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Chapter 1

Introduction

On April 15, 2010 Barack Obama, the President of the United States of America
(USA), presented his views on the future of space exploration. In his speech,
Obama vowed to “send humans to orbit Mars and return them safely to Earth”,
by 20301. His address to the citizens of the USA, given at the Kennedy Space
Center, Florida, was clearly a reference to the famous 1962 “Moon Speech” of
John F. Kennedy2. In that same speech, Obama set the timeline to land an
astronaut on an asteroid for the first time in history to 2025.

While Obama’s speech was a strong political statement that manned mis-
sions to asteroids can be seen as a milestone towards a human landing on Mars,
these celestial objects have been a focus of scientific and industrial research for
more than a decade. The main reason for this is the theory according to which
asteroids are remnant debris from the inner solar system formation process. In
that period, the dominant gravity of Jupiter inhibited the accretion of planetesi-
mals3 in the region between Mars and Jupiter, now known as the Main Asteroid
Belt [Yeomans, 2011]. Another reason that led to a renewed interest in studying
asteroids is the belief that an asteroid impact at the end of the Cretaceous era
(about 65 million years ago) caused the extinction of the dinosaurs. This raised
awareness on the destructive potential of these celestial objects, as large asteroid
collisions can significantly modify the Earth’s biosphere [Yeomans, 2011]. Fi-
nally, asteroids are thought to be a rich source of volatiles and minerals. Many
believe these resources will be instrumental in large-scale space development,
namely the exploration and colonisation of our solar system [Lewis et al., 1993].

Consequently, a number of unmanned missions to asteroids have been under-
taken in the last decade, by different space agencies. The most notable are the
Dawn, Rosetta and Hayabusa missions. The Hayabusa mission was originally a
joint project between the Institute of Space and Astronautical Science (ISAS),
Japan and the National Aeronautics and Space Administration (NASA), USA.
In 2003, ISAS merged with two other Japanese agencies to form the Japan
Aerospace Exploration Agency (JAXA), who took the lead on the Hayabusa

1The full speech, entitled “Remarks by the President on Space Exploration in the 21st
century”, can be read at: http://www.nasa.gov/news/media/trans/obama_ksc_trans.html

2John F. Kennedy’s Rice Stadium Moon Speech can be found at: http://er.jsc.nasa.
gov/seh/ricetalk.htm

3The accretion of planetesimal is a theory that explains the formation of celestial bodies
through the gravitational attraction of ever more massive particles [Wikipedia, 2011a].

1
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2 CHAPTER 1. INTRODUCTION

mission. Launched in that same year, its primary scientific objective was to
return to Earth a sample from the surface of 25143 Itokawa and it represented
the first attempt to return asteroid surface material. The spacecraft landed
on the asteroid and collected samples in November 2005. It then returned to
Earth, completing its mission in June 2010. Other scientific goals, such as de-
tailed studies of the asteroid shape, spin state, topography and composition,
were completed while orbiting the asteroid [Wikipedia, 2011c]. The Rosetta
mission was developed by the European Space Agency (ESA) and launched in
2004. While the primary target of the Rosetta mission is the comet 67P/Churyu-
mov–Gerasimenko, the mission profile includes two asteroid fly-by at 2867 Steins
and 21 Lutetia, achieved in September 2008 and June 2011, respectively. It is
expected to reach its final target in 2014 [Wikipedia, 2011d]. Finally, the NASA-
led Dawn mission was launched in 2007. It was designed to rendezvous with
and orbit two of the largest asteroids of the Main Asteroid Belt: 4 Vesta and 1
Ceres. The former was reached in July 2011 and the Dawn spacecraft will make
in-orbit studies of its characteristics until 2012. It will then depart towards 1
Ceres, with the rendezvous expected in 2015 [Wikipedia, 2011b]. These missions
show the world-wide interest in designing mission to asteroids and comets.

This particular type of missions has introduced a new challenge in space
mission analysis: target selection. Indeed, given the large number of small solar
system bodies4 and their various orbital and physical characteristics, selecting
a specific target is a rather complex task. This problem of target selection was
given to the participants of the 2nd Global Trajectory Optimization Competition
(GTOC2) in 2006. The Global Trajectory Optimization Competition (GTOC)
was first initiated by the Advanced Concepts Team (ACT) of ESA as a means
to foster the automation and development of novel techniques in the field of
space trajectory design. For GTOC2, the problem proposed by [Petropoulos,
2006] relied on the design of a low-thrust mission performing four consecutive
rendezvous with four different asteroids. The target pool consisted of over 900
asteroids, divided in four groups, one asteroids from each group needing to be
included in the mission. The optimization objective was the minimization of a
cost function combining both the propellant mass and the time-of-flight, while
satisfying a number of constraints. For more details on the GTOC2 assignment,
please refer to Chapter 2.

At the time, a Delft University of Technology (TU Delft)-led team partici-
pated in GTOC2 but was unable to deliver a solution complying with the whole
set of constraints. Later on, the GTOC2 problem was tackled by students of the
A&S Department of the Aerospace Faculty of the TU Delft, in the scope of their
MSc Theses, with a view to improve on the previous results. The first attempt,
by [Evertsz, 2008], relied on an angular-momentum-based pruning technique,
a high-thrust initial guess and a Chebyshev low-thrust model. However, this
analysis did not produce entirely satisfactory results as the best solution found
still violated the mission constraints. Another, more sophisticated approach,
was implemented by [Gorter, 2010]. The GTOC2 target selection problem was
modelled as a variant of the Travelling Salesman Problem. Unfortunately, this
approach did not yield a solution complying with the mission constraints. For
a more detailed review of the past attempts, within the Astrodynamics and

4The ESA Planetary Database (http://pdb.estec.esa.int/) currently contains 556830
asteroid entries and 314 comet entries.

http://pdb.estec.esa.int/
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Space Missions (A&S) department, at solving the GTOC2 problem, the reader
is referred to Chapter 3.

Building on the lessons learned from these previous attempts, and based on
the theoretical background acquired for this purpose, the author designed an
algorithm aiming at reducing the pool of GTOC2 candidate targets in a compu-
tationally fast manner. Note that the emphasis is placed on the discrete aspect
of the GTOC2 problem: the goal of this MSc Thesis is not to provide a solution
to the GTOC2 problem but rather a subset of the possible asteroid combina-
tions, obtained with low computational effort, that are believed to contain a
good solution to the continuous component of the problem. Ideally, this sub-
set will contain the GTOC2 winning sequence. The proposed tool, while being
designed for the GTOC2 problem, should be capable to cope with any similar
target selection problem. As a result, the MSc Thesis statement was formulated
as

Design of a Combinatorial Tool for Preliminary Space Mission Anal-
ysis, applied to the GTOC2 problem.

The following chapters that constitute this MSc Thesis report aim at accurately
describing the (theoretical) background behind the techniques employed, the
rationale behind each design choice taken, the practical results obtained and
their significance with respect to options made.

The document is divided in four parts. Part I concerns itself with the legacy
of previous attempts to solve the GTOC2 problems: the GTOC2 problem and
solutions are introduced in Chapter 2, while Chapter 3 gives insight into the
known models used by both GTOC2 participants and A&S students when tack-
ling this problem. Thereafter, Part II lays down the theoretical background,
design choices and tuning and verification efforts for each of the building blocks
of the proposed combinatorial tool: the combinatorial model (Chapter 4), the
improved greedy algorithms (Chapter 5), the continuous optimizers (Chapter
6) and the Lambert routine (Chapter 7). Their assembly into the final combi-
natorial tool, in the framework of TUDelft Astrodynamics Toolbox (Tudat), is
discussed in Chapter 8. Part III dives into the wealth of results obtained for
the complete asteroid set with Grid Search (GS) and with Differential Evolution
(DE) in Chapters 9 and 11, respectively, making an informative detour via the
results found in a reduced asteroid pool comprised of the GTOC2 participant
asteroids, in Chapter 10. Finally, Part IV brings down the curtain with conclu-
sions (Chapter 12) and recommendations with respect to future work (Chapter
13).
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Chapter 2

GTOC2

In this chapter, the 2nd Global Trajectory Optimization Competition (GTOC2)
problem will be completely defined. We shall first have a look, in Section 2.1,
at the history of GTOC competitions, followed by a description of the GTOC2
assignment in Section 2.2, including the problem statement, a discussion on
the various types of asteroids and an extensive list of mission and engineering
parameters. In Section 2.3, an overview of the results of the competition is
given.

2.1 GTOC Background
The Global Trajectory Optimization Competition (GTOC) was created in 2005
by Dario Izzo, a member of the Advanced Concepts Team of ESA. The intent
of this competition is to stimulate researchers to find the best solution to an
interplanetary trajectory problem and thereby advance the technical develop-
ments worldwide in the field of mission analysis. The GTOC problems usually
involve the need for a global optimization over a large design space (e.g. large
launch window), with many local optima and unusual objective functions or
constraints, such that no canned method or existing software can likely fully
solve the problem [Petropoulos, 2006].

As of today, five GTOCs have been held. They are listed below, along with
their respective winners:

• GTOC1 (2006) - JPL;

• GTOC2 (2007) - Politecnico di Torino;

• GTOC3 (2008) - CNES;

• GTOC4 (2009) - Moscow State University;

• GTOC5 (2010) - JPL.

This MSc Thesis will be focused on finding a satisfying solution for the
discrete aspect of the GTOC2 problem, ideally outperforming the solution found
by the winners, the team from the Politecnico di Torino.

7
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2.2 GTOC2 Problem
2.2.1 Summary
The GTOC2 assignment, as designed by JPL, is a multiple asteroid rendezvous
problem. The goal is to design a low-thrust trajectory for a spacecraft to be
launched from Earth and subsequently to perform a rendezvous with one aster-
oid from each of the four defined sets of asteroids. The optimization process
aims at maximizing the ratio of final spacecraft mass to flight time [Petropoulos,
2006].

This problem involves both a combinatorial and a trajectory optimization
problem. The combinatorial issue here is finding the sequence of asteroids
that will accommodate the optimal trajectory, while the trajectory optimization
problem consists of finding the optimal rendezvous trajectory linking asteroids
from the selected sequence.

2.2.2 The Four Asteroid Groups
For the GTOC2 problem, four groups of asteroid have been identified, every
asteroid within each group having similar characteristics, whether regarding
their composition or their orbit [Petropoulos, 2006]. The groups, the number of
asteroids they contain being indicated between brackets, are as follow:

Group 1 (96): Jupiter Former Comets, i.e. asteroids which are believed to
have once been comets but had their orbit modified by Jupiter’s gravita-
tional field.

Group 2 (176): C- or M-class asteroids, i.e. asteroids whose Tholen spectral
type1 is C (Carboneous) or M (Metallic).

Group 3 (300): S-class main belt asteroids, i.e. asteroids whose Tholen spec-
tral type is S (Silicateous) and which lie in the Main Belt2.

Group 4 (338): Aten asteroids, i.e. asteroids having a semi-major axis less
than 1 AU, but apohelion radius greater than 1 AU.

The ephemeris data of each asteroid in the database was provided in a .txt
file along with the problem description. The spatial distribution of these four
asteroid groups is given in Figure 2.1: Group 1 is represented in green, Group
2 in blue, Group 3 in yellow and Group 4 in red.

From the problem description, the spacecraft trajectory must be such that
the vehicle performs a rendezvous with one asteroid from each of these groups.
Along with this fundamental criterion, there are other requirements that have
to be met within the scope of the GTOC2 competition.

2.2.3 Mission and Engineering Parameters
The asteroids, as well as the Earth, are assumed to follow Keplerian orbits
around the Sun. Regarding the spacecraft, it is said that only the Sun’s gravity

1Asteroid classification first proposed by David J. Tholen in 1984. It was developed from
broad band spectra information in combination with albedo values [Wikipedia, 2010b]

2Also referred to as the Asteroid Belt, this region lies between the orbits of Mars and
Jupiter [Wikipedia, 2010a]
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Figure 2.1: Ecliptical top view of the orbits of the asteroids from the four groups,
[Evertsz, 2008]

and, when relevant, the engine thrust are to be considered. The GTOC2 as-
signment also contains a number of constraints, both on an engineering and on
a mission level.

The mission constraints are:

• The spacecraft is to be launched from Earth with a hyperbolic excess
velocity V∞ ≤ 3.5 km/s with no direction constraint.

• Launch must occur between 2015 and 2035, inclusive.

• A stay time of at least 90 days is required at each of the first three aster-
oids.

• The flight time, tf , measured from launch to arrival at the final asteroid,
must not exceed 20 years.

• Gravity assists3 are not permitted.

• Objective function to be maximized is

J = mf/tf (2.2.1)

where mf is the final spacecraft mass.

• For the rendezvous to be successful, the spacecraft must remain with 1,000
km of the asteroid and the velocity difference between both objects must
not exceed 1 m/s.

The engineering constraints are:
3Hyperbolic flyby of a massive body for purposes of achieving a desirable course change

[Petropoulos, 2006]
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• The spacecraft has a fixed initial mass of 1500 kg, which does not change
with V∞.

• The initial mass includes 1000 kg of propellant.

• The propulsion is achieved by means of thruster which has a specific im-
pulse of 4000 s and a maximum thrust level of 0.1 N.

2.3 GTOC2 Rankings
On January 2007, the results of GTOC2 were published by [Petropoulos, 2007].
Hence, the following discussion is mostly based on that work. Out of the 26
registered teams, only 15 returned their solution to the GTOC2 problem by
the defined deadline. Out of these, only eleven handed in complete solutions,
i.e. solutions that satisfied all of the constraints of the problem or had minor
constraint violations deemed to be small enough to not induce any penalty.
These 11 solutions were ranked according to the corresponding cost function
value, as shown in Table 2.1. The remaining solution were either partial, had
significant violation constraints (e.g. the TU Delft and Dutch Space team)
and, in one case, consisted only of a proposed approach. These were therefore
not ranked, as seen in Table 2.1. Tables 2.2 and 2.3 give further details on the
solutions returned, in terms of objective function and asteroids and of departure
and arrival times, respectively. [Petropoulos, 2007] notes that all teams selected
a Group 4 asteroid as starting point and ended at a Group 1 asteroid, based on
increasing orbital energy.

Table 2.1: Ranking of returned solutions [Petropoulos, 2007]

Rank Team J(kg/yr)
1 4 Politecnico di Torino 98.64
2 13 Moscow Aviation Institute , and Khrunichev State 87.93

Research and Production Space Center
3 10 Advanced Concepts Team, ESA 87.05
4 15 Centre National d’Etudes Spatiales (CNES) 85.43
5 1 GMV Aerospace and Defence 85.28
6 2 German Aerospace Center (DLR) 84.48
7 9 Politecnico di Milano 82.48
8 19 Alcatel Alenia Space 76.37
9 14 Moscow State University 75.08

10 7 Tsinghua University 56.87
11 18 Carnegie Mellon University, J. J. Arrieta - Camacho 27.94
- 17 University of Glasgow et al. 73.87a
- 21 Technical University of Delft and Dutch Space 15.95b
- 23 Facultes Universitaires Notre-Dame de la Paix (FUNDP) -c
- 26 University of Maribor, Bostjan Eferl -d

a Significant position and velocity violations at the asteroids and Earth
b Significant position and velocity violations at the asteroids and Earth, and flight time limit violation
c Only one leg computed (Earth to Group 4)
d Only a proposed method described, no solution computed
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Table 2.2: Asteroids visited and trajectory characteristics [Petropoulos, 2007]

Rank Team V∞ tf mf Asteroid sequence (SPKID) and group numbers
(km/s) (yrs) (kg)

1 4 3.50 9.106 898.2 3258076 (4) 2000060 (3) 2000058 (2) 2002959 (1)
2 13 3.50 10.394 913.9 3250293 (4) 2000149 (3) 2000569 (2) 2002483 (1)
3 10 2.58 9.523 829.0 3170221 (4) 2000574 (3) 2000209 (2) 2011542 (1)
4 15 2.45 9.777 835.2 3170221 (4) 2001990 (3) 2000240 (2) 2001754 (1)
5 1 2.18 10.096 861.0 3017309 (4) 2000443 (3) 2000490 (2) 2001345 (1)
6 2 3.23 10.170 859.1 3250293 (4) 2000027 (3) 2000110 (2) 2001038 (1)
7 9 3.50 10.796 890.5 3288933 (4) 2001707 (3) 2000047 (2) 2014569 (1)
8 19 3.50 10.816 826.1 3329255 (4) 2000232 (2) 2000807 (3) 2001754 (1)
9 14 2.46 11.509 864.1 3170221 (4) 2000043 (3) 2000074 (2) 2002483 (1)
10 7 3.50 12.941 735.9 3250293 (4) 2000149 (3) 2000224 (2) 2009661 (1)
11 18 3.50 19.195 536.3 3343104 (4) 2000169 (3) 2000075 (2) 2000659 (1)
- 17 - 12.991 959.6 3250293 (4) 2000443 (3) 2000058 (2) 2002959 (1)
- 21 - 32.250 514.3 3170221 (4) 2001314 (3) 2000395 (2) 2002483 (1)
- 23 - - - 3177202 (4) - - -

Table 2.3: Dates at the various bodies [Petropoulos, 2007]

Rank Team Earth launch, and asteroid arrival and departure dates (MJD)
1 4 59870 60283 60373 61979 62069 62647 62737 63196
2 13 62866 63028 63118 64907 64997 65712 65802 66662
3 10 57372 57747 57849 59485 59587 60034 60139 60851
4 15 59574 60104 60194 61749 61839 62306 62396 63145
5 1 61073 61258 61348 63178 63268 64011 64101 64761
6 2 58021 58379 58469 60236 60326 60872 60963 61735
7 9 62201 62454 62544 64444 64534 65394 65484 66144
8 19 59418 59610 59700 61603 61693 62288 62378 63369
9 14 57561 57987 58106 59627 59717 60935 61025 61764
10 7 58448 58752 58846 60826 61048 61991 62232 63175
11 18 58246 59125 59215 61731 61821 62552 62642 65257
- 17 58460 58794 58884 60623 60714 62303 62393 63204
- 21 57755 58659 58749 61861 62190 64925 65200 69534
- 23 57052 59226 - - - - - -
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Throughout this report, we will refer to the different GTOC2 participant
solutions by the term GTOC2 # followed by their rank. Teams with no offi-
cial ranking are numbered according to their position in Table 2.1. Therefore
GTOC2 #1 refers to the solution from the Politecnico di Milano and GTOC2
#12 to the sequence from the University of Glasgow.



Chapter 3

Earlier Models and
Methods

This chapter aims at providing a brief overview of the different known models
applied by different parties to solve the GTOC2 problem and highlight a number
of lessons learned which were of importance to the design of the combinatorial
tool. We start by looking into the GTOC2 participant models in Section 3.1,
where special relevance is given to the different space pruning techniques ap-
plied. We then proceed, in Section 3.2, to describing the models and methods
developed at the TUDelft, both during the competition and in the following ef-
forts to improve the results from this competition. Lastly, a number of relevant
conclusions are drawn in Section 3.3.

3.1 GTOC2 Participant Models
The methods employed by the GTOC2 participants to obtain their final solu-
tions are rather diverse. From the initial pruning step to the final local opti-
mization techniques, different approaches were selected. An overview of these is
given in Section 3.1.1. An analysis of the effectiveness of the pruning techniques
is summarized in Section 3.1.2.

3.1.1 Methods Overview
Let us now take a look at the methods employed by the different participants.
The explanation of all the techniques employed falls outside of the scope of this
report but the reader is referred to relevant sections of the report, when ap-
plicable. Note that the final objective function value is given between brackets
following the team identification. An asterisk indicates a solution with consid-
erable constraint violations. This section is, unless mentioned otherwise, based
on [Petropoulos, 2007].

GTOC2 #1 (98.64 kg/yr)

One of the key aspects in the quality of the solution of Team 4 lies with the
observation that, of the Group 1 asteroids, those with low energy and low in-

13
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clination pass through their perihelia within two-year windows, repeated about
every 8 years. Intercepting the last asteroid just after its perihelion passage is
time-efficient as it is the closest the asteroid gets to the Group 2 and Group
3 asteroids. This observation significantly reduced the search space, namely
in terms of arrival dates at the last asteroid. Based on several performance
indices, a database of optimal trajectories to the first asteroid group (Group
4) was obtained. Group 2 and Group 3 asteroids were then selected using a
modified Edelbaum approximation and taking phasing into consideration. The
final candidate trajectories obtained in this manner were optimized using the
indirect formulation solved by classical shooting.

Note that during the optimization process, Team 4 found various trajecto-
ries with a larger cost function than that found by the runner-up GTOC2 #2,
including five trajectories with J > 90 kg/yr [Casalino et al., 2007].

GTOC2 #2 (87.93 kg/yr)

Team 13 used Lambert solutions (cf. Chapter 7) between asteroids to screen
the global search space. The resulting candidates were then optimized using the
Maximum Principle, with continuation with respect to the boundary conditions,
with respect to the gravity parameter and from a power-limited engine model
to the problem’s constant exhaust-velocity engine model.

GTOC2 #3 (87.05 kg/yr)

An initial pruning of the asteroid sequence space was performed by Team 10, us-
ing for that purpose a branch-and-prune algorithm based on the three-impulsive
∆V of Hohmann-like transfers (cf. Equation (3.2.19)). This procedure resulted
in 13132 asteroid sequences, a number further reduced taking asteroid phasing
into account, namely assuming Lambert arcs (cf. Chapter 7) between the aster-
oids with additional time allowed for “spiralling”. A second approach was also
implemented, substituting the Lambert arcs between the first and the second
asteroids by exponential sinusoids (cf. [Secretin, 2011]). The free parameters,
i.e. the various departure and arrival times, were then optimized using Differ-
ential Evolution (cf. Section 6.2.2). Finally, the optimal solution was found
through a non-linear programming method, using a trajectory constructed by
exponential sinusoids as an initial guess.

GTOC2 #4 (85.43 kg/yr)

Team 15 reduced the potential asteroid sequences by selecting 22 asteroids based
on continuously increasing semi-major axes, minimising inclination corrections
and the transfer time from the first to the second asteroid, and selecting rea-
sonable phasing between Group 3, 2 and 1 asteroids. The resulting candidate
sequences were then assessed using Lambert arcs (cf. Chapter 7) and impulsive
∆V s, enforcing constraints on arrival, departure and deep-space maneuvers.
The assessment was based on a Nelder-Mead simplex (direct, derivative-free)
method (cf. [Secretin, 2011]). Finally, the low-thrust problem was tackled using
Pontryagin’s Maximum Principle and a decomposition-coordination technique.
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GTOC2 #5 (85.28 kg/yr)

The search space pruning technique used by Team 1 was done by defining upper
bounds in the variation of orbital elements per leg, and on the cost of propellant-
optimal two-impulsive phase-free transfers between asteroid pairs. The phasing
was then included to further prune the search space, along the replacement of
the high-thrust transfer between the first and second asteroid by a low-thrust
arc. An augmented objective function was then defined, integrating equality
and inequality constraints as penalty functions, and used in Lawden’s implicit
guidance scheme. Optimization was performed using a Genetic Algorithm (cf.
[Secretin, 2011]) and a simplex Nelder-Mead derivative-free optimizer (cf. [Se-
cretin, 2011]).

GTOC2 #6 (84.48 kg/yr)

The solution presented by Team 2 was obtained through a global search on
a per-leg low-thrust analysis, performed using neural networks driven by an
evolutionary algorithm. The four legs were built up in an iterative loop with
a local optimizer, based on a non-linear-programming formulation solved using
the optimization package SNOPT.

GTOC2 #7 (82.48 kg/yr)

The global search performed by the team from the Politecnico di Milano re-
sembles that employed by the ESA/ACT Team: Lambert arcs (cf. Chapter
7) were initially assumed for all legs, except for the leg from the first to the
second asteroid, taken to be an exponential sinusoid arc1 (cf. [Secretin, 2011]).
Optimization of this simplified model was performed using three different opti-
mizers: Genetic Algorithm (cf. [Secretin, 2011]), Particle Swarm Optimization
(cf. [Secretin, 2011]) and Multi-level Coordinate Search. A direct method with
either multiple shooting or collocation with Lagrange polynomial interpolation
was then applied to optimize the resulting candidates in the full model.

GTOC2 #8 (79.37 kg/yr)

A fourfold approach was employed by Team 19. The first step consisted of
screening the asteroids using dynamic programming and an augmented cost
function with penalties for large angular momentum changes between asteroids
and for large orbital periods of asteroids in the sequence. This led to an asteroid
group sequence: Group 4 - Group 2 - Group 3 - Group 1. The second step pruned
the departure date, with impulsive trajectories between asteroids ranked by ∆V
and duration. Dynamic programming was used in the third step to solve the
best candidates as a minimum time problem. The final step solved the results
from the previous step as a maximum final mass problem, meaning that the
mass and time-of-flight optimization were decoupled.

1This exception steemed from the belief that there is little correlation between high- and
low-thrust solutions for the second leg.
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GTOC2 #9 (75.08 kg/yr)

Team 14 did a preliminary selection of asteroids based on Lambert solutions
(cf. Chapter 7) for optimal two-impulsive transfers. The resulting best asteroid
sequences were then optimized based on Pontryagin’s Maximum Principle, using
a shooting method and a continuation method.

GTOC2 #10 (56.87 kg/yr)

After selecting an asteroid sequence, Team 7 divided the trajectory legs into
segments during which the thrust magnitude is held fixed, and the direction
varies linearly between initial and final cone and clock angles for the segment.
In the following step, a Genetic Algorithm (cf. [Secretin, 2011]) was used to
optimize the thrust variables, the dates and other problem parameters. An
augmented objective function was employed, adding penalty functions to impose
constraints. The final accuracy requirements were met through a final local
optimization performed by Matlab’s fminsearch function.

GTOC2 #11 (27.94 kg/yr)

The initial pruning carried out by Team 18 was based on at first excluding
asteroids requiring large plane changes or large rotation of the line of the nodes,
and secondly excluding those with large changes in semi-major axes. Based on
the resulting subset, the candidate departure dates were found based on when
the asteroids were least separated in space. At last, local optimization was
performed by means of a direct transcription method in modified equinoctial
elements.

GTOC2 #12 (73.87* kg/yr)

The solution found by Team 17 was not ranked due to major constraint viola-
tions. Their approach started with the pruning of asteroids based on the orbital
elements. Two different optimization approaches were then implemented. In
the first one, the dynamical models were coded as “black-box” functions to be
optimized by several global and local optimization packages. In the second one,
which produced the final solution, candidate solutions were found using Lam-
bert (cf. Chapter 7) and shape-based low-thrust arcs instead, selected by an
evolutionary branching algorithm. The team then proceeded to the refinement
of the resulting candidate solutions using a direct optimization method. Due to
the strict deadline of the competition, Team 17 was unable to completely refine
the solutions and therefore large constraint violations were still present in their
final solution.

GTOC2 #13 (15.95* kg/yr)

The method employed by the TU Delft-led team is described in Section 3.2.1.

GTOC2 #14

Team 23 had no previous experience with astrodynamics prior to the compe-
tition. Their approach was based on Gauss’ variational equations. Taking a
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pseudo-inverse of these equations in a least-square sense, they were able to de-
termine the thrust profile to reach any given asteroid by choosing suitable dates.
The short time available for the competition prevented Team 23 to compute a
complete solution, only a trajectory to a Group 4 asteroid was determined.

GTOC2 #15

Team 26 proposed a graph theory approach to the problem, without handing
in any solution. Based on the assumption that methods are available to easily
compute trajectories from one point in the four-dimensional space-time to a
neighbouring point, the proposed graph theory method would scan these points
in polynomial time, resulting in the sequence of points that best joins an initial
point with a desired final point in the graph.

Observations Regarding GTOC2 Methods

Let us now formulate some general observations regarding the different ap-
proaches to the GTOC2 problem. Firstly, it is evident that most teams divided
the problem into two parts: the asteroid selection and sequencing, mostly via
high-thrust approximation, and trajectory computation, calculus-based meth-
ods being preferred by the participants for this part. In other words, the discrete
aspect of GTOC2 is generally solved under the high-thrust assumption, which,
due to its simplicity, proves to be less computationally demanding. On the
other hand, the trajectory is, in most cases, obtained with powerful and accu-
rate calculus-based methods to ensure compliance with the stringent constraint
set by the GTOC2 assignment. Also, note that only one team (GTOC2 #8 -
Alcatel Alenia Space) opted for a 4 - 2 - 3 - 1 asteroid group sequence; all the
remaining participants identified the sequence 4 - 3 - 2 - 1 as being optimal.
While it is tempting to attribute the 4 - 3 - 2 - 1 option to the use of initial
Lambert solutions, the variety of techniques which resulted in this sequence (in-
cluding non-high-thrust approaches) leads to the conclusion that the 4 - 3 - 2 -
1 asteroid group sequence is more likely to entail the problem optimum.

3.1.2 Analysis of the GTOC2 Search Space Pruning Tech-
niques

In the wake of the GTOC2 competition, [Alemany and Braun, 2007] performed
a review of the search space pruning techniques adopted by the different con-
tenders. The pruning techniques aimed at discarding asteroids and combinations
thereof, as well as portions of the launch date and time-of-flight domain. It is
emphasized that most teams cited one of their major weaknesses as being their
pruning approach, feeling that it had removed some of the best solutions from
the search space. As a result, the validity of the pruning methods employed is
analysed based on a subset of the full GTOC2 problem, containing 22 represen-
tative asteroids. Three major categories of pruning techniques were identified
in the scope of GTOC2: ephemeris-based techniques, phase-free high-thrust ap-
proximations and phasing considerations. This paragraph and the remainder of
this section are, unless mentioned otherwise, based on the work from [Alemany
and Braun, 2007]. Please refer to that reference for a more detailed description
of the approach implemented to analyse the pruning techniques.
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Ephemeris-Based Pruning Techniques

The majority of GTOC2 participants used an ephemeris-based pruning approach
consisting of visiting the asteroids in order of increasing semi-major axis: Group
4 - Group 2/3 - Group2/3 - Group 1. Groups 2 and 3 were combined due to
the similarities in their semi-major axis values (see Section 2.2.2). This design
decision is based on the fact that visiting the asteroids in order of increasing
semi-major axis considerably reduces the total mission time-of-flight, which is
included in the objective function. This effectively reduces the number of total
asteroid combinations by one order of magnitude: from over 41 billion possible
combinations to 3.4 billion. This number is still very large and hence other
methods were employed to further reduce the search space.

Another popular ephemeris-based pruning method was to filter asteroid com-
binations based on their inclination changes, rooted in the conjecture that large
inclination changes require significant amounts of propellant, as is the case in
high-thrust trajectories. Inclination changes and propellant mass proved to be
highly correlated in the transfers from Earth to Group 4 (from here on referred
to as Leg 1 ) and from Group 4 to Group 2/3 (Leg 2 ). It was also shown that
for these two legs there is a maximum inclination change value above which no
feasible transfers were found within the time interval considered. On the other
hand, there is no apparent correlation between the two parameters for Leg 3
(transfer from Group 2/3 to Group 1). As a result, if inclination-change prun-
ing is applied to eliminate Group 1 asteroids, it is expected that some of the best
solutions would be ruled out at the same time. Figure 3.1 plots the maximum
final mass as a function of the inclination change. Note that additional Group 4
asteroids were randomly added to the asteroid subset to yield a representative
analysis for Leg 1.

Figure 3.1: Maximum final mass for each trajectory leg as a function of inclina-
tion change [Alemany and Braun, 2007].

Another recurrent technique was to combine the inclination change and the
change in longitude of the ascending node and use the resulting value to rule
out particular asteroid combinations. The premise behind this approach is that
if the change in right ascension of the ascending node is small, the inclined
orbits are more closely aligned and the resulting transfer requires less propellant.
However, testing this hypothesis revealed that it is not sound as it excludes
feasible solutions from the design space.

A number of other ephemeris-based pruning techniques were employed but
proved not to be reliable. Among these, we will mention excluding Group 1
asteroids with high energy, i.e. large semi-major axis, and filtering out asteroid
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combinations with the largest distance between departure asteroid apoapsis and
arrival asteroid periapsis.

Phase-Free High-Thrust Approximations

Besides ephemeris-based pruning techniques, most GTOC2 teams approximated
the low-thrust problem using Lambert high-thrust solutions, usually without
phasing considerations. The optimal transfers found in such manner provide
a fast way to determine the most reachable asteroids. As the approximation
conducted was phase-free, there is no guarantee that the optimal transfers found
will occur within the time frame of the problem. The maximum low-thrust final
mass was plotted against the optimal two-impulse ∆V for each leg in Figure
3.2. As can be seen, there is a strong correlation between increasing ∆V and
decreasing low-thrust final mass for Leg 1. The same affirmation is valid for Leg
2, while there is no apparent correlation between both parameters for Leg 3,
despite a possible threshold value for the optimal two-impulse ∆V above which
no feasible low-thrust solution is found. As with ephemeris-based techniques,
the high-thrust approximation seems to fail to provide a useful initial guess when
applied to the final leg, as indicated by the lack of visible correlation for Leg
3 in Figure 3.2. In addition, the study also shows that increasing the number
of revolutions allowed in the solution of the two-point orbital boundary-value
problem effectively decreases the correlation between the approximation and the
actual low-thrust propellant mass consumption.

Phasing Considerations

If in the previous step the phasing of the different transfers was not taken
into account, most teams did reduce the search space further through phasing
considerations.

The most common approach was to use the Lambert high-thrust approxi-
mation to include the phasing aspect of the problem. However this approach
did not appear to consistently represent the real low-thrust phasing, neither in
terms of departure dates or times-of-flight. As a result, the bi-impulsive approx-
imation to allow for phasing study is not expected to reliably identify regions
of the search space that contain the best solutions.

Another approach adopted by the contenders to address phasing issues was
to determine when Group 1 asteroids were at their perihelion, based on the
premise that it is most interesting to rendezvous with the final asteroid just
after its perihelion passage. The idea behind this premise is that Group 1
asteroids are the closest to Group 2 and 3 asteroids at their perihelion. This
allows for considerable savings, namely in terms of time-of-flight, especially if
the eccentricity is relatively large. The analysis of the validity of this hypothesis
revealed that although the largest values for the final mass do not occur directly
after perihelion passage, they definitely lie in its vicinity. Aiming for the (near)
perihelion passage of the final asteroid may therefore be used as an effective
pruning technique.

Conclusions

Despite the pruning rules generally working for most asteroid combinations and
date ranges, exceptions were always found that would have resulted in very
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Figure 3.2: Maximum final mass for each trajectory leg as a function of optimal
two-impulsive ∆V. Adapted from [Alemany and Braun, 2007].
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attractive solutions. These exceptions are likely to be eliminated in a prun-
ing process, hence depriving the search space from potentially (near-)optimal
solutions.

The inclination change and the optimal phase-free bi-impulsive ∆V pruning
metrics were the most effective in screening asteroid combinations for Leg 1 and
Leg 2 but would most likely eliminate attractive solutions if applied to the final
leg. Again, as a general rule, the final asteroid was intercepted near perihelion
and this pruning metric seems to be quite accurate, despite a few non-optimal
outliers. Using the high-thrust model to carry out a phasing analysis does not
yield satisfactory results.

[Alemany and Braun, 2007] proposes a probabilistic approach to the defini-
tion of threshold values, namely to fit a distribution to each metric. This is pre-
sented as a more objective method to determine upper bound values than simple
visual inspection and perceived intuition. Note however that this approach is
not foolproof and still requires a certain degree of subjectivity. Finally, it is
noted that an incremental approach, i.e. solving the individual leg subproblems
separately, appears to be appropriate for the pruning phase.

These considerations are taken into account when designing the model and
method used to solve the GTOC2 combinatorial aspect, in the scope of the
author’s MSc Thesis.

3.2 TU Delft Models
The main challenge in finding good solutions for the GTOC2 problem stems
from the vast search space and stringent constraints set out in the problem
description. A TU Delft-led team of students participated in GTOC2. Since
then, there has been a concerted effort within the A&S research group to further
investigate feasible solutions and develop new methods to achieve better results.
An overview of the models and methods developed at the TU Delft to solve the
GTOC2 combinatorial problem is given in this section.

3.2.1 High-Thrust, Ephemeris-Based Screening
During the GTOC2 competition, the team led by TU Delft, Team 21, initially
screened the asteroids based on the estimated ∆V needed to change only the
ascending node, or only the inclination, or to perform a Hohmann transfer.

It can be shown that in order to produce the desired Right Ascension of the
Ascending Node (RAAN) change, ∆Ω, without affecting the remaining orbital
parameters an impulsive maneuver has to be applied at the points of the orbit
where the declination is maximum, i.e. where δ = ±i1, i1 being the inclination
of the initial orbit. Moreover, it can be shown that the magnitude of that
impulse is equal to [Wakker, 2007b]:

∆V
V1

= 2 sin i1 sin 1
2∆Ω (3.2.1)

where V1 is the velocity in the initial orbit at the point where the maneuver is
executed. With respect to the inclination, a maneuver aiming at modifying the
inclination without affecting other orbital parameters has to be executed at ei-
ther the ascending or descending node. The relation between impulse magnitude
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and inclination change, ∆i, is simply [Wakker, 2007b]:

∆V
V1

= 2 sin 1
2∆i (3.2.2)

The Hohmann transfer is the minimum propellant consumption, outward2 trans-
fer orbit between two circular, co-planar orbits. The total ∆V needed to perform
a Hohmann transfer is given by [Wakker, 2007b]:

∆Vtot
Vc1

= (n− 1)
√

2
n(n+ 1) +

√
1
n
− 1 (3.2.3)

where Vc1 is the circular velocity in the initial orbit and n is the ratio of the
final radius, r2, to the initial radius, r1: n = r2/r1. Using these three metrics,
the number of asteroid combinations was reduced.

Promising resulting sequences were then assessed, first using exponential
sinusoids (cf. [Secretin, 2011]). Then, due to the large constraint violations
yielded by the previous method, an evolutionary algorithm was employed to
optimize the low-thrust transfers. The independent variables of the problem
were taken to be the various times, the launch V∞ and the parameters of a
low-dimensioned parametrisation of the thrust profile [Petropoulos, 2007].

3.2.2 High-Thrust, Angular Momentum-Based Screening
In the aftermath of the GTOC2 competition, a number of Master of Sciences
(MSc) students from the A&S group worked on improving the results obtained.
One approach [Evertsz, 2008] relied on pruning the pool of possible targets and
subsequently performing a high-thrust optimization, the result of which would
serve as an initial guess for the low-thrust optimization.

Based on the ephemeris data of the asteroid groups, it was noticed that the
most promising asteroid group sequence was either 4 - 3 - 2 - 1 or 4 - 2 - 3 -
1, which is a result in coherence with various other sources (cf. e.g. Section
3.1.2). Noting that it is a time-consuming process to approach the problem
as a whole, the total set of asteroids was then screened via a specific angular
momentum-based filter. The specific angular momentum is given by:

H = r×V (3.2.4)

which decomposed in Cartesian coordinates results in:

Hx = y · Vz − z · Vy
Hy = z · Vx − x · Vz (3.2.5)
Hz = x · Vy − y · Vx

Combining the total specific angular momentum, H, and its z-component,
Hz, the deviation of an asteroid orbital plane with respect to the ecliptic, β,
can be determined:

cosβ =
(
Hz

|H|

)
(3.2.6)
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Figure 3.3: Specific angular momentum of the asteroids plotted against the
β-angle [Evertsz, 2008].

The angular momentum as a function of the angle β for the whole asteroid set is
shown in Figure 3.3. The colour of the data points correspond to each asteroid
group: Group 1 is green, Group 2 is blue, Group 3 is yellow and Group 4 is red.

Based on the premise that out-of-plane maneuvers are very demanding in
terms of propellant (cf. Equation (3.2.2)), only asteroids with a β-angle lower
than 5◦ were considered feasible. This value reflects proximity in the orbital
planes of the asteroids and that of the Earth: βEarth = 8.854 × 10−4 rad.
However, this pruning criterion yielded still a large number of asteroids and
thus the decision was made to contemplate only 5 to 10 asteroids per group,
preferably the ones with the lowest β-angle. This led to a final 28 feasible
asteroids, listed in Table 3.1, alongside the threshold criterion for each asteroid
group. Note that none of the asteroids from the GTOC2 winning sequence were
selected through this pruning technique.

Once a reduced pool of asteroids was obtained, the optimization of the prob-
lem followed. The optimization phase was divided in two parts: an initial
optimization assuming high-thrust propulsion, followed by a low-thrust opti-
mization. The high-thrust approximation aimed at defining the best asteroid
sequence while the low-thrust optimization aspired to fully optimize, within the
GTOC2 parameters, the resulting sequence.

The high-thrust optimization was performed with Genetic ALgorithm
Optimization of a MUltiple Swing-by Interplanetary Trajectory
(GALOMUSIT), a software developed and maintained by Aerospace Engi-
neering students at the TUDelft. The GTOC2 high-thrust model, as defined in
the thesis, included some of the mission constraints from the original GTOC2 as-
signment. The optimizable launch maneuver from Earth discounted the allowed

2Here, outward designates the motion away from the center of mass: the Sun.



24 CHAPTER 3. EARLIER MODELS AND METHODS

Table 3.1: The feasible asteroids. Adapted from [Evertsz, 2008].

