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Abstract

Breathing interplay effects in Intensity Modulated Proton Therapy (IMPT) arise from the interaction
between target motion and the scanning beam. Assessing the detrimental effect of interplay and the
clinical robustness of several mitigation techniques requires statistical evaluation procedures that take
into account the variability of breathing during dose delivery. In this study, we present such a statistical
method to model intra-fraction respiratory motion based on breathing signals and assess clinical
relevant aspects related to the practical evaluation of interplay in IMPT such as how to model irregular
breathing, how small breathing changes affect the final dose distribution, and what is the statistical
power (number of different scenarios) required for trustworthy quantification of interplay effects.
First, two data-driven methodologies to generate artificial patient-specific breathing signals are
compared: a simple sinusoidal model, and a precise probabilistic deep learning model generating very
realistic samples of patient breathing. Second, we investigate the highly fluctuating relationship
between interplay doses and breathing parameters, showing that small changes in breathing period
result in large local variations in the dose. Our results indicate that using a limited number of samples
to calculate interplay statistics introduces a bigger error than using simple sinusoidal models based on
patient parameters or disregarding breathing hysteresis during the evaluation. We illustrate the power
of the presented statistical method by analyzing interplay robustness of 4DCT and Internal Target
Volume (ITV) treatment plans for a 8 lung cancer patients, showing that, unlike 4DCT plans, even 33
fraction ITV plans systematically fail to fulfill robustness requirements.

1. Introduction

In Intensity Modulated Proton Therapy IMPT), breathing interplay effects arise from the interaction between
the scanning beam and moving organs during treatment delivery. This is detrimental, as during the few minutes
in which each fraction is delivered, the continuous movement of the target due to breathing degrades the final
dose distribution (Lambert et al 2005, Bert et al 2008, Bert and Durante 2011). Given the adoption of IMPT in
treating moving tumors, there is a growing need for computational methods that allow sound statistical
evaluation of interplay effects, where the error introduced by modeling approximations (e.g. using few breathing
realizations of sinusoidal breathing) is known and justified.

Several techniques aimed at minimizing the detrimental effect of breathing during delivery include beam
gating, rescanning, beam tracking, breath-hold and compression. During beam gating the patient breathes freely
and the dose delivery is constrained to a specific part of the breathing cycle (e.g. end of exhale) (Ohara et al 1989,
Bert et al 2009). Beam tracking consists of adjusting the treatment delivery system to real-time predicted target
movement (Bert et al 2007, Zhang et al 2014). In rescanning or repainting the target is irradiated several times
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during the same fraction, which helps smooth the final dose distribution (Phillips et al 1992, Seco et al 2009).
Finally, breath-hold and compression methods aim at immobilizing the target during delivery (Boda-
Heggemann et al 2016, Pguret et al 2016).

From a treatment planning perspective, different approaches are used to account for target motion by
including information about different breathing phases (e.g. exhale, inhale, mid-ventilation) into the
optimization. Internal Target Volume (ITV) planning aims at irradiating an ITV volume in the reference phase,
which is defined as the union of all Clinical Target Volume (CTV) contours of the different breathing phases
(Shih et al 2004). With the help of surrogate models that generate artificial motion, ITVs can be extended to form
probabilistic ITVs that capture breathing variability (Krieger et al 2020). 4DCT planning is based on optimizing
the dose distribution using minimax robust optimization (Pflugfelder et al 2008), including multiple
Computerized Tomography (CTs) from different breathing phases so that the dose prescriptions are met in all
the included breathing phases (Engelsman et al 2006, Heath et al 2009, Bernatowicz et al 2017). Some 4DCT
approaches also account for beam tracking (Eley et al 2014) and temporal structure (Engwall et al 2018b) during
optimization.

Interplay effects in IMRT versus IMPT

Previous work shows that fractionation effectively limits interplay dose degradation in Intensity Modulated
Radiation Therapy (IMRT) delivery techniques with moving parts such as multi-leaf collimators (MLCs)
(Bortfeld et al 2002, Jiang et al 2003), but may be insufficient to tackle negative biological effects in treatments
with many segments of few monitor units (MUs) (Seco et al 2007). Several studies further investigate the effects
of regular breathing motion and collimator speed on the outcome of MLC treatments (Court et al 2008, 2010),
showing that non-negligible interplay effects increase with target magnitude, plan complexity and breathing
period.

