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A B S T R A C T   

The increased system complexity in electronic products brings challenges in a system level reliability assessment 
and lifetime estimation. Traditionally, the graph model-based reliability block diagrams (RBD) and fault tree 
analysis (FTA) have been used to assess the reliability of products and systems. However, these methods are 
based on deterministic relationships between components that introduce prediction inaccuracy. To fill the gap, a 
Bayesian Network (BN) method is introduced that considers the intricacies of the high-power light-emitting 
diode (LED) lamp system and the functional interaction among components for reliability assessment and life-
time prediction. An accelerated degradation test was conducted to analyze the evolution of the degradation and 
failure of components that influence the system level lifetime and performance of LED lamps. The Gamma 
process and Weibull distribution are used for component level lifetime prediction. The junction tree algorithm 
was deployed in the BN structure to estimate the joint probability distributions of the lifetime states. The 
degradation and prediction results showed that LED modules contribute a major part for lumen degradation of 
LED lamps followed by drivers and the least effect is from diffuser and reflector. The BN based lifetime estimation 
results also exhibited an accurate prediction as validated with the Gamma process and such improved reliability 
assessment outcomes are beneficial to LED manufacturers and customers. Thus, the proposed approach is 
effective to evaluate and address the long-term reliability assessment concerns of high-reliability LED lamps and 
fulfill the guarantee of high prediction accuracy in less time and cost-effective manner.   

1. Introduction 

The introduction of Light-emitting diodes (LEDs)-based solid state 
lighting (SSL) marked the third revolution in the lighting industry after 
traditional incandescent and fluorescent light sources. They are 
emerging as the future sources of lighting, with multiple benefits, and 
have attracted a wide range of applications. Nowadays, LEDs are widely 
used in different sectors including street lighting, traffic lighting, 
advertising display backlights, aviation lighting, indoor lighting, 
communication devices, automotive lighting, and medical equipment 
[1,2]. LED-based SSL is known for its benefit in providing lower energy 

consumption, higher reliability, longer lifetime, compactness in size, 
and eco-friendliness compared to their traditional counterparts [3]. Low 
energy consumption, which ultimately helps in energy-saving programs, 
is one of the benefits of high-power white LEDs. The world electrical 
energy consumption for lighting was estimated to be about 20% of the 
global energy production as of 2014. The replacement of traditional 
lighting sources with LED-based SSL is anticipated to reduce the elec-
trical energy usage for lighting applications by 15% in 2020, by 40% in 
2030, and up to 75% in 2035 in the U.S according to forecast by the 
United States Department of Energy (US-DOE) [4]. 

The high-power LED lamp is a complex optoelectronic system 
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assembled from several components (such as LED chips, electrical 
drivers, substrate materials, packaging material including bonding 
wires/die attaches, encapsulant materials such as silicon, phosphor, 
optical parts, thermal heat-sink components and so on) [5]. Because of 
the interaction of the different components, a high-power LED lamp is 
also known to have a large number of failure modes and failure mech-
anisms. Besides, there are also technological and technical gaps for 
describing the different failure mechanisms in a high-power LED lamp 
system. This makes the system level reliability assessment and lifetime 
prediction of high-power LED lamp challenging [6]. A failure in elec-
tronic systems, such as high-power white LEDs, could be either a cata-
strophic or degradation failure. A catastrophic failure is usually caused 
by overstressing where single stress exceeds a certain threshold and can 
be attributed to improper operation or external factors. It is often the 
case that a catastrophic failure is fatal to the whole system or product. 
With proper operation and close follow-up, catastrophic failures can be 
reduced if not avoided. On the other hand, degradation failure which 
occurs as a result of cumulative stresses (loads) over time, is inevitable 
and results in a gradual degradation of the performance characteristics 
[7]. 

Traditionally, accelerated lifetime tests (ALT) are widely used to 
estimate the lifetime of highly reliable, expensive as well as safe-
ty–critical products, such as aircraft parts, batteries, and LEDs. However, 
ALT is found to be expensive for estimating the lifetime of such products 
in a short time as it needs a longer time to collect sufficient time-to- 
failure data [8]. Nowadays, accelerated degradation tests (ADT) have 
become a promising alternative in capturing the degradation paths for 
the performance characteristics of products [9]. Thus, ADT based on 
high-stress conditions enables the gathering of appropriate lumen 
degradation, color shift, and catastrophic failure results efficiently and 
in a relatively short time for LEDs [10]. Using degradation data, many 
research studies have been conducted to address lifetime estimation and 
reliability assessment issues of LED light sources. Fan et al. [11] pro-
posed a degradation data-driven method to predict the lumen mainte-
nance lifetime of high-power white LEDs using degradation data. 
Similarly, other degradation modelling approaches proposed to assess 
the reliability of LED light sources include Wiener process [12,13], 
Gamma process [14–16], Kalman filter (KF), extended KF [17–19], un-
scented KF [17,20], Particle filter [21], Lévy process [22] and Recurrent 
Neural Network [23]. Ibrahim et al. [13] applied the Wiener Process to 
predict the lumen maintenance lifetime of LEDs and Bayesian inference 
based on Gibbs sampling used to estimate unknown model parameters. 
Huang et al. [12] applied a modified Wiener process method to model 
the lumen maintenance and color shift of mid-power white LEDs. Most 
of these studies focus on lifetime prediction based on degradation data 
obtained from a component, mainly an LED package/module. However, 
the lifetime of a LED lamp is not only affected by the lifetime status of a 
single component but all its components, including the LED driver, LED 
module, diffuser, and reflector and interconnects. That is why the system 
and/or product level reliability prediction approaches need to consider 
the failure modes and mechanisms at the component levels. 

