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Abstract 

This paper studies the demand-supply imbalance problem for one-way carsharing systems 
under a combination of pricing strategy, relocations and access trips considering stochastic 
demand. A novel concept of a virtual zone is utilized to capture vehicle relocation range and 
client walking or biking distance constraints in one-way carsharing systems. The vehicle 
imbalance problem is further addressed by combining a long-term pricing strategy and real-time 
vehicle relocations in a two-stage stochastic programming model. In the first stage, the tactical 
decisions including fleet size and trip price are optimized, while anticipating the operational 
costs from the second stage. The second stage optimizes operational decisions under uncertain 
demand including vehicle relocations conditional on the tactical decisions in stage one. The 
model aims to maximize the profit of a carsharing company considering the fleet costs 
calculated in stage one and the expected operational costs and revenue obtained in stage two. A 
dedicated gradient search algorithm is developed to solve the two-stage stochastic programming 
and results are compared to a genetic algorithm and an iterated local search algorithm. The 
proposed model and corresponding solution approach are applied to a large-scale network with 
50 zones and over 1000 vehicles in Suzhou, China. The application allows us to attain 
additional operational insight. Results suggest that increased prices for high demand stations 
during peak hours reduce demand while maintaining profitability of the system. It is also found 
that the real-time vehicle relocations and flexibility of clients to pick up vehicles at farther 
stations can increase demand service rate by as much as 10%. 

Keywords: One-way carsharing; Stochastic demand; Imbalance problem; Transport pricing; Vehicle 
relocation; Access trip 
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1 Introduction 

In recent years, one-way carsharing has received increasing attention in both industry and academia. 
Many conventional car rental companies and Transport Network Companies have started to provide 
one-way carsharing services. For example, EVCARD in China owns 50,000 electric vehicles and 
13,000 parking stations in 65 cities, enabling over 1,840,000 trips per month (EVCARD, 2021). 
ShareNow, which is the result of a merge between Car2go and DriveNow, is now offered in many cities 
all over the world. Zhou et al. (2017) forecasted that the carsharing market is expected to increase to 
11%-25% of all trips in Australia, Indonesia, Malaysia, and Thailand in 2030. Many existing studies 
anticipate that carsharing will become one of the main travel modes in the next decades (Shaheen, 2006; 
Zheng et al., 2009; Shaheen and Cohen, 2013; Catalano et al., 2018). 
 
Research with respect to one-way carsharing system design has mainly focused on three categories of 
decisions: strategic, tactical, and operational. The location, number, and capacity of carsharing stations 
are regarded as strategic decisions that should be fixed over a long period of time. Tactical decisions 
include fleet size and trip price, which typically are more flexible to modify than strategic decisions. 
The vehicle and personnel relocations fall under the category of operational decisions, which can 
change from day to day to be in line with actual demand (Boyacı et al., 2015; Xu et al., 2018). Due to 
inherent demand uncertainty, the number of trip requests at a station varies by the hour, day and week 
(An and Lo, 2014; 2015; 2016). It is therefore challenging to jointly optimize the long-term 
strategic/tactical decisions and the real-time operation decisions considering uncertainty in demand. 
 
Existing studies usually assume deterministic demand with given origins and destinations (Di Febbraro 
et al., 2012; Barrios and Godier, 2014; Dandl and Bogenberger, 2018; Balac et al., 2019; Xu and Meng, 
2019). A few studies also addressed demand elasticity where the demand for carsharing changes with 
the supply. Huang et al. (2018) used a logit model to estimate the proportion of people choosing 
carsharing compared to the other modes. Jorge et al. (2015) and Xu et al. (2018) built a price-based 
elastic demand function to predict the carsharing demand. All the above studies assumed deterministic 
demand over a period of time when optimizing the strategic or tactical decisions including station 
location, station capacity, and trip price. However, such results may lead to substantial losses or 
disturbances in the level of service during operation when demand is uncertain. How to make long-term 
decisions in order to maximize the expected profit while taking stochastic demand into account hereby 
becomes a relevant and challenging objective. Biondi et al. (2016), Brandstätter et al. (2017) and Fan 
(2014) optimized the strategic planning, including charging station locations, parking station locations 
and vehicle allocation, of carsharing system by exploring several different demand scenarios. Lu et al. 
(2018) studied a strategic planning problem by optimizing the number of parking lots and fleet size 
under demand uncertainty. The authors built a novel spatial-temporal network to capture vehicle flows 
between stations at different time steps. A two-stage stochastic integer programming model is 
formulated to address demand uncertainty in carsharing systems. Li et al. (2019) explored the 
imbalance problem between vehicle supply and carsharing demand under uncertain demand. Different 
from the above stochastic programming approach, He et al. (2017, 2020) adopted robust optimization to 
address demand uncertainty in the carsharing service region design problem. 
 
