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Baseband-Function Placement With
Multi-Task Traffic Prediction for

5G Radio Access Networks
Ligia Maria Moreira Zorello , Graduate Student Member, IEEE, Laurens Bliek , Sebastian Troia ,

Tias Guns, Sicco Verwer , and Guido Maier

Abstract—The 5G Radio Access Network (RAN) virtualiza-
tion aims to improve network quality and lower the operator’s
costs. One of its main features is the functional split, i.e., divid-
ing the instantiation of RAN baseband functions into different
units over metro-network nodes. However, its optimal placement
is non-trivial: it depends on the application requirements and on
the expected traffic volume, whose daily variation highly impacts
the total power consumption. Current optimization solutions fail
to provide a placement solution capable of handling traffic fluc-
tuations. In fact, the standard machine learning algorithms used
in the literature for planning the network resources in advance
result in an allocation that is inadequate to carry the actual
traffic at all the time-slots. Hence, we must reserve an artifi-
cial buffer capacity in the nodes to ensure feasibility. Instead,
our proposed method exploits a fine-grained two-step multi-task
algorithm that predicts the mean and quantile traffic, making the
artificial capacity no longer necessary. The subsequent placement
uses mixed-integer linear programming and a heuristic. The for-
mer considers the expected traffic in the objective function (to
estimate costs) and the quantile in the constraints (to enforce
capacity limits). The heuristic combines the mean and quantile
results to minimize the power and comply with the require-
ments. While using sufficiently large artificial buffers guarantees
robustness with a mild power increase compared to the oracle,
the fine-grained multi-task model improves the results, reducing
the power consumption compared to the mean and meets all
constraints. The heuristic enables significant computational time
reduction.

Index Terms—5G radio access network, functional split,
network function virtualization, traffic prediction, mathematical
optimization, machine learning, energy saving.
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I. INTRODUCTION

THE FIFTH generation of mobile networks (5G) was
developed to carry services with different Quality of

Service (QoS) requirements with improved energy efficiency.
It was necessary to improve the Decentralized Radio Access
Network (D-RAN) of 4G (Fig. 1(a)), as it would lead to an
inefficient and highly costly architecture for mobile operators
at scale. 4G further introduced the Centralized RAN (C-RAN)
(Fig. 1(b)) to decouple the Remote Radio Head (RRH) and the
Baseband Unit (BBU) and fully centralize and virtualize the
BBUs in powerful central offices Fig. 1(b). This architecture
enhances the network management and control, the processing
scalability, and it reduces the overall power consumption due
to the better utilization of the computing resources. However,
several issues are yet to be addressed to enable its broad
deployment. The consolidation of baseband functions in a sin-
gle central node requires very high traffic capacity over the
fronthaul links connecting the RRHs to their corresponding
BBU, and it imposes stringent latency requirements between
sites [1], [2].

To diminish these issues and find a trade-off between power
consumption and processing and bandwidth capacity, part of
the baseband functions can be virtualized and redistributed
over local offices in the network, as shown in Fig. 1(c).
The 3rd Generation Partnership Project (3GPP) proposed a
5G RAN with functional splits, indicating the centralization
degree of baseband functions [3]. While the RRH continues
in the antenna site, the BBU functions are deployed as Virtual
Network Functions (VNFs) into Distributed Unit (DU) and
Centralized Unit (CU). The DUs deploy lower-layer network
functions in the access network, and the CUs deploy the
remaining functions over cloud-enabled nodes in the metro
network. The CUs and DUs are directly connected via midhaul
links.

The efficient placement of these VNFs in the network nodes
becomes a new optimization problem. There is a significant
effort in the literature to solve it. Nevertheless, aspects related
to the costs and to the functional split constraints were not
fully considered. Network operators must minimize their oper-
ational costs when deploying baseband VNFs while ensuring
that service requirements are always satisfied. For this reason,
it is cumbersome to use power models that take into account
different aspects of the network. As shown in our previous
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Fig. 1. Evolution of RAN architecture: completely distributed (a), completely centralized (b) and partially centralized with functional splits (c).

work [4], the network power consumption plays a key role
in building up the cost of an NFV infrastructure. Therefore,
we study the optimal VNF placement to minimize the node
and network power consumption. In addition, despite being an
important requirement, the split latency is frequency neglected
in the literature. It guarantees that all baseband functions are
correctly executed; thus, our approach ensures that the solution
is always compliant with the split and service latency require-
ments. We consider the placement of the CUs while the DUs
are assumed as fixed in the access network.

This optimization highly depends on the network traf-
fic, which shows fluctuations during the day due to users’
movement in urban areas. Therefore, the network operator may
need to move the baseband VNFs over the network nodes to
adapt to the traffic and comply with split and service require-
ments at all times. The baseband VNFs may be deployed as
Virtual Machines (VMs) or containers over general-purpose
servers. Consequently, the migration of the baseband VNFs
can be translated into moving their hosting VMs or containers
over the network. Independently on the technique applied,
the reconfigurating the baseband VNF placement involves the
VNF instantiation and migration and lightpath establishment.
The entire process is time consuming, making the computa-
tion and reconfiguration of the network on a real-time basis
impractical and leading to disruptions of service. Therefore, it
is necessary to plan the VNF placement in advance. Machine
learning algorithms can aid this anticipated optimization tak-
ing advantage of the tidal daily traffic variation in urban areas
due to the regularity of inhabitants and commuters displace-
ment [5] These algorithms provide accurate traffic forecast
and improves the applicability of optimization frameworks in
real-time scenarios. However, unpredictable events may cre-
ate perturbations in these patterns. Therefore, the traditional
techniques used in the literature using machine learning to
predict the traffic and then optimize the placement fail to pro-
vide solutions that ensures feasibility in real-time. Indeed, they
do not guarantee that the real traffic could be carried by the
anticipated placement.

We model the baseband VNF placement as a modular
optimization problem in a metro-area network from the point
of view of a mobile operator in the context of the Metro-
Haul project [6]. In particular, we assume that the nodes are
distributed cloud-enabled, i.e., they are equipped with com-
puting power that can host baseband VNFs. A flexible and

high-capacity Wavelength Division Multiplexing (WDM) opti-
cal network interconnects these nodes. In this scenario, the first
stage of the optimization is an hourly-based traffic forecast
consisting of a two-step multi-task prediction. The multi-task
machine learning algorithm outputs the mean and the nor-
malized traffic, then scales it using persistent forecast. The
forecast traffic is then used as input to calculate the placement
to reduce the power consumption for the operator. We pro-
pose an optimization algorithm based on Mixed Integer Linear
Programming (MILP) to minimize the network and IT power
consumption subject to the functional split and service con-
straints. In order to ensure a robust solution when applying the
actual traffic to the configured network, the traffic prediction
is divided into two outputs. We apply the expected traffic per
node, i.e., the mean predicted value, to the objective func-
tion. The optimization constraints use the quantile predictions
to consider more strict scenarios and avoid underestimating
the network configuration. To mitigate the MILP complexity,
we propose a heuristic algorithm to compute the placement
considering the predicted traffic.

The remainder of the paper is organized as follows.
Section II surveys the related works. Section III details the
machine-learning-aided optimization, describing the multi-task
two-step traffic prediction and the proposed MILP, including
the models that describe the system. Section IV shows the sim-
ulation environment, the performance of the proposed traffic
prediction tool, and the results when operating the MILP on
the predicted traffic. Finally, Section V concludes the paper.

II. RELATED WORKS

This section details the works that tackle the baseband VNF
placement optimization problem. First, it describes the papers
that use mathematical optimization. Then, it highlights the
solutions to speed up this task by using heuristic algorithms
and machine learning, focusing on traffic prediction.

A. Optimization of Baseband VNF Placement

The baseband VNF placement in 5G-RAN has been con-
siderably studied in the past few years with the develop-
ment of 5G solutions. Tzanakaki et al. introduced in [7]
an optimization to select the transport technology (optical
or wireless) and then optimize the utilization of the data
center network and processing resources. Although authors
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considered different split options deployed, they assumed all
baseband functions placed in a unique centralized data center.
Yu et al. proposed in [8] a placement optimization algorithm
to reduce the number of active nodes hosting baseband func-
tions. However, this work did not take into account the network
components in the optimization, which, as we showed in [4],
significantly impacts the power consumption for operators.
Al-Quzaweeni et al. [9] minimized the power consumption
when allocating baseband functions and routing users traf-
fic considering both processing and network components. In
the same line, Murti et al. [10] developed an algorithm to
deploy CUs with different functional splits over a 5G RAN
to reduce the overall operational expenses. Tinini et al. [11]
optimized the BBU migration over cloud and fog nodes in
a Passive Optical Network to minimize power consumption.
These works studied the baseband consolidation but did not
evaluate the impact that different services have on the network.
In addition, they ignored or adopted a simplified model for the
latency that considers only the split latency and/or average
service latency.

Yusupov et al. [12] placed baseband functions to carry differ-
ent categories of services, ensuring low latency. They minimized
the number of used nodes and the service latency and maxi-
mized the remaining data rate on links to carry these services.
Ojaghi et al. performed radio spectrum slicing and baseband
placement considering different service requirements to min-
imize uniquely computational cost over network nodes [13].
Similarly, Matoussi et al. [14] proposed a joint optimization of
RAN slicing and split selection to transport different service
types and minimize the power consumption. However, these
works did not optimize the location of such functions.

These papers proposed optimization methods based on lin-
ear programming to compute the baseband VNF placement.
However, this type of problem is typically NP-Hard, making it
hard to provide a fast reaction to traffic changes. Consequently,
these solutions cannot be deployed in real-time scenarios.