In a high power LED lamp system, the LED driver serves as the 
constant current source and optimizes the power to drive high-power 
LEDs [24]. Usually, LED drivers are considered the weakest part 
among all the components in an LED lighting product. A report from the 
US DOE [25] claimed that the LED driver (power supply) is the weakest 
part among an LED outdoor luminaire, constituting 52% failure, LED 
package (10%), housing (31%) and control circuit - driver (7%). On the 
other hand, van Driel et al. [26] reported that solder interconnects ac-
count for dominant failures followed by LED emitters and drivers. The 
results among the few studies based on subsystems and components for 
system level lifetime studies are inconsistent. The Illuminating Engi-
neering Society of North America (IESNA) used IES-TM-21 [27] stan-
dard to rate lifetime are mainly based on the LED packages, and recently 
the IES-TM-28-14 standard was introduced to project the lifetime for 
LED-based SSL lamps and luminaires [28]. 

Although the rapid growth in the engineering design and 
manufacturing technology enabled the advancement of engineering 
systems, it also introduced challenges in the system level reliability 
assessment. This is because of the increased complexity of products/ 
systems that leads to unexpected failures with interdependent behavior 
[29]. Traditionally, graph model-based reliability block diagrams (RBD) 
and fault tree analysis (FTA) have been used to assess the reliability of 
products and systems. The FTA is a deductive approach that helps 
mainly to identify critical failure causes of a product/system. Further-
more, these methods are based on deterministic relationships between 
components/subsystems that make it difficult to model systems with 
uncertainties and dependent events. In this study, we make use of inputs 
from FTA results and expert knowledge for LED structural and functional 
analysis. Despite the shortcoming of traditional approaches, Bayesian 
Network (BN) is found to be a suitable method for complex system 
reliability analysis [30–32], due to its advantages in handling un-
certainties, correlations, and the conditional relationship between 
components/subsystems [31]. As one of the popular modelling and 
reasoning tools, the BN model has been employed in the fields of ma-
chine learning, artificial intelligence, and uncertainty management 
[33]. The BN model has also been applied in the field of reliability en-
gineering including software reliability [34], modelling maintenance 
[35], and fault diagnosis in systems [36,37]. Recently, the BN model was 
found to be effective in estimating the system/product reliability of 
complex systems, such as high-speed trains [37], solar-powered un-
manned aerial vehicles [38] and pitting degradation structural steel in 
marine systems [39]. Zheng et al. [40] presented an improved 
compression inference algorithm in multilevel BN to analyze the reli-
ability of complex multistate satellite systems. A dynamic BN was also 
proposed to assess and update the reliability of timber structures 
exposed to deterioration processes based on inspection data [41]. 
Therefore, system level lifetime prediction based on a BN is very 
important to achieve a reasonable integration of performance data from 
constituting components for a complex system/product. 

In order to address the long-term reliability assessment concerns of 
highly reliable products and fulfill the guarantee of increased prediction 
accuracy in less time and cost-effective manner, developing a system 
level lifetime prediction method based on the BN model is highly 
demanded. In this study, an accelerated degradation test based on 
thermal stress was designed, conducted, and analyzed the evolution of 
degradation and failures from components that influence the lifetime 
and performance of the LED-based lighting products. This paper pro-
posed a BN method that considers the intricacy of a high-power LED 
lamp system and functional interaction among components for a novel 
application on system level reliability assessment and lifetime 
prediction. 

The remaining parts of this paper are organized as follows: Section 2 
describes the methodology and theoretical analysis of the research. 
Section 3 presents the experimental design and setup for gathering the 
required data. In Section 4, the results and detailed discussions based on 
the experimental results and proposed methodology are presented. 
Finally, concluding remarks are drawn in Section 5. 

2. Theory and methodology 

In this section, the proposed models and algorithms for modelling the 
degradation of high-power LED lamps and the system level reliability 
assessment and lifetime prediction are introduced. The Gamma process, 
Weibull distribution and IES-TM-28 exponential based empirical models 
for performance degradation of component/ subsystem and the BN 
model applied to integrate the reliability information at the system level 
are presented. 

2.1. Degradation analysis based on empirical models 

Compared to traditional lighting sources (i.e., incandescent and 
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fluorescent), a high-power LED lamp is a more complex product and 
possesses additional components that enable it to provide the required 
light output. The main components in the high-power LED lamp used in 
this study include a LED module (light engine), the LED driver, diffuser 
and reflector, and so on. Similarly, the light output degradation of the 
LED lamp can be due to the LED module, the driver, the diffuser, and 
reflector components depreciation as well as degradation due to geo-
metric or form factors. Equation (1) expresses the luminous flux 
degradation of a high-power LED lamp. 

ΦLamp = Φ0 − Φt = Φmd +Φdv +Φdf +Φer (1)  

where Φ0 is the initial luminous flux, Φt is the luminous flux after 
operating time t and Φmd, Φdv, Φdf and Φer are the lumen degradation 
caused by the LED module, LED driver and diffuser and reflector, and 
form factor respectively in the process of the thermal stress ageing 
process. 

The degradation of each component/subsystem is designed based on 
the ageing of one component while keeping the complementary parts 
unaged (fresh). The degradation of each component/subsystem is 
evaluated based on the variation in the lumen degradation of each 
component, namely the LED driver, LED module, and diffuser and 
reflector. 

Φmd = Φ0md − Φtmd;Φdv = Φ0dv − Φtdv
Φdf = Φ0df − Φtdf

(2) 

Here Φ0md and Φtmd, Φ0dv and Φtdv, Φ0df and Φtdf are the luminous 
fluxes of the LED module, LED driver and diffuser and reflector under 
the rated power supply, before and after operating time t. In this study, 
the degradation modelling is employed based on the Gamma process 
model and the exponential model along with the Weibull lifetime dis-
tribution after extrapolation of degradation path. For LED light sources, 
lumen degradation is considered as the main failure mode according to 
IESNA [42], and the lumen maintenance lifetime is defined as the 
operating time that 70% of the luminous flux maintained L70 from its 
initial light output for general applications and 50% (L50) for decorative 
lighting. The luminous flux degradation for high power LED lamp can be 
modeled using the widely applied empirical model based on the expo-
nential decay equation [43,44] given as equation (3). 