One notorious difficulty in one-way carsharing operation arises from its inherent demand-supply 
imbalance problem. The carsharing operator has to relocate vehicles from stations with excess supply to 
with excess demand. Weikl and Bogenberger (2015) proposed a two-level zoning approach to handle 
vehicle relocations. To mitigate the computation burden, they divided the study region into several 
macroscopic zones with each macroscopic zone consisting of several microscopic zones. Vehicle 
relocations are then separated into those that travel between macroscopic zones and within macroscopic 
zones. Santos and Correia (2019) built a simulation-based optimization model to explore vehicle 
relocations with a real-time decision support tool where movements of staff necessary to relocate and 
maintain vehicles are modeled in details. Boyacı et al. (2017; 2019) proposed a time augmented 
network to optimize personnel movements before and after relocations. The relocation is carried out by 
hired drivers, either trip-based or full-time employed and is commonly referred to as operator-based 
vehicle relocation (Herbawi et al., 2016).  
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In comparison, pricing is another method to address the imbalance problem. In practice, a low vehicle 
rental price in high supply zones encourages users to drive vehicles to high demand zones (Di Febbraro 
et al., 2012, Jorge et al., 2015; He et al., 2019; Lu et al., 2020). Since people are usually less sensitive to 
short-term price changes, the pricing method is more suitable to affect people’s demand if the price is 
relatively stable. In other words, decreasing the price from $60/hour at 9 am to $30/hour at 10 am on a 
random day is not likely to increase the demand much at 10 am on that day. However, if we fix the 
price as low as $30/hour at 10 am for a whole year, the demand is more likely to increase and 
eventually become stable. Please note that the pricing method is not equivalent to the user-based vehicle 
relocation method. Pricing method is to decide the magnitude of demand, while user-based relocation 
aims to modify clients’ behavior by payment discounts based on the given pricing strategy (Schiffer et 
al., 2021).  
 
Different from the existing user-based relocation methods including trip-joining, trip-splitting, trip-
based payment discounting and station-based payment discount (Barth et al., 2004; Uesugi et al., 2007; 
Huang et al., 2020a), users’ behavior in choosing the pick-up or drop-off station also significantly 
affects the demand pattern and the performance of the carsharing system. Users may have to rent 
vehicles in neighboring stations within a certain maximum access distance if there are no vehicles 
available at the closest desired origin station (Boyacı et al., 2015). This uncertainty in pick-up location 
caused by vehicles’ depletion adds to the difficulties in managing carsharing systems operations. Some 
studies capture this problem by tracking the complete trip chain of clients. Users can walk or bike from 
their origin to pick up their vehicles. A carsharing trip thus consists of two trip segments: access trip, 
and in-vehicle trip. Agent-based simulation can be used to track clients’ status including walking, 
driving, and other activities during the rental period. Several authors use agent-based modeling such as 
MATSIM or models specifically built to study carsharing operations and impacts (Ciari et al., 2015; 
Heilig et al., 2018., Martínez et al., 2017; Vasconcelos et al., 2017). Despite its realism, the simulation 
approach makes it difficult to search for optimal policies when managing carsharing systems. Only a 
limited number of studies use mathematical formulations to model users’ flexible pick-up locations 
allowing access trips. In order to model the access trip, one has to define the service radius or maximum 
access distance (Correia et al., 2014; Huang et al., 2018; Molnar and Correia, 2019). Cocca et al. (2019) 
found that a sizeable number of clients have the access distance between 1.4 km and 2.5 km from their 
desired origin/destination to a carsharing station. Brandstätter et al. (2017) put forward an interval for 
walking time that should be between 5 and 10 minutes in accessing or returning a vehicle to maintain a 
high level of service satisfaction.  
 