B. Heuristic Techniques

Some solutions speed up the computation of the
optimal placement and enable a more dynamic placement.
Gupta et al. [15] propose an optimization and a heuristic
algorithm to place CUs based on the energy consumption
and the number of handovers, considering different functional
splits. Nevertheless, it does not evaluate the impact of traf-
fic variation. Singh et al. [16] optimized the baseband VNF
placement to minimize the energy consumption. For this, they
developed an integer quadratic programming model and a
more computationally efficient decomposition-based heuristic
model. Xiao et al. proposed in [17] a MILP model and a
heuristic algorithm to minimize the power consumption when
placing the baseband functions and provisioning lightpaths
over a flexible optical transport network. The authors com-
pared the impact when different services must be carried over
the network separately. Sigwele et al. [18] maximized the
energy efficiency of the C-RAN radio and cloud parts. On
the transport side, the proposed heuristic algorithms aim to
reduce the number of active nodes.

None of these works evaluated the effect of multiple
services sharing the same network infrastructure. In addition,
although heuristic algorithms have reduced complexity and
can solve the optimization problem much faster than linear
programming, the VNF migration and the lightpath establish-
ment are time-consuming. Hence, it is necessary to compute
the placement ahead of time.

C. Machine-Learning Techniques for Dynamic Optimization

The integration of machine learning is in improving the
dynamicity and applicability of optimization in real-time solu-
tions. In the context of 5G RAN, Pelekanou et al. [19] deploy
machine learning algorithms first to forecast the traffic and
then select which baseband function to place in a single cen-
tralized data center. Yu et al. [20] allocate, migrate and scale
5G RAN slices over metro-aggregation networks based on
traffic prediction. Gao et al. present in [21] a deep reinforce-
ment learning approach to dynamically adjust the baseband
function placement and routing to minimize the used nodes,
the bandwidth, and the transport latency. Zhu et al. [22] pro-
pose a heuristic-assisted deep reinforcement learning-based
algorithm to decide whether to aggregate BBUs or to avoid
traffic migration. Chen et al. [23] optimized the RRH-to-BBU
association based on the traffic predicted using a multivari-
ate long short term memory. Guerra-Gómez et al. presented
in [24] a dynamic computational resource allocation of BBU-
related functions using machine learning with an error-shifting
technique to define a margin of computational resources to
consider in the optimization.

Several works on traffic prediction have been published
in the past years. Zhang et al. [25] use machine learning
techniques based on Feed Forward Neural Networks (FFNN)
and Recurrent Neural Networks (RNN) to cope with network
resource utilization and handover by predicting users’ traffic
and mobility. Other works use more modern machine learn-
ing algorithms for traffic forecasting. Andreoletti et al. [26]
deploy diffusion convolutional recurrent neural networks to
capture topological properties from the network and predict
the load over network links. Bega et al. [27] describe a data
analytics tool based on three-dimensional convolutional neu-
ral networks to learn spatio-temporal features and forecast the
load of different services. Nevertheless, the former two meth-
ods predict the traffic load over the links, which are associated
with routing the demands in the network independently on the
baseband function placement.

These works aim to obtain the most accurate model to
predict the network traffic considering extensive topology
and statistics information. However, the high prediction accu-
racy does not guarantee a robust optimization regarding the
actual traffic. For this, we propose a two-step multi-task
approach. It outputs the mean expected traffic to estimate
the optimization costs and the traffic uncertainty (measured
as quantile) to guarantee that the constraints are respected.
Moreover, this prediction model is based only on two param-
eters, the hour of the day and the aggregated traffic of previous
days, significantly reducing the model size and complexity.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 09:01:58 UTC from IEEE Xplore.  Restrictions apply. 



ZORELLO et al.: BASEBAND-FUNCTION PLACEMENT WITH MULTI-TASK TRAFFIC PREDICTION 5107

D. Paper Contribution

In this work, we propose a traffic prediction algorithm tai-
lored to the optimization of baseband VNF placement. Thanks
to the traffic prediction, the network operators can reconfig-
ure the placement of such functions in advance according to
the expected demands. The contributions of this paper are
summarized as follows:

1) We introduce an optimization framework that forecasts
the traffic and computes the baseband VNF placement
for different services to efficiently plan and reconfigure
the 5G-RAN network in advance.

2) We propose a two-step multi-task traffic predictor capa-
ble of significantly reducing the model complexity, while
ensuring robustness to the optimization.

3) We formulate the placement as a MILP problem, in
which we minimize the system power consumption
considering multiple services and splits.

4) We develop a heuristic algorithm to reduce the MILP
computational time.

5) We conduct a series of experiments and prove that
the proposed framework provides fast and accurate
optimization of the baseband VNF placement while
satisfying the actual demand.

III. MACHINE-LEARNING-AIDED BASEBAND

VNF PLACEMENT

The optimal baseband VNF placement depends on the
requirements related to the node selection and traffic routing.
Such requirements are strictly related to the service type and to
the selected functional split. This work considers two typical
mobile services: Voice over IP (VoIP) and content delivery.
The former does not generate a large volume of traffic but
requires a strict latency budget to guarantee the quality of
the calls. Therefore, it enters the category of ultra- Reliable
and Low Latency (uRLLC) services [28]. Instead, the lat-
ter demands greater traffic capacity over network links but
looser latency requirement, entering the category of enhanced
Mobile Broadband (eMBB) services. After this, we refer to
these services as uRLLC and eMBB. In this work we did not
consider the mMTC services as they did not match with the
traffic dataset we had at our disposal. In this work we did not
consider the mMTC services as they did not match with the
traffic dataset we had at our disposal.

Some splits are more appropriate to support a given ser-
vice so that the split constraints can match the application
requirements in terms of bandwidth and latency [29]. Physical-
layer splits compel more strict latency requirements and high
midhaul traffic but enable greater coordination thanks to a
more centralized network control. Therefore, low-layer split
options are more adapted to uRLLC applications, which typ-
ically imply low traffic loads but stringent latency and high
coordination. In contrast, high-layer functional splits central-
ize fewer data link-layer functions from the baseband protocol
stack. This more distributed architecture leads to lower CU
computational complexity and to looser latency constraints.
Moreover, it is capable of minimizing the traffic load over the

Fig. 2. Location of UPF and baseband functions over AMENs and MCENs
according to split and service types. Radio Resource Control (RRC), Packet
Data Convergence Protocol (PDCP), Radio Link Control (RLC), Medium
Access Control (MAC), Physical layer (PHY), Radio Frequency (RF).

metro network links. Hence, they are more suitable for eMBB
services.1

We assume in this work that traffic generated by services
belonging to the eMBB class is processed by the CU using
split #2 of 3GPP split set. [3]2 Conversely, traffic generated
by uRLLC applications is processed by the CU using split #6.
Moreover, we assume that the User Plane Functions (UPFs)
related to each service are located in the core network. Fig. 2
depicts the division of baseband functions among DU and CU
for each service.

We place the baseband VNFs over a flexible IP-over-optical
metro network. In order to host these VNFs, the network nodes
must be equipped with general-purpose servers capable of pro-
cessing such functions. High-capacity fiber links connect these
nodes to carry the demands from all RRHs to the gateway. In
addition, the network infrastructure must enable the reconfigu-
ration of lightpaths to establish them according to the baseband
VNF placement. For this, we take advantage of the metro
network infrastructure proposed by the Metro-Haul project [6].
It is composed of a set of metro and core nodes interconnected
by a high-capacity and flexible WDM network. We assume
that the core nodes, or Metro Core Edge Nodes (MCENs),
host all UPFs. The metro nodes, called Access Metro Edge
Nodes (AMENs), are enabled with computing capacity to sup-
port the instantiation of VNFs. Each of them is connected to
a set of DUs using optical links. Each DU serves to a pool
of adjacent RRHs via the access network. Based on this con-
figuration, we also consider a set of demands for eMBB and
uRLLC services arriving at the nodes. These demands gener-
ate hourly traffic corresponding to the upstream (downstream)
traffic generated by (destined to) all mobile users connected
to the RRHs connected to this node.

Based on this architecture, we detail in the remaining of
this section a machine learning-aided optimization to place the
baseband VNFs depicted in Fig. 3. As previously explained,
the baseband VNF placement and routing must be com-
puted beforehand to ensure an efficient network configuration.

1To reduce the DU computational complexity, the baseband functions could
be divided between the DUs and RRHs using a low-layer split.

2The DU placement in the access network is not object of this work.
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Fig. 3. Traffic prediction and baseband VNF placement optimization.

Therefore, the proposed framework first estimates the expected
traffic and the α-quantile uncertainty using a two-step multi-
task algorithm. For this, it predicts the mean and the quantile
normalized traffic using traditional machine learning algo-
rithms and then multiplies them by a scaling factor. Then, the
predicted traffic is given as input to the MILP model responsi-
ble for optimizing the baseband VNF placement. In particular,
it applies the expected traffic to the objective function to esti-
mate the costs and the quantile in the constraints to ensure
feasibility in the worst-case scenario.

A. Traffic Prediction in Metro Nodes

This section describes the two-step traffic prediction model
depicted on the left-hand side of Fig. 3. Predicting traffic is a
classical problem of time series forecasting. Therefore, regres-
sion supervised machine learning techniques can be applied
to predict a real value based on the information of previously
seen data. In this regard, as mentioned in Section II, several
approaches have been proposed in the literature. Most of these
works consider multiple characteristics related to the historical
traffic and the network topology to model the prediction. The
approach proposed in this work is tailored to the baseband
VNF placement optimization problem and reduces the com-
plexity of the models, improving training time and storage
requirements.

The insight behind our approach is the tidal movement of
large populations in a city during the day that displays a
fairly stable seasonality [30]. The users’ traffic arrives at each
node of the metro network from the RRHs to which they are
connected regularly during weekdays, resulting in a very sim-
ilar traffic shape and a slow variation of the traffic volume
with respect to the previous days. This phenomenon is better
illustrated in Section IV.

