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Sampling Graph Signals with Sparse Dictionary
Representation

Kaiwen Zhang, Mario Coutino and Elvin Isufi
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology, Delft, The Netherlands

Abstract—Most graph sampling strategies require the signal to
be relatively sparse in an alternative domain, e.g. bandlimitedness.
When such a condition is violated or approximation demands a
large bandwidth, the reconstruction often comes with unsatisfac-
tory results even with large samples. In this paper, we propose
an alternative sampling strategy based on a type of overcomplete
graph-based dictionary. The dictionary, built from graph filters,
has been demonstrated to provide excellent sparse representations
for graph signals. We recognize the proposed sampling problem
as a coupling between support recovery of sparse signals as well
as subset selection for nodes. Thus to approach the problem we
further propose a sampling procedure that alternates between
these two. The former estimates the sparse support via orthogonal
matching pursuit (OMP), which in turn enables the latter to
achieve the sampling set selection through the greedy algorithm.
Numerical results corroborate the role of key parameters and the
effectiveness of the proposed method.

Index Terms—Compressive sensing, graph signal sampling,
graph signal processing, signal reconstruction, sparse sensing

I. INTRODUCTION

Sampling strategies are ubiquitous for graph signals over
e.g. sensor, social, and biological networks [1]; to name a few.
Different from the conventional temporal and spatial sampling,
graph sampling requires accounting for the coupling between
the signal and the underlying topology. This coupling is often
expressed as a prior to obtain a sparse signal representation in
an alternative domain [2], [3]. The typical approach in these
cases is to consider the eigenvectors of the graph representative
matrix, e.g., adjacency or Laplacian, and represent the graph
signal as a linear combination of a few eigenvectors that capture
most of the energy; i.e. bandlimited representation of graph
signals [1], [4], [5].

Several approaches have been proposed for sampling ban-
dlimited graph signals. Followed by [5], the work in [6]
developed necessary and sufficient conditions for the exact
recovery of bandlimited data. Further studies have proposed
sampling methods that are related to experiment design, such
as the convex relaxation techniques [4] or the greedy sampling
methods [7]. The work [8] introduced the notion of cut-off and
maximized it to optimally sample graph signals, whereas the
work in [9] proposed aggregation sampling which builds on
the fact that each node has access to shifted versions of the
signal. To avoid the eigendecomposition cost when working
with bandlimited graph signals, the work in [10] considered
the signal to be smooth and used Gershgorin discs to optimize
a sampling criterion which is based on the smallest eigenvalue
bound of the graph Laplacian matrix. The smoothness assump-
tion is related to the bandlimited setting and it is often exhibited
in signals that have similar values in adjacent nodes or in piece-
wise constant signals, i.e., signals with similar values within a
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cluster of nodes but have arbitrarily value variations between
clusters [11]. Other efforts have also been made to facilitate
sampling over large graphs. In [8], the author proposed to use
the so-called spectral proxies as an alternative to the graph
frequencies thus avoiding the computation of the eigenvectors.
Probabilistic sampling has also been brought into consideration
to reduce the associated computational burden when sampling
signals on large graphs [12], [13].

While the approximately-bandlimited assumption is often a
safe choice for sampling graph signals, it often leads to non-
sparse representations, ultimately, requiring a large number of
samples to reconstruct the signal within a prescribed accuracy
[8]. When a graph signal is not bandlimited, approximating it
as such may lead to reconstruction artifacts that are difficult
to mitigate even if almost all nodes are sampled. To still be
able to sample graph signals in such situations, we propose
a novel dictionary-based graph sampling framework that rep-
resents the graph signal as a sparse combination of atoms of
a parametric graph dictionary [14]. Since this setting works
with an underdetermined system of equations (contrarily to the
overdetermined case of bandlimited graph signal sampling), we
exploit the sparsity of the signal and introduce a combinatorial
`0-minimization problem for jointly optimizing the sampling
matrix and the signal sparse representation. By identifying the
two subproblems in this task: (i) sparse recovery and (ii) subset
selection, we devise an efficient approach to find a tractable
solution for the sampling problem. Numerical experiments
demonstrate that the proposed sampling method is able to
outperform bandlimited sampling at moderate signal-to-noise
ratio (SNR) and number of samples.

