and the DG approximation uh is determined by the scheme

((uh)t , vh)K −
d∑

i=1

(aiuh, (vh)xi )K +
d∑

i=1

∫

∂K
ai ûhvhni ds + (a0uh, vh)K = 0, (2.2)

for any vh ∈ V k
h , and ûh is the flux. For the results presented in this paper, we have utilized

one particular choice—the upwind flux. Here, ( f , g) denotes the standard inner product:

( f , g)K =
∫

K
f g dK .

2.3 Superconvergence in the Negative Order Norm

The DG method has many important properties. The most relevant property for the purposes
of this paper are the accuracy order of the divided differences of the DG approximation. In
the L2 norm it is k + 1 which aides in proving the superconvergence of order 2k + 1 in the
negative order norm. These properties are the theoretical foundations of SIAC filters (see
[3,11]) and define the choice of the number of B-splines in the SIAC convolution kernel. To
highlight this connection, the error of filtered solution can be viewed a linear combination
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of the errors from the choice of the number of B-splines used in the filter as well as the
discretization error,

‖u − uh‖0 ≤ C1H
2k+1

︸ ︷︷ ︸
Number of B-Splines

+C2 ‖∂α
H (u − uh)‖−(k+1)︸ ︷︷ ︸
Discretization Error

.

This is discussed further in Sect. 3.2. Because of the importance of the divided differences
in the error estimates, in this section, we first discuss the properties of the divided difference
of DG approximation. For uniform meshes, the main theorem is given below.

Theorem 2.1 (Cockburn et al. [3]) Let u be the exact solution of Eq. (2.1) with periodic
boundary conditions, and uh the DG approximation derived by scheme (2.2). For a uniform
mesh, the approximation and its divided differences in the L2 norm are:

‖∂α
h (u − uh)‖0,� ≤ Chk+1, (2.3)

and in the negative order norm:

‖∂α
h (u − uh)‖−(k+1),� ≤ Ch2k+1, (2.4)

where α = (α1, . . . , αd) is an arbitrary multi-index and h is the diameter of the uniform
elements.

This theorem is valid assuming that the exact solution has sufficient regularity (belongs to a
Hilbert space of order 2k + 2). Unfortunately, the error estimates of the DG approximation
and its divided differences for nonuniform meshes become much more challenging, and for
this case the estimates (2.3) and (2.4) are valid only for the DG approximation itself, that is,

Lemma 2.2 (Cockburn et al. [3]) Under the same conditions as in Theorem 2.1. The DG
approximation for a nonuniform mesh satisfies

‖u − uh‖0,� ≤ Chk+1,

and in the negative order norm:

‖u − uh‖−(k+1),� ≤ Ch2k+1. (2.5)

For the divided differences, ∂α
h uh , for nonuniform meshes, instead of (2.4), we have only

the following lemma:

Lemma 2.3 Under the same conditions as in Lemma 2.2, given a constant scaling H, for
nonuniformmeshes, the divided differences of the DG approximation in the L2 norm satisfies

‖∂α
H (u − uh)‖0,� ≤ Cαh

2k+1H−|α|,

and in the negative order norm:

‖∂α
H (u − uh)‖−(k+1),� ≤ Cαh

2k+1H−|α|,

where α = (α1, . . . , αd) is an arbitrary multi-index.

Proof c.f. [11,14]. ��
Remark 2.4 Lemma-2.3 was first introduced as a conjecture in [3], and presented as a lemma
with proof in [11]. In this paper, h is defined during the construction of Meshs 2.1 and 2.2,

h =
x
N+ 1

2
−x 1

2
N is a function of the element N . Here, we note that Lemma 2.3 is valid for

arbitrary constant H , but wewill discuss how to choose the optimal scaling H in the following
sections.
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The relation between the L2 norm and the negative order norms are introduced in the
following lemma:

Lemma 2.4 (Bramble and Schatz [1]) Let �0 ⊂⊂ �1 and s be an arbitrary but fixed
nonnegative integer. Then for u ∈ Hs(�1), there exists a constant C such that

‖u‖0,�0 ≤ C
∑
|α|≤s

‖Dαu‖−s,�1 .

In Table 1, we provide a basic example of the divided difference operation over a nonuni-
form mesh (randomly chosen among Meshes 2.2). In this table, Pu is the L2 projection of
u(x, 0) = sin(x) over a randomly generated nonuniformmesh. From Table 1, we can see that
for α ≥ 1, the divided differences ∂α

h Pu only have accuracy order of k+1−α. This example
clearly suggests that the nonuniform mesh estimate (2.5) no longer holds, and the estimates
in Lemma 2.3 can not be improved without further assumptions on the nonuniformity of the
mesh.

Remark 2.5 In this paper, the main results are based on the L2 norm. However, we also
included the numerical results in the L∞ norm for consistency with existing literature.

2.4 SIAC Filter

We use the classical SIAC filter that stems from the work of Bramble and Schatz [1], Thomée
[22] and Mock and Lax [14]. An extension of this technique to discontinuous Galerkin
methods was introduced in [3]. Motivated by [3], a series of publications have studied SIAC
filtering for DG methods from various aspects, such as [5,12,18,19,21].