In contrast with the traditional approaches in which the
expected traffic is predicted directly based on previous traffic
information in a single step, our proposal consists of a two-
step prediction. We divide the traffic forecast into two parts,
normalized and scaling factor prediction, as shown in Fig. 3.
We perform the normalization over the total daily traffic to
avoid a substantial impact of the spikes. Hence, we consider
the summation of the hourly traffic in each day as the scal-
ing factor. We exploit the time series techniques of persistent
forecast and Simple Moving Average (SMA) to compute this
value. The persistence forecast strategy, or naive forecast, uses
the previous observation directly as the forecast value. The
SMA calculates the average of previous n observations. More

specifically, in this work, we deploy persistent forecast to out-
put the total traffic volume observed in the previous day, and
SMA to consider the total traffic of the previous 5 days.

To determine the normalized traffic, the unique input param-
eter necessary is the hour. For this, we employ traditional
regression machine learning techniques. The simplest avail-
able approach is linear regression, whose model obtains linear
functions of the parameters used in this algorithm. They offer
simple analytical properties; nevertheless, they often present
significant limitations in practical use cases. Alternatively, arti-
ficial neural networks were shown to reach high accuracy in
traffic forecast applications. In this work, we consider two
algorithms: FFNN and RNN. FFNN consists of a series of
nodes, called neurons, interconnected through weighted edges
in a feed-forward way [31]. RNN introduces a recurring struc-
ture to traditional FFNNs such that each neuron forwards
feedback to the next steps. This characteristic makes RNN
convenient for time-series predictions. Among the different
algorithms available, this work focuses on Long Short-Term
Memory (LSTM) [32], typically capable of learning long-term
dependencies in sequence prediction problems and extensively
used in traffic prediction use cases.

In any machine learning model, the training phase consists
of minimizing a loss function that evaluates the output with
respect to the expected value. In traditional regression meth-
ods, the best model is found by minimizing the Mean Squared
Error (MSE) (Eqn. (1)). The minimization of such loss func-
tion defines the conditional mean of the target over the feature
values. However, it is not always sufficient for a machine learn-
ing model to make accurate predictions. In applications in
which the forecast value is further used in an optimization
problem, it is equally important to understand the uncertainty
of these predictions. This behavior can be achieved by apply-
ing quantile regression. As its name says, this model estimates
the conditional quantiles, giving priority to the i-th percentile
of the input data. Consequently, its predictions are more robust
against outliers. Eqn. (2) computes the loss function of quantile
regression.

LMSE (Y , Ŷ ) =
1

n

∑(
Yi − Ŷi

)2
(1)

Lquant (Y , Ŷ ) =

{
(1− α)(Ŷ − Y ), if Ŷ ≥ Y ,

α(Ŷ −Y ), if Ŷ < Y
(2)

where Y is the true value, Ŷ is the predicted value for the
normalized traffic and α gives the αth percentile of Y. In par-
ticular, the loss function utilized for the quantile regression
presents an asymmetric behavior, such that for α < 0.5 it
penalizes positive errors.

This work integrates the mean and the quantile predictions
to the optimization setup. We apply the mean traffic prediction
to the objective function because it provides a good esti-
mate of expected traffic, whose relation with the objective we
wish to minimize. Instead, the optimization could benefit from
the quantile regression as it provides an upper bound on the
expected traffic. This allows us to optimize the baseband VNF
placement considering the expected value while ensuring the
feasibility of the constraints. In order to predict both values, we
use a multi-task learning approach. In this setting, the neural
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network model has two distinct outputs: the mean prediction
value and the quantile prediction. We model each output, or
task, with its own loss function, i.e., LMSE and Lquantile for
the mean and the quantile outputs, respectively. During the
training phase, the model learns a shared representation such
that the loss function becomes a combination of both tasks:

L = α · LMSE (Y , ŶMSE ) + (1− α) · Lquant (Y , Ŷquant ),

(3)

where ŶMSE and Ŷquant represent the output of the mean and
quantile tasks, and α weights the importance of each loss. In
particular, we set it to 0.5 as they are equally important.

B. Optimization of Baseband VNF Placement

The second part of the optimization (right block of Fig. 3)
consists of the baseband VNF placement problem, extending
our work in [4]. The goal is to minimize the overall power
consumption when deploying baseband functions to carry dif-
ferent services over the network. Because of the stringent
latency constraints of the uRLLC service, the optimization
gives it priority over eMBB when being processed. Moreover,
the optimization relies on the constraints related both to the
split and to the services, as described as follows.

We consider a metro network composed of N nodes and E
links, in which one node is assumed as the gateway and the
remaining are candidate CU nodes to host the split 2 and split
6 baseband functions. Nodes have a computing capacity Cn

and the links can carry a maximum bandwidth Ce . We also
assume that there are D uplink demands arriving from the
RRHs connected to each of the network nodes (nd ∈ N ),
and whose destination is the gateway (ngw ). Each demand
d ∈ D requests a certain amount of traffic described by λmd
(mean) and λqd (quantile) associated to a service and, thus, to a
functional split f ∈ F = {2, 6}. All parameters and variables
are described in Table I.

Processing Load: The baseband processing load depends on
the split option selected. The model used in this paper assumes
the processing load of a split to be proportional to the capacity
required to process a Common Public Radio Interface (CPRI)
flow [33]:

πf = σf

(
n2
a + 3 · na +

Mb · C · L
3

)
· R
10

, (4)

where na is the number of antennas, Mb is the modulation, C
is the coding rate, L is the number of MIMO layers, and R is
the number of resource blocks per user. The scaling factor σf
is calculated as a ratio of the split and the CPRI computational
complexity according to [34]. In the particular case of the
functional splits used in this paper, the CU scaling factor is
0.13 and 0.42 for split 2 and split 6, respectively, while the
values for the DU are 0.87 and 0.58.

Latency: The computation of the maximum acceptable ser-
vice and split latency is impacted by the delays drawn by
both network and IT components. This paper considers the
following parameters:

• Propagation delay (te ): product of the distance of the
fiber links through which the traffic of a demand needs

TABLE I
PARAMETERS AND VARIABLES USED IN THE MILP FORMULATION

to be transported and the specific propagation delay per
unit length in a fiber (approximately 5 μs/km).

• Switching latency (tsw ): product of the number of elec-
tronic switches crossed by the demand and the specific
switch delay, assumed as 20 μs per traversed switch [35].

• Baseband processing delay (tf ): depends on the server
characteristics and on the processing load required to
process a demand at a certain split [36], [37]:

tf =
πf

πCPU · fCPU
, (5)

where πf is the split processing capacity from Eqn. (4),
πCPU is the server maximum processing load in GOPS,
and fCPU is CPU operating frequency in GHz.

This work ensures that the baseband VNF placement always
meets the QoS requirements, i.e., the placement must be
compliant to the maximum acceptable latency of the splits
and service requested by the different demands. For this, we
assume the split latency as the propagation and switching delay
between the DU and the CU, summed to the processing delay
of the requested split. The maximum split latency is 1.5 ms for
split 2 and 0.25 ms for split 6 [2]. For the service latency, we
consider the propagation along the whole path from the RRHs
to the gateway, and the processing delay of DU and CU nodes.
The maximum service latency accepted by the uRLLC service
is 0.5 ms and by the eMBB service is 5 ms [38].

Power Consumption: To determine the overall power con-
sumed by the system, we divide it into two parts: network and
processing. The network consumption Pnet is given by the
power consumed by the transponders, being the transponder
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an optical device responsible for performing optical-electrical-
optical conversion. We assume that whenever a lightpath is
created, the two transponders associated with it are active and
consuming 2P t

max . The processing power Pproc depends on
the node utilization, i.e., the node consumes its idle power
Ps
idle whenever it is active, and its consumed power increases

according to its utilization up to the maximum power Ps
max .

The node utilization is directly related to the baseband VNFs
hosted by this node and by the total processed traffic:

Πn =
∑

d∈Dn

∑

f ∈F

λdδd ,f πf
Cn

, (6)

where Dn is the set of demands processed by node n, πf
is the split processing capacity from Eqn. (4), δd ,f indicates
that demand d requires functional split f, and Cn is the node
maximum processing capacity.

1) Objective Function: The optimization goal is to mini-
mize the power consumption related to processing and network
components. Based on the power consumption description
provided above, the objective function is represented by
Eqn. (7). As shown in Fig. 3, in order to estimate the expected
placement cost, the node power consumption related to its uti-
lization considers the mean predicted traffic λmd . The weight
β determines the impact of each component. In particular, we
set it to 0.5 to give equal importance to both metrics.

minβPnet + (1− β)Pproc , (7)

where

Pnet =
∑

d∈D

∑

e∈E

∑

n∈N

(
P t
max δe,nxd ,e

)
(8a)

Pproc =
∑

n∈N
ηn

(
Ps
idlewn +

(
Ps
max − Ps

idle

)

Cn

×
∑

d∈D

∑

f ∈F

(
λmd δd ,f πf

)
yd ,n

⎞

⎠ (8b)

2) Constraints: The aforementioned objective function is
subject to the following constraints. The first set of constraints
determine the path from the origin to the destination node.
Eqn. (9) denotes the flow conservation, such that the number
of links assigned to a demand arriving at a certain node (E+

n ) is
equal to the number of outgoing links (E−

n ), unless the demand
starts or ends at this node. The assignment of a demand to a
link is denoted by xd ,e .

∑

e∈E+
n

xd ,e −
∑

e∈E−
n

xd ,e =

⎧
⎨

⎩

−1, if n = nd
1, if n = ngw
0, otherwise

,

∀d ∈ D , ∀n ∈ N (9)

Eqn. (10) ensures that the path that carries the demand
passes through the node assigned to it, indicated by yd ,n .

xd ,e · δe,n ≥ yd ,n , ∀d ∈ D , ∀e ∈ E , ∀n ∈ N (10)

Eqn. (11) establishes the path from origin to the CU, while
Eqn. (12) determines that the links assigned to this demand

until the CU (xCU
d ,e ) belong to the path from the origin node

to the gateway.