While the problem of interplay is common for all dynamically delivered treatments, its nature differs
between IMPT and IMRT: proton pencil beams are narrower than photon fields, deliver the dose more locally,
and their irradiation times are usually an order of magnitude smaller. Several studies quantify the negative effect
of interplay in IMPT and evaluate the effectiveness of different mitigation techniques such as repainting in lung
and liver patients (Seco et al 2009, Lietal 2014, Zhang et al 2016, Engwall et al 2018a), breath-hold (Yu et al 2017,
Emertetal 2021) or acomparison between different mitigation techniques used in liver treatments (Zhang et al
2018), showing that neither rescanning nor gating alone can mitigate interplay effects. Regarding the effect of
motion parameters, large breathing amplitudes are known to produce significant local under- and overdosing
(Kraus etal 2011, Kardar et al 2014, Jakobi et al 2018).

Challenges in the evaluation of interplay

Evaluating interplay is usually time consuming and requires many dose distributions corresponding to different
realizations of breathing during treatment delivery. While alternative, more realistic and computationally
demanding approaches use simulated 4DCT scans with dynamic dose delivery (Boye et al 2013) or motion
surrogates (den Boer et al 2021), most of the interplay evaluation studies are based on a single 4DCT scan and
many breathing signals to simulate different breathing scenarios. Obtaining enough of such signals involves
either taking fragments from the recorded respiratory signal—which is often short and does not offer much
variability—or using a sinusoidal approximation, oversimplifying breathing and failing to capture typical
irregularities such as baseline shifts and amplitude changes. Furthermore it is not known how realistic and
irregular these signals need to be, how small breathing variations affect the final dose, and how many different
breathing samples are needed to accurately capture the statistical variation of interplay. Except for one published
paper hinting the possible systematic error in IMRT interplay evaluation caused by the use of a limited number
of motion samples in both planning and evaluation (Evans et al 2005), no previous study has investigated the
statistical significance of evaluating interplay effects using few samples and simplified breathing models
disregarding any breathing cycle hysteresis.

Contributions

Building on previous IMRT studies (Kissick et al 2005, Seco et al 2007), we investigate the interplay dependence
on breathing uncertainties for proton treatments with many pencil beams—where the order of magnitude of
beam delivery times is a factor 100 lower that the period of breathing motion—and specifically the relationship
between dose and breathing parameters such as period and amplitude changes. We also extend on previous
work (Court et al 2008, 2010) and evaluate interplay using both constant and variable breathing periods. Our
analysis is based on a4DCT scan representing the different anatomies of the patient in a breathing cycle, and
breathing signals that capture how these alternate during the course of a treatment fraction. The contributions of
this paper are the following:
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+ We present amethod to statistically assess interplay effects in lung IMPT based on breathing signals and apply
it to evaluate robustness, comparing the 4DCT and ITV planning approaches and the impact of fractionation
for 8 stage I1I lung cancer patients.

+ Weevaluate the error in the interplay evaluation caused by (i) using simplistic sinusoidal breathing
approximations, (ii) using a limited set of scenarios, or (iii) disregarding breathing hysteresis.

(1) Two methods to generate patient-specific breathing signals which differ in accuracy and computational
complexity—referred to as breathing models—are compared. Specifically, given the popularity of
sinusoidal models, we investigate the dosimetric impact of evaluating motion using simple sinusoidal
breathing patterns, which is the most commonly used approach when lacking a sufficiently long
recorded breathing signal with enough variation.

(if) We investigate the inaccuracies that arise in the statistical evaluation of interplay effects when the
analyses lack statistical power (i.e. only a consider a limited number of breathing scenarios), and
whether evaluating interplay with a small number of such breathing scenarios—as observed in most of
the previous studies—leads to significant errors.

(iii) We assess the dosimetric impact of disregarding hysteresis in the breathing cycle, which translates into
considering symmetrical inhale and exhale during evaluation.

+ Weinvestigate the dependence of IMPT interplay dose distributions on the breathing parameters such as
amplitude, period or starting phase. More specifically, we investigate how the dose and Dose Volume
Histogram (DVH) values vary with small changes in the breathing signal, and study which parameters (e.g.
breathing amplitude, period) have the biggest effect on dose.