In summary, the pricing problem and users’ flexible pick-up station behavior under demand uncertainty 
make it challenging to solve the vehicle-demand imbalance problem. Three key issues need to be 
addressed: (i) set up tactical decisions including trip price with uncertain demand; (ii) tackle the 
imbalance problem between available vehicles and demand considering the fluctuations of daily 
carsharing requests; (iii) allow the flexible pick-up stations for users subject to car availability. Table 1 
summarizes the cited literatures in vehicle-demand imbalance and demand uncertainty problems. To the 
authors’ best knowledge, this paper is the first one to use such a method to address the imbalance 
problem. 
 

Table 1 Summary the cited literatures in vehicle-demand imbalance and demand uncertainty problems 

Literature 

Vehicle-demand imbalance problem Demand uncertainty 

Rebalancing with 
flexible pricing 

Relocation with 
hired drivers 

Users’ 
access 
trips 

Stochastic 
programming 

Robust 
optimization 

Balac et al. (2019)  ×    
Barrios and Godier (2014)  ×    

Barth et al. (2004) ×     
Biondi et al. (2016)  ×  ×  
Boyacı et al. (2015)  × ×   
Boyacı et al. (2017)  ×    
Boyacı et al. (2019)  ×    



   4 

Brandstätter et al. (2017)   × ×  
Correia et al. (2014)  × ×   

Ciari et al. (2015)   ×   
Cocca et al. (2019)   ×   

Di Febbraro et al. (2012) ×     
Dandl and Bogenberger 

(2018)  ×    

Fan (2014)  ×  ×  
Folkestad et al. (2020)  ×    

He et al. (2020)  ×   × 
He et al. (2017)  ×   × 

Huang et al. (2018)  ×    
Huang et al. (2020a)  ×    
Huang et al. (2020b) × ×    
Herbawi et al. (2016)  ×    
Heilig et al. (2018)   ×   
Jorge et al. (2015) × ×    

Lu et al. (2018)  ×  ×  
Lu et al. (2020) × ×    
Li et al. (2019)  ×  ×  

Molnar and Correia (2019)  × ×   
Santos and Correia (2019)  ×    

Schiffer et al. (2021) ×     
Vasconcelos et al. (2017)  × ×   
Weikl and Bogenberger 

(2015)  ×    

Xu et al. (2018) × ×    
Xu and Meng (2019)  ×    

 
Sample Average Approximation (SAA) is typically adopted to handle stochastic programming models, 
which can be solved by using commercial software such as Gurobi or CPLEX, the L-shaped method 
(Laporte and Louveaux, 1993), or the proposed service reliability-based gradient search algorithm (An 
and Lo, 2014). The gradient search algorithm has the advantages of addressing large-size network with 
similar size of stage-1 and stage-2 problems across different iterations and speeding up the algorithm 
with warm start.  
 
In this paper, we propose an innovative approach, which consists of long-term pricing, real-time 
relocations and access trips for vehicle pick-up, to solve the demand-supply imbalance problem in one-
way carsharing systems considering demand uncertainty. A Mixed-integer Non-linear Programming 
(MINLP) model is proposed to solve the problem. We assume that the carsharing operator aims to 
maximize the total profits by deciding the price, fleet size, and vehicle relocations. To address the 
stochasticity of demand, a two-stage formulation is developed where the novel notion of demand 
service rate is introduced to iterate between the two stages. Stage-1 determines the tactical decisions 
including the fleet size and trip price based on a given service rate. Stage-2 optimizes vehicle 
relocations considering stochastic demand. Pricing in Stage-1 determines the expected demand for each 
OD pair. Vehicle relocations carried out in Stage-2 are subject to the real-time demand realizations. A 
virtual relocation zone system is designed, for which, vehicles are bounded in relocation operations. A 
virtual access zone is further established where clients can walk or bike for a short distance to pick up 
an available vehicle. In this way, the imbalance problem can be handled by a combination method of 
trip pricing, vehicle relocation via hiring drivers, and access trips via walking or biking. Three 
dedicated solution algorithms are developed to solve the combined problem: a gradient search algorithm, 
a genetic algorithm and an iterated local search algorithm. All algorithms are compared as a means to 
solve the MINLP for a large case-study area. 
 