∑

e∈E+
n

xCU
d ,e −

∑

e∈E−
n

xCU
d ,e =

{
1, if n = nd
−yd ,n , otherwise

,

∀d ∈ D ,n ∈ N (11)

xCU
d ,e ≤ xd ,e , ∀d ∈ D , e ∈ E (12)

We define that each demand is assigned to a single node:
∑

n∈N
yd ,n = 1, ∀d ∈ D . (13)

Using the Big M method, constraint (14) specifies the nodes
which host a CU, denoted by wn , and ensures that the node
processes a demand if and only if it hosts a CU.

M · wn ≥
∑

d∈D
yd ,n ≥ wn , ∀n ∈ N (14)

The next two constraints delimit the capacity over the links
and nodes. Eqn. (15) restricts the traffic of the services over
the links to the total link capacity, whilst Eqn. (16) limits the
processing load of each node to the maximum node capacity.

∑

d∈D
xCU
d ,e ≤ Ce , ∀e ∈ E (15)

∑

d∈D

⎛

⎝
∑

f ∈F

(
δd ,f πf

)
λ
q
dyd ,n

⎞

⎠ ≤ Cn , ∀n ∈ N (16)

Finally, constraints (17) and (18) ensure that the split and
service latencies are limited to their maximum allowed values.
Eqn. (19) and Eqn. (20) determine the processing delay of
DU and CU nodes, respectively. We consider the propagation
(te ), switching (tsw ) and processing delays (tf ) previously
defined. The split latency is the sum of the propagation delay
from the DU to the node hosting a CU, the switching delay
and the CU processing delay. Instead, the service latency sums
up the propagation and switching delay until the gateway, and
the processing delay in the DU and in the CU. Moreover, we
assume that uRLLC have priority over the eMBB services, i.e.,
they are processed first in the CU. To guarantee such priority,
we consider that F ′ = {6} if demand d is of type uRLLC and
F ′ = F = {2, 6} otherwise in Eqn. (19) and Eqn. (20).
∑

e∈E
xCU
e,d te + tsw

∑

e∈E
xCU
d ,e +

∑

n∈N
Td ,n

≤
∑

f ∈F
δd ,f t

split
f , ∀d ∈ D (17)

∑

e∈E
xe,d te + tsw

∑

e∈E
xd ,e + TDU

d

+
∑

n∈N
Td ,n ≤

∑

f ∈F
δd ,f t

serv
f , ∀d ∈ D (18)

TDU
d =

∑

f ∈F ′
λ
q
d t

DU
f , ∀d ∈ D (19)

Td ,n = yd ,n
∑

d ′∈D

⎛

⎝
∑

f ∈F ′

(
δd ′,f tf

)
λ
q
d ′yd ′,n

⎞

⎠, ∀d ∈ D ,n ∈ N

(20)
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Because Eqn. (20) involves a quadratic term, this
optimization is a Mixed-Integer Quadratic Constraint Program,
which cannot be solved by libraries such a CPLEX. Therefore,
we linearize as follows to reduce it to a MILP:

0 ≤ Td ,n ≤ 1.5yd ,n , ∀d ∈ D ,n ∈ N (21)

∑

d ′∈D

⎛

⎝
∑

f ∈F ′

(
δd ′,f tf

)
λ
q
d ′yd ′,n

⎞

⎠− 1.5
(
1− yd ,n

) ≤ Td ,n

≤
∑

d ′∈D

⎛

⎝
∑

f ∈F ′

(
δd ′,f tf

)
λqd ′yd ′,n

⎞

⎠, ∀d ∈ D ,n ∈ N (22)

C. Heuristic Algorithm

The problem described by the MILP model is a typi-
cal bin-packing problem, which is NP-hard [39]. Thus, we
developed a greedy heuristic algorithm to place the baseband
VNFs and establish lightpaths to minimize power consump-
tion and ensure latency and capacity constraints compliance.
The algorithm pseudo-code is described in Algorithm 2 and
Algorithm 1.

Algorithm 1 gets as inputs the network graph G(N, E) and
the set of demands D. It starts by placing baseband VNFs in
all nodes so that each one processes its incoming demands. It
then routes the demands following the shortest path computed
using Dijkstra algorithm, taking the number of hops as the
weight metric. The next step consists of a greedy algorithm
that searches a node among the neighbors to move the least
utilized nodes. For this, it sorts the nodes reversely according
to the node utilization Un calculated as follows:

Un =

∑
d∈D yd ,nλdδd ,f πf

Cn
(23)

Then, it gets the set of demands Dlow assigned to the node
with the ith lowest utilization nlow , i.e., where yd ,nlow

= 1,
and saves the current state of variables xCU

d ,e , xe,d and yd ,n

to xCU ,temp
d ,e , x temp

e,d and y temp
d ,n . For each demand d ∈ Dlow ,

the algorithm searches among the set of neighbors Nneighbors
for the node with the highest utilization that respects all con-
straints. Hence, for each node n ∈ Nsorted ∩ Nneighbors , it
tries to assign demand d to this node and sets yd ,n = 1 and
yd ,nlow

= 0. Then, it calculates the shortest path between nd
and n (E (nd ,n)), and between n and ngw (E (n,ngw )), and
it sets variables xCU

e,d and xe,d as follows:

xCU
e,d =

{
1, if e ∈ E (nd ,n)
0, otherwise

(24)

xe,d =

{
1, if e ∈ E (nd ,n) ∪ E (n,ngw )
0, otherwise

(25)

Next, it verifies if the solution respects capacity and latency
constraints (Eqn. (16), Eqn. (17) and Eqn. (18)). In case the
solution is not compliant with any of them, it sets the variables
back to the previous solution (xCU ,temp

d ,e , x temp
e,d and y temp

d ,n )
and tries the next node n ∈ Nsorted ∩ Nneighbors . When the
algorithm finishes this procedure for all demands d ∈ Dlow ,
it verifies whether the node is empty (

∑
d∈Dlow

yd ,nlow
= 0)

and sets wnlow = 0 to indicate it is not used. If at least one

Algorithm 1 Baseband VNF Placement and Routing

Input: Network graph G(N ,E ), demands D , traffic λd
Output: CU assignment yd ,n , wn , traffic routing xd ,e , xCU

d ,e
1: for d ∈ D do
2: Assign demand d to node nd where demand d starts:

yd ,nd
← 1, wnd ← 1

3: xe,d ← 1 if e is in shortest path between nd and ngw
4: end for
5: i ← 1
6: while true do
7: Sort nodes reversely based on their utilization:

Nsorted ← sort(N ,Un )
8: nlow ← node with i th lowest utilization
9: Dlow ← demands assigned to nlow

10: xCU ,temp
d ,e ← xCU

d ,e , x temp
e,d ← xe,d

y temp
d ,nlow

← yd ,nlow
, ∀d ∈ Dlow , ∀e ∈ E

11: for all d ∈ Dlow do
12: for all n ∈ Nsorted ∩Nneighbor do
13: yd ,n ← 1, yd ,nlow

← 0

14: xCU
e,d ← Eqn. (24)

15: xe,d ← Eqn. (25)
16: if Eqn. (16), Eqn. (17) or Eqn. (18) not satisfied

then
17: xCU

d ,e ← x
CU ,temp
d ,e , xe,d ← x

temp
e,d

yd ,nlow
← y temp

d ,nlow
, ∀e ∈ E

18: next n
19: end if
20: end for
21: end for
22: if

∑
d∈Dlow

ynlow ,d = 0 then
23: wnlow ← 0
24: else
25: xCU

d ,e ← x
CU ,temp
d ,e , xe,d ← x

temp
e,d

yd ,nlow
← y temp

d ,nlow
, ∀d ∈ Dlow , ∀e ∈ E

26: i ← i + 1
27: if i > |Nsorted | then
28: break
29: end if
30: end if
31: end while

demand is assigned to this node, it sets the variables back to
the previous solution for all demands. In addition, it incre-
ments i to evaluate the next node with the lowest utilization.
The stop condition is when i is over the length of set Nsorted .

Algorithm 2 provides a solution that consumes the least
energy while respecting all constraints. For this, it computes
the baseband VNF placement using the mean traffic λmd . Then,
it calculates the total power consumption and utilization fol-
lowing Eqn. (7) and Eqn. (23) applying the quantile traffic
(λqd ). After this, it computes the baseband VNF placement and
power consumption using the quantile traffic λ

q
d . If the power

consumed by the mean placement (Pmean ) is lower than the
quantile (Pquant ) and the maximum utilization Umean does
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Algorithm 2 Baseband VNF Placement Based on Multi-Task
Traffic Prediction
Input: Network graph G(N ,E ), demands D , mean and

quantile predicted traffic λmd , λqd
Output: CU assignment yd ,n , wn , traffic routing xd ,e

1: Get baseband VNF placement with mean traffic λmd :

ymean
d ,n ,wmean

n , xmean
d ,e , x

CU ,mean
d ,e ←Algorithm 1

2: Pmean ← Eqn. (7)(ymean
d ,n ,wmean

n , xmean
d ,e , λqd )

Umean ← Eqn. (23)(ymean
d ,n , λ

q
d )

3: Get baseband VNF placement with quantile traffic λqd :

yquantd ,n ,wquant
n , x quantd ,e , xCU ,quant

d ,e ←Algorithm 1

4: Pquant ← Eqn. (7)(yquantd ,n ,w
quant
n , x

quant
d ,e , λ

q
d )

5: if Pmean < Pquant and max(Umean ) ≤ 1 then
6: yd ,n ← ymean

d ,n , xd ,e ← xmean
d ,e ,

xCU
d ,e ← xCU ,mean

d ,e ,wn ← wmean
n , ∀d ∈ D , ∀e ∈ E ,

∀n ∈ N
7: else
8: yd ,n ← y

quant
d ,n , xd ,e ← x

quant
d ,e ,

xCU
d ,e ← xCU ,quant

d ,e ,wn ← wquant
n , ∀d ∈ D , ∀e ∈ E ,

∀n ∈ N
9: end if

not surpass the node capacity, the algorithm returns the mean
placement. Otherwise, it outputs the quantile placement.