II. PRELIMINARIES

Consider an undirected graph G = (V, E ,W), where V and
E denote the set of N nodes and M edges respectively, and
W is the weighted adjacency matrix. The interconnections
between nodes are captured by the entries of a symmetric
matrix S known as the graph shift operator (GSO) [3], whose
off-diagonal entry [S]i,j > 0 if there exists an edge connecting
tuple (i, j), and [S]i,j = 0 otherwise. Throughout the paper,
we assume S is normal and has the eigenvalue decomposition
S = UΛU>. Choices for the GSO are the adjacency matrix
W, the graph Laplacian L, and the normalized Laplacian Ln

To each node i a signal xi ∈ R is associated, and the graph
signal vector x = [x1, . . . , xN ]> collects the values of all
nodes. As in the classical setting, filters are the tools to process
graph signals [15]. Graph filters are defined as functions of
the GSO, i.e. H(S) = h(S), and the filtering is performed
by multiplying the graph filtering matrix H(S) with the graph
signal x, namely y = H(S)x. Specifically, the finite impulse
response (FIR) graph filter is defined as matrix polynomials of
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the GSO, i.e. H(S) =
∑K
k=0 hkS

k, where K is the filter order
and h = [h0, ..., hK ]> are the filter coefficients. The output of
an FIR graph filter,

y =

K∑
k=0

hkS
kx (1)

is the weighted sum of the K-hop neighbours’ shifted signals
{Skx}k around the nodes. Thus the FIR filter captures the local
behaviors of graph signals for up to a radius K from a node.

In essence, a PGD forms a dictionary composed of S FIR
graph filters, i.e., H1:S(S) = [H1(S), . . . ,HS(S)], where to
each filter Hs(S) [cf. (1)] it is referred to as a sub-dictionary.
Given the link with the FIR graph filters, a PGD is inherently
defined by the coefficients of all S sub-dictionaries h1:S =
[h>1 , . . . ,h

>
S ]> ∈ R(K+1)S×1, where hs = [h0s, . . . , hKs]

>

are the coefficients of the sth sub-dictionary filter (1). Training
the PGD dictionary H1:S(S) is therefore reduced to estimating
the filter coefficients h1:S . To identify the latter, we first
consider a set of T graph signals collected in the matrix
X = [x1, ...,xT ] ∈ RN×T . Then, we aim to find a collection of
T sparse vectors zτ ∈ RNS with τ = 1, ..., T , each having at
most S0 non-zero entries, i.e., Z = [z1, . . . , zT ] ∈ RNS×T and
the coefficients h1:S . Formally, this task translates to solving
the optimization problem

argmin
h1:S ,Z

‖X−H1:S(S)Z‖2F + γ‖h1:S‖22

subject to ‖zτ‖0 ≤ S0, τ = 1, . . . , T,

Hs(S) =

K∑
k=0

hksS
k, s = 1, . . . , S,

0IN � Hs(S) � δIN , s = 1, . . . , S,

(δ − δ1)IN �
S∑
s=1

Hs(S) � (δ + δ2)IN .

(2)

Problem (2) aims at minimizing the Frobenius norm distance
between the signals in X and their sparse dictionary recon-
struction H1:S(S)Z, while regularizing with a `2−norm of the
coefficients γ‖φ1:S‖22. The `0−norm constraint ‖zτ‖0 forces
each vector zτ to be at most S0-sparse. The other constrains
impose the sub-dictionaries forming H1:S(S) to be FIR filters
and control the eigenvalues of each filter to be at most δ (third
contraint) and that the total sum of eigenvalues to be bounded
between (δ − δ1) and δ + δ2 for some scalars δ, δ1, δ2.

Notice that while other non-graph-based dictionaries can
be used to sparsely represent graph signals, the approach in
(2) is attractive because: (i) it is built by leveraging the
coupling between the signal and the underlying graph; (ii)
it forces a locality of representation of radius K from a
node therefore captures local details; and (iii) it often allows
sparser representations for graph signals [14]. Therefore, in
the sequel, we will focus on sampling graph signals with
sparse representations as per (2). However, the approach here
presented can be readily extended to any general sparse signal
representation by considering a different dictionary.

III. PROBLEM FORMULATION

We consider the scenario that a graph signal x follows a
sparse representation w.r.t. the trained PGD Ψ ∈ RN×L,

x = Ψs0 (3)

where s0 is an L × 1 vector with sparsity S0 � L. Suppose
the signal x is corrupted by an additive Gaussian noise, i.e.,
y = x + n = Ψs0 + n where n ∼ N (0,Σn) with the
covariance matrix Σn = diag(σ2

1 , ..., σ
2
N ). Our goal is to design

a sampling strategy that subsamples y from a subset of nodes
S ⊆ V and to recover the original x using (3) such that the
distortion is minimized.