The remainder of this paper is organized as follows. In Section 2, the one-way carsharing model under 
demand uncertainty is introduced. The solution approaches are proposed in Section 3. Section 4 
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presents the application to the Suzhou Industrial Park (SIP), China. Conclusions and future work 
directions are presented in the last section. 
 
2 Model formulation 

2.1 Problem setting 
We consider the one-way carsharing tactical and operational design problem. The aim is to maximize 
the total profit from the perspective of the carsharing operator. The study region consists of I  parking 
stations with a parking station denoted as i I∈ . A typical day of operation is divided into T  time steps 
(or intervals) with an equal time duration. The tactical decisions, which include vehicle fleet size U  and 
carsharing rental rate ijtP  for trips from station i  to station j  starting at time step t T∈ , should be 
determined before the operation takes place. Note here, that the latter is associated with demand 
uncertainty. The carsharing rental rate ijtP  is optimized to adjust the demand for carsharing based on an 

elastic demand function. The operational decisions include vehicle inventory at each time step ( )itV ω , 
vehicle relocations ( )ijtN ω , and served demand ( )ijtQ ω  from station i  to station j  at time step t , 
which changes with the demand formation ω  on a particular day. 
 

2.1.1 Assumptions 
To further define the problem, we make the following assumptions: 
• There are enough parking spaces for vehicle returns, which include prepaid parking by the 

carsharing operator, roadside parking, or other public parking spaces. 
• The carsharing demand is elastic and stochastic. By construction, when rental prices increase, 

demand is reduced based on an elasticity model. Moreover, demand varies from day to day so that 
demand uncertainty is introduced. 

• The carsharing demand for a day in one parking station follows a Poisson distribution. The demand 
distribution in different periods of the day depends on the characteristics of the station such as 
location, land use, convenience level, etc.  

 
To capture the demand uncertainty, we construct several demand scenarios. Let Ξ  be the set of demand 
scenarios and 0ω >Ε  be the probability of scenario ω∈Ξ  with 1ωω∈Ξ

=∑ Ε . For each scenario ω∈Ξ , 
the actual demand is jointly determined by the price (demand elasticity) and stochastic parameter 
realizations (demand uncertainty). Based on the negative relationship of price and demand in demand-
and-supply curve, the expected demand is calculated by the elastic demand function ( )ijt ijtq exp Pγ κ+  

where ijtq  is the demand upper bound, ijtP  is the rental price and ,γ κ  are given non-positive 
parameters (Huang et al., 2020b; Liu et al., 2013; Xu et al., 2018). According to the elastic demand 
function, a higher rental price results in lower expected travel demand and vice versa. Together with the 
Poisson distribution assumption, the actual demand in scenario ω∈Ξ  is constructed as 

( )ijt ijtq exp P
ω

γ κ +  , where the term in the brackets is the average demand. For simplicity of notation, 

the scenario subscript is moved inside and we use the expression ( ) ( )ijt ijtq exp Pω γ κ+  to denote the 
demand realization in scenario ω∈Ξ .  
 
In summary, the tactical decision variables (U  and ijtP ) do not change with demand scenario ω∈Ξ , 

while the operational decision variables ijtN and ijtQ  can be written as ( )ijtN ω  and ( )ijtQ ω  as these 
change with demand scenario ω∈Ξ .  
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2.1.2 Virtual zones 
In practice, clients may not be able to pick up a car from a parking station near to his/her origin because 
there are no vehicles available. To model this situation, we construct a virtual access zone for each trip, 
which is centered at the origin of the trip. The zone radius is determined by the maximum access 
distance that people are willing to walk or cycle. A client can use any vehicle in his/her virtual access 
zone depending on car availability. Fig.1a illustrates the construction of the virtual access zone. A client 
is located at origin i  and is heading to destination j . As vehicles may not always be available at the 
desired origin station i  (assuming in this case that there is a station in the client’s origin location), we 
construct a virtual access zone centered at i  with a radius of α . Clients can walk or bike a short 
distance from i  to an available vehicle at any station k  within his/her virtual access zone, and then 
drive to their destination j . We use ikjtO  to denote the number of clients that start from station i  at 
time step t  and walk or ride a bicycle to the intermediate station k  to get a rental car and finally drive 
to station j  in the end. The set of stations in the virtual access zone of station i  is denoted by Circle

iI . In 
the following, Circle

iI  define the set of stations (in excess of station i  itself) in the virtual access zone. 
The hollow black triangle in Fig.1a represents the client’s desired car rental station and the solid purple 
triangle represents other available car rental stations nearby. For demand occurring at station i , clients 
can rent a vehicle not only at station i  in the black triangle but also at neighboring stations k  in purple 
triangles. In this way, clients have more options where to pick up cars. If there are enough available 
vehicles parked at origin i , clients departing from this location are serviced first and the trip chain 
reduces to iijtO  with zero access distance.  
 
