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SUMMARY 

The Earth's gravitational potential is usually expressed as a double 
series of tesseral harmonies of degree tand order m , and values of 
coefficients for tand m up to 36 or more are determined in recent 
modeis. The individual harmonie coefficients of a particular order m 
can most accurately be evaluated by analysing the perturbations on 
satellites which experience mth-order resonance (ie repeat their ground 
track af ter m revolutions). 

Here we use results from analyses of 15 satellite orbits at 
14th-order resonance to evaluate 7 pairs of individual coefficients of 
14th order and odd degree (t = 15,17, ••• 27), and 6 pairs of coefficients 
of even degree (t = 14,16, ••. 24). The five most accurate pairs of values, 
for t = 14,15,16,17 and 19, have a mean standard deviation corresponding 
to an accuracy of 0.9 cm in geoid height. These values are used as a test 
of the accuracy of three recent comprehensive models of the geopotential: 
the agreement is generally satisfactory, the differences being consistent 
with the expected errors (about 3 x 10-9 ) in the modeis. 

We also obtain values for the pair of coefficients of order 28 and 
degree 28, again with standard deviation equivalent to 0.9 cm in geoid 
height. 
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INTRODUCTlON 

Several comprehensive models of the Earth's gravitational field have been derived 

in recent years by expressing the geopotential as a double series of tesseral harmonics 

and evaluating these harmonic coefficients up to a chosen order and degree. For 
1 

example, the Goddard Earth Model lOB goes up to order and degree 36 and has about 1300 

5 

coefficients; while the 1981 model of Rapp2 goes to order and degree 180 and has some 

32000 coefficients. The best current models define the height of the geoid surface 

correct to about 150 cm; but most of the individual harmonic coefficients are subject 

to considerable uncertainty, and more accurate values of the coefficients of a 

particular order can best be obtained by analysis of resonant satellite orbits. For 

example, analysis of 15th-order resonant orbits (with the track over the Earth repeating 

each day af ter 15 revolutions) has yielded values for coefficients of order 15 and 
3 degree 15-23 with an accuracy equivalent to 1 cm in geoid height. If such precision 

could be achieved for all other orders, there would be a great improvement in the 

accuracy of the geoid. 

Satellites which pass slowly through 14th-order resonance - with tracks repeating 

each day af ter 14 revolutions - are unfortunately much less numerous than the 15th-order 

resonant satellites. However, a solution for individual 14th-order coefficients was 
1+ 

obtained in 1978, and the new solution offered in this Report uses the previous 

satellites together with three new ones which have been specially analysed for the 
5,6,7 

purpose The newly derived values for the coefficients extend to a higher degree 

and have smaller standard deviations than before. The individual values therefore 

represent a considerable improvement; but there is still room for much more 

improvement, many further satellites being needed at inclinations between 30° and 45°, 

and between 55° and 65°. 

2 DEFINITIONS 

2.1 The geopotential 

The longitude-dependent part of the Earth's gravitational potential at an exterior 

point (r,e,À) may be written in normalized formS as 

-;- t t (!)' P~(cos 0) {ë.m cos mÀ + ~'m sin mÀ } N"" • (1) 

R.=2 m=l 

where r is the distance from the Earth's centre, e is co-latitude, À is longitude 
3 2 

(positive to the east), ~ is the gravitational constant for the Earth (398600 km /s ), 
m R is the Earth'sequatorial radius (6378.1 km), PR.(cos e) is the associated Legendre 

function of order mand degree R., and CR.m and 

harmonic coefficients. The normalizing factor NR.m 

SR.m are the normalized tesseral 

is given byS 

and coefficients of order m 

2(2R. + 1)(R. - m)! 
(R.+m)! 

14 particularly concern us here. 

(2) 
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2.2 Lumped harmonies 

3-5 The theory for the resonance has been given many times and will not be repeated 

here. For each satellite analysed as it passes through 
q.k 

obtain a numerical value for a 'lumped harmonie'. ë m 

the 14th-order resonance. we 
_q.k 

or S • given by m 

(3) 

where the values of .t are such that (.t-k) is even. and .t ~m • so that 1 increases 

in steps of 2 from its minimum permissible value 10 (which is either m or m + 1). 

and the Q. are constants for a particular satellite. with Q - 1. Here m - 14. so 
.. .tO 

that .t
O 

is either 14 or 15. Generally the odd~degree lumped harmonies (with 

1 = 15.17.19 •••• ) are obtained by analysing changes in inclination at resonance. while 

those of even degree (with 1 - 14.16.18 •••• ) come from analysis of eccentricity 

variations. 

The theoretical curves~·9.10 fitted to the variations of i and e near 
q.k q.k 

resonance are derived from equations with terms of the form 

where w is the argument of perigee and ~ is the resonance 
(ë s ) cos ( ~ 

m • m sin Y 
angle. defined by 

~ a(w + M) + a (0 - v) • 

!3:a 

- qw). 

In equation (4). M is the mean anomaly. 0 the right ascension of the node and v 

the sidereal angle. Here !3 - 14 and a-I. Tbe parameter y may take the values 

0.1.2 •••• and q the values 0.±1.±2 •••• ; but the terms with y - 1 and with q - 0 

and ±1 are usually the largest. Another equation between the parameters is m - y!3 • 

and because !3 - 14 here. m - 14 if y - 1. Finally k is given by k - ya - q 

so that k - 1 - q here. if y - 1 

Each value of a lumped harmonie provides a linear equation of the form (3). and. 

if the contributing satellites are at distinctly different inclinations. the 

equations (3) can be solved for individual coefficients. C.tm and Stm. 