To formalize the sampling, consider a binary selection matrix
CS drawn from the combinatorial set

CS,N = {CS ∈ {0, 1}|S|×N : CS1N = 1|S|,C
>
S 1|S| � 1|S|}.

(4)
By construction, matrix CS satisfies CSC

>
S = I|S|, C>SCS =

diag(c) and c ∈ {0, 1}N such that ci = 1 if vi ∈ S.1 Therefore,
the sampled noisy signal over the vertex set S can be expressed
as

yS = CS(x + n),

= CSΨs0 + nS ,
(5)

where nS represents the noise residing on the nodes in S. The
sampling and reconstruction now depend on designing CS and
estimating s0 from the observations yS . However, different
from graph signal sampling using a bandlimited representa-
tion, model (5) is underdetermined because the system matrix
CSΨ is wide instead of tall. Hence, conventional sampling
techniques cannot be applied anymore.

For such an ill-posed problem, a unique solution of s0 can
be obtained through regularization. To exploit the sparsity of
s0, it is a natural choice to adopt the sparse recovery paradigm
[16], which regularizes the ill-posed problem by seeking the
sparsest estimate of s0 that fits the observations. Then, our
goal for jointly designing CS and estimating s0 can be framed
as solving the optimization problem

argmin
CS ,s

‖s‖0

subject to ‖yS −CSΨs‖2 ≤ ε,
CS ∈ CS,N .

(PεJ,0)

which seeks for a vector s with the minimum number of non-
zero entries, while tolerating the reconstructed signal CSΨs
on the sampled nodes to deviate from yS for at most ε, and
constraining CS to be a proper sampling matrix drawn from
(4). If it were not for this sampling matrix, problem (PεJ,0)
can be solved with conventional pursuit algorithms for s [16].
However, matrix CS adds a major difficulty to the problem
because of its combinatorial nature, making problem (PεJ,0)
NP-hard. Our goal next is to circumvent this challenge via
an alternating minimization to efficiently estimate the sparse
vector s and optimize the sampling matrix CS .

IV. ALTERNATING DICTIONARY-BASED SAMPLING

We approach problem (PεJ,0) through alternating optimiza-
tions between s and CS . To be precise, we start with a
sampling set S0 ⊂ S , with |S0| � |S|. The initialization
selection set S0 is defined either randomly or by any other
prior. After the noisy data yS0 is sampled from the set of
nodes S0, we keep CS = CS0 , while solving (PεJ,0) only
w.r.t. s via pursuit algorithms [16]. Then, with the solution ŝ(0)

obtained, we update the sampling set to S1 ⊃ S0 via sparse

1Notice that S, CS and c are equivalent representations of a certain node
selection – knowing one of them, the other two are uniquely defined.



sensing techniques [17]. The procedure then repeats with S1.
This alternating update will produce a series of sampling sets
S1 ⊂ S2 ⊂ . . . ⊂ S. Without loss of generality, we keep the
selection stepsize unitary, i.e., |S|i − |S|i−1 = 1. At iteration
i, we therefore first find the sparsest representation ŝ(i) of the
sampled noisy data ySi , then sample the nodes to build the
selection set Si+1. The algorithm terminates after the selection
budget |S| is reached. We refer to this scheme as alternating
dictionary-based sampling (ADBS).

A. Support Estimation

To detail the above procedure, at iteration i, we are given
the selection set Si and the respective samples ySi . First, we
construct the corresponding normalized subsampled dictionary
Ψ̃Si by first removing the all-zero columns of CSiΨ, and then
normalizing the remaining ones.

The support of s(i) is identified by solving the following
optimization problem,

argmin
s(i)

‖s(i)‖0

subject to ‖ySi − Ψ̃Sis
(i)‖2 ≤ ε,

(PεSi,0)

which is a typical sparse recovery problem and can be solved
via a range of well-developed algorithms [16]. In this work,
we use the OMP algorithm to solve problem (PεSi,0). This is
due to the consideration that he intention of this paper is to
demonstrate the effectiveness of the proposed ADBS paradigm.
Using the OMP already suffices and it is one of the simplest
and fastest sparse recovery algorithms.