SIAC filtering is applied only at the final time T of the DG approximation, and the filtered
solution u�

h , in the one-dimensional case is given by

u�
h(x, T ) =

(
K (2r+1,�)

H �uh
)

(x, T ) =
∫ ∞

−∞
K (2r+1,�)

H (x − ξ)uh(ξ, T )dξ,

where the filter, K (2r+1,�), is a linear combination of central B-splines,

K (2r+1,�)(x) =
2r∑

γ=0

c(2r+1,�)
γ ψ(�)

(
x −

(
− r

2
+ γ

))
, (2.6)

and the scaled filter is K (2r+1,�)
H (x) = 1

H K (2r+1,�)
( x
H

)
with scaling H (H = h for uniform

meshes). Here, ψ(�)(x) is the � order central B-spline, which can be constructed recursively
using the relation

ψ(1) = χ[−1/2,1/2)(x),

ψ(�)(x) = 1

� − 1

(
�

2
+ x

)
ψ(�−1)

(
x + 1

2

)

+ 1

� − 1

(
�

2
− x

)
ψ(�−1)

(
x − 1

2

)
, � ≥ 2. (2.7)

Typically, the number of B-splines is chosen as 2r + 1 = 2k + 1, and the order of B-splines
is chosen as � = k + 1. In the remainder of the paper, we use 2k + 1 B-splines of order
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k + 1. The coefficients, c(2r+1,�)
γ , are calculated by enforcement of the property that the filter

reproduces polynomials by convolution up to degree 2r ,

K (2r+1,�)�p = p, p = 1, x, . . . , x2r . (2.8)

Later on we will need the following lemma

Lemma 2.5 Let 2r be an even number, then the SIAC filter K (2r+1,�) given in (2.6), which
satisfies (2.8), reproduces polynomials by convolution until degree of 2r + 1,

K (2r+1,�)�p = p, p = 1, x, . . . , x2r+1. (2.9)

Proof c.f. [23]. ��
In the multidimensional case, the multidimensional filter is the tensor product of the

one-dimensional filter (2.6)

K(2r+1,�)
H (x) =

d∏
i=1

K (2r+1,�)
H (xi ), x = (x1, . . . , xd) ∈ R

d ,

with the scaled filter K(2r+1,�)
H (x) = 1

Hd K
(2r+1,�)

( x
H

)
. A computationally efficient alterna-

tive to the tensor product case is to use the Hexagonal SIAC filter (HSIAC) by Mirzarger et
al. [13], or the Line SIAC filter introduced by Docampo et al. [6] and applied to problems in
visualization problems by Jallepalli et al. [9].

3 SIAC Filter for NonuniformMeshes

In order to design a more accurate SIAC filter for nonuniform meshes, we have to investigate
the relations between the DG approximation and SIAC filters for nonuniform meshes.

3.1 Existing Results

As mentioned in [3,10], for uniform meshes, SIAC filtering can improve the accuracy order
of DG solutions for linear hyperbolic equations from k + 1 to 2k + 1 when a sufficient
number of B-splines are chosen. This accuracy order, 2k + 1, and various studies of SIAC
filters, such as position-dependent filters [19,24], the derivative filter [18], etc., are limited
to uniform meshes. For nonuniform meshes, the aims of improving the accuracy order and
reducing the errors of the DG solution remains an ongoing challenge for SIAC filtering. Most
preliminary results consider only a particular family of meshes, smoothly varying meshes
[5,17,20]. It was proven in [20] that the filtered solutions also have an accuracy order of 2k+1
for smoothly varying meshes. However, for general nonuniform meshes, there are only a few
computational results [12], and the only theoretical estimates were given in [3,11].

Theorem 3.1 Under the same conditions as in Lemma 2.2, denote�0+2supp(K (2k+1,k+1)
H )

⊂⊂ �1 ⊂⊂ �. Then, for general nonuniform meshes, we have

‖u − K (2k+1,k+1)
H �uh‖0,�0 ≤ Chμ(2k+1),

where the scaling H is chosen as

H = hμ, μ = 2k + 1

3k + 2
. (3.1)
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Proof c.f. [3,11]. ��
For convenience, in this paper we refer toμ as the scaling order andμ0 = 2k+1

3k+2 . Theorem 3.1
gives a useful scaling that allows us to enhance the accuracy of the DG solution, especially
the derivatives of the DG solution [11], but may not be optimal.

However, from the perspective of improving the DG approximation itself, satisfying the
requirements of Theorem 3.1 can be cumbersome. For example, the accuracy order will be
higher than the original DG approximation only if k ≥ 2:

μ0(2k + 1) > k + 1 ⇒ k ≥ 2 (k ∈ Z).

If, alternatively, at least one order higher accuracy order is desired, then k ≥ 5:

μ0(2k + 1) ≥ k + 2 ⇒ k ≥ 5 (k ∈ Z).

Another important issue is the computational efficiency. As discussed in [11] when h is small
(a fine mesh), the filter scaling H = hμ0 ≥ h2/3 dramatically increases the support size of
the filter. To post-process one position in the domain, the post-processor has a support of
(3k+2)H . It follows that by choosingμ < 1, the computational cost dramatically increases.

More importantly, instead of increasing the accuracy order, practical applications are
more concerned with reducing the error. Although using the scaling H = hμ0 improves the
accuracy order, many practical examples suggest that using a scaling order of μ0 usually
increases the errors. For example, for the numerical experiments given in this paper (Sect. 5),
the filtered solutions that use a scaling order of μ0 have a qualitatively worse error in the L2

norm compared to the original DG solutions.