In carsharing operations, it may not be economically efficient to relocate vehicles for a long distance. 
To model the distance constraints in vehicle relocations, we further define a virtual relocation zone as 
the ring area between the radius of α  and β  (see Fig.1b), where β  is the maximum relocation 
distance. If there are insufficient vehicles at station i  represented by the black triangle, we can only 
relocate vehicles from stations in blue triangles in the corresponding ring area subject to the maximum 
relocation distance β . Because clients can walk or bike to the stations in the α  area, vehicle 
relocations in the virtual access zone are not necessary. 
 
We assume that the starting point of a request is always at a station location. As such, we can define 
virtual access zones and virtual relocation zones based on stations instead of trips - each station has one 
virtual access zone and relocation zone. At the network level, these virtual zones for different stations 
overlap with each other (see Fig.1c), which significantly increases the computation difficulty. Though 
the setting of virtual zones simulates the practical vehicle and user movements, we have to claim that 
allowing access trips and relocations only within the given radius could cut off feasible solutions and 
thus may lead to loss of optimality. 
 

             
                                 (a)                                                  (b)                                                 (c) 

Fig.1 Single/Overlapped virtual zones 
 
Under the explained problem setting, we are ready to formulate the mathematical model for optimizing 
the price, relocations, and access trips for the one-way carsharing system under demand uncertainty. 



   7 

 
2.2 Notation 
 
The notation used throughout the paper is listed below: 
Sets 

:{ },{ },{ }I i k j  Set of parking stations Circle
iI  Set of stations in the virtual access zone of station i I∈   
Ring
iI  Set of stations in the virtual relocation zone of station i I∈   
:{ }T t  Set of time steps (or intervals) 
{ }: ωΞ  Set of demand scenarios 

Parameters 

fc  Fixed costs per vehicle per day including depreciation costs and maintenance 
costs  

oc  Costs of petrol consumption of a vehicle running for one time step 

rc  Fixed Costs of relocating a vehicle per time step 

ac  Access costs of clients by walking or biking per time step 
car
ijtg  In-vehicle travel time in time steps from parking station i I∈  to parking station 

j I∈  departing at the beginning of time step t T∈  (time instant t T∈ ) 
access
iktg  Access travel time of clients in time steps from parking station i I∈  to parking 

station k I∈  departing at the beginning of time step t T∈  

ijtq  Travel demand upper bound from parking station i I∈  to parking station j I∈  
where i j≠  at time step t T∈  

α , β  Service radius of virtual zones 
M  A positive big number 
γ ,κ  Non-positive parameters in the elastic demand function 
χ ,δ  Parameters in the outer-approximation method 
ωΕ  Probability of demand scenario ω∈Ξ  

Decision variables 

( )ijtN ω  
Number of vehicle relocations from parking station i I∈  to parking station 

Ring
ij I∈  where i j≠  at the beginning of time step t T∈  in scenario ω∈Ξ  

( )ikjtO ω  
Number of trips departing from parking station i I∈  that first walk or bike to 
intermediate station Circle

ik I∈  and then drive to station j I∈  where i j≠  at the 
beginning of time step t T∈  in scenario ω∈Ξ  

ijtP  Carsharing rental price for trips from parking station i I∈  to parking station 
j I∈  where i j≠  at time step t T∈  

( )ijtQ ω  Number of serviced travel requests from parking station i I∈  to parking station 
j I∈  where i j≠  at the beginning of time step t T∈  in scenario ω∈Ξ  

U  Fleet size of the one-way carsharing system 

( )itV ω  Number of vehicles parked in parking station i I∈  at the beginning of time step 
t T∈  in scenario ω∈Ξ  

Auxiliary variables 
tρ  Trip service rate for carsharing at time step t T∈  

itµ , itν  Binary variables involved in the linearization of the elastic demand function 
 