The OMP algorithm is a type of greedy sparse recovery
algorithm. For every iteration, the algorithm identifies the
(normalized) dictionary atom that is the most correlated to the
input observation. Then the contribution from the identified
atom is excluded from the input data and the residual is
regarded as the next input. Such a process is repeated until
the stopping criterion is met. There exist a few different OMP
stopping criteria that is commonly used in literature [18]:

1) The algorithm terminates when the number of iteration
reaches k = T0, the sparsity.

2) The algorithm terminates when the magnitude of the
residual is small, say less then ε2.

3) The algorithm terminates when the correlation between
the non-selected atoms are correlated with the residual
has a magnitude less than a threshuold, say ε3.

While for criterion 1) the OMP algorithm requires the knowl-
edge of T0 as prior information, the other two criteria require
the thresholds ε2 or ε3 to be tuned in order to get desirable
sparse recovery performances. Since in this work we do not
focus on the explicit implementation of the sparse recovery
algorithm, we choose to implement the stopping criterion 1),
as it usually provides better support identification accuracy.

B. Node Sampling

Once the estimate ŝ(i) is obtained, the goal next is to leverage
its sparsity to update the sampling matrix CSi+1

. At first sight,
it may seem we still need to face an underdetermined system.
But since we know the support of ŝ(i), we can transform
the system into an overdetermined one. Considering ŝ(i) is
sufficiently sparse, we can remove the redundant atoms in Ψ

an keep only those Ψ(i)
nnz that are necessary to represent the

estimate, i.e.,
x̂(i) = Ψ(i)

nnzŝ
i
nnz (6)

where ŝinnz is the shorter vector containing the non-zero en-
tries of ŝ(i) and Ψ(i)

nnz is now of dimensions N × nnz(ŝ(i)),
with nnz(ŝ(i)) denoting the number of non-zero elements in
ŝ(i). Therefore, we can write the measurement model for the
sampling set Si+1 as

ySi+1
= CSi+1

Ψ(i)
nnzs

(i)
nnz + nSi+1

, (7)

where now we work with a tall matrix Ψ(i)
nnz. Notice that in

(7) we treat s
(i)
nnz as an unknown variable for which we want to

design the sampling matrix CSi+1
that leads to the best estimate

for it. In other words, the sparse solution obtained by solving
(PεSi,0) with OMP is only used now to obtain the support of
the sparse representation and build the tall matrix Ψ(i)

nnz.
The second step (i.e. node sampling) of the ADBS algorithm

consists of updating the sampling set by adding one of the
residual nodes that yields the best estimate of s

(i)
nnz through

model (7). To describe how good the estimation can be
achieved for s

(i)
nnz (and hence for the entire graph signal x),

we first use the best linear unbiased estimator (BLUE) [19],

x̂
(i+1)
B = Ψ(i)

nnzΘ
†
iΨ

(i) H
nnz C>Si+1

(
CSi+1

ΣnC>Si+1

)−1
ySi+1

(8)

with Θi = Ψ(i),H
nnz C>Si+1

(
CSi+1

ΣnC>Si+1

)−1
CSi+1

Ψ(i)
nnz and

(·)† denoting the Moore–Penrose pesudoinverse. We then
quantify the estimation performance through its mean square
deviation (MSD)

MSD = E
[
‖x̂(i+1)

B − x‖22
]

= tr
(
Θ−1i

)
= tr

[(
Ψ(i)H

nnz diag(ci+1)Σ−1n Ψ(i)
nnz

)−1]
,

(9)

where the last equality holds since Σn is diagonal.
Thus, we can now build Si+1 by minimizing the MSD w.r.t.

ci+1, i.e., solving

argmin
ci+1

tr
[(

Ψ(i)H
nnz diag(ci+1)Σ−1n Ψ(i)

nnz

)−1]
subject to ci+1 ∈ {0, 1}N×1, ‖ci+1‖0 = |Si+1|

‖ci+1 − ci‖0 = 1, Si ⊂ Si+1

. (P2)

where the last constraints is to indicate that we increase the
sampling set by one sample and therefore Si+1 should contain
Si.