The rest of the paper is structured as follows: in section 2, we describe the patient data, the proposed
methodology to simulate breathing interplay effects, and explain the design choices in treatment planning and
delivery simulation, together with a description of our statistical evaluation. In section 3 we present the results of
the numerical experiments, followed by an analysis and discussion in section 4. Finally, we provide final remarks
and conclusions in section 5.

2. Methods and materials

Patient data and treatment plans

Different breathing signals are obtained with the stereotactic body radiation surgery (SBRT) system Cyberknife®
(Accuray Inc., Sunnyvale CA, US), which tracks targets that move with respiration using a correlation model that
relates the internal target position with external markers taped to the chest of the patient (Coste-Manire et al
2005, Hoogeman et al 2009). The long respiratory traces represent tumor movement during treatment for 8
different lung cancer patients. Each signal is matched to a 4DCT scan from a stage III lung cancer patient (having
been treated with IMRT and recorded with a Siemens Sensation Open® CT scanner using phase binning) and
subsequently rescaled to the maximum 4DCT amplitude. The 4DCT scans are discretized into 8 phases in the
breathing cycle: 0%, 25%, 50%, 75%, 100% inhale, and 75%, 50% and 25% exhale. The structures of interest are
clinically delineated in all scans, with the exception of the ITV, which is obtained by combining in the mid-
ventilation 50% exhale reference phase the CTV volumes from all the breathing phases. Table 1 describes the
motion and tumor sizes of the patients in the dataset. We use ITV plans targeting the ITV in the reference phase,
and 4DCT robust plans targeting CTV contours from three phases: the reference 50% exhale phase, and the two
extreme 0% and 100% phases. Both ITV and 4DCT robust IMPT plans use a 5 mm setup robustness setting, a
5% range robustness setting, and a 2 mm extra margin around the target(s), based on current clinical practice at
Holland PTC (Delft, Netherlands). The treatment is divided into 33 fractions of 2 Gray (Gy), with plans made
using Erasmus-iCycle, an in-house Treatment Planning System (TPS) which uses automated multi-criteri

a prioritized optimization and a pencil beam dose algorithm to calculate the dose delivered per spot (Breedveld
etal 2012, van de Water et al 2013), including range shifters and filtering of low-weight beams. No breathing
uncertainty mitigation technique is applied during planning or delivery, except for one experiment where we
apply volumetric repainting per field.

Interplay dose calculation

The proposed model calculates an interplay dose distribution based on the treatment plan, the machine
parameters, a4DCT scan and a breathing signal that can be either a fragment of the real recorded signal or an
artificial signal from one of the breathing models discussed below. The number of spots—regions irradiated by a

3
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Table 1. Dataset description and treatment delivery times. The reported values include the breathing amplitude along the lateral,
anterior—posterior (A—P) and cranial-caudal (C-C) axes, and the combined volume of the CTV including lymph nodes. We include the
treatment delivery time per field for both the 4DCT and ITV plans.

Breathing amplitude (mm) Delivery time (s)
Patient Target size (ecm®)
Field 1 Field2 Field 3

Lateral A-P Cc-C CTV and nodes 4DCT ITvV 4DCT 1TV 4DCT ITvV
1 3.2 1.8 4.1 39.1 46.8 46.1 58.2 57.9 28.3 29.1
2 2.1 2.4 5.9 130.9 38.4 33.0 67.9 60.2 39.4 34.8
3 1.5 3.6 9.4 211.5 33.6 29.7 66.2 61.3 35.6 28.5
4 1 0.7 8.7 489.7 68.0 62.2 101.0 96.0 76.5 56.8
5 0.8 0.4 2.4 400.6 34.0 31.9 98.3 76.5 50.4 42.3
6 0.8 2.4 1.7 286.7 53.3 52.6 87.9 65.5 49.7 42.8
7 1.2 1.9 54 404.5 61.5 61.7 76.0 76.5 40.2 39.6
8 1.2 0.3 2.3 162.1 40.6 38.5 90.5 69.9 65.5 44.2

single mono-energetic pencil beam—and the order in which they are delivered can be obtained from the
treatment plan. Spots are ordered in descending order according to pencil beam energies, on a per field basis.
The machine parameters determine a spot-timeline, which is a list ordering the spots in time using information
such as the elapsed time between two consecutive spots or the time needed to change layers and beams. The
irradiation time for each spot is directly obtained from the optimized plans with beam data corresponding to
standard Varian ProBeam® settings, resulting in a fixed current and variable local dose rates between 10 and