IV. RESULTS

This section discusses the performance of the prediction
and optimization algorithms presented in Section III. First, we
describe the simulation environment, detailing the parameters
used. Next, we describe the outcomes of the traffic prediction.
After this, we evaluate the robustness of the baseband VNF
placement with the predicted traffic. Then, we compare the
results of the network optimization using the predicted traffic
to the optimal MILP solution and to two baseline scenarios.
Finally, we analyze the computational time and model size.

A. Implementation and Simulation Environment

For the simulations, we consider a network topology
inspired by a metro network from Metro-Haul project [6]
depicted in Fig. 4. It contains a total of 36 nodes, among which
one MCEN and 35 AMENs. The MCEN is the only node con-
nected to the core and is considered to be the gateway node.
Instead, the AMENs are treated as potential CU nodes. Each
AMEN is equipped with a Intel Xeon Gold 6134 servers with
8 cores operating at 3.7 GHz and with a processing capac-
ity Cs of 537.6 GFLOPS. The total capacity in each node is
obtained by multiplying the number of servers per node by
the server processing capacity. The idle power consumption
Ps
idle is 130 W, and we consider that it represents 15% of

the maximum power Ps
max , which is set to 870 W. Also, the

MCEN contains 70 servers with the same specifications.
As anticipated, we assume that each AMEN is connected

to a set of DU nodes serving the local RRHs, whose radio

Fig. 4. Metro-area network topology with 35 AMENs and one MCEN.

TABLE II
SIMULATION INPUT PARAMETERS

configuration follows the description in [2]. This scenario con-
sists of a 64QAM modulation, 2x2 MIMO, and a coding
scheme of 1 in the uplink. We also consider that a single
user per transmission time interval sends 100 resource blocks
of data. Furthermore, the nodes are connected using opti-
cal fiber links with 80 wavelengths. Each node is equipped
with 100 Gbit/s transponders, with a power consumption of
110.4 W [40]. Table II summarizes the input parameters used
in the simulations.

We assume that the topology of Fig. 4 represents a realistic
metro-network infrastructure of a network operator. We com-
bined this topology with the OpenCellid database [41] to map
the RRHs of the city of Milan to the nodes. We also incorpo-
rated the TIM Big Data Challenge dataset [42] to obtain the
traffic per node. This dataset describes the anonymized Call
Detail Record over two months, indicating the interaction of
users with the network through SMS, phone calls, and Internet
connections every ten minutes. As explained in Section III,
we assume that the uRLLC and eMBB traffic are modeled
as VoIP and content delivery services, respectively. Therefore,
we apply the phone calls and Internet connections from the
TIM Big Data Challenge dataset to the uRLLC and eMBB
demands, respectively. Furthermore, we assume that traffic
information regarding uRLLC and eMBB services comes from
distinct cells to avoid coordination issues when using differ-
ent splits for each service. We divided the weekday traffic
information into three parts: the training set with 20 consecu-
tive weekdays, the validation set with 5 days, and the test set
with 3 days.
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TABLE III
HYPERPARAMETERS OF FFNN, LSTM AND LINEAR REGRESSION

ALGORITHMS FOR THE TWO- AND SINGLE-STEP APPROACHES

The traffic prediction tool was developed using the Keras
library from Python. The MILP formulation was modeled
using Net2Plan open-source network planner with the NFV
over IP over WDM library [43]. We ran the simulations on a
CPU Intel Core i7 with 32GB of RAM, 64-bit Windows 10.

B. Traffic Prediction

This section compares the results for the traffic prediction.
As explained in Section III-A, the machine learning algorithms
use the hour of the day to predict the normalized traffic, which
is then scaled to obtain the total traffic. First, we show the
results for the mechanisms proposed for computing the scaling
factor. Then, we describe the performance of traffic prediction.
In order to assess the performance of the proposed method,
we compare its results to another state of the art model to
predict the mean traffic proposed by Alvizu et al. [44]. That
paper approach uses the following features: day, hour, average
traffic of the previous days, traffic value for the same hour of
seven days before, and traffic value for the same hour of the
previous day. In contrast to the two-step approach proposed
in this paper, we refer to the traffic prediction of [44] as
single-step.

We selected the algorithms hyperparameters using the
hyperopt algorithm [45] to minimize the MSE over the valida-
tion set. Even if the nodes and the services differ in their traffic
patterns, they present fairly similar characteristics. For this rea-
son, we optimized the hyperparameters considering the eMBB
traffic of a single central node. According to the hyperparame-
ter optimization results, we built the FFNN, LSTM, and linear
regression models for the two- and single-step approaches, as
shown in Table III.

Next, we trained the Linear Regression, LSTM, and FFNN
algorithms in all scenarios using Adam optimizer [46] and
MSE as the loss function. To assess the algorithms accuracy on
the test set, we use the coefficient of determination (R2), Root
Mean Squared Error (RMSE) and Mean Absolute Percentage
Error (MAPE) (Eqn. (26)).

R2 = 1−
∑

(Yi − Ŷi )
2

∑
(Yi − 1

n

∑
Yi )2

(26a)

RMSE =

√
1

n

∑
(Yi − Ŷi )2 (26b)

MAPE =
1

n

∑
(
|Yi − Ŷi |

Yi

)
(26c)

where Yi is the real value, Ŷi is the predicted value, and n is
the number of samples.

TABLE IV
RMSE AND MAPE OF PERSISTENCE FORECAST AND SMA

TABLE V
R2 SCORE AND RMSE OF NORMALIZED, SCALED AND SINGLE-STEP

TRAFFIC PREDICTION FOR EMBB AND URLLC SERVICES

Table IV describes the RMSE and MAPE for eMBB and
uRLLC services using the persistent forecast strategy and
SMA over 5 days for the test set. The mean value repre-
sents the average traffic forecast error over all nodes, and the
maximum value indicates the highest error among all nodes.

By applying the SMA over the previous 5 days as the scal-
ing factor, the RMSE over the three days for all nodes is
under 14 Gbit/s and 1.2 Gbit/s for eMBB and uRLLC traf-
fic, respectively. This corresponds to an average MAPE of
4.4% (eMBB) and 3.4% (uRLLC). Persistent forecast, instead,
enables reducing the error in both traffic scenarios, with the
maximum MAPE dropping to 6.8% for eMBB and to 6.6%
for uRLLC. Furthermore, evaluating the MAPE over the com-
plete dataset, the maximum error for a node is under 5.5% with
persistent forecast, while the SMA surpasses 7.5%. The low
MAPE score confirms the slow day-by-day traffic variation,
corroborating our idea of using it as a scaling factor.

We used the persistent forecast strategy to obtain the
final expected traffic in the two-step prediction because it
achieves the lowest error. Table V summarizes the R2 scores
and the RMSE of the normalized and final scaled traffic (i.e.,
the normalized traffic multiplied by the total traffic of the
previous day), compared to the results of the single-step traf-
fic prediction. The results in this subsection consider only the
mean predicted value because the quantile regression provides
an overestimation of the traffic; hence, it reduces the accuracy
with respect to the real value.

Comparing the single-step traffic forecast to the approach
proposed in this paper, the two-step prediction outperforms
the former. The single-step technique provides high accuracy
to compute the uRLLC traffic, surpassing the scores of the
scaled traffic with LSTM. Nonetheless, the performance of
the single-step algorithms significantly drops if used to fore-
cast the eMBB traffic. The R2 score decreases to less than
0.85 with any algorithm, and the RMSE surpasses 1 Gbit/s
for the Linear Regression. The two-step approach, instead,
presents significantly higher accuracy in the eMBB scenario
when applying FFNN and Linear Regression, with RMSE val-
ues under 0.97 Gbit/s. Indeed, these algorithms provide an
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Fig. 5. Total predicted traffic using LSTM, FFNN and LR using the scaled
normalized traffic compared to the real traffic.

accuracy of over 0.93 after the traffic was scaled. On the
other hand, LSTM does not perform as well as the other algo-
rithms, with accuracy values of 0.85 and 0.93 for the eMBB
and uRLLC services, respectively. Evaluating the services sep-
arately, it is worth mentioning that the calls traffic shape in the
dataset is more stable than Internet traffic. This is translated to
the results presented in Table V. The uRLLC traffic achieves
an accuracy over 0.97 when using the two-step prediction with
FFNN and Linear Regression, and 0.93 with LSTM.

Figures 5(a) and 5(b) depict, respectively, the uRLLC and
eMBB traffic of all nodes using the two-step traffic prediction
in comparison to the real traffic. These graphs illustrate that the
mispredictions are related to the occurrence of unpredictable
events that generate a sudden traffic growth or reduction of
traffic at certain time slots. Indeed, the traffic predicted with
the machine learning algorithms draws a smoother traffic
curve, not detecting unexpected traffic spikes.

The results in this subsection prove that our model has
a better performance than traditional single traffic prediction
approaches. Moreover, because the model requires uniquely
the hour of the day and the total traffic received in the previous
day, we can substantially simplify the pre-processing of the
acquired data.

C. Robustness of Optimization With Traffic Prediction

This subsection evaluates the robustness of the optimization
when using the traffic obtained in Section IV-B in the MILP. In
particular, we selected the two-step multi-task FFNN algorithm
for the network optimization.