3.2 The Optimal Accuracy

Although Theorem 3.1 holds for arbitrary nonuniformmeshes, the filtered solutions based on
the filter scaling H = hμ0 does not achieve expectations with respect to order improvement,
error reduction and computational efficiency. The problem stems from the crude estimate of
the scaling order μ0 that ignores the mesh structure. In order to improve Theorem 3.1, it is
necessary to reconsider the filter scaling for nonuniform meshes. To complete this task, we
first explore the relation between the filter scaling and the error of the filtered solution. We
remind the reader that in this paper, H represents the filter scaling and h represents the mesh
size. As given in [3], we can write the error estimate of the filtered solution as

‖u − u�
h‖0,�0 ≤ 1 + 2, (3.2)

where
1 = ‖u − K (2k+1,k+1)

H �u‖0,�0 ≤ C1H
2k+2|u|H2k+2 , (3.3)

and

2 = C0

∑
|α|≤k+1

‖DαK (2k+1,k+1)
H �(u − uh)‖−(k+1),�1/2

≤ C0C1

∑
|α|≤k+1

‖∂α
H (u − uh)‖−(k+1)�1 , (3.4)

by Lemmas 2.5 and 2.4, where

�0 + supp(K (2k+1,k+1)
H ) ⊂ �1/2, �1/2 + supp(K (2k+1,k+1)

H ) ⊂ �1.
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According to the above estimates, the error is bounded by 1 and 2, where 1 describes
the error generated by reproducing polynomials and 2 represents the error in the negative
order norm.

The estimate for 1 is clear. The error is given by the polynomial reproduction property
(2.9) and the exact solution u. It is obvious from (3.3) that 1, only depends on the filter
scaling and is bounded by C1H2k+2|u|H2k+2 . This bound increases with the scaling H .

The2 term is more challenging. Lemma 2.3 gives an estimate of ‖∂α
H (u−uh)‖−(k+1),�1

for nonuniform meshes,

‖∂α
H (u − uh)‖−(k+1),�1 ≤ Ch2k+1H−|α|. (3.5)

The above estimate holds for arbitrary nonuniform meshes, but it is not the optimal bound
for many meshes. For example, consider the smoothly-varying meshes used in [5,11,20]. For
these types of meshes, a better estimate is

‖∂α
H (u − uh)‖−(k+1),�1 ≤ Ch2k+1

for well chosen H , see [20]. Clearly, one can guess that the accurate bounds of 2 are
very different between an almost uniform mesh and a totally random mesh, but the current
estimate (3.5) fails to relize this relation (the relation between 2 and the unstructuredness
of the mesh). Also, from the existing results in [5,11,12,20], one can see that the 2 term is
strongly dependent on the unstructuredness of the mesh. However, based on [3], the estimate
(3.5) suggests that there is a trend that 2 decreases with the scaling H . See Fig. 2 for
numerical evidence.

In this paper, we seek to obtain the minimized error of the filtered solution with respect
to the scaling order μ. To do this, we need to find a proper scaling order μ (assuming
H = hμ) such that 1 = 2. As mentioned in [3], in the worst case the scaling order
μ = μ0 = 2k+1

3k+2 ≥ 0.6 , and in the best case μ ≈ 1. We examine the L2 and L∞ errors
with scaling order μ in the range of [0.6, 1] for two nonuniform meshes: Meshs 2.1 and
2.2. Figure 2 shows the variations when μ increases from 0.6: the error is first reduced until
a minimum error is achieved and then the error starts to rise again. We can see that the
minimized error in the L2 and L∞ norms correspond to the different scaling orders μ; see
also Table 2. Since the theoretical estimates are based on the L2 norm, in the following we
define the concept of the optimal accuracy based on the L2 norm.

Definition 3.1 (Optimal Accuracy) For a given mesh, the optimal accuracy of the filtered
solution is given by

min
0≤H≤1

‖u − K (2k+1,k+1)
H �uh‖0. (3.6)

The scaling H that minimizes the error is referred to as the optimal scaling and denoted as
H �, where the optimal scaling order μ� is defined as H � = hμ�

. Note:

• When H = 0, the filter K (2k+1,k+1)
H degenerates to the delta function and we have

‖u − K (2k+1,k+1)
H �uh‖0 = ‖u − δ�uh‖0 = ‖u − uh‖0.

In this sense, the optimal accuracy is at least as good as the original DG accuracy.
• Since H ∈ [0, 1] and ‖u − K (2k+1,k+1)

H �uh‖0 is continuous respect to H , the minimum
of (3.6) must exist.

Remark 3.1 We can also define the optimal accuracy based on different norms, such as the
L∞−norm, or even different filters, but it will lead to different optimal scaling order μ�.
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Fig. 2 The L2 and L∞ errors in log scale of the filtered solutions with various scaling H = hμ,μ ∈ [0.6, 1.0].
The black dashed line marks the location of μ0 = 2k+1

3k+2 . The DG approximation is for the linear equation
(5.1) with polynomials of degree k = 2, 3 for Meshs 2.1 and 2.2

Table 2 The optimal scaling order μ� with respect to Meshs 2.1 and 2.2 with N = 20, 40, 80, 160, based on
the linear equation (5.1) with periodic boundary conditions