The contributing satellites are listed and discussed in section 3. and the method 

of solution is described in section 4. 

3 THE CONTRIBUTING SATELLITES 

3.1 Genera 1 

The values of the lumped harmonies obtained from analysis of each of the 

contributing satellites. with the appropriate Q 
Tables 1. 2 and 3 for (q.k) - (0.1).(1.0) and 

factors. are given in 

(-1.2) respectively. Also listed in 

these Tables are the values of Allan'slO normalized inclination functions 

where PO - t(.tO - k) • Multiplication of the lumped harmonies by the F gives a 

measure of the amplitude of the perturbation that can arise for that inclination. Tbe 

method of solution (see section 4) requires the standard deviations of some values to be 

relaxed. usually by a factor of 2. and this is indicated by footnotes to the Tables. 



Sections 3.2-3.16 offer brief comments on the data for each of the IS satellites 

used, in order of increasing inclination. 

3.2 1965-82, inclination 32.0 0 

This is not a single satellite but a combi nat ion of the results obtained by 
11 Wagner from analysing 3 fragments from the 1965-82 launeh. The results, for 

(q,k) = (0,1) only, were not used in our previous solution beeause the 1 = 25 and 

1 = 27 terms for this satellite are likely to be the largest (see Table I) and the 

previous solution only extended to 1 = 21. Even here, with a 7-eoeffieient solution, 

the sd had to be increased to 400, to allow for the neglect of terms with 1 ~ 29 • 

3.3 1958 a, inclination 33.2 0 

12 This orbit, analysed by Walker ,was not included previously, for the same 

reasons. The orbit was of high drag and the values obtained, for (q, k) = (0, 1), are 

not particularly accurate. However, in view of the dearth of satellites at low 

inclinations, the values were used. The error due to neglecting harmonies of degree 

1 ~ 29 was considerably less than the standard deviations. 

3.4 1967-IIG, inclination 40.0 0 

6 This is one of the new satellites, reeent l y analysed by King-Hele , and the only 

7 

one having an inelination between 34 0 and 48 0
• Values of lumped harmonies are available 

for (q, k) = (0, I) and (I, 0). The resonanee was rapid and the orbital data were 

sparse, so the results are not very accurate. 

3.5 1973-22A, inclination 48.4 0 

• -=k
13 

This was a high-drag orbit analysed by Klokocn1 ,and lumped harmonies were 

available for (q, k) = (0, I) only. 

3.6 1963-26A, inelination 49.7 0 

11 This orbit was analysed by Wagner ,who obtained va lues for all three pairs of 

lumped harmonies, that is, for (q, k) = (0, 1), (I, 0) and (-I, 2). 

3.7 1964-15A, inclination 51.7 0 

14 Gooding determined 210 post-resonant orbits of this satellite, Ariel 4, and 

obtained values for all three pairs of lumped harmonies. 

3.8 197I-106A, inclination 65.7 0 

This high-drag orbit, analysed by Walker 15, yielded values for lumped harmonies 

with (q, k) = (I, 0) and (-I, 2). 

3.9 196I-15G, inclination 66.8 0 

11 This orbit was analysed by Wagner ,who obtained values for all three pairs of 

lumped harmonies. 

3.10 197I-18B, inelination 69.9 0 

16 This was another high-drag orbit, analysed by Hiller • Lumped harmonies were 

obtained for (q, k) = (0, I) only. 



5atellite i Q15 
(deg) 