54 Gy s~ '. Beam data measurements are based on integral dose depth curves, lateral spot profiles and absolute
dosimetry (MU calibration) under reference conditions in a water phantom. For the machine parameters, 10 ms
off-beam time are added after delivery of each spot, as well as an average of 0.7 s to change energy layer. Range
shifter fixed insertion times equal 16 s, while the variable time needed to change the gantry angle depends on a
linearly increasing, bounded angular acceleration. Figure 1 illustrates the process of simulating an interplay dose
distribution. After a breathing signal is generated and a treatment starting phase is sampled, the signal is binned
between full inhale and exhale, according to the maximum 4DCT amplitude (5 bins delimited by 4 red
horizontal boundary lines in figure 1). The breathing signal indicates the phase in which each spot is delivered,
with all the points of the signal that fall between consequent binning boundaries being considered to be the part
of the same being phase. For fractions where the patient presents shallow breathing with low amplitude, the dose
will be deposited in only a subset of phases. For baseline shifts, the dose delivery will gradually shift from inhale
(75%In, 100%, 75%Ex) to exhale phases (25%Ex, 0%, 25%1n) as the treatment proceeds. The number of phases
used during interplay evaluation may differ from the number of phases used to optimize the 4DCT plan. In this
study, 4DCT plans are made using 3 phases, whereas all the 8 available phases are used for the evaluation. After
binning, each point of the signal corresponds to a phase of the 4DCT, resulting in the CT-timeline containing the
different phases ordered in time. Pairing the CT- and spot-timelines results in each spot being assigned to a
certain phase. Dose distributions per phase are obtained by adding the doses from individual spots in the same
phase, which are later transformed (via a non-rigid thin-plate spline registration deformation field) to the
reference phase before being added to form the final dose distribution.

Breathing models

Breathing signals are used to represent respiratory motion during a treatment fraction, and each of them
ultimately results in a different dose distribution. The statistical evaluation of interplay effects requires statistics
of the dosimetric quantities of interest using many different dose distributions, requiring a large set of
respiratory traces. Except for this study where we use breathing signals deliberately recorded during a long time,
the available signals from regular patients are usually short and do not contain enough variability, thus requiring
commonly used artificial sinusoidal approximations that potentially introduce errors. We compare two
different types of data-driven breathing models that capture uncertainty and variability in respiratory motion.
The first model is based on simple sinusoidal waves (denoted as ’sin’ in the remainder of the paper), while the
second model is based on the Adversarial Autoencoder (AAE) algorithm described in Pastor-Serrano et al
(2021).

1. Sinusoidal model. In the sinusoidal model the respiratory time series is generated by using a sinusoidal
function sin®" as x(t) = Ag + A - sin?*(7t/T + 1)), where x(¢) is the time dependent position of the
tumor, Ay is the position at the beginning of inhale (in centimeters), T'is the breathing period (time between
two consecutive inhales, in seconds), and A is the amplitude (distance from inhale to exhale, in centimeters).

4
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Figure 1. Interplay calculation workflow. The input breathing signal, treatment plan and machine parameters are used to distribute
the spots over the breathing phases included in the 4DCT scan and determine in which phase each spot is delivered. Breathing phase
dose distributions are first obtained by accumulating the dose delivered by all the spots in the same phase, and are subsequently
transformed to the reference phase. The final interplay dose distribution is the result of adding the transformed doses.

The parameter ¢ represents offset in phase, and effectively symbolizes the moment when the treatment
starts within the first cycle. In our study, we consider the simplest sinusoidals sin®” with n =1 (Lujan et al
2003), constant amplitude and period. Each signal has a different period and amplitude sampled from
Gaussian distributions fitted to both the periods N(yiy, or) and amplitudes Ny, 04) presentin the
recorded breathing signal. The parameter A, is often fixed and calculated by the average across breathing
cycles in previous studies (Lujan et al 2003, George et al 2005). In this study A is considered an independent
parameter in order to provide the model with extra variability, and its distribution is also considered to be
normal fitted to the breathing data N Ay Ay

.AAE model. The AAE breathing models are based on artificial neural networks. First, an encoder computes

afew latent parameters (a low dimensional embedding) that uniquely characterize each high-dimensional
breathing signal. The number of low-dimensional latent variables is optimally configured. A decoder
reconstructs the original breathing signal using the latent variables from the encoder. A training process
using a large set of samples ensures that the decoder accurately reconstructs breathing signals and that each
of the latent parameters is approximately distributed according to the Gaussian distribution A/(0, 1). Using
as few as 5 parameters, the AAE breathing models can generate patient-specific realistic breathing signals
with high accuracy and variability in period and amplitude (Pastor-Serrano et al 2021), as opposed to the
sinusoidal model always yielding perfect regular sinusoidal samples.