Mesh Mesh 2.1 Mesh 2.2

uh u�
h uh u�

h

N L2 error Order μ� L2 error Order L2 error Order μ� L2 error Order

P
2

20 2.62E−04 – 0.90 2.69E−05 – 8.01E−04 – 0.82 1.21E−04 –

40 3.26E−05 3.00 0.85 1.58E−06 4.08 6.30E−05 3.67 0.81 4.16E−06 4.87

80 3.23E−06 3.34 0.84 6.50E−08 4.61 3.86E−06 4.03 0.82 1.10E−07 5.24

160 4.03E−07 3.00 0.81 4.25E−09 3.94 1.43E−06 1.44 0.75 2.84E−08 1.96

P
3

20 7.31E−06 – 0.97 2.25E−07 – 2.07E−05 – 0.90 1.39E−06 –

40 5.23E−07 3.80 0.91 5.69E−09 5.31 9.49E−07 4.45 0.87 1.95E−08 6.16

80 2.64E−08 4.31 0.88 9.46E−11 5.91 7.12E−08 3.74 0.85 3.31E−10 5.88

160 1.58E−09 4.07 0.86 2.65E−12 5.16 5.77E−09 3.63 0.80 2.56E−11 3.69
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3.2.1 The Convergence Rate

In Fig. 2, plots of the L2 and L∞ error versus the scaling hμ are given for 0.6 < μ ≤ 1. A
dashed line is given at the value μ0 = 2k+1

3k+2 . We remind the reader that based on (3.3), the
design of the filter leads to

1 ∼ O(H2k+2).

When μ is decreasing, H = hμ is increasing, then the 1 term becomes dominant once μ

becomes small. We can also observe this from Fig. 2, once μ < μ�, the errors of the filtered
solutions are dominated by the 1 term in (3.3), which has a convergence rate of μ(2k + 2)
(before the minimum occurs in the convergence plots). Table 7 show the results of using
μ such that μ0 < μ < μ�. However, as we mentioned earlier, the 2 term (Eq. (3.4)) is
challenging. Figure 2 demonstrates once μ > μ�, the errors of the filtered solutions have a
trend to increase with μ, which means the 2 has the same trend to increase for μ� < μ < 1
(if μ → ∞, the filtered errors degenerate to the DG errors). In short, Fig. 2 together with
Tables 2 and 7 show that with a proper scaling (or scaling orderμ), the filtered solutions have
a higher accuracy order, and the errors are reduced compared to the original DG solutions.
We also compare the results to the filtered solutions that use a scaling orderμ0 to demonstrate
the improvement of using scaling order μ > μ0. Further, we point out that for the different
nonuniform meshes, the value of μ� will be different, see Fig. 2. In the next section, we will
mainly concentrate on the given nonuniform mesh only, to find the optimal accuracy (or μ�)
of the filtered solutions over the given nonuniform mesh.

4 The Unstructuredness of NonuniformMeshes

In Sect. 3, we proposed the concept of the optimal accuracy and numerically demonstrated
that there exists an optimal scaling order μ� such that using the optimal scaling, H � = hμ�

,

minimizes the error of the filtered solutions in the L2 norm. Then, the remaining question is
how to find μ� for a given nonuniform mesh. Table 2 provides μ� by testing different values
of the scaling, which is certainly impractical. Theoretically, even for uniform meshes whose
optimal scaling order is μ� ≈ 1, it is impossible to find the exact value of μ�. However, in
this section, we propose an approximation μh that is sufficiently close to μ� and leads to
filtered solutions with improved quality.

An important observation from Fig. 2 for determining μ� is that the optimal scaling order
depends on the structure of the nonuniform meshes, and hence the optimal scaling order is
different. The rule of thumb is that the more unstructured the mesh, the smaller the value
of μ�. In order to approximate the value of μ�, it is important to define a measure of the
unstructuredness of nonuniform meshes.

4.1 TheMeasure of Unstructuredness of NonuniformMeshes

Before discussing the unstructuredness, we first provide a definition of structured meshes.

Definition 4.1 (Structured Mesh) A mesh with N elements is considered structured if there
exists a function f ∈ C∞ and f ′ > 0, such that

x j+ 1
2

= f (ξ j+ 1
2
), ∀ j = 0, . . . , N , (4.1)
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where
{
ξ j+ 1

2

}N
j=0

corresponds to a uniform mesh with N elements over the same domain.

According to [20], filtered solutions for structured meshes have the same accuracy order
(2k + 1 for linear hyperbolic equations) as for uniform meshes.

Now we introduce a new parameter σ , the unstructuredness of the nonuniform mesh, to
measure the difference between the given nonuniform mesh and a structured mesh with the
same number of elements.

Definition 4.2 (Unstructuredness) For a nonuniform mesh
{
x j+ 1

2

}N
j=0

, its unstructuredness

σ is given by

σ = inf
f ∈C∞, f ′>0

⎛
⎝

N∑
j=0

(
f (ξ j+ 1

2
) − x j+ 1

2

)2
/(N + 1)

⎞
⎠

1
2

, (4.2)

where
{
ξ j+ 1

2

}N
j=0

corresponds to the uniform mesh with N elements for the same domain.

The smaller the σ , the more structured the mesh.

Without loss of generality, we denote the domain � = [0, 1]. Then, in the worst case, we
have

⎛
⎜⎝

N∑
j=0

(
f (ξ j+ 1

2
) − x j+ 1

2

)2

N + 1

⎞
⎟⎠

1
2

<

⎛
⎝

N∑
j=0

(1 − 0)2

N + 1

⎞
⎠

1
2

= 1 ⇒ σ < 1.

Remark 4.1 The definition of unstructuredness is designed by considering the discrete L2

norm formula. It is a natural choice since the focus is on the error in the L2 norm. Further-
more, it establishes a connection between general nonuniform meshes and the well-studied
structured meshes. Besides formula (4.2), there are different ways to identify the unstruc-
turedness of the mesh, such as through the variation of mesh elements [8], utilizing different
norms, or the methods mentioned in Appendix.