Φt = β*exp(− αt) (3)  

where Φt is the luminous flux after ageing for t hours, β is the projected 
initial constant (i.e. initial luminous flux) of the test samples, α is the 
lumen degradation rate or decay rate, t is operation time in the ageing 
process. Here, parameters α and β are estimated from historical (or 
experimental data) using the least-squares regression method. 

In addition, the Weibull distribution is a flexible lifetime distribution 
that can go through the choice of two or three of the parameters, known 
as scale (characteristic life) η, shape (slope) κ and location γ parameter 
[45,46]. The Weibull distribution is the most widely used lifetime dis-
tribution due to its versatile nature, taking the characteristics of other 
types of distributions based on a value of the shape parameter κ. For the 
common two-parameter Weibull lifetime distribution, the reliability 
function R(t), probability density function f(t), cumulative density 
function F(t), and failure rate function λ(t) are given as: 

R(t) = e− (t/η)κ
; f (t) =

κ
η

( t
η

)κ− 1
*e− (t/η)κ

F(t) = 1 − e− (t/η)κ
; λ(t) =

κ
η

(t
η

)κ− 1
;MTTF = T = η.Γ

(
1
κ
+ 1

) (4) 

For a lifetime analysis based on degradation data with a defined level 
of failure threshold, basic mathematical models are implemented for 
parameter estimation and reliability assessment. Accordingly, the pro-
cedure includes: (i) model parameters were estimated for each sample 
from recorded degradation data based on the exponential model and 

least squares method; (ii) degradation data was extrapolated to predict 
time to failure; (iii) estimated failure data were fitted to the Weibull 
probability distribution to estimate the shape κ and scale η parameters 
and assess the reliability. 

As discussed in the previous section, the performance characteristics 
of a high-power LED lamp can also be modeled based on a stochastic 
degradation model, the Gamma Process [14], where the degradation has 
a monotonic pattern and the probability density function and the reli-
ability function for the failure distribution function are given as: 

fX(t)(x|μ(t), λ) =

⎧
⎨

⎩

1
Γ(μ(t))λμ(t)x

μ(t)− 1exp( − x/λ)I(0,∞)(x), x ≥ 0

0, x < 0
(5)  

R(t) = 1 − FT(t) = 1 − P(X(t) ≥ D ) = 1 − FT(t) =
Γ(μt,D/λ)

Γ(μt)
(6)  

where λ is the scale parameter, μ is the shape parameter and D is the 
failure threshold. Details of the Gamma process degradation model on 
LEDs are given in our previous study by Ibrahim et al. [14]. 

2.2. An overview on Bayesian Network model 

Bayesian Networks (BNs), also known as belief networks or simply 
Bayes nets, provide a compact graphical representation of multivariate 
statistical distribution functions [47]. A typical BN has a set of nodes 
that represent random variables X = {X1,X2,X3,⋯,Xn} and the nodes 
are connected by directional arcs/edges that specify conditional 
dependence and independence relations of the nodes. A directional cycle 
is not permitted among nodes in a BN based DAG. The complete struc-
ture of the nodes and arcs is called a directed acyclic graph (DAG) and it 
illustrates the qualitative relations among the variables. 

On the other hand, the quantitative relationship among variables in 
BN models is determined by the conditional probability table (CPT). 
These conditional probabilities are used to define the joint probability 
function of all the nodes in the BN model graph. The joint probability 
density function is given as the product of all the conditional probability 
density functions of all nodes, given its predecessors or parent nodes 
[30]. 

P(X1,X2,⋯,Xn) =
∏n

i
P(Xi|Pre(Xi)) (7)  

where Pre(Xi) denotes predecessor variables of node Xi and 
P(Xi|Pre(Xi))denotes the conditional probability function of variables Xi 
given its predecessors. 

The parameter estimation for the joint distribution from data is not 
computationally or statistically efficient as the number of model pa-
rameters grows exponentially with the number of random variables 
(nodes). In these cases, the conditional independence relationships help 
to reduce the number of distribution parameters [33]. In general, the BN 
models enable us to visually illustrate and work with conditional 
probabilistic dependencies among model variables in a particular 
problem. A simple BN DAG is shown in Fig. 1 to demonstrate conditional 
dependencies, independence, and joint distribution among random 
variables. According to Bayes conditional independence, “each variable 
is conditionally independent of its non-descendants in the graph given 
the value of its parents”. In this example, node C is conditionally inde-
pendent of nodes D and E given node values A and B, and similarly node 
F is conditionally independent of A, B and D given its parent nodes C and 
E. Also, node C is independent of other variables (in this case node D) 
given its Markov blanket as shown in Fig. 1 (a) to (c). 

BN uses the advantages of the Bayes theorem to update the prior 
failure probability given the observation of another set of variable evi-
dence. Based on Bayes theorem, the different types of inference algo-
rithms, such as junction tree [48] and variable elimination [49], are 
used to estimate the posterior probability distribution of a particular 
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variable. While variable elimination inference is suitable for singly 
connected graphs, the junction tree algorithm is used to multiply con-
nected graphs to perform exact inference by transforming multiply 
connected cases to single connected structures [48]. The conditional 
distribution of a node given its predecessors can be described, based on 
Bayes’ theorem. 

P(A|B) =
P(B|A)*P(A)

P(B)
=

P(A,B)
∑

AP(B,A)
(8)  

where P(A|B) is the posterior, P(A) is the prior, P(B|A) is the likelihood 
function and P(B) is the scaling factor. 