Once the models are obtained, artificial breathing signals are generated by sampling model parameters from

their distributions, with each parameter combination resulting in a unique signal. A sinusoidal signal is thereby
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obtained by sampling a period, amplitude and inhale position from Mgy, or), M(py, oa) and N(u Ay Ay
For the AAE breathing models, different signals are obtained by sampling the 5 latent parameters from a
Gaussian distribution A/(0, 1). For both models, the starting phase {)—the starting point of delivery within the
first breathing cycle—is sampled from a uniform distribution (0, 27).

Statistical evaluation of interplay

Testing robustness against interplay effects involves a statistical evaluation using a set of N different dose
distributions and DVHs corresponding to N different breathing samples. ADVH(D): D € R — V € Risa
function obtained for a given structure of interest that indicates the fraction of volume V'that receives a dose
greater than or equal to D. The quantity Vy= DVH(fD,) indicates the fraction of the target volume that receives
atleast a certain percentage fof the prescribed dose D,,. Alternatively, the value D;= DVH™ '(fV) represents the
lowest dose received by at least a fraction fof the volume. We use typical values for these quantities in order to
assess the adequacy of treatment plans, e.g. the Dgg or dose that 98% of the volume receives. Additionally, we
calculate the homogeneity index (HI), defined as HI = (D, — Dog)/D,, where Dog and D, are the dose received by
the 98% and 2% of the volume. HIs quantify how uniformly the majority of the target volume is irradiated, with
lower values indicating smaller differences between the dose delivered to different parts of the target. The Vo7 /95
indicates the fraction of the target volume that receives a dose outside the usually clinically accepted interval
(0.95D,, 1.07D,), and itis calculated as V147,95 = Vg7 + (1 — Vos).

Our interplay evaluation is based on comparing the distributions of D,, Dgg, HI and V7 /95, referred to as
quantities of interest (©) in the remainder of this paper. We approximate these distributions using a collection of
n; percentiles ©; obtained from the N available computed © values, which are compiled into a percentile vector
8o = {O;}! . Subsequently, we assess the similarity between the results of different statistical analyses by
comparing distributions of each quantity of interest © via the percentile vectors e. If different statistical
evaluations yield similar distributions, the analysis of interplay and conclusions drawn regarding the quality of
the plan will approximately be the same.

Overview
After obtaining a treatment plan that satisfies the planning constraints and objectives, the interplay simulation
proceeds as follows:

1. N different breathing signals are obtained either by randomly sampling the parameters of the breathing
models, or by cropping 1000 random fragments from the original recorded signal, where the width of the
slicing window is equal to the treatment length.

2. Using the N signals, treatment plan information and machine parameters, we calculate N interplay dose
distributions. Each dose distribution results in a DVH from which the HI, V47 95, D, and Dgg are
calculated. For each patient, the final robustness evaluation is based on first calculating N=1000 interplay
dose distributions using fragments of the recorded signal, and subsequently analyzing the difference in dg
between 4DCT and ITV plans.

3. We numerically compare distributions using the relative distribution error (RDE). For a quantity of interest
and its corresponding vector dg, we quantify the RDE between two different distributions as

10, — O
RDE(6Y 1, 65 ,) = 150190 = Oial 100, 1)

nii—q ref

where 1; = 3 (median, 2 and 98 percentiles), and the reference value for the quantity of interest ©,ris used
to compute the relative error and is obtained from a single interplay dose distribution corresponding to a
sinusoidal with average period, amplitude and initial inhale position.

4. We perform a series of experiments to evaluate how using a limited number of samples, using artificial
signals or ignoring breathing hysteresis compromises evaluation accuracy:

(1) For a different number of breathing samples N = {20, 50, 100, 500, 1000} of the recorded signal, we
compute the distribution over the quantities of interest. We perform two independent statistical
analyses for each number of breathing samples N using a different subset of N interplay dose
distributions, resulting in two different vectors 63 , and 8§ , that are compared via the RDE.