β ≤ 5.0◦ β ≤ 1.5◦
Group 1 2000659 (Nestor) Group 3 2000020 (Massalia) 2000277 (Elvira)

2002483 (Guinevere) 2000149 (Medusa) 2000644 (Cosima)
2002674 (Pandarus) 2000158 (Koronis) 2001442 (Corvina)
2005012 (Eurymedon) 2000180 (Garumna)
2002357 (Phereclos) 2000243 (Ida)
β ≤ 2.0◦ β ≤ 1.0◦

Group 2 2000024 (Themis) Group 4 2101329 (SZ162) 2001873 (FH)
2000147 (Protogeneia) 2011011 (UK11) 2021542 (QA22)
2000569 (Misa) 3127401 (LT24) 3293923 (TH50)
2001082 (Pirola) 3156302 (LN6) 2096237 (VL1)
2002379 (Heiskanen) 3167367 (WT153)

hyperbolic excess velocity:

∆Vlaunch = V∞(tL)−V∞Lmax
(3.2.7)

where |V∞Lmax | = 3.5 km/s and tL is the Earth launch date. The rendezvous
conditions are such that both the velocity and position of the spacecraft match
that of asteroid. As a result the rendezvous maneuver is equal to the hyperbolic
excess velocity needed to match these conditions:

∆Vrendezvous = V∞(tRj
) = Vs(tRj

)−VAj
(tRj

) (3.2.8)

where the subscripts s and Aj indicate the spacecraft and the jth asteroid,
respectively, and tRj

the time of rendezvous at that asteroid. Similarly, the re-
launch maneuver, i.e. the launch from an asteroid, is given by the corresponding
hyperbolic excess velocity:

∆Vrelaunch = V∞(tRLj
) = Vs(tRLj

)−VAj
(tRLj

) (3.2.9)

with tRLj the time of re-launch from the jth asteroid. During the asteroid
stayover, the constraint in position and velocity are maintained:

rs(twj ) = rAj (twj ) (3.2.10)
Vs(twj ) = VAj (twj ) (3.2.11)

with twj ∈ [0, twj ,f ] and twj ,f ≥ 90 days. Despite the objective function being
different than that of GTOC2 (cf. Section 2.2.3), and the high-thrust model,
GALOMUSIT was used to provide a first estimate on the optimal asteroid
sequence out of the reduced asteroid pool from Table 3.1.

The low-thrust optimization was performed using another internal tool, OP-
TIDUS, using an augmented cost function. The thrust profile, which allowed
for coast arcs, was approximated by 3rd order Chebyshev polynomials (cf. [Se-
cretin, 2011]). For a more in depth discussion of this approach, please refer to
[Evertsz, 2008]. The results of this model are briefly detailed in Section 3.2.4.
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3.2.3 Travelling Salesman Problem Model
Another approach [Gorter, 2010] identified three separate stages in solving the
GTOC2 problem: the asteroid selection and sequencing, the phasing assessment
of the candidate sequences, and the determination of the constraint-satisfying
trajectory. The latter part was not considered due to time constraints.

The asteroid selection and sequencing was identified as being an Exact Gen-
eralized Travelling Salesman Problem (EGTSP), a variant of the well-known
Travelling Salesman Problem (cf. [Secretin, 2011]) where the salesman is to
visit each city cluster (or state) exactly once and that exactly one city from
each cluster is visited. Replacing the salesman by a spacecraft, the cities by
the asteroids and the states by the asteroid groups, the analogy between the
EGTSP and the GTOC2 becomes evident. In order to solve the problem of the
cyclicity of the solution3, the cost of returning to Earth from any asteroid is set
to zero. This effectively removes the final returning leg from the optimization
process hence providing an optimal solution to the asteroid sequencing problem.
The resulting cost matrix can be seen in Figure 3.4. The value of each non-zero
non-infinity entry in the matrix is given by the cost function. Note that the
ordering of groups was reversed with respect to that defined in [Petropoulos,
2006]: Group 1 contains the asteroids closest to Earth, i.e. Group 4 asteroids
according to the problem definition of Section 2.2.2.

The cost matrix shown in Figure 3.4 is a 911×911 square matrix, leading to
a difficult problem to solve due to its large size. The complexity of the problem
is reduced by selecting the four best transfers from each block, i.e. asteroid
group intersections, in the matrix. This pruning method, despite its simplicity,
reduces the size of the problem to about 60 candidate asteroids, fruit of the
selection criterion, of overlaps between asteroids selected in each block and of
the unit-sized Group 0.

The distance matrix from one city to another is determined via three different
cost functions, relying mostly on orbital parameters. The first cost function
was referred to as the energy cost function and represented the sum of the
energy required to transfer the spacecraft from the departure to the arrival
plane, ∆εplane and the difference in orbital energy between the departure and
arrival orbit, ∆εorbit. Mathematically:

∆ε = |∆εplane|+ |∆εorbit| (3.2.12)

where

∆εorbit = −µ2

(
a2 − a1

a1a2

)
(3.2.13)

∆εplane =
{

1
2 (Vp,1 + ∆Vi + ∆VΩ)2 − 1

2 (Vp,1)2 if a2 > a1
1
2 (Vp,1)2 − 1

2 (Vp,1 −∆Vi −∆VΩ)2 if a2 < a1
(3.2.14)

The second cost function, named ∆V , is based on the maneuvers required to
match the orbital elements, excluding the true anomaly, of the departure with
the arrival orbit. It is a sum of various individual maneuvers: the change in
inclination, ∆Vi, in right ascension, ∆VΩ, in pericenter, ∆Vω, in semi-major axis

3The optimal solution to the EGTSP requires the salesman (spacecraft) to return home
(Earth).
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Figure 3.4: Cost matrix of the EGTSP [Gorter, 2010].
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and eccentricity, ∆Vae, and a possible correction maneuver, ∆Vcor, to adjust the
apocenter of the departure orbit. This is mathematically expressed as:

∆Vtot = ∆Vi + ∆VΩ + ∆Vω + ∆Vae + ∆Vcor (3.2.15)

where

∆Vω = 2
√

µ

a(1− e2)e sin
(α

2

)
(3.2.16)

∆Vae =
√

(V2 cosβ − Va,1)2 + V 2
2 sin2 β (3.2.17)

∆Vcor =


√

2
(

µ
rp,1
− µ

rp,1+rp,2

)
−
√

2
(

µ
rp,1
− µ

rp,1+ra,1

)
if ra,1 < rp,2√

2
(

µ
rp,1
− µ

rp,1+ra,1

)
−
√

2
(

µ
rp,1
− µ

rp,1+ra,2

)
if rp,1 > ra,2

(3.2.18)

Note that it is probably more efficient (propellant-wise) to design one single
maneuver rather than a summation of individual maneuvers. Finally, the last
cost function, is the one used by the ESA/ACT team in GTOC2 and is hence
named after its creator: the ESA cost function. It consists of the sum of the
∆V needed at pericenter of the lower orbit to raise the apocenter and of the ∆V
needed at apocenter to achieve a pericenter raise and an inclination change. It
is defined as:

∆Vtot = ∆V1 + ∆V2 (3.2.19)
where

∆V1 = √µ
(√

2
rp,1
− 2
rp,1 + ra,1

−

√
2
rp,1
− 2
rp,1 + ra,2

)
(3.2.20)

∆V2 =
√
V 2
i + V 2

f − 2ViVf cos irel (3.2.21)

(3.2.22)

and

Vi = √µ
(√

2
ra,2
− 2
rp,1 + ra,2

)
(3.2.23)

Vf = √µ
√

2
ra,2
− 1
a2

(3.2.24)

cos irel = cos i1 cos i2 + sin i1 sin i2 cos Ω1 cos Ω2

+ sin i1 sin i2 sin Ω1 sin Ω2 (3.2.25)

Of the three cost functions, this is the only symmetric one. A detailed descrip-
tion of the parameters in the equations above can be found in [Gorter, 2010].

The EGTSP was then solved using two distinct methods: a Branch-and-
Bound (B&B) algorithm and the Nearest Neighbour Heuristic (NNH). In order
to solve the EGTSP with the B&B, the cost matrix is reduced and the EGTSP
transformed into a Travelling Salesman Problem (TSP). The TSP is then solved
using a B&B method, namely a modified Hungarian Algorithm [Munkres, 1957].
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The solution of the TSP is then converted back into an EGTSP solution. The
other implemented approach was a multistart NNH. The difference between
a traditional NNH (as described in Section 5.1) and the multistart variant is
pretty straightforward: instead of randomly selecting the first node, all nodes
are consecutively considered as the starting point. Given the nature of the
multi-start NNH, the EGTSP does not need to be transformed into a TSP, nor
does the cost matrix need to be reduced.

The phasing was considered posterior to the obtainment of the candidate
asteroid sequences. The phasing assessment was carried out based on a con-
tinuous model using a shape-based method, namely exponential sinusoids (cf.
[Secretin, 2011]). The optimal solutions within that model were obtained by
consecutively applying a Monte-Carlo search, a Genetic Algorithm (GA) and
an Interior Point Method. For a more detailed description of this approach,
please refer to [Gorter, 2010]. The results with this method are compared, in
Section 3.2.4, with those obtained with the models described in the previous
sections.

3.2.4 Results
The solution found during the GTOC2 competition by the TU Delft team had a
low objective function value (15 kg/yr) and large constraint violations in terms
of position, velocity and time-of-flight.

The angular momentum-based pruning discarded all the asteroids used by
GTOC2 participants from the resulting, reduced target pool. After the high-
and low-thrust optimizations, the final solution shows large constraint violations
both in terms of position and velocity. The final objective function value is
however larger (50.77 kg/yr).

The cost matrix reduction for the EGTSP Model leads to a reduced set of
targets, of which only up to 20% correspond to GTOC2 participant asteroids.
The B&B performs better than the multi-start NNH on the reduced set but is
unable to deal with the complete cost matrix. The continuous model yielded
large objective function values (at times, above a 100 kg/yr) but coupled to
large constraint violations in position and/or velocity.

The design of an accurate low-thrust model and of a powerful local opti-
mizer, capable of handling the stringent GTOC2 constraints, is currently being
undertaken at the A&S research group. With respect to the discrete aspect,
there is hope that another approach will lead to a subset of asteroids more
closely correlated to the GTOC2 solutions.

3.3 Lessons Learned
The topic of the author’s MSc Thesis is part of the lineage of the aforementioned
heritage, the A&S Department of Aerospace Engineering at the TU Delft wish-
ing to add an efficient combinatorial tool for preliminary space mission design
to its software toolbox. Here the possible contribution of each of the approaches
discussed above to the author’s own MSc Thesis project is discussed.

During the GTOC2 competition, the discrete aspect was generally solved
under the high-thrust assumption, which, due to its simplicity, proves to be less
computationally demanding. With respect to pruning procedures, the angular
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momentum-based filter does not seem to be sufficiently reliable. Due to the
similarities with an inclination-based filter, it is expected that the latter will
not lead to a successful pruning. The pruning approaches based on energy, on
the ∆V needed to match orbital elements and on a Hohmann-like bi-impulsive
transfer lead to a reduced pool of asteroids but with little similarities with the
GTOC2 solutions. The optimal phase-free bi-impulsive ∆V pruning metric was
one of the most effective in screening asteroid combinations for the majority of
the trajectory legs. However, using the high-thrust model to carry out a phasing
analysis does not yield satisfactory results.

An incremental approach, i.e. solving the individual leg subproblems sep-
arately, appears to be appropriate for the pruning phase. This incremental
approach should follow the Group 4 - Group 3 - Group 2 - Group 1 asteroid
group sequence order, as it is the most likely to entail the problem optimum.

A very powerful B&B algorithm is needed to solve the discrete aspect of the
GTOC2 assignment for the entire asteroid pool but may yield satisfying results
on an efficiently-pruned set. Modelling the GTOC2 problem as an EGTSP
results in numerous approximations which may jeopardize the quality of the
solutions. With respect to the NNH, a multi-start implementation brings little
to the quality of the solution.

These lessons learned will be a valuable asset in the design of an efficient
combinatorial tool to solve the discrete aspect of the GTOC2 problem.
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Part II

Combinatorial Tool
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Chapter 4

GTOC2 Combinatorial
Model

Identifying the most promising asteroid combinations for the GTOC2 can be
seen as a combinatorial problem, most probably a so-called NP-hard problem1

due to the dynamical aspect of the problem [Aardal, 2011]. Out of the classical
combinatorial problems, the Dynamic Shortest Path Problem (DSPP) appears
to be the most suited to model the GTOC2 problem [Secretin, 2011].

After a short introduction to the concepts and terms of graph theory in
Section 4.1, we proceed to the description of the static Shortest Path Problem
(SPP) in Section 4.2, along with how it can be used to model the GTOC2
problem. The dynamic variant of the SPP is explained in Section 4.3 and the
rationale for prefering the static model over the DSPP is presented. Section
4.4 describes how the dynamic GTOC2 problem is turned into a static SPP by
decoupling the continuous from the integer optimization.

4.1 Basic Graph Theory
Combinatorial optimization problems are often modelled according to Graph
Theory. This introductory section is based on [Hartmann and Weigt, 2005].

An undirected graph, G = (V ,A), is given by a set of vertices, u ∈ V , and
a set of undirected arcs, (u, v) ∈ A. A weighted graph includes a function,
w : A→ R that gives the cost of travelling along any given arc. A graph is said
to be a directed graph, D = (V,A), when the arcs are ordered. In other words, in
a directed graph, (u, v) and (v, u) represent different arcs. The indegree δin(u)
is the number of ingoing arcs (v, u) while the outdegree δout(u) is the number of
outgoing arcs (u, v). These concepts are illustrated in Figure 4.1.

Figure 4.1 shows a directed, weighted graph. The circles represent the ver-
tices and the arrows the directed arcs of the graph. The weights of each arc are
given next to the arrows: e.g. w(a, e) = 2. The “directed” nature of the graph
can be seen from two different perspectives: notice, first, that w(e, f) 6= w(f, e),
and second, that while (c, b) ∈ A, (b, c) /∈ A. This situation is sometimes de-
scribed, in a weighted graph, as w(b, c) = ∞. For the sake of clarity, these

1NP-hard (Non-deterministic Polynomial-time hard) problems, in computational theory,
are the set of yes-no problems that can be verified in polynomial time [Aardal, 2011].

33
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Figure 4.1: Example of a graph.

infinite arcs are left out in the graphical representation. The vertex f has inde-
gree 2 and outdegree 1: δin(f) = 2, δout(f) = 1. The indegree and outdegree of
vertex d are equal to zero, i.e. δin(d) = δout(d) = 0: the vertex d is said to be
isolated.

4.2 The Shortest Path Problem
The SPP is one of the most fundamental network optimization problems and
has been studied at length. See e.g. [Bellman, 1958], [Dial, 1969], [Schrijver,
2010]. It is the problem of finding a path, i.e. a sequence of nodes, between
two vertices such that the sum of the costs of its inherent arcs is minimized.
Mathematically, given the directed graph D = (V,A) and the cost function w,
the SPP relies on finding the path P = (v0, v1, ..., vm−1, vm), with vi ∈ V and
(vi, vi+1) ∈ A for i = 1, ...,m, that minimizes

w(P ) :=
m∑
i=0

w(vi, vi+1) (4.2.1)

SPPs can be classified in four major categories, based namely on the number
and nature of the shortest paths sought:

Single-source The shortest paths from one source vertex, s, to all the other
vertices in the graph are computed;

Single-destination The shortest paths from all nodes to a destination, or
target, node, t, are computed;

All-pairs The shortest paths between all possible pairs, (u, v), in the graph are
computed;
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Point-to-Point Only the shortest path from a specific source vertex, s, to a
specific target vertex, t, is computed.

Each category has a different complexity and therefore different approaches are
available to solve them.

The problem of selecting the most promising asteroid combinations from the
GTOC2 database can be seen as single-source, or one-to-all, dynamic shortest
path problem. From such a perspective, the nodes represent the asteroids, the
directed arcs model the possible connections between asteroids from different
groups, while the dynamic arc costs represent the individual contributions to
the cost function. This model is illustrated in Figure 4.2. Note that, in the SPP
model of the GTOC2 problem in Figure 4.2, the arcs are directed which ensures
that no backward path cut, i.e. from Group 3 back to Group 4, is considered.

Figure 4.2: The GTOC2 asteroid selection problem modelled as an SPP.

According to [Alemany and Braun, 2007], the best asteroid group sequence
is: Group 4 - Group 2/3 - Group 3/2 - Group 1. However, in an SPP imple-
mentation, one must adopt a clear order, i.e. opt for either the 4-3-2-1 or the
4-2-3-1 asteroid group sequence, as shown in Figures 4.3(a) and 4.3(b) respec-
tively, to avoid possible shortcuts in the algorithm. More specifically, if Group
4 asteroids are connected to both Group 2 and Group 3 asteroids, as shown in
Figure 4.3(c), the situation might arise where the algorithm short-circuits one
of the asteroid groups and finds a (wrong) solution with only three arcs instead
of four: e.g. Group 4 - Group 2 - Group 1 (red path in Figure 4.3). The im-
plementation of a protection mechanism to prevent this type of short-circuit is
not desirable in virtue of the expected added complexity, as the condition for
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a total of four asteroids must be checked for each solution. Besides the raised
number of computations due to the implementation of such a protection mech-
anism in the algorithm source code, a clear asteroid group sequence decreases
the number of arcs in the graph and hence the computational difficulty of the
problem. More specifically, setting a clear asteroid group sequence reduces the
number of possible asteroid combinations from 41 billion to 1.7 billion, i.e. by
one order of magnitude. We adopt the 4-3-2-1 sequence for it is the combination
most commonly used by GTOC2 participants (see Chapter 2.3). Note that this
is the sequence illustrated in Figure 4.2.

Figure 4.3: Asteroid group sequences: (a) 4-3-2-1, (b) 4-2-3-1, and (c) 4-2/3-
3/2-1 with a possible shortcut highlighted in red.

4.3 The Dynamic Shortest Path Problem
A graph is said to be dynamic when some of the entities (vertices, arcs, weights)
change with time. We can distinguish two types of DSPP. In the first variant,
usually called time-dependent, the cost of an arc is given by a pre-determined
function of time, i.e. the cost of an arc (u, v) depends on the starting time along
the path and on the time already spent to reach u. The time-dependent DSPP
can be mathematically described as finding the path P , that minimizes

wd(P ) :=
m∑
i=0

wd(vi, vi+1, ti) (4.3.1)



4.4. DYNAMIC TO STATIC COST FUNCTION 37

with ti ∈ T for i = 1, ...,m and T a predefined time interval, and where
wd(vi, vi+1, ti) is the travelling cost along the arc (vi, vi+1) starting from vi
at time ti.

The second variant is referred to as the cost-update variant. It concerns
itself with graphs where the cost function changes or is updated at regular
time intervals but the graph is static in-between updates. It can be seen as
a discretized form of the time-dependent variant. Note however, that the first
variant is more adequate to model the GTOC2 asteroid selection problem.

The DSPP, independently of the variant, is an NP-hard problem. In lit-
erature, one finds several references ([Ahuja et al., 2003], [Ziliaskopoulos and
Wardell, 2000], [Chabini, 1998]) to the First-In-First-Out (FIFO) property, as
an assumption to simplify time-dependent graph problems. The FIFO property
states that for each pair of time instants τ , τ ′ with τ < τ ′:

∀(u, v) ∈ A,wd(u, v, τ) + τ ≤ wd(u, v, τ ′) + τ ′ (4.3.2)

Put into words, an object departing from u along the arc (u, v) at time τ ′ cannot
arrive at v before an object travelling along the same arc but that departed at
time τ < τ ′. As a result, the FIFO property is sometimes referred to as the
non-overtaking property. It reduces the complexity of the DSPP as it becomes
polynomially solvable while the SPP in a non-FIFO time-dependent graph is
NP-hard [Nannicini and Liberti, 2008].

The GTOC2 problem is hardly a FIFO DSPP, as the time-of-flight is a
variable of the problem and not the result of a cost function. This means that
we would have to model the GTOC2 discrete problem as a non-FIFO DSPP
which has severe consequences in terms of computational effort. Therefore, we
make the choice to adopt a static SPP model.

4.4 Dynamic to Static Cost Function
As stated in Section 4.2, in the SPP model of the GTOC2 problem, the nodes
represent the celestial bodies and the directed arcs model the possible connec-
tions between asteroids. We now define the cost function, w, that gives the
cost of travelling from a given body to another. Since the dynamic model is
discarded, the dynamic arc costs must be replaced by static ones. The static
arc costs, w(u, v), are defined as:

w(vi, vi+1) ≡ w′t(vi, t̄i, vi+1, t̄i+1) (4.4.1)

where wt(vi, ti, vi+1, ti+1) is the cost of travelling along (vi, vi+1) starting at
time ti and arriving at time ti+1, and t̄i and t̄i+1 are the departure and arrival
times, respectively, that minimize wt. Phrased differently, the dynamic arc costs
are replaced by their optimal value, obtained in an a-priori optimization step.
The optimization techniques used are described, in Chapter 6.

To reduce the computational effort of this optimization procedure, and bear-
ing in mind that only a preliminary analysis of the GTOC2 problem is sought,
we define the dynamic cost function, wt, under the assumption of a high-thrust
propulsion system. It has been shown that there is correlation between increas-
ing high-thrust ∆V and decreasing low-thrust final mass for the majority of
the GTOC2 trajectory legs (see Section 3.1.2). Moreover, a large number of
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GTOC2 participants used a high-thrust first estimate when solving the problem
(see Section 2.3). Therefore, it is expected that this approximation will provide
a fast way to determine the most reachable asteroids, as well as provide a sound
basis for comparison with GTOC2 results.

It is proposed to solve the SPP model with two different cost functions. The
first one, w′t,1, is the high-thrust equivalent of the original GTOC2 cost function
(see Equation (2.2.1)), adapted to a single, high-thrust leg:

w′t,1(vi, ti, vi+1, ti+1) = mi+1(vi, ti, vi+1, ti+1)
ti+1 − ti

(4.4.2)

where mi+1 is the mass at vi+1, obtained with Tsiolkowski’s law:

mi+1(vi, ti, vi+1, ti+1) = mi exp(−∆V (vi, ti, vi+1, ti+1)
c

) (4.4.3)

with mi the mass at vi, c the exhaust velocity of the propulsion system and
∆V the total magnitude of the impulsive shots needed to travel from vi at ti to
vi+1 at ti+1. We take the trajectory between vi and vi+1 to be a Lambert arc
(see Chapter 7), as it was shown (see Section 3.1.2) that the optimal phase-free
bi-impulsive pruning metric is one among the most efficient.

Equation (4.4.2) explicitly takes into account the time-of-flight. However,
doing so is expected to worsen the quality of the results obtained, due to the
large differences in terms of time-of-flight between optimal high- and low-thrust
trajectories. Therefore a separate cost function, w′t,2, is defined, that removes
the travel time from the equation:

w′t,2(vi, ti, vi+1, ti+1) = mi+1(vi, ti, vi+1, ti+1) (4.4.4)

with mi+1 as defined in Equation (4.4.3). Note that the optimal solutions
correspond to those that maximize the cost functions w′t,1 and w′t,2. Since the
SPP is a minimization problem, we solve this discrepancy by taking the inverse
of Equations (4.4.2) and (4.4.4):

wt,1 = 1/w′t,1 (4.4.5)
wt,2 = 1/w′t,2 (4.4.6)

We have mentioned earlier that the minimum phase-free high-thrust bi-
impulsive ∆V metric is one of the most effective pruning methods. Given
the large differences in time-of-flight between high- and low-thrust trajectories,
adding the time-of-flight to the cost function will most probably lead to a degra-
dation in the correlation between the sequences obtained and those submitted
by GTOC2 participants. This was confirmed when observing that carrying a
high-thrust phasing analysis did not yield satisfying results. Given the belief
that using Equation (4.4.4), which does not consider the time-of-flight, will pro-
vide better results, this variant of the SPP model will take precedence over the
one with Equation (4.4.2).



Chapter 5

Greedy Algorithms

When considering an NP-hard combinatorial optimization problem, there are
roughly three approaches: one chooses a (potentially) computationally expen-
sive enumerative method that is guaranteed to find the optimal solution (1 in
Figure 5.1), one leans towards an approximation algorithm that runs in poly-
nomial time (2 in Figure 5.1), or one opts for some type of heuristic technique
with no definitive guarantee on the quality of the outcome but with lesser com-
putational cost (3 in Figure 5.1) [Aarts and Lenstra, 1997]. These three options
are shown in Figure 5.1, where the general relation between computational cost
and result fidelity is illustrated.

Computational Effort
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id
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ity
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3

Figure 5.1: Computational cost and fidelity of different approaches to solve a
combinatorial problem.

There are a number of methods available to solve the SPP, with different
characteristics in terms of computational cost and solution quality, as seen in
Figure 5.1. The algorithms that provide the best guarantee on the quality of
the solution (see e.g. [Dijkstra, 1959]) tend to consider the search space in its

39
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entirety. Applying such algorithms to the selected combinatorial model would
defeat the purpose of designing a computationally efficient tool. At the other
end of the spectrum of available techniques, greedy algorithms promise a fast
generation of solutions and allow for a leg-per-leg reduction of the search space.
The choice is therefore made to improve the greedy algorithms such that they
provide a more accurate solution while preserving their attractive computational
speed.

Section 5.1 lays down the bases of the NNH, while Section 5.2 extensively
explores two different avenues for improving the accuracy of the results provided
by the NNH: the multi-path (Section 5.2.1) and the bi-directional (Section 5.2.2)
variants.

5.1 The Nearest Neighbour Heuristic
The term “greedy algorithms” refers to the set of optimization algorithms that
make the choice that looks best at that instant. Of these, the NNH is probably
the most well-known. This algorithm mimics a traveller whose rule-of-thumb
is to visit the next closest unvisited city (vertex). In a graph G = (V,A) as
defined in Chapter 4.1, starting at the source vertex, v0, the next vertex, v1 is
the vertex vi ∈ V that minimizes w(v0, vi) with (v0, vi) ∈ A. This approach is
then repeated until an end vertex is reached. This algorithm is relatively fast
but there is no guarantee that the solution is indeed the optimal one [Aarts and
Lenstra, 1997]. This is mostly due to the fact that the algorithm looks at the
immediate neighbouring solution instead of trying to handle the problem as a
whole. Figure 5.2, where a simple SPP is given, along with the optimal solution
and the sub-optimal solution found by the NNH, illustrates this situation.

5.2 Improving the Nearest Neighbour Heuristic
As mentioned earlier, the choice is made to improve the accuracy of greedy
algorithms. In the following sections, the most promising leads (see [Secretin,
2011]) to do so are detailed.

5.2.1 Multi-path Nearest Neighbour Heuristic
A possible solution to improve the accuracy of NNH is to allow it to pursue
not only one thread (or path) but N threads. This increases the probability of
finding the optimal solution, as shown in Figure 5.3, where the same problem as
that from Figure 5.2 is solved but with an NNH pursuing two threads (NNH1
and NNH2) instead of just one. Moreover, bear in mind that the goal of the
tool is not to provide the optimal solution to the GTOC2 asteroid sequence but
rather a subset of possible combinations that are likely to contain said optimal
solution. Therefore, allowing the NNH to pursue more than one thread is in line
with the proposed goal. In Figure 5.3, note that despite the increased quality
of the solutions found, none of them corresponds to the optimum.

At each stage of the optimization, i.e. after each leg is optimized, the cost of
the (partial) paths, Ppartial = (v0, v1, ..., vj) with vi ∈ V and (vi, vi+1) ∈ A for
i = 0, ..., j − 1; j ≤ 4, are computed according to Equation (4.2.1). The partial
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Figure 5.2: Sub-optimal solution to an SPP as found by a greedy algorithm.
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Figure 5.3: Sub-optimal solutions to an SPP as found by a multi-path greedy
algorithm with N = 2.
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paths are then ranked by increasing cost (the SPP is a minimization problem)
and the N best paths (or champion paths) are selected to be pursued in the
next stage. In Figure 5.3, all arcs neighbouring the start vertex (with the chess
pattern) are evaluated and the two best, i.e. the two with the lowest partial
path cost, indicated in red, are selected. The remaining arc (and corresponding
vertex) is discarded. In the second stage, the process is repeated, starting at
the vertices that were preserved.

Since the individual contributions to the path cost are computed separately,
the phasing of the resulting trajectories is not explicitely taken into account.
Given the generally large discrepancies in terms of time-of-flight between high-
thrust and low-thrust trajectories, using a high-thrust model to carry out a
phasing analysis of GTOC2 trajectories does not yield satisfactory results (see
Section 3.1.2).

The advantage of solving the GTOC2 discrete aspect with a multi-path NNH
is that this technique approaches the problem on a leg-per-leg basis which allows
to discard, after each leg is selected, large areas of the search space, as shown
in Figure 5.4. This incremental approach, which reduces the complexity of the
problem, has proven to be an appropriate method to solve the GTOC2 asteroid
sequence selection problem (see Section 3.1.2). In Figure 5.4, where only a
subset of the total GTOC2 graph is shown for sake of readability, we can see
that after analysing the arc weights for the first leg, a number of asteroids are
cast aside, effectively reducing the number of possible combinations. As a result,
there is no need to compute the cost of the outgoing arcs from the discarded
asteroids, leading to significant computational time savings. Even more so given
that the arc costs are the result of an optimization procedure.

Figure 5.4: The multi-path NNH applied to the first two legs of the GTOC2
problem. Arc costs do not represent realistic values.

Decision Metrics

Implementing a multi-path NNH introduces the problem of the definition of the
number of champions to be selected after each stage computation. We consider
a number of different decision-making methods with respect to the number of
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paths to be pursued.
One possible approach relies on a user-defined absolute number of paths.

This is the most direct approach as the user directly sets the number of cham-
pions. In order to obtain a first estimate of the impact of the number of cham-
pions on the computational effort required to solve the GTOC2 problem with
the multi-path NNH, Figure 5.5 plots the total number of transfers computed as
a function of the number of champions, as well as the individual contributions
from each leg.
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Figure 5.5: Total number of transfers evaluated as a function of the number of
champions.

In Figure 5.5, it is evident that the total number of transfers grows linearly
with the number of champion paths, assuming the latter is constant for each leg.
The number of Leg 1 transfers computed is constant and therefore independent
of the number of champions because the problem is single-sourced: the Earth
is the only point of origin. The largest contribution to the total number of
transfers computed comes from Leg 2: Group 3 is the largest asteroid group
affected by the number of champions. All these observations are coherent with
the formula that governs the total number of transfers, ntransfers, evaluated:

ntransfers = m4 +N1 ·m3 +N2 ·m2 +N3 ·m1 (5.2.1)

wherem4, m3, m2, andm1 correspond to the number of asteroids in the asteroid
group indicated by the index, and N the number of champions from the leg
indicated by the index. Assuming that N1 = N2 = N3 = N , Equation (5.2.1)
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becomes:

ntransfers = m4 +N(m3 +m2 +m1)
= 338 +N(300 + 176 + 96)
= 338 + 572N (5.2.2)

which gives a linear relation between ntransfers and N. One can therefore expect
that the computational time needed to execute the multi-path NNH will increase
linearly with a user-defined, constant absolute number of champions.

A user-defined relative number of paths, expressed as a fraction, is also
possible. The idea here is to have a number of champion paths that reflects the
effort put into obtaining them: instead of selecting a fixed number of champions
independently of the total amount transfers computed at each leg, the number
of champions grows with the number of transfers computed. Using a relative
number of champions, the number of champions after each leg computation is
given by:

Ni = ntransfers,i · xi : i = 1, 2, 3 (5.2.3)

where xi is the relative number of champion paths from Leg i and ntransfers,i the
number of Leg i transfers computed:

ntransfers,i =
{
m4 : i = 1
Ni−1 ·m5−i : i = 2, 3, 4

(5.2.4)

Assuming the same relative number of champions for every leg, x, and substi-
tuting Equations (5.2.3) and (5.2.4) into Equation (5.2.1) yields:

ntransfers = m4

+m4 ∗ x ∗m3

+m4 ∗ x ∗m3 ∗ x ∗m2

+m4 ∗ x ∗m3 ∗ x ∗m2 ∗ x ∗m1

= 338 + 1.01 · 105x+ 1.78 · 107x2 + 1.71 · 109x3 (5.2.5)

which is a polynomial expression. Since all coefficients are positive, it is expected
that the computational time needed to complete the multi-path NNH will in-
crease exponentially with a constant relative number of champions, defined by
the user. Each term in Equation (5.2.5) corresponds to the number of transfers
evaluated at each leg: the number of Leg 1 transfers computed is constant, that
of Leg 2 transfers increases linearly, that of Leg 3 transfers grows parabolically,
and, finally, that of Leg 4 transfers increases hyperbolically. Mathematically:

ntransfers,1 = 338 (5.2.6)
ntransfers,2 = 1.01 · 105x (5.2.7)
ntransfers,3 = 1.78 · 107x2 (5.2.8)
ntransfers,4 = 1.71 · 109x3 (5.2.9)

Since x ≤ 1, one could expect that Leg 2 transfers would contribute to the
total number of transfers more than Leg 3 transfers, which in turn would be in
larger numbers than Leg 4 transfers. However, due to the large coefficient of
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x3, the number of Leg 4 computations will rapidly dominate the total number
of transfers evaluated. To visualize this, take a look at Table 5.1 where the
absolute number of transfers evaluated at each leg and in total is given. For
each leg, the percentage of the total number of transfers evaluated is also given.

Table 5.1: Contribution of each leg to the total number of transfers evaluated,
as a function of the relative number of champion paths.

Relartive Number ntransfers,1 ntransfers,2 ntransfers,3 ntransfers,4 ntransfers
of Paths [%] [-] [%] [-] [%] [-] [%] [-] [%] [-]

1 338 7.76 900 20.65 1584 36.35 1536 35.25 4358
2 338 1.41 2100 8.74 7392 30.75 14208 59.11 24038
3 338 0.52 3000 4.63 15840 24.45 45600 70.39 64778
4 338 0.23 4200 2.84 29568 20.02 113568 76.90 147674
5 338 0.13 5100 1.92 44880 16.89 215424 81.07 265742

As shown in Table 5.1, the Leg 4 evaluations rapidly dominate the contri-
butions to the total number of transfers computed: for a relative number of
champions of 2%, these already represent more than half the total number of
evaluations. The share of Leg 4 computations continues to increase as the rel-
ative number of champions increases. This phenomenon, as well as the large
dominance of Leg 4 evaluations, is illustrated in Figure 5.6.
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Figure 5.6: Total number of transfers evaluated as a function of the relative
number of champions.

If we focus on smaller values for the relative number of champions, as de-
picted in Figure 5.7, a different pattern emerges. The discontinuities in the
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curves are due to the round function1, coupled to the requirement that there
be at least one champion in each leg. In this fashion, a complete solution
is returned, independently of the value of the relative number of champions.
Nonetheless, despite being a multi-path NNH, the algorithm will find a single
solution to the problem for relative numbers of champions less than approxi-
mately 0.45%. The minimum number of transfers computed, which corresponds
to x < 0.45%, is less than a thousand, more specifically 910. The relative con-
tribution of each leg to the total number of transfers evaluated varies within the
interval considered.
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Figure 5.7: Total number of transfers evaluated as a function of the relative
number of champions, for small values.

Using a constant, relative number of champions instead of an absolute num-
ber seems to lead to a less sensitive algorithm due to the real-to-integer con-
versions neede: indeed, two different real valued relative numbers of champions
may lead to the same number of transfers being evaluated and therefore to the
same solution. While this property is interesting for the user, the absolute num-
ber of champions decision metric will be privileged to conduct the analysis of
the combinatorial tool. This decision is consolidated by the fact that all decision
metrics eventually boil down to an integer number of champions.

Other decision metrics could be implemented, such as a user-defined thresh-
old value for the path costs at each stage. Or even a probabilistic approach to
the definition of said threshold values, by fitting a distribution to the (partial)
path costs, as suggested by [Alemany and Braun, 2007]. This is expected to be

1This function, R → Z, returns the closest integer value to the input value.
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a more objective method to determine threshold values than simple visual in-
spection and perceived intuition. Note however that this approach still requires
a certain degree of subjectivity. However, the absolute number of champions
metric will be investigated in priority in the scope of this MSc Thesis. The other
metrics might be also studied, depending on the time constraints of project.

Verification

In order to test the implemented multi-path NNH algorithm, it is applied to
a simple test case: the SPP depicted in Figure 5.3, to which we shall refer
as Shortest Path Problem Test Case 1 (SPPTC1). The starting vertex, A, is
connected to three different nodes, B, C, and D, which in turn are each connected
to the two end vertices, E and F. The graph is directed, as implied by the arrows
representing the arcs. The arc costs, which are indicated on top of the arrows,
are listed in Table 5.2.

Table 5.2: Arc costs in SPPTC1.

vi+1
vi A B C D E F
A ∞ 10 8 6 ∞ ∞
B ∞ ∞ ∞ ∞ 1 4
C ∞ ∞ ∞ ∞ 5 4
D ∞ ∞ ∞ ∞ 8 9
E ∞ ∞ ∞ ∞ ∞ ∞
F ∞ ∞ ∞ ∞ ∞ ∞

The properties of the SPPTC1 can be reconstructed from Table 5.2. The
graph is directed since it is not symmetric. E and F are end vertices given that
no arc departs from them (arc costs are set to∞). By contrast, A is the starting
vertex but is only (forward) connected to B, C, and D, which in turn are only
(forward) connected to E and F.

The multi-path NNH, with a varying number of champions, is applied to the
SPPTC1. The results are given in Table 5.3.

Table 5.3: Solutions to SPPTC1 found by the multi-path NNH.

N Sequence Path Cost [-]
1 ADE 14
2 ACF 12

ACE 13
ABE 11

3 ACF 12
ACE 13

Looking at Table 5.3, we can see that the quality of the solutions found
improves when the number of champions increases. For a single champion,
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N = 1, the multi-path NNH acts as a traditional NNH. The solution found,
w(A,D,E) = 14, corresponds to the sequence illustrated (in red) in Figure 5.2.
With N = 2, the two solutions found, w(A,C, F ) = 12 and w(A,C,E) = 13,
have an increased quality. They correspond to the paths shown in red in Figure
5.3. Finally, with three champions, the multi-path NNH finds the problem
optimum, w(A,B,E) = 11, which is illustrated in green in both Figures 5.2
and 5.3. The other two solutions return correspond to the solutions found with
N = 2. Note however that for SPPTC1, setting the number of champions
to three is equivalent to probing the entire search space. It is therefore not
surprising that the optimum was found.

Using SPPTC1, it was shown that the implemented multi-path NNH is func-
tional and outperforms the original NNH in terms of solution fidelity and quality.

5.2.2 Bi-directional Nearest Neighbour Heuristic
Another improvement to the NNH comes from the concept of bi-directional
search, a technique that has been succesfully applied to Dijkstra’s algorithm in
point-to-point SPPs (see e.g. [Nannicini and Liberti, 2008]). In a bi-directional
search, the construction of the optimal path starts simultaneously at the source
vertex, s, and at the end vertex, t, in the reverse graph, D̄ = (V, Ā) where
(v, u) ∈ Ā ⇔ (u, v) ∈ A. For the searches starting at end vertices (backward
searches), the arc weights, w̄, are taken to be the opposite of those of the forward
search:

w̄(vi+1, vi) = w(vi, vi+1) (5.2.10)
where w is as defined in Equation (4.4.1).

If we think of the bi-directional search as exploring nodes in circles centred
at the source vertex s with increasing radius until t is reached, the bi-directional
variant is intuitively faster as it explores vertices in two circles centred at both
s and t until the two circles meet. This is graphically illustrated in Figure 5.8.
We can see that the sum of the areas of the two bi-directional search circles is
smaller than that of the unidirectional search circle, up to a factor of two for
Dijkstra’s algorithm [Nannicini and Liberti, 2008].

Bi-directional search can be adapted to single-source SPPs, with the ex-
pected caveat that the computational effort grows with the number of end ver-
tices. Moreover, it should be noted that bi-directional search leads to time
savings with respect to a traditional, forward Dijkstra search, which is a combi-
natorial optimization technique with high fidelity. For a heuristic search, namely
NNH, a bi-directional search is expected to have benefits in terms of solution
quality rather than in terms of computational effort, especially for single-source
SPPs. In Figure 5.9, such a problem is illustrated. The problem, to which
we shall refer from this point forward as Shortest Path Problem Test Case 2
(SPPTC2), has a one source vertex, A, and two end vertices, H and I. The op-
timal solution (w(A,B,E,H) = 14) is highlighted in green. Different variants
of bi-directional NNH are investigated hereafter, based on SPPTC2.

Free Bi-directional Search

The term free was coined by the author based on the property that the forward
and backward searches, while running simultaneously, are independent. Figure
5.10 shows a free, bi-directional NNH applied to SPPTC2. Greedy searches
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Figure 5.8: Schematic representation of a (a) unidirectional and a (b) bi-
directional search. Adapted from [Nannicini and Liberti, 2008].

Figure 5.9: Optimal solution to SPPTC2.
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are launched from both start and end vertices. This results in three differ-
ent solutions (w(A,D,G, I) = 20, w(A,C, F, I) = 21, and w(A,C,E,H) =
15), highlighted in red, none of which correspond to the optimal solution of
SPPTC2 (w(A,B,E,H) = 14). While one of the backward solutions, namely
w(A,C,E,H) = 15, has a lower path cost than the one found by the forward
search (w(A,D,G, I) = 20), the computational effort needed to handle the prob-
lem more than doubled (see Table 5.4), as three independent searches were run.
Even if the arcs only need to be evaluated once, all the arcs of the problem were
evaluated. Note at this point, each of the three greedy searches only pursues
one thread. Table 5.4 indicates the number of SPPTC2 arcs evaluated by the
forward, uni-directional NNH, by the free, bi-directional NNH, and by other
variants of the NNH which will be described hereafter.

Figure 5.10: Solutions to SPPTC2 as found by a free, bi-directional NNH.

Table 5.4: Number of SPPTC2 arcs evaluated by the different variants of the
NNH.

NNH Variant # Arcs Evaluated
Uni-directional 8

Free bi-directional 18
Driven bi-directiona 11

Aggregated bi-directional 10
Multi-path bi-directional 13
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Driven Bi-directional Search

In order to benefit from the computational time savings from a bi-directional
search, it is possible to force the forward and backward searches to encounter
each other. Otherwise, the greedy searches may never share arcs (as is the case
in Figure 5.10) and the algorithm running time increases considerably, for all
searches run from start to end (or end to start). We shall refer to this variant
as a driven, bi-directional NNH. In Figure 5.11, the searches are forced to meet
in the second arc (or leg): the only (second) arcs evaluated are combinations of
D, E, and F. These nodes are the result of the backward and forward greedy
searches up until the second arc. Arcs that are not evaluated are not represented
in Figure 5.11.

Figure 5.11: Solutions to SPPTC2 as found by a driven, bi-directional NNH.