In this study, the junction tree algorithm is implemented due to the 
additional benefits of performing exact inferences efficiently, trans-
forming the DAG to the appropriate data structure, and ensuring 
consistent marginal and joint probability estimates. The joint tree 
inference structure of the BN model can be created based on a four-step 
process, (i) build initial DAG graph; (ii) construct the moral graph; (iii) 
triangulate the graph; and (iv) create a clique of the graph [31]. A simple 
demonstration of building a joint tree inference algorithm for a simple 
BN model with six random nodes A to F is shown in Fig. 1(d). An 
overview of the proposed BN based methodology for the high-power 
LED lamp system level reliability assessment is shown in Fig. 2. 

2.3. Bayesian networks modelling and reliability assessment for a LED 
lamp system 

In system level reliability assessment, the BN has a significant 
advantage over the traditional reliability analysis tools, such as fault tree 
analysis (FTA) and the reliability block diagram (RBD). While the RBD 
and FTA are based on a deterministic relationship between the random 
variables, the BN model provides probabilistic relationships. Thus, the 
fault trees and corresponding failure probability relationships between 
components can be described through the BN model DAG, where each 
random variable is represented with circles/nodes, and connections are 

made through arcs. The construction of a fault tree system focuses on the 
interconnections between the LED lamp components, mainly including 
the LED module (set of packages/engine), LED driver, and optical parts 
(reflector and diffuser). This helps to analyze the impact of each 
component on the LED lamp (system level) failure or survival 

Fig. 1. Simple BN Model for conditional independence and Markov Blanket.  

Fig. 2. An overview of the BN based methodology for reliability assessment.  
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conditions. 
To construct a DAG for a BN model, the functional and structural 

relationship analysis between components and failure mode and effect 
analysis (FMEA) are considered [1]. In the BN model constructed in 
Fig. 3 (left), the variables which have no parents, such as LED_CAT, 
LED_DEP, Driver_CAT, Driver_DEP, Solder_CAT, DifRef_DEP and 
DifRef_CAT, are referred as root nodes. On the other hand, the variable 
with no children is the leaf node (LED_Lamp), while the remaining 
variables are the intermediate nodes (LED_Module, LED_Diffuser, and 
LED_DifRef). Here, the abbreviations CAT and DEP represent cata-
strophic failure and performance depreciation respectively for corre-
sponding components LED module (LED), Driver (Driver), Solder 
interconnect (Solder), as well as diffuser and reflector (DifRef). The root 
nodes have unconditional probabilities, represented here as a reliability 
state function of node Xi at time t RXi(t), i = 1,…,p, the intermediate 
nodes as RMj(t), j = 1,…,k, and the leaf node as RL(t). The BN model DAG 
analysis is based on the construction of test sample as shown 3D model 
with an exploded and assembled view Fig. 3 (right). 

The reliability status of each root node or component is assessed 
based on the corresponding prediction model at a future time tnand the 
reliability state prediction matrix can be represented as follows: 

Rpn =

⎡

⎢
⎢
⎣

R11 R12 ⋯ R1n
R21 R22 ⋯ R2n
⋮ ⋮ ⋱ ⋮

Rp1 Rp2 ⋯ Rpn

⎤

⎥
⎥
⎦ (9) 

The reliability state of the intermediate nodes can also be predicted 
based on the prediction models of the root nodes U = {R1,R2,⋯,Rp} and 
the assumption of conditional independence: 

P
(
RMj(t)

)
=

∑

U
P(RMj(t),RXi(t)) (10) 

Similarly, the reliability state of the leaf node can be predicted based 
on the probability of the intermediate and root nodes as follows and the 
junction tree algorithm synchronizes the DAG of the BN model for 
product level lifetime prediction. 

P(RL(t) ) =
∑

P(RX1(t),⋯,RXp(t),RM1(t),⋯,RMk(t),RL(t))

=
∑

Pa(L)

P(RL(t)|Pa(RL(t)).
∑

Pa(Mj)

P(RM1(t)|Pa(RM1(t)).⋯
∑

Pa(Mk)

P(RMk(t)|Pa(RMk(t)).⋯.P(RX1(t)).P(RXp(t))

(11) 

Here Pa(L), Pa
(
Mj

)
andPa(Mk) are the parent nodes for leaf node L, 

Fig. 3. DAG for product level LED light sources (left), 3D model exploded and assembly view (right).  

Fig. 4. Test sample and main components.  
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intermediate nodes Mj and Mk respectively. 

3. Experimental setup and data collection 

3.1. Test samples 

The test sample in this study was a 12 W high power phosphor- 
converted white LED spot lamp. The LED package is a commonly used 
2835 type which consists of an InGaN based blue chip covered with a 
yellow phosphor [50]. The LED module in a lamp consists of 54 LED 
packages with a minimum of 0.19 W power, as well as an LED driver, 
diffuser, reflector, and housing. The test sample and its components are 
shown in Fig. 4. 

The lumen efficacy of the high-power LED spot lamps (test samples) 
is >60 lm/W while the luminous flux is around 730 lm. The technical 
description and specification of the test samples are shown in Table 1. 

3.2. Accelerated degradation test for LEDs 

In this study, a high temperature accelerated degradation test was 
conducted on high power LED spot lamps, aimed at assessing the life-
time of LED lamps at the system level by investigating the impact of 
component degradation on product level performance degradation. In 
addition, the interconnections between subsystems, such as drivers, LED 
packages, diffusers, and other auxiliary components, were also 
analyzed. The experiment further enables exploration of additional 
reliability information, such as failure modes, mechanisms, mean time 
to failure (MTTF), and estimation of remaining useful life (RUL) of the 

LED lamp system at the accelerated test situation, as designed. 
In this experiment, twenty test samples of LED spot lamps from the 

same batch were prepared in four groups. Each group consisted of five 
test samples, where the first group was for the product level degradation 
test, while the second, third, and fourth groups were for component level 
degradation tests, namely LED module, LED driver and LED diffuser, and 
reflector respectively. The test samples in all groups were aged under an 
elevated temperature of 55 ◦C for a total of 2160 h. The colorimetric and 
photometric parameters were collected every 240 h, for about ten cycles 
including the initial test. In general, the experiment had three phases; 
ageing, cooling, and testing, which continued until sufficient degrada-
tion data were obtained. The overall experimental setup and data 
collection procedure are shown in Fig. 5. 