6
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Figure 2. Interplay evaluation results. We display the distribution of 1000 different Dog, HI and V07,95 CTV values for every patient
and plan, and for (left) individual fractions and (right) fully fractionated treatments, using the real recorded signal. The pink line in the
top row denotes the clinical near-minimum CTV dose constraint. For each box, the centered line represents the median, while the
boundaries correspond to the upper and lower quartiles (25th and 75th percentiles), and the individual points outside the whiskers are
outliers. Higher HI and V795 correspond to more heterogeneous dose distributions with hot and cold spots.

(ii) To determine the effect of using artificial breathing signals from the sin or AAE models, we compute the
RDE between their corresponding 65’2?" or 68)%4,5 and the reference 6332(11 from the real recorded

signals, where all the statistics are calculated using 1000 samples.

(iii) Finally, we assess the dosimetric impact of disregarding motion hysteresis by computing the RDE
between the results of two different interplay evaluations with 1000 samples: one including 8 breathing
phases, and the other only 5 phases identical during inhale and exhale.

3. Results

Interplay robustness of 4DCT and ITV plans

Reliable statistical analyses allow direct assessment of the robustness of treatment plans, as well as comparison
between different planning approaches. To illustrate this, figure 2 shows the distribution of Dog, HI and V47 /95
corresponding to each plan and patient combination, for both single fractions and a fully fractionated treatment.
As seen in the top row, the 4DCT plans result in higher Dog values regardless of fractionation, tumor size and
breathing amplitude, while ITV plans systematically fail to meet the clinical constraints. Likewise, the HI and
V107,95 (middle and bottom rows) are consistently lower in 4DCT treatments, indicating that the delivered dose
distribution is more homogeneous and the target receives a dose within the clinically acceptable limits in most of
the scenarios.

Influence of sample size, breathing models and hysteresis.

A relevant question is how many different interplay dose distributions are necessary in order to perform a
statistical analysis that yields reliable results. For this reason, independent statistical analyses are performed
using different sub-sample sizes selected according to published results (Seco et al 2009, Engwall et al
2018a,2018b, Jakobi et al 2018). Figure 3(a) shows a reduction in RDE as more breathing samples are used to
calculate the statistics, confirming that the distributions gradually converge. The RDE illustrates how much the
results from two statistical analysis could vary for a given sample size simply due to chance, being higher for
single fraction analyses using <100 samples. Figure 3(b) shows a comparison of the error introduced by using
artificial signals from the sin and AAE models instead of the recorded signals from the patient, showing that for
single fractions AAE model slightly outperforms the sin model, but the differences between models mostly fade
in fully fractionated treatments. Figure 3(c) shows the effect of disregarding breathing hysteresis. While the
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Figure 3. Effect of the evaluation parameters on the interplay statistics. The reported RDE represents the difference between two
different distributions of a quantity of interest, in this case the Dgg, D, and HI, and can be used to determine whether two independent
interplay evaluations yield the same results. For each box showing RDE values across patients and planning approaches, we evaluate
the dosimetric impact of varying one of the following evaluation parameters, while keeping the rest fixed: (a) the number of samples
used to compute the statistics, (b) the breathing signal model, and (c) the absence of respiratory motion hysteresis, with identical
inhale and exhale. Each variation results in an independent distribution, which is compared to either (a) a duplicate distribution
obtained using the same settings, or (b), (c) a reference distribution obtained from a statistical analysis using 1000 samples from the
recorded signal and considering breathing hysteresis. Each box contains the median in the center and the upper and lower quartiles
(25th and 75th percentiles) as box boundaries, with outliers represented as individual points outside the whiskers.

model signals and symmetrical respiratory motion have alower dosimetric impact than using few samples in the
evaluation, the errors are high for single fractions and overall non-negligible, especially for the HI.

Interplay dose dependence on breathing parameters.