Akin the free variant, the driven, bi-directional NNH fails to provide the
optimal path of SPPTC2. Moreover, there is a degradation of the best solu-
tion found (w(A,D,E,H) = 16) with respect to the free bi-directional search
(w(A,C,E,H) = 15). On the other hand, the number of arcs evaluated was
significantly reduced, as shown in Table 5.4.

Aggregated Bi-directional Search

Further time savings can be accomplished by considering all backward searches
as a single backward search: starting at all end vertices, all neighbouring arcs
are evaluated and only the best arc, across all evaluated arcs, is pursued. Hence,
the number of paths being pursued in the bi-directional search is limited, in-
dependently on the number of end vertices. Note however that, the algorithm
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still requires that all end-neighbouring arcs be computed. This situation is illus-
trated in Figure 5.12, where the forward and backward searches are patched in
the second leg. As in Figure 5.11, only evaluated arcs are represented in Figure
5.12.

Figure 5.12: Solutions to SPPTC2 as found by an aggregated, bi-directional
NNH.

Similarly to the previous variants, the aggregated bi-directional NNH is in-
capable of returning the optimal solution of SPPTC2. There is no degradation
of the quality of the best solution with respect to the driven variant (the best
solution is the same in both: w(ADEH) = 16) and only a slight reduction of
the number of arcs evaluated (see Table 5.4). However, should the number of
end vertices increase, the difference in number of arcs evaluated is expected to
increase.

Multi-path Bi-directional Search

Given an aggregated bi-directional search of SPPTC2, one can implement the
equivalent of a uni-directional multi-path NNH (see Section 5.2.1). In order to
achieve this, all backward neighbouring arcs are evaluated simultaneously and
only the N champions are pursued. The same is done for the forward search. As
with the previous examples, the patch between forward and backward threads
occurs, in Figure 5.13, in the second leg.

Applying the multi-path bi-directional NNH with N = 2 to SPPTC2 yields
the optimal solution: w(ABEH) = 14. The second solution, w(ADEH) = 16,
has a near-optimal path cost. These improved result come at the cost of an
increased number of arc evaluation, as seen in Table 5.4.
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Figure 5.13: Solutions to SPPTC2 as found by a multi-path bi-directional NNH
with N=2.

Figure 5.14 shows a Pareto front of solution quality versus number of arcs
evaluated in SPPTC2 for five types of NNH: the simple forward search and the
free, driven, aggregated and multi-path bi-directional searches. One can see that
the original, forward NNH is the algorithm that evaluates the smallest number
of paths but it is also the one that yields the worst solution. The best solution,
which incidentally corresponds to the problem optimum, is found by the multi-
path bi-directional search. It is however not the variant that requires the most
number of evaluations. That distinction falls upon the free bi-directional NNH.
Note that these results are problem dependent, as other SPPs may be accurately
solved already with a simple forward NNH search, or another variant with less
arc evaluations. However, it is not expected that this is the case for the GTOC2
problem. Since the multi-path search appears to be the most reliable variant of
the bi-directional NNH, it is decided to implement it.

Verification

In order to conduct test the correctness of the implemented multi-path bi-
directional NNH algorithm is applied to SPPTC2. The cost matrix of SPPTC2
is as given in Table 5.5. The∞ symbol indicates the absence of an arc connect-
ing the two nodes.

Table 5.5 resumes the properties of SPPTC2. The assymetry of the matrix
indicates that the graph is directed. H and I have an outdegree equal to zero:
they are end vertices. A, the starting vertex, neighbours B, C, and D, which in
turn are connected to E, F and G. The latter are the only nodes neighbouring the
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Figure 5.14: Shortest Path in SPPTC2 as a function of the number of arcs eval-
uated, found by a forward NNH (NNH), a free bi-directional NNH (FBNNH),
a driven bi-directional NNH (DBNNH), an aggregated bi-directional NNH
(ABNNH), and a multi-path bi-directional NNH (MBNHH).

Table 5.5: Arc costs in SPPTC2.

vi+1
vi A B C D E F G H I
A ∞ 7 9 6 ∞ ∞ ∞ ∞ ∞
B ∞ ∞ ∞ ∞ 6 7 11 ∞ ∞
C ∞ ∞ ∞ ∞ 5 6 5 ∞ ∞
D ∞ ∞ ∞ ∞ 9 7 6 ∞ ∞
E ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 7
F ∞ ∞ ∞ ∞ ∞ ∞ ∞ 9 6
G ∞ ∞ ∞ ∞ ∞ ∞ ∞ 9 8
H ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
I ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
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end vertices. In Table 5.6, the outcome of applying the multi-path bi-directional
NNH, with a varying number of champions, to SPPTC2 is indicated.

Table 5.6: Solutions to SPPTC2 found by the multi-path bi-directional NNH.

N Sequence Path Cost [-]
1 ADEH 16
2 ABEH 14

ADEH 16
ABEH 14

3 ACEH 15
ADEH 16

Table 5.6 shows that increasing the number of champions, N, improves the
quality of solutions found, although the optimal solution is found with N = 2
already. With a single champion, the multi-path bi-directional NNH is equiva-
lent to the aggregated bi-directional NNH and the solution returned is the one
highlighted in red in Figure 5.12: w(A,D,E,H) = 16. As discussed earlier,
with N = 2, the multi-path bi-directional NNH finds the optimal sequence in
SPPTC2: w(A,D,E,H) = 14. The second solution returned is the same as the
one yielded by the aggregated bi-directional NNH. As expected, these are the
paths highlighted in red in Figure 5.13. Increasing once more the number of
champions, to N = 3, preserves the ADEH sequence and more importantly the
optimal path. The third solution, w(A,C,E,H) = 15, is a shorter path than
ADEH, and corresponds to the solution found by the free bi-directional NNH.

Solving the SPPTC2 allowed to verify the performance, in terms of solution
quality, of the multi-path bi-directional NNH.

Patch Leg

In order to solve the GTOC2 model from Chapter 4 with the multi-path bi-
directional NNH, one must solve the issue of the patch leg, i.e. one must decide
in which leg are the forward and backward searches joined. One aspect to take
into consideration is the number of transfers evaluated, as this will impact the
computational effort needed to solve the problem. The number of transfers
computed as a function of the number of champions, N, taken to be the same
for the backward and forward search, for each patch leg, can be determined with
the following equations:

n1
transfers = N +m4 ·N +m3 ·N +m2 ·m1 = 16896 + 639 ·N (5.2.11)
n2

transfers = m4 +N ·N +m3 ·N +m2 ·m1 = 17234 + 300 ·N +N2 (5.2.12)
n3

transfers = m4 +m3 ·N +N ·N +m2 ·m1 = 17234 + 300 ·N +N2 (5.2.13)
n4

transfers = m4 +m3 ·N +m2 ·N +m1 ·N = 338 + 572 ·N (5.2.14)

where nitransfers indicates the number of transfers evaluated if the patch leg is
taken to be Leg i, and mj is the number of asteroids in the asteroid Group
j. Note that selecting the first leg as patch leg corresponds to conducting a
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complete backward multi-path search. Similarly, patch the searches in the last
leg is equivalent to a forward multi-path search. Another interesting observation
is that patching the searches in the second or third leg leads to the same number
of transfers evaluated. This is due to the even number of legs. The equations
above are illustrated in Figure 5.15.
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Figure 5.15: Number of GTOC2 transfers evaluated by the multi-path bi-
directional NNH as a function of the number of champions and the patch leg.

As expected, performing the backward multi-path search leads to a larger
number of transfers evaluated with respect to the forward multi-path search.
This can be seen in Figure 5.15 in the form of an offset between the Patch
Leg 1 (backward) and Patch Leg 4 (search) curves. The increase in number
of computations is mostly due to the fact that all Leg 4 transfers, which are
more numerous than all Leg 1 transfers, are evaluated. Moreover, the slope of
Patch Leg 1 is slightly larger than that of Patch Leg 4, as seen in Equations
(5.2.11) and (5.2.14). Unlike the other two curves, the relation between number
of champions and number of computed transfers is polynomial. This is visible in
Figure 5.15, as the plot of Patch Leg 2/3 describes a curve instead of a straight
line. This curve is consistently below the Patch Leg 1 curve, meaning that
patching the backward and forward searches is more computationally attractive
than the lone backward search. As previously established, performing the lone
forward search, i.e. patching the searches in Leg 4, is more computationally
attractive that patching the searchs in Leg 2 or 3 but the latter is expected to
yield more accurate results.

Since it is equivalent, from a computational effort perspective, to patch the
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forward and backward searches in the second or third leg, the choice between
these two possibilities should be based on a preliminary assessment of the quality
of the partial solutions found in each direction. This is done in Chapter 9.



Chapter 6

Arc Cost Optimization

As mentioned in Section 4.4, the dynamic GTOC2 problem is transformed into
a static SPP by replacing the dynamic arc costs by their optimal value, as
obtained in an a-priori optimization step.

After formulating the continuous optimization problem in Section 6.1, we
discuss the two optimization techniques used in the scope of the MSc Thesis
in Section 6.2: Grid Search (GS) and Differential Evolution (DE). Note that,
formally, these are not optimization techniques, given that they do not guarantee
the optimality of the solution. However, we will refer to them as such in the
sense that they return the best solution evaluated.

6.1 Problem Formulation
Optimization is a recurrent subject in most engineering fields. It can be defined
as the process of finding the values for a given number of variables that minimize
(or maximize) one or more objective functions while satisfying a given set of
constraints. Here, we aim at minimizing the arc costs between celestial bodies.
As a reminder, in Section 4.4, the cost functions were defined as:

wt,1(vi, ti, vi+1, ti+1) = ti+1 − ti
mi+1(vi, ti, vi+1, ti+1) (6.1.1)

wt,2(vi, ti, vi+1, ti+1) = 1
mi+1(vi, ti, vi+1, ti+1) (6.1.2)

with vi and vi+1 the departure and arrival bodies, respectively, ti and ti+1
the departure and arrival dates, respectively, and mi+1 the mass at arrival,
obtained with Equation (4.4.3). The departure and arrival bodies can be seen as
integer parameters which are constant in the scope of the arc cost optimization.
The departure and arrival dates are bound within certain intervals, which may
overlap. In order to avoid placing a constraint on the problem, namely that
ti+1 > ti, the arrival date is replaced by another variable, the time-of-flight, tf :

tf = ti+1 − ti (6.1.3)

Based on these considerations, new cost functions must be defined. Given
the departure and arrival bodies, the cost functions J to be optimized are defined

59
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as:

J1(ti, tf ) = tf
mi+1(vi, ti, vi+1, ti + tf ) (6.1.4)

J2(ti, tf ) = 1
mi+1(vi, ti, vi+1, ti + tf ) (6.1.5)

and the optimization problem, for a single leg, can be formulated as:

min Jk(ti, tf ) (6.1.6)

with k = {1, 2} and subject to:

ti ∈ [ti,min, ti,max] (6.1.7)
tf ∈ [tf,min, tf,max] (6.1.8)

where [ti,min, ti,max] is the departure window, and tf,min and tf,max are the min-
imum and maximum times-of-flight, respectively. It can be shown that the cost
functions from Equations (6.1.4) and (6.1.5) are continuous. The optimization
problem (6.1.6) can therefore be described as a box-constrained, continuous
problem. This has implications on the sort of optimization techniques needed
to solve it.

6.2 Optimization Techniques
The field of optimization is rather large and, due to developments to date in
computational mathematics and engineering, a very large number of optimiza-
tion techniques, with specific characteristics, have been developed. There are
two main categories of optimization techniques: analytical and numerical meth-
ods. Analytical methods are exact but may only be applied to relatively simple
and small problems [Gorter, 2009]. This makes analytical methods non-practical
when optimizing a complex problem such as GTOC2. Numerical methods on the
other hand are more powerful, despite the fact that they discretize the problem
and, as a result, are less accurate than analytical methods. The discretization
of the problems makes them ideally tailored for computer analysis. Given that
only a preliminary analysis of the GTOC2 problem is sought, numerical methods
seem to be well suited for the purpose of optimizing the arc costs.

Two different numerical optimization techniques were selected to perform
the arc cost minimization: GS and DE. GS was chosen due to its simplicity,
to serve as a milestone before implementing the second algorithm, DE. The
latter was selected among other evolutionary algorithms based on the results
of several benchmarking efforts (see [Secretin, 2011]) and bearing in mind the
requirements in terms of accuracy and computational cost.

6.2.1 Grid Search
GS is best described as an enumerative technique. The premise of enumera-
tive methods is rather simple: the search space is discretized to form a mesh
and the objective function is evaluated at each node of the mesh, i.e. at ev-
ery possible combination of the discrete variables. The accuracy of the result
and computational effort of the algorithm depends on the density of the mesh:
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typically, the denser the mesh, the more expensive and accurate the solution.
The dependence on the grid density also makes it impossible to guarantee the
optimality of the result as steep basins of attraction may be missed in between
mesh nodes. Although very thorough, enumerative techniques are not the most
efficient methods due to the cost of evaluating the entire search space. The
pseudo-code for GS, is shown in Figure 6.1.

Figure 6.1: Grid Search function generator [Gorter, 2009].

It is apparent in Figure 6.1 that GS is a very simple algorithm. This simplic-
ity is the major argument behind the choice to implement GS as a landmark,
precursor to the implementation of DE. However, due to difficulties in integrat-
ing DE within a reasonable timeframe, GS ended up having a major role in the
MSc Thesis, as the reader will see in Chapter 9.

Verification

GS was implemented in Tudat (see Chapter 8.1). To proceed with the verifica-
tion of the algorithm, it is applied to a common benchmark function, namely
Branin’s function [Myatt et al., 2004]:

f(x1, x2) = h+ a(x2 − bx2
1 + cx1 − d)2 + h(1− e) cosx1 (6.2.1)

where the parameters were set to a = 1, b = 5.1
4π2 , c = 5

π , d = 6, h = 10 and e =
1

8π . The boundary constraints are x1 ∈ [−5, 10], x2 ∈ [0, 15]. In these intervals,
Branin’s test function contains 3 global optima:

f(−π, 12.275) = f(π, 2.275) = f(9.42478, 2.475) = 0.397887

Branin’s function is illustrated in Figure 6.2.
In order to avoid the GS returning different optima as a function of the mesh

density, the bounds of x1 are restrained to [5,10] such that the only optimum
solution is: f(9.42478, 2.475) = 0.397887. The solutions found by GS, as a
function of the step-size of the mesh, are given in Table 6.1. The relative error,
ε, with respect to the true optimum is also given.

As expected, there is a general trend visible in Table 6.1: the denser the
mesh, the better the solution found. There are however a few exceptions. First,
for a step-size of 0.3 the function value is larger than the value found with
step-sizes of 0.1 and 0.5:

f0.1(9.40, 2.50) < f0.5(9.50, 2.50) < f0.3(9.50, 2.40)
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Figure 6.2: Branin’s global optimization test function [Myatt et al., 2004].

Table 6.1: Optimal solution of the restricted Branin function, obtained with
GS.

Step-size Number of nodes x1 x2 f ε [%]
0.01 752001 9.42 2.47 0.397998 0.028
0.03 84168 9.41 2.46 0.398942 0.265
0.05 30401 9.40 2.45 0.400852 0.745
0.10 7701 9.40 2.50 0.402934 1.269
0.30 918 9.50 2.40 0.444412 11.693
0.50 341 9.50 2.50 0.426576 7.210
1.00 96 9.00 2.00 1.270825 219.393
2.00 36 9.00 2.00 1.270825 219.393



6.2. OPTIMIZATION TECHNIQUES 63

This is due to the location of the grid points, which varies with the step-size:
with a step-size of 0.5, there is a grid point which is closer to the optimum than
with a step-size of 0.3. Second, the solution found with step-sizes of 1 and 2 is
the same:

f1(9, 2) = f2(9, 2)

The reason is that the node that is closest to the optimum is present in both
meshes. Note that for both step-sizes (1 and 2) the mesh is not dense enough
and leads to a solution with a relative error over 200 %. Opposite, a grid step-
size of 0.01 leads to a very accurate solution, as the relative error is about 0.02%.
Figure 6.3 allows to graphically visualize the impact of the accuracy achieved
on the algorithm complexity, as it plots the relative error of the solutions as a
function of number of grid points.
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Figure 6.3: Relative error of the Branin function value as a function of the
number grid points in a GS.

Based on Figure 6.3 and Table 6.1, an interesting compromise seems to be,
for the Branin function, a step-size of 0.05: while the relative error is still under
1%, the dimension of the problem is reduced by one order of magnitude with
respect to a step-size of 0.01. In this case, the ratio of the step-size to the length
of the largest variable interval, here x2 ∈ [0, 15], is 0.003. The ratio to the length
of the smallest interval, x1 ∈ [5, 10], is 0.01.

Using Branin’s function, it was shown that the implemented GS is functional
and capable of finding solutions with high accuracy, provided the mesh is suffi-
ciently dense. A sensitivity analysis is carried out hereafter to obtain relevant
step-sizes for optimizing GTOC2 transfers.
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Sensitivity Analysis

In order to determine the adequate GS parameters when optimizing the GTOC2
transfers, a sensitivity analysis is performed on the step-sizes for the departure
date and time-of-flight. The test case is the Earth - 2002062 transfer. The
cost function is the ∆V of the corresponding Lambert arc (see Chapter 7). The
departure window is the original GTOC2 departure window: 2015 - 2035. The
minimum and maximum times-of-flight are set to 10 and 610 days. The following
departure date step-sizes were analyzed: 5, 10, 15, 20, 25, and 30 days. For the
time-of-flight, integer values between 1 and 20 days were considered. The best
solution found, as a function of the mesh density, is illustrated in Figure 6.4, in
the form of a heat map. The number of grid points as a function of the step-size
of both problem parameters is given in Figure 6.5.
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Figure 6.4: Best Earth - 2002062 transfer found as a function of the GS mesh
density.

Figure 6.4 shows that the solution quality is quite sensitive to the step-size of
both parameters: while a combination of small step-sizes seems to consistently
produce good results, situations occur, for larger step-sizes, where increasing
either step-size leads to a better solution. This situation was already observed
in Table 6.1, where increasing the step-size from 0.3 to 0.5 led to a lower Branin
function value. The epitome of the lack of correlation between decreasing mesh
density and decreasing solution quality is the solution found with a departure
step-size of 15 days and a time-of-flight step-size of 19 days: increasing either
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(or both) step-sizes leads to a better solution1. Another example is the fact that
the worst solution found (19,30) is not located at the bounds of both intervals.

It is therefore interesting to focus on the area, with small step-sizes, where
the solution quality is nearly constant. The bounds of said region are [1,9]
and [5,10] for the time-of-flight and departure date step-sizes, respectively. Let
us refer to this area as the stable area. Looking at Figure 6.5, one can see
that there is, as expected, a correlation between the density of the mesh and
computational effort needed by GS to solve a problem. Therefore, the step-sizes
of GS should be located within the stable area but at the intersection which
yields the less number of grid points. Looking at Figure 6.5, this corresponds to
a 9 days step-size for the time-of-flight and a 10 days step-size for the departure
date.

In practice, the results from Chapter 9 were obtained with a step-size of 10
days for both parameters. For the Earth - 2002062 transfer, this corresponds
to a degradation of less than 1% in the minimum ∆V found and a decrease in
computational effort of 95% with respect to the best solution found. Note that,
although it was not implemented in the scope of the MSc Thesis, it is common
practice to restart GS after each iteration, on a smaller search space centered
around the best solution, until a given accuracy in the real-values variables is
reached.

1With the exception of (19,30).
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6.2.2 Differential Evolution
Differential Evolution (DE) is a relatively recent algorithm proposed in the mid-
1990s by [Storn and Price, 1995]. DE is an evolutionary algorithm, designed
to solve optimization problems over continuous domains [Coello et al., 2006].
In evolutionary algorithms, a solution to the objective function, i.e. a set of
objective function variables, is referred to as an individual. A set of individuals
constitutes a population.

The first step of the DE is the random initialization of the population within
the possible variable bounds. Each individual is a vector containing real values
corresponding to the objective function variables. After initialization of the pop-
ulation, three Evolutionary Operators (EvOps) are applied. The first, referred
to as mutation, is in fact the combination of three randomly chosen individuals:
the first individual, x0,g, is the base individual to which the vector difference
of the remaining individuals, x1,g and x2,g, is added to create a mutant vector,
vi,g. The process is depicted in Figure 6.6 and can be mathematically expressed
as [Price et al., 2005]:

vi,g = x0,g + F · (x1,g − x2,g) (6.2.2)

where F is a scale factor that controls the rate at which the population evolves
and the index g indicates the generation. A mutant vector is created for every
target individual, xi,g.

Figure 6.6: Differential mutation [Price et al., 2005].

Following the creation of a mutant vector, DE employs a technique referred
to as uniform crossover. Here, the target individual and mutant vector are
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crossed to create a trial vector, ui,g. The trial vector is built according to [Price
et al., 2005]:

ui,g = uj,i,g =
{
vj,i,g if randj(0, 1) ≤ Cr or j = jrand

xj,i,g otherwise
(6.2.3)

where the crossover probability, Cr, is user-defined, the index j denotes the
different parameters within the individuals and jrand is a randomly generated
index to ensure that the trial vector is not a replica of the target vector. The
difference between the target vector, xi,g, the mutant vector, vi,g, and the trial
vector, ui,g, can be seen, with a slightly different notation, in Figure 6.7.

Figure 6.7: The crossover process [Storn and Price, 1995].

Once the trial vector has been generated, its objective function value, f(ui,g)
is compared against that of the target vector and the individual yielding the best
objective function value is retained for the next generation [Price et al., 2005]:

xi,g+1 =
{

ui,g if f(ui,g) ≤ f(xi,g)
xi,g otherwise

(6.2.4)

This step is referred to as selection. Once a complete new population is installed,
the mutation, recombination, selection process is repeated until a convergence
criterion is met or a maximum user-defined number of generations is reached.
Note that there are different variants of the DE, namely in terms of the type
of mutation and recombination EvOps. The one described above is the original
DE1 defined by [Storn and Price, 1995].

One should note that increasing the size of the DE population or the number
of pairs in the mutation process increases the diversity of possible movements,
promoting a more extensive exploration of the space search. On the other hand,
the probability of finding the correct search directions decreases considerably.
The equilibrium between the population size and the number of vector differ-
ences therefore determines the efficiency of the algorithm [Coello et al., 2006].
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Self-Adaptive Control Parameters

One significant improvement to DE comes from the concept of self-adaptive
control parameters [Izzo, 2011]. The idea behind self-adaptive control parame-
ters for DE is that the variables that control the EvOps, namely the cross-over
probability, Cr, and the scale factor, F, are encoded into the individuals and
are subjected to the actions of the EvOps. In this fashion, the better values
of the control parameters lead to better individuals, which are more likely to
survive and hence propagate these attractive parameter values. The equations
and parameter values given below are, unless mentioned otherwise, taken from
[Brest et al., 2006].

The scale factor, which governs the mutation process, is updated, for each
target individual, xi,g, according to:

Fi,g+1 =
{
Fl + rand(0, 1) · Fu, if rand(0, 1) < τ1

Fi,g, otherwise
(6.2.5)

while the crossover probability is modified according to:

Cr,i,g+1 =
{
rand(0, 1), if rand(0, 1) < τ2

Cr,i,g, otherwise
(6.2.6)

Equations (6.2.5) and (6.2.6) introduce four new parameters: Fl, Fu, τ1 and τ2.
The last two can be set to τ1 = τ2 = 0.1. Defining Fl = 0.1 and Fu = 0.9, allows
the scale factor to take a real value from [0.1, 1.0]. The crossover probability is
bound within [0, 1].

The new control parameters are computed before mutation occurs and there-
fore influence the three EvOps: mutation, crossover and selection. In a DE
algorithm with self-adaptive control parameters, Equations (6.2.2) and (6.2.3)
take the form:

vi,g = x0,g + Fi,g+1 · (x1,g − x2,g) (6.2.7)

ui,g = uj,i,g =
{
vj,i,g if randj(0, 1) ≤ Cr,i,g+1 or j = jrand

xj,i,g otherwise
(6.2.8)

With this self-adaptive variant of DE, there is no need to guess good values
for the control parameters, which are usually problem dependent, making the
optimization process more robust. The modifications necessary are rather simple
and therefore there is no increase in the time complexity of the algorithm.

Verification

Given that DE is a rather well-known optimization heuristic, there are a number
of readily available implementations. The choice is therefore made to make use
of an external software package rather than implementing DE from scratch.
The software package selected is Parallel Global Multi-objective Optimization
(PaGMO) [Biscani et al., 2010]. This choice is driven by three important factors.
First, this implementation has been tested and validated for a number of space
mission scenarios. Second, making use of the PaGMO library allows to (almost)
effortlessly switch between the other available optimization algorithms. Third,
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the same choice was made by the Tudat Management Team (see Chapter 8.1)
and therefore the efforts of integration of PaGMO with Tudat were divided
among several students rather than relying on the shoulders of the author alone.

However, numerous and obscure2 obstacles were encountered when attempt-
ing to interface Tudat and PaGMO. These difficulties, coupled with time con-
straints imposed by a conference paper ([Secretin and Noomen, 2012]), led to
the late introduction of DE into the MSc Thesis. At that point, a wealth of
results had already been obtained with GS. As a result, the verification of the
DE algorithm from PaGMO was carried out by comparison with said results.
More specifically, the results obtained for the first leg of the GTOC2 problem.

The benchmark data consists of the best Earth - Group 4 asteroids (Leg
1) transfers obtained with GS. The departure window from Earth was taken to
be the original GTOC2 interval: January 1st 2015 to December 31st 2035. The
minimum and maximum times-of-flight were set to 10 and 610 days, respectively.
The step-size of the grid search was taken to 10 days for both variables. With
respect to DE, use was made of the self-adaptive variant, de_self_adaptive,
available in PaGMO. The population of a 100 individuals was evolved for 50
generations. The top-10 Leg 1 transfers found with both DE and GS are given
in Table 6.2.

Table 6.2 shows that the solutions found by the self-adaptive DE are rather
similar to the benchmark data obtained with GS. The ranking of the top-ten
transfers is preserved, with the exception of asteroid 3167367 which climbs one
place from the GS (8th) to the DE ranking (7th). This can be explained by the
fact that the ∆V returned by GS for the Earth - 3167367 transfer is larger than
the one found by DE. Table 6.3 lists the difference in parameter and objective
function values between the best solution found by both algorithms for each of
the top-ten transfers.

Table 6.3 shows that the differences between the parameters of the best
solutions found are all, with one (noteworthy) exception, within 10 days (the
step-size of GS3) of each other. One can therefore state that the best solutions
found by DE are very similar to those found with GS. This similarity is also
observable in the objective function value, the largest difference being in ∆V
being 22.79 m/s for the Earth - 3167367 transfer, which corresponds to an
improvement of merely 0.7%. Note that this is the transfer that rose one place
in the DE ranking.

With respect to the previously mentioned exception, the departure date of
the best Earth - 3042555 transfer found by DE is about 7 years earlier than the
best GS solution. However, given that the transfer duration and ∆V budget
of both solutions are relatively similar, it is hypothesized that this corresponds
to the synodic period of both bodies. The synodic period is defined as the
time interval between the repetition of a particular relative orbit geometry be-
tween celestial bodies [Kemble, 2010]. Assuming circular, co-planar orbits4, the
synodic period, τ , is computed according to [Kemble, 2010]:

τ = 360
360
T1
− 360

T2

(6.2.9)

2To the author, that is.
3Bear in mind that higher accuracy for GS could have been achieved by “zooming in” on

the grid point of lowest cost function value.
4The eccentricity of asteroid 3042555 is e3042555 = 0.11212565 and its inclination is

i3042555 = 2.8299469◦.
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Table 6.2: The top-ten Leg 1 transfers found by GS and self-adaptive DE.

Grid Search
Rank Asteroid Departure Date [JD] Time-of-flight [days] ∆V [m/s]
1 3042555 2461944.0 310.0 2187.94
2 3250293 2462194.0 280.0 2290.85
3 3017309 2461074.0 170.0 2390.14
4 3024030 2461824.0 270.0 2621.51
5 3054338 2463974.0 250.0 2692.80
6 3293922 2459474.0 210.0 2707.18
7 3261681 2460744.0 280.0 3051.47
8 3167367 2460604.0 170.0 3074.55
9 3070801 2459084.0 270.0 3092.74
10 3156302 2460954.0 240.0 3226.06

Self-adaptive DE
Rank Asteroid Departure Date [JD] Time-of-flight [days] ∆V [m/s]
1 3042555 2459379.4 311.4 2175.87
2 3250293 2462197.5 277.6 2287.21
3 3017309 2461073.8 175.1 2383.57
4 3024030 2461817.7 273.3 2613.28
5 3054338 2463972.3 252.2 2697.10
6 3293922 2459470.9 207.1 2697.53
7 3167367 2460601.1 171.1 3051.76
8 3261681 2460743.0 284.4 3056.91
9 3070801 2459080.7 269.2 3076.09
10 3156302 2460958.6 236.0 3229.73

Table 6.3: Difference in parameter and objective function values between GS
and DE top-ten Leg 1 transfers. The departure date is denoted td.

Asteroid td,DE − td,GS [days] tf,DE − tf,GS [days] ∆VDE −∆VGS [m/s]
3042555 -2564.6 1.4 -12.07
3250293 3.5 -2.4 -3.64
3017309 -0.2 5.1 -6.57
3024030 -6.3 3.3 -8.23
3054338 -1.7 2.2 4.3
3293922 -3.1 -2.9 -9.65
3261681 -1.0 4.4 5.44
3167367 -2.9 1.1 -22.79
3070801 -3.3 -0.8 -16.65
3156302 4.6 -4.0 3.67
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where T 1 and T2 are the orbital periods of bodies, given by [Wakker, 2007a]:

T = 2π

√
a3

µ
(6.2.10)

with a denoting the semi-major axis and µ the central body gravitational pa-
rameter. Using Equations (6.2.9) and (6.2.10), the synodic period of the Earth
and asteroid 3042555 is 2600 days which is about the same value as the differ-
ence in departure dates seen in Table 6.3. Hence, the solutions returned by DE
and GS for the best Earth - 3042555 are in fact (nearly) the same.

Table 6.3 suggests that the solutions found by DE are generally better, i.e.
have a lower ∆V , than those found with GS. This is however not the case if
one looks at Figure 6.8, where the difference in cost function, computed as
δ = ∆VDE −∆VGS , is shown for all 338 Leg 1 transfers. Similar plots, for the
departure date and time-of-flight, can be found in Appendix B.1.

Figure 6.8: Difference in ∆V between the best Leg 1 transfers found by DE
(with 100 individuals and 50 generations) and GS.

In Figure 6.8, the positive part of the difference spectrum is more densely
populated than the negative part, meaning that a majority of transfers have a
better cost function when optimized with GS. Coherently, the largest outliers
can be found on the positive side of the ordinates axis: while the maximum
improvement in cost function is about 200 m/s, the largest degradation is ap-
proximately 550 m/s. Note however that a majority of data points are within
±50 m/s, meaning that, overall, there is a relatively small degradation of the
results when DE is used instead of GS. This is confirmed when looking at the
Root Mean Square (RMS) value of all Leg 1 transfers for each optimizer:

∆V GSLeg1,RMS = 11821.35 m/s (6.2.11)
∆V DE,50,100

Leg1,RMS = 11863.29 m/s (6.2.12)
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Taking the difference between both values, the objective function values found
with DE are on average 41.94 m/s larger than with GS. This seems to hint at
the fact that the DE parameters used are not stringent enough to yield overall
better results than GS.

Besides the quality of the solutions returned, the computational time needed
by both algorithms to optimize all 338 Leg 1 transfers can also be compared.
Doing so reveals that, with the control parameters described earlier5, DE is 7
times faster than GS: GS needed 184 seconds to optimize all Leg 1 transfers
while it took DE only 26 seconds.

Optimizing the Leg 1 transfers with the selected DE implementation shows
that the algorithm is functional. Moreover, the analysis above reveals that the
selected GS step-size results in relatively good solutions when compared with
DE. With these control parameters, replacing GS with a self-adaptive DE allows
to considerably reduce the computational effort needed to solve the benchmark
problem. Despite the considerable reduction in computational effort, there is
only a relatively small degradation of the solution quality.

Sensitivity Analysis

We have seen in the previous section that with a population of 100 individu-
als updated for 50 generations, the results found with DE are, overall, worse
than with GS. In order to identify the most interesting combination of DE
parameters, a sensitivity analysis is performed on the influence of the num-
bers of individuals and generations on the quality of the solutions. The same
test case as for GS is taken, namely the Earth - 2002062 transfer with the
2015-2035 departure window and the time-of-flight bound between 10 and 610
days. The cost function is also the same, i.e. the ∆V of the corresponding
Lambert arc. The numbers of individuals and generations take a value from
{50, 100, 150, 200, 250, 300, 350, 400, 450, 500}. Figure 6.9 gives the minimum
∆V found as a function of both parameters as a heat map. In similar for-
mat, the number of transfers evaluated, which is a metric of the computational
effort, for the different combinations of the DE parameters is given in Figure
6.10.

It is interesting to note that, for the Earth - 2002062 transfer illustrated in
Figure 6.9, the quality of the solution is independent of the parameters, as long
as the number of generations is larger than 100. In these scenarii, the minimum
∆V is the same: 9922.62 m/s. This suggests that this value is very close or equal
to the problem optimum: the solution does not improve past this value, either
because it represents the true optimum or because the convergence criterion
regarding the maximum number of generations without fitness improvement is
reached. For 100 generations, the solution quality is the same for populations
with more than 50 individuals and is equal to the solution found with larger
numbers of generation. For 50 generations, the solution quality is highly sensi-
tive to the number of individuals, although a larger number of individuals does
not necessarily guarantee a better solution. This fact can be attributed to the
population initialization, whose initial average fitness is random. The number

5As a reminder, DE was executed for 50 generations of a population with 100 individuals,
while the step-size of the GS mesh was set to 10 days for both the departure date and time-
of-flight.
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Minimum ∆ V for the Earth − 2002062 Transfer [km/s]
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Figure 6.9: Best Earth - 2002062 transfer found as a function of the DE pa-
rameters.
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of generations (50) is too limited to allow the algorithm to consistently converge
towards the optimum.

Figure 6.10 shows that increasing the number of generations and/or indi-
viduals leads to an increase in the (theoretical) computational effort needed to
solve the problem. Combining this information with the one extracted from Fig-
ure 6.9, it would seem that the best trade-off between computational effort and
solution fidelity comes from having a 50 individuals population evolve for 150
generations. With these parameters, all Leg 1 transfers are computed within
35 seconds, which is 5 times faster than GS. The difference in cost function,
computed in the same fashion as in Figure 6.8, is shown for all the 338 Leg
1 transfers in Figure 6.11. Again, similar plots, for the departure date and
time-of-flight, can be found in Appendix B.1.

Figure 6.11: Difference in ∆V between the best Leg 1 transfers found by DE
(with 50 individuals and 150 generations) and GS.

The difference between Figures 6.8 and 6.11 is striking. Despite a larger
positive outlier (+650 m/s), the “center of mass” of the graph is now in the
negative part of the difference spectrum, meaning that, overall, the objective
function values found by DE are now better than those found with GS. The num-
ber of positive differences (which represent transfers that yielded lower function
values with GS than DE) has considerably diminished and only three of those
are larger than +200 m/s. Finally, the magnitude of the largest objective func-
tion improvement reaches -450 m/s. This progress in solution quality can also
be seen when comparing the RMS value of all Leg 1 transfers:

∆V GSLeg1,RMS = 11821.35 m/s (6.2.13)
∆V DE,150,50

Leg1,RMS = 11790.78 m/s (6.2.14)

With the selected parameters, the objective function values found with DE are
on average 30.56 m/s better than with GS.
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The sensitivity analysis shows that replacing GS with a self-adaptive DE
evolving a population of 50 individuals for 150 generations leads to an overall
improvement of the solutions while being approximately five times faster.
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Chapter 7

Lambert Problem

Having formulated the continuous optimization problem in the previous chapter,
we now turn towards the mathematics behind the cost functions J1 and J2.
Based on Tsiolkowski’s law, maximization of the final mass is equivalent to
minimization of the total ∆V . The way in which this ∆V is obtained can vary
as seen in Chapter 3. For the purposes of the MSc Thesis, we take the ∆V
budget to be the result of a bi-impulsive, high-thrust transfer modelled as a
Lambert arc.

Following the description of the generic Lambert problem in Section 7.1, the
Lagrange-Gauss approach to solving it is detailed in Section 7.2. Thereafter we
elaborate, in Section 7.3, on the modifications proposed by Dr. Dario Izzo from
ESA/ACT. Finally, the newly implemented algorithm is tested and compared
against another Lambert routine in Section 7.4.

7.1 General Description
The Lambert Problem, also referred to in literature as the orbital boundary-
value problem, is named after the first mathematician that found its solution.
The problem can be described as determining the conic section connecting two
points in space, described by their position vectors r1 and r2, in a specified
time-of-flight, tspec.

Introducing the time parameter into the equation allows to solve an essential
aspect of rendezvous missions: the phasing. It not enough to reach the orbit of
a given body; that body must be at certain point along its trajectory, namely
at the point of insertion, i.e. the point where the transfer and target orbits
intersect. Another phasing aspect which must be taken into consideration when
solving consecutive Lambert Problems is that of the sequence of asteroids. The
departure time from one asteroid must occur after the arrival time at that as-
teroid. More specifically, when considering the asteroid-to-asteroid trajectories
in the GTOC2 problem, the departure must occur at least 90 days after arrival.

The geometry of the Lambert Problem, assuming an elliptical transfer orbit,
is shown in Figure 7.1. The initial and final positions are defined by their
respective position vectors, r1 and r2, the angle between them is denoted θ and
the Euclidean distance between them is named the chord, c. Lambert showed
that the solution to the Lambert Problem is only a function of the semi-major

77
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Figure 7.1: Geometry of the Lambert Problem. [Kemble, 2010]

axis, a, the sum of the distances, r1 + r2, and the chord, c, in what is called the
Lambert Theorem: √

µ(t2 − t1) = F (a, r1 + r2, c) (7.1.1)

Since the radii and time-of-flight are given, and that the chord can be easily
derived from the Law of Cosines:

c2 = r2
1 + r2

2 − 2r1r2 cos θ (7.1.2)

the Lambert problem is that of finding a satisfying Equation (7.1.1).
Note that the angle θ in Figure 7.1 depicts the smallest angle between both

position vectors. In any geometry, the two position vectors define two com-
plementary transfer angles: θ and θ′ = 2π − θ. These two angles yield two
different transfers: the long-way (that corresponds to the largest transfer angle)
and the short-way (associated with the smallest transfer angle). It is impor-
tant to differentiate both situations as they will yield different conics due to the
time-of-flight constraint. Also, bear in mind that the situation depicted in Fig-
ure 7.1 represents an elliptical solution; very short time constraints may yield
a hyperbolic transfer orbit instead. Finally, multi-revolution scenarios, where
the spacecraft completes one revolution or more along the transfer orbit before
intercepting the target, can be considered, although this situation will likely not
be considered in the subsequent MSc Thesis.

More than the conic section itself, we are interested in the velocity vectors
along that orbit at the initial and final positions. For a complete discussion
on the Lambert Problem, its different solutions and their characteristics, please
refer to [Battin, 1999]. Here we will focus on the method developed by Dr.
Dario Izzo from ESA/ACT, which can be seen as an improvement upon the
Lagrange-Gauss method.

7.2 The Lagrange-Gauss Equations
In this section, the method upon which Izzo’s algorithm is based is described.
This method uses both Lagrange and Gauss equations and makes extensive use
of different trigonometric identities, which are gathered in Appendix A. This
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section is, unless mentioned otherwise, based on [Battin, 1999] and the reader is
referred to that literature for a more comprehensive discussion of this method.

The Time-Of-Flight Equation

It can be shown that the time-of-flight, tf , along the ellipse between the initial
and final position, defined by r1 and r2, respectively, in Figure 7.1, is given by:

tf = t2 − t1 =

√
a3

µ
[E2 − E1 − e(sinE2 − sinE1)] (7.2.1)

where a is the semi-major axis of the ellipse, µ the gravitational parameter of
the central body, e the eccentricity of the ellipse and E the eccentric anomaly
of either the departure or the arrival body, according to the index. Using the
trigonometric identity (A.6.2), the previous equation can be re-written as:

tf = 2

√
a3

µ

[
1
2(E2 − E1)− e sin 1

2(E2 − E1) cos 1
2(E2 + E1)

]
Introducing the parameters ψ and φ, defined as:

ψ = 1
2(E2 − E1) cosφ = e cos 1

2(E2 + E1) (7.2.2)

leads to

tf = 2

√
a3

µ
(ψ − sinψ cosφ) (7.2.3)

From the properties of a conic, we obtain:

r cos f = a cosE − ae = a(cosE − e)

r sin f = a
√

1− e2 sinE

where f is the true anomaly. A different notation for the true anomaly was
adopted to avoid confusions with the transfer angle, θ: θ = f2 − f1. The new
notation is illustrated in Figure 7.2.

These two equations combined yield:

r = a(1− e cosE) (7.2.4)

This equation can be used to compute the sum of radii:

r1 + r2 = a(1− e cosE1) + a(1− e cosE2) = 2a− ae(cosE1 + cosE2)

Using the trigonometric identity (A.6.3) and substituting for ψ and φ:

r1 + r2 = 2a(1− cosφ cosψ) (7.2.5)

Let us now take a look at the chord, which was defined in Equation (7.1.2):

c2 = r2
1 + r2

2 − 2r1r2 cos θ = (r1 + r2)2 − 2r1r2(1 + cos θ)



80 CHAPTER 7. LAMBERT PROBLEM

Figure 7.2: The new angular notation.