3.2.1. System level ageing and data collection 
The LED lamp system level ageing test was conducted according to 

the experimental setup and procedure are shown in Fig. 6 and described 
as follows: first, the test samples were placed inside a thermal chamber 
set at 55 ◦C and supplied with an AC power source. Then the samples 
were kept for 240 h and cooled down for about 2 h to prepare for 
colorimetric and photometric parameter measurement in an integrating 
sphere (EVERFiNE SPEKTRON Coating, Model YF1000 lamp complete 
analysis system). An Infrared (IR) camera (Model Fluke Ti55FT) was 
used to measure the temperature distribution of the lamps at the surface 
of each component, including the driver, LED module, reflector, diffuser, 
and housing. Thermocouples were connected to the samples to measure 
the case temperature of the LED package, and driver while a multi- 
parameter electronic tester was used to in-situ detect the electrical pa-
rameters (such as current, voltage, input power) for each LED lamp test 
sample. After that, the samples were placed back in the thermal chamber 
and the tests were conducted repeatedly. After 240 h of ageing, the 
samples were taken out to cool down for about 2 h and continued optical 
tests one by one to gather direct performance data, including luminous 
flux, chromaticity coordinates, SPD, CRI, and CCT. The cycles continue 
until failure occurred or sufficient degradation data were obtained. 

3.2.2. Component level ageing and data collection 
The component level ageing test experimental setup and procedure is 

shown in Fig. 6. Firstly, the accelerated degradation test procedure for 

Table 1 
The basic parameters of test samples and components.  

Items Description 

Test sample size 20 (5 lamps, 5 modules, 5 diffusers and reflectors and 
5 drivers) 

Correlated Color 
Temperature (CCT) 

3000 K (HDS 220/12-TD-54. RN.02.5.C Sub-model) 

Voltage (Vf) and Current (If) 220 V and 60 mA respectively 
Power rating 12 W (High Power White LED), 50–60 Hz, 54 LED 

arrays/lamp, 0.19 W/each.  

Fig. 5. Experimental setup and data collections.  
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the LED module is presented as depicted in Fig. 6 (a). The electrical 
configuration of packages in the LED modules was as follows: 54 LEDs 
are arranged in six groups of LEDs connected in parallel and each group 
had nine LEDs connected in series. Each LED is rated with 40 mA current 
and thus 240 mA is the rated current of the LED module (DC power) in a 
thermal chamber set at 55 ◦C. 

Similarly, the samples were taken out of the thermal chamber after 
240 h and cooled for about 2 h to room temperature for further optical 
testing in an integrating sphere. Secondly, the LED driver is a subsystem 
or component in the LED lamp comprised of resistors, MOSFET, and 
capacitors designed to supply and regulate the power to another 
component. In this study, the driver was treated as a black-box and 
supplied with an AC power loaded with an equal power LED module. 
Similarly, it underwent thermal ageing for the specified time and tested 
for optical performance after assembling with a fresh LED package, as 
shown in Fig. 6 (b) and (c). Thirdly, the degradation test on diffusers and 
reflectors relies mainly on the material degradation test. The commonly 
used materials for a diffuser is Polymethyl Methacrylate (PMMA) also 
known as acrylic glass or simply acrylic and reflector materials are 
Microcellular PET [51]. The thermal ageing test of these components 
relatively easier as it doesn’t require a power supply or load to it while in 
the thermal chamber. After ageing at 55 ◦C for 240 h, it was cooled down 
for about 2 h to an ambient temperature of 25 ◦C and assembled with 
fresh LED driver and package subassembly for an optical test to gather 
lumen depreciation, chromaticity shift and SPD data as shown in Fig. 6 

(d). The test cycle continues until it was terminated when the compo-
nent shows significant degradation or failure as per the experiment 
design. 

4. Results and discussion 

4.1. Lumen degradation analysis for LED lamp and components 

First, the lumen degradation measured for the LED lamp test samples 
under thermal ageing is shown in Fig. 7 (a). It can be noted that the total 
lumen maintenance (LM) at the termination of the experiment for the 
five samples was 71.23%, 74.37%, 73.71%, 72.18%, and 71.85% 
respectively. Similarly, the color shift showed a significant degradation 
for the test samples with du’v’ 0.00877, 0.00769, 0.00763, 0.00885, and 
0.00856 respectively. 

Secondly, the influence of LED module degradation Φmd on the LED 
lamp lifetime is described based on the experimental results, as shown in 
Fig. 7 (b). The LED module lumen degradation caused lumen mainte-
nance of respectively 70.7%, 77.7%, 70.9%, 67.7% and 73.6% for the 
five test sample LED lamps with a 28% average lumen depreciation. It 
can be noted from the results that the LED modules contribute signifi-
cantly to the degradation of the LED lamp, and test sample 4 was below 
the lumen maintenance threshold (failed), while the other samples were 
close to the threshold. 

Thirdly, the influence of the LED driver degradation Φdr on the LED 

Fig. 6. Experimental setup for thermal ageing and optical measurement (a) system level (b) LED module component (c) LED driver component (d) LED diffuser 
and reflector. 
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Fig. 7. (a) Lumen maintenance for LED lamps, (b) Lumen maintenance of LED lamp due to LED modules, (c) Lumen maintenance of LED lamp due to LED driver, (d) 
Lumen maintenance of LED lamp due to LED diffuser and reflector. 