In order to investigate the relationship between small changes in the breathing parameters and interplay doses,
figure 4 shows the dose and Dqg for different amplitudes, periods and starting phases of a sinusoidal breathing
signal. Each of the parameters is varied independently, one at a time, leaving the rest fixed. Amplitude changes
have alower and less fluctuating effect on the dose compared to changes in period or starting phase. The latter
affect the time structure of treatment delivery, and as a result, small variations can effectively shift the breathing
phases in which subsequent spots are delivered, with a great local impact on voxel doses. On the other hand,
changes in amplitude are responsible for shifting only few spots to neighboring phases, hence inducing smaller
changes in the delivered dose. Repainting contributes to better target coverage and reducing the magnitude of
interplay effects, as indicated by the lower spread of voxel doses around the target 2 Gy fraction dose, and the
higher Dgg values. For fractions delivered without repainting, period changes can result in up to 50% variations
over the target dose and 4 Gy differences in Dog, as seen in the top row of figure 4.
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Figure 4. Effect of breathing parameters on the final dose distribution. (Left) Fraction dose in a random CTV voxel and dependence on
the parameters of a sinusoidal breathing signal, for a different number of repaintings and 3 patients (from top to bottom, patient 4,
patient 5 and patient 6). Blue lines correspond to dose distributions without repainting, whereas red and black lines indicate 3 and 5
repaints. Repainting smooths out interplay effects in the local fraction doses and reduces the fluctuations around the 2 Gy target dose.
As aresult Similar results are obtained for other randomly selected voxels. (Right) Dgg dependence on small breathing variations.
Repainted dose distributions fluctuate less and result in better target coverage, as indicated by the higher Dog values.

4. Discussion

Robustness evaluation of 4DCT and ITV plans

Our results indicate that 4DCT plans outperform ITV plans in terms of dose coverage and homogeneity,
regardless tumor size and breathing amplitude. Using a fully fractionated robust 4DCT treatment planning
approach with the exhale, inhale and mid-ventilation phases may be sufficient to compensate the detrimental
effect of breathing motion, as indicated by the high Dyg values and lower HI and V47 /95 shown in figure 2.
Contrariwise, robust ITV plans seem to fail to meet the required dose constraints in IMPT lung cancer
treatments, and may require the use of additional margins or motion mitigation techniques, or increased
robustness settings. Finally, as seen in the left plots of figure 2 by the lower Dgg and higher HI and V0795 in
single fraction doses, interplay effects seem to be aggravated by larger amplitudes and tumor sizes (P3 and P4).

Accuracy of the interplay evaluation

Among all possible simplifications (i.e. using few breathing samples or ignoring hysteresis), the error of using
artificial signals seems to be the lowest, where the AAE breathing model clearly outperforms the sin model ata
considerably higher computational cost and more patient-specific data. In the light of our results, a simple
sinusoidal model may be sufficiently accurate in fully fractionated treatments as long as the parameter
distribution is patient specific. Disregarding hysteresis, however, introduces errors that can be as high as 2.5% of
the Dyg of the delivered dose in some cases, even when considering the smoothing effect of fractionation

(figure 3(¢)).

Using a few realizations (< 100) of interplay dose distributions in order to evaluate interplay effects lacks
statistical power. Our results from lung cancer patients show that at least 500 different interplay dose
distributions are needed to achieve the same level of error as the one introduced by other simplifications such as
using sinusoidal breathing or no hysteresis, also for fractionated delivery. Only for >500 samples are used the
differences are generally below 1% of the reference dose and 5% of the HI values, which can be limiting with
computationally expensive interplay dose calculation models. Most of the previous studies are short on samples:
ranging from 300 different simulated treatments (Seco et al 2009) to as few as 10 samples (Engwall et al 2018a), 20
samples (Engwall et al 2018b) or 64 samples (Jakobi et al 2018). Other published works do not explicitly
reference this number but use few realizations with different starting phases (Kardar et al 2014, Lietal 2014), or
are based on 30 dose distributions weighted by their probability of occurrence (Kraus et al 2011).
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The combined smoothing benefits of repainting and fractionation in lung cancer treatments has been
previously investigated (Seco et al 2009, Li et al 2014, Engwall et al 2018a) and is further exemplified in figure 4.
We therefore assume that the worst-case scenario in the interplay dose degradation occurs for single fraction
dose distributions with no motion mitigation, which explains the fact that the errors in the statistical evaluation
diminish as fractionation increases. As a result, the relative errors between distributions may be minimal if
repainting or other mitigation technique are applied, requiring fewer samples to obtain reliable results and thus
compensating for the longer calculation times needed to simulate repainting.