Trigonometrical manipulation, by the use of the trigonometric identity (A.4.1),
results in the following expression:

c2 = (r1 + r2)2 − 4r1r2 cos2 1
2θ (7.2.6)

Now, it can be shown that the following holds:

√
r1r2 cos 1

2θ = a(cosψ − cosφ) (7.2.7)

Substituting Equations (7.2.5) and (7.2.7) into Equation (7.2.6) yields:

c2 = 4a2 sin2 φ sin2 ψ

The equation for the chord as a function of ψ and φ simply follows:

c = 2a sinφ sinψ (7.2.8)

Let s be the semi-perimeter of the triangle defined by the primary focus of
the ellipse and the initial and final positions, visible in Figure 7.1. Intuitively,
we derive the following equation for the semi-perimeter:

s = r1 + r2 + c

2 (7.2.9)

Combining Equations (7.2.5) and (7.2.8) with Equation (7.2.9) and making use
of the trigonometric identities (A.3.3) and (A.3.4), we can derive the following
quantities:

2s = r1 + r2 + c = 2a [1− cos(φ+ ψ)]
2(s− c) = r1 + r2 − c = 2a [1− cos(φ− ψ)]
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Introducing two auxiliary variables, α and β, defined as:

α = φ+ ψ β = φ− ψ (7.2.10)

these quantities can be expressed as:

s

2a = 1
2(1− cosα)

s− c
2a = 1

2(1− cosβ)

Using the trigonometric identity (A.4.2), we obtain:

s

2a = sin2 1
2α (7.2.11)

s− c
2a = sin2 1

2β (7.2.12)

Taking a step back to the time-of-flight formulation in Equation (7.2.3), we
can replace ψ and φ by the new auxiliary variables, α and β. From Equation
(7.2.10), the expressions for ψ and φ can be derived :

ψ = 1
2(α− β) φ = 1

2(α+ β) (7.2.13)

These expressions lead to the following equation:

tf = 2

√
a3

µ

[
1
2(α− β)− sin 1

2(α− β) cos 1
2(α+ β)

]
Using yet another trigonometric identity, namely (A.5.1), we obtain what is
commonly referred to as the Lagrange expression for the time-of-flight equation:

tf =

√
a3

µ
[(α− sinα)− (β − sin β)] (7.2.14)

The derivation of the Lagrange expression for the time-of-flight for the hyperbola
is quite similar, but use is made of hyperbolic trigonometric functions instead.
Note that the only unknown, for a given geometry, in Equation (7.2.14), is
the semi-major axis, a. Indeed, the parameters α and β can be expressed in
terms of a, c and s (Equations (7.2.11) and (7.2.12), respectively), the last two
being constant for a given geometry (Equations (7.2.8) and (7.2.9), respectively).
However, it can be shown that a is not convenient variable to solve the time-of-
flight equation, for two reasons. First, the time-of-flight equation is a double-
valued function of a, meaning that a single value for the semi-major axis yields
two different solutions for the time-of-flight. Second, the derivative of the time-
of-flight with respect to the semi-major axis is a rather complex function with
a singularity. It is therefore more appropriate to express Equation (7.2.14) as a
function of another variable, x:

x = cos 1
2α (7.2.15)
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Combining Equations (7.2.15) and (7.2.11) and making use of the trigonometric
identity (A.2.1) leads to a more insightful expression for x:

x2 = 1− s

2a = 1− am
a

(7.2.16)

where
am = s/2 (7.2.17)

is the semi-major axis of the minimum energy ellipse. Given Equation (7.2.16),
we can determine the shape of the orbit based on the value of x, as we would
have done with the semi-major axis:

a > 0 elliptic orbit −1 < x < 1
a =∞ parabolic orbit x = 1
a < 0 hyperbolic orbit x > 1

For a given x, the time-of-flight can be determined by reconstructing its different
parameters. The semi-major axis, a, can be expressed as:

a = am
1− x2 (7.2.18)

From this definition, which derives from Equation (7.2.16), one can see that the
sign of a, and therefore the shape of the conic, depends on the value of x. If
x < 1, the orbit is an ellipse and the shape-dependent parameters of Equation
(7.2.14) are:

α = 2 arccosx (7.2.19)

β = ±2 arcsin
(√

s− c
2a

)
(7.2.20)

Equations (7.2.19) and (7.2.20) derive from Equations (7.2.15) and (7.2.12),
respectively. In case the value of x is larger than 1, the orbit is a hyperbola and
the α and β parameters are obtained via the hyperbolic trigonometric functions:

α = 2 cosh−1 x (7.2.21)

β = ±2 sinh−1
(√

s− c
−2a

)
(7.2.22)

and the time-of-flight equation must be modified to accommodate these hyper-
bolic trigonometric functions:

tf =

√
−a3

µ
[(sinhα− α)− (sinh β − β)] (7.2.23)

Note that the ± signs in the definition of β account for either the short or
the long-way solutions: the + sign is used for the short-way and the - sign
for the long-way solution. Given that spacecraft motion typically occurs in
the counter-clockwise direction1, both short and long-way solutions are valid
options, depending on the relative position of the initial and final points.

1Traveling in the counter-clockwise direction allows to benefit from the motion of the Earth
at launch.
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Terminal Velocities

As mentioned earlier, beyond the ellipse connecting the departure and arrival
points in the give time-of-flight, we are interested in knowing the velocity vectors
along that ellipse at those two points, V1 and V2 respectively. Let us start by
establishing the expression for V2 as function of V1.

Note that any velocity vector, V, can be decomposed in its radial, Vr, and
tangential, Vθ, components:

V = Vr · ir + Vθ · iθ (7.2.24)

where ir and iθ are the radial and tangential unit vectors, respectively. The ve-
locity decomposition in radial and tangential components for both the departure
and arrival velocities is illustrated in Figure 7.3.

Figure 7.3: Radial and tangential components of the velocity vectors along an
ellipse. Note that the radial components are negative in the situation depicted
above.

When the velocity formulation assumes this form, the equation for the an-
gular momentum, H, which is constant along a given conic, becomes:

H = r×V = r · ir × (Vr · ir + Vθ · iθ) = rVθ · ih = constant

where ih is the angular momentum unit vector. This leads to the following,
simple relation between the initial and final tangential velocities:

H = constant = r1Vθ1 = r2Vθ2 (7.2.25)

which is equivalent to:
Vθ2 = r1Vθ1

r2
(7.2.26)
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The relation between the initial and final radial velocity components is more
complex to obtain. The hodograph analysis of a Keplerian orbit reveals that:

Vr = dr

dt
= r ·V

r
=
√
µσ

r
= He

p
sin f (7.2.27)

where p is the semi-latus rectum and the parameter σ = r ·V/√µ is introduced.
It can be shown that

H2/µ = p (7.2.28)

Bearing in mind Equation (7.2.28) and that, with the notation at hand, θ =
f2 − f1, the sum of the radial velocity components is:

Vr1 + Vr2 = He

p
[sin f1 + sin(f1 + θ)]

Applying the trigonometric identities (A.5.1) and (A.1.2)

Vr1 + Vr2 = 2He
p

sin(f1 + 1
2θ) cos 1

2θ = 2He
p

sin(f1 + 1
2θ) sin 1

2θ cot 1
2θ

followed by a third trigonometric identity, namely (A.5.4), leads to

Vr1 + Vr2 = H

p
[e cos f1 − e cos(f1 + θ)] cot 1

2θ

Combining this equation with the equation of the conic

r = p

1 + e cos f (7.2.29)

yields

Vr1 + Vr2 =
[
H

r1
− H

r2

]
cot 1

2θ

Finally, substitution of Equation (7.2.25) gives

Vr1 + Vr2 = Vθ1 − Vθ2
tan 1

2θ

Therefore, the radial and tangential components of V2 can be expressed as
functions of the initial velocity components:

Vr2 = Vθ1 − Vθ2
tan 1

2θ
− Vr1 (7.2.30)

Vθ2 = r1Vθ1
r2

(7.2.31)

We now must derive a formulation for the initial velocity vector as a function
of the solution x. Substituting Equations (7.2.27), (7.2.25) and (7.2.28) into
Equation (7.2.24), we obtain the following expression:

V1 =
√
µσ1

r1
· ir1 +

√
µp

r1
· iθ1 =

√
µ

r1
[σ1 · ir1 +√p · iθ1] (7.2.32)
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We must therefore find expressions for the semi-latus rectum, p, and for the σ
parameter. It can be shown that:

p =
2r1r2 sin2 1

2θ

r1 + r2 − 2√r1r2 cos 1
2θ cosψ

Substituting Equations (7.2.5) and (7.2.7) and applying the trigonometric iden-
tity (A.2.1) results in the more convenient form:

p =
r1r2 sin2 1

2θ

a sin2 ψ

Introducing the parameter η, defined as:

η =
√
±2a sin2 ψ

s
(7.2.33)

where the same rule applies to the ± sign as that of the definition of β, and
keeping in mind the definition of am from Equation (7.2.17), the equation for
the semi-latus rectum becomes:

p = r1r2

amη2 sin2 1
2θ (7.2.34)

With respect to the parameter σ, it can be shown that:

σ1√
p

sin 1
2θ = cos 1

2θ −
√
r1

r2
cosψ

which, combined with Equation (7.2.34), is equivalent to:

σ1 =
√
r1r2√
amη

[
cos 1

2θ −
√
r1

r2
cosψ

]
(7.2.35)

Let λ be defined as:
λs = √r1r2 cos 1

2θ (7.2.36)

It can be shown that:
cosψ = λ+ xη (7.2.37)

Substitution of Equations (7.2.36) and (7.2.37) into Equation (7.2.35) yields:

σ1 = 1
η
√
am

[2λam − r1(λ+ xη)] (7.2.38)

Therefore, the radial and tangential components can be expressed as:

Vr1 = 1
η

√
µ

am
2λam

r1
− (λ+ xη) (7.2.39)

Vθ1 = 1
η

√
µ

am

√
r2

r1
sin 1

2θ (7.2.40)

and the initial velocity along the orbit corresponding to the solution x can be
written as:

V1 = 1
η

√
µ

am

{[
2λam

r1
− (λ+ xη)

]
· ir1 +

√
r2

r1
sin 1

2θ · iθ1
}

(7.2.41)
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The derivations above are the mathematical description of the Lambert prob-
lem according to the Lagrange-Gauss equations. We will now proceed to de-
scribing an efficient method to solve these equations, more specifically Equations
(7.2.14) and (7.2.23).

7.3 Izzo’s Algorithm
In the scope of the Global Trajectory Optimization Problem (GTOP) database
[ACT, 2011], Izzo developed a computationally fast Lambert Solver. This solver
is based upon the Lagrange-Gauss solution to the problem, as described in
the previous section. His approach has two major advantages with respect to
other methods. First, the algorithm describes the general solution of the orbital
boundary-value problem in terms of the variable

x0 = log
(

1 + cos(α2 )
)

(7.3.1)

which turns the graph of the time-of-flight into a straight line defined over the
entire real space. As a result, convergence is granted in only a few iterations,
independent of the problem configuration. This can be seen in Figure 7.4. Note
the offset in the x-transformation, motivated by the fact that the logarithmic
function is only defined for positive values. Also, note that the reduced number
of iterations comes at the “price” of applying the logarithmic function, log.
Second, once the shape of the orbit is determined, the velocities along that
orbit at the initial and final points are computed in such a way that they do not
show singularities for transfer angles approaching π. Furthermore, Izzo designed
his algorithm to work with non-dimensional units, for computational purposes.
Although no paper explaining this method was found, the algorithm described
below is publicly available in its C++ and Matlab implementations at [ACT,
2011].

7.3.1 Method
Given the vectors of the initial and final positions, r1 and r2 respectively, the
specified time of flight, t, and the gravitational constant of the central body, µ,
one can determine the solution to the Lambert problem, as seen in the previous
section. Note that an additional parameter is needed to specify which of the
two configurations, short or long-way, to consider. Izzo’s method relies on non-
dimensional parameters:

t = t/T (7.3.2)
r1 = r1/R (7.3.3)
r2 = r2/R (7.3.4)

where the input parameters units are consistent and the normalizing values are:

R = ‖r1‖ V =
√
µ

R
T = R/V =

√
R3

µ
(7.3.5)
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Figure 7.4: Time-of-flight graph for both Lagrange’s and Izzo’s method.

Note that according to these definitions, for the normalized initial radius, ‖r1‖ =
1. The short-way transfer angle2 is computed by default:

θ = arccos
(

r1 · r2

‖r2‖

)
(7.3.6)

Other necessary normalized constants are the chord, c, the semi-perimeter, s,
the minimum energy ellipse semi-major axis, am, and the parameter λ. These
constants can be computed according to:

c =
√

1 + r2
2 − 2r2 cos θ (7.3.7)

s = (1 + r2 + c)/2 (7.3.8)
am = s/2 (7.3.9)
λ = √r2 cos(θ/2)/s (7.3.10)

which are the normalized versions of Equations (7.1.2), (7.2.9), (7.2.17) and
(7.2.36).

The Izzo algorithm relies on iteratively solving the time-of-flight equation
until it matches the specified value, tspec, within a certain tolerance. The time-
of-flight computations are based on Lagrange’s expression, more precisely on its
normalized counterpart. Bearing in mind the non-dimensional units defined in
the set of Equations (7.3.5), the normalized time-of-flight equation is:

tf =
√
a3 [(α− sinα)− (β − sin β)] (7.3.11)

2For the long-way transfer angle, simply take the complementary angle.
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As in the Lagrange-Gauss method, the parameters depend on whether the so-
lution describes an ellipse or a hyperbola. The Lagrangian x-parameter can be
simply derived from Equations (7.3.1) and (7.2.15):

x = expx0 − 1

The semi-major axis of the solution, a, is computed with Equation (7.2.18).
The equations for the parameters α and β for the ellipse, respectively Equa-
tions (7.2.19) and (7.2.20), as well as for the hyperbola, respectively Equations
(7.2.21) and (7.2.22), still hold. The normalized time-of-flight equation for the
hyperbola is:

tf =
√
−a3 [(sinhα− α)− (sinh β − β)] (7.3.12)

Finally we take the logarithm of Equation (7.3.11), such that the iterative
process aims at solving:

y(x0) = log {tf (x0)} − log tspec = 0 (7.3.13)

The root-finding process is done using the finite differences method, also known
as the secant method.

7.3.2 The Secant Method
The secant method is quite simple and therefore computationally fast. It is
an approximation of the well-known Newton-Raphson technique that does not
require an analytical expression for the first function derivative:

x03 = x02 −
f(x02)
f ′(x02) ≈ x02 − f(x02)

[
f(x02)− f(x01)

x02 − x01

]−1

= x01f(x02)− x02f(x01)
f(x02)− f(x01) ≡ x01y02 − x02y01

y02 − y01
(7.3.14)

As we can see, this method requires two initial guesses for the variable x0 (x01
and x02) to compensate for the absence of an analytical derivative. These initial
guesses are hard-coded to ensure that the initial guess is an ellipse, hence getting
rid of the shape ambiguity for the first iteration. The values for these initial
guesses are:

x01 = log(1− .5233)
x02 = log(1 + .5233)

Remember that applying the exponential logarithm to the time-of-flight function
effectively smoothens the shape of the function and hence the secant approx-
imation is valid, even with these relatively distant initial guesses. After each
iteration the oldest values (x01,y01) are discarded, the new values (x03,y03) inte-
grated for the next iteration and the middle values (x02,y02) become the oldest
values of the next iteration. This update method, where the old values are
automatically outcasted, aims at improving the computational speed of the al-
gorithm, as no evaluation of the quality of the old solution is made. Nonetheless,
due to the smooth shape of the function, the algorithm will converge rapidly.
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7.3.3 Velocity Computations
Once the root-finding process has converged, the next step consists of deter-
mining the associated conic and corresponding velocities at the initial and final
points. Based on the final x0 value, the semi-major axis and the parameters
α and β are computed according to the shape of the transfer. The normalized
radial and tangential components of the velocity at the point of departure are
given by:

Vr1 = 2λam − λ− xη
η
√
am

(7.3.15)

Vθ1 =
√

r2

η2am
sin(θ/2) (7.3.16)

where η is computed from Equation (7.2.33). The final velocity components
can then be obtained according to Equations (7.2.30) and (7.2.31). Finally, the
dimensional velocity vectors, along the conic at the initial and final points, V1
and V2 respectively, are intuitively obtained from the following equations:

V1 = (Vr1 · ir1 + Vθ1 · iθ1) ∗ V (7.3.17)
V2 = (Vr2 · ir2 + Vθ2 · iθ2) ∗ V (7.3.18)

where ir1,2 and iθ1,2 are the radial and tangential, respectively, unit vectors at
the point of departure and arrival, and V reverts the velocities into dimensional
vectors. Note that if the transfer angle is equal to π, the tangent directions
cannot be determined and the velocity vectors cannot be computed, although
the shape of the transfer orbit is known.

This Lambert solver, as implemented in the GTOP toolbox by Izzo, is
available at [ACT, 2011].

7.4 Implementation in Tudat
The TUDelft Astrodynamics Toolbox (Tudat) is a C++ library developed and
maintained by staff and students of the Astrodynamics and Satellite missions
department at the TU Delft (see Chapter 8). Tudat already contains a Lambert
solver, based on the algorithm developed by [Lancaster and Blanchard, 1969]
with further improvements by [Gooding, 1990]. However, it has been suggested
that Izzo’s algorithm is extremely fast ([Oldenhuis, 2011], [Izzo, 2011]) although
no documentation regarding benchmarking tests could be found. Izzo’s algo-
rithm was implemented in Tudat and the computational tests carried out, in
terms of accuracy, robustness and speed, are reported in this Section.

7.4.1 Test cases
In order to validate the implemented Izzo algorithm, two test cases were set up.
The first test case, Lambert Problem Test Case 1 (LPTC1), consists of finding
the solution to the Lambert Problem with randomly generated values for the
radii, time-of-flight and gravitational parameter. The reference values are those
produced by the same values using the GTOP implementation. The second test
case, Lambert Problem Test Case 2 (LPTC2), consists of computing the solution
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to the Lambert Problem for a circular, co-planar Earth-Mars transfer under
varying orbital configuration and time-of-flight. For LPTC2, the reference values
are computed with the Lambert targeting routine in PyKEP, a scientific library
providing basic tools for astrodynamics research, also developed at ESA/ACT.
This routine is another (more robust) implementation of Izzo’s algorithm.

Test Case 1

As mentioned earlier, Lambert Problem Test Case 1 (LPTC1) consists of solving
Lambert Problems for which the variables are randomly obtained. The values
for the Cartesian velocity components and for the gravitational parameter are
allowed to vary in the interval [0, 100], while the value for the time-of-flight
can vary within the interval [0, 1000]. For all these parameters, a uniform real
distribution is assumed. Note that the intervals defined above do not relate to
any realistic transfer, and therefore it is assumed that the dimensions across
the different variables are consistent. For each run, 100 random problems are
solved.

This test case was setup to rapidly assess the robustness and accuracy of the
implemented algorithm. The solutions to these random Lambert Problems were
compared against those obtained with the GTOP Lambert targeting routine.
For each run, the absolute difference in the Cartesian components of the initial
and final velocities as well as in the norm of those vectors is computed. The
maximum and mean absolute differences for each quantity were computed for
three consecutive runs of LPTC1. The mean of each type of error was taken
and is listed in Table 7.1 below, where Vx, Vy and Vz, refer to the x-, y- and
z-components, respectively, of the Cartesian velocity vectors, and the indices 1
and 2 refer to the initial and final velocities, respectively. The errors for the
individual runs are listed in Table B.1.

Quantity Average
V1,x Maximum 3.066 · 10−7

Mean 1.769 · 10−8

V1,y Maximum 7.693 · 10−7

Mean 2.404 · 10−8

V1,z Maximum 5.350 · 10−7

Mean 2.031 · 10−8

V1 Maximum 1.001 · 10−6

Mean 4.005 · 10−8

V2,x Maximum 7.075 · 10−7

Mean 2.470 · 10−8

V2,y Maximum 4.854 · 10−7

Mean 2.025 · 10−8

V2,z Maximum 4.451 · 10−7

Mean 1.793 · 10−8

V2 Maximum 9.993 · 10−7

Mean 4.032 · 10−8

Table 7.1: Average, of three independent runs, of the maximum and mean
absolute velocity errors for LPTC1.
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Looking at Table 7.1, one can see that the results obtained with the algo-
rithm implemented in Tudat are very close to those found with the GTOP
implementation. Roughly, the maximum errors have an order of magnitude of
10−7 while the mean errors have an order of magnitude of 10−8. Note that the
largest errors occur for the maximum errors in the norm of the velocity vectors.
This is due to the fact that the velocity norm reflects the errors from all three
Cartesian components. For interplanetary Lambert problems, the dimension
of the norm for the initial and final velocities is about 103 m/s, which means
that the errors between both implementations would be at most in the order
of mm/s. Given the low order of magnitude of both the maximum and mean
errors, one can state that, at first glance, the proposed implementation is quite
accurate and robust.

These preliminary results are quite encouraging but a more realistic test
case, with variables of physical meaning, needs to be defined and tested.

Test Case 2

As previously stated, Lambert Problem Test Case 2 (LPTC2) consists of a
circular, co-planar Earth-Mars transfer under varying celestial geometry and
time-of-flight. The circular, co-planar transfer indicates that the eccentricity
and the inclination of both Earth’s and Mars’ orbits are taken to be zero. This
implies that the velocity components along the z-axis are constant and null.
Therefore, no analysis on the accuracy of said component is given in this report.
In this case, the celestial geometry, or configuration, can be boiled down to the
transfer angle, θ. In order to vary the transfer angle, the mean anomaly of
Earth was set to zero, while that of Mars varies from 1 to 360 degrees, with a
step-size of 1 degree. This approach is illustrated in Figure 7.5, where it can
be seen that Earth, denoted E, remains static while the mean anomaly, θ, of
Mars, denoted M, varies. Note that θM = 180◦, corresponding to a π-transfer,
was replaced by a near π-transfer, namely θM = 179.999...◦. The value for
the time-of-flight is made to vary from 200 to 1000 days with a step-size of 50
days. All the relevant parameters for LPTC2 can be seen in Table B.2. Due
to the varying parameters, LPTC2 entails a total of 6120 different problems.
A prograde motion is assumed in all of them, meaning that both short- and
long-way transfers are contemplated in LPTC2.

For LPTC2, the reference values are obtained with the Lambert routine in
PyKEP3, which is another, more sophisticated implementation of Izzo’s algo-
rithm. This algorithm has been thoroughly verified and validated [Izzo, 2011].
LPTC2 is the reference test case for the following sections.

7.4.2 Accuracy of the Implemented Algorithm
The first step taken towards the validation of the implemented Lambert routine,
is to verify its accuracy. In order to do so, the algorithm is tested in the scope
of LPTC2. The absolute errors, in meters per second, in terms of the x- and
y-components of the velocity vectors, as well as in terms of their norm, are given
in Figures 7.6 to 7.11. In those figures, we can see that the areas of the prob-
lem space where the largest discrepancies appear follow a clear and consistent

3PyKEP documentation website: http://keptoolbox.sourceforge.net/

http://keptoolbox.sourceforge.net/
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Figure 7.5: The varying heliocentric configuration in LPTC2.

pattern across all analyzed quantities. These seem to indicate Lambert prob-
lems that the implemented algorithm struggles to accurately solve. In order to
gain more insight into these problems, let us take a look at Figure 7.12, where
the number of iterations needed by the secant method to solve the Lambert
problems is depicted.

Looking at Figure 7.12, it is apparent that the maximum number of root-
finding iterations needed to solve each of the Lambert problems from LPTC2
is six, while the minimum is three. Moreover, there is little variation in terms
of the number of iterations, since the minimum number of variations seldom
occurs and the majority of the problems is solved within 5 iterations. Cross
referencing this figure with the previous ones, the same pattern as the one seen
in the previous plots emerges. It appears that the largest errors occur near
the transitions to a higher number of iterations, namely from 4 (in yellow in
Figure 7.12) to 5 (in orange) iterations and from 5 to 6 (in red) iterations.
These transitions seem to highlight thresholds in terms of the difficulty of the
problems, meaning that at these thresholds, the algorithm converged too rapidly.
It is hypothesized that these regions correspond to the time-of-flight graphs
with a large gradient, meaning that a relatively small difference in abscissae
corresponds to a relatively large difference in ordinate, therefore driving the
root-finding process to a premature end. Increasing the convergence tolerance
does not yield any significant improvement in the quality of the results, as we
will show in Section 7.4.3.

Nonetheless, we can see that the majority of the problem space is solved
with (very) high accuracy. Even for the problem with the largest errors, the
maximum error committed is in the order of 10−5 meters per second, which is
certainly accurate enough for the purposes of a Lambert solver. To illustrate the
overall accuracy of the implemented algorithm, Table 7.2 gathers the maximum
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Figure 7.6: LPTC2: The absolute error in V1,x in meters per second.
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Figure 7.7: Test Case 2: The absolute error in V1,y in meters per second.
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Figure 7.8: Test Case 2: The absolute error in ‖V1‖ in meters per second.
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Figure 7.9: Test Case 2: The absolute error in V2,x in meters per second.
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Figure 7.10: Test Case 2: The absolute error in V2,y in meters per second.
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Figure 7.11: Test Case 2: The absolute error in ‖V2‖ in meters per second.
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Figure 7.12: Test Case 2: The number of root-finding iterations.

and the RMS errors in all quantities analyzed, namely the norm and the x-
and y-components of the initial and final velocities. The maximum and RMS
number of root-finding iterations is also given. The notation is the same as in
Table 7.1.

Quantity Maximum [m/s] RMS [m/s]
V1,x 1.178 · 10−5 1.058 · 10−6

V1,y 1.329 · 10−5 9.248 · 10−7

V1 1.508 · 10−5 1.405 · 10−6

V2,x 1.247 · 10−5 9.984 · 10−7

V2,y 1.937 · 10−5 1.506 · 10−6

V2 2.256 · 10−5 1.807 · 10−6

# Iterations 6 5.087

Table 7.2: LPTC2: Maximum and RMS errors and number of iterations.

While, as previously mentioned, the maximum errors produced by the im-
plemented algorithm are in the order of 10 micrometers per second, the RMS
errors are closer to 1 µm/s, which is a very accurate result. Akin the results
from Table 7.1, the largest errors occur for the norm of the velocity vectors. The
explanation for this phenomenon is the same, namely the fact that the velocity
norm error reflects the errors in all its separate components. With respect to the
number of root-finding iterations, the algorithm needs on average 5 iterations
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to solve a problem, as hinted by the dominance of the colour orange in Figure
7.12.

We can therefore conclude that the implemented Lambert solver is very
accurate and solves a wide range of problems within a fairly constant number
of iterations.

7.4.3 Sensitivity Analysis
It can be argued that, for the purposes of the MSc thesis, a micrometer-
per-second-accurate Lambert solver by far exceeds the accuracy requirements.
Therefore, a sensitivity analysis was conducted to determine the influence of
the root-finding convergence tolerance on both the number of iterations and the
accuracy of the results.

The convergence tolerance is a criterion that can be defined as a threshold
for the difference between two succesive solutions, ε = |xi+1−xi|, beyond which
the root-finding process terminates. In the analysis conducted in the previous
section, the convergence tolerance was set to ε = 10−9. Note that this is the
same convergence tolerance as in the PyKEP implementation of the algorithm.
For the sensitivity analysis, LPTC2 was run with convergence tolerances of
10−3, 10−4, 10−5, 10−6, 10−9 and 10−12. The results of the sensitivity analysis
are summarized below. The extensive results can be found in Appendix B.2.3.

With respect to the accuracy of the results, Figure 7.13 details the maximum
and RMS errors in the velocity components and norms as a function of the
convergence tolerance. We can see that decreasing the convergence tolerance
beyond 10−6 does not lead to any significant increase in the quality of the
results. This value either represents the maximum accuracy achievable with
the implemented algorithm or indicates some sort of machine limitation due to,
perhaps, the machine precision. Either way, the maximum accuracy achievable
is of the order of 10 µm/s for the maximum error and 1 µm/s for the RMS
error. These values are the same as those found in the previous section since
the 10−9 convergence tolerance is evidently smaller than the 10−6 convergence
threshold. For convergence tolerance larger than 10−6, the accuracy of the
results decreases. For the largest convergence tolerance tested, the maximum
errors reach 1 m/s while the RMS errors have an order of magnitude of about
0.1 m/s. These values are still acceptable given that Lambert problems usually
involve velocities with magnitudes of km/s.

In Figure 7.14, the maximum and RMS number of iterations as a function
of the convergence tolerance are plotted. It is clear that the RMS number of it-
erations continuously decreases with the increase in convergence tolerance. The
same, however, cannot be said for the maximum number of iterations as we can
see a step at 5 iterations for 10−6 through 10−4 convergence tolerances4. Note
however that the maximum number of iterations is a discrete function, unlike
its RMS counterpart, and that the step occurs in a more densely sampled region
of the abscissae. Despite not decreasing continuously with the increase of the
convergence tolerance, a decreasing trend can be distinguished for the maxi-
mum number of iterations. Based on Figure 7.14, we can state that increasing
the convergence tolerance leads to a decrease in the RMS number of iterations
up to approximately 2 iterations. It is expected that decreasing the number of

4Note the logarithmic scale of the abcissae.
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of the convergence tolerance.

iterations required to solve the Lambert problem will lead to a decrease in the
computational time needed to achieve results, specially in cases where a large
number of solutions needs to be determined.

Based on the sensitivity analysis, it is decided to set the convergence tol-
erance of the implemented Lambert routine to ε = 10−5. At this convergence
tolerance, the RMS errors in the velocity results are within 10 µm/s, while the
maximum errors level at 0.01 m/s. These values instill confidence that the ve-
locity results will be very accurate under any circumstance. Moreover, both the
maximum and the RMS number of root-finding iterations decrease by 1 iter-
ation with respect to the nominal algorithm (i.e. the implemented algorithm
with a convergence tolerance of ε = 10−9).

7.4.4 Comparison with the Lancaster & Blanchard Algo-
rithm

As mentioned at the beginning of Section 7.4, Tudat already encompasses a
Lambert routine, based on the algorithm developed [Lancaster and Blanchard,
1969] and further improved by [Gooding, 1990], from here on referred to as
LBG. For a description of this algorithm, please refer to those references. It is
expected however that the implemented Izzo algorithm, from here on referred
to as IZZO, will be more efficient than the native LBG. In order to verify
this assumption, both algorithms are compared in terms of accuracy, number of
iterations and computational speed, based on LPTC2.
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convergence tolerance.

Accuracy

In order to compare the accuracy of IZZO and LBG, both algorithms are
applied to LPTC2. The results are illustrated in Figures 7.15 through 7.20.
The maximum and RMS errors are detailed in Table 7.3. Bear in mind that
for IZZO, the convergence tolerance is set to ε = 10−5. A sensitivity analysis
for LBG was performed and the tolerance of its root-finding routine tuned to
produce results with an accuracy in the same order of magnitude as IZZO with
ε = 10−5.

Based on Figures 7.15 to 7.20, we can state that, in general, LBG has a
better accuracy than IZZO. It is interesting to note that the error pattern is
similar for both LBG and IZZO, signaling Lambert problems that are difficult
to solve for both algorithms. This indicates that the errors discussed in Section
7.4.2 are not implementation-specific. Also of note, is the red line at θ = 180◦5,
visible in all LBG plots, which indicates that the LBG algorithm suffers from
a near π-transfer singularity. IZZO, in contrast, does not seem to be afflicted
by that particular singularity.

Table 7.3 confirms the previous statement regarding the accuracy of both
algorithms. With the exception of the y-component of the initial velocity vec-
tor, all maximum and RMS errors are larger for IZZO than LBG. However, the
RMS errors for the norm of the velocity vectors have the same order of magni-
tude for both algorithms. Therefore, despite being more accurate, LBG is not
significantly more precise than IZZO. To support this statement, note that the

5As discussed in Section 7.4.1, the π-transfer case is not analyzed as there is no analytical
solution. It is replaced by a near π-transfer.



100 CHAPTER 7. LAMBERT PROBLEM

LBG

Transfer angle, θ [deg]

T
im

e−
of

−
fli

gh
t [

da
ys

]

 

 

50 100 150 200 250 300 350
200

400

600

800

1000

0

0.5

1
x 10

−5

Absolute Accuracy in V
1,x

 [m/s]

IZZO

Transfer angle, θ [deg]

T
im

e−
of

−
fli

gh
t [

da
ys

]

 

 

50 100 150 200 250 300 350
200

400

600

800

1000

0

0.5

1
x 10

−5

Figure 7.15: LPTC2: Comparison between the absolute errors in V1,x.
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Figure 7.16: LPTC2: Comparison between the absolute errors in V1,y.



7.4. IMPLEMENTATION IN TUDAT 101

LBG

Transfer angle, θ [deg]

T
im

e−
of

−
fli

gh
t [

da
ys

]

 

 

50 100 150 200 250 300 350
200

400

600

800

1000

0

0.5

1
x 10

−5

Absolute Accuracy in |V
1
| [m/s]

IZZO

Transfer angle, θ [deg]

T
im

e−
of

−
fli

gh
t [

da
ys

]

 

 

50 100 150 200 250 300 350
200

400

600

800

1000

0

0.5

1
x 10

−5

Figure 7.17: LPTC2: Comparison between the absolute errors in ‖V1‖.
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Figure 7.18: LPTC2: Comparison between the absolute errors in V2,x.
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Figure 7.19: LPTC2: Comparison between the absolute errors in V2,y.
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Figure 7.20: LPTC2: Comparison between the absolute errors in ‖V2‖.
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Maximum Error [m/s] RMS Error [m/s]
Quantity IZZO LBG IZZO LBG
V1,x 5.209 · 10−3 1.458 · 10−4 7.019 · 10−5 7.759 · 10−6

V1,y 1.358 · 10−3 1.422 · 10−3 2.017 · 10−5 6.549 · 10−5

V1 5.384 · 10−3 1.422 · 10−3 7.303 · 10−5 6.594 · 10−5

V2,x 4.508 · 10−3 6.486 · 10−5 5.785 · 10−5 3.558 · 10−6

V2,y 3.094 · 10−3 9.480 · 10−4 4.821 · 10−5 4.368 · 10−5

V2 5.468 · 10−3 9.480 · 10−4 7.531 · 10−5 4.382 · 10−5

Table 7.3: LPTC2: Comparison between the maximum and RMS errors.

maximum errors for IZZO have a magnitude of milimeters per second. Although
LBG maximum errors are lower, its improved accuracy has little consequences,
in practice.

Number of Iterations

Now that we have determined that the differences in accuracy between LBG
and IZZO have no significant practical impact, let us take a look at the number
of iterations. Bear in mind that one of the benefits of IZZO is the linear time-
of-flight graph which is supposed to reduce the number of iterations needed for
the root-finding method to converge. The number of iterations needed by both
algorithms to solve all problems in LPTC2 are depicted in Figure 7.21.
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Figure 7.21: LPTC2: Comparison between the number of iterations.
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The first observation we can make when looking at Figure 7.21 is that, over-
all, IZZO and LBG require roughly the same number of root-finding iterations.
However, this is not true for the entire search space. We note that, for short
transfer times (between 200 and 300 days) in combination with transfer angles
between 90 and 290 degrees, LBG is capable of solving some Lambert prob-
lems within 1 or 2 iterations. However, the majority of the problems is solved
in 4 iterations, as is the case for IZZO. Looking at the IZZO plot, it becomes
apparent that the algorithm converges quickly (within 3 iterations) for transfer
angles around 60◦. These observations are confirmed when looking at Table 7.4.
The maximum number of iterations is the same for both algorithms, the RMS
number of iterations for IZZO being slightly larger than for LBG. Both RMS
values are about 4 iterations.

Maximum [-] RMS [-]
Algorithm IZZO LBG IZZO LBG

# of Iterations 5 5 4.0941 3.8753

Table 7.4: LPTC2: Comparison between the maximum and RMS number of
iterations.

Computational Speed

Having established that the IZZO and LBG algorithms have roughly the same
performance in terms of accuracy and number of iterations (with a slight ad-
vantage for LBG), let us take a look at the computational speed required to
solve LPTC2. In Figure 7.22, the Central Processing Unit (CPU) time, in sec-
onds, required by each algorithm to solve each problem is given. In order to
circumvent the limited precision of the clock used to time the algorithms, each
combination of time-of-flight and transfer angles was repeated a thousand times.
After that, the total amount time is divided by 1000 to reflect the computational
time needed to solve a single problem. The computational times correspond to
the elapsed time needed to solve a particular Lambert problem on the author’s
personal laptop.

Figure 7.22 shows that IZZO is faster than LBG for a vast majority of the
problems, up to twice as fast apparently. It seems that the average time needed
to solve a given problem is about 5 µs for IZZO while it is approximately 10 µs
for LBG. Moreover, we notice that LBG seems to have a wider range of values
for the time needed to solve the problems over all the LPTC2 problem space
than IZZO. More detailed information can be obtained by inspecting Table 7.5,
where the maximum, RMS and standard deviation, σ, for the CPU times of
both algorithms are detailed.

Maximum [µs] RMS [µs] σ [µs]
Algorithm IZZO LBG IZZO LBG IZZO LBG
CPU time 35 18 6.477 11.352 1.087 1.402

Table 7.5: LPTC2: Comparison between the maximum, RMS and standard
deviation CPU times.
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Figure 7.22: LPTC2: Comparison between the CPU times.

The maximum CPU time needed to solve a Lambert problem is larger for
IZZO than for LBG. Nonetheless, the RMS values show that IZZO is, on average,
about twice as fast as LBG, meaning that the larger maximum value probably
represents a rather isolated case. This is confirmed when looking at the standard
deviation, σ: the standard deviation is smaller for IZZO, meaning that over
the entire problem space, the CPU time needed to solve a particular problem
fluctuates less for IZZO than for LBG. Therefore, we can state that IZZO is
typically faster over the entire problem space.

In order to represent these computational times in a more familiar order
of magnitude, let us take a look at Table 7.6. Remember that, in order to
circumvent the limited precision of the clock used to time the algorithms, each
of the 6120 unique Lambert problems in LPTC2 was repeated a thousand times
in each run. Table 7.6 shows the CPU time for three of those runs for both
algorithms, as well as the corresponding RMS values. Additionally, the resulting
computational speed, in problems per second, is shown. Finally, the last column
shows the relative computational speed.

This table confirms the conclusions drawn previously, namely that IZZO is
about twice as fast as LBG. Looking at the RMS values, IZZO is 1.86 times
faster than LBG. On average, IZZO solves about 180,000 Lambert problems
per second.

Based on the results of the comparison between IZZO and LBG, IZZO seems
to be the most appropriate Lambert routine to be employed in the scope of the
MSc Thesis, mainly due to the fact that it is considerably faster.
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CPU Time [s] CPU Speed [problems/s]
Algorithm IZZO LBG IZZO LBG IZZO/LBG [-]
Run #1 36.542 65.416 167478 93555 1.79
Run #2 33.824 63.908 180936 95762 1.89
Run #2 32.607 62.367 187689 98128 1.91
RMS 34.364 63.909 178899 95833 1.86

Table 7.6: LPTC2: Comparison between the CPU times and speeds.



Chapter 8

Implementation

The building blocks described in the previous chapters (multi-path NNH, GS,
and Lambert Targeter) were developed, implemented and assembled in the
framework of TUDelft Astrodynamics Toolbox (Tudat), a C++ library de-
veloped internally at the TU Delft.

We take a look, in Section 8.1, at Tudat, its design philosophy and its project
setup. We then present the block diagram of the assembled tool in Section 8.2,
highlighting the code blocks that were developed, integrated or simply used.

8.1 Tudat
Tudat is a C++ library for astrodynamics simulations, developed and main-
tained by staff and students of the Astrodynamics and Space Missions (A&S)
department of the Aerospace Engineering faculty at the TU Delft. The genesis of
Tudat rises from the need, within the A&S group, for a generic, collaboratively
developed astrodynamics toolbox.

Figure 8.1: The Tudat logo [Kumar, 2011].

The currently available software (e.g. STK, GALOMUSIT, OPTIDUS)
has a steep learning curve and is rather fragmented, each software being tailored
to a specific scope and a specific set of applications. Furthermore, some of these
software require licenses which often limit the accessibility. The wide range of
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applications within Tudat (interplanetary trajectories, launcher ascent trajecto-
ries, vehicle re-entry, exoplanet orbits, amongst others) offers the potential for
conducting large-scale projects with a single tool.

As mentioned above, Tudat is collaboratively developed by MSc students
within the scope of their respective theses, under the supervision of A&S PhD
students and staff members. This collaborative aspect ensures that MSc stu-
dents working with Tudat need not to reinvent the wheel, as they can integrate
readily available features and focus on the novel features they wish to imple-
ment. As a result, Tudat is not a static software as each MSc student adds new
features to the toolbox. Moreover, feature development for Tudat promotes the
communication, cooperation and coordination within the A&S group members,
both students and staff, and encourages the development of programming skills.

The high-level requirements of Tudat translate into technical and manage-
ment requirements, namely in terms of project setup and software architecture.
These are briefly described hereafter, along with a short description of the avail-
able features. For more details, please refer to [Kumar et al., 2012].

8.1.1 Design Philosophy
Different applications often possess common elements. For these features to be
easily applied in different context, the software architecture must be modular
and written in a generic fashion. To represent this modular aspect, Tudat can
be thought of as a series of blocks that can be arranged in several configura-
tions, depending on the respective application. Therefore, developers can gather
the already available, independent building blocks and combine them with the
new necessary blocks to set up their respective application. Specifically, Tudat
code blocks correspond to generic elements of astrodynamic simulations such as
bodies, environment and force models, amongst others.

In practice, this modularity in the software architecture is difficult to reach.
To achieve it, Tudat makes use of two important characteristic of the object-
oriented programming languages C++: polymorphism and inheritance. Inheri-
tance can be seen as the top-down propagation of functionality between derived
classes: child classes derive a number of properties from their parent class. In
practice, the interaction between the different code blocks in Tudat is done on
the overall parent class level, i.e. the interface is generic. The child classes
inherit this interface while implementing specific functionalities.

Other software architecture options derive from the need to maintain the
coding readability, coherence and robustness: a conservative stance is taken
towards external libraries, there is a clear categorization of the code (e.g. math-
ematics, astrodynamics), standard file formats exist for input and output han-
dling and the standardization of units and reference systems occurs internally.
The ability of the child classes to have a unique interface while taking different
forms is referred to as polymorphism and is an important aspect of Tudat’s
software architecture.