2.3 Mathematical model 
The stochastic programming model is formulated as follows: 
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P0
( ), , , , ,

( ) ( )

max
( )

Ring
i

Circle
i

car car
ijt ijt ijt r ijt ijt

t T i I j I t T i I j I
f access carN

a ikt o kjt ikjt
t T i I j Ik I

P U V O Q

P g Q c g N

c U
c g c g O

ω

ω ω

φ
ω

∈ ∈ ∈ ∈ ∈ ∈

∈Ξ

∈ ∈ ∈∈

 −
 

= − +  
− + 
  

∑∑∑ ∑∑ ∑

∑∑ ∑ ∑
Ε  (1) 

Subject to: 
( )1    i

i I
U V ω ω

∈

= ∀ ∈Ξ∑  (2) 

( ) ( ) ( ) , , ,ijt ijt ijtQ q exp P i I j I t Tω ω γ κ ω≤ + ∀ ∈ ∈ ∈ ∈Ξ  (3) 

( ) ( ) , , ,
Circle
i

ijt ikjt
k I

Q O i I j I t Tω ω ω
∈

= ∀ ∈ ∈ ∈ ∈Ξ∑  (4) 

( )( ) ( ) , ,
Ring Circle

ii

ijt ijt jt
j I j Ij I

Q N V i I t Tω ω ω ω
∈ ∈∈

+ ≤ ∀ ∈ ∈ ∈Ξ∑ ∑ ∑  (5) 

( )( )+ ( ) , ,
Circle Ring
i i

kijt ijt it
j Ik I j I

O N V i I t Tω ω ω ω
∈∈ ∈

≤ ∀ ∈ ∈ ∈Ξ∑ ∑ ∑  (6) 

{ }
( )

\

( ) max 0, ( ) ( ) , ,
Circle Ring
i i

ikjt ijt ijt it
j I j Ik I i j I

O Q N V i I t Tω ω ω ω ω
∈ ∈∈ ∈

  = + − ∀ ∈ ∈ ∈Ξ 
  

∑ ∑ ∑ ∑  (7) 

{ }
( )

\

( ) max 0, ( ) ( ) , ,
Circle Ring
i i

kijt it ijt ijt
j I j Ik I i j I

O V Q N i I t Tω ω ω ω ω
∈ ∈∈ ∈

  ≤ − − ∀ ∈ ∈ ∈Ξ 
  

∑ ∑ ∑ ∑  (8) 

( ) ( )

{ } { }

1 ( ) ( ) ( ) ( )

          , 1, 0, 1 , 0, 1 ,

Circle Ring Circle Ring
i ji i

it it kijt ijt jkim jin
j I j Ik I k Ij I j I

access car car
jkt kit jit

V V O N O N

i I t T m = max t g g n = max t g

ω ω ω ω ω ω

ω

+
∈ ∈∈ ∈∈ ∈

= − − + +

   ∀ ∈ ∈ − + − + + − ∈Ξ   

∑ ∑ ∑ ∑ ∑ ∑
 (9) 

0( ) ( ), ( ) ( ) , 0, , ,                      , , , ,ijt ikjt ijt it ijtN O Q V P i I k I j I tU Tω ω ω ω ω∈Ζ ∀ ∈ ∈ ∈ ∈≥ ∈Ξ  (10) 

 
The objective function (1) is to maximize the expected profit for the carsharing operator for a typical 
day. This is equal to the total revenue minus vehicle fixed costs, relocation costs, access costs, petrol 
consumption costs. The access cost is the walking or biking distance to pick up vehicles from 
neighboring stations. Vehicle fixed costs are independent of the demand realization whereas the other 
costs and revenue all depend on the random demand scenario ω  and thus cost expectations [ ]ω∈ΞΕ are 
used.  
 
Constraints (2) represent the fleet size of the carsharing system. The number of allocated vehicles at the 
beginning of daily operation ( )1ii I

V ω
∈∑  for each scenario should be the same and is equal to U . 

 
In Constraints (3), ( )ijtQ ω  is the serviced carsharing requests in scenario ω , which should be no larger 
than the demand for scenario ω  as calculated by the right-hand side elastic demand function. The price 

ijtP  does not change with the random demand realization ω . Constraints (4) capture demand 

conservation. The term ( )Circle
i

ikjtk I
O ω

∈∑  is the total number of trips traveling from origin i  to 

destination j  at time step t  via any intermediate stations Circle
ik I∈ .  