1965-82 32.0 1.0 

1958 33.2 1.0 

1967-11G 40.0 1.0 

1973-22A 48.4 1.0 

1963-26A 49.7 1.0 

1964-15A 51.7 1.0 

1961-15G 66.8 1.0 

1971-18B 69.9 1.0 

1965-16G 70.1 1.0 

1970-97B 74.0 1.0 

1971-120A 81.2 1.0 

1971-120B 81.2 1.0 

1970-47B 81.2 1.0 

Q17 

-5.80 

-5.61 

-4.48 

-2.996 

-2.918 

-2.464 

-0.251 

0.093 

0.113 

0.472 

0.926 

0.925 

0.923 

_0, ) 
Values of C

l4 

Q19 Q21 Q23 

18.64 -41.24 68.27 

17.34 -36.55 56.94 

10.39 -15.07 13.78 

3.930 - 2.026 - 0.611 

3.559 - 1.313 - 1.334 

2.280 - 0.174 - 1.070 

-0.465 - 0.186 0.088 

-0.302 - 0.293 - 0.124 

-0.288 - 0.293 - 0.134 

0.057 - 0.152 - 0.198 

0.743 0.544 0.365 

0.741 0.542 0.364 

0.739 0.539 0.360 

* standard deviation x2 

Table 1 

_0,1 
and Sl4 used in the solutions, with values of 

Q25 Q27 Q29 Q31 
9_0 ,1 

10 C14 

9_0 ,1 
10 514 

-87.41 86.29 -62.03 24.99 2762 ± 400t 420 ± 400t 

-67.25 59.03 -34.19 5.08 6800 ± 5400* -3300 ± 3000* 

- 6.25 - 1.96 4.91 ,- 2.23 -65 ± 163 -55 ± 164 

1.348 0.046 - 0.740 0.069 -63 ± 52* -115 ± 28 

1.178 0.591 - 0.801 - 0.345 18 ± 18 -82 ± 11 

0.245 0.561 - 0.117 - 0.321 75 ± 46* -98 ± 23 

0.170 0.103 0.002 - 0.056 5 . 5 ± 1.0 -22.5 ± 0.5 

0.028 0.094 0.084 0.038 32 ± 44+ -2 ± 20 

0.017 0.088 0.084 0.043 -2.1 ± 0.3 -16.6 ± 0.9 

- 0.152 - 0.076 - 0.010 0.029 -32 ± 24 -20 ± 33 

0.221 0.113 0.039 - 0.007 1.4 ± 4.8+ -20.0 ± 1.2 

0.219 0.112 0.039 - 0.007 -3.7 ± 2.8* -19.1 ± 1.2 

0.216 0.109 0.037 - 0.008 -1.84 ± 0.62 -19.52 ± 0.48 

QO,) 
R-

F 15,14,7 

0.001229 

0.001805 

0.01272 

0.07340 

0.09128 

0.1226 

0.4900 

0.5292 

0.5303 

0.5134 

0.2722 

0.2722 

0.2737 

9- _0,1 
10 F15,14,7C14 

3.4 ± 0.5 

12.3 ± 9.7 

- 0.8 ± 2.1 

- 4.6 ± 3.8 

1.6 ± 1.6 

9.2 ± 5.6 

2.7 ± 0.5 

17.0 ± 23.2 

- 1.1 ± 0.2 

-16.4 ± 12.3 

0.4 ± 1.3 

- 1.0 ± 0.8 

- 0.5 ± 0.2 

+ standard deviation x4 t increased to cover neglect of QR. for R.;;> 29 

00 

9- _0,1 
10 F15,14,7514 

0.5 ± 0.5 

- 6.0 ± 5.4 

- 0.7 ± 2.1 

- 8.4 ± 2.1 

- 7.5 ± 1.0 

-12.0 ± 2.8 

-11.0 ± 0.2 

- 1.3 ± 10.5 

- 8.8 ± 0.5 

-10.3 ± 16.9 

- 5.4 ± 0.3 

- 5.2 ± 0.3 

- 5.3 ± 0.1 



Satellite i 
Q14 Q16 (deg) 

1967-11G 40.0 1.0 -10.6 

1963-26A 49.7 1.0 -7.381 

1964-15A 51.7 1.0 -6.761 

1971-106A 65.7 1.0 -2.601 

1961-15G 66.8 1.0 -2.351 

1965-16G 70.1 1.0 -1.595 

1970-97B 74.0 1.0 -0.830 

1971-120B 81.2 1.0 0.172 

1970-47B 81.2 1.0 0.170 

1965-81A 87.4 1.0 0.569 

Table 2 

1,0 
Values of ë14 and 

1,0 
814 used in the solutions, with values of Ql,O 

1. 

Q18 Q20 Q22 Q24 Q26 Q28 
9_ 1,0 9_ 1,0 

10 C14 10 S14 F 14,14,7 

43.9 -106.8 170.3 -178.5 103.7 8.6 1255 ± 1550 2477 ± 1276 0.001268 

18.736 -22.411 8.705 8.458 -8.538 -3.120 -493 ± 157 538 ± 157 0.01398 

15.095 -14.281 1.07f 8. 11 ~ -2.493 -4.799 -483 ± 128 490 ± 133 0.02053 

0.379 1.409 0.568 -0.439 -0.686 -0.303 17 ± 59 -137 ± 350** 0 . 1690 

0.026 1.181 0.727 -0.146 -0.564 -0.414 12 ± 7 70 ± 12 0.1886 

-0.669 0.35~ 0.673 0.436 0.038 -0.227 17 ± 31* 68 ± 51 0.2598 

-0.813 -0.343 0.082 0.298 0.308 0.199 -67 ± 53 12 ± 50 0.3547 

-0.146 -0.272 -0.292 -0.256 -0.195 -0.128 -34 . 9 ± 4.7 -12.2 ± 4 .0 0.5234 

-0.148 -0.273 -0.292 -0.255 -0.193 -0.127 -40.2 ± 2.3 -9.5 ± 2.4 0.5229 

0.387 0.270 0.188 0.129 0.086 0.055 -60.0 ± 6.6 -35.4 ± 11.4 0.6075 
-

* standard deviation x 2 ** standard deviation xtO 

9- _ 1,0 

10 F14,14,7CI4 
9- 1 ,0 

10 F14,14,7S14 

1.6 ± 2.0 3.1 ± 1.6 
i 

-6.9 ± 2 . 2 7.5 ± 2.2 

-9.9 ± 2.6 10.1 ± 2.7 

2.9 ± 9.9 -23 ± 59 

2.3 ± 1.3 13.2 ± 2.3 

4.4 ± 8.1 17.8 ± 13.2 

-24 ± 19 4 ± 18 

-18.3 ± 2.5 -6.4 ± 2.1 
, 

I 

-21.0 ± 1.2 -5.0 ± 1.2 I 

-36.4 ± 4.0 -21.5 ± 6.9 

\0 



5atellite i 
Q14 Q16 (deg) 