8.1.2 Project Setup
Tudat is split into two libraries: Tudat and Tudat Core. The latter is a
stand-alone library, while the former is allowed to have dependencies on Tudat
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Core. An additional layer, called Tudat Applications, works as a personal
workspace for developers.

Tudat Core

As hinted by its name, Tudat Core contains the core functionalities of the
Tudat project. It was set up with purpose of freezing the interfaces of widely
used code blocks and as a result provide a stable and reliable base for the state-
of-the-art functionalities in Tudat. Code to be added to Tudat Core needs
to comply with a number of constraints which ensure that the code is well-
tested, well-documented and bug-free. Tudat Core undergoes slow evolution
and backwards compatibility between successive releases is guaranteed.

At the time of writing, Tudat Core contains a number of robust code
blocks in three major categories: Astrodynamics, Input/Output and Mathemat-
ics. The most notable Tudat Core Astrodynamics routines are an extensive
collection of unit and orbital elements conversions. The Tudat Core Mathe-
matics functionality are linear algebra functions, coordinate conversions, as well
as a generic base class for numerical integrators. Other notable Tudat Core
routines are basic input/output handling functions and test macros.

Tudat

Unlike Tudat Core, the interfaces of Tudat are allowed to change frequently,
as this library represents the state-of-the-art of the Tudat project. In technical
terms, Tudat undergoes fast evolution. Features can, after a thorough and
well-established code-checking process, be readily added to Tudat such that
other developers can immediately benefit from them. The code-checking process
ensures that code blocks comply with Tudat protocols, do not break existing
functionality and have been written in collaboration or consultation with at
least one other developer.

At the time of writing, Tudat, in its 1.1 version, already contains a con-
siderable number of features, from environment models to celestial bodies and
vehicles, from propagators to orbital elements conversion mechanisms. The Tu-
dat features be categorized into three major categories: astrodynamics, math-
ematics, and input/ouput. These three are in turn broken down into several
sub-categories, as shown in Table 8.1. The complete list of features, which is
rather extensive, can be found on the Tudat website.

The division of the Tudat features into major categories reflects the de-
pendencies of the routines within. Tudat code blocks should have as little
dependencies as possible on code from another category, as to limit the propa-
gation of code changes through the library.

Tudat Applications

Tudat Applications is the development workspace where simulations, making
use of Tudat and/or Tudat Core, are set up by Tudat developers. These
applications are documented and are accessible to all team members, enabling
developers to easily share their code. Intuitively, Tudat and Tudat Core
are not allowed to have dependencies on Tudat Applications. Figure 8.2 is
aschematic representation of the three Tudat layers.



110 CHAPTER 8. IMPLEMENTATION

Table 8.1: Tudat 1.1 features

Aerodynamics
Basic Astrodynamics
Bodies

Astrodynamics Ephemerides
Gravitation
Mission Segments
Reference Frames
States

Tudat Input/Output Basic Input/Output
Parsers
Basic Mathematics
Geometric Shapes

Mathematics Interpolators
Numerical Integrators
Root-finding Methods
Statistics

Figure 8.2: The setup of Tudat: the rapidly evolving Tudat is rooted in the
stable Tudat Core, with Tudat Applications sitting on top of the tree
[Tudat, 2012].
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8.1.3 Management Setup
As previously discussed, Tudat is mainly developed by MSc students, which
often abandon the university, and thus the Tudat project, after completion of
their studies. This introduces several challenges such as ensuring the longevity of
the toolbox despite a transient group of developers, guaranteeing the modularity
of the code such that each user can easily integrate the implemented features
and enforcing the robustness of the features over different applications. The
way in which Tudat was set up was thought as to answer these challenges.

Organization

Tudat members assume several responsibilities within the project. The ma-
jority of the members are code developers as well as code checkers. This dual
responsibility allows for a faster code-checking process, an even distribution of
the workload and promotes the communication between developers. At the top
of the food chain, one finds the Tudat managers, i.e. A&S staff members ac-
tively involved in the Tudat project. Other responsibilities arise from the need
to maintain the different project management tools. The organogram of Tudat
is illustrated in Figure 8.3.

Figure 8.3: The Tudat organogram [Tudat, 2012].

Roughly three different types of formal Tudat meetings are set up, with
different frequencies. The Management Team, comprising all members with
duties other than code development, meets, at the time of writing, once a month
and is responsible to maintain oversight and ensure the longevity of the project.
TheWorking Group is formed by all Tudat developers and gathers twice a month
to discuss current and future code development. Specialized meetings can be
held, on a need basis, between developers working on common functionalities.
These meetings are referred to as Taskforce Meetings.

Coding Standards and Protocols

As stated from the start, Tudat is a C++ library which means that all the
underlying code is written in that programming language as to ensure uniformity
and coherence. Moreover, it is a rather recent programming language which has
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proven to be efficient and flexible. Having a single tool written in a single
programming language facilitates the new developers’ learning process as they
avoid juggling between different languages. With readability, coherence and
robustness requirements in mind, the code is standardized based on common
industry standards and Tudat group choices. These standards are gathered in
the “The N Commandments” document [Melman, 2011].

Documentation Standards and Protocols

Proper documentation is a vital part of Tudat. It allows Tudat developers to
efficiently gain insight into another developer’s code and therefore facilitates
the understanding and integration of any piece of code. To automate and stan-
dardize the documentation process, the Tudat project relies on an external tool,
Doxygen1. Besides the code documentation, tutorials, examples and manuals
are provided, via the website wiki, to reduce the learning curve of new developers
and users.

Code Robustness

To ensure the code robustness of Tudat, a thorough code-checking process was
implemented. Every piece of source code is independently checked by at least
one other developer, both for coding standards compliance and for mathemat-
ical and physical correctness. A unit test framework was established, where
each developer is required to provide a simple test case to facilitate debugging
and code-checking. The code-checking process is often iterative and therefore
somewhat long. Once code-checking process is completed, the revised code is
submitted to the repository manager that commits it to the repository. This
code-checking process is illustrated in Figure 8.4.

File Repository

The file repository contains all the (checked) pieces of code of Tudat, as well as
a series of relevant documents such as manuals, meeting minutes and presenta-
tions. It enables a decentralized code development as any developer can access
the repository and review the code development history, from anywhere in the
world, using the code repository application of his or her choice. To ensure
quality, readability and robustness, commits to the repository are controlled by
the repository manager, and are accompanied by a small description of changes.

Website

The Tudat website (tudat.tudelft.nl) is an essential tool of the Tudat project
as it provides the central point of communication for the entire project. It also
operates as a project management tool, where meetings are set up, issues are
discussed and several resources are made available for users, developers and
managers. The website also provides access to the repository.

1More information about Doxygen can be found at: http://www.stack.nl/~dimitri/
doxygen/

tudat.tudelft.nl
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
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Figure 8.4: The Tudat code development process [Tudat, 2011].

8.2 Tool Implementation
In order to implement the proposed tool to solve the combinatorial problem of
GTOC2, use was made of several existing Tudat features. While the complete
tool was developed based on the Tudat library, only certain code-blocks were
added to the library. The entirety of the code developed in the scope of the MSc
Thesis could not be added to Tudat due to time restrictions. It will however be
made available via the Tudat Applications layer. The distinction between
the code blocks that were already available in Tudat, code blocks that were
added to library and code blocks that will remain in the Tudat Applications
layer, is made in the following section.

8.2.1 Tool Block-diagram
The block-diagram of the implemented tool can be seen in Figure 8.5. The
input consists of three elements: the ephemeris data of the celestial bodies2,
the cost function of the continuous optimization problem and parameters of
the NNH, namely the number of champions, the departure windows and the
maximum time-of-flight of the transfers. The first step is the pre-processing
of the ephemeris data: the text file is parsed3 and relevant data transformed
and extracted to a data container. The dimensions of the data container are
used by the NNH to determine the number of asteroid groups, their order and

2The ephemeris data is provided via a text file.
3Parsing refers to the process of tokenizing a text, i.e. dividing it into individuals segments

(e.g. words) based on a given structure, e.g. comma-separated file.
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their dimension. The NNH then runs, calling the arc cost optimization block
as needed. This block receives, independently of the specific optimizer (GS or
DE), the initial and final bodies, as well as the bounds for the departure date
and time-of-flight. During the optimization, a Kepler propagator is invoked to
determine the position of the bodies at the given departure and arrival dates.
This information is then passed on to the Lambert targeter, along with the cor-
responding time-of-flight, which returns the ∆V of the corresponding Lambert
problem. This value is used to compute the cost function value according to the
specified cost function. The best solution found at the end of the continuous
optimization procedure is returned to the NNH. Using these static arc cost val-
ues, the NNH solves the combinatorial problem and returns the N best asteroid
sequences.

Figure 8.5: The flow-chart of the assembled tool.

Assembling several building blocks, as shown in Figure 8.5, confers a certain
modularity to the tool. The most notable illustration of said modularity is the
flexibility in the choice of the continuous optimizer: in the scope of the MSc
thesis, the GTOC2 combinatorial problem was solved using either GS or DE.
Thanks to the interface with PaGMO, these can readily be replaced with another
algorithm, e.g. Particle Swarm Optimization (PSO) ([Kennedy and Eberhart,
1995]). Writing specific parsers and extractors would allow to solve similar
problems but with a different data set. Finally, one could replace the IZZO
Lambert routine with its Lancaster, Blanchard & Gooding (LBG) counterpart
or even with a different trajectory model, e.g. a shape-based low-thrust model
such as exponential sinusoids ([Petropoulos and Longuski, 2004]).
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8.2.2 Contributions to Tudat
In Figure 8.5, code blocks that were added to the Tudat library are shown in
green, while yellow indicates existing Tudat code blocks that were used to build
the tool. Code blocks that were not added to Tudat, but that can be found in
Tudat Applications, are highlighted in red. Finally, the purple code block
(DE) refers to an external routine.

Following this colour code, one can see that the two main code blocks were
added to Tudat: the ephemeris reader (which makes use of the previously avail-
able orbital elements conversions) and the Lambert targeter.

Ephemeris Reader

In the scope of the MSc Thesis, the author was an active member of the
Ephemeris Reader Taskforce within Tudat. This taskforce was mandated to
review and update the ephemeris reader available at the time in the library.

A new architecture was designed by the taskforce with the overarching prin-
ciples of robustness, modularity and flexibility, as ephemeris data files come in
a variety of formats. The main characteristic of the proposed architecture is the
separation between data acquisition (parsing) and data interpretation (extrac-
tion). This allows to have the same routines to parse files with different data
in the same format (e.g. comma-separated value files) and the same routines
to extact the same data (e.g. Keplerian elements) in different formats. Parsers
and extractors can be combined as needed to create the adequate ephemeris
reader. In between the parsing and extraction steps, the data is stored in a
generic container.

The taskforce designed, implemented and tested a number of parsers and
extractors which have been added to the Tudat library. This new architecture
was used in the scope of the author’s MSc thesis, as seen in Figure 8.5. A specific
parser for the GTOC2 ephemeris file, GTOC2AsteroidEph.txt, was coded.

Lambert Targeter

The Lambert targeter described in Chapter 7 was implemented in Tudat. This
was done in the scope of the Mission Segments Taskforce efforts to review the
mission segments routines in Tudat.

Previous to the taskforce update, all Mission Segments code blocks (Lambert
targeter, gravity assist function, deep space maneuvers, and escape and capture
maneuvers) inherited from a single parent class. The taskforce noted however
that these routines did not share enough functionalities, nor did they share a
common interface, to justify the inheritance from a common base class. All
code blocks were therefore re-written as free functions. The obsolete base class
and the empty deep space maneuver derived classes were removed. A number of
different approaches to gravity assist computations (powered/unpowered, prop-
agated/computed) were added. With respect to the Lambert targeters, LBG
and IZZO, these functions are intuitively similar with respect to their input
(departure and arrival positions, time-of-flight, gravitational parameter of the
central body) and output (∆V inherent to the trajectory solution). These com-
monalities led to the implementation of a Lambert targeter base class with
derived classes wrapping the free functions.
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The reviewed Mission Segments routines were extensively tested and collab-
oratively code-checked. They can now be found in the Tudat repository. For
the purposes of the author’s MSc Thesis, the free function version of the IZZO
Lambert Targeter was used.
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Chapter 9

Complete Asteroid Pool,
using GS

Here, the results obtained with the multi-path NNH are described. The NNH
was applied with different cost functions as well as different search directions:
forward and backward. The a priori optimization of the individual transfers is
done using an enumerative method, namely a Grid Search (GS), rather than an
optimization heuristic such as Differential Evolution (DE). GS was originally
intended as a preliminary approach but due to timeliness considerations, DE
was only implemented in the final part of the MSc Thesis work. The results
obtained with DE can be found in Chapter 11. GS relies on a discretized mesh
for both the departure dates and the times-of-flight, each grid point being 10
days apart.

For the sake of simplicity, we will refer to the transfers from Earth to Group
4 asteroids as Leg 1, to transfers from Group 4 to Group 3 asteroids as Leg 2,
to transfers from Group 3 to Group 2 asteroids as Leg 3, and finally to transfers
from Group 2 to Group 1 asteroids as Leg 4. Moreover, we will refer to aster-
oid combinations corresponding to one of the solutions handed in by GTOC2
participants as GTOC2 sequences. Given that, at the time of writing, no accu-
rate low-thrust model is implemented in Tudat, the quality of the sequences is
assessed through comparison with the GTOC2 participant sequences.

Three different variants of the multi-path NNH search are performed. The
forward search is applied using both the optimal final mass cost function, J2, in
Section 9.1 and the optimal final mass to time-of-flight ratio cost function, J1,
in Section 9.3. In between, we take a look at the backward search using J2, in
Section 9.2.

9.1 Forward Search, Optimal Final Mass
We start by solving the asteroid sequence selection problem with a forward
multi-path NNH, meaning that the algorithm starts by computing Leg 1 trans-
fers and ends at the Leg 4 transfers. The continuous arc cost function to be
optimized by GS is Equation (6.1.5), meaning that the time-of-flight is not taken
into consideration and that the maximization of final mass is sought. As per
Tsiolkowski’s Law (Equation (4.4.3)), maximizing the final mass is equivalent to
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minimizing the total ∆V . The latter is often used as a metric in the following
sections.

The departure window for Leg 1 transfers is taken to be the same as that
of the original problem description (see Section 2.2), i.e. the spacecraft can
depart anywhere between January 1st 2015 and December 31st 2035. For the
subsequent legs, different departure windows, starting at the time of arrival at
the asteroid, are investigated. We also vary the number of champion paths. The
time-of-flight for all legs is bounded within 10 and 610 days.

9.1.1 Leg 1
Let us first look at Leg 1 transfer results. These are constant over the different
cases since they are not affected neither by the number of champion paths (in a
forward search, all Leg 1 transfers are computed) nor by the departure window,
which is kept constant for the first leg.

In Figure 9.1, the histogram for the final mass fraction of Leg 1 transfers is
given. The final mass fraction is computed according to Equation (4.4.3), where
the ∆V is the minimum value found during the a priori optimization and the
effective exhaust velocity, c, is obtained with:

c = Ispg0 (9.1.1)

where g0 is the standard gravitational acceleration and the specific impulse, Isp,
is assumed to be 300 s. Note that the final mass fraction, and not the J2 value,
is shown. Therefore, larger values in Figure 9.1, which correlate to lower J2
values, correspond to attractive transfers.

Figure 9.1 shows that there is a relatively small number of transfers with a
larger final mass fraction, meaning that the high-thrust approximation leads to
a fast selection of promising Group 4 asteroids. To compare the Leg 1 results
with the GTOC2 solutions, Table 9.1 lists the 40 best transfers, according to
decreasing ∆V . In order to include all GTOC2 Group 4 asteroids (8 different
asteroids in total), one must consider all the 40 best trajectories. This means
that when considering the 40 best Leg 1 transfers found, only 20% correspond
to GTOC2 solutions. On the other hand, if one limits the analysis to the
top asteroids, two of the three best transfers correspond to GTOC2 solutions.
Therefore, the number and ratio of GTOC2 Group 4 asteroids considered for
the subsequent legs is influenced by the number of paths that will be pursued by
the multi-path NNH. The number and the ratio1 of GTOC2 Group 4 asteroids
as function of the number of paths to pursue are illustrated in Figures 9.2 and
9.3, respectively.

Another interesting observation can be made from Table 9.1. The Group 4
asteroid corresponding to the GTOC2 winner, 3258076, ranks merely 37th with
the proposed approach. This is due to the fact that when selecting the first
asteroid, the team from Politecnico di Torino took into account the “free” 3.5
km/s hyperbolic excess velocity. As a result, they are able to reach a Group 4
asteroid further away from Earth (hence more expensive in terms of ∆V ) but
closer to Group 3 and 2 asteroids. An attempt to reverse-engineer the multi-path

1The ratio is defined as being the number of GTOC2 Group 4 asteroids divided by the
total number of asteroids considered.



9.1. FORWARD SEARCH, OPTIMAL FINAL MASS 121

Table 9.1: The 40 best Leg 1 transfers, according to J2 (∆V ), using GS.

Rank Group 4 Asteroid Minimum ∆V [m/s] GTOC2 Rank
1 3042555 2187.94
2 3250293 2290.85 #2,#6,#10,#12
3 3017309 2390.14 #5
4 3024030 2621.51
5 3054338 2692.80
6 3293922 2707.18
7 3261681 3051.47
8 3167367 3074.55
9 3070801 3092.74
10 3156302 3226.06
11 3170221 3249.37 #3,#4,#9,#13
12 3071939 3257.78
13 3329255 3261.25 #8
14 3072273 3398.61
15 3297379 3772.55
16 3297629 3788.24
17 3278402 3865.22
18 3293923 3992.41
19 3288933 3993.45 #7
20 3054373 4057.22
21 3299721 4264.83
22 3160723 4292.23
23 3067492 4313.04
24 2099942 4353.46
25 3144155 4383.47
26 3114023 4392.09
27 3147579 4433.71
28 3297182 4484.71
29 3068066 4524.96
30 2065679 4569.38
31 3167353 4645.76
32 3172322 4671.53
33 3072291 4709.23
34 3177202 4782.00 #14
35 3153530 4921.74
36 3102787 4974.27
37 3258076 4990.94 #1
38 3263232 5001.39
39 3341199 5123.89
40 3343104 5138.33 #11
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Figure 9.1: Histogram for the final mass fraction of Leg 1 transfers.

NNH by tuning the number of champions at each leg2 to output the GTOC2
winner’s sequence resulted in prohibitive computational times (the simulation
had to be interrupted after 20 hours of computations...) and was therefore
abandoned. In the analysis of the subsequent legs, we set the maximum number
of paths to pursue to a more tractable value, namely 20. At this threshold, the
ratio of GTOC2 Group 4 asteroids is 25% (see Figure 9.3).

9.1.2 Remaining Legs
Unlike the first leg, the remaining legs computations are influenced by the num-
ber of champion paths pursued by the multi-path NNH. Based on the Leg 1
results, we investigate different number of champion paths: 3, 4, 5, 10, 13, 15,
and 20. Similarly, the departure windows can be tuned. We opt to investigate
three different departure windows: 10, 15 and 20 years. These departure win-
dows start from the date of arrival at the current departure asteroid. Note that
if the current transfer has already been computed, the algorithm uses the cor-
responding result rather than re-starting the grid search. It is assumed that the
selected departure windows are wide enough to allow geometric repeatability, at
least up to a certain extent. Based on this premise, the best individual transfer
found are cached. This caching feature means that, should a particular asteroid
pair be present in more than one sequence, the corresponding arc is optimized

2i.e., for Leg 1 select 37 champions, for Leg 2 a number of champions corresponding to the
rank of the partial GTOC2 #1, and so on.
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Figure 9.2: Number of GTOC2 Group 4 asteroids as a function of the number
of paths to pursue, using GS.
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Figure 9.3: Ratio of GTOC2 Group 4 asteroids as a function of the number of
paths to pursue, using GS.
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only once and the resulting value re-used if this arc needs to be evaluated again.
The caching of optimal values for individual transfers is expected to reduce the
complexity of the problem.

10-Years Departure Window

Independently of the number of champion paths selected, none of the GTOC2
solutions appear in the results yielded by the analysis with a 10 year departure
window. This seems to indicate that the departure window is too narrow: the
GTOC2 sequences rank below the path threshold in the intermediate legs and
are therefore discarded along the way. The 10 best sequences, and corresponding
total ∆V , can be found in Appendix C.

While the quality of the results obtained with a 10 year departure window
are not satisfactory, at least when compared to GTOC2 results, we can extract
some information regarding the computational time needed by the multi-path
NNH to produce results, as a function of the number of champion paths. The
computational time needed for each run of the multi-path NNH is given in Table
9.2. The number of different transfers (arcs) optimized, according to Equation
(5.2.2), is also listed. We can see that, with departure windows of 10 years,
the multi-path NNH never takes more than one hour to complete: with 20
champion paths, the algorithm takes 46 minutes to terminate. At the other
extreme, taking 3 champion paths results in computational times of merely 10
minutes. As expected, the computational time increases with the number of
champion paths. Indeed, the larger the number of champion paths, the larger
the number of transfers that need to be computed.

Table 9.2: The computational time needed by the multi-path NNH with 10-years
departure windows, using GS.

Number of 3 4 5 10 13 15 20
champion paths

Number of 2054 2626 3198 6058 7774 8918 11778
arcs evaluated
Computational 0.17 0.21 0.25 0.44 0.56 0.61 0.77

Time [h]

15-Years Departure Window

When setting the departure window to 15 years, the only GTOC2 solution
present in the last leg computations is the runner-up: the solution from the
Moscow Aviation Institute and Khrunichev State Research and Production
Space Center, to which we shall refer, from here on, as GTOC2 #2.

Table 9.3 lists the rank of the (partial) GTOC2 #2 asteroid sequence at
each of the consecutive leg computations, with the departure windows for the
multi-path NNH set to 15 years. Note that n.a. represents (partial) sequences
that are discarded before reaching a given leg computation.

The first observation we can make when looking at Table 9.3 is that the rank
of the GTOC2 #2 sequence is greatly degraded when the last leg is reached.
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Table 9.3: Rank of the GTOC2 #2 (partial) sequence as found by the multi-path
NNH with 15-years departure windows, using GS.

Number of Leg 1 Leg 2 Leg 3 Leg 4
champion paths

3 2 4 n.a. n.a.
4 2 4 3 39
5 2 4 3 44
10 2 4 6 81
13 2 4 6 103
15 2 4 7 115
20 2 4 10 148

While the partial sequences (sequences up to Leg 1, up to Leg 2 and up to Leg 3)
rank in the top-ten independently of the number of champion paths (except for
the third leg with three champion paths), the complete sequence ranks between
39th and 148th, depending on the number of champion paths. This degradation
of the rank of the GTOC2 #2 sequence in Leg 4 is coherent with the study
conducted by [Alemany and Braun, 2007], which showed that the correlation
between the optimal high-thrust and low-thrust trajectories decreases for the
last leg of the GTOC2 problem. Also worthy of noting, the GTOC2 #2 final
ranking improves when reducing the number of champion paths. This is true
while the number of champion paths is larger than three: with three champion
paths, the GTOC2 #2 partial sequence ranks 4th in Leg 2 and is therefore
discarded. Hence the n.a. notes for the remaining legs. The improvement of
the GTOC2 #2 rank with the downsizing of the number of champions can be
explained by the fact that a more restrictive value will discard, at a given leg,
more partial sequences which may prove to be more attractive further down the
line. Reducing the number of champion paths effectively decreases the number
of rival sequences and therefore the GTOC2 #2 sequences ranks better.

With respect to the computational times involved in solving the GTOC2
asteroid selection problem with a multi-path NNH with 15-years departure win-
dows, Table 9.4 list the elapsed time as function of the number of champion
paths. As with the 10-years departure windows variant, the computational
time needed for algorithm completion increases with the number of champion
paths. The explanation for this phenomenon is identical: the larger the num-
ber of paths that transit from one leg to the other, the larger the number of
transfers that need to be computed at the following step. Note also that the
computational time needed by the multi-path NNH with 15 years is larger than
with 10 years: with 20 champions, the multi-path NNH takes about one hour
and half instead of 46 minutes, i.e. close to twice as long. The same explanation
applies: the larger the departure windows, the larger the number of grid points
inspected by the grid search and therefore the larger the computational effort.

20-Years Departure Window

For departure windows of 20 years, the GTOC2 #2 sequence is the only GTOC2
solution to make it to the final leg computations for every number of champions
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Table 9.4: The computational time needed by the multi-path NNH with 15-years
departure windows, using GS.

Number of 3 4 5 10 13 15 20
champion paths

Number of 2054 2626 3198 6058 7774 8918 11778
arcs evaluated
Computational 0.26 0.32 0.43 0.76 0.93 1.04 1.54

Time [h]

considered, including three champion paths.
The rank of the (partial) GTOC2 #2 asteroid sequence at each of the con-

secutive leg computations with 20-years departure windows is given in Table
9.5.

Table 9.5: Rank of the GTOC2 #2 (partial) sequence as found by the multi-path
NNH with 20-years departure windows, using GS.

Number of Leg 1 Leg 2 Leg 3 Leg 4
champion paths

3 2 3 3 36
4 2 3 4 43
5 2 3 4 55
10 2 3 6 96
13 2 3 7 122
15 2 3 7 145
20 2 3 8 186

Akin the results with 15-years departure windows, the rank of the GTOC2
#2 sequence deteriorates for the final leg, when compared with the rank of the
same sequence truncated at Leg 3. Another similarity with the previous case
arises when noticing that the rank of the GTOC2 #2 solution improves when
reducing the number of champion paths: the 186th position with 20 champions
evolves into a 36th position with 3 champions. But unlike what we could see with
15-years departure windows, selecting three champion paths does not discard
the GTOC2 #2 solution from the final trajectories. This means that allowing
for larger departure windows leads to a relatively less expensive partial GTOC2
#2 sequence, namely up to Leg 3. However, it also leads to a relatively more
expensive final GTOC2 #2 sequence as infered by the GTOC2 #2 rank drop
in the complete sequences, for the same number of champion paths, from 15
(Table 9.3) to 20 (Table 9.5) years departure windows.

For a number of champions larger than 10, another GTOC2 solution is
present in the last leg computations: the sequence from the University of Glas-
gow et al., to which we shall refer to as GTOC2 #123. Bear in mind that

3Although the solution from the University of Glasgow et al. was not ranked due to large
constraint violations, it is the 12th listed team in [Petropoulos, 2007].
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GTOC2 #12 was disqualified from the competition due to significant position
and velocity violations which could not be resolved within the timeframe of
the competition. The rank of the GTOC2 #12 as a function of the number of
champion paths is given in Table 9.6, where the same notation for discarded
sequences as in Table 9.3 is used.

Table 9.6: Rank of the GTOC2 #12 (partial) sequence as found by the multi-
path NNH with 20-years departure windows, using GS.

Number of Leg 1 Leg 2 Leg 3 Leg 4
champion paths

3 2 11 n.a. n.a.
4 2 11 n.a. n.a.
5 2 11 n.a. n.a.
10 2 11 n.a. n.a.
13 2 12 8 32
15 2 12 8 38
20 2 12 9 45

As with GTOC2 #2, there is a deterioration of the GTOC2 #12 rank in Leg
4. However, this degradation is not as severe, given that GTOC2 #12 ranks
considerably better than GTOC2 #2, for the same number of champion paths.
For the larger numbers of champions, GTOC2 #12 is between 80 and 141 places
ahead of GTOC2 #2, for the complete sequences. Given that the GTOC2 #12
was not ranked in the competition due to large constraint violations, one should
be careful when drawing conclusions. If we assume that a constraint-compliant
GTOC2 #12 complete trajectory would have a lower objective function value
than GTOC2 #24, the improved final rank of GTOC2 #12 over GTOC2 #2
is in tune with the observations from [Alemany and Braun, 2007] regarding the
degradation of the correlation between high- and low-thrust optimal trajectories
for Leg 4. As with the GTOC2 #2 sequence, the larger the number of champions
(starting at 13), the lower the final rank of GTOC2 #12.

Finally, let us take a look at the computational times inherent to a multi-
path NNH with 20-years departure windows, as shown in Table 9.7.

Table 9.7 exhibits the same trend as Tables 9.2 and 9.4: increasing number
of champions leads to increasing computational times. Moreover, there is also
an increase in computational time, for the same number of champions, from 15-
to 20-years departure windows. These increases are due to the larger complex-
ity inherent to larger numbers of transfers and to larger departure windows,
respectively. Note however that the relative increase from 15 to 20 years (ap-
proximately 20% for 20 champions) is quite lower than from 10- to 15-years
departure windows (approximately 100%).

4The author believes this is a fair assumption given that the constraint-violating solution
as a lower objective function value and that forcing the trajectory to respect the constraints
will most probably come at the cost of a loss in objective function value.
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Table 9.7: The computational time needed by the multi-path NNH with 20-years
departure windows, using GS.

Number of 3 4 5 10 13 15 20
champion paths

Number of 2054 2626 3198 6058 7774 8918 11778
arcs evaluated
Computational 0.32 0.41 0.55 0.83 1.09 1.16 1.88

Time [h]

9.1.3 Conclusions
In order to compare the performance of the multi-path NNH with the different
departure windows, the GTOC2 #2 rank and the elapsed time are plotted in
Figures 9.4 and 9.5, respectively.

In Figure 9.4, a rank of 500 is equivalent to a discarded sequence. As dis-
cussed earlier, the 10 year departure windows are too narrow to allow the
GTOC2 #2 sequence to be present in the final asteroid sequences, indepen-
dently of the number of champion paths. When considering 15-years departure
windows, selecting merely three champion paths to pursue is too strict of a re-
quirement to not discard the GTOC2 #2 solution. For the rest of the possible
numbers of champions, the GTOC2 #2 rank exhibits a negative linear trend:
the rank of the GTOC2 #2 sequence decreases linearly with increasing num-
ber of champion paths. With 20-years departure windows, a similar trend can
be observed with exception of the GTOC2 #2 sequence not being discarded
with three champions. When not discarded, the GTOC2 #2 ranks better with
the 15-years departure windows than with the 20-years ones. Nonetheless, the
overall best rank obtained by the GTOC2 #2 sequence is 36th, for 20-years
departure windows and only three champion paths.

With respect to the computational effort needed by the three variants of
the forward multi-path NNH, based on Figure 9.5, these display roughly linear
trends: the larger the number of champions, the longer the algorithm needs
to complete. The difference in relative computational effort increase from 10-
to 15-years departure windows and from 15 to 20-years departure windows is
clearly visible. Note that even the most complex variant (20-years departure
windows and 20 champions) of the problem is handled in less than two hours.

The relative quality of the sequences found is rather disappointing. The
algorithm cannot return the GTOC2 winning sequence without a considerable
computational effort, and even then, we believe it would be poorly ranked. On
the other hand, the GTOC2 runner-up sequence can be found in most of the
cases, namely with large departure windows, a restricted number of champions
on the first three legs and considering a larger number (about 50) of complete
sequence. Such parameters are in tune with the findings of [Alemany and Braun,
2007]: a more constraining number of champions is applied to the legs with a
high correlation between optimal high- and low-thrust solutions (Legs 1, 2 and
3) and more leeway for the final leg, where the correlation is weaker. In a few
special cases (very large departure windows and large number of champions),
a second GTOC2 solution is returned by the multi-path NNH. While, in these



9.1. FORWARD SEARCH, OPTIMAL FINAL MASS 129

Figure 9.4: Rank of the GTOC2 runner-up in the forward search as a function
of the number of champion paths, using GS.

Figure 9.5: Computational time of the forward search as a function of the
number of champion paths, using GS.
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cases this solution outranks the GTOC2 runner-up, it was disqualified from the
GTOC2 competition due to constraint violations. Considering the limit on the
maximum number of champion paths (20), the forward search does not yield any
of the other GTOC2 solutions. However, the relatively small computation times
involved in obtaining said results provide confidence that the multi-path NNH
can handle slightly more complex models. Therefore, we attempt a backward
search.

9.2 Backward Search, Optimal Final Mass
Given that, for the forward search, Leg 4 results proved to be the less reliable,
we decide to pursue a backward search with multi-path NNH. In other words,
we will start the selection process by identifying promising transfers for Leg 4
and finish with Leg 1. The continuous arc cost function to be optimized by GS
is the same as in the previous section, namely Equation (6.1.5).

Given that most GTOC2 solutions correspond to mission times-of-flight of
approximately 10 years (see Section 2.3), we take the arrival window at Group 1
asteroids to be 10 years later than the original 2015 - 2035 departure window, i.e.
the spacecraft can arrive at a Group 1 asteroid anywhere between January 1st
2025 and December 31st 2045. Since we are constructing the different mission
scenarios backwards, this involves some gymnastic with respect to the departure
dates for the following transfers. To explain this, let us consider the Leg 3
computations. Given the departure date of the Leg 4 transfer, we determine
the arrival date interval. The upper limit of said interval is the departure date
of the next transfer, to avoid a mission scenario where the spacecraft would
leave an asteroid before getting there. The lower limit is variable, based on a
variable arrival window, similar to the departure window used for the forward
search. The departure date is then derived from the time-of-flight, which can
vary between 10 and 610 days. These computations are illustrated in Figure
9.6, where overlined values are constant, td and ta stands for departure and
arrival date, respectively, the arrival window is indicated by T , the numerical
index indicates the leg number, and tf,min and tf,max denote the minimum and
maximum times-of-flight, respectively.

9.2.1 Leg 4
As with the forward search, the results of the first leg investigated, here Leg
4, are constant over the different parameter variations since all the possible
Leg 4 transfers are computed, therefore overrulling the effect of the number of
champions, and since the arrival window is fixed. Table 9.8 lists the 35 best
Leg 4 transfers according to minimum J2 value (more specifically according to
the equivalent minimum ∆V ), as well as the GTOC2 partial sequences that fall
outside the top-35 transfers.

The degradation of the correlation between optimal high- and low-thrust
transfers for Leg 4 is visible when comparing Tables 9.1 and 9.8. While for
Leg 1 all GTOC2 Group 4 asteroids are contained in the top-40 high-thrust
transfers, only half the GTOC2 Group 1 - Group 2 asteroid combinations are
present in the top-35 high-thrust Leg 4 transfers. The transfers corresponding to
the GTOC2 second, third and fourth best sequences are ranked below 100. At
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Table 9.8: The 35 best Leg 4 transfers, according to minimum ∆V , and GTOC2
solutions ranking, using GS.

Rank Group 1 Asteroid Group 2 Asteroid Minimum ∆V [m/s] GTOC2 Rank
1 2001902 2000022 2465.18
2 2014569 2000325 2553.29
3 2015278 2000120 2672.94
4 2001754 2000490 2687.16
5 2002760 2000325 2730.82
6 2002483 2000168 2806.76
7 2002959 2000414 2858.49
8 2002959 2000334 2892.60
9 2000361 2000508 2904.82
10 2011542 2000086 3041.75
11 2003134 2000338 3111.54
12 2002959 2000104 3113.69
13 2002959 2002407 3178.96
14 2002959 2001015 3188.20
15 2002760 2001625 3195.10
16 2001038 2000022 3258.48
17 2001038 2000481 3269.42
18 2000225 2000105 3280.42
19 2003134 2000713 3295.03
20 2011542 2001445 3295.24
21 2002959 2000058 3301.07 #1, #12
22 2009661 2000508 3309.66
23 2001345 2000173 3317.23
24 2001038 2000110 3377.06 #6
25 2001902 2000977 3441.63
26 2014569 2000356 3460.41
27 2009661 2000566 3479.23
28 2003134 2000798 3519.53
29 2001038 2001028 3519.84
30 2014569 2000047 3542.20 #7
31 2002760 2000120 3548.37
32 2002483 2000074 3555.60 #9
33 2001038 2000494 3588.34
34 2001345 2000490 3662.57
35 2001902 2000145 3679.52 #5
...
105 2011542 2000209 4447.89 #3
117 2002483 2000395 4513.97 #13
124 2002483 2000569 4569.23 #2
348 2009661 2000224 5637.77 #10
365 2001754 2000240 5676.23 #4
5966 2000659 2000075 11866.00 #11
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Figure 9.6: Departure dates determination for backward search.

the bottom of the list, the transfer corresponding to 11th best GTOC2 sequence
ranks rather badly (5966th out of 16896 transfers) when compared to the other
GTOC2 sequences, which is in conformity with the relatively poor GTOC2
objective function value corresponding to said sequence. The GTOC2 sequence
that ranks best (21st) corresponds to the GTOC2 winner.

In order to include as many GTOC2 solutions as possible while preserving
the computational tractability of the problem, we set the maximum number of
champions for the following leg, Leg 3, to 35. A sensitivity analysis on this
parameter is conducted hereafter.

9.2.2 Leg 3

While the Leg 4 results are not influenced by the number of champion paths, the
Leg 3 computations will depend on that parameter. Based on the results of Leg
4, we select the following numbers of champions for investigation: 21, 25, 30, 35.
The maximum value, 35, was previously justified and the minimum value, 21,
corresponds to the position of the best ranked GTOC2 partial sequence. The
arrival windows can also be tuned and here we analyze three variants: 10, 15
and 20 years wide arrival windows.

Looking back on Table 9.8, we can see that the GTOC2 partial sequence
that ranks best corresponds to both the GTOC2 winner (Politecnico di Torino,
referred to as GTOC2 #1 from here on) and the GTOC2 #12 solutions. These
are the only two GTOC2 sequences that will consistently be present in Leg
3 calculations, throughout the selected spectrum of number of champions. We
therefore focus, in the following sections, on both sequences to assess the quality
of the Leg 3 calculations.
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10-Years Arrival Window

Adopting a 10-years arrival window for the backward search multi-path NNH
does not yield very positive results, as confirmed by looking at Table 9.9 where
the Leg 3 rank of the GTOC2 solutions that ranked higher than 35 in Leg 4
is given. Two GTOC2 partial sequences, GTOC2 #9 and #5, are only present
in Leg 3 computations for a number of champions equal to 35 (cf. Table 9.8).
In this case, the GTOC2 sequences #9 and #5 rank 1889th and 4537th, re-
spectively, which are rather poor standings. The GTOC2 #6 and #7 sequences
change relative positions from Leg 4 to Leg 3, meaning that the asteroid 2000047
is a more promising arrival asteroid for Leg 3 than asteroid 2000110. Despite
ranking better than GTOC2 #6 sequence (200th versus 604th with 35 cham-
pion paths), GTOC2 #7 sequence is discarded from Leg 3 computations at an
earlier stage due to its weaker rank in Leg 4. By design, the GTOC2 #1 and
#12 sequences transit to the Leg 3 computations independently of the number
of champions. Figure 9.7 plots the rank of both sequences as a function of the
number of champions. Note in Table 9.9 that, as long as they are not discarded,
the ranking of the GTOC2 solutions improves when the number of champion
paths is reduced, meaning that some lower-ranked sequences in Leg 4 end up
being more attractive when the Leg 3 computations are added, and therefore
outrank GTOC2 sequences in that leg.

Table 9.9: Leg 3 rank of the GTOC2 (partial) sequences as found by the back-
ward multi-path NNH with 10-years arrival windows, using GS.

Number of GTOC2 Rank
champion paths #1 #12 #6 #7 #9 #5

21 80 76 n.a. n.a. n.a. n.a.
25 90 86 472 n.a. n.a. n.a.
30 98 94 537 189 n.a. n.a.
35 101 97 604 200 1899 4537

The decreasing trend in ranking as the number of champions grows is clear
visible in Figure 9.7. We can see that both sequences rank between approxi-
mately 80th and 100th, independently of the number of champions. Also note-
worthy, the GTOC2 #12 partial sequence constantly outperforms the GTOC#1
partial sequence. The difference in their ranking is constant and equal to 4 (see
Table 9.9) throughout the analysis.

Finally, let us turn to the computational cost of the backward search. The
computational time needed up to Leg 3 with 10-years arrival windows is given
in Table 9.10. The number of individual transfers (arcs) optimized is also listed.
The algorithm takes between roughly two and three hours, depending on the
number of champion paths. Despite the fact that only two out of the four
legs are computed, this is a large increase with respect to the complete for-
ward search from Section 9.1.2. This increase is due to two factors. First, the
Leg 4 computations, not being single-sourced (i.e. not having a single depar-
ture body), take considerably longer than Leg 1 computations. Second, the
magnitude of the numbers of champion paths is larger (the minimum number
of champions considered for the backward search is larger than the maximum
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Figure 9.7: Rank of the GTOC2 #1 and #12 partial sequences for Leg 3 of the
backward search with 10-years arrival windows, using GS.

number of champions in the forward search analysis), leading to an increased
number of transfers needing to be computed.

Table 9.10: The computational time needed up to Leg 3 by the backward multi-
path NNH with 10-years arrival windows, using GS.

Number of 21 25 30 35
champion paths

Number of 23196 24396 25896 27396
arcs evaluated
Computational 1.99 2.27 2.84 3.22

Time [h]

Should the number of champion paths be kept constant from Leg 3 to Leg 2,
none of the GTOC2 sequences would transit to the next phase since their ranking
(cf. Table 9.9) is always below the number of champions. Including them in Leg
2 computations would require considerably broadening the number of champions
and add a large amount of time to the already lengthy computations. Moreover,
there would be no guarantee on the quality of the results. Therefore, the Leg 2
computations with 10-years arrival windows will not be pursued.

15-Years Arrival Window

Independently of the number of champions, the backward search with the multi-
path NNH for 15-years arrival windows yields poor results, as seen in Table 9.11
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which indicates the Leg 3 rank of the GTOC2 solutions that ranked above 35
in Leg 4. The GTOC2 #9 and #5 sequences are only present when considering
35 champion paths but rank very badly: 2559th and 3107th, respectively. As
with 10-years arrival windows, the GTOC2 #6 and #7 sequences swap relative
positions, indicating a relatively less costly Leg 3 transfer for the latter. The
GTOC2 #1 and #12 sequences are the only ones not to be discarded through-
out the analysis. The evolution of their ranking is illustrated in Figure 9.8.
Table 9.11 displays the same trends as Table 9.9, namely with respect to the
improvement of the rank of all GTOC2 solutions, when reducing the number of
champion paths.