Table 2 
Lumen maintenance due to LED Lamp and subsystem ageing.  

Test samples LMLamp LMmd  LMdr  LMdf  

1 71.23% 70.67% 97.25% 97.78% 
2 74.37% 77.15% 91.79% 97.62% 
3 73.71% 70.90% 92.70% 97.63% 
4 72.18% 67.69% 94.49% 97.70% 
5 71.85% 73.56% 88.94% 96.55% 
Average ΦLED = 27.33%  ΦMD = 28%  ΦDR = 6.97%.  ΦDF = 2.54%   

Table 3 
Degradation models and parameter estimation for root nodes.  

Nodes Estimated model parameters 

Gamma Process / Exponential decay Weibull distribution 

A μ = 0.006159;λ = 1/45.355156  η = 2549 and κ = 12.46  
B N/A Not observed in our experiment 
D α = 2.08E − 05;β = 0.9652367  η = 19845 and κ = 3.044  
E N/A Not observed in our experiment 
G α = 1.16E − 05;β = 1.0000265  η = 38139 and κ = 2.803  
H N/A not observed in our experiment 
J μ = 0.0062; λ = 1/46.2486 

α = 1.52E − 04;β = 1.023328  
η = 2566;κ = 20.69   

Fig. 8. Lumen maintenance reliability prediction of LED module, LED driver, 
LED diffuser and reflector. 
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Fig. 9. Lumen maintenance based lifetime prediction for LED module, driver and diffuser and LED lamp based on BN method.  

Fig. 10. Lifetime prediction based on lumen maintenance data for LED lamp using the Gamma Process.  
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lamp lifetime is based on the experimental results shown in Fig. 7 (c). 
The total lumen depreciation due to the LED driver caused an average of 
6.97% lumen degradation to the LED lamp with each sample 2.8%, 
8.2%, 7.3%, 5.5%, and 11.1% respectively. Finally, the influence of the 
diffuser and reflector degradation Φdf on the LED lamp lifetime is shown 
in Fig. 7(d). The total lumen depreciation due to the LED diffuser and 
reflector degradation, caused 2.58% lumen degradation to the LED lamp 
after 2160 h of ageing time. The lumen maintenance degradation of the 
test samples due to optical part ageing was not significant according to 
the experimental results. 

Under the designed ageing condition, the overall influence of LED 
components/subsystems on the LED lamp level degradation is summa-
rized in Table 2. The main cause of degradation for the LED lamp was 
due to the degradation of the LED module, secondly, driver degradation 
and the least degradation was due to diffuser and reflector. 

4.2. BN based lifetime prediction at component and product level 

According to the experimental design and setup, degradation ageing 
tests at the system level and component level were conducted. The 
experimental results for both component and system levels degradation 
were presented in the previous section. Here, the reliability state pre-
diction based on the degradation models proposed is presented in 
Table 3. All the prediction models at the component and product level 
used 45% (960 h) of the degradation data. The degradation model for 
the root nodes (i.e. component level) used in this study, along with the 
model parameters and descriptions, is presented here: 

Based on the product architecture and functionality of the high- 

power LED lamp, the BN was constructed and the reliability assess-
ment of the components and LED lamps was accomplished. In the 
experiment, no catastrophic failures were observed which allows us to 
consider the degradation of the LED lamp and its components, mainly 
the LED Module, LED Driver and LED diffuser and reflector. Based on the 
degradation models and parameters estimated (in Table 3), the reli-
ability curves are shown Fig. 8. 

For ease of algebraic representation, let A = LED_DEP, B = LED_CAT, 
C = LED_Module, D = Driver_DEP, E = Driver_CAT, F = LED_Driver, G =
DifRef_DEP, H = DifRef_CAT, I = LED_DifRef and J = LED_Lamp. The 
reliability state probability of the LED lamp (node J) and intermediate 
nodes LED module (node C), LED driver (node F) and diffuser and 
reflector (node I) can be expressed as follows:   

This BN model can be solved by using the Junction tree algorithm 
based on the Bayes Net Toolbox (BNT) for MATLAB developed by 
Murphy [52], and the results are plotted in Fig. 9. This equation (12), 
can be further simplified by setting P(RB(t)) = P(RE(t)) = P(RH(t)) = 1, 
when catastrophic failures are not observed in the experimental results 
and given as: 

P(RJ(t) ) =
∑

A
P(RC(t) |RA(t)).

∑

D
P(RF(t) |RD(t)).

∑

CD
P(RF(t) |RC(t),RD(t)).

∑

G
P(RI(t)|P(RG(t)).

∑

F,G
P(RI(t) |RF(t),RG(t)).P(RA(t))(RD(t))(RG(t)

(13) 

Fig. 11. Comparison of reliability prediction for LED Lamp (system level) based on BN and GP.  

P(RJ(t) ) =
∑

P(RA(t),RB(t),RC(t),RD(t),RE(t),RF(t),RG(t),RH(t),RI(t),RJ(t))

=
∑

A,B
P(RC(t) |RA(t),RB(t)).

∑

D,E
P(RF(t) |RD(t),RE(t)).

∑

CDE
P(RF(t) |RC(t),RD(t),RE(t)).

∑

G,H
P(RI(t)|P(RG(t),RH(t)).

∑

F,G,H
P(RI(t) |RF(t),RG(t),RH(t))

P(RA(t))P(RB(t) )(RD(t))P(RE(t))(RG(t))P(RH(t))

(12)   
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The reliability prediction plot exhibits the impact of component’s 
degradation (intermediate nodes LED_DEP, Driver_DEP, and DifRef_-
DEP) on the lifetime of the high power white LED lamp (leaf node 
LED_Lamp), as shown in Fig. 9. It is also worth noting that the degra-
dation of the LED module has more influence than the LED driver, 
diffuser, and reflector for the product level lifetime status. The absence 
of a catastrophic failure mode for the components, as well as the prod-
uct, is displayed as a straight line in all the reliability function plots. 
Furthermore, the reliability plot trace for LED module due to deprecia-
tion and predicted values coincide, and this applies to the case of LED 
drivers and optical parts (diffuser and reflector). 