First, we follow the technique widely used in the litera-
ture [19], [20], [23], which blindly uses the predicted traffic

into the optimization framework to determine the future base-
band VNF placement. We ran the optimization algorithm
applying the mean forecast traffic (λmd ) to the objective func-
tion and constraints of the MILP. Then, we applied the real
traffic data to understand whether the baseband VNF place-
ment is feasible in the actual scenario. Analyzing the power
consumption of the network configuration using the forecast
traffic, we observed a slight decrease in power consumption (at
most 0.27% at certain time slots) with respect to the optimal
solution. This result clearly shows a misplacement of the base-
band functions, as the solution calculated using the real traffic
is optimal. Indeed, analyzing other system aspects carefully,
we noticed that the node utilization surpasses its capacity when
the real traffic is applied to the computed placement, reaching
more than 110% with the mean FFNN traffic. Despite the high
accuracy of the traffic prediction, it underestimates the traffic
in almost all nodes. Consequently, simply applying the mean
forecast traffic as done in most research works available in the
literature does not guarantee a robust solution for the base-
band VNF placement and, thus, cannot be directly used in
this scenario. To overcome this issue, we evaluated two solu-
tions: adding an extra artificial capacity buffer and applying
the multi-task prediction.

1) Artificial Buffer: Consists of varying the total node
capacity perceived by the MILP model. This technique is
frequently used in the literature to ensure that the predicted
resource allocation is compliant with the constraints in the
real-time scenario. It is a similar solution to the one proposed
by Guerra-Gomez et al. in [24], and hereinafter we refer to
this setup as buffer. The algorithm computes the baseband
VNF placement assuming that the capacity over the nodes is
lower than the actual value, i.e., considering a capacity buffer
of X%. Then, the real traffic is applied to the computed con-
figuration with the full node capacity. By adding a buffer of
5%, i.e., reducing the computing capacity to 95%, the base-
band VNF placement complies in most time-slots with the
total node capacity. However, some time-slots require higher
computational capacity installed in the nodes, with the node
utilization arriving to 100.4%. Therefore, we must assume a
lower capacity threshold, with a buffer of 10%. Indeed, the
solution obtained becomes compliant with all the constraints
at all time-slots when applying the actual traffic. These results
show that we can obtain a risk-averse model that operators can
use without loss of QoS by adding an artificial buffer to the
optimization constraints. Nevertheless, this solution provides
a static modification of the system, not considering the fact
that each node presents different incoming traffic volumes.
Furthermore, not all time-slots present the violation of the
computing capacity constraint.

2) Multi-Task Prediction: Consists of using the mean traf-
fic to estimate the costs in the objective function and the quan-
tile prediction to ensure constraints compliance as explained in
Section III-A. This solution improves the robustness and con-
siders the traffic variability. Fig. 6 depicts the total real traffic
and the predictions considering the mean, the 75th percentile
and the 85th percentile. These figures show that the greatest
is the quantile value, the more the traffic is overestimated.
This translates into an overall RMSE over the total traffic of
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Fig. 6. Total traffic predicted with mean, 75th and 85th percentile compared
to the real traffic.

TABLE VI
MAXIMUM NODE UTILIZATION WHEN REDUCING NODE CAPACITY AND

WHEN APPLYING QUANTILE PREDICTION TO THE CONSTRAINTS

19.83 Gbit/s and 31.1 Gbit/s with 75th and 85th percentile
predictions against 16.2 Gbit/s with the mean value. First,
we trained the quantile model using the 75th percentile. The
baseband VNF placement in this scenario reduces the overall
node utilization; however, a single time-slot still requires more
capacity. In particular, the placement violates the capacity of
one node, whose utilization reaches 104%. Consequently, we
trained the model using a greater quantile, i.e., 0.85. This
approach enables the obtained solution to be feasible at all
time-slots, reaching a maximum utilization of 99.2%.

Table VI summarizes the results when applying 5% and
10% artificial node capacity buffer and multi-task prediction
with 75th and 85th quantile in the constraints.

This section shows that calculating the network configura-
tion using the predicted traffic as-is does not provide a robust
solution, as it does not respect the node capacity constraints
when the actual traffic is applied. Hence, it is necessary to
apply other techniques to guarantee a feasible baseband VNF
placement with real traffic. For this, we proposed two solu-
tions: add an artificial node capacity buffer and use quantile
prediction in the MILP constraints. In the former, we added a
10% buffer to the node capacity constraints. The latter takes
into account the traffic variability by using quantile regression
to overestimate the predicted traffic.

D. MILP Optimization With Predicted Traffic

Based on the outcomes of Section IV-C, this section shows
that the MILP with predicted traffic places the baseband
VNF efficiently. For this, we compare the performance of
the optimization algorithm using real traffic (hereinafter called
oracle) to the traffic predicted by FFNN with the robustness
modifications. We also compare the solution to two baseline

Fig. 7. Power consumed by the oracle, by the placement with predicted traffic
using artificial buffer and quantile regression, and by the baseline scenarios.

scenarios: fully centralized and fully decentralized. The first
corresponds to the earliest proposal of the baseband unit sepa-
ration to achieve a completely centralized processing. For this
reason, we call it the C-RAN scenario, and the MCEN is the
only node containing the baseband VNFs. The second scenario
designates the current RAN in 4G networks, i.e., the D-RAN,
in which all AMENs in the topology described in Section IV-A
host a CU and process the demands from the DUs to which
they are connected. Both baseline scenarios route the demands
on the path with the shortest propagation delay. All results
in this section assume that the real traffic is applied to the
different baseband VNF placement computation.

Fig. 7 presents the overall power consumption of the oracle,
the baselines (C-RAN and D-RAN), the placement using the
mean predicted traffic with 10% capacity buffer (Mean, 10%
buffer) and using the multi-task prediction with 0.85 quantile
(Quantile 0.85). The box plot in Fig. 8 illustrates the difference
in power consumption with respect to the oracle.

Comparing the results to the baseline scenarios, the ora-
cle enables reducing the overall power consumed on average
21.3% in comparison with the D-RAN. As expected, when
processing is fully distributed, the AMENs are active at
all times, leading to greater node power. Rather, the ora-
cle baseband VNF placement maintains at most 11 nodes
active simultaneously. As a result, the oracle reduces the IT
power consumption by 76.93%. The C-RAN scenario, instead,
presents the lowest consumption, with an average decrease
of 6.46%, as a consequence of using a unique node. With
respect to both baseline scenarios, the MILP reduces the total
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Fig. 8. Difference in power consumption with respect to the oracle of the
placement based on the predicted traffic, and of the baseline scenarios.

TABLE VII
SPLIT AND SERVICE LATENCY FOR URLLC SERVICES. MAXIMUM

ALLOWED LATENCY: 0.25 MS (SPLIT 6) AND 0.5 MS (URLLC SERVICE)

transponder consumption by more than 10% on average. This
result shows that, although the baseline scenarios route the
demands using the shortest path, they do not guarantee the
use of the minimum amount of network resources.

Evaluating the results using the predicted traffic, we observe
a mild increase in power compared to the oracle. More specif-
ically, the consumption rose on average 0.39% (106 W) when
applying the mean traffic prediction with 10% buffer. Using
quantile regression, the increase represents 0.33% (87 W) on
average; thus, we can save 2% with respect to the mean with
10% buffer. The solution with the quantile regression tends to
use more nodes than the one with the buffer and the oracle.
During the evaluated time slots, it uses on average 8.88 and
at maximum 12 nodes, while these values decrease to 8.61/11
nodes with capacity buffer and to 8.5/11 nodes for the oracle.
This translates into an increase of IT power consumption of
1.22% and 0.35% for the quantile and artificial buffer solutions
with respect to the oracle. However, the network represents the
most important component when computing the total power
consumption. Since the solution using quantile prediction in
the constraints uses fewer transponders, it enables finding a
solution closer to the oracle.

We also evaluate the oracle, the baseline scenarios and the
placement using the predicted traffic in terms of the maximum
latency to understand whether the different scenarios com-
ply with the service and split constraints. Table VII presents
the minimum, maximum, mean of the demands with highest
latency obtained for uRLLC service, and Table VIII show the
results for the eMBB service.

The fully distributed scenario presents the lowest latency
and the lowest deviation, reaching at most 130 μs and 268 μs
of split and service delays for uRLLC services, and 338 μs
and 1.67 ms for eMBB. This is explained by the fact that the
CU is as close as possible to the DU, and it uses the shortest
path to the gateway, leading to a modest propagation delay.

TABLE VIII
SPLIT AND SERVICE LATENCY FOR EMBB SERVICES. MAXIMUM

ALLOWED LATENCY: 1.5 MS (SPLIT 2)AND 5 MS (EMBB SERVICE)

TABLE IX
POWER AND LATENCY RESULTS AT TIME-SLOT 40

Moreover, each CU processes a few traffic demands, repre-
senting a small contribution as processing delay. In contrast,
the C-RAN scenario reaches the highest latency values and
greatest variability. The results of eMBB service show that,
although its delay is higher than the D-RAN service latency,
it is compliant with all constraints. However, as observed in
bold in Table VII, it presents the highest variance and does not
satisfy the split latency constraint of uRLLC service (250 μs)
in several time-slots, with maximum latency of more than
280 μs. Hence, even if it enables reducing the overall power
consumption, it penalizes the demands because of the latency.

The oracle baseband placement latency results present con-
siderably higher values with respect to the D-RAN baseline
scenario, mainly considering the uRLLC service. Nevertheless,
it is compliant with the split and service latency constraints
at all time slots: for the uRLLC service, the highest latency
is 210 μs (split) and 376 μs (service), and for the eMBB
service, it does not surpass 537 μs (split) and 1.67 ms (ser-
vice). Comparing these results to the placement calculated
using the predicted traffic, we observe very similar values.
The solution with mean prediction and node capacity buffer
presents more important differences, with maximum deviations
of 11.4% (split 2), 9.9% (split 6), 2.8% (service 2) and 6.2%
(service 6). These results confirm that the network configura-
tion computed by the MILP for the predicted traffic presents a
variation to the oracle solution. Nevertheless, we observe that
the requirements are respected in all scenarios, i.e., the split
6, split 2, uRLLC, and eMBB delays are under the specified
limits of 0.25 ms, 1.5 ms, 0.5 ms, and 5 ms, respectively.