Table 9.11: Leg 3 rank of the GTOC2 (partial) sequences as found by the
backward multi-path NNH with 15-years arrival windows, using GS.

Number of GTOC2 Rank
champion paths #1 #12 #6 #7 #9 #5

21 110 104 n.a. n.a. n.a. n.a.
25 125 119 664 n.a. n.a. n.a.
30 136 130 757 270 n.a. n.a.
35 143 137 846 286 2559 3107

Figure 9.8: Rank of the GTOC2 #1 and #12 partial sequences for Leg 3 of the
backward search with 15-years arrival windows, using GS.

Looking at Figure 9.8, both the GTOC2 #1 and #12 partial sequences rank
below a 100th at all times. The rank of both partial sequences decreases with
the increase in the number of paths, akin what we observed in Figure 9.4. The
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GTOC2 #12 partial sequence is consistently better ranked than the GTOC2
#1 partial sequence, albeit by less than 10 places.

Let us take a look at the computational times involved in the obtention of
these results, as given in Table 9.12. With an arrival window of 15 years, the
backward multi-path NNH needs between two hours and a half and four hours,
depending on the number of champion paths, to complete the Leg 4 and Leg 3
computations. The larger the number of champion paths, the larger the number
of Leg 3 transfers needing to be computed and therefore the longer the duration
needed to complete those computations.

Given that the best GTOC2 solutions rank very poorly, the number of cham-
pions needed to include them in the Leg 2 computations would need to be in-
creased. This would lead to even larger computational times, greatly hindering
the computational efficiency of the algorithm. We therefore decide not proceed
with the Leg 2 computations.

Table 9.12: The computational time needed up to Leg 3 by the backward multi-
path NNH with 15-years arrival windows, using GS.

Number of 21 25 30 35
champion paths

Number of 23196 24396 25896 27396
arcs evaluated
Computational 2.65 2.95 3.50 3.92

Time [h]

20-Years Arrival Window

With 20-years arrival windows, the Leg 3 results found with the backward search
for Leg 3 are worse when compared to the 15-years arrival windows results (see
Table 9.13). The exception is the GTOC2 #6 partial sequence, which ranks
slightly better with 20-years arrival windows: 810th instead of 846th for 15-years
windows, with 35 champion paths. The GTOC2 #9 and #5 partial sequences
are discarded from Leg 3 computations for all the numbers of champions consid-
ered, except for 35 champion paths. For that value, their rank is quite poor: the
GTOC2 #9 sequence ranks 3045th while the GTOC2 #5 sequence ranks 3661th.
Akin what we observed for 15-years arrival windows, the Group 2 asteroid from
GTOC2 #7 sequence is a more interesting arrival target than that of GTOC2
#6 sequence, as reflected by the change in their relative ranks from Leg 4 to
Leg 3. As expected, the GTOC2 #1 and #12 sequences are preserved through-
out the analysis. The evolution of their ranking as a function of the number
of champion paths is plotted in Figure 9.9. Similarly to what happened with
15-years arrival windows, the rank of all GTOC2 partial sequences improves
when we restrict the number of champions, as long as they are not discarded.

Based on Figure 9.9, the GTOC2 #1 and #12 sequences never rank above
a 100th, as was the case for 15-years arrival windows. Note however that the
difference between their ranks is larger than previously. They are up to 26 places
appart, the GTOC2 #12 partial sequence continuing to overrank the GTOC2
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Table 9.13: Leg 3 rank of the GTOC2 (partial) sequences as found by the
backward multi-path NNH with 20-years arrival windows, using GS.

Number of GTOC2 Rank
champion paths #1 #12 #6 #7 #9 #5

21 132 112 n.a. n.a. n.a. n.a.
25 152 129 645 n.a. n.a. n.a.
30 167 144 734 321 n.a. n.a.
35 177 151 810 344 3045 3661

Figure 9.9: Rank of the GTOC2 #1 and #12 partial sequences for Leg 3 of the
backward search with 20-years arrival windows.



138 CHAPTER 9. COMPLETE ASTEROID POOL, USING GS

#1 one, for all numbers of champions. Both ranks decrease with the increase in
the number of champion paths.

In terms of computational effort, the larger arrival windows lead to an in-
crease, with respect to the previous results with 15-years arrival windows, in
the computational time needed. This quantity is listed in Table 9.14 for each of
the number of champions investigated. The backward search completes in three
to four and half hours, depending on the number of champions. Intuitively, the
larger the number of champions, the larger the computational effort needed to
compute Leg 3 results.

Table 9.14: The computational time needed up to Leg 3 by the backward multi-
path NNH with 20-years arrival windows, using GS.

Number of 21 25 30 35
champion paths

Number of 23196 24396 25896 27396
arcs evaluated
Computational 2.94 3.25 3.82 4.26

Time [h]

We reach the same conclusion as for 15-years arrival windows: with the
GTOC2 sequences ranking very poorly and the computational effort being con-
siderable, attempting to enlarge the number of champions for Leg 2 will probably
lead to increased complexity, increased computational cost and no guarantee on
the improvement of the GTOC2 partial sequences ranking. We therefore do not
proceed to Leg 2 computations.

9.2.3 Conclusions
In order to compare the backward search results across the three different arrival
windows, we plot the ranking of GTOC2 #1 and the computational time up to
Leg 3 as a function of the number of champion paths in Figures 9.10 and 9.11,
respectively.

If we focus on the GTOC2 winner sequence ranking, whose evolution is
shown in Figure 9.10, it varies from about 80th (for small arrival windows and a
small number of champions) to approximately 180th (with large arrival windows
and a large number of champions). The ranking of the GTOC2 winner deteri-
orates when we increase the arrival windows and/or the number of champion
paths. The larger the arrival window, the more considerable is the deteriora-
tion of the GTOC2 winner ranking. This translates, in Figure 9.10, into the
increasingly steeper slopes as the arrival windows becomes lengthier.

Concerning the computational effort inherent to the different arrival win-
dows, as depicted in Figure 9.11, the computational cost increases almost lin-
early with the number of champions. Interestingly, the slopes describing the
computational effort appear to be roughly the same, which was not the case in
Figure 9.5. On the other hand, the gap between the slopes from 10 to 15 is larger
than from 15 to 20, a situation previously observed in Figure 9.5. Throughout
the analysis, the computational time is bound between two hours and four and
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Figure 9.10: Rank of the GTOC2 winner in the backward search up to Leg 3 as
a function of the number of paths, using GS.

half hours, which is considerably larger than the time needed by the forward
search, especially considering that these values only correspond to half the total
number of legs.

While the Leg 4 results seemed promising, namely due to the relatively
high rank of the GTOC2 winning partial sequence, Leg 3 computations did not
produce satisfactory results. The GTOC2 solution that, up to Leg 3, ranks best
(GTOC2 #12, which was disqualified from the competition due to constraint
violations) is below the 75th place at all times. The GTOC2 winner partial
sequence follows shortly behind. The computational times involved are quite
large, considering that only the second half of the mission is analysed. In fact,
they are too long to contemplate pursuing the computations for Legs 1 and 2,
since doing so would mean increasing the number of champions. Extrapolating
from Figure 9.11, this would lead to even larger computational efforts, which
would compromise the efficiency of the search beyond usefulness.

Given that the results of the backward search are promising for Leg 4 but
disappointing for Leg 3, it is suggested to select Leg 3 as patch leg when per-
forming a multi-path bi-directional NNH search. Due to the timeframe of the
MSc Thesis, such search was not performed. Combining the results above with
those from Section 9.1 suggests that the only GTOC2 sequence to come out of
such search, within a reasonable computational time, would be GTOC2 #12,
provided the number of champions is larger than 20 and the departure win-
dows length set to 20 years. This sequence, or more precisely its corresponding
GTOC2 solution, was disqualified due to constraint violations but led to a larger
objective function value than the equally constraint-violating solution submitted
by the TU Delft-led team.
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Figure 9.11: Computational time of the backward search up to Leg 3 as a
function of the number of paths, using GS.

9.3 Forward Search, Optimal Final Mass to Time-
of-Flight Ratio

We now attempt a forward search with the multi-path NNH where the arc costs
to be optimized by GS are given by Equation (6.1.4), where the initial mass is
taken to be m0 = 1500 kg. Unlike the two previous sections, the time-of-flight
is now taken into account. However, since the arc costs of the different legs
are computed separately, only the time-of-flight for the transfers is evaluated.
Waiting times and total mission time are therefore not evaluated here.

The parameters for the first leg are the same as in Section 9.1: 2015-2035
departure window, time-of-flight between 10 and 610 days, both parameters
discretized in 10 days segments.

9.3.1 Leg 1
As discussed in Section 9.1, the Leg 1 transfer computations are not affected by
the number of champions since all transfers need to be computed. Moreover, the
departure window (2015-2035) is kept constant. Table 9.15 lists the 30 best Leg
1 transfers found by minimum J1 value, as well as the GTOC2 Leg 1 transfers
that rank below 30th.

Table 9.15 reveals that 7 GTOC2 partial sequences, including the GTOC2
winner, belong the in the top-30 of best Leg 1 transfers evaluated based on J1.
Refining the top transfers shows that 6 GTOC2 partial sequences are ranked
in the top-ten. One should note however that the Earth - 3250293 transfer
(8th) alone accounts for four different GTOC2 solutions. The GTOC2 winner
(28th) does not figure in the top-ten transfers. The remaining 6 GTOC2 partial
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Table 9.15: The 30 best Leg 1 transfers according to J1 and GTOC2 solutions
ranking, using GS.

Rank Group 4 Asteroid Minimum J1 [yrs/kg] GTOC2 Rank
1 3156302 0.000071
2 3297182 0.000092
3 3068066 0.000113
4 3024030 0.000272
5 3177193 0.000275
6 3329255 0.000280 #8
7 3017309 0.000283 #5
8 3250293 0.000322 #2, #6, #10, #12
9 3293923 0.000371
10 3071939 0.000394
11 3167367 0.000400
12 3297379 0.000462
13 3293922 0.000477
14 3297629 0.000519
15 3120863 0.000519
16 3160723 0.000562
17 3124996 0.000571
18 3262569 0.000574
19 3054338 0.000575
20 3144155 0.000590
21 3278402 0.000604
22 3263232 0.000626
23 2099942 0.000643
24 3016523 0.000677
25 3324656 0.000689
26 3338368 0.000710
27 3070801 0.000728
28 3258076 0.000743 #1
29 3114023 0.000747
30 3153530 0.000754
...
38 3177202 0.000939 #14
44 3288933 0.001007 #7
59 3343104 0.001318 #11
68 3170221 0.001589 #3,#4,#9,#13
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sequences rank below 40th, with the particularity of the GTOC2 #11 solution
not ranking last (unlike what was observed in Tables 9.1 and 9.8) and therefore
outclassing solutions with higher GTOC2 cost function values, e.g. GTOC2 #3.

Comparing Tables 9.15 and 9.1 allows to establish a few observations re-
garding the suitability of cost function J1. First note that, as a whole, GTOC2
sequences have a worse ranking: the GTOC2 sequence that ranks best in Table
9.15, GTOC2 #8, is 6th, while in Table 9.1 the best GTOC2 sequence, GTOC2
#2 among others, ranks 2nd. Moreover, with J1, the last GTOC2 sequence,
GTOC2 #3 among others, ranks 68th, which is 28 positions below the last
GTOC2 sequence with J2, GTOC2 #11. Which brings into focus the fact that
2 of the 5 best GTOC2 solutions, namely GTOC2 #3 and #4, are the worst
classified GTOC2 sequences according to J1. The GTOC2 runner-up drops a
few places from Table 9.1 to Table 9.15. On the other hand, the GTOC2 #1
sequence ranks better with J1 than J2. This suggests that using J1 as cost
function may allow to reproduce the GTOC2 winning sequence.

Figure 9.12 is a histogram of the J1 values of Leg 1 transfers. Unlike Figure
9.1, where the histogram for the final mass fraction was plotted, a lower J1
value represents a better solution. Figure 9.12 seems to indicate that the J1
cost function does not allow to clearly identify promising candidates, as the
vast majority of the transfers lies around J1 = 0.005 years/kg. Note that four
transfers have a J1 value larger than 0.1 years/kg and are therefore not depicted
in Figure 9.12.
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Figure 9.12: Histogram of J1 values for Leg 1 transfers, using GS.

The histogram in Figure 9.13 allows to have a closer look at the distribution
of J1 for the top transfers found. Doing so contradicts the idea transmitted by
Figure 9.12 regarding the suitability of cost function J1 to allow a clear and
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rapid identification of the top-transfers. There are 43 transfers with J1 values
below 0.001 years/kg. The most noteworthy feature of this histogram is the
gap between the three leading transfers (around J1 = 0.0001 years/kg) and the
remaining solutions found. It seems to indicate that these three transfers will
tend to be present in the top transfers of the following legs due to their path
cost being relatively better than the rest. Unfortunately, none of these three
transfers correspond to GTOC2 solutions.
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Figure 9.13: Zoomed-in histogram of J1 values for Leg 1 transfers, using GS.

9.3.2 Leg 2
After the analysis of the initial leg, the multi-path NNH proceeds to Leg 2
computations. Akin what was done in the previous sections, Leg 2 results are
obtained under varying conditions, namely in terms of departure window (10,
15 and 20 years) and number of champions (10, 15 and 20 champions).

10-Years Departure Windows

Analyzing Leg 2 results for 10-years departure windows, and namely the rank-
ing of the partial GTOC2 sequences given in Table 9.16, reveals that no partial
GTOC2 combination would progress to Leg 3 computations. Indeed, the partial
sequence that ranks best, GTOC2 #25, ranks below the champion threshold,
independently of the value of that threshold. The other GTOC2 partial se-
quences that transit from Leg 1, i.e. GTOC2 #5, #6 and #12, consistently
rank below 100th. The GTOC2 winner ranks below 20th in Leg 1 and therefore

5Up to and including Leg 2, the GTOC2 #2 and #10 partial sequences are identical.
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is not present in Leg 2 computations. Also, GTOC2 #8 does not follow the 4
- 3 - 2 - 1 asteroid group sequence and was therefore not considered in Leg 2
evaluations.

Table 9.16: Leg 2 rank of the GTOC2 (partial) sequences as found by the
forward multi-path NNH with 10-years arrival windows, using GS.

Number of GTOC2 Rank
champion paths #2, #10 #12 #6 #5

10 14 110 119 216
15 29 168 178 326
20 34 209 221 407

Increasing the number of champions leads to a drop in ranking for all partial
GTOC2 sequences. This signifies that there is a shift in power from Leg 1 to
Leg 2: a certain number of transfers that ranked lower in the initial leg lead to
better transfers in the second leg and end up overtaking the sequences which
were ahead in Leg 1. Therefore, increasing the number of champions does not
increase the probability of allowing a partial GTOC2 solution to transit to the
next leg as it simply leads to a larger number of transfers that outrank the
GTOC2 combinations. It does however, as expected, lead to an increase in
computational time, as shown in Table 9.17. This table also lists the number of
asteroid pairs (arcs) evaluated.

Table 9.17: The computational time needed up to Leg 2 by the forward multi-
path NNH with 10-years arrival windows, using GS.

Number of 10 15 20
champion paths

Number of 3338 4838 6338
arcs evaluated
Computational 15.58 21.23 27.22
Time [min]

15-Years Departure Windows

Table 9.18 gives the Leg 2 ranking of the partial GTOC2 sequences, as obtained
based on the minimum J1 value for departure windows of 15 years. As with 10-
years departure windows, none of GTOC2 partial sequences would transit to Leg
3 computations as none rank within the established number of champions. The
relative ranking of the partial GTOC2 sequences is the same for all numbers of
champions: GTOC2 #2, #12, #6 and finally #5. This is, incidentally, the same
order as with 10-years departure windows. Note that the latter ranks above the
three other GTOC2 sequences in Leg 1 computations, which means that asteroid
3250293 is a more interesting Leg 2 departure asteroid than asteroid 3017309,
with respect to J1 values.
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Table 9.18: Leg 2 rank of the GTOC2 (partial) sequences as found by the
forward multi-path NNH with 15-years arrival windows, using GS.

Number of GTOC2 Rank
champion paths #2, #10 #12 #6 #5

10 16 137 146 255
15 33 206 217 386
20 40 255 268 476

As in the previous scenario, increasing the number of champions leads to
the GTOC2 sequences falling in the Leg 2 ranking, as well as to an increase in
execution time (see Table 9.19). Also, notice the drop in ranking for all GTOC2
sequences and for all numbers of champions, from 10- to 15-years departure
windows. This indicates that increasing the length of the departure windows
allows the cost of other sequences to decrease in a more pronounced fashion than
that of GTOC2 partial sequences. In other words, partial GTOC2 sequences
profit less than other sequences from increasing the departure windows.

Table 9.19: The computational time needed up to Leg 2 by the forward multi-
path NNH with 15-years arrival windows, using GS.

Number of 10 15 20
champion paths

Number of 3338 4838 6338
arcs evaluated
Computational 21.17 32.80 39.59
Time [min]

20-Years Departure Windows

Increasing the departure windows further to 20 years does not yield better re-
sults. As seen in Table 9.20, none of the partial GTOC2 combinations are part
of the different numbers of champions. While their order in the classification
is unchanged, all GTOC2 sequences drop a bit further down the ranking, with
respect to the scenario with 15-years departure windows. Increasing the number
of champions only leads to an increase in the computational times needed to
solve the problem, as listed in Table 9.21.

9.3.3 Conclusions
Focusing on the Leg 2 rank of GTOC2 #2 (Figure 9.14) and on the computa-
tional times needed to solve the problems (Figure 9.15), one can draw certain
conclusions.

With respect to the ranking of GTOC2 #2, the GTOC2 solution that sys-
tematically ranks highest in Leg 2, it never falls within the specified number of
champions, independently of the departure window. Moreover, increasing the
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Table 9.20: Leg 2 rank of the GTOC2 (partial) sequences as found by the
forward multi-path NNH with 20-years arrival windows, using GS.

Number of GTOC2 Rank
champion paths #2, #10 #12 #6 #5

10 25 147 156 273
15 43 224 236 415
20 50 278 293 517

Table 9.21: The computational time needed up to Leg 2 by the forward multi-
path NNH with 20-years arrival windows, using GS.

Number of 10 15 20
champion paths

Number of 3338 4838 6338
arcs evaluated
Computational 29.86 41.42 51.81
Time [min]

number of champions leads to a degradation of the Leg 2 ranking, since it yields
a larger number of sequences that overtake GTOC2 #2 from Leg 1 to Leg 2.
The minimum number of champions that allow GTOC2 #2 to be part of Leg
2 computations is 8, its classification among Leg 1 transfers. However, there
is confidence that reducing the number of champions to this number will not
allow GTOC2 #2 to transit to Leg 3 computations either. The best Leg 2 rank-
ing of GTOC2 #2 is consistently achieved for departure windows of 10-years.
Expanding the search space to larger departure windows does not profit to the
GTOC2 #2 (nor to any other GTOC2 partial sequence) as its classification is
worse across all numbers of champion paths. Increasing the search space allows
to find more interesting transfers for other sequences, which end up outranking
GTOC2 #2.

In terms of computational effort, the results show the expected trends: in-
creasing either the number of champions or the length of the departure windows
leads to longer execution times, as the size of the problem grows. However, it
appears that the multi-path NNH is quite efficient, as it solves half the of the
largest problem (20 champions with 20-years departure windows) in less than
one hour. Extrapolating to obtain an estimate of the time needed to solve the
complete problem, this would lead to a total execution time of about 2 hours.
Note that this is approximately the same value found when using J2 to evaluate
the arc costs (see Table 9.7), which means that there is no added complexity
when replacing J2 with J1 as arc cost function. However, unlike J2, this cost
function does not allow the forward search to reproduce any of the GTOC2
solutions within the bounds considered.
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Figure 9.14: Rank of GTOC2 #2 in the J1 forward search up to Leg 2 as a
function of the number of paths, using GS.

Figure 9.15: Computational time of the J1 forward search up to Leg 2 as a
function of the number of paths, using GS.
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Chapter 10

Reduced Asteroid Pool

In light of the results obtained in Chapter 9, it was decided to focus on a reduced
set of asteroids in order to facilitate the identification of possible improvements
to the model and to the proposed tool to solve the combinatorial aspect of
GTOC2. The reduced set of asteroids is the collection of asteroids correspond-
ing to complete GTOC2 solutions corresponding to the pre-established asteroid
group order: 4 - 3 - 2 - 1. These are given in Table 10.1.

Table 10.1: The reduced set of asteroids composed of GTOC2 asteroids.

Group 4 Group 3 Group 2 Group 1
3258076 2000060 2000058 2002959
3250293 2000149 2000569 2002483
3170221 2000574 2000209 2011542
3343104 2001990 2000240 2001754
3017309 2000443 2000490 2001345
3288933 2000027 2000110 2001038

2001707 2000047 2014569
2001314 2000395 2000659
2000043 2000074 2009661
2000169 2000224

2000075

There are in total 36 asteroids: 6 in Group 4, 10 in Group 3, 11 in Group
2, and 9 in Group 1. Given the pre-determined asteroid group sequence, this
leads to 5940 different sequences. Given the low dimensionality of the problem,
compared with the complete asteroid set, no use is made of champion paths: all
possible sequences are evaluated.

Given that, in Chapter 9, the forward search with J2 was the variant of the
multi-path NNH that performed best, we will limit the analysis in the reduced
asteroid set to this alternative. Section 10.1 deals with the results obtained with
the cached forward search. Thereafter, Section 10.2 leans on the effect of the
caching feature as it is removed from the full, forward search. Conclusions with
respect to the suitability of DE as optimization technique for the individual
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transfers are drawn in Section 10.3, after analysis of the results obtained with
that method. Finally, each of the GTOC2 sequences1 is optimized as a whole in
Section 10.4 and a number of observations regarding the suitability of the high-
thrust model as preliminary approximation of the GTOC2 model are made.

10.1 Forward Search, Optimal Final Mass, using
GS

We start by applying the forward multi-path NNH to the reduced set of aster-
oids. The departure window for Leg 1 transfers is maintained as the original
GTOC2 window: 2015-2035. The departure windows for the following transfers,
starting at the time of arrival at the departure asteroid, vary within the same
values as in Chapter 9: 10, 15 and 20 years. The time-of-flight is bound within
10 and 600 days.

10.1.1 Final Ranking
The final ranking among the reduced asteroid set of the 12 GTOC2 sequences
is given in Table 10.2.

Table 10.2: The final ranking of GTOC2 sequences in the reduced asteroid set,
using GS.

GTOC2 Departure Window
Sequence 10 years 15 years 20 years

#1 801 4211 878
#2 36 432 559
#3 1416 47 59
#4 3704 3268 3923
#5 1370 2047 2520
#6 12 16 16
#7 50 79 2115
#9 2102 2995 3194
#10 122 2608 1493
#11 4019 4888 5172
#12 4576 66 50
#13 1771 2013 2147

The GTOC2 sequences display, in general, large fluctuations in their rank-
ing as a function of the length of the departure windows. Only the GTOC2 #6
sequence is consistently well-ranked, ending in the top-20 sequences indepen-
dently of the departure windows. On the other hand, the GTOC2 #1, #4, #5,
#9, #11, and #13 sequences persistently rank poorly across all departure win-
dow values. No GTOC2 sequence outclasses GTOC2 #6 but GTOC2 #2, #3,
#7, and #12 are present in the top-50 transfers, depending on the departure
window considered.

1Each of the GTOC2 sequences who comply with the 4-3-2-1 asteroid group order.
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The results found for the reduced set of asteroids with the forward multi-
path NNH are rather poor, especially with respect to GTOC2 #1, which does
not rank better than 801st independently of the departure window. Except
for GTOC2 #2 and #3, which punctually rank within the top-50, none of the
top-5 GTOC2 sequences are identified by the multi-path NNH as promising
combinations.

A relative ranking of the GTOC2 sequences was established in order to in-
vestigate whether the multi-path NNH succesfully identifies a given GTOC2 se-
quence as being more promising than the ones who ranked below in the GTOC2
competition. GTOC2 solutions with constraint violations, i.e. GTOC2 #12 and
#13, were removed from this relative ranking for the sake of clarity. This relative
ranking is illustrated in Figure 10.1. The light blue line allows to clearly visu-
alize intersections between the ranking based on the GTOC2 objective function
and the multi-path NNH relative classification. Note that, despite the indica-
tion in the abcissae axis, GTOC2 #8 was not evaluated since it does not respect
the 4 - 3 - 2 - 1 asteroid group order.

Figure 10.1: Relative ranking of GTOC2 sequences in the reduced asteroid set,
using GS.

Looking at the peaks in Figure 10.1, one can state that, besides consistently
(and accurately) identifying GTOC2 #11 as the worse sequence, the multi-path
NNH does not lead to an accurate relative ranking of GTOC2 sequences. The
most prominent examples are perhaps GTOC2 #4 and #6. The latter consis-
tently ends at the top of the relative classification, there outranking 5 sequences
which proved to be yield better objective function values during the GTOC2
competition. The former, on the other hand, ranks either 8th or 9th depending
on the departure window considered, therefore falling four to five ranks (out
of 11) when compared to the GTOC2 ranking. The GTOC2 winner sequence
oscillates between the 4th and 9th across the different departure windows. Note
also that the relative ranking shows considerable variations as a function of
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departure windows length.

10.1.2 Leg Ranking
Let us take advantage of the reduced set of asteroids to investigate the evolution
of the ranking of a few interesting GTOC2 sequences, across the leg computa-
tions. These are illustrated hereafter, in Figures 10.2 through 10.6, for GTOC2
#1, #2, #3, #4, and #6. Similar graphs for the remaining sequences can be
found in Appendix D. Note that the negative trend observable in most graphs
can be partly explained by the fact that the total number of unique sequences
increases as more legs are added: a given sequence may rank last up to Leg 2
and in the top half of complete sequences and yet have a higher absolute rank
in Leg 2 (out of 600 sequences) than in Leg 4 (out of 5940).

Figure 10.2: Ranking of GTOC2 #1 in the reduced asteroid set, using GS.

The rankings of GTOC2 sequences behave differently for different departure
windows. Starting with GTOC2 #1 (Figure 10.2), its Leg 4 ranking is nearly the
same for 10- and 20-years departure windows (about 800th) but very different
for 15-years departure windows and for the worst: approximately 4000th. It is
interesting to notice that up to Leg 3, the ranking for 10- and 15-years departure
windows is nearly the same, only to largely differ in the last leg. This seems
to indicate that the 15-years departure windows build up to a situation, in Leg
4, where the phasing between the Group 2 and Group 1 does not allow for a
“low-cost” transfer. For 20-years departure windows, the phasing of the Group
3 and Group 2 asteroids leads to a more interesting Leg 3 transfer with respect
to the other departure windows. However, the phasing in the last leg does not
yield the same transfer as with 10-years departure windows and the ranking of
GTOC2 plummets to the same level, i.e. about 800th.
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Figure 10.3: Ranking of GTOC2 #2 in the reduced asteroid set, using GS.

Figure 10.4: Ranking of GTOC2 #3 in the reduced asteroid set, using GS.
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Figure 10.5: Ranking of GTOC2 #4 in the reduced asteroid set, using GS.

Figure 10.6: Ranking of GTOC2 #6 in the reduced asteroid set, using GS.
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For GTOC2 #2 (Figure 10.3), the ranking is approximately constant across
the three first legs, independently of the departure window. However, for the
last leg, the larger the departure window, the lower the final rank of GTOC2
#2. Again, this is probably due to the heliocentric geometry of the Group 2 and
Group 1 asteroids within the time interval considered for Leg 4 computations.
The time interval for Leg 4 computations varies in length, but also in starting
date, for the different departure windows. Otherwise, the best Leg 4 transfer,
which occurs when considering 10-years departure windows, would also be found
in the larger time intervals.

Akin GTOC2 #2, the ranking of GTOC2 #3 is roughly the same for the
first three legs but not for the last leg, as shown in Figure 10.4. However, unlike
the previous sequence, the smallest departure window leads to a considerably
worse classification than the 15- and 20-years departure windows. This can
also be attributed to phasing, 10-years departure windows leading, in Leg 4,
to a range of orbital geometries for the Group 2 and Group 1 asteroids which
does not contain the relatively better transfer obtained with 15- and 20-years
departure windows. Also, the fact that the ranking of GTOC2 #3 is nearly
the same for 15- and 20-years departure windows indicates that the resulting
missions are probably the same in terms of departure and arrival dates at the
different asteroids. Another interesting observation regarding the evolution of
GTOC2 #3 ranking with the larger departure windows is that, unlike GTOC2
#1 and #2, GTOC2 #3 rises in the classification from Leg 3 to Leg 4, from
approximately 180th to about 50th. This shows the limitations of the leg-per-
leg approach of the multi-path forward NNH used in Chapter 9: sequences
may rank rather poorly in an intermediate leg but subsequently reclaim higher
classifications. With the implemented multi-path NNH, such sequences would
be discarded as soon as they ranked below the specified number of champions.
For the GTOC2 #3 sequence, setting the departure windows to 15 years and
the number of champions in the multi-path NNH to 50 would lead to it being
dicarded, despite ranking above 50th in the final classification (see Table 10.2).

Figure 10.5 illustrates yet another pattern: the ranking of GTOC2 #4 is
nearly not affected by departure window. Granted, the variation in Leg 4 rank-
ing (between 3268th and 3923rd, see Table 10.2) is larger than for, e.g., GTOC2
#2, but the impact on the relative ranking is lesser (GTOC2 #4 is systemati-
cally in the lower half of the final classification) and therefore less relevant.

Finally, GTOC2 #6 (Figure 10.6) is the GTOC2 sequence that ranks best
in Leg 4 in every scenario, as seen in Table 10.2 and Figure 10.1. While up to
Leg 2 the ranking of GTOC2 #6 is approximately the same across all departure
windows, the situation arises for the remaining two legs where the larger the
departure window, the lower the ranking. Note however that the spectrum of
the ranking is rather short. Therefore, the degradation of the ranking cannot
be linked to the phasing of the GTOC2 #6 asteroids. In fact, the departure
and arrival times for the different transfers are probably the same in all three
scenarii. However, increasing the departure windows leads to other sequences
having better phasing and therefore outranking GTOC2 #6. Note that the
evolution of the GTOC2 #6 classification follows the same pattern as some of
Figure 10.4 curves, namely with respect to the drop in ranking in Leg 3 with
respect to Leg 2 and Leg 4. This would lead, depending on the number of
champions specified, to the exclusion of GTOC2 #6 from the final sequences by
the multi-path NNH, despite the attractive final ranking in the reduced set of
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asteroids.
Based on the reduced set, it was shown that the forward search, multi-path

NNH fails to identify GTOC2 sequences as interesting asteroid combinations,
with the exception of GTOC2 #6. Moreover, among the GTOC2 sequences
themselves, the tool cannot properly rank the combinations according to their
GTOC2 fitness. Most combinations display a large fall in ranking when Leg
4 computations are added, adding to the notion that the correlation between
high- and low-thrust optimal trajectories is worse for the last leg. The last two
legs, and mostly Leg 4, show a visible sensitivity to the length of the departure
window, meaning that the phasing is of particular importance for these transfers.

10.2 Full Forward Search, Optimal Final Mass,
using GS

In the previous section, the best transfer for each combination of asteroids was
saved and reused if the same asteroid combination needed to be evaluated more
than once. Take for example the two following sequences:

Earth - 3258076 - 2000060 - 2000058 - 2002959

Earth - 3258076 - 2000149 - 2000058 - 2002959

These two sequences share the same Leg 4 transfer but have a different Leg 3
transfer. To avoid computing the 2000058 - 2002959 transfer twice, the best
transfer found when assessing the first sequence is used in the second sequence.
This caching of best transfer values wass intended to reduce the computational
complexity of the problem and thus lead to a reduction of the multi-path NNH
execution times. This feature may lead to infeasible sequences however, where
the departure date from an asteroid occurs before the arrival date of the pre-
vious leg. The “recycling” of best transfers values was implemented under the
working hypothesis that the departure windows considered were wide enough
to allow repeatability of the heliocentric geometry. However, the oscillation of
the GTOC2 sequences ranking across the different departure windows, as seen
in Table 10.2, leads to the dismissal of this hypothesis. We therefore proceed to
a full (as opposed to the recycled variant) forward search with the multi-path
NNH.

10.2.1 Final Ranking
The resulting final ranking of the 12 GTOC2 sequences is given in Table 10.3.

Akin Table 10.2, Table 10.3 points to large variations in the final ranking of
GTOC2 sequences as a function of the departure windows. This reinforces the
importance of phasing when analysing the GTOC2 sequences. The sequence
GTOC2 #11 has a very poor classification independently of the departure win-
dow, the highest rank achieved being 4746th for 15-years departure windows.
Along with this sequence, GTOC2 #1, #5, and #10 rank below 1000th at all
times. The only sequence to systematically rank above 100th is GTOC2 #3.
The GTOC2 #2, #6, and #7 occasionally rank in the top-20. For 10-years de-
parture windows there are four GTOC2 sequences in the top-50 combinations,
while there is only one (GTOC2 #6) in the 50 best combinations with departure
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Table 10.3: The final ranking of GTOC2 sequences in the reduced asteroid set
without caching, using GS.

GTOC2 Departure Window
Sequence 10 years 15 years 20 years

#1 1005 4684 1037
#2 12 499 671
#3 33 70 87
#4 112 195 246
#5 5537 2191 2784
#6 697 16 21
#7 7 1907 2353
#9 41 93 114
#10 2634 1308 1735
#11 4792 4746 5292
#12 1419 61 51
#13 74 1841 2405

windows of 15 and 20 years. Note that, according to methods description from
Section 3.1.1, these four solutions (GTOC2 #2, #3, #7 and #9) were found
via a preliminary screening based on optimal Lambert solutions. The fact that
they rank rather high in the asteroid reduced set suggests that these teams may
have used similar bounds on the departure windows.

The results for the reduced asteroid set obtained with a full forward multi-
path NNH search are not satisfactory. The GTOC2 #1 sequence, which accord-
ing to its GTOC2 classification should be one of the most promising combina-
tions, ranks below 1000th independent of the length of the departure windows.
Only a handful of GTOC2 sequences is occasionally ranked in the top-50 com-
binations.

We now take a look, in Figure 10.7, to the relative ranking of the GTOC2
sequences. As earlier, GTOC2 solutions with constraint violations were left out
of this ranking, and the light blue curve indicates the ranking based on the
original GTOC2 objective function. Note that, despite the indication in the
abcissae axis, GTOC2 #8 was not evaluated since it does not respect the 4 - 3
- 2 - 1 asteroid group order.

The “sawed” curves in Figure 10.7 contrast with the ideal, nearly linear
curve shown in light blue. Meaning that the proposed model and tool do not
accurately evaluate the relative fitness of each sequence according to their fi-
nal GTOC2 cost function value. Depending on the departure window, either
GTOC2 #6 or #7 are identified as the most promising sequence. The GTOC2
sequence that ranks last is GTOC2 #11 for the larger departure windows, which
is an accurate assessment. For departure windows of 10 years however, that dis-
tinction falls upon GTOC2 #5. This sequence is also poorly ranked for the other
departure dates. The GTOC2 #2, #3, and #4 sequences systematically reach
the top-5 combinations among the GTOC2 features, which is an encouraging
feature. The GTOC2 winner sequence, which is expected to rank high, oscil-
lates between the 6th and 9th positions, according to the length of the departure
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Figure 10.7: Relative ranking of GTOC2 sequences in the reduced asteroid set
without caching, using GS.

windows.

10.2.2 Comparison with the cached search
We shall now proceed to comparing the results of the full search with the cached
(or recycled) search in order to determine the impact of this feature on the
quality of the solutions, as well as on the computational complexity of the
problem. Figure 10.8 shows the ranking progression of the GTOC2 sequences
when the caching feature is removed. A positive value corresponds to a better
ranking in the full search, while a negative value indicates that the ranking of
a particular sequence dropped when compared to the recycling of transfers.

The GTOC2 sequences that most profit from the full search are GTOC2
#4 and #9, both progressing about 3000 positions, independently of the de-
parture windows length. Figure 10.8 shows that, besides these two sequences,
the caching feature as the least impact for departure windows of 20 years. This
can be explained by the fact that the largest the departure window, the largest
the probability of heliocentric geometry repeatability. This correlation also ex-
plains why the ranking discrepancies are more frequent and in general larger
for a departure windows of 10 years. GTOC2 #5 shows the largest degradation
in ranking (a drop of about 4000 positions), which occurs precisely for 10 year
departure windows. When considering 15-years departure windows, the largest
discrepancies in ranking, besides the already mentioned GTOC2 #4 and #9,
occur for GTOC2 #7 (an approximate fall of 2000 positions) and GTOC2 #10
(rise of about 1000 positions). These observations are reflected in the difference
in relative ranking between both rankings, as shown in Figures 10.9, 10.10, and
10.11.

The improved relative ranking of GTOC2 #4 and #9 is visible in Figures
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Figure 10.8: Ranking Progression of the GTOC2 sequences in the reduced as-
teroid set without caching, using GS.

Figure 10.9: Relative ranking of the GTOC2 sequences in the reduced asteroid
set for 10-years departure windows, using GS.
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Figure 10.10: Relative ranking of the GTOC2 sequences in the reduced asteroid
set for 15-years departure windows, using GS.

Figure 10.11: Relative ranking of the GTOC2 sequences in the reduced asteroid
set for 20-years departure windows, using GS.
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10.9 through 10.11. The decreasing impact of caching transfers with the in-
creasing length of the departure windows can be seen in the fact that the larger
the latter, the smaller difference between the Full and Cached curves.

Figures 10.9 through 10.11 only show the impact of the caching feature
on the Leg 4 ranking. However, this feature also has an impact on the Leg 3
computations, as shown in Figures 10.12 and 10.13 for GTOC2 #1 with 10-years
departure windows and GTOC2 #3 with 20-years departure windows.

Figure 10.12: Ranking of GTOC2 #1 with 10-years departure windows in the
reduced asteroid set, using GS.

In both Figures 10.12 and 10.13, the caching feature degrades the Leg 3
ranking of the GTOC2 sequences but improves their final ranking. While the
improvement of the final ranking can be seen as a positive impact, the degrada-
tion of the Leg 3 classification may lead, depending on the number of champions,
to the sequences being prematurely discarded in a champion-based multi-path
NNH. Note that there is no difference in ranking up to Leg 2. This is due to
the fact that, up to and including Leg 2, no individual transfer is repeated in
different sequences and therefore no use is made of cached transfer values.

In terms of execution times, Figure 10.14 shows the computational time
needed to solve the combinatorial problem on the reduced asteroid pool, as
a function of both the departure windows length and of whether or not the
transfers are cached.

As illustrated in Figure 10.14, removing the caching feature has serious con-
sequences on the computational complexity of the problem. There is a factor of
about 20 between the computational times needed by the algorithm to solve the
reduced asteroid pool with and without recycling of transfer computations. On
the other hand, there is no real improvement in the ranking when not caching
transfers between asteroid pairs, except for GTOC2 #4 and #9, as seen in
Figure 10.8. The former does not pertain to the top-100 combinations in the
reduced asteroid pool while the latter is punctually present in the top-50 (see
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Figure 10.13: Ranking of GTOC2 #3 with 10-years departure windows in the
reduced asteroid set, using GS.

Figure 10.14: Computational time of the forward multi-path NNH search on
the reduced asteroid pool as a function of the departure windows length, using
GS.
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Table 10.3). The effects of caching are more considerable when the departure
windows are only 10 years wide. For larger departure windows, the caching fea-
ture seems to be interesting given that it effectively reduces the computational
complexity without sizeable effects on the overall quality of the solutions.

10.3 Full Forward Search, Optimal Final Mass,
using DE

We have seen in Section 6.2.2 that, after tuning of its parameters, DE was up to
five times faster than GS. Hence, replacing GS with DE in the full search may
lead to considerable computational effort improvements and therefore couteract
the absence of the caching feature. We therefore proceed with the full search
with DE as optimization technique for the evaluation of the individual arc costs.
The parameters of the DE algorithm are as determined in Section 6.2.2: a
population of 50 individuals, evolved for 150 generations.

10.3.1 Final Rankings
Starting with the analysis of the final rankings of the 12 GTOC2 sequences, as
given in Table 10.4, one can see that there are large changes in ranking for all
GTOC2 sequences as the departure windows length increases. The sequence
least affected by this is GTOC2 #3, which manages to remain in the top-100
combinations across all departure windows length. GTOC2 #11 consistently
ranks very poorly, independent of the length of the departure windows. The
sequences GTOC2 #6 and #12 rank much better for the larger departure win-
dows than for 10-years departure windows. The former even ranks in the top-25
combinations for 15- and 20-years departure windows. As when we used GS, the
results with DE show that GTOC2 sequences ranking is, overall, better when
considering 10-years departure windows: GTOC2 #2, #3, #7 and #9 are part
of the top-40 combinations. Bear in mind that these four solutions relied on the
optimal Lambert transfers at some point.

With respect to the relative ranking, Figure 10.15 is quite similar to Figure
10.7, which illustrated the relative ranking of GTOC2 sequences in the reduced
asteroid set without caching using GS. The “sawed” patterns confirm that the
multi-path does not lead to a relative ranking similar to that corresponding
to the final GTOC2 objective function value. The GTOC2 winning sequence
ranks below 6th at all times, GTOC2 #5 is poorly classified with any departure
windows length, and the top combination is bestowed on either GTOC2 #6 or
#7. On the other hand, GTOC2 #2, #3 and #4 are systematically in the top-5
combinations, while GTOC2 #11 is always among the worst ranked sequences.
Note that the relative rankings corresponding to departure windows of 15 and
20 years are quite similar when compared to the 10-years departure windows
relative ranking.

10.3.2 Comparison with the GS results
The resemblance in absolute and relative ranking suggests that replacing GS
with DE in the full forward search of the reduced set of asteroids does not
lead to significant differences in the final ranking of GTOC2 sequences. This is
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Table 10.4: The final ranking of GTOC2 sequences in the reduced asteroid set
without caching, using DE.