On the otherhand, the lifetime estimation of LED lamp based on the 
BN model (shown in Fig. 9) is validated by a counterpart system level 
(LED lamp) degradation analysis. The Gamma process model is 
employed to model the lumen degradation of LED lamp test samples. 
The Gamma process is selected due to a monotonic degradation pattern 
recorded in the experiment. The lifetime prediction of LED lamp is 
shown by the reliability trace plot and CDF in Fig. 10. 

In this BN model, the reliability prediction result indicated that the 
LED module has a significant impact on the degradation of the LED lamp 
followed by LED drivers and optical components (diffuser and reflector). 
In fact, the BN based model results also illustrated that the system level 
reliability estimation highly depends on the component level reliability 
prediction methods. In our study, the Gamma process and exponential 
decay were chosen to model components degradation path due to its 
suitability for the nature of the data observed. Therefore, appropriate 
use of lifetime prediction methods at the component level, with proper 
experimental setup and data acquisition provides a better capability for 
lifetime assessment of more complex products and systems. As can be 
seen from the analysis results, the BN model integrated the lifetime data 
from components based on the specified prediction model to estimate 
the degradation status at the LED lamp (i.e. system) level. 

4.3. Discussion based on analysis results 

The degradation data from LED components were analyzed using the 
BN model while system level lumen degradation data was examined 
using the Gamma process model. Based on the analysis of the component 
level and system level degradation data, a comparison of lifetime pre-
diction using lumen maintenance data is shown in Fig. 11. 

It can be verified from the reliability trace plots that the BN enables 
to achieve integration of LED component degradation data to reasonably 
predict the system level lifetime of a LED lamp. The expected lumen 
maintenance lifetime L70 for the LED lamp based on the BN method is 
estimated as 2360 h, while the Gamma process gives a more conserva-
tive result of about 2000 h. Using the exponential decay model, the 
lifetime prediction for the LED lamps showed 2492.6 h with model pa-
rameters estimated using the nonlinear least-squares (NLS) regression 
approach, as α = 1.52E− 04, β = 1.023328. When the prediction results 
are compared with the experimental findings, it had shown good 
compatibility, even though the experimental failure times exceeding the 
threshold were not obtained to estimate prediction error. 

The prediction results for LED lamps based on the BN model showed 
steady nature compared to the Gamma process model. This can be seen 
from the reliability plots that the BN curve was slower in the first 2000 h 
while the GP trace was slowed in the first 1500 h and both curves started 
to drop faster thereafter. This is because the BN model was influenced by 
the slow degradation of the LED module until it reaches a certain 
threshold and the degradation process was quicker in the later degra-
dation phases. 

In general, the BN method with a systematically designed ADT en-
ables to achieve the long term lifetime estimation of LED lamps based on 
component degradation data. The prediction models at component and 
system level used 45% (960 h) of overall degradation data, which 

benefits in shortening longer testing time for highly reliable high-power 
LED products. The lifetime prediction for the LED lamps based on the BN 
model was also validated with the analysis of LED lamp reliability using 
the Gamma process method. Thus, it can be concluded that the BN 
model offers a comprehensive and effective approach for lifetime pre-
diction and reliability assessment of LED lamp products/systems and can 
be beneficial for LED manufacturers and customers as well as this 
method could be employed to assess the reliability of other complex 
products. 

5. Conclusions 

In this study, an accelerated degradation test based on thermal stress 
was implemented to evaluate the reliability of a high-power LED lamp 
system. A Bayesian Network (BN) method was proposed to predict the 
lifetime of a high-power LED lamp system by considering its intricacy, 
functional interaction among components, and degradation of sub-
systems on system level reliability. The component level lifetime pre-
diction was carried out based on the Gamma process model and the 
Weibull distribution method. The junction tree algorithm was used in 
the BN structure to estimate the joint probability distributions of system 
level lifetime states. This was validated based on system level LED lamp 
degradation tests and system level reliability predictions based on the 
Gamma process and exponential LSR methods. The proposed BN model 
shows highly accurate lifetime prediction results and improves the 
reliability assessment outcomes for LED manufacturers and end-users. 
The BN prediction results were also compared with the experimental 
findings and showed good compatibility even though the failure times 
were not obtained for numerical quantification. Many of the SSL man-
ufacturers obtain components from different suppliers and they have to 
test the product for a long time after the components are assembled. As 
many of the component supplier companies test their products before 
releasing to the market or supply to customers, the assembly companies 
can use the BN to get a close estimation of the system reliability based on 
the data from their suppliers. This reduces much of the cost and long 
testing time with a proper understanding of the physics of failure sce-
narios. Thus, it can be concluded that the BN model offers a promising 
approach for lifetime prediction and reliability assessment based on 
component failure modes and mechanisms for LED lamp systems/sys-
tems and could be employed to other complex systems. 
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Appendix A 

A.1. Abbreviations  

ADT Accelerated Degradation Test 
BN Bayesian Networks 
CCT Correlated Color Temperature 
CRI Color Rendering Index 
DAG Directed Acyclic Graph 
FMECA Failure Mode Effects and Criticality Analysis 
FTA Failure Tree Analysis 
IESNA Illuminating Engineering Society of North America 
LEDs Light-emitting Diodes 
RBD Reliability Block Diagrams 
SPD Spectral Power Distribution 
SSL Solid State Lighting  
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[12] J. Huang, D.S. Golubović, S. Koh, D. Yang, X. Li, X. Fan, G.Q. Zhang, Degradation 
modeling of mid-power white-light LEDs by using Wiener process, Opt. Express 23 
(15) (2015) A966–A978. 