We focus this research on IMPT lung cancer patients, that represent a worst-case scenario for breathing
motion. Other treatment modalities such as SBRT or hypo-fractionated IMPT treatments deliver the dose more
intensely using less fractions. The considerably higher dose per fraction could exacerbate interplay effects (and in
particular may cause bigger inhomogeneities in the dose), especially in terms of biological dose. For such cases,
evaluating the dose degradation due to motion using only few samples could lead to even larger inaccuracies.

Dose dependence on breathing parameters

The results in figure 4 demonstrate the beneficial effect of repainting in both smoothing out great local dose
variations and improving target coverage, as seen in the reduced fluctuations around the 2 Gy target dose that
translate into higher Dgg values. However, rescanning alone does not fully mitigate interplay effects, in
concordance with previous results (Zhang et al 2018), resulting in local doses that may vary up to 10% of the
target dose and Dgg values that are always below the constraint. Delivery without repainting results in dose
fluctuations amounting up to 50% of the target fraction dose. We deduce that this effect is caused by the fact that
small period and starting phase changes can simultaneously shift a significant number of subsequent spots, the
effect being more dramatic for the parts of the tumor that receive dose only from few individual pencil beams, or
spots delivered later within a fraction. Our results are consistent with previous findings for IMRT dynamic
delivery (Kissick et al 2005) that demonstrate the detrimental effect of intra-fraction random changes of the
breathing parameters. We further hypothesize that these results are independent of the 4DCT resolution: adding
more 4DCT phases during evaluation results in some spots shifting to consequent phases with similar anatomy,
and thus the effect may not as dramatic as with period or phase changes, where small variations may cause the
delivery of alater spot to shift from full inhale to exhale.

The degrading effects of time changes can also impact currently applied clinical protocols. Most of the
treatment centers establish their criteria for interplay mitigation in terms of breathing amplitude (e.g. no
mitigation is considered if the breathing amplitude for a given patient is lower than 5 mm). We show that not
only does period influence the fluctuating behavior but it also highly affects the degree of degradation of the
dose. Thus, more research is needed to determine whether making planning or clinical decisions purely based on
amplitude criteria suffices, and whether strategies that weigh both period and amplitude changes offer
additional benefits.

Limitations

The most limiting design choice is the use of a single 4DCT, under the assumption that it captures the variations
in patient anatomy from full inhale (maximum amplitude) to full exhale and breathing hysteresis, as well as the
mismatch between 4DCT and the signal motion surrogate. While we make this assumption to speed-up and
simplify the interplay dose distribution calculation, some irregularities may not be captured in the 4DCT, for
which a bio-mechanical model could be used to simulate hiccups or coughs as in Boye et al (2013). Similarly, the
temporal resolution of the 4DCT is significantly lower than that of the spot delivery. Although we do not expect
the effects of a coarser resolution to be as significant as disregarding hysteresis, the most detailed interplay
simulations should be based on variable time dependent 4DCT data with finer temporal resolution. Finally, the
accuracy and calculation times of the presented interplay dose calculation method ultimately depend on that of
the dose engine and the registration algorithm. Traditional (usually slow) image registration methods have been
been recently outperformed by data-driven approaches (Balakrishnan etal 2018, 2019, Dalca et al 2018, 2019).
Similarly, recent deep learning based dose engines (Wu et al 2021, Pastor-Serrano and Perk 2021) have been
shown to overcome the speed limitations of Monte Carlo methods, while offering better performance than the
pencil beam algorithms commonly used in the clinics.

5. Conclusions

We present a practical method to simulate dose delivery under motion interplay effects and assess treatment
robustness based on hundreds of (sampled) breathing signals. Our statistical evaluation shows that ITV plans
systematically fall behind their computationally more expensive 4DCT robust counterpart, regardless of tumor
size and breathing amplitude. After analyzing the error introduced by simplifications such as neglecting motion
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hysteresis or using few interplay scenarios and sinusoidal breathing signals, we conclude that the statistical
analysis of fully fractionated treatments requires at least 500 different dose distributions corresponding to 500
different samples of regular sinusoidal breathing (based on patient-specific parameter distributions) with
hysteresis to yield acceptable precision. We complete this study by demonstrating that small breathing period
variations have a highly non-linear effect on local dose deposition and can cause local doses to fluctuate up to
50% of the target fraction dose.
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