GTOC2 Departure Window
Sequence 10 years 15 years 20 years

#1 999 4674 1016
#2 15 511 686
#3 35 76 96
#4 106 193 243
#5 5538 2155 2730
#6 738 18 23
#7 8 1881 2355
#9 39 92 115
#10 2676 1339 1752
#11 4746 4725 5273
#12 1403 55 56
#13 76 1863 2424

Figure 10.15: Relative ranking of GTOC2 sequences in the reduced asteroid set
without caching, using DE.
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confirmed when looking at Figure 10.16, where the difference in ranking of the
GTOC2 sequences, from arc cost optimization with GS to DE, is plotted.

Figure 10.16: Ranking Progression of the GTOC2 sequences in the reduced
asteroid set without caching, using DE instead of GS.

We can see that differences in the final ranking of the GTOC2 sequences
is approximately ±50 places. While GTOC2 #1 climbs in the classification by
up to 20 places, the rankings of GTOC2 #2 and #3 drop a few places. The
sequence that most benefits from the change is GTOC2 #5: it climbs 54 places
in the ranking for 20-years departure windows (and 36 for 15-years departure
windows) but remains below 2000th. GTOC2 #11 rises between 20 and 50 places
according to the departure window length. Replacing GS with DE has a negative
impact on the ranking of GTOC2 #10, which drops between approximately 40
and 20 places depending on the departure windows length considered. For 10-
years departure windows, GTOC2 #6 falls 40 places in the classification. The
changes in ranking from GS to DE can be explained by two factors. First,
the heuristic nature of DE, and in particular the random initialization of the
population, implies that there is no guarantee on the quality of the solution and
therefore it may provide, for a particular asteroid pair, an objective function
value larger than GS. Second, since DE does not discretize the search space,
it has more freedom to provide a better solution than GS. The combination of
these two factors, which represent a paradox regarding the solution quality of
heuristics when compared to enumerative searches, is responsible for changes
in ranking, both positive and negative, of GTOC2 sequences. Note, however,
that the changes in ranking are relatively small given the total number (5940)
of ranked solutions.

As stated at the beginning of this section, the purpose of replacing GS
with DE was to improve the computational performance of the full multi-path
NNH search with respect to the search with caching. In order to compare
the computational effort needed by each variant to solve the reduced set of
asteroids, Figure 10.17 plots the execution times of the algorithms across the
range of departure windows considered.
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Figure 10.17: Computational time of the forward multi-path NNH search on
the reduced asteroid pool as a function of the departure windows length.

Figure 10.17 shows that, despite taking longer than the cached, GS-based
search, the full multi-path search with DE takes considerably less time to com-
plete than with GS, as expected. Another interesting feature is that the ex-
ecution times with DE are constant at about 8 minutes, indepedently of the
departure windows length, while using GS (with or without caching) leads to
computatonal times that increase with increasing length of the departure win-
dows. Since the step-size in the variables of the GS searches are constant inde-
pendently of the variables range, increasing the length of the departure windows
leads to an increase in the number of grid points and therefore to an increase
in the number of transfers evaluated. With DE, on the other hand, the num-
ber of evaluations depends on the number of individuals and on the number of
generations. Since these are kept constant for the different departure windows,
increasing this variable does not increase the computational effort of the algo-
rithm. As a result, the larger the departure windows, the more interesting it
becomes to replace GS with DE as arc optimization technique in the full forward
multi-path NNH search.

Replacing GS with DE for the full forward search does not considerably
impact the ranking of the sequences. It does, on the other, provide significant
reductions in the execution times, even more so for large departure windows.
Therefore, with DE it becomes interesting to remove the caching feature from
the forward multi-path NNH as the resulting sequences will have a more realistic
phasing.
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10.4 Complete High-thrust Optimization, using
DE

In order to determine the impact of adopting a leg-per-leg approach to the opti-
mization of the asteroid sequences, we decide to optimize the complete GTOC2
sequences, more specifically the GTOC2 sequences that comply with the Group
4 - Group 3 - Group 2 - Group 1 asteroid group order. In order to do so, a
new optimization problem needs to be formulated. We will focus here on the
maximization of the final mass alone, without adding the time-of-flight to the
objective function.

10.4.1 Problem Formulation
Given that four consecutive individual transfer are optimized, the number of
variables of the problem also increases. Now, based on the problem definition
of Section 6.1, the instinctive approach to the definition of the problem vari-
ables are four pairs of departure date and time-of-flight, one for each transfer.
However, to avoid overlapping departure and arrival dates without placing con-
straints on the optimzation problems, the departure dates for Legs 2, 3, and
4 are substituted by a new variable, the time-of-wait, tw, defined as the time
spent orbiting the asteroid, between arrival and departure:

tw,i+1 = td,i+1 − (ti + td,i) : i = 1, ..., 3 (10.4.1)

where td,i and tf,i are the departure date and the time-of-flight, respectively, of
Leg i. Given the celestial bodies, vk, for k = 0, ..., 4, the cost function, J, is then
defined as:

J(td,1, tf,1, tw,2, tf,2, tw,3, tf,3, tw,4, tf,4) =
1

m4(v0, td,1, tf,1, v1, tw,2, tf,2, v2, tw,3, tf,3, v3, tw,4, tf,4, v4) (10.4.2)

Note that maximizing the final mass is, according to Equation (4.4.3), equivalent
to minimize the total ∆V which arises from the different Lambert arcs. Given
this cost function, the optimization problem can be formulated as:

min J(td,1, tf,1, tw,2, tf,2, tw,3, tf,3, tw,4, tf,4) (10.4.3)

subject to:

td ∈ [td,min, td,max] (10.4.4)
tf ∈ [tf,min, tf,max] (10.4.5)
td ∈ [tw,min, tw,max] (10.4.6)

The bounds of each parameter are chosen such that the problem is as similar
as the combinatorial problem of Section 10.1. The minimum and maximum
launch date correspond to the original GTOC2 departure window: January
1st, 2015 and December 31st 2035, respectively. The bounds for the times-of-
flight are [10,600]. Finally, the minimum time-of-wait is set to 90 days, while
the maximum time-of-wait varies such that it matches the various departure
windows defined earlier: 10, 15 and 20 years.
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10.4.2 Optimal Sequences
The optimization of the 12 GTOC2 sequences is performed with a self-adaptive
DE. Since the number of variables, with respect to the optimization problem
(6.1.6), was multiplied by four, the size of the population and the number of
generations need to be adapted. The number of individuals is taken to be 200,
while the number of generations is raised to 1000. Each sequence is optimized
three times, and the best solution found across the three independent runs is
taken. The total ∆V of GTOC2 sequences found in this fashion are plotted in
Figure 10.18. There is a large gap in terms of ∆V between the ∆V of GTOC2
#11 (about 32 km/s) and the rest of the sequences, which indicates that, in
terms of J -value, this sequence is the least attractive of all. For the sake of
legibility, GTOC2 #11 is not plotted in Figure 10.18. The numerical values for
all GTOC2 sequences optimized can be found in Table D.1.

Figure 10.18: Total ∆V of optimized GTOC2 sequences, using DE.

Figure 10.18 shows that, in terms of J -value, GTOC2 #12 is the most in-
teresting sequence, with a total ∆V of about 18.5 km/s for departure windows
of 10 years. Other sequences with low total ∆V across all lengths of departure
windows are GTOC2 #2, #6 and #7. Overall, the best ∆V budget found tends
to correspond to 10-years departure windows. To explain this, one must bear in
mind that increasing the maximum time-of-wait leads a “Russian doll” effect:
the search space with a lower departure window is contained into the larger
search space corresponding to a larger departure window. Therefore, solutions
found with 10-years departure windows are also contained in the search space
with 15-years departure windows, the solutions of which are in turn contained in
the 20-years departure windows search space. With this in mind, increasing the
search space can never lead to a degradation of the true optimum of the prob-
lem. The reason why the solutions found with 10-years departure windows are
generally better than with larger departure windows is mostly due to the fact
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that this search space, which contains the optimum, is smaller in this scenario.
Since the number of individuals and the number of generations are constant
across the different values for the departure windows length, a smaller search
space leads to an increased probability of finding the true optimum.

When the quality of the best solution found increases with a larger search
space, two reasons can be evoqued. The first reason is simply that the larger
search space contains a better solution than the narrower search space. This
occurs, e.g., for GTOC2 #6. To illustrate this, let us compare Tables 10.5, 10.6
and 10.7, which list the best solutions found for each of the GTOC2 sequences
optimized. Times-of-wait larger than 10 years are highlighted in yellow. We can
see that, for GTOC2 #6 with 15- and 20-years departure windows, the solution
entails a waiting time for Leg 4 of about 4800 days. This more than 10 years
and therefore this solution is not contained in the search space with a maximum
time-of-wait of 10 years. Enlarging the search space led to the presence of a
better solution, which is reflected in the lower ∆V budget of the GTOC2 #6
sequence for larger departure windows. The second explanation is anchored in
the heuristic nature of DE: due to randomness of the initial population, different
runs of DE may lead to different solutions. Therefore, despite increasing the
search space, a larger departure window may lead to a better solution, which
was included in the smaller search space but was not found by DE. This happens
for GTOC2 #9: the solution found with 15-years departure windows is better
than with 10-years departure windows and yet is contained within the latter’s
search space.

Table 10.5: Optimized GTOC2 sequences with departure windows of 10 years,
using DE.

GTOC2 td,1 tf,1 tw,2 tf,2 tw,3 tf,3 tw,4 tf,4
Sequence [JD] [days] [days] [days] [days] [days] [days] [days]

#1 2458474.3 318.7 1782.1 426.8 980.0 494.4 585.4 595.3
#2 2462798.2 130.2 349.7 346.0 1460.5 598.0 239.7 600.0
#3 2457025.8 291.7 687.9 392.5 1291.8 308.8 185.6 600.0
#4 2457380.7 298.8 3138.7 367.3 944.6 599.4 90.5 600.0
#5 2458245.5 275.8 980.8 401.2 3626.3 556.2 146.0 600.0
#6 2457817.6 234.8 1114.2 504.6 707.9 421.0 103.2 586.2
#7 2461708.0 315.5 1498.0 453.1 1213.0 394.0 225.8 600.0
#9 2457399.2 282.2 571.7 388.0 1604.2 599.8 217.9 600.0
#10 2457816.4 235.4 462.4 360.8 2354.5 599.6 700.8 594.2
#11 2464590.7 128.9 1322.8 414.1 3432.9 506.7 3179.7 600.0
#12 2457437.0 302.6 1784.7 404.0 772.0 553.8 1808.7 600.0
#13 2457751.3 286.2 413.8 512.6 385.7 553.7 863.7 600.0

Another interesting feature rises from observation of Tables 10.5 through
10.7: the times-of-flight for Leg 4 are nearly systematically close or equal to
600 days, which is the upper limit for that variable. This can also be observed
for a few Leg 3 times-of-flight. This seems to indicate that the bounds on the
time-of-flight defined in the previous chapters and sections are too stringent and
that lower ∆V for Leg 4 transfers can be achieved by increasing the upper limit
of the time-of-flight.

In order to discuss the extent to which the high-thrust model used in the
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Table 10.6: Optimized GTOC2 sequences with departure windows of 15 years,
using DE.

GTOC2 td,1 tf,1 tw,2 tf,2 tw,3 tf,3 tw,4 tf,4
Sequence [JD] [days] [days] [days] [days] [days] [days] [days]

#1 2458846.26 299.18 1426.82 430.12 969.69 508.32 559.14 599.98
#2 2462813.54 197.66 264.32 335.81 1540.08 597.82 157.94 600.00
#3 2457056.24 241.02 711.84 312.03 1498.85 286.76 98.84 599.98
#4 2457390.45 290.79 3138.49 369.11 925.16 597.88 92.24 600.00
#5 2461069.28 238.32 1202.74 398.25 576.52 511.55 229.78 600.00
#6 2462196.40 282.88 3096.47 503.06 1268.78 460.72 4779.71 600.00
#7 2461351.50 327.40 1843.27 450.77 1254.85 417.73 159.48 600.00
#9 2457028.82 280.70 936.63 445.24 1535.01 599.10 258.22 600.00
#10 2457822.80 232.83 2399.42 440.36 333.66 599.87 684.00 599.98
#11 2463984.61 286.99 1317.74 331.32 4077.05 551.67 3036.17 600.00
#12 2457811.68 224.95 1494.32 399.57 783.76 558.61 1645.55 311.39
#13 2457772.62 268.97 410.65 491.87 587.23 440.66 800.94 600.00

Table 10.7: Optimized GTOC2 sequences with departure windows of 20 years,
using DE.

GTOC2 td,1 tf,1 tw,2 tf,2 tw,3 tf,3 tw,4 tf,4
Sequence [JD] [days] [days] [days] [days] [days] [days] [days]

#1 2458463.78 351.80 354.18 382.47 2416.54 540.03 536.81 600.00
#2 2462227.37 254.56 350.28 443.18 1823.20 590.34 247.31 600.00
#3 2457239.75 262.76 502.05 362.82 1361.81 299.44 219.05 585.04
#4 2457029.70 275.12 3519.97 347.81 465.10 461.49 559.58 600.00
#5 2458296.79 232.62 527.96 273.17 4191.30 557.63 158.71 600.00
#6 2462179.67 270.83 1765.51 515.86 2562.48 472.58 4833.27 600.00
#7 2461704.90 322.26 1492.56 459.55 1152.93 358.81 333.45 600.00
#9 2457064.67 270.95 1357.21 426.97 1162.26 599.89 189.73 600.00
#10 2457797.11 248.74 472.54 347.31 2393.62 577.97 682.92 598.19
#11 2460775.76 172.68 3476.12 256.50 5365.38 565.33 2982.79 600.00
#12 2457998.20 307.79 1226.32 409.00 729.45 578.33 1787.92 600.00
#13 2457246.42 277.46 1431.81 306.54 156.55 495.54 743.70 600.00
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optimization of GTOC2 sequences reflects the quality of the combinations based
on their original GTOC2 ranking, let us take a look at Figure 10.19. For the
sake of clarity, GTOC2 solutions with constraint violations were left out of this
ranking, and the light blue curve indicates the ranking based on the original
GTOC2 objective function. Bear in mind that GTOC2 #8 was not evaluated
since it does not follow the 4 - 3 - 2 - 1 asteroid group order. This could possibly
explain the drop in final leg ranking observed for GTOC2 sequences in Chapter
9.

Figure 10.19: Relative ranking of optimized GTOC2 sequences, using DE.

There is no clear decreasing trend in Figure 10.19, as evidenced by the
large deviations from the “nominal” light blue curve. While GTOC2 #11 is
accurately identified as the worst combination, none of the other sequences is
systematically ranked in the vicinity of their original GTOC2 classification. The
GTOC2 sequence that ranks the closest to its nominal position is GTOC2 #2,
which ranks between 2nd and 3rd depending on the departure window. There
is also no departure window that clearly leads to a better ranking than the
others. However, out of the sequences that rank in the top-4 for at least one
departure window length (GTOC2 #2, #3, #6, #7, and #9), only GTOC2 #6
did not involve the use of high-thrust Lambert arcs in its procurement during
the GTOC2 competition.

The evaluation of the GTOC2 sequences via optimization of the final mass
under a high-thrust model does not seem to accurately reflect their quality
under a low-thrust model with an optimal final mass to time-of-flight ratio
objective function. Out of the participating teams that used optimal phase-
free, bi-impulsive pruning during the competition, only GTOC2 #4 and #5 do
not rank highly in the scenarii studied in this section.
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10.4.3 Comparison with Leg-per-Leg Results
Let us now proceed with the comparison, for the GTOC2 sequences, between
the complete transfers found with a single, complete optimization and with
four consecutive leg optimizations. Figure 10.20 plots the difference in total
∆V , δ, between the sequences found in both fashions, computed according to
δ = ∆Vleg-per-leg − ∆Vcomplete. Given this definition, a positive difference
translates into the sequence obtained in a leg-per-leg approach having a larger
total ∆V than the complete optimized sequence.

Figure 10.20: Difference in ∆V budget for the GTOC2 sequences between a
complete and a leg-per-leg optimization, using DE.

Figure 10.20 shows that sequences optimized in a leg-per-leg fashion have,
in general, a larger total ∆V . This reveals the importance of phasing when
optimizing full sequences and the limitations of greedy algorithms. By not
looking at the “big picture”, greedy algorithms are not able to perform trade-
offs between the cost of the different transfers to achieve a total mission with
lower final cost. Taking a given best leg transfer may lead, due to phasing, to a
relatively worse transfer in the following leg. Moreover, this effect can propagate
beyond the leg immediately following. This drawback of greedy algorithms
was however expected, as discussed in Chapter 5. Note that the difference in
total ∆V of sequences obtained via leg-per-leg optimization, with respect to
the sequences optimized at once, tends to decrease with increasing departure
windows. To understand this phenomenon, we need to take two factors into
account. Firstly, increasing the departure windows limits the impact of phasing
on the total transfers and, with no limitation on the total time-of-flight, the
sequences obtained in both manners will tend to be similar. Second, we have
seen in the previous section that increasing the departure windows tends to lead,
for the sequences optimized in one go, to worse solutions due to the expansion
of the search space. With the quality of leg-per-leg solutions increasing and
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that of complete solutions decreasing, the difference between the total ∆V of
the sequences tends to decrease with increasing departure windows.

In Figure 10.20, not all sequences are affected in the same manner by the
difference in approach to their optimization. While some display large differ-
ences (up to 15 km/s for GTOC2 #5), others have differences close to zero,
independently of the departure windows length. The latter, such as GTOC2
#4, even exhibit negative differences, meaning that a solution found on a leg-
per-leg basis is better than that found on a single optimization run. In this case,
the leg-per-leg approach is able to find a very good solution, probably very close
to the true optimum of the problem, which does not seem to vary with expand-
ing search spaces. The single-run optimization is not able to improve on that
result, probably due to the larger number of variables. Except for GTOC2 #1,
the differences for 15- and 20-years departure windows are very similar. This
seems to indicate that increasing the departure windows from 15 to 20 years
has less impact on the best solution than increasing this variable from 10 to 15
years.
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Chapter 11

Complete Asteroid Pool,
using DE

We have seen, in the previous chapter, that replacing GS by DE as arc op-
timization technique leads to considerable savings in terms of computational
time when no caching is performed. We therefore proceed to tackling the com-
plete asteroid pool with a self-adaptive DE and without the caching feature.
The parameters for DE are consistent with the values defined earlier, namely a
population of 50 individuals evolving for 150 generations.

11.1 Full Forward Search, Optimal Final Mass
11.1.1 Comparison with Cached Forward Search, using

GS
In order to perform a fair comparison with earlier results, the full forward search,
with DE, is performed for departure windows of 10, 15 and 20 years and 5,
10, and 20 champions. As in Section 9.1, a 10-years departure window does
not yield any GTOC2 sequence in the final leg computations. For departure
windows of 15 and 20 years, the only GTOC2 sequence to systematically reach
Leg 4 computations is GTOC2 #2. The difference in its final ranking, plotted
in Figure 11.1, is taken to be the final ranking in the cached forward GS search
minus the final ranking in the full forward DE search. Therefore, a negative
value corresponds to a drop of GTOC2 #2 in the final classification when DE
is employed as optimization technique.

Figure 11.1 shows that there is a degradation (up to 28 places) of the GTOC2
#2 final ranking in all scenarii analyzed. This degradation increases with the
number of champion paths but decreases with a larger departure window. As
discussed in Section 10.2, the differences in ranking are minimized when consid-
ering the 20-years departure windows for the effect of caching individual transfer
values is lessened. All ranking differences are negative (or zero) which means
that GTOC2 #2 ranks worst when moving from a cached GS search to a full
DE search. This explanation for this drop is that other sequences profit more
from the change, either because their non-cached transfers become more inter-
esting than the cached transfers and/or because there is larger improvement

175
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Figure 11.1: Ranking Progression of GTOC2 #2 in the complete asteroid set
without caching, using DE.

in their path cost due to the use of DE. Finally, the drop in ranking is more
consequent when increasing the number of paths, a feature already observed in
Chapter 9. The explanation given at the time is still valid in this scenario: the
relative ranking of sequences changes considerably from leg to leg due to the
individual contributions to the (partial) path cost of single transfers. Increasing
the number of champions allows to consider sequences, which were previously
discarded for ranking worse, that end up overtaking other sequences thanks to
less costly leg transfers.

With respect to execution times, Table 11.1 lists the computational time
needed to solve the different problems by both the cached GS and the full DE
searches. It indicates that DE is considerably faster than GS, with the param-
eters selected for both algorithms. In the worst case scenario (20 champions
with 20-years departure windows), the search takes about 16 minutes with DE
while it needs almost two hours with GS. This situation is different than the one
depicted in Figure 10.17, where the cached GS search on the reduced asteroid
set was faster than the full DE search. Bear in mind however, the observation
made at the time regarding the fact that the computational effort with DE was
less sensitive to the problem dimension: while, on the reduced asteroid pool,
the computational effort with GS was lower than with DE, it increased with an
expanding search space, namely in terms of departure windows. This can also
be observed in Table 11.1, as the execution times of DE are only affected by
the number of champions, while for GS the execution times increase with both
the number of champions and the departure windows length. Another factor to
explain the larger computational effort with the cached GS search with respect
to the reduced asteroid pool results is the diversity of transfers: in the reduced
set, the number of unique transfers was much lower and therefore the benefits
of cached transfers in terms of execution times were greater.

The results from Figure 11.1 and Table 11.1 show that while there is a degra-
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Table 11.1: Computational Times for the cached GS search and the full DE
search.

Launch Window Number of Computational Time [min]
[years] Champions Cached GS Full DE

5 14.93 4.47
10 10 26.25 7.82

20 46.28 15.75
5 25.66 4.44

15 10 45.43 9.14
20 92.33 16.36
5 32.96 4.65

20 10 49.78 8.60
20 113.07 16.37

dation in the final rank of GTOC2 #2, the problem becomes more tractable
when GS is replaced with DE as arc optimization technique. To the extent that
no benefits in terms of computational time are achieved by caching transfer
values. In light of these results, the number of champions is increased, with the
expectation that it will allow another, previously discarded GTOC2 sequence
to “shine”.

11.1.2 Increasing the Number of Champions
Given the considerable computational time savings enabled by the use of a
self-adaptive DE, the full forward multi-path search of the complete asteroid
pool is performed with larger numbers of champion paths, more specifically
with 50 and 100 champions. Given that larger departure windows increase the
probability of heliocentric geometry repetition, the analysis is performed with
20-years departure windows.

Table 11.2 gives the rank, leg by leg, of the GTOC2 sequences found by
the forward multi-path NNH search with 50 champion paths. The n.a. note
indicates that a given sequence was not considered in the corresponding leg
computations, since it ranked below 50th in the previous leg.

Looking at Table 11.2, one can state that increasing the number of champions
did not yield the desired effects. The only two GTOC2 sequences to reach Leg
4 computations are GTOC2 #2 and #12. Both sequences were already present
in the final leg computations for 20-years departure windows, the latter for
numbers of champions larger than 10. There is therefore no novelty regarding
which of the GTOC2 sequences transit to the last leg computations. Moreover,
the decreasing trend in ranking for GTOC2 #2 and #12, seen in Tables 9.5 and
9.6, respectively, continues: GTOC2 #2 is now 499th and GTOC2 #12 122nd,
below their classification with 20 champions.

The results from Table 11.2 for Leg 2 show that while the partial GTOC2
#1 and #11 sequences rank well beyond the specified number of champions,
other sequences, such as GTOC2 #4, have a classification relatively close to
the threshold. Given that the execution time of the search with 50 champions
lasted less than 40 minutes, there is some leeway for increasing the number of
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Table 11.2: Leg rank of the GTOC2 (partial) sequences as found by the forward
multi-path NNH with 50 champion paths, using DE.

Leg 1 2 3 4
GTOC2 #1 37 2786 n.a. n.a.
GTOC2 #2 2 5 23 499
GTOC2 #3 12 117 n.a. n.a.
GTOC2 #4 12 82 n.a. n.a.
GTOC2 #5 3 453 n.a. n.a.
GTOC2 #6 2 94 n.a. n.a.
GTOC2 #7 18 387 n.a. n.a.
GTOC2 #9 12 17 2393 n.a.
GTOC2 #10 2 5 1069 n.a.
GTOC2 #11 39 7885 n.a. n.a.
GTOC2 #12 2 16 24 122
GTOC2 #13 12 81 n.a. n.a.

champions even further. Based on Table 11.2, the number of champion paths is
increased to 100, in an attempt to include GTOC2 #4, #6 and #13 in the Leg
3 computations. The resulting leg ranks are given in Table 11.3.

Table 11.3: Leg rank of the GTOC2 (partial) sequences as found by the forward
multi-path NNH with 100 champion paths, using DE.

Leg 1 2 3 4
GTOC2 #1 37 2849 n.a. n.a.
GTOC2 #2 2 4 25 929
GTOC2 #3 12 125 n.a. n.a.
GTOC2 #4 12 89 1183 n.a.
GTOC2 #5 3 456 n.a. n.a.
GTOC2 #6 2 95 1148 n.a.
GTOC2 #7 18 396 n.a. n.a.
GTOC2 #9 12 18 4423 n.a.
GTOC2 #10 2 4 2736 n.a.
GTOC2 #11 39 8501 n.a. n.a.
GTOC2 #12 2 15 27 197
GTOC2 #13 12 87 511 n.a.

Unfortunately, raising the number of champions to 100 does not enable any
GTOC2 sequence other than #2 and #12 to feature in the final leg computa-
tions. It did allow GTOC2 #4, #6 and #13 to be evaluated in Leg 3 but their
corresponding classification ranked well below the champion threshold and these
sequences were therefore discarded by the multi-path NNH. The degradation of
GTOC2 #2 and #12 continues. The drop of GTOC2 #2 in the classification
is rather steep, as it now ranks below 900th. GTOC2 #12 on the other hand is
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still in the top-200 sequences.
In order to include GTOC2 #4 in the final leg computations, the number of

champions would need to be increased to more than 1000. The computational
time needed to obtain the results in Table 11.3 is equal to 80 minutes. Extrap-
olating from the computational times corresponding to 50 and 100 champions,
solving the full asteroid set with a 1000 champions would require about 15
hours of computations. Given the tendency of lower-ranked sequences to over-
take higher-ranked sequence from leg to leg, increasing the number of champions
to such levels would lead to a very large computational effort with no guaran-
tee on the outcome. In the light of this considerable impact on the efficiency
of the combinatorial tool, it is decided not to further increase the number of
champions.

11.1.3 Increasing the Maximum Time-of-Flight
We have seen in Section 10.4 that the complete optimal solutions found led to
times-of-flight for Leg 4 and, to a minor extent, Leg 3 transfers close to their
upper bound of 600 days. In this section, the full forward search of the complete
asteroid set is performed with an upper bound on the time-of-flight of 1200 days
instead. Increasing the upper bound for the time-of-flight is expected to only
lead to significant changes in the Leg 3 and Leg 4 computations. Two scenarii
are analyzed, with two different lengths for the departure windows: 15 and 20
years. The 10-years departure windows scenario is not considered, since it did
not produce satisfying results in the previous sections. Finally, due to time
constraints, only two values for the number of champion paths were considered:
15 and 20.

20-Years Departure Windows

We have seen in Section 9.1 that, for numbers of champions larger than 13, two
GTOC2 sequences reached the final leg computations: GTOC2 #2 and #12.
This is again the case when increasing the bounds on the time-of-flight: only
these two sequences reach the final leg computations. In the earlier scenario,
GTOC2 #12 ranked the highest of the two GTOC2 sequences. This relative
ranking is inaltered when increasing the maximum time-of-flight. Moreover, not
only is GTOC2 #12 the best GTOC2 sequence, it is the overall best sequence
found. This occurs for both 15 and 20 champion paths, as seen in Table 11.4.

Table 11.4: Final rank of GTOC2 sequences and computational time corre-
sponding to a 20-years departure window and a maximum time-of-flight of 1200
days, using DE

Number of Champion Paths 15 20
GTOC2 #2 45 58
GTOC2 #12 1 1
Computational Time [min] 13.41 18.03

With respect to GTOC2 #2, increasing the number of champions leads to
a degradation of its final ranking, a feature already observed in other scenarii.



180 CHAPTER 11. COMPLETE ASTEROID POOL, USING DE

Setting the number of champion paths to 15 allows GTOC2 #2 to be placed
within the top-50 sequences found. With 20 champions, its ranking drops to
58th.

Focusing on the execution times, the algorithm is extremely fast, completing
the search in less than 20 minutes with either 15 or 20 champions. This effec-
tively means that the initial billions of possible combinations are boiled down to
less than 2000 sequences in a very short time. Among the top 60 combinations,
the highest ranked led to a GTOC2 solution that, albeit exhibiting position and
velocity constraints, yielded a higher objective function value than the solution
handed in at the time by the TU Delft-led team1. Down the ranking, one finds
a sequence that corresponds to the GTOC2 runner-up.

15-Years Departure Windows

In Section 9.1, when restricting the departure windows length to 15 years, the
GTOC2 #12 solution was discarded from the final leg computations. Increasing
the maximum time-of-flight does not alter this fact: only GTOC2 #2 is present
when evaluating the final leg, as indicated by the n.a. note accompanying the
GTOC2 #12 entries in Table 11.4. Note that GTOC2 #12 ranked first in Table
11.4, which once more highlights the sensitivity of the sequence analysis to the
phasing of the bodies.

Table 11.5: Final rank of GTOC2 sequences and computational time corre-
sponding to a 15-years departure window and a maximum time-of-flight of 1200
days, using DE

Number of Champions 15 20
GTOC2 #2 35 50
GTOC2 #12 n.a. n.a.
Computational Time [min] 13.12 17.32

Akin what was observed in Section 9.1, reducing the departure windows
length leads to a better ranking of GTOC2 #2. Also, the execution times
are not affected by the length of the departure windows, a fact observed and
explained earlier.

GTOC2 #2 ranks in the top-50 sequences for both numbers of champions.
Therefore, setting the maximum time-of-flight to 1200 days and the departure
windows length to 15 years drives the forward multi-path NNH to drastically
reduce the combinatorial search space: a subset of 50 combinations, containing
the sequence corresponding to the GTOC2 winner-up in less than 20 minutes.

A Note on GTOC2 #2 Rank for 15-Years Departure Windows

It should be disclaimed that the GTOC2 #2 rank, as found by the forward multi-
path NNH with 15 champion paths, given in Table 11.5 does not correspond
to the solution found in the first run of the algorithm. The first time the

1Bear in mind that this TU Delft solution contained a maximum mission time-of-flight
violation besides position and velocity constraint violations.
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forward multi-path NNH search was performed, it ranked GTOC2 #2 as the
best sequence found. Subsequent re-runs of the search were unable to reproduce
this result but consistently placed GTOC2 #2 in 35th, the rank indicated in
Table 11.5. The nominal (35th) and non-nominal (1st) sequences can be seen in
Appendix E.

This illustrates the heuristic nature of DE: the quality of the results is subject
to a certain degree of randomness, most notably in terms of population initial-
ization, and there is no guarantee on the optimality of the solution returned.
Granted, this dependence can be limited by increasing the DE parameters, i.e.
the number of individuals and the number of generations. Increasing these pa-
rameters did not allow to reproduce the solution that allowed GTOC2 #2 to
hoist itself up to the top of the final ranking but confirmed the solution that
places it in the 35th position.

It is therefore hypothesized that this non-nominal solution is the fruit of a
sub-optimal Leg 3 transfer that led to a better phasing in Leg 4, resulting in
the overall lower path cost. Note that this solution is also not present in the 20-
years departure windows analysis. This drives to the conclusion that 20-years
departure windows do not allow for repeatability of the relative geometry of
asteroids 2000569 and 2002483.

Comparison with Original Bounds

In order to highlight the differences in the ranking of the two GTOC2 sequences
when the cached GS search with a maximum time-of-flight of 600 days is re-
placed by a full DE search with a maximum time-of-flight of 1200 days, Table
11.6 lists the classification side by side. Additionally the execution times with
both variants are given in that Table.

Table 11.6: Final rank of GTOC2 sequences and computational time for different
maximum times-of-flight.

Technique
DE, Full GS, Cached

tf,max [days]
1200 600

Departure windows = 20 years
Number of Champions 15 20 15 20
GTOC2 #2 45 58 96 186
GTOC2 #12 1 1 38 45
Computational Time [min] 13.41 18.03 69.60 112.80

Departure windows = 15 years
Number of Champions 15 20 15 20
GTOC2 #2 35 50 115 148
GTOC2 #12 n.a. n.a. n.a. n.a.
Computational Time [min] 13.12 17.32 62.40 92.4

Table 11.6 does not allow to make explicit observations regarding the added
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computational time related by the increase in maximum time-of-flight. However
it is expected that, in the same way that the execution times with DE are not
affected by increasing the departure date search space, expanding the range of
possible time-of-flight values won’t affect the computational performance of the
DE search. Note however that the DE search is up to 8 times faster than GS
search.

In terms of GTOC2 sequence ranking, the same trends are observable in both
scenarios. With 15-years departure windows, GTOC2 #12 does not feature in
the last leg computations. With 20-years departure windows on the other hand,
this sequence outranks GTOC2 #2. Increasing the departure windows length
and/or the number of champions leads to a decline in the final ranking of GTOC2
#2.

Finally, there is a large difference in ranking when considering the searches
with 600 days and the 1200 days as maximum value for the time-of-flight. In-
creasing the upper bound leads to significant improvements on the final ranking
of GTOC2 #2 and #12, the latter outranking all other sequences for departure
windows of 20 years, independently of the champion thresholds considered. To
sum up, raising the upper bound on the time-of-flight yields very positive re-
sults as GTOC2 #2 is always present in the top-60 combinations and GTOC2
#12 is the overall best when included. Bear in mind that other parameters
were changed from the GS to the DE search, namely the removal of the caching
feature and the improvement of the optimization technique. However, we have
shown, in Sections 10.2 and 10.3, that such modifications had little impact on
the final rankings of the sequences, especially for the departure windows con-
sidered. We can therefore state that the ranking improvements shown in Table
11.6 are mostly due to the raising of the time-of-flight upper bound.

11.1.4 Increasing the Departure Window Length
The results from Section 11.1.3 suggested that departure windows of 20 years
did not allow to conduct a phase-free analysis of the high-thrust GTOC2 model.
We therefore decide to increase these departure windows beyond 20 years: de-
parture windows of 25, 30, 40 and 50 years were considered. In order to cope, in
terms of accuracy, with this widening of the bounds of one of the optimization
variables, the number of individuals and generations of the self-adaptive DE
are also increased, to 100 and 200 respectively. The maximum time-of-flight is
taken to be the same as in Section 11.1.3, i.e. 1200 days. Finally, we vary the
number of champions of the forward multi-path NNH. The final rank of GTOC2
#2 is plotted, in the form of a heat map, in Figure 11.2, for the different number
of champion paths and departure windows lengths. Note that, in that figure,
dark red (which corresponds to a rank of 40th) indicates that GTOC2 #2 is
discarded from Leg 4 computations.

At first glance, it would appear that increasing the departure windows to 25
years is sufficient to obtain a phase-free evaluation of GTOC2 #2, as illustrated
in Figure 11.2. For a number of champion paths larger or equal to 10, with
the exception of N = 40, GTOC2 #2 is always present in Leg 4 evaluations.
Moreover, it consistently ranks above 25th and, for any number of champions,
above the threshold set by that parameter2. The exception that occurs for

2I.e. GTOC2 #2 is in the top-10 for N=10, in the top-15 for N=15, and so on.
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Figure 11.2: Final ranking of GTOC2 #2 for large departure windows, using
DE.

N = 40 can be explained: enlarging the number of champions from 35 to 40
leads to the inclusion, in Leg 3 evaluations, of transfers which lead to sequences
with a total path cost lower than GTOC2 #2 and which therefore push this
sequence just below 40th in Leg 3. Increasing the number of champions further
to 50 does not translate into significant changes in Leg 3 ranking but does allow
GTOC2 #2 to be included in Leg 4 computations. Note that for N = 50,
despite being below 40th in Leg 3, GTOC2 #2 rises up to 21st in Leg 4.

Further widening the departure windows shows that 25 years does not allow
to obtain a phase-free analysis of the high-thrust GTOC2 model. Indeed, with
30- and 40-years departure windows, GTOC2 #2 is discarded from the final
leg computations (see Figure 11.2). This can be attributed to other sequences
having lower path costs than GTOC2 #2 for these departure windows, indicat-
ing that their evaluation was not independent of phasing for shorter departure
windows3.

For 50-years departure windows, GTOC2 #2 is once more (for certain num-
bers of champion paths) among the Leg 4 computations, disproving the hypoth-
esis that 25 years is a large enough window to allow geometry repeatability for
all of its individual legs. In order for GTOC2 #2 to reach the final leg com-
putations, the number of champions has to be set to 30 or higher (see Figure
11.2). While this might seem like a large number, notice that this leads to a
final GTOC2 #2 ranking above 15th for 30 ≤ N ≤ 50, which is considerably
better than the rankings found for the initial, shorter departure windows (see

3Remember that widening the departure windows allows for a larger range of orbital config-
urations, which should ideally repeat themselves with the specified interval therefore leading
to the overall optimal transfer being included in the corresponding search space.
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e.g. Table 11.6).
The reason for which GTOC2 #2 is only present in the final leg computations

for large numbers of champions can be attributed to a relatively poor Leg 3
transfer. This is illustrated in Figure 11.3, where the ranking of GTOC2 #2 in
each leg for 50-years departure windows is given. Notice the dip in ranking for
Leg 3. While GTOC2 #2 ranking is constant for any number of champions up
to Leg 2, Leg 3 computations leads to a drop in ranking, more pronounced as
the number of champions increases. This drop leads to the exclusion of GTOC2
#2 from Leg 4 computations for a number of champions up to 25. For larger N
values, GTOC2 #2 stays afloat above the champion threshold and is included
in Leg 4 transfers, hoisting itself up to the top-15 sequences. Note that for N=5,
GTOC2 #2 is discarded after Leg 2 evaluations.
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Figure 11.3: Ranking of GTOC2 #2, leg per leg, for 50-years departure windows,
using DE.

In Figure 11.4, the final rank of GTOC2 #12 for large departure windows
is plotted. For numbers of champions larger than 15, GTOC2 #12 ranks in
the top-10 sequences for 25- and 30-years departure windows. This seems to
indicate a similar pattern as that illustrated in Figure 11.3 for GTOC2 #2,
namely in terms of the Leg 4 ranking being better than its Leg 3 equivalent.
We have established by now that these departure windows do not allow for
geometry repeatability of all transfers. Increasing their length to 40 and 50
years leads to an improvement of the path costs of other sequences which relegate
GTOC2 #12 below the champion thresholds and therefore exclude it from Leg 4
computations. There is one exception to this statement, for 40-years departure
windows and N = 50. However, the fact that it is not reproducible for 50-years
yields the conclusion that increasing the departure windows leads to an overall
improvement of the sequences path costs, a scenario in which GTOC2 #12 does
not perform well.
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Figure 11.4: Final ranking of GTOC2 #12 for large departure windows, using
DE.

To conclude the analysis of the GTOC2 high-thrust model with larger de-
parture windows, let us take a look at Figure 11.5, which indicates the com-
putational time, in minutes, needed for the forward NNH search to complete.
Despite having increased the number of individuals and generations with re-
spect to the previous section, the forward multi-path NNH takes between 10
and 120 minutes, depending on the number of champions, meaning that the
tool retains its attractive computational effort characteristics. Focusing on the
search parameters that yielded the best GTOC2 #2 rankings, i.e. 50-years de-
parture windows and a large number of champions, the algorithm runs in 70 to
120 minutes, which is rather positive given the size of the original combinatorial
problem.

Figure 11.5 also shows that, as we discussed earlier, increasing the number of
champion paths leads to an increase in computational effort, as more transfers
need to be evaluated. A increase in computational effort from 25/30- to 40/50-
years departure windows is also visible, especially for larger numbers of transfers.
This is probably due to the convergence criteria of the self-adaptive DE routine
employed. A smaller search space means that the optimum can be more easily
found and therefore the optimization heuristic convergences faster. The final
impact on computational times is amplified by the number champions. Note
however that this does not single-handedly account for the large differences in
computational times between Tables 11.5 and 11.4 and Figure 11.5, for 15 and
20 champions. Those are mostly the effect of the larger DE parameters in used
in this analysis.
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Figure 11.5: Computational time for large departure windows, using DE.
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Chapter 12

Conclusions

This report documents the author’s attempt at designing an efficient combinato-
rial tool for preliminary space mission analysis, applied to a theoretical problem,
defined in the 2nd Global Trajectory Optimization Competition (GTOC2). With
a focus on efficiency, a number of design choices and hypotheses were formulated,
implemented and verified. We started by decoupling the continuous part from
the integer facet of the problem. The combinatorial problem was modelled as a
static Shortest Path Problem (SPP), the complexity of dynamic variant being
expected to yield large computational times which would hinder the efficiency
of the combinatorial tool. The SPP model is solved on a leg-per-leg basis with
a greedy algorithm. While the basis of this algorithm is the Nearest Neighbour
Heuristic (NNH), a multi-path variant was adopted in an attempt to improve
the fidelity of this heuristic. At each consecutive leg, the individual transfers,
formulated as continuous, box-constrained problems, were optimized using two
different optimization techniques: Grid Search (GS) and Differential Evolution
(DE). Two different cost functions were implemented, both based on the ∆V
of high-thrust, bi-impulsive Lambert transfers. An efficient Lambert routine
was implemented and tested for this purpose. The resulting combinatorial tools
were called into play on both the complete asteroid pool and a subset of said
pool. A diversity of scenarii, namely with respect to the search spaces of the
continuous problems, as well as to the parameters of the multi-path NNH, were
analyzed.

This chapter lists the main conclusions that can be drawn from the work
documented in this report. These are grouped into categories that reflect their
scope of application. As a result, we first take a look at the continuous opti-
mization methods employed, and then move towards considerations regarding
the problem definition of the continuous problems, more specifically with regard
to the bounds of the different variables. The subsequent section concerns itself
with the high-thrust approximation and corresponding cost functions. There-
after, observations regarding the greedy algorithm are made. Finally, the last
two sections are in respect to the characteristics of the GTOC2 problem and
the evaluation of the resulting sequences.