4.2 SIAC Filtering Based on Unstructuredness

After defining the unstructuredness, σ , we now study the relation of σ and the filter scaling,
which allows for determining μh . This depends on two very challenging estimates: that of
the negative-order norm and that of the divided differences over a nonuniform mesh. Note
that for the divided difference with a general scaling H , uh(x + H

2 ) and uh(x − H
2 ) are not

in the same approximation space even for uniform meshes. Since the translation invariance
with respect to both the DG mesh size h and the scaling H , for uniform meshes, one has
to let the scaling H satisfies that H = mh (m is a positive integer) to keep uh(x + H

2 ) and
uh(x − H

2 ) in the same space. Therefore, it is difficult to establish a rigorous error estimates.
In Theorem 3.1, a rough error estimate of ∂Huh is obtained by using the bound

‖∂H (u − uh)‖0 ≤ 1

H

(∥∥∥∥(u − uh)

(
x + H

2

)∥∥∥∥
0
+
∥∥∥∥(u − uh)

(
x − H

2

)∥∥∥∥
0

)

≤ 2

H
‖u − uh‖0.
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This does not take into the unique unstructuredness of a givenmesh. Further, as demonstrated
in the previous section, the result is not optimal. Here, in this paper, we are seeking a robust
algorithm which is useful in a practical setting to obtain error reduction.

In this section, we propose a method based on relating the nonuniform mesh to its closest
structured mesh (under Definition (4.2)). That is,

‖∂H (u − uh)‖0︸ ︷︷ ︸
nonuniform mesh

≤ ‖∂H (u − uh)‖0, f (ξ)︸ ︷︷ ︸
structured mesh

+‖∂H (u − uh)‖0,diff︸ ︷︷ ︸
difference

.

As mentioned earlier [20], we know that the first divided difference over the structured

mesh
{
f (ξ j+ 1

2
)
}N
j=0

has nice properties. Then, we assume that the error of the first divided

difference of the DG solution for the nonuniform mesh
{
x j+ 1

2

}N
j=0

is dominated by the

difference between the nonuniform mesh and its closest structured mesh.
Now, consider the difference term ‖∂H (u − uh)‖0,diff, we have

‖∂H (u − uh)‖0,diff = 2

H

⎛
⎝

N∑
j=0

‖u − uh‖20,� j
/(N + 1)

⎞
⎠

1
2

,

where � j = [x j+ 1
2
, f (ξ j+ 1

2
)] (or � j = [ f (ξ j+ 1

2
), x j+ 1

2
]). Since the approximation uh on

the interval � j cannot be estimated rigorously through the traditional error estimates, we
assume that

‖u − uh‖20,� j
=
∫

� j

(u − uh)
2dx ≤ C

∣∣� j
∣∣ ‖u − uh‖2∞

= C
∣∣∣x j+ 1

2
− f (ξ j+ 1

2
)

∣∣∣ h2k+2. (4.3)

The above assumption is based on L∞ estimate that

‖u − uh‖∞ ≤ Chk+1,

which has not been proven theoretically, but validate numerically for rectangular meshes
(the meshes considered in this paper). For general unstructured triangular meshes, a reduced

accuracy order of O(hk+1− d
2 ) needs to be considered. Then, by using the Cauchy–Schwarz

inequality, we have

‖∂H (u − uh)‖0,diff = 2

H

⎛
⎝

N∑
j=0

‖u − uh‖20,� j
/(N + 1)

⎞
⎠

1
2

≤Chk+1H−1

⎛
⎝

N∑
j=0

∣∣∣x j+ 1
2

− f (ξ j+ 1
2
)

∣∣∣ /(N + 1)

⎞
⎠

1
2

=Chk+1H−1

⎧⎪⎨
⎪⎩

⎛
⎝

N∑
j=0

(
f (ξ j+ 1

2
) − x j+ 1

2

)2
/(N + 1)

⎞
⎠

1
2

⎫⎪⎬
⎪⎭

1
2

.
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By using Definition (4.2) and the assumption that ‖∂H (u − uh)‖0,diff is the dominant term,
we obtain

‖∂H (u − uh)‖0 ≤ C

√
σ

H
hk+1 = C

h
1
2 logh σ

H
hk+1, (4.4)

and by induction

∥∥∂α
H (u − uh)

∥∥
0 ≤ C

√
σ

H
hk+1 = C

(
h

1
2 logh σ

H

)α

hk+1. (4.5)

Remark 4.2 The above analysis is themotivation for using formula (4.2) to define the unstruc-
turedness. Also, we point out that assumption (4.3) is an empirical rather than a rigorous
estimate. Furthermore, the assumption that ‖∂H (u − uh)‖0,diff dominates ‖∂H (u − uh)‖0 is
reasonable only when the nonuniform mesh is not so close to the respective structured mesh
(σ � 0).

Based on the value of σ , we divide the nonuniform meshes into two groups and discuss the
corresponding strategies separately.

• Nearly structured meshes logh σ ≥ 2.
This definition is based on estimate (4.5), when

√
σ

h
≥

√
σ

H
≥ 1, ⇒ σ ≥ h2 ⇒ logh σ ≥ 2.

Then, the nonuniform mesh is almost a structured mesh, and the effect of the difference
is negligible. In other words, we can treat these nearly structured meshes as structured
meshes and use the conclusions in [20]. Also, we note that the definition is not strict;
when logh σ ≈ 2 we can also treat these nonuniform meshes as structured meshes.