1963-26A 49.7 1.0 -4.869 

1964-15A 51.7 1.0 -4.340 

1971-106A 65.7 1.0 -1.008 

1962-15G 66.8 1.0 -0.826 

1965-16G 70.1 1.0 -0 . 299 

1979-97B 74.0 1.0 0.182 

i971-120B 81.2 1.0 0.623 

1970-47B 81.2 1.0 0.622 

1965-81A 87.4 1.0 0.512 

Table 3 

-I 2 - , -I 2 - , 
Values of C

l4 
and Sl4 used in the solutions, with values of Q-I,2 

i 

Q18 Q20 Q22 Q24 Q26 Q28 
9_-1,2 9_-1,2 

F 
9- _-1,2 

10 C14 10 514 14,14,6 Hl F14,14,6C14 

7.254 -2.939 -3.131 2.589 1.691 -1.740 -29 ± 87* -145 ± 320* 0.05695 -1.7 ± 5.0 

5.254 -0.604 -3.034 0.625 1.963 -0.216 -48 ± 71 100 ± 70 0.07669 -3.7 ± 5.4 

-0.812 -0.041 0.458 0.451 0.143 -0.149 -186 ± 160** 66 ± 42 0.3542 -66 ± 57 

-0.818 -0.208 0.304 0.432 0.246 -0.021 -41 ± 12 30 ± 6 0.3802 -15.6 ± 4.6 

-0.637 -0.495 -0.168 0 . 116 0.245 0.219 -38 ± 25 -11 ± 43 0.4625 -17 ± 12 

-0.209 -0.369 -0.358 -0.246 -0.103 0.019 -77 ± 54 -67 ± 80* 0.5466 -42 ± 29 

0.444 0.307 0.193 0.102 0.032 -0.017 -81.4 ± 20.at -34.9 ± 4.8 0 .6224 -50.7 ± 12.9 

0.442 0.304 0.191 0.100 0.030 -0.018 -51.8 ± 3.4 -27.2 ± 3.0 0.6224 -32.2 ± 2.1 

0.333 0.237 0.179 0.140 0.114 0.094 -52.3 ± 8.0 12.1 ± 34.4* 0.5831 -30.5 ± 4.6 

* standard deviation x·2 t standard deviation x4 ** standard deviation xJO 

o 

9- _-1,2 
10 F14,14,6514 

-8.3 ± 18.1 

7.7 ± 5.4 

23 ± 15 

11.4 ± 2.3 

-5 ± 20 

-37 ± 44 

-21. 7 ± 3.0 

-16.9 ± 1.9 

7.1 ± 20.0 



3.11 1965-16G, inclination 70.1° 

This satellite was analysed in Ref 4: good va lues were obtained for all three 

pairs of lumped harmonies. 

3.12 1970-97B, inclination 74.0° 

11 

This was a high-drag satellite, but a recent analysis of the 14th-order resonance 7 

has yielded values - though inevitably not very accurate ones - for all three pairs of 

lumped harmonies. This satellite replaced 1973-82A, also at inclination 74.0°, which 

was used previously4. 

3.13 1971-120A, inclination 81.2° 

This was an analysis by Wagner 11 of the orbit before reaching resonance, and 

values of lumped harmonies were obtained for (q, k) = (0, 1) only. The standard 
- 0 1 deviation for Cl~ was multiplied by 4 to avoid a clash with the results from 1971-120B 

(see below) and keep their weighted residuals similar. 

3.14 1971-120B, inclination 81.2° 

This satellite, analysed in Ref 4, yielded values for all three pairs of lumped 

harmonies. The results were of very good accuracy, but their reliability is slightly 

open to question, because the analysis did not begin until af ter the satellite had 

passed resonanee. The orbit was almost identical to that of 1971-120A, and the standard 
-0 1 deviation for C14 was doubled to avoid a clash between them. 

3.15 1970-47B, inclination 81.2° 

5 This new analysis, reeently completed by Walker , is the most accurate of all the 

14th-order resonanee analyses, being determined from 208 orbits over 4 years centred on 

resonance. The results are not only valuable in themselves but also as a test of the 

two 'half resonances' for 1971-120A and 1971-120B at the same inclination. The result 

of the test is most satisfactory. The values for 5 of the 6 lumped harmonies from 

1970-47B and 1971-120B agreed to within the sum of their standard deviations. 

3.16 1965-81A, inclination 87.4° 

This satellite, analysed in Ref 4, was at an inclination where the term which 

usually dominates the change in i - the (q, k) ~ (0, 1) term - has very little effect. 

Consequently the satellite only gave values for the (q, k) - (I, 0) and (-I, 2) terms, 

as recorded in Tables 2 and 3. 

4 THE ODD-DEGREE SOLUTIONS 

4.1 Procedure 

The analyses in section 3 provided 13 equations for 14th-order C-coefficients of 

odd degree, 

(5) 
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and 13 similar equations for the S-coefficients, as listed in Table 1. 

In the past we have added constraint equations of the form 

(6) 

-5 2 
where the quantity 10 /t derives from 'Kaula's rule of thumb' for the magnitude of a 

coefficient of degree t, and we have solved equations (5) and (6) by least squares. 