 
( )ijtj I

Q ω
∈∑  plus the number of 

relocations ( )Ring
i

ijtj I
N ω

∈∑  leaving station i

( )Circle
i

jtj I
V ω

∈∑  of station i . It states that the serviced requests at station i t

i  and its neighboring stations 
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( )Circle
i

kijtk I j I
O ω

∈ ∈∑ ∑  and relocated vehicles ( )Ring
i

ijtj I
N ω

∈∑  leaving station i  is not larger than the 

available vehicles in station i .  
 
Constraints (7) state that the clients at origin station i  have to take a detour to pick up vehicles in 
neighboring stations only if there are not enough vehicles available at station i . The term 

( ){ }\Circle
i

ikjti I i j I
O ω

∈ ∈∑ ∑  in Constraints (7) is the total number of clients that start at origin i  at time t  

and use vehicles in other parking stations k i≠  to get to their destinations, where { }\Circle
ik I i∈  must 

be in the access zone of station i . It can also be interpreted as the number of vehicles rented by clients 
in station i  from other stations k i≠ . The right-hand side of Constraints (7) calculates vehicle shortage 
at station i , which is the number of client requests ( )ijtj I

Q ω
∈∑  plus vehicle relocations 

( )Ring
i

ijtj I
N ω

∈∑  minus current vehicle inventory. If there is a vehicle shortage at station i , that is 

( ) ( ) ( ) 0Ring
i

ijt ijt itj I j I
Q N Vω ω ω

∈ ∈
+ − >∑ ∑ , Constraints (7) ensure this shortage can be covered by 

diverting clients to neighboring stations. On the other hand, when the inventory at station i  can cover 
all vehicle demand, i.e. ( ) ( ) ( ) 0Ring

i
ijt ijt itj I j I

Q N Vω ω ω
∈ ∈

+ − ≤∑ ∑ , such diversion is not allowed. As 

such, vehicles serve the demand at their station first. Constraints (8) ensure that vehicles at station i  can 
be rented to clients from neighboring stations { }\Circle

ik I i∈  only if there is vehicle excess supply at this 
station after fulfilling its own requests. On the left-hand side of Constraints (8), term 

( ){ }\Circle
i

kijtk I i j I
O ω

∈ ∈∑ ∑  is the total number of vehicles parked in station i  at time step t  rented by 

clients from neighboring stations k i≠ . The right-hand side of Constraints (8) calculates the number of 
excess vehicle supply in station i  at time instant t  after fulfilling the clients’ requests and relocations. 
Similar to Constraints (7), the right-hand side of (8) is positive if there is vehicle oversupply and is zero 
otherwise.  
 
Constraints (9) calculate the number of available vehicles in the next time instant 1t + . It is equal to the 
available vehicles itV  minus the vehicles leaving to service requests in the access zone 

( )Circle
i

kijtk I j I
O ω

∈ ∈∑ ∑  and relocations ( )Ring
i

ijtj I
N ω

∈∑ , plus the vehicles 

( ) ( )RingCircle
j i

jkim jinj I k I j I
O Nω ω

∈ ∈ ∈
+∑ ∑ ∑  arriving at station at time step t . m  is the departure time of 

clients that will arrive at station i  between time instants t  and 1t + . n  is the departure time of the 
relocated vehicles that will arrive at station i  between time instants t  and 1t + . The departure time m  
and n  are uniquely determined by the departure station j  for a given arrival station i  and arrival time 

1t + . Thus, the term m  should be jkitm , and the term n  should be jitn .  
 
Constraints (10) specify the domain of the decision variables. 
 
Problem P0 is nonlinear due to the elastic demand function in the objective function and Constraints (3), 
(7) and (8). We will first linearize these constraints as elaborated in the next sections. 
 

2.3.1 Linearization of the constraints caused by overlapped virtual zones 
The non-linear Constraints (7) and (8) caused by overlapped virtual zones incur a great computation 
challenge, a series of linearization methods are proposed as follows. Since it is a general linearization 
technique, we omit (ω ) in all the decision variables for notation simplicity.  
 