189
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12.1 Continuous Optimization Technique
For similar accuracy levels, the self-adaptive DE is considerably faster
than GS. It was shown throughout the report that, after tuning, the self-
adaptive DE leads to considerable time savings with respect to GS, while pro-
viding results with a similar, if not increased, fidelity (see e.g. Sections 6.2.2
and 10.3). Even adding complexity to the problem, namely through the re-
moval of the caching feature, the complete asteroid pool is dealt with by the
forward multi-path NNH up to 7 times faster when replacing GS with DE as
arc optimization method (Section 11.1.1).

GS is more sensitive, in terms of execution times, to a varying search
space size. The parameters of GS and DE were kept constant irrespective
of variations in the size of the problem. The number of champions affects the
number of individual transfers and therefore impacts the computational times
of the search with both GS and DE. The departure windows length, on the
other hand, affects the size of the individual, continuous optimization problems.
By defining a constant step-size for the mesh of GS, the algorithm evaluates a
different number of grid points and this is reflected in the computational effort
(see e.g. Section 9.1). The number of evaluations in DE is mostly defined by
the number of individuals and generations, which are constant. Increasing the
departure windows length has thus no impact on the computational effort of
DE (see Section 10.3).

The heuristic nature of DE leads to less consistency in the results.
This was observed when optimizing the full GTOC2 sequences (Section 10.4),
as well as when solving the GTOC2 combinatorial problem with a raised up-
per bound on the time-of-flight (Section 11.1.3): different DE optimization runs
yields different results due to the random components of the algorithm. This
randomness can be limited by setting more stringent parameters, i.e. by in-
creasing the number of individuals and/or of generations, at the cost, however,
of added computational complexity.

In DE, higher accuracy is more easily achieved by raising the number
of generations than by increasing the number of individuals. When
tuning the parameters of the self-adaptive DE (Section 6.2.2) it was shown
that a larger number of generations is more effective to improve the quality
of the results than a larger number of individuals. By increasing the number
of generations, solutions have more opportunities to evolve into a better set of
variables, diminishing the impact of the random population initialization.

An expanding search space should be accompanied by an increase in
the DE parameters. When optimizing the full GTOC2 sequences (Section
10.4), it was observed that increasing the parameters of the search, namely in
terms of the upper bound on the times-of-wait, led to a degradation of the total
∆V . Given the “Russian doll” property of the increasing search spaces, i.e.
the fact that the smaller search spaces are contained within the larger ones,
this degradation can only be explained by an underperforming optimization
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step. This can be compensated by increasing the number of individual and/or
generations.

12.2 Optimization Problem Definition
The largest departure windows length considered initially, 20 years,
is not broad enough to perform a fully phase-free analysis. This con-
clusion is recurrent to different parts of the MSc Thesis work and was brought
into the spotlight as the result of the “odd” simulation that ranked GTOC2 #2
as the best sequence found when using DE in the forward search with a maxi-
mum time-of-flight of 1200 years, a departure windows length of 15 years, and
15 champion paths (Section 11.1.3). Gradually increasing the departure win-
dows length up to 50 years in Section 11.1.4 lead to ever-changing results. The
departure windows were not increased beyond 50 years due to time constraints.
There is however confidence that this value considerably reduces the impact of
phasing on the results.

An upper bound of 600 days for the time-of-flight is too restrictive.
Analysis of the GTOC2 sequences optimized as a whole (Section 10.4) suggested
that the upper bound of 600 days placed on the maximum time-of-flight was
too limiting, especially for Leg 3 and Leg 4 transfers. This was confirmed when
raising that bound to 1200 days. The GTOC2 sequences to reach the final
leg computations remained unchanged, for most sequences are discarded prior
to Leg 3 computations. The GTOC2 sequences that were preserved until the
Leg 4 computations saw their ranking improve considerably with respect to the
results yielded by a maximum time-of-flight of 600 days, with special emphasis
on GTOC2 #12, which for 20 years departure windows becomes the overall best
sequence (Section 11.1.3).

12.3 High-Thrust Cost Function
The high-thrust approximation allows to quickly sort through the pos-
sible combinations. Given the low complexity of the analytically described
Lambert arcs, adopting such a high-thrust model for the preliminary analysis of
the GTOC2 combinatorial problem allows to rapidly assess a considerable num-
ber of sequences. For the forward multi-path NNH search, the execution times
range from less than 20 minutes with DE to 2 hours with GS for the 20-years
departure windows with 20 champion paths (Section 11.1.1). Increasing the DE
parameters to cope with larger departure windows led to execution times up to
2 hours for 50 champion paths.

The high-thrust cost function investigated does not fully correlate
with the low-thrust GTOC2 cost function. The complete high-thrust
optimization of GTOC2 sequences (Section 10.4) revealed that the optimal,
high-thrust final mass cost function (Equation (6.1.5)) does not lead to an eval-
uation coherent with their GTOC2 ranking. This is most evident when looking
at the relative rankings of GTOC2 sequences in the reduced asteroid set as well
as in the complete optimization.
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Not including the time-of-flight in the high-thrust cost function yields
better results. Comparison of the results of the forward multi-path NNH
search with J1 (Equation (6.1.4)) and J2 shows that the latter produces more
satisfying solutions (Sections 9.1 and 9.3). Therefore, introducing the time-of-
flight in the high-thrust cost function decreases the correlation with the low-
thrust GTOC2 objective function. This is mostly due to the large differences in
time-of-flight between optimal low- and high-thrust transfers.

When compared to the routine developed by [Lancaster and Blan-
chard, 1969], the Izzo Lambert targeter achieves similar accuracy
while being faster and more robust. The high-thrust cost of each indi-
vidual transfer is evaluated based on the corresponding Lambert solution. After
extensive testing and tuning of the implemented routine, it was shown that the
implemented Lambert routine is twice as fast as the targeter initially designed
by [Lancaster and Blanchard, 1969] and further improved by [Gooding, 1990],
on similar accuracy levels (Section 7.4.4). Moreover, not suffering from a near-π
singularity, the algorithm turns out to be more robust over a larger spectrum
of problems.

12.4 Greedy Algorithm
The leg-per-leg approach typically decreases the quality of the se-
quences. Comparing the ∆V budget of the sequences optimized in a single
run (Section 10.4) and in a leg-per-leg approach reveals that, overall, dividing
the sequences into separately optimized legs leads to a larger final ∆V . This
indicates that the departure windows considered do not allow to completely
remove the effect of phasing from the results. As a result the separately op-
timized legs affect the phasing of subsequent legs and therefore the minimum
∆V achieved. Optimizing the complete sequences in a single run enables to
perform trade-offs between the individual transfer cost to achieve a lower final
∆V budget. Note however that this would not be the case if the leg-per-leg
approach was accompanied by settings leading to a fully phase-free manner.

Results display a heightened sensitivity to the decision metric. The
number of champions plays an important role on the quality of the results.
Throughout the scenarii investigated, the final ranking of GTOC2 sequences is
highly dependent on this paramater (see e.g. Section 9.1). If it is too stringent,
sequences are discarded from the following leg computations. If it is too large,
the GTOC2 sequences are bumped down the ranking by previously discarded
sequences. This sensitivity can be seen as a property of the search space.

The backward search does not perform as well as the forward search.
In retrospect, the underperformance of the backward multi-path NNH search
may be related to limiting parameters bounds, as it was shown that increasing
the upper bound of the time-of-flight and of the departure windows leads to
better results for the forward search (Sections 11.1.3 and 11.1.4, respectively).
Nonetheless, within the bounds considered, the relatively good results for Leg 4
(GTOC2 #1 is highest ranking GTOC2 sequence for that leg) are overshadowed
by the deceiving Leg 3 computations which see GTOC2 #1 fall below 50th in
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the best case scenario (Section 9.2). Lowering the champion threshold to that
level would lead to a large computational effort with GS, although using DE
may lessen the computational drawbacks. In any case, analyzing both legs leads
to labelling Leg 3 as a good candidate to be the patch leg in a bi-directional
multi-path NNH search.

Computational times achieved with NNH are very attractive. Within
the parameters considered, the computational times inherent to the greedy al-
gorithm are very attractive. Even more so when the individual arc cost are
optimized with DE. For the forward search, the algorithm takes at most 2 hours
to solve the combinatorial problem, with GS. Using DE instead, the largest ex-
ecution times encountered, for the same departure windows length, are about
20 minutes (Section 11.1.1). Increasing the DE parameters and the number
of champions in Section resultsdemaxwind led to maximum running times of 2
hours. This very low computational effort allows room for added complexity in
the parameters of the NNH, in the parameters of the continuous optimzer or in
the continuous search space, in the definition of the model.

12.5 GTOC2 Sequence Evaluation
The GTOC2 winning sequence could not be reproduced. The GTOC2
winning sequence, referred to throughout the report as GTOC2 #1, was sys-
tematically discarded at early stages, independently of the approach or the cost
function. Moreover, the complete high-thrust optimization (Section 10.4) did
not identify this sequence as the most promising combination. In the descrip-
tion of the methods used to find this sequence, high-thrust Lambert arcs are not
explicitely referenced. The author believes that the reason why, in the forward
search, GTOC2 #1 is rapidly discarded lies with the fact that, using the “free”
excess velocity allowed in the problem definition, the goal of the first transfer
was to get as far as possible from Earth (and therefore as close as possible from
Group 3 asteroids). This design option would translate into a higher ∆V cost
which explains why it is discarded. With respect to the backward search (Sec-
tion 9.2), GTOC2 #1 is the best-ranked GTOC2 sequence in Leg 4, and the
second in Leg 3 despite its overall ranking being below 80th at all times in that
leg. The poor overall ranking may be caused by the stringent upper bound on
the time-of-flight, discussed earlier.

GTOC2 #11 is accurately and consistently ruled out as promising
sequence. The GTOC2 #11 sequence, which led to the solution ranked last
in the competition among the non-disqualified solutions, is systematically ruled
out as promising sequence, early in the process. This occurs in every scenario
considered, independently of the number of champions, of the departure win-
dows, or of the direction of the search (see e.g. Chapter 9). One can therefore
conclude that the tool accurately discards sequences which will lead to a rather
poor GTOC2 objective function value.

The GTOC2 runner-up is the only non-disqualified sequence identi-
fied as promising. For departure windows length of 15 to 25 years, GTOC2
#2 reaches the last leg computations in the forward search for optimal final
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mass, both with GS (Section 9.1) and DE (Section 11.1). Under favourable
conditions, namely in terms of number of champions and departure windows,
it ends up in the top-15 sequences identified. The fact that it is identified as
a promising sequence is in tune with results from the complete optimization
(Section 10.4), where it always landed on the podium. The best rank achieved
(4th) occured for the forward search using DE for 25 years departure windows,
10 champion paths and a larger interval for time-of-flight values. Increasing the
length of the departure windows to 50 years and the number of champions to
values larger than 25 lead to a slight drop in final ranking but such departure
windows allow for a more robust analysis, as the effect of phasing is further
diminished. For the largest number of champions considered (50), the GTOC2
runner-up is included in the top-15 subset, obtained in 2 hours (Section 11.1.4).
Interestingly, this is the only sequence, along with GTOC2 #9, that was ob-
tained exclusively via optimal Lambert solutions (Section 3.1.1).

For departure windows of 20 years, GTOC2 #12 ranks as the abso-
lute best sequence. In the last chapter, the forward search was performed
using DE to optimize individual transfers where the maximum time-of-flight was
increased with respect to previous scenarii (Section 11.1.3). In this framework,
for 20 years departure windows, GTOC2 #12 is tagged as the absolute most
promising sequence among the ones considered in the final leg computations.
This occurs for both 15 and 20 champion paths. This result is also obtained
in less than 20 minutes. While the corresponding GTOC2 solution violated a
number of constraints, it represents an improvement with respect to the solu-
tion submitted at the time by the team under TU Delft leadership. However,
increasing the departure windows length to 50 years revealed that GTOC2 #12
would most probably be discarded from a phase-free analysis.

Other GTOC2 sequences obtained with optimal Lambert transfers
could not be reproduced. A large number of GTOC2 participating teams
used optimal, bi-impulsive transfers at some point when obtaining their asteroid
combination (Section 3.1.1). Out of these, only GTOC2 #2 and #12 could be
reproduced. The absence of the remaining sequences from the batch of final,
complete sequences returned by the multi-path NNH could be explained by a
preliminary pruning (GTOC2 #3, #4, and #5) or a mixed low-thrust/high-
thrust model (GTOC2 #3 and #7). The absence of sequence GTOC2 #9
from the results obtained is more difficult to interpret based on the method
description from Section 3.1.1. It may be related to differences in the definition
of the continuous optimization problem, such as different departure windows.

12.6 GTOC2 Problem
It is difficult to reproduce all GTOC2 sequences with a single ap-
proach. Although the continuous low-thrust optimization aspect is straight-
forward, the GTOC2 integer problem is very large and does not contain an
obvious sequence which would likely contain the optimal complete trajectory.
Pruning the integer search space based on another metric than the GTOC2 cost
function will likely cause promising sequences to be discarded from the resulting
subset. The preliminary pruning applied by most of the GTOC2 participating
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teams likely resulted in a reduced set of asteroids that excluded combinations
considered promising according to the model established in this MSc Thesis.

Using a comparative evaluation of sequences is limiting. As mentioned
in the previous paragraph, the GTOC2 is quite vast, both in its integer (aster-
oid sequences) and continuous (trajectory optimization) aspects. As a result,
one can never know with certainty the true optimum of the problem. The only
knowledge that we have regarding the problem is the best known trajectory,
resulting from the GTOC2 winning sequence. Limiting the evaluation of the se-
quences found to the comparison with a very small subset of solutions, obtained
in a variety of ways, does not provide an accurate estimate of their quality.
Indeed, some of the sequences yielded by the proposed tool may correspond to
combinations which were considered, at some point, by the GTOC2 participat-
ing teams. One can also not exclude the possibility that one of the resulting
sequences contains the true optimum of the problem, as it is not known.

The GTOC2 combinatorial problem is very sensitive under the high-
thrust approximation. Modifying any parameter of the search leads to dif-
ferent sequence rankings. This was observed when the number of champions
was altered, when the size of the departure windows was changed and when the
maximum time-of-flight was extended. This shows that the (partial) path costs
of the different sequences are very close to one another, small modifications
immediately leading to alterations in the ranking of the (partial) sequences.

Leg 4 is very sensitive to phasing. Phasing plays an important role in the
final legs, and in particular in Leg 4. It explains the large variations in the final
rank of sequences when the departure windows are altered. The relatively larger
importance of phasing in later legs was perhaps most visible when looking at the
evolution of GTOC2 sequences, leg per leg, in the reduced asteroid set (Section
10.1). Therefore, care must be taken to ensure that the last leg computations
are as phase free, i.e. consider the largest array of departure and arrival dates,
possible. The relatively larger effect of phasing for the final leg is linked to
the orbital properties of the Group 1 asteroids, which are typically further away
from the Group 2 asteroids and are, in general, more elliptical. These two factors
reduce the frequency of the repeatability of the relative geometry between Group
2 and Group 1 asteroids. Increasing the departure windows in Section 11.1.4
revealed that also Leg 3 results are dependent on phasing. For this leg, the
reason is the exact opposite: the proximity between Group 3 and Group 2
asteroids leads to a relative geometry that changes very slowly over time and
that therefore takes a longer time to repeat.

Phasing plays a major role. While the use of a high-thrust phasing to
obtain an initial guess for low-thrust trajectories has been discouraged, phasing
has a major impact on the path costs of the (partial) sequences. This is true
for the last legs but also for the early legs, as revealed when analyzing the effect
of the caching feature (Section 10.2). To eliminate this effect, the departure
windows should be large enough to allow repeatability of the relative heliocentric
geometry between departure and arrival bodies. We have shown that 20 years
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is not large enough to ensure said repeatability for all asteroid pairs, 50 years
being a more sensible value.



Chapter 13

Recommendations

There was an effort from the author to conduct a thorough and sensible analy-
sis of the performance of the different components and variants of the designed
combinatorial tool, to improve the models and techniques based on the feedback
provided by the results achieved. However, this iterative process can easily be-
come neverending and the investigation needed to be interrupted due to timeli-
ness considerations. As a result, this chapter lists a number of recommendations
for possible future work. These recommendations are based on the conclusions
discussed in the previous chapter and therefore follow the same structure.

13.1 Continuous Optimization Technique
Use an implicit enumerative method for global continuous optimiza-
tion instead of a pure enumerative method. One of the first recommen-
dations which arises from the work carried out in this MSc Thesis is the use
of implicit enumerative methods, such as DE, to perform global, continuous
optimization. When compared to pure enumerative techniques, e.g. GS, they
achieve similar, if not better, solutions with much less computational effort.
This allows to remove computational load from the optimization procedure and
redistribute it to other areas of the problem, e.g. the implementation of a more
accurate model, with the improvement of the results as a goal.

For the purposes of space trajectory optimization, stricter DE pa-
rameters should be used. This is particularly true for problems with larger
search spaces than the ones consider in this report. Increasing the number of in-
dividuals in the solution population and/or the number of generations for which
the population is evolved confers an added consistency to the results. Besides
the consistency, it increases the probability of finding the true optimum and
therefore the confidence in the output from the optimization procedure. Given
the low computational times achieved in the MSc Thesis work, there is definitely
room for a larger number of individuals and generations.

Investigate the quality of the results found with different optimization
techniques. Now that the interface between PaGMO and Tudat has been
successfully established and is well documented, replacing the self-adaptive DE
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with any other optimization algorithm available in the external toolbox comes
at (nearly) no cost. An interesting avenue may be the use of an integer optimizer
such as Ant Colony Optimization (ACO).

13.2 Optimization Problem Definition
Increase the departure windows length. We have seen the impact of
phasing on the solutions returned by the multi-path NNH. In order to eliminate,
or at least minimize, its effect, the maximum departure windows considered
could be extended beyond the 50 years considered in this report. If doing
so leads to significant computational drawbacks, the departure window can be
determined for each specific asteroid pair, as not all asteroid couples will require
the same departure window length to conduct a phase-free analysis. An estimate
of the necessary time span could be bbased on the circular, co-planar synodic
period, as given in Equation (6.2.9), although its suitability for this purpose
should first be investigated.

Increase the maximum time-of-flight. When the maximum time-of-flight
was increased from 600 to 1200 days, the ranking of the GTOC2 sequences
improved considerably. Moreover, the dependence on the number of champions
was mitigated. It is conceivable that pushing the upper bound for the time-of-
flight of individual transfers further will have the same effect and lead to even
better results.

13.3 High-Thrust Cost Function
Introduce a low-thrust model. The primary reason for selecting a high-
thrust cost function for the preliminary analysis of the (low-thrust) GTOC2
problem was the fact that high-thrust trajectories can be computed considerably
faster than low-thrust transfers. Given the very short computational times
observed, there is space for introducing a low-thrust cost function. This cost
function could be based on e.g. shape-based models (see e.g. [Petropoulos
and Longuski, 2004], [Wall and Conway, 2009]) which have proven to provide a
more reliable initial guess for low-thrust trajectories than high-thrust models.
In order to avoid compromising the computational tractability of the resulting
problem, this low-thrust cost could be applied only to one leg. This approach
was adopted to obtain GTOC2 #3 and #7: the Leg 2 transfer was taken to
be a low-thrust arc, as it corresponds to the most costly leg under high-thrust
assumption (see [Evertsz, 2008]).

13.4 Greedy Algorithm
Build up the sequences by adding each new leg to the partial se-
quence optimization. We have already discussed the important effects of
phasing on the quality of the results. Earlier, it was suggested to increase the
departure windows length to mitigate the impact of phasing. However, should
this approach be unpractical due to e.g. severe execution times drawbacks, the
phasing issue can be tackled from a different angle. Instead of trying to get rid
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of the phasing via a phase-free analysis, one can accept it into the optimization
procedure. At each leg, instead of optimizing the particular transfer in an iso-
lated fashion, the trajectory, up to that leg, can be optimized as a whole. In
doing so, the optimizer performs the necessary trade-offs to yield the (partial)
trajectory with the lowest cost. Doing so would also limit the adverse effects of
a leg-per-leg approach.

Use a more flexible decision metric. The sensitivity of the results with
respect to the number of champion paths has been thouroughly discussed. Pos-
sible ways to mitigate this sensitivity rely on switching from an absolute and
constant number of champions to a decision metric which determines the num-
ber of champion paths based on the characteristics of the solution space. A
relative number of champions, as described in Section 5.2.1, would selected the
champion paths based on the size of the solution space. Another approach is to
take into consideration the fitness of the population of solutions and adapt the
champions accordingly. Such a decision metric could rely on fitting a distribu-
tion to the solutions, as suggested by [Alemany and Braun, 2007].

Use a more accurate combinatorial algorithm. A conscious choice was
made, during the design process of the combinatorial tool, to opt for a greedy
algorithm and to attempt to improve its accuracy while preserving its low com-
putational load. Given that positive results were obtained with NNH in very
short execution times, a more complex combinatorial optimization algorithm,
such as B&B, can be considered. Note that this type of algorithms has already
been investigated by [Gorter, 2010] with a simplified arc cost evaluation, based
on the orbital elements of the asteroids.

13.5 GTOC2 Sequence Evaluation
Perform an absolute evaluation of the asteroid combinations. It is
recommended to have an accurate low-thrust model before further investigations
on the combinatorial aspect of GTOC2 are undertaken. With such a model,
coupled to a suitable optimizer, an absolute (and fairer) evaluation of the quality
of the sequences can be achieved. Such a model is currently being developed by
MSc students at the A&S department and therefore should be available in the
near future.
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Appendix A

Trigonometric Identities

This appendix contains a number of trigonometric identities and is based on
[TheMathPage, 2012]. These were mostly used for the derivation of the equa-
tions from the Lagrange-Gauss equations in Chapter 7.

A.1 Tangent and Cotangent Identities

tan a = sin a
cos a (A.1.1)

cot a = cos a
sin a (A.1.2)

A.2 Pythagorean Identities

sin2 a+ cos2 a = 1 (A.2.1)

1 + tan2 a = 1
cos2 a

(A.2.2)

1 + 1
tan2 a

= 1
sin2 a

(A.2.3)

A.3 Sum and Difference Formulae

sin(a+ b) = sin a cos b+ cos a sin b (A.3.1)
sin(a− b) = sin a cos b− cos a sin b (A.3.2)
cos(a+ b) = cos a cos b− sin a sin b (A.3.3)
cos(a− b) = cos a cos b+ sin a sin b (A.3.4)
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A.4 Half-angle Formulae

cos2 1
2a = 1

2(1 + cos a) (A.4.1)

sin2 1
2a = 1

2(1− cos a) (A.4.2)

A.5 Products as Sums

sin a cos b = 1
2 [sin(a+ b) + sin(a− b)] (A.5.1)

cos a sin b = 1
2 [sin(a+ b)− sin(a− b)] (A.5.2)

cos a cos b = 1
2 [cos(a+ b) + cos(a− b)] (A.5.3)

sin a sin b = −1
2 [cos(a+ b)− cos(a− b)] (A.5.4)

A.6 Sums as Products

sin a+ sin b = 2 sin 1
2(a+ b) cos 1

2(a− b) (A.6.1)

sin a− sin b = 2 sin 1
2(a− b) cos 1

2(a+ b) (A.6.2)

cos a+ cos b = 2 cos 1
2(a+ b) cos 1

2(a− b) (A.6.3)

cos a− cos b = −2 sin 1
2(a+ b) sin 1

2(a− b) (A.6.4)



Appendix B

Algorithms Tuning and
Verification

This appendix contains additional data relative to the tuning and verification of
the external self-adaptive DE routine and of the implemented Lambert solver.

B.1 Self-Adaptive Differential Evolution Tuning

Figure B.1: Difference in departure date between the best Leg 1 transfers found
by DE (with 100 individuals and 50 generations) and GS.
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Figure B.2: Difference in time-of-flight between the best Leg 1 transfers found
by DE (with 100 individuals and 50 generations) and GS.

Figure B.3: Difference in departure date between the best Leg 1 transfers found
by DE (with 50 individuals and 150 generations) and GS.
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Figure B.4: Difference in time-of-flight between the best Leg 1 transfers found
by DE (with 50 individuals and 150 generations) and GS.

B.2 Lambert Solver Verification

B.2.1 Test Case 1

Table B.1: Maximum and mean absolute errors for Test Case 1, for each run.
Quantity Run #1 Run #2 Run #3
Vx1 Maximum 4.760 · 10−7 2.386 · 10−7 2.052 · 10−7

Mean 2.288 · 10−8 1.605 · 10−8 1.414 · 10−8

Vy1 Maximum 1.256 · 10−6 6.601 · 10−7 3.919 · 10−7

Mean 3.449 · 10−8 2.034 · 10−8 1.729 · 10−8

Vz1 Maximum 1.104 · 10−6 1.723 · 10−7 3.287 · 10−7

Mean 3.025 · 10−8 1.512 · 10−8 1.558 · 10−8

V1 Maximum 1.739 · 10−6 7.133 · 10−7 5.512 · 10−7

Mean 5.573 · 10−8 3.447 · 10−8 2.996 · 10−8

Vx2 Maximum 1.240 · 10−6 4.177 · 10−7 4.648 · 10−7

Mean 3.579 · 10−8 2.183 · 10−8 1.648 · 10−8

Vy2 Maximum 1.020 · 10−6 1.545 · 10−7 2.818 · 10−7

Mean 3.105 · 10−8 1.339 · 10−8 1.631 · 10−8

Vz2 Maximum 6.563 · 10−7 5.580 · 10−7 1.210 · 10−7

Mean 2.166 · 10−8 1.732 · 10−8 1.483 · 10−8

V2 Maximum 1.735 · 10−6 7.140 · 10−7 5.489 · 10−7

Mean 5.548 · 10−8 3.461 · 10−8 3.089 · 10−8
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B.2.2 Test Case 2

Table B.2: Parameters for the Test Case 2. Varying parameters are represented
in the i : s : f format, with i, s and f the initial, step-size and final values,
respectively.

Time-of-flight, tf [days] 200:50:1000
Gravitational parameter, µ [km3/s2] 1.32712440018× 1011

Orbital parameters Planet
Earth Mars

Semi-major axis, a [AU] 1 1.5
Eccentricity, e [-] 0 0
Inclination, i [deg] 0 0
RAAN, Ω [deg] 0 0
Argument of periapsis, ω [deg] 0 0
Mean anomaly, M [deg] 0 1:1:360

B.2.3 Sensitivity Analysis

Table B.3: Maximum values for the absolute erros in the velocity components
and norms and for the number of iterations as a function of the convergence
tolerance.

ε 10−3 10−4 10−5 10−6 10−9 10−12

Component Maximum Absolute Error [m/s]
V1,x 6.36 · 10−1 5.50 · 10−2 5.21 · 10−3 1.18 · 10−5 1.18 · 10−5 1.18 · 10−5

V1,y 1.06 4.12 · 10−2 1.36 · 10−3 1.33 · 10−5 1.33 · 10−5 1.33 · 10−5

‖V1‖ 1.12 6.87 · 10−2 5.38 · 10−3 1.51 · 10−5 1.51 · 10−5 1.51 · 10−5

V2,x 1.20 4.20 · 10−2 4.51 · 10−3 1.25 · 10−5 1.25 · 10−5 1.25 · 10−5

V2,y 1.22 7.15 · 10−2 3.09 · 10−3 1.94 · 10−5 1.94 · 10−5 1.94 · 10−5

‖V2‖ 1.71 7.49 · 10−2 5.47 · 10−3 2.26 · 10−5 2.26 · 10−5 2.26 · 10−5

Maximum Number of Iterations [-]
# Iterations 4 5 5 5 6 7
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Table B.4: RMS values for the absolute erros in the velocity components and
norms and for the number of iterations as a function of the convergence toler-
ance.

ε 10−3 10−4 10−5 10−6 10−9 10−12

Component RMS Absolute Error [m/s]
V1,x 5.21 · 10−2 1.66 · 10−3 7.02 · 10−5 1.06 · 10−6 1.06 · 10−6 1.06 · 10−6

V1,y 3.15 · 10−2 7.45 · 10−4 2.02 · 10−5 9.24 · 10−7 9.25 · 10−7 9.25 · 10−7

‖V1‖ 6.08 · 10−2 1.82 · 10−3 7.30 · 10−5 1.41 · 10−6 1.40 · 10−6 1.40 · 10−6

V2,x 4.87 · 10−2 1.15 · 10−3 5.79 · 10−5 9.97 · 10−7 9.98 · 10−7 9.98 · 10−7

V2,y 4.99 · 10−2 1.53 · 10−3 4.82 · 10−5 1.51 · 10−6 1.51 · 10−6 1.51 · 10−6

‖V2‖ 6.97 · 10−2 1.91 · 10−3 7.53 · 10−5 1.81 · 10−6 1.81 · 10−6 1.81 · 10−6

RMS Number of Iterations [-]
# Iterations 3.31 3.88 4.09 4.27 5.09 5.63
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Appendix C

Best Sequences in the
Complete Asteroid Pool,
using GS

This appendix contains the 10 best sequences, for the forward multi-path NNH
search with J2 as a cost function, for 10-years departure windows, according
to the number of champion paths. This specific departure windows length did
not lead to any GTOC2 sequence being present in the final leg computations
(see Section 9.1). Full results for all search directions, cost functions, departure
windows and number of champions investigated in Chapter 9, found in the
complete asteroid pool using GS, can be obtained by contacting the author.

Table C.1: Top-10 combinations, according to J2, found for 10-years departure
windows by a forward multi-path NNH with N=3, using GS

Rank Group 4 Group 3 Group 2 Group 1 Total ∆V [m/s]
1 3250293 2001990 2000058 2001345 18851.9
2 3250293 2001990 2000442 2001754 19529.4
3 3250293 2001990 2000058 2001754 19945.3
4 3250293 2001990 2000821 2032511 19995.1
5 3250293 2001990 2000821 2003134 20139.2
6 3250293 2001990 2000442 2002483 20671.0
7 3250293 2001990 2000821 2002959 20706.0
8 3250293 2001990 2000442 2001345 21281.3
9 3250293 2001990 2000442 2015278 21486.3
10 3250293 2001990 2000442 2011542 21789.9
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Table C.2: Top-10 combinations, according to J2, found for 10-years departure
windows by a forward multi-path NNH with N=4, using GS

Rank Group 4 Group 3 Group 2 Group 1 Total ∆V [m/s]
1 3250293 2001990 2000058 2001345 18851.9
2 3250293 2001990 2000442 2001754 19529.4
3 3250293 2001990 2000058 2001754 19945.3
4 3250293 2001990 2000821 2032511 19995.1
5 3250293 2001990 2000821 2003134 20139.2
6 3250293 2001990 2000442 2002483 20671.0
7 3250293 2001990 2000821 2002959 20706.0
8 3042555 2001133 2000021 2001038 20991.8
9 3250293 2001990 2000442 2001345 21281.3
10 3250293 2001990 2000442 2015278 21486.3

Table C.3: Top-10 combinations, according to J2, found for 10-years departure
windows by a forward multi-path NNH with N=5, using GS

Rank Group 4 Group 3 Group 2 Group 1 Total ∆V [m/s]
1 3250293 2001990 2000058 2001345 18851.9
2 3250293 2001990 2000442 2001754 19529.4
3 3250293 2001990 2000585 2001754 19621.3
4 3250293 2001990 2000058 2001754 19945.3
5 3250293 2001990 2000821 2032511 19995.1
6 3250293 2001990 2000821 2003134 20139.2
7 3250293 2001990 2000442 2002483 20671.0
8 3250293 2001990 2000821 2002959 20706.0
9 3042555 2001133 2000021 2001038 20991.8
10 3250293 2001990 2000442 2001345 21281.3

Table C.4: Top-10 combinations, according to J2, found for 10-years departure
windows by a forward multi-path NNH with N=10, using GS

Rank Group 4 Group 3 Group 2 Group 1 Total ∆V [m/s]
1 3250293 2000270 2000395 2003134 18442.6
2 3250293 2000937 2000395 2003134 18523.3
3 3250293 2001990 2000058 2001345 18851.9
4 3250293 2001990 2000442 2001754 19529.4
5 3250293 2000851 2000206 2001754 19769.8
6 3250293 2000901 2000135 2014569 19889.4
7 3250293 2001990 2000058 2001754 19945.3
8 3250293 2001990 2000821 2032511 19995.1
9 3250293 2001990 2000821 2003134 20139.2
10 3250293 2000851 2000206 2001345 20639.8
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Table C.5: Top-10 combinations, according to J2, found for 10-years departure
windows by a forward multi-path NNH with N=13, using GS

Rank Group 4 Group 3 Group 2 Group 1 Total ∆V [m/s]
1 3250293 2000270 2000395 2003134 18442.6
2 3250293 2000937 2000395 2003134 18523.3
3 3170221 2000951 2000395 2003134 18526.5
4 3250293 2001990 2000058 2001345 18851.9
5 3250293 2001990 2000442 2001754 19529.4
6 3250293 2001990 2000585 2001754 19621.3
7 3250293 2000851 2000206 2001754 19769.8
8 3170221 2000951 2000418 2002959 19870.7
9 3250293 2000901 2000135 2014569 19889.4
10 3250293 2001990 2000058 2001754 19945.3

Table C.6: Top-10 combinations, according to J2, found for 10-years departure
windows by a forward multi-path NNH with N=15, using GS

Rank Group 4 Group 3 Group 2 Group 1 Total ∆V [m/s]
1 3250293 2000270 2000395 2003134 18442.6
2 3250293 2000937 2000395 2003134 18523.3
3 3170221 2000951 2000395 2003134 18526.5
4 3250293 2001990 2000058 2001345 18851.9
5 3250293 2001990 2000442 2001754 19529.4
6 3250293 2001990 2000585 2001754 19621.3
7 3250293 2000851 2000206 2001754 19769.8
8 3170221 2000951 2000418 2002959 19870.7
9 3250293 2000901 2000135 2014569 19889.4
10 3250293 2001990 2000207 2001038 19918.6

Table C.7: Top-10 combinations, according to J2, found for 10-years departure
windows by a forward multi-path NNH with N=20, using GS

Rank Group 4 Group 3 Group 2 Group 1 Total ∆V [m/s]
1 3250293 2000270 2000395 2003134 18442.6
2 3250293 2000937 2000395 2003134 18523.3
3 3170221 2000951 2000395 2003134 18526.5
4 3042555 2000296 2000240 2001038 18533.2
5 3250293 2001990 2000058 2001345 18851.9
6 3042555 2001133 2000144 2011542 19224
7 3042555 2000296 2000240 2009661 19279
8 3250293 2001990 2000442 2001754 19529.4
9 3250293 2001990 2000585 2001754 19621.3
10 3250293 2000851 2000206 2001754 19769.8
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Appendix D

Additional Data from the
Reduced Set of Asteroids

This appendix contains the leg-per-leg evolution of the rank of GTOC2 #5,
#7 and GTOC2 #9 through #13, according to the forward multi-path search
performed with GS and without caching in Section 10.1. Moreover, the total ∆V
of the GTOC2 sequences optimized in a complete, single DE run (Section 10.4)
is given. Additional data concerning the investigation in the reduced asteroid
pool can be obtained by contacting the author.

Figure D.1: Ranking of GTOC2 #5 in the reduced asteroid set, using GS.

217



218APPENDIX D. ADDITIONAL DATA FROM THE REDUCED SET OF ASTEROIDS

Figure D.2: Ranking of GTOC2 #7 in the reduced asteroid set, using GS.

Figure D.3: Ranking of GTOC2 #9 in the reduced asteroid set, using GS.
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Figure D.4: Ranking of GTOC2 #10 in the reduced asteroid set, using GS.

Figure D.5: Ranking of GTOC2 #11 in the reduced asteroid set, using GS.
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Figure D.6: Ranking of GTOC2 #12 in the reduced asteroid set, using GS.

Figure D.7: Ranking of GTOC2 #13 in the reduced asteroid set, using GS.
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Table D.1: ∆V of the optimized GTOC2 sequences, using DE

Departure Windows [years]
Sequence 10 15 20

Total DV [km/s]
GTOC2 #1 21.40 21.65 22.15
GTOC2 #2 20.33 20.48 20.58
GTOC2 #3 20.83 22.76 22.13
GTOC2 #4 22.21 22.21 22.65
GTOC2 #5 22.17 22.73 22.92
GTOC2 #6 20.45 19.98 20.25
GTOC2 #7 19.66 19.93 19.77
GTOC2 #9 21.43 21.29 22.65
GTOC2 #10 22.11 22.37 22.44
GTOC2 #11 32.61 32.59 31.98
GTOC2 #12 18.67 19.05 19.78
GTOC2 #13 21.22 22.12 22.51
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Appendix E

Best Sequences in the
Complete Asteroid Pool,
using DE

This appendix contains the 10 best sequences, according to the departure win-
dows and number of champions, investigated in Section 11.1.3 for a maximum
time-of-flight of 1200 days. It also gives the non-nominal result obtained for
15-years departure windows and 15 champions. When available, the ranking of
the GTOC2 sequences is given. The GTOC2 sequences can be identified via
cross-referencing with Table 2.2. The complete results, according to departure
windows, number of champions, and variable bounds investigated in Chapter 11,
acquired in the complete asteroid pool using DE, can be obtained by contacting
the author.
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E.1 15-Years Departure Windows

Table E.1: Top 10 combination, according to J2, found for 15-years departure
windows by a forward multi-path NNH with N=15, using DE without caching.
The maximum time-of-flight was set to 1200 days. GTOC2 #2 rank is also
given.
Rank Group 4 Group 3 Group 2 Group 1 Total ∆V [m/s]
1 3250293 2000149 2000240 2011542 17952.14
2 3250293 2000149 2000240 2002483 18000.94
3 3250293 2000851 2000449 2011542 18041.48
4 3250293 2000149 2000240 2002959 18184.58
5 3250293 2002411 2000442 2002959 18328.18
6 3250293 2000851 2000206 2001345 18441.91
7 3250293 2000851 2000449 2001345 18494.88
8 3250293 2000149 2000240 2003134 18550.55
9 3017309 2000228 2000135 2014569 18662.16
10 3250293 2001990 2000585 2001754 18691.88

...
35 3250293 2000149 2000569 2002483 19208.03

Table E.2: Top 10 combination, according to J2, found for 15-years departure
windows by a forward multi-path NNH with N=20, using DE without caching.
The maximum time-of-flight was set to 1200 days. GTOC2 #2 rank is also
given.
Rank Group 4 Group 3 Group 2 Group 1 Total ∆V [m/s]
1 3170221 2000951 2000418 2003134 17893.78
2 3250293 2000149 2000240 2011542 17952.14
3 3250293 2000149 2000240 2002483 18000.94
4 3250293 2000851 2000449 2011542 18041.48
5 3250293 2001415 2000111 2003134 18107.95
6 3250293 2000149 2000240 2002959 18184.58
7 3250293 2002411 2000442 2002959 18328.18
8 3170221 2000883 2000407 2003134 18342.16
9 3250293 2000851 2000206 2001345 18441.91
10 3250293 2001990 2000034 2001754 18457.35

...
50 3250293 2000149 2000569 2002483 19208.03
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E.1.1 Non-Nominal Result

Table E.3: Top 10 combination, according to J2, found for 15-years departure
windows by a forward multi-path NNH with N=15, using DE without caching.
The maximum time-of-flight was set to 1200 days. Note that GTOC2 #2 ranks
first.
Rank Group 4 Group 3 Group 2 Group 1 Total ∆V [m/s]
1 3250293 2000149 2000569 2002483 17377.18
2 3250293 2000149 2000240 2002959 17935.44
3 3250293 2000851 2000449 2011542 18041.48
4 3250293 2000149 2000569 2003134 18060.67
5 3250293 2002411 2000442 2002959 18328.18
6 3250293 2000851 2000206 2001345 18441.91
7 3250293 2001990 2000034 2001754 18457.35
8 3250293 2000851 2000449 2001345 18494.88
9 3250293 2000149 2000569 2011542 18567.47
10 3250293 2000149 2000240 2011542 18586.93

E.2 20-Years Departure Windows

Table E.4: Top 10 combination, according to J2, found for 20-years departure
windows by a forward multi-path NNH with N=15, using DE without caching.
The maximum time-of-flight was set to 1200 days. GTOC2 #2 rank is also
given.
Rank Group 4 Group 3 Group 2 Group 1 Total ∆V [m/s]
1 3250293 2000443 2000058 2002959 17724.46
2 3250293 2000149 2000240 2011542 17939.47
3 3250293 2000149 2000240 2002483 17988.27
4 3042555 2001133 2000021 2002959 17993.69
5 3250293 2000851 2000449 2011542 18041.48
6 3250293 2000443 2000442 2002959 18163.29
7 3250293 2000149 2000240 2002959 18171.91
8 3250293 2000443 2000058 2001345 18349.06
9 3017309 2000228 2000135 2001038 18458.85
10 3250293 2000851 2000449 2001345 18494.88

...
45 3250293 2000149 2000569 2002483 19195.36
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Table E.5: Top 10 combination, according to J2, found for 20-years departure
windows by a forward multi-path NNH with N=20, using DE without caching.
The maximum time-of-flight was set to 1200 days. GTOC2 #2 rank is also
given.
Rank Group 4 Group 3 Group 2 Group 1 Total ∆V [m/s]
1 3250293 2000443 2000058 2002959 17724.46
2 3170221 2000951 2000418 2003134 17893.78
3 3250293 2000149 2000240 2011542 17939.47
4 3250293 2000149 2000240 2002483 17988.27
5 3042555 2001133 2000021 2002959 17996.75
6 3250293 2000851 2000449 2011542 18041.48
7 3170221 2000951 2000418 2002483 18045.87
8 3250293 2000443 2000442 2002959 18163.29
9 3250293 2000149 2000240 2002959 18171.91
10 3250293 2000749 2000442 2002959 18309.07

...
58 3250293 2000149 2000569 2002483 19195.36
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