However, now that the coefficients of low degree are becoming quite well 

determined, it is unhelpful to use equation (6) for the lowest-degree harmonies, because 

in effect equation (6) is an instruction to keep the value as near zero as possible - an 

instruction which is counter-productive if the value is known to be large. An 

alternative plan would be to fix the well-known first few values and solve for the 

remainder. However, this is too inflexible a procedure, and we have opted for another 

possibility, namely replacing the zero in the first few equations (6) with the value 

derived from the first solution, that is the solution utilizing equation (6); then we 

make a further iteration with Ct 14 set equal to the value from the first solution, , 
and with its standard deviation twice that of the first solution. And so on. The 

residuals for the specified coefficients tend to zero af ter two iterations, and these 

equations are then eliminated from the degrees of freedom. This procedure is bringing 

in outside information - the knowledge that the first few values are well-determined -

to replace the 'rule of thumb' expressed in equation (6). The number of coefficients 

chosen for this iterative procedure was three - those of degree 15, 17 and 19 - because 

they had much lower standard deviations than the later coefficients. However the choice 

is not critical, and the values obtained for the individual coefficients do not change 

significantly when four coefficients are treated in this way. 

As in our recent determinations of 15th-order harmonics 3, we have relaxed the 

0,1 
assumed standard deviations of any values of (C,S)14 for which the weighted residuals 

exceed a chosen value, taken here as 1.3. (The weighted residual is the residual 

divided by the assumed sd.) These relaxations - usually doublings, sometimes 

quadruplings - are indicated in Table 1; of the 26 values, five are relaxed by a factor 

of 2 and two by a factor of 4. The choice of 1.3 as the limit is not critical, but is 

merely a convenient level with the particular set of weighted residuals which arise. 

4.2 Results 

When the C and S equations were solved for 3, 4, ••• 8 coefficients, the following 

values were obtained for the measure of fit E 

Number of coefficients 3 4 5 6 7 8 

C equations 3.05 2.71 1.75 1.19 0.93 0.92 

S equations 1.60 0.71 0.70 0.66 0.66 0.65 I , 
I 
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As usual, 2 
E is defined as the sum of the squares of the weighted residuals, divided by 

the number of degrees of freedom. The weighted residual is the residual divided by the 

sd given in Table 1. 

For the C equations, the value of Edecreases substantially for each increase in 

the number of coefficients up to 7, but there is no significant change when more than 7 

are evaluated. At least 7 coefficients are needed because the Q values are large for 

the three low-inclination satellites in Table 1. For the S equations it happens that 

the Sth, 6th and 7th coefficients are all small and consequently there is a choice of 4, 

5, 6 or 7 coeffieients for the solution: the 7-coefficient solution was adopted, so as 

to conform with that of the C equations. 

The values of the odd-degree C and S coefficients from the 7-harmonic solutions 

are listed in Table 4. Our previous solutions for odd-degree 14th-order harmonies were 

for four C and four S coefficients only. These previous solutions agree with the new 

values to well within the sum of their standard deviations. This agreement is not 

unexpeeted, as many of the same satellites are included: however, the agreement is 

valuable in showing that the previous negleet of higher harmonies did not upset the 

reliability of the results. We hope a similar conclusion applies here. 

In Table 4 the standard deviations beeome larger as the degree of the coefficients 

increases. 
-9 

1.4 x la , 
For the first three C and the first three S coefficients the average sd is 

which is equivalent to less than cm in geoid height. For the 4th and Sth 

coefficients, the equivalent ave rage accuraey is near 2 cm in geoid height; for the 6th 

and 7th, it is 3 cm. (Curiously, the accuracy of the S coefficients is much better than 

that of the C coeffieients throughout.) 

Table 4 

Seven-coefficient solution for harmonies of odd degree 

10
9 - 9 -

Degree t Ct 14 la St 14 , , 

IS 4.6 ± 1.5 -24.7 ± 0.8 

17 -17.7 ± 2.3 17.9 ±I.I 

19 -0.2 ± 1.8 -8.5 ± 0.7 

21 17.0 ± 4.8 -10.8 ± 2.6 

23 6.8 ± 4.2 -0.6 ± 2.7 

25 -15.9 ± 5.7 1.7 ± 2.9 

27 16.4 ± 6.5 4.6 ± 3.9 
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The weighted residuals, for the 13 satellite equations and the relevant constraint 

equations (6), are given in Table 5. Equations for which the standard deviations were 

relaxed (as shown in Table 1) are marked with 'R'. 

Fig 1 shows the variation of the lumped harmonies with inclination, af ter each has 
- - - -

been multiplied by F15 14 7. This product of F and C (or F and S ) gives a , , 
bet ter indication of the amplitude of the variation in inclination caused by 14th-order 

harmonies at any particular inclination. In Fig 1, the fitting of the curve from the 

solution of Table 4 is quite satisfactory, though there are gaps in the inclination 

coverage which demand to be filled. Good satellites at inclinatlons between 30° and 

45°, between 55° and 65°, and near 75° and 90°, are much needed. 