• Unstructured meshes logh σ < 2.
This is a more challenging case and the aim of this paper. Under the same conditions as in
Lemma 2.2, we assume that for a nonuniform mesh with the unstructuredness parameter
σ as defined in Eq. (4.2) and based on the results in [22], the divided differences of DG
solution satisfies

‖∂α
H (u − uh)‖−(k+1),�0 ≤ Ch2k+1

(
h

1
2 logh σ

H

)α

, (4.6)

when H ≤ h
1
2 logh σ . Moreover, the divided differences of the approximation satisfy

k+1∑
α=0

‖∂α
H (u − uh)‖−(k+1) ≤ C

(
h

1
2 logh σ

H

)k+1

h2k+1,

and according using the estimates for the filter design and and approximation (Eqs. (3.2)–
(3.4)), we can enforce

H2k+2 =
(
h

1
2 logh σ

H

)k+1

h2k+1.

Using H = hμh , we then have for μh that

μh = 2k + 1

3(k + 1)
+ 1

6
logh σ ≈ 2

3
+ 1

6
logh σ >

1

2
logh σ, (4.7)
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Table 3 Four types of scaling order used in the performance validation

Scaling order Definition

μ0 μ0 = 2k+1
3k+2 , see Theorem 3.1

μmax hμmax = max�x j , j = 1, . . . , N

μh μh = 2k+1
3(k+1) + 1

6 logh σ ≈ 2
3 + 1

6 logh σ , see (4.7)

μ� H = hμ�
minimizes ‖u − K (2k+1,k+1)

H �uh‖0

which is much more reasonable to compute as H = hμh ≤ h
1
2 logh σ .

4.3 Scaling PerformanceValidation

At the beginning of this section, we first summarize the definitions of all the scalings that are
going to be tested in the section, see Table 3.

As mentioned in Sect. 3, Theorem 3.1 is not practical since the

• the accuracy order improvement requires k ≥ 2;
• the errors in the DG solution are not always reduced.

In order to construct a robust algorithm that can be used in practice, we have proposed using
scaling (4.7), which demonstrates the relation of the scaling order μh and the unstructured-
ness, σ . Since this result is not based on a rigorous error estimate, in this section, we validate
the performance of the proposed scaling H = hμh , where μh is given in Eq. (4.7) by testing
it for many nonuniformmeshes. For a fair demonstration, we also compared this scaling with
the scaling provided by Theorem 3.1 and the maximum scaling used in many works, such as
[5,12]. For convenience, we use the corresponding scaling orders μh , μ0 and μmax to refer
these three strategies, respectively (see Table 3).

4.3.1 Test Set-up

First, we present the setting of the nonuniform meshes used for the performance test. Since
nearly structured meshes are relatively easily studied, in this test, we focus on unstructured
meshes (or meshes with random structures). The information is presented as follows:

• We adoptMesh 2.2 with b = 0.3. The value of b is chosen not only for allowing sufficient
generality of the mesh structure, but also in order to avoid the possibility of round-off
error caused by tiny elements.

• In this test, we have considered the number of elements N = 20, 40, 80, using 1700
different samples (5100 meshes in total).

• The finer meshes (N = 40, 80) are generated using rules similar to the coarse mesh
(N = 20), which preserves the nonuniform property. A trivial way to generating the
finer mesh is by uniformly refining the coarse mesh, which leads to piecewise uniform
meshes when N is large.
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Fig. 3 The comparison of DG errors and their optimal filtered results for different nonuniform meshes respect
to μ�. Each plot is based on 1700 random nonuniform samples

4.3.2 Optimal Scaling Order� Versus Errors

We begin by examining how the optimal scaling order μ� and the filtered solutions are
altered with the DG approximation over different nonuniform meshes (shows as different
DG solutions). This relation is demonstrated in Fig. 3. Notice the following:

• Trend 1:A largerμ�, corresponds to a smaller filtering region and lower errors for filtered
solution. The lower errors clearly displayed for k = 3 than k = 2. It also corresponds to
a more structured mesh as well.

• Trend 2: Also demonstrated is that when the errors are lower for the DG solution, the
optimal filtered solution has better error. This fact is supported by the theory.

• Trend 3: Notice that μ0 = 2k+1
3k+2 is approximately 0.63 and 0.64 for k = 2, 3. However,

we can see that in most cases, this value is far away from μ�.

4.3.3 Optimal Scaling versus Existing Scalings

After checking our test meshes for the optimal scaling, we check the performance of the
existing scalings and compare the results with the optimal filtered solution. In Fig. 4, the
ratio of the L2−errors for the DG solution to the L2−errors for the filtered solution are
plotted against the probability of achieving that ratio for a given polynomial order and mesh.
If the ratio is less than one then the filtered error is better than the DG error, in other words,
the filtered solution is at least accuracy-conserving compared to the DG solution. Further,
by considering the ratio of the DG error to the SIAC Filtered error (Fig. 4), one can see that
the performance (the ratio) of the SIAC filtering varies with the approximation over different
nonuniform mesh approximations. On the other hand, we can compare the performance of
different scalings by comparing their histogram plots (Fig. 4). One can tell that one scaling
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Fig. 4 The comparison for the performance of different scalings: optimal scaling, theoretical scaling,maximum
scaling, the new scaling for k = 2. The x-axis is the value of ‖u − uh‖0/‖u − u�

h‖0, clearly, the larger the
value, the better the filtering. In addition, we mark the accuracy-conserving position x = 1 with a black line

has a histogram closer to the optimal scaling (red) and also has the better performance. Here,
we remind the reader that the different scalings are given in Table 3.