[13] M.S. Ibrahim, W.K. Yung, J. Fan, Lumen maintenance lifetime prediction for 
phosphor-converted white LEDs with a wiener process based model, in: 2018 20th 
International Conference on Electronic Materials and Packaging (EMAP), IEEE, 
2018, pp. 1–4. 

[14] M.S. Ibrahim, J. Fan, W.K. Yung, Z. Wu, B. Sun, Lumen degradation lifetime 
prediction for high power white LEDs based on the gamma process model, IEEE 
Photonics J. (2019). 

[15] Z. Pan, N. Balakrishnan, Reliability modeling of degradation of products with 
multiple performance characteristics based on gamma processes, Reliab. Eng. Syst. 
Saf. 96 (8) (2011/08/01/ 2011.) 949–957. 

[16] J. Fan, Y. Chen, Z. Jing, M.S. Ibrahim, M. Cai, A Gamma process-based degradation 
testing of silicone encapsulant used in LED packaging, Polym. Test. 96 (2021), 
107090. 

[17] J. Fan, K.C. Yung, M. Pecht, Prognostics of chromaticity state for phosphor- 
converted white light emitting diodes using an unscented kalman filter approach, 
IEEE Trans. Dev. Mater. Reliab. 14 (1) (2014) 564–573. Art. no. 6609048. 

[18] P. Lall, J. Wei, L. Davis, Prediction of lumen output and chromaticity shift in LEDs 
using Kalman Filter and Extended Kalman Filter based models, in: IEEE Conference 
on Prognostics and Health Management (PHM), 2013, pp. 1–14. 

[19] A. Padmasali, S.G. Kini, LED life prediction based on lumen depreciation and 
colour shift, Light. Res. Technol. 49 (1) (2017) 84–99. 

[20] J. Fan, K.C. Yung, M. Pecht, Prognostics of lumen maintenance for High power 
white light emitting diodes using a nonlinear filter-based approach, Reliab. Eng. 
Syst. Saf. 123 (2014) 63–72. 

[21] J. Fan, K.C. Yung, M. Pecht, Predicting long-term lumen maintenance life of LED 
light sources using a particle filter-based prognostic approach, Expert Syst. Appl. 
42 (5) (2015) 2411–2420. 

[22] K.-C. Yung, B. Sun, X. Jiang, Prognostics-based qualification of high-power white 
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[46] J. Menčík, Weibull distribution, Concise Reliability for Engineers (2016) 81–88. 
[47] T.D. Nielsen, F.V. Jensen, Bayesian Networks and Decision Graphs, Springer 

Science & Business Media, 2009. 

M.S. Ibrahim et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S0263-2241(21)00209-8/h0005
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0005
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0010
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0010
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0015
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0015
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0015
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0030
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0030
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0035
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0035
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0040
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0040
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0045
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0045
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0050
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0050
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0050
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0055
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0055
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0055
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0060
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0060
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0060
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0065
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0065
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0065
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0065
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0070
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0070
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0070
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0075
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0075
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0075
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0080
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0080
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0080
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0085
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0085
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0085
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0090
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0090
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0090
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0095
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0095
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0100
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0100
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0100
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0105
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0105
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0105
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0110
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0110
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0115
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0115
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0115
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0130
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0130
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0130
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0130
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0140
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0140
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0140
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0145
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0145
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0145
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0150
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0150
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0155
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0155
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0160
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0160
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0160
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0175
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0175
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0175
http://www.+intel.+com/research/events/UAI03_workshop
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0185
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0185
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0185
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0190
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0190
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0190
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0195
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0195
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0195
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0200
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0200
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0200
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0205
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0205
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0205
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0215
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0215
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0220
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0220
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0225
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0225
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0235
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0235


Measurement 176 (2021) 109191

13

[48] D. Barber, Bayesian Reasoning and Machine Learning, Cambridge University Press, 
2012. 

[49] F.G. Cozman, Generalizing variable elimination in Bayesian networks, in: 
Workshop on probabilistic reasoning in artificial intelligence, Editora Tec Art São 
Paulo, Brazil, 2000, pp. 27–32. 

[50] Honglitronic, Specification of HL-AM-2835H489W-S1-08L-HR3 LED PLCC2 
Package, Beijing, China, 2014. 

[51] G. Lu, W.D. van Driel, X. Fan, M. Yazdan Mehr, J. Fan, K.M.B. Jansen, G.Q. Zhang, 
Degradation of microcellular PET reflective materials used in LED-based products, 
Opt. Mater. 49 (2015) 79–84. 

[52] K. Murphy, Bayes Net Toolbox(BNT) for MATLAB, 2007. Available: https://code. 
google.com/archive/p/bnt/. 

M.S. Ibrahim et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S0263-2241(21)00209-8/h0240
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0240
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0255
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0255
http://refhub.elsevier.com/S0263-2241(21)00209-8/h0255
https://code.google.com/archive/p/bnt/
https://code.google.com/archive/p/bnt/

	System level reliability assessment for high power light-emitting diode lamp based on a Bayesian network method
	1 Introduction
	2 Theory and methodology
	2.1 Degradation analysis based on empirical models
	2.2 An overview on Bayesian Network model
	2.3 Bayesian networks modelling and reliability assessment for a LED lamp system

	3 Experimental setup and data collection
	3.1 Test samples
	3.2 Accelerated degradation test for LEDs
	3.2.1 System level ageing and data collection
	3.2.2 Component level ageing and data collection


	4 Results and discussion
	4.1 Lumen degradation analysis for LED lamp and components
	4.2 BN based lifetime prediction at component and product level
	4.3 Discussion based on analysis results

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	Appendix A Acknowledgment
	A.1 Abbreviations

	References