Problems of the form in (P2) are standard within the sparse
sensing framework. However, since we have the set inclusion
constraint Si ⊂ Si+1 and need to increase the size of the
sampling set, approaching the latter via greedy methods is
a natural choice [4]. As a result, we can directly apply the
greedy heuristic to problem (P2) by adding to the sampling
set the residual node n ∈ S̄i = V \ Si that minimizes
the MSD. Alternatively, other criteria used in experimental
design that exhibit amenable properties for greedy selection
(e.g., submodularity [20]), such as the (pseudo) log-determinant
criterion

fi(n) = − log det
[
Θi(Si ∪ {n}) + ξI

]
(10)



Algorithm 1 ADBS algorithm for problem (PεJ,0)

1: Objective: Minimize (PεJ,0) via alternate minimization.
2: Initialize S0 randomly, set iteration count i = 0
3: while |Si| ≤ |S| do
4: Build Ψ̃Si by removing the all-zero columns of CSiΨ

and normalizing the columns.
5: Update s by solving (PεSi,0) through the OMP algo-

rithm.
6: Build Ψ(i)

nnz by columns of Ψ corresponding to the non-
zero elements in ŝ(i).

7: Update CSi+1
via the greedy algorithm.

8: i← i+ 1
9: end while

10: Use yS to estimate the original signal x through (8).

can be used, where the term ξI with ξ � 1 is to avoid rank
deficiency of Θi. We considered the log-determinant critetion
in the numeral experiments.

The node sampling step concludes iteration i of the ABDS
algorithm. All the steps are summarized in Algorithm 1. We
would like to remark that the interplay between the support
estimation and node selection does not necessarily have any
submodularity guarantee even if a submodular function is used
in (P2). This is because the support estimated from (PεSi,0)
may change between iterations; especially in the earlier ones.
However, when the number of samples becomes large enough
and the support does not change, using submodular functions
in (P2) may come with near-optimal guarantees [20]. A deeper
analysis of the latter will be done in future work.

V. NUMERICAL EXPERIMENTS

This section presents numerical experiments to corroborate
the proposed approach and compare with the baseline graph-
bandlimited sampling. We considered the scenario in [14] com-
prising a random sensor graph of N = 100 nodes and a PGD
with S = 4 subdictionaries and FIR filters of order K = 5.
We generate the signal x through the linear combination of
four random atoms with uniformly distributed coefficients in
[0, 1]; hence S0 ≤ 4. We corrupt the data with different SNRs
in [−5dB, 30dB]. The parameter ξ in (10) is set to 10−3. The
initial selection set is built at random and contains two nodes
out of the 100 available. We run R Monte-Carlo simulations,
and we measure the reconstruction performance through the
relative error, defined as ‖xr − x̂r‖22 / ‖xr‖22, where xr and
x̂r denotes the r-th true signal and reconstruction respectively.
We compare the proposed ADBS approach (OMP-greedy for
short) with:

1) OA-greedy: Oracle algorithm that knows the S0 = 4 true
atoms (instead of estimating through OMP) and adopts a
greedy solution to sample the nodes. Allows comparing
with the best performance we can achieve with greedy
sampling.

2) OMP-Rand: Estimates the support with OMP but samples
nodes uniformly at random. Shows the effectiveness of the
greedy sampling de-factorizing the impact of the support.

3) Standard bandlimited-based greedy selection with a band-
width containing 90% of the energy. Contrasts the ADBS
with a baseline solution.

Cardinality sampling set. We first analyze the impact of
the number of sampled nodes, thus we consider the true
dictionary as known and fix the SNR to 30dB. Fig. 1(a) depicts
the the reconstruction performance of the compared methods
for different |S|. In contrast to the bandlimited sampling,
the OMP-greedy and OMP-rand converge to the OA-greedy
lower bound in terms of the median, which confirms that the
proposed method can indeed address the concerned sampling
that bandlimited approach struggles to handle.

The result of OMP-greedy has a typical trend - the relative
error initially reaches a slow-decaying ”plateau”, followed by
a rapid decrease after around 30 observations. The plateau
can be a result of initial lack of observations, which makes it
considerably hard for the OMP to estimate the sparse support
correctly. Once sufficient observations are supplied, the more
correct supports can be identified. The evidence can also be
found in Fig. 1(b), which illustrates the rate of successful sup-
port recovery for different methods averaged over simulations.
For OMP-greedy, the recovery rate is initially very low but soon
reach its turning points roughly also at around N = 30. The
random selection follows a similar pattern as the OMP-greedy
does, but reaches the rapid-decrease stage slower (at around
N = 45), suggesting that greedily sampled data not only gives
better reconstruction but also benefits the sparse recovery.