• Theoretical Scaling, μ0(yellow): For more than half of the mesh samples, the ratio
between the DG error and filtered error remains relatively small and the probability
of achieving this scaling is higher than for other scalings.

• Maximum Scaling,μmax (green): This scaling produces a reasonable ratio for most situ-
ations.

• proposed Scaling,μh (purple):The performance is closer to the optimal results compared
to the other two scaling.

Remark 4.3 We note that the value of μ� is also affected by the exact solution u, more

precisely
|u|H2k+2

|u|Hk+1
. Since the exact solution is usually unknown in practice, this is difficult to

determine. However, this leads us to choose μh to be slight smaller than μ∗.

4.3.4 Comparisons

From Fig. 4, We can clearly see that the new proposed scaling order μh has the best perfor-
mance. Now,we use the statistical data of results to give amore clear view of the performance.

First, we check the basic accuracy-conserving property in order to ensure that we are not
degrading the DG results. From Table 4, we can see that μh performs the best with respect
to accuracy conservation, μ0 the worst one, and μmax still has considerably large problems
for coarse meshes.

Next,we compare the proposed scalingwith other two scalings side-by-side inTables 5 and
6. Here, motivated by the definition of equivalence of norms, we add the category “similar”
to account for small differences in results: if error1 and error2 satisfy that 1

Ctol
|error1| ≤

|error2| ≤ Ctol |error1|, then these two errors are counted as similar. In this note, the tolerance
constant Ctol is set as 2.

1. Table 5, μ0 versus μh : the data clearly suggests that μh is a better choice than μ0.
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Table 4 Percent of results which
are at least accuracy-conserving
(‖u − u�

h‖0 ≤ ‖u − uh‖0)
Degree N μ0 (%) μmax (%) μh (%) μ� (%)

P
2 20 13.5 58.9 100 100

40 41.8 96.6 100 100

80 85.1 100 100 100

P
3 20 3.9 5.8 100 100

40 12.2 69.8 100 100

80 45.6 99.6 100 100

Table 5 μ0 versus μh μ0 μh

Degree N Better (%) Similar (%) Better (%)

p = 2 20 0.0 6.1 93.9

40 0.0 4.7 95.2

80 0.8 3.9 95.3

p = 3 20 0.0 0.8 99.2

40 0.0 0.7 99.3

80 0.0 1.2 98.8

Table 6 μmax versus μh μmax μh

Degree N Better (%) Similar (%) Better (%)

p = 2 20 0.4 16.7 82.9

40 1.2 34.9 63.9

80 0.4 94.5 5.1

p = 3 20 0.0 2.2 97.8

40 0.0 7.5 92.5

80 0.4 17.9 81.7

2. Table 6,μmax versusμh : in at least 98% of the cases sampled,μh produced better results
than using μmax .

Based on the number of samples and the statistical data, the new scaling is a reliably better
scaling to use among the scalings discussed in this article.

Through many performance tests, it is reasonable to claim that by using the proposed
scaling μh , we can expect that there is an accuracy improvement for k ≥ 1 for the given
nonuniformmesh (dependent on σ ). In practice, strategy 4.7 provides a way to find the proper
scaling for the SIAC filter, it can be used to reduce the errors of given DG solutions.

4.4 A Note on Computation

Aside from error reduction, the computational cost of using the filter is also an important
factor in practical applications. As mentioned in previous sections, the scaling H used in
Theorem 3.1 is usually larger than the scaling required for nonuniformmeshes, which means
that the computational cost is higher than the uniform mesh case [3,11]. Based on Fig. 2,
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when μ ∈ [μ�, 1], the final accuracy is directly related to the scaling order μ, which means
one can sacrifice accuracy to improve computational efficiency. For example, if the mesh is
closer to a structured mesh, a naive choice of scaling H = max

j
�x j (or H = 1.5max

j
�x j ,

H = 2max
j

�x j ) can lead to acceptable results as obtained in [5,12].

5 Numerical Results

In the previous section, we proposed using the scaling order μh given by Eq. (4.7). Using
the scaling order μh can improve the accuracy order and reduce the error from the original
discontinuousGalerkin approximation.Also, sinceμh is designed to approximate the optimal
scaling order μ�, the filtered solutions are expected to have a reduction in error compared
to the DG approximation. For numerical verification, we apply the newly designed scaling
order μh for various differential equations over nonuniform meshes—Meshs 2.1 and 2.2—
and compare it with using scaling orderμ0 mentioned in Theorem 3.1. Also, we note that the
initial approximation uh(x, 0) is the L2 projection of the initial function u(x, 0). The third
order TVD Runge–Kutta scheme [7] is used for the time discretization.

5.1 Linear Equation

Consider a linear equation

ut + ux = 0, (x, t) ∈ [0, 1] × (0, T ],
u(x, 0) = sin(2πx), (5.1)

with periodic boundary conditions at time T = 1 for Meshs 2.1 and 2.2. Table 7 includes the
L2 and L∞ norm errors of the DG solutions and two filtered solutions with scaling orders
μ0 and μh . First we check the results of using scaling order μ0 in Theorem 3.1. Although
the filtered solutions have a better accuracy order, both the L2 and L∞ errors are worse
than the original DG solution! Theorem 3.1 says something only about the order, but not
about the quality of the errors. Using a scaling order μh , SIAC filtering is able to reduce
the errors in the L2 and L∞ norm and improve the accuracy order. The filtered errors are
reduced compared to the DG errors, especially when using a higher order polynomial or a
sufficiently refined mesh. Figure 5, the pointwise error plots, demonstrate the other feature
of SIAC filtering as its name implies: smoothness-increasing. Both the filtered solutions are
Ck−1 functions. The smoothness is significantly improved compared to theweakly continuous
DG solutions. To ensure the smoothness of the filtered solution across the entire domain, we
consider only a constant scaling H across the entire domain. In Fig. 5 both filtered solutions
reduce the oscillations in the DG solution and using a scaling order μ0 completely removes
the oscillations due to the large filter support size.