Fig. 9 exemplifies the difference graphically in baseband
VNF placement over the metro-network topology at 4 PM of
the second day (time-slot 40). Table IX summarizes the power
and latency results for each optimization.

The number of nodes that host the baseband VNFs is the
same for all scenarios (11 nodes). Ten of these nodes remain
the same, with a difference of a single node in each scenario.
Because of the different settings, the power consumption of the
placement with quantile and with mean prediction increases of
331.2 W and 220.8 W, respectively, compared to the oracle.
Since the number of used nodes is the same, this deviation is
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Fig. 9. Baseband function placement over AMENs at 4 PM of the first day in the scenarios with the real traffic (a), with the mean prediction and artificial
buffer (b) and with the multi-task prediction (c). The circled nodes highlight the nodes that are active only one of the scenarios.

driven only by the transponder as the demands must be routed
through different paths. The different routes also affect the
split and service latency of each optimization. As a result, the
placement computed using the mean predicted traffic intro-
duces about 20 μs to the uRLLC split and service latency and
reduces 75 μs from the eMBB split delay with respect to the
oracle. On the other hand, the placement with quantile lowers
the uRLLC split delay by only 3 μs, while the other latency
values remain the same.

The results presented in this subsection show that the
optimization proposed in Section III-B provides a solution that
significantly reduces the power consumption while respecting
all constraints. In addition, when applying the predicted traffic
including the robustness modifications of Section IV-C, it is
possible to achieve a quasi-optimal solution, being compliant
with all requirements with a minor increase in power con-
sumption. Comparing the two robustness proposals, quantile
regression reaches a final result that is closer to the oracle
placement even if it degrades the traffic prediction.

E. Heuristic Algorithm With Predicted Traffic

After evaluating the MILP model with predicted traffic, this
section presents the results using the heuristic algorithm from
Section III-C. For this, Figure 10 depicts the node and network
power consumption of the oracle, the D-RAN scenario, the
placement using MILP with the multi-task prediction with 0.85
quantile (MILP quantile), and the placement with the heuris-
tic algorithm applying the real (Heuristic real traffic) and the
multi-task prediction with 0.85 quantile (Heuristic quantile).
Figure 11 illustrates the difference in power consumption of
the same scenarios in a box plot compared to the oracle.

The heuristic algorithm with real traffic enables finding an
intermediate solution between the oracle and the D-RAN sce-
nario. It presents similar node power consumption compared
to the oracle, with an increase of 10% on average. On the
other hand, the network power consumption is significantly
higher, with a maximum increment of 30.77%. This difference
is because the node placement with the heuristic algorithm
does not ensure that the CU is in a path among the shortest
ones from the node receiving the demands and the gateway.
Indeed, the network power is higher than the D-RAN scenario.
Nevertheless, the overall power presents an average increase
compared to the oracle of 15.2%, ensuring a better solution

Fig. 10. Power consumed by the oracle, by the D-RAN scenario, by the MILP
placement with quantile regression, and by the heuristic algorithm with real
and quantile predicted traffic.

during the entire day than the D-RAN, which is 21.27% higher
than the oracle.

Applying the multi-task traffic prediction to the heuristic
algorithm slightly decreases the maximum power consumption
relative to real traffic. It consumes in total 1.3% less than the
heuristic computed with the real traffic. Note that the heuris-
tic algorithm does not compute the optimal solution; hence,
the predicted traffic error further improves the final result.
Compared to the MILP results, the multi-task-based heuris-
tic algorithm raises the power consumption by 13.68% and
13.31% regarding the oracle and the MILP with multi-task
traffic prediction, respectively. As in the heuristic with real
traffic, this growth is a consequence of the higher network
power.
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Fig. 11. Difference in power consumption with respect to the oracle of the
D-RAN scenario, the MILP placement based on the predicted traffic, and the
heuristic placement with the real and the predicted traffic.

TABLE X
HEURISTIC SPLIT AND SERVICE LATENCY. MAXIMUM ALLOWED

LATENCY: 0.25 MS (SPLIT 6), 1.5 MS (SPLIT 2),0.5 MS (URLLC
SERVICE), 5 MS (EMBB SERVICE)

TABLE XI
TRAINING TIME AND MODEL SIZE FOR LINEAR REGRESSION, LSTM

AND FFNN ALGORITHMS IN THE TWO- AND SINGLE-STEP APPROACHES

Table X shows the minimum, maximum and mean split and
service latency obtained for the uRLLC and eMBB services
using the heuristic algorithm. Please refer to Tables VII and
VIII for the latency results of the other approaches.

The maximum uRLLC-related latency values are very close
to the accepted limit by the split 6 (0.25 ms) and the uRLLC
service (0.5 ms). Nonetheless, the heuristic algorithm is always
capable of providing a feasible solution. Concerning the eMBB
service, since it presents very loose split and service latency
budgets (1.5 ms and 5 ms), the algorithm using the real and
the predicted traffic does not have any problem in finding a
feasible solution. Therefore, the heuristic approach proposed
is compliant with all requirements.

F. Computational Time

Table XI details the average training time and the model
size of each algorithm analyzed in Section IV-B.

As expected, Linear Regression requires the shortest training
time and occupies the least memory, followed by FFNN. Instead,
LSTM is about 3 times slower and occupies at least 8 times
more memory than FFNN. Comparing the two approaches
analyzed in this section, the two-step traffic forecast training is
considerably faster than the single-step prediction. Indeed, the
time to train the one-step linear regression, LSTM, and FFNN
increases 84%, 58%, and 15%, respectively, with respect to the

two-step prediction. In addition, the approach proposed in this
paper reduces significantly the model size of LSTM and FFNN,
occupying less memory (17% and 60%, respectively). The model
size of Linear Regression using the two-step approach is slightly
larger than the one-step, with a difference of 7 kiB. Besides
improving the prediction accuracy as shown in Section IV-B,
these results prove that the proposed solution considerably
improves the training time and the model size. Consequently,
it facilitates the retraining for network operators and also the
storage of these models.

As previously mentioned, MILP models with similar formu-
lations to the one proposed in this paper are NP-hard. Thanks to
the approach used in this paper of placing the baseband VNFs
considering only the metro-network nodes, we can maintain the
execution time low. The MILP spends on average 112.47 s to
compute the hourly placement of baseband VNFs considering
the proposed topology. Although the computing time is fairly
low with the topology used in this paper, larger cities with a
greater number of nodes could require many hours to compute
a solution. As previously mentioned, the heuristic algorithm
was developed to mitigate the NP-Hardness of MILP mod-
els. The heuristic algorithm proposed in this paper spends on
average 182.61 ms to compute the solution for each time slot.
Therefore, it is more than 600 times faster than the MILP.

V. FINAL REMARKS

This paper presents the optimization of baseband VNF
placement in a metro network to minimize operators’ costs.
This approach envisages first the forecast of the traf-
fic of different services and then the optimization of the
network configuration. Exploiting the well-defined shape of
the daily traffic, we developed a two-step multi-task predictive
model prior to the baseband VNF optimization. First, Linear
Regression, LSTM and FFNN algorithms predict the mean
and quantile normalized traffic. Then, we use persistent fore-
cast to determine the scaling factor to calculate the expected
traffic. This information is then fed to a MILP formula-
tion that computes the network configuration minimizing the
power consumption, subject to the functional split and service
requirements. In particular, we apply the mean predicted traffic
to the objective function to estimate the costs and the quantile
value to the constraints to ensure that the capacity bounds are
respected. We also propose a heuristic algorithm to reduce the
computational time. It analyzes the placement using the mean
and the quantile traffic to minimize the power consumption
and guarantee constraint compliance. The results show that
the two-step traffic prediction using FFNN algorithm provides
the best prediction accuracy and outperforms the state-of-the-
art. We also demonstrate that the two-step multi-task traffic
prediction in the optimization is the approach that achieves
the most similar results with respect to the oracle placement,
i.e., the placement calculated using the real traffic. Indeed,
our solution enables achieving a robust solution capable of
carrying the actual traffic at all time slots, and the power con-
sumption is only 0.33% higher than the oracle. The heuristic
algorithm significantly reduces the computational time at the
expense of increasing the power consumption by 13%.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 09:01:58 UTC from IEEE Xplore.  Restrictions apply. 



ZORELLO et al.: BASEBAND-FUNCTION PLACEMENT WITH MULTI-TASK TRAFFIC PREDICTION 5119

ACKNOWLEDGMENT

The authors would like to thank Dr. Marco Quagliotti for
his valuable support.

REFERENCES

[1] L. M. Larsen, A. Checko, and H. L. Christiansen, “A survey of the
functional splits proposed for 5G mobile crosshaul networks,” IEEE
Commun. Surveys Tuts., vol. 21, no. 1, pp. 146–172, 1st Quart., 2018.

[2] Small Cell Virtualization Functional Splits and Use Cases, Small Cell
Forum, Dursley, U.K., Jan. 2016.

[3] Radio Access Architecture and Interfaces (Release 14), 3GPP, Sophia
Antipolis, France„ 2017.

[4] L. M. M. Zorello, S. Troia, M. Quagliotti, and G. Maier, “Power-
aware optimization of baseband-function placement in cloud radio access
networks,” in Proc. IEEE/IFIP Int. Conf. Opt. Netw. Design Model.,
2020, pp. 1–6.