SNR. Fig 1(c) compares reconstruction error for the concerned
methods at |S| = 50 under different SNRs, for which R = 103

tests were conducted. We can observe that the SNR does has a
significant impact on the proposed method. Under low SNRs
(e.g. less than around 2dB), the proposed scheme perform
worse than the bandlimited sampling, which may due to the
fact the OMP’s performance degrades significantly in highly
noisy conditions, whereas for the bandlimited case the sampling
matrix are fixed. Under higher SNRs, the proposed method
improves rapidly and start to converge to the OA-greedy results
after around 20dB. Furthermore, the proposed method performs
uniformly better than random sampling in terms of the medium
and the spread of the errors, again proving the greedy method
to be a more effective selection scheme in the proposed ADBS
framework.

Trained dictionary. Lastly, we evaluate the proposed method
when the true dictionary is unknown. We generate 2600 data
samples corrupted by noise with SNR = 30 dB, from which
600 are used for training the dictionary while the rest for test-
ing. The training procedure follows the approach from [14] but
now with noisy data, and results in a 2.57% dictionary repre-
sentation error of training error. Fig 2 depicts the reconstruction
errors as a function of |S| for both true (oracle) and trained
dictionaries. As shown, when the number of selected nodes
are low, the OMP-induced noise dominates. After around 30
observations, both mediums start to drop rapidly and converges
to their steady-state errors. The difference between the trained
and oracle dictionary cases in steady-state is around 3%, which
indicates the main source of error to be dictionary training.
Such shows the reliability of the proposed method with trained
dictionary, as no significant excessive error is resulted.

VI. CONCLUSIONS

This work proposed a sampling strategy for graph sig-
nals that enjoy sparse dictionary representations. This sparse
representation is of interest when the graph signal does not
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Figure 1. Performance comparison of different sampling methods: (a) relative error of different selection methods vs. the number of observations;
(b) average percentage of the correctly recovered supp(s) by OMP for the same results in (a); (c) relative error for different SNRs. For (a)
and (c), the solid lines indicates the medium, whereas the shaded area marks the 25%-75% percentiles (i.e. inter-quartile range).

Figure 2. Performance comparison for using trained and exact dic-
tionary. Solid lines and shaded areas indicates the medium and inter-
quartile ranges.

satisfy the smoothness or the bandlimitedness prior, thus cannot
facilitate effective sampling. We instead resort to the PGD,
whose atoms are columns of FIR graph filters. We then
proposed a sampling approach for this underdetermined system
that relies on the interplay between support estimation and
subset selection. Starting with a small given sampling set
(e.g., random), we solve a trimmed-dictionary representation
problem via OMP to estimate the support. This support is
then used to increase the sampling set, which is in turn used
to update the support estimate. This alternating procedure is
repeated until the desired number of samples is reached. One
of the main limitations we have observed is the impact of the
initial sampling set. Future research will consider improving
upon this aspect to allow for better performance.
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dergheynst, “Graph signal processing: Overview, challenges, and appli-
cations,” Proceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[4] P. Di Lorenzo, S. Barbarossa, and P. Banelli, “Sampling and recovery of
graph signals,” arXiv preprint arXiv:1712.09310, 2017.

[5] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on graphs:
Uncertainty principle and sampling,” IEEE Transactions on Signal
Processing, vol. 64, no. 18, pp. 4845–4860, 2016.

[6] I. Pesenson, “Sampling in paley-wiener spaces on combinatorial graphs,”
Transactions of the American Mathematical Society, vol. 360, no. 10, pp.
5603–5627, 2008.

[7] L. F. O. Chamon and A. Ribeiro, “Greedy sampling of graph signals,”
IEEE Transactions on Signal Processing, vol. 66, no. 1, pp. 34–47, 2018.

[8] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection
for bandlimited graph signals using graph spectral proxies,” IEEE
Transactions on Signal Processing, vol. 64, no. 14, pp. 3775–3789, 2016.

[9] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph
signals with successive local aggregations,” IEEE Transactions on Signal
Processing, vol. 64, no. 7, pp. 1832–1843, 2016.

[10] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, and W. Gao, “Fast
graph sampling set selection using gershgorin disc alignment,” IEEE
Transactions on Signal Processing, vol. 68, pp. 2419–2434, 2020.

[11] S. Chen, R. Varma, A. Singh, and J. Kovačević, “Representations
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