Comparing the results between Meshs 2.1 and 2.2, we can see that the DG solutions and
filtered solutions with scaling order μh are better for Mesh 2.1 than for Mesh 2.2 because
Mesh 2.1 is more structured thanMesh 2.2. However, using scaling orderμ0 generates almost
the same result, which shows that μ0 does not take the mesh structures into account.
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Fig. 5 Comparison of the pointwise errors in log scale of the DG approximation together with two filtered
solutions (using scaling order μ = μ0 and μ = μh ) for linear equation (5.1) for Meshs 2.1 and 2.2 with
polynomials of degree k = 2

5.2 Variable Coefficient Equation

After the linear equation (5.1), which has a constant coefficient, we consider the variable
coefficient equation

ut + (au)x = f , (x, t) ∈ [0, 1] × (0, T ]
u(x, 0) = sin(2πx), (5.2)

where the variable coefficient a(x, t) = 2 + sin(2π(x + t)) and the right side term f (x, t)
are chosen to make the exact solution be u(x, t) = sin(2π(x − t)). The boundary conditions
are periodic and the final time T = 1.

Similar to the linear equation example, we compare the L2 and L∞ norm errors in Table 8.
The pointwise error plots are given in Fig. 6. The results are similar to the previous results for
the constant coefficient equation. Here we point out only the features that are different from
the linear equation. Using a scaling order μ0 does not reliably reduce the errors in the L2

norm and the L∞ norm errors are still worse than the DG solutions. However, using a scaling
order μh reduces the errors in the L2 norm and the L∞ norm. The pointwise error plots in
Fig. 6 are more oscillatory compared to Fig. 5 due to the effects of the variable coefficient.

5.3 Two-Dimensional Example

For the two-dimensional example, we consider a two-dimensional linear equation

ut + ux + uy = 0, (x, y) ∈ [0, 1] × [0, 1],
u(x, y, 0) = sin(2π(x + y)), (5.3)
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Fig. 6 Comparison of the pointwise errors in log scale of the DG approximation together with two filtered
solutions (using scaling order μ = μ0 and μ = μh ) for variable coefficient equation (5.1) for Meshs 2.1 and
2.2 with polynomials of degree k = 2

with periodic boundary conditions at time T = 1 for a two dimensional quadrilateral exten-
sion of Meshs 2.1 and 2.2.

The L2 and L∞ norm errors are presented in Tables 9 and 10, and the pointwise error
plots (pcolor plots) are included in Figs. 7 and 8. The results are very similar to the one-
dimensional examples: the filtered solutions with scaling order μh reduce the errors in the
L2 norm; using a scaling order μ0 increases the error in the L2 norm for the DG error. In the
two-dimensional case, computational efficiency becomes more important compared to the
one-dimensional case due to the increased computational cost. As mentioned before, using a
scaling order μ0 is far more inefficient compared to using the scaling order μh . In particular,
for a P3 polynomial basis with N = 160 × 160 meshes, using a scaling order μ0 is more
than 8 times slower for Mesh 2.1 (5 times slower for Mesh 2.2) than using the scaling order
μh .

Remark 5.1 In this paper, we only consider periodic boundary conditions. For other boundary
conditions such as Dirichlet boundary conditions, a position-dependent filter [11,20] has to
be used near the boundaries. The results will be similar to the periodic boundary conditions.
However, to obtain the optimal result, a position-dependent scaling has to be applied, we will
leave it for the future work.

6 Conclusion

In this paper, we have demonstrated that for a given nonuniform mesh, the filtered solution
is highly affected by the unstructuredness of the mesh. By adjusting the filter scaling one can
minimize the error of the filtered solution. In addition, a scaling H = hμh (4.7) of the SIAC
filter is proposed in order to approach the optimal accuracy of the filtered solution, where the
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Fig. 7 Comparison of the pointwise errors in log scale of the DG approximation together with two filtered
solutions (using scaling order μ = μ0 and μ = μh ) for two-dimensional linear equation (5.3) for Mesh 2.1
(2D, P2 and N = 160 × 160)

Fig. 8 Comparison of the pointwise errors in log scale of the DG approximation together with two filtered
solutions (using scaling order μ = μ0 and μ = μh ) for two-dimensional linear equation (5.3) for Mesh 2.2
(2D, P2 and N = 160 × 160)

scaling orderμh is chosen according to the unstructuredness of the given nonuniformmeshes.
Furthermore, we have numerically shown that by using the proposed scaling H = hμh , the
filtered solutions have an accuracy order of μh(2k + 2), which is higher than the accuracy
order of the DG solutions. The numerical results are promising: compared to the original DG
errors, the filtered error scaling order μh has a significantly reduced error from the original
DG solution aswell as increased accuracy order. Also, a scaling performance validation based
on a large number of nonuniform meshes has demonstrated the superiority of our proposed
scaling compared to other existing methods. Future work will concentrate on extending this
scaling orderμh to unstructured triangular meshes in two dimensions and tetrahedral meshes
in three dimensions.
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