Table 5 

Welghted residuals for the 13 sateilite equatlons and the 
four constraint equations in the solution of Table 4 

Residuals for: Constraint equations 
Satellite 0,1 0,1 

C
14 S14 R. CR. 14 SR. 14 , , 

1965-82 0.25R 0.15R 21 -0.75 0.48 

1958 a 0.91R -1.18R 23 -0.36 0.03 

1967-11G -0.31 0.02 25 0.99 -0.11 

1973-22A -1.17R -1.00 27 -1.20 -0.33 

1963-26A 0.16 0.51 

1964-15A 0.70R -0.66 

1961-15G -0.01 0.06 

1971-18B 0.78R 0.72 

1965-16G 0.01 -0.06 

1970-97B -1.06 -0.14 

I 1971-120A 0.67R -0.38 

1971-120B -0.67R 0.36 ! 

1970-47B 0.07 I -0.01 ! 

5 THE EVEN-DEGREE SOLUTIONS 

5.1 Procedure 

The procedure was similar to that adopted for the odd-degree coefficients. For 

even degree, we have the 10 equations for (q,k) = (1, 0) glven in Table 2, of the form 

e + QI, 0 e + Ql, 0 e + 
14,14 16 16,14 18 18,14 ••• (7) 
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and 10 equations with S instead of C. We also have the 9 equations for (q, k) - (-1, 2) 

given in Table 3, of the form 

and 9 equations with S instead of C. 

-1,2 
C14 

(8) 

To these 38 equations, 19 for C and 19 for S, we add constraint equations of the 

form (6) and then replace the first few of these by the iterative procedure for 

well-determined low-degree coefficients. For the even-degree harmonies, 'few' is taken 

as 'two', because the first two coefficients are much more accurately determined than 

the later ones. The standard deviations of the lumped harmonies were relaxed so as to 

ensure that none of the weighted residuals exceeded 1.35: of the 38 standard 

deviations, two were relaxed by a factor of 10, one by a factor of 4 and five by a 

factor of 2, as Tables 2 and 3 show. 

5.2 Results 

When the equations were solved for 3, 4 ••• 7 coefficients the following values of € 

were obtained: 

Number of coefficients 3 4 5 6 7 

C equations 1.30 1.12 1.12 0.79 0.79 

S equations 1.04 0.78 0.68 0.67 0.67 

Clearly, the best choice here is 6 coefficients, and Tables 2 and 3 show that the 

neglect of the 7th coefficient (of degree 26) is justified, because if the value of 
-5 2 -9 

C26 ,14 is taken as 0.5 x 10 /26 (= 7 x 10 ), the value of Q26C26,14 is con-

siderably less than the sd of the appropriate lumped harmonie, for all the satellites. 

-The values of the even-degree C and S coefficients given by the 6-harmonic 

solution are listed in Table 6. 

In assessing our previous solution for even-degree coefficients, we commented that 

"there are discrepancies for CR. 14 "and that "further work ••• is needed". This , 
conclusion is confirmed by the new results, which, although within one standard 

deviation of the previous results for S. are significantly different from the previous 
- -results for C - in particular for C18 ,14 and C22 • 14 • The reason for the change is 

_-1,2 
the new value for C

14 
from 1970-47B, which is considerably smaller than the value 

used previously, from 1971-120B: the standard deviation of the latter had to be 

increased by a factor of 4 in the new solution. 

The standard deviations in the new solutlon are on ave rage about half those in the 

previous solution, and there is every reason to suppose that the new solution is much 

bet ter than the old. 
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The weighted residuals, for the 38 satellite equations and the relevant constraint 

equations (6), are given in Table 7. Again the values for which the standard deviations 

were relaxed are marked with 'R'. 

Table 6 

Six-coefficient solution for harmonies of even degree 

10
9 - 9 -

Degree t Ct ,14 10 St,14 

14 -40.8 ± 1.2 -5.1 ± 0.9 

16 -16.6 ± 1.6 -35.1 ± 1.9 

18 -8.0 ± 3.8 -1.4 ± 2.7 

20 12.2 ± 2.9 -11.7 ± 2.5 

22 -4.6 ± 4.2 7.6 ± 3.2 

24 -19.3 ± 4.7 2.0 ± 3.2 

Table 7 

Weighted residuals for each satellite equation and the 
four constraint equations in the solution of Table 6 

Residuals for: Constraint equations 

Satellite 
1,0 -1,2 1,0 -1,2 

C14 Cl4 S14 S14 t Ct ,14 St,14 

1967-11G 0.07 - -0.01 - 18 0.26 0.05 

1963-26A 0.32 0.69R -0.22 -0.99R 20 -0.49 0.47 

1964-15A -0.77 -0.45 0.66 -0.36 22 0.22 -0.37 

1971-106A -0.09 -0.98R -0.60R 0.71 24 1.11 -0.11 

1961-15G 0.01 -0.69 0.09 -0.12 

1965-16G 1.06R 0.03 0.29 -0.52 

1970-97B -0.68 -0.69 -0.37 -0.71R 

1971-120B 0.98 -1.33R -0.44 -1.13 

1970-47B -0.31 0.57 0.35 0.75 

1965-81A -1.00 0.04 -0.73 1.07R 

The variations of the lumped coefficients with inclination are shown in Figs 2 

and 3, af ter multiplication by the appropriate F factor: again the product FC (or 

FS) gives a measure of the strength of the perturbations in the orbital elements for 

each inclination. Since the fittings of the points in Figs 2 and 3 are simultaneous, a 

failure to fit a point on the upper curve may be due to the need to fit a point on the 
-1,2 

lower curve and vice-versa. The C14 
but displaced by about 7° in inclination. 

curves are quite similar in form to the 

The same applies for S. 