[5] Z. Zhong, N. Hua, H. Liu, Y. Li, and X. Zheng, “Considerations of
effective tidal traffic dispatching in software-defined metro IPover optical
networks,” in Proc. IEEE Opto Electron. Commun. Conf., 2018, pp. 1–9.

[6] “Metro-Haul.” [Online]. Available: https://metro-haul.eu/ (Accessed:
May 2022).

[7] A. Tzanakaki, M. P. Anastasopoulos, and D. Simeonidou, “Optical, wire-
less, and data center network infrastructures for 5G services,” J. Opt.
Commun. Netw., vol. 11, no. 2, pp. A111–A122, 2019.

[8] H. Yu, F. Musumeci, J. Zhang, Y. Xiao, M. Tornatore, and Y. Ji, “DU/CU
placement for C-RAN over optical metro-aggregation networks,” in
Proc. IEEE/IFIP Int. Conf. Opt. Netw. Design Model., 2019, pp. 82–93.

[9] A. N. Al-Quzweeni, A. Q. Lawey, T. E. H. Elgorashi, and
J. M. H. Elmirghani, “Optimized energy aware 5G network function
virtualization,” IEEE Access, vol. 7, pp. 44939–44958, 2019.

[10] F. W. Murti, A. Garcia-Saavedra, X. Costa-Perez, and G. Iosifidis, “On
the optimization of multi-cloud virtualized radio access networks,” in
Proc. IEEE Int. Conf. Commun., 2020, pp. 1–7.

[11] R. I. Tinini, D. M. Batista, G. B. Figueiredo, M. Tornatore, and
B. Mukherjee, “Energy-efficient vBBU migration and wavelength reas-
signment in cloud-fog RAN,” Trans. Green Commun. Netw., vol. 5, no. 1,
pp. 18–28, 2021.

[12] J. Yusupov, A. Ksentini, G. Marchetto, and R. Sisto, “Multi-objective
function splitting and placement of network slices in 5G mobile
networks,” in Proc. IEEE Conf. Stand. Commun. Netw., 2018, pp. 1–6.

[13] B. Ojaghi, F. Adelantado, E. Kartsakli, A. Antonopoulos, and
C. Verikoukis, “Sliced-RAN: Joint slicing and functional split in future
5G radio access networks,” in Proc. IEEE Int. Conf. Commun., 2019,
pp. 1–6.

[14] S. Matoussi, I. Fajjari, N. Aitsaadi, and R. Langar, “User slicing scheme
with functional split selection in 5G cloud-RAN,” in Proc. IEEE Wireless
Commun. Netw. Conf., 2020, pp. 1–8.

[15] H. Gupta, M. Sharma, A. Franklin, and B. R. Tamma, “Apt-RAN: A
flexible split-based 5G RAN to minimize energy consumption and han-
dovers,” IEEE Trans. Netw. Service Manag., vol. 17, no. 1, pp. 473–487,
Mar. 2020.

[16] R. Singh, C. Hasan, X. Foukas, M. Fiore, M. Marina, and
Y. Wang, “Energy-efficient orchestration of metro-scale 5G radio access
networks,” in Proc. IEEE Int. Conf. Comput. Commun., 2021, pp. 1–10.

[17] Y. Xiao, J. Zhang, and Y. Ji, “Energy-efficient DU-CU deployment and
Lightpath provisioning for service-oriented 5G metro access/aggregation
networks,” J. Lightw. Technol., vol. 39, no. 17, pp. 5347–5361, Sep. 1,
2021.

[18] T. Sigwele, Y. Hu, and M. Susanto, “Energy-efficient 5G cloud RAN
with virtual BBU server consolidation and base station sleeping,”
Comput. Netw., vol. 177, Aug. 2020, Art. no. 107302.

[19] A. Pelekanou, M. Anastasopoulos, A. Tzanakaki, and D. Simeonidou,
“Provisioning of 5G services employing machine learning techniques,”
in Proc. IEEE/IFIP Int. Conf. Opt. Netw. Design Model., 2018,
pp. 200–205.

[20] H. Yu, F. Musumeci, J. Zhang, M. Tornatore, L. Bai, and Y. Ji, “Dynamic
5G RAN slice adjustment and migration based on traffic prediction in
WDM metro-aggregation networks,” J. Opt. Commun. Netw., vol. 12,
no. 12, pp. 403–413, 2020.

[21] Z. Gao et al., “Deep reinforcement learning-based policy for baseband
function placement and routing of RAN in 5G and beyond,” J. Lightw.
Technol., vol. 40, no. 2, pp. 470–480, Jan. 15, 2022.

[22] M. Zhu, J. Gu, T. Shen, C. Shi, and X. Ren, “Energy-efficient and QoS
guaranteed BBU aggregation in CRAN based on heuristic-assisted deep
reinforcement learning,” J. Lightw. Technol., vol. 40, no. 3, pp. 575–587,
Feb. 1, 2022.

[23] L. Chen, T. M. T. Nguyen, D. Yang, M. Nogueira, C. Wang, and
D. Zhang, “Data-driven C-RAN optimization exploiting traffic and
mobility dynamics of mobile users,” IEEE Trans. Mobile Comput.,
vol. 20, no. 5, pp. 1773–1788, May 2021.

[24] R. Guerra-Gomez, S. Ruiz-Boque, M. Garcia-Lozano, and J. O. Bonafe,
“Machine learning adaptive computational capacity prediction for
dynamic resource management in C-RAN,” IEEE Access, vol. 8,
pp. 89130–89142, 2020.

[25] H. Zhang, Y. Hua, C. Wang, R. Li, and Z. Zhao, “Deep learning based
traffic and mobility prediction,” in Machine Learning for Future Wireless
Communications, F. Luo, Ed. Hoboken, NJ, USA: Wiley, 2020, ch. 7,
pp. 119–136.

[26] D. Andreoletti, S. Troia, F. Musumeci, S. Giordano, G. Maier, and
M. Tornatore, “Network traffic prediction based on diffusion con-
volutional recurrent neural networks,” in Proc. IEEE Conf. Comput.
Commun. Workshops, 2019, pp. 246–251.

[27] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“DeepCog: Optimizing resource provisioning in network slicing with
AI-based capacity forecasting,” IEEE J. Sel. Areas Commun., vol. 38,
no. 2, pp. 361–376, Feb. 2020.

[28] IMT Vision—Framework and Overall Objectives of the Fugure
Development of IMT for 2020 and Beyond, ITU, Geneva, Switzerland,
2015.

[29] C. Song et al., “Hierarchical edge cloud enabling network slicing for 5G
optical Fronthaul,” J. Opt. Commun. Netw., vol. 11, no. 4, pp. B60–B70,
Apr. 2019.

[30] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictabil-
ity in human mobility,” Science, vol. 327, no. 5968, pp. 1018–1021,
Feb. 2010.

[31] T. Kohonen, “An introduction to neural computing,” Neural Netw., vol. 1,
no. 1, pp. 3–16, 1988.

[32] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[33] M. Shehata, A. Elbanna, F. Musumeci, and M. Tornatore, “Multiplexing
gain and processing savings of 5G radio-access-network functional
splits,” IEEE Trans. Green Commun. Netw., vol. 2, no. 4, pp. 982–991,
Dec. 2018.

[34] B. Debaillie, C. Desset, and F. Louagie, “A flexible and future-proof
power model for cellular base stations,” in Proc. IEEE Veh. Technol.
Conf., 2015, pp. 1–7.

[35] F. Musumeci, O. Ayoub, M. Magoni, and M. Tornatore, “Latency-
aware CU placement/handover in dynamic WDM access-aggregation
networks,” J. Opt. Commun. Netw., vol. 11, no. 4, pp. B71–B82,
2019.

[36] A. D. Domenico, Y. Liu, and W. Yu, “Optimal computational resource
allocation and network slicing deployment in 5G hybrid C-RAN,” in
Proc. IEEE Int. Conf. Commun., 2019, pp. 1–6.

[37] X. Wang, L. Wang, S. E. Elayoubi, A. Conte, B. Mukherjee, and
C. Cavdar, “Centralize or distribute? A techno-economic study to design
a low-cost cloud radio access network,” in Proc. IEEE Int. Conf.
Commun., 2017, pp. 1–7.

[38] Technical Specification Group Services and System Aspects (Release 16),
3GPP, Sophia Antipolis, France, 2020.

[39] M. Qian, W. Hardjawana, J. Shi, and B. Vucetic, “Baseband process-
ing units virtualization for cloud radio access networks,” IEEE Wireless
Commun. Lett., vol. 4, no. 2, pp. 189–192, Apr. 2015.

[40] J. M. H. Elmirghani et al., “GreenTouch GreenMeter core network
energy-efficiency improvement measures and optimization,” J. Opt.
Commun. Netw., vol. 10, no. 2, pp. A250–A269, 2018.

[41] U. Labs. “OpenCellid.” [Online]. Available: http://opencellid.org/
(Accessed: Sep. 2019).

[42] T. Italia. “Big data challenge.” 2019. [Online]. Available: https://
dandelion.eu/datamine/open-big-data/ (Accessed: Sep. 2019).

[43] J. L. Romero-Gázquez, M. Garrich, F. M. Muro, M. B. Delgado,
and P. P. Mariño, “NIW: A Net2Plan-based library for NFV over IP
over WDM networks,” in Proc. Int. Conf. Transp. Opt. Netw., 2019,
pp. 1–4.

[44] R. Alvizu, S. Troia, G. Maier, and A. Pattavina, “Matheuristic with
machine-learning-based prediction for software-defined mobile metro-
core networks,” J. Opt. Commun. Netw., vol. 9, no. 9, pp. D19–D30,
2017.

[45] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in Proc. JMLR Int. Conf. Mach. Learn., 2013,
pp. 115–123.

[46] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., 2015, pp. 1–6.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2023 at 09:01:58 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