1,0 
C14 

To illustrate this effect, the curves are replotted superposed in Fig 4, with the 

inclination shifted by 7° for (q,k) = (-1,2). The agreement is very close, and it is 
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quite illuminating to assume that one curve is being fitted to all the points, both the 

triangles and the circles. If we take this 'conspectus' view, the inclination coverage 

could be regarded as almost complete from 40° to 95°, apart from a gap near 45°. Thus 

it is probable that the even-degree solutions are more reliable than those of odd 

degree, although of slightly poorer nominal accuracy because the eccentricity is more 

difficult to analyse than the inclination. Also, when looked at in this combined form, 

the curves fit the points most convincingly. 

6 COMPARISONS WITH CO~~REHENSIVE GEOPOTENTIAL MODELS 

Table 8 gives our values of 14th-order geopotential coefficients and those from 

three recent comprehensive modeis, the Goddard Earth Model 10B
1 
,the 1981 model of Rapp2, 

17 
and the European Model GRIM3-L1 • Standard deviations are not available for GEM lOB or 

GRIM3-L1. Rapp does give sds, but they are ignored for the moment, to preserve 

uniformity in Table 8. 

The errors in the comprehensive models are believed to be of order 3 x 10-9 for 

the coefficients in Table 8. If so, and if we accept the validity of our standard 

deviations, our values should be generally more accurate than those of the comprehensive 

models for ! = 14, IS, 16, 17 and 19. So it is of interest to compare the coefficients 

for these five values of !. The mean numerical difference between our values of these 

coefficients and the corresponding values in each of the comprehensive models is denoted 

by d and given at the end of the Tabie. Also, in the last row of the Tabie, we giVé 

the mean difference 0 between our values and the corresponding values in the 

comprehensive modeis, averaged over all the 13 values of ! for which we have obtained 

results. 

The mean 
-9 

4.5 x 10 for 

values for d in the three comprehensive models are 3.5, 3.3 and 

GEM lOB, Rapp 1981 and GRIM 3-L1 respectively, while our mean sd is 
-9 

1.4 x 10 • So the results of the comparisons are consistent with the assumption that 
-9 . 

the comprehensive models have errors of order 3 x 10 in these coefficients. However, 

it should be remembered that the three models share some common data with each other and 

with our data, so the comparisons are in no way conclusive. 

When all 13 coefficients are included in the comparison, the mean differences 0 
-9 

are 4.0, 4.4 and 5.4 x 10 for GEM lOB, Rapp 1981 and GRIM3-L1 respectively, while our 
-9 

average sd is 2.9 x 10 Again the results are consistent with errors of order 
-9 

3 x 10 in the comprehensive modelsj again GRIM3-L1 differs from our values more than 

the other two modelsj and again the comparison cannot be regarded as conclusive because 

of the shared data. 
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Table 8 

Values of the 14th-order eoeffieients in four solutions: (1) Ours (Tables 4 and 6) 
(2) GEM lOB, (3) Rapp 1981 and (4) GRIM3-Ll 

109 
CR. 14 

9 -
10 St,14 , 

; 

R. Ours GEM Rapp GRIM Ours GEM Rapp GRIM ; 

14 -40.8 ± 1.2 -51.9 -49.8 -56.3 -5.1 ± 0.9 -4.6 I -5.7 -7.5 i I 

15 4.6 ± 1.5 4.0 4.0 3.8 -24.7 ± 0.8 -24.0 
I 

I -24.0 -24.9 
I 1 

16 -16.6 ± 1.6 -17.9 -20.0 -24.0 -35.1 ± 1.9 -37.5 I -37.5 -40.5 
I 

17 -17.7 ± 2.3 -15.7 -15.5 -17.6 17.9 ± 1 • 1 11.5 12.2 12.5 

18 -8.0 ± 3.8 -7.4 -10.4 -8.2 -1.4 ± 2.7 -10.8 -12.6 -17 .1 

19 -0.2 ± 1.8 -5.7 -5.7 -5.6 -8.5 ± 0.7 -12.4 -11.5 -10.9 

20 12.2 ± 2.9 13.5 12.1 5.7 -11.7 ± 2.5 -11.1 -11.6 -12.8 

21 17.0 ± 4.8 19.9 20.3 12.0 -10.8 ± 2.6 9.2 3.2 7.2 

22 -4.6 ± 4.2 7.7 8.1 8.7 7.6 ± 3.2 7.5 8.3 10.5 

23 6.8 ± 4.2 6.5 7.4 8.8 -0.6 ± 2.7 -5.2 -1.2 7.4 

24 -19.3 ± 4.7 -19.2 -18.9 -21.6 2.0 ± 3.2 3.4 4.0 0.2 

25 -15.9 ± 5.7 -19.2 -24.4 -21.6 1.7 ± 2.9 10.4 11.5 5.7 

26 - 4.0 2.1 5.4 - 0.9 6.5 6.8 

27 16.4 ± 6.5 . 16.6 7.8 12.8 4.6 ± 3.9 8.8 11.0 8.7 

d 4.1 4.1 5.8 2.8 2.5 3.2 

D 3.2 4.4 5.2 4.8 4.4 5.5 

-9 Rapp gives very small standard deviations « 1 x 10 ) with his values for 

R. = 15, 17 and 19. For R. 17 and 19 the agreement between his values and ours is 
-9 little better than average - the mean differenee is 4.1 x 10 • But for R. 15, the 

agreement is very close, his C value being 4.0 ± 0.5 as eompared with our 4.6 ± 1.5 , 

and his S value being -24.0 ± 0.3 as eompared with our -24.7 ± 0.8. The R. = 15 values 

for GEM lOB and GRIM3-L1 also agree weIl with our results. Thus it seems highly 

probable that values of the (C,S)15 14 eoeffieients are now seeurely established: the 

values 10
9 

C15 ,14 = 4.2 ± 0.4 and' 10
9 515 ,14 = -24.4 ±0.5 are within one sd of the 

values from all four sourees. 

7 HARMONICS OF ORDER 28 

Only one of the analyses of the 14th-order resonanee - that of 1970-47B by 

WalkerS - has yielded well-determined values for lumped harmonies of order 28. However, 

even with this satellite alone, it is possible to gain some information about one pair 

of individual coeffieients, those of degree 28 and order 28, beeause it happens by good 

luek that the Q factors beyond the first two are so small as to be negligible, and the 

equations for the lumped harmonies from 1970-47B are of the form S 

-
C28 ,28 + 0.305 C30 ,28 

-9 
(7.1 ± 1.1) x 10 (9) 
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528 ,28 + 0.305 530 ,28 (l.5 -9 ± 1.1) x 10 • '" (10) 

50 if values can be assigned for the (30,28) coefficients, we can obtain a value of the 

(28,28) coefficients. The values of the (30,28) coefficients in the three comprehensive 

models are given below: 

GEM lOB Rapp 1981 GRIM3-L1 

-17 .4 -9.1 ± 1.6 -6.3 

-34.1 -18.5 ± 1.7 -6.7 

-
The value of 530 ,28 from GEM lOB is extraordinarily large: indeed it is the largest 

of the 896 coefficients in the GEM lOB field for 20 < t ~ 36 , and is equivalent to 

3 10-5/a2. 1 h 1 b d i h i i d k x ~ Consequent y t e GEM va ues must e treate w t susp con, an we ta e 
9 9 -

the mean of the Rapp and GRIM, namely 10 C30 ,28 - -7.7 and 10 530 ,28 - -12.6 , with 

d h 1 d i d h f i in Table 8, namely 3 X 10-9. the s w ich has a rea y surv ve t e test 0 compar son 

When these values are substituted into equations (9) and (10), we obtain 

10
9 -

} C28 ,28 9.4 ± 1.4 

(11 ) 

10
9 

528 ,28 5.3 ± 1.4 

These values are compared with those from the comprehensive models in Table 9, where GEM 

lOB and GRIM3-L1 have arbitrarily been allocated standard deviations of 3 x 10-
9

• 

Table 9 

Values of and 

Ours GEM lOB Rapp 1981 GRIM3-L1 

10
9 -

C28 ,28 9.4 ± 1.4 9.4 ± 3 6.5 ± 1.9 10.5 ± 3 

10
9 -

528 ,28 5.3 ± 1.4 8.6 ± 3 5.7 ± 2.6 4.7 ± 3 

It will be seen that all the values are in agreement to within the sum of their 

standard deviations. 

Thus the new and largely independent values of (C,5)28,28 deducible from the 

analysis of 1970-47B lend support to the values of the three models. (The fact that the 

models are consistent with each other may merely reflect their use of common terrestrial 

gravity data.) 
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8 CONCLUSIONS 

We have used the values of lumped 14th-order harmonics obtained from analysis of 

15 satellites, as described in section 3.2 - 3.16, to determine individual harmonic 

coefficients of order 14. For the odd-degree coefficients (degree 15, 17, 19, ••• ) 

there are 13 equations for individual C coefficients and 13 for S coefficients. These 

equations are solved to give values for 7 pairs of individual coefficients, of degree 

15, 17 ••• 27, as recorded in Table 4. For the even-degree coefficients (degree 14, 16, 

18, ••• ) there are 19 equations available for the C coefficients and 19 for the S 

coefficients. These are solved for 6 pairs of individual coefficients, of degree 14, 

16, ••• 24, as recorded in Table 6. 

In these solutions the most accurate values are those of degree 14, 15, 16, 17 and 
-9 

19, which have average standard deviations of 1.4 x 10 , equivalent to 0.9 cm in geoid 

height. The average standard deviation of our coefficients, for all 13 pairs of 
-9 

coefficients, is 2.9 x 10 , equivalent to 1.8 cm in geoid height. 

When the five most accurate of our values are compared with the corresponding 

values in three existing comprehensive geopotential modeis, the mean differences are 
-9 

between 3.3 and 4.5 x 10 : this is consistent with the assumption that the mode Is are 

accurate to about 3 x 10-
9 

for 14th ·order, although the comparison is not conclusive 

because there are some data in common. Table 8 provides a detailed comparison. 

Values for the C and S coefficients of degree and order 28 have also been 
5 obtained, based on the recent analysis of satellite 1970-47B, and are given in 

equations (11): again the nominal accuracy is equivalent to 0.9 cm. The corresponding 

values from the three comprehensive modeis, which for order 28 rely on data independent 

of ours, are in satisfactory agreement. 
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