Constraints (7) are replaced by Constraints (11)-(16).  
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{ }\

0                               ,
Circle
i

ikjt
j Ik I i

O i I t T
∈∈

≥ ∀ ∈ ∈∑ ∑  (11) 

{ }\

                                            ,
Circle Ring
i i

ikjt ijt ijt it
j I j Ik I i j I

O Q N V i I t T
∈ ∈∈ ∈

≥ + − ∀ ∈ ∈∑ ∑ ∑ ∑  (12) 

{ }
( )

\

1 0                                                        ,
Circle
i

ikjt it
j Ik I i

O M i I t Tµ
∈∈

− − ≤ ∀ ∈ ∈∑ ∑  (13) 

{ }
( )

\

1              ,
Circle Ring
i i

ikjt it ijt ijt it
j I j Ik I i j I

O M Q N V i I t Tν
∈ ∈∈ ∈

− − ≤ + − ∀ ∈ ∈∑ ∑ ∑ ∑  (14) 

1                                                                                        ,it it i I t Tµ ν+ ≥ ∀ ∈ ∈  (15) 
{ }, 0,1                                                                                     ,it it i I t Tµ ν ∈ ∀ ∈ ∈  (16) 

 
When =1itµ  and =0itν , Constraints (13) reduce to { }\

0Circle
i

ikjtk I i j I
O

∈ ∈
≤∑ ∑ and Constraints (14) are 

redundant. Together with Constraints (11), we have { }\
0Circle

i
ikjtk I i j I

O
∈ ∈

=∑ ∑ and Constraints (12) 

reduce to 0Ring
i

ijt ijt itj I j I
Q N V

∈ ∈
+ − ≤∑ ∑ . This indicates that vehicle inventory at station i  can fulfill 

all requests and relocations. Hence, user detours from station i  to k  are not needed, i.e. 0ikjtO = . 

When =0itµ  and =1itν , Constraints (14) reduce to { }\ RingCircle
i i

ikjt ijt ijt itk I i j I j I j I
O Q N V

∈ ∈ ∈ ∈
≤ + −∑ ∑ ∑ ∑  

and Constraints (13) are redundant. Together with Constraints (12) and (11), we have 

{ }\ RingCircle
i i

ikjt ijt ijt itk I i j I j I j I
O Q N V

∈ ∈ ∈ ∈
= + −∑ ∑ ∑ ∑  and 0Ring

i
ijt ijt itj I j I

Q N V
∈ ∈

+ − ≥∑ ∑ . It represents that 

there is a vehicle shortage at station i  and users have to walk or bike from station i  to intermediate 
station k  and then drive to destination station j , i.e. 0ikjtO ≥ . When =1itµ  and =1itν , we have 

0ikjtO = and =0Ring
i

ijt ijt itj I j I
Q N V

∈ ∈
+ −∑ ∑ . This indicates that vehicles parked in station i  can just 

service all the clients’ requests and vehicle relocations. 
 
For Constraints (8), we introduce a new auxiliary variable max

itO  which represents the maximum value 

of { }\Circle
i

kijtk I i j I
O

∈ ∈∑ ∑ . We have { }= max 0, Ring
i

max
it it ijt ijtj I j I

O V Q N
∈ ∈

− −∑ ∑ . Via the same 

linearization technique, Constraints (8) can be substituted by Constraints (17)-(21). 
 

{ }\

                                                                        ,
Circle
i

max
kijt it

j Ik I i

O O i I t T
∈∈

≤ ∀ ∈ ∈∑ ∑  (17) 

0                                                                                             ,max
itO i I t T≥ ∀ ∈ ∈  (18) 

                                                            ,
Ring
i

max
it it ijt ijt

j I j I

O V Q N i I t T
∈ ∈

≥ − − ∀ ∈ ∈∑ ∑  (19) 

( )1 0                                                                         ,max
it itO M i I t Tν− − ≤ ∀ ∈ ∈  (20) 

( )1                                         ,
Ring
i

max
it it it ijt ijt

j I j I

O M V Q N i I t Tµ
∈ ∈

− − ≤ − − ∀ ∈ ∈∑ ∑  (21) 

 

2.3.2 Linearization of the elastic demand function 
Another major computation difficulty arises from the elastic demand function in the form of non-linear 
term ( )ijt ijtP Q ω  in the objective function and the non-linear constraints (3). A ε -optimal algorithm is 

proposed to address such a problem in the following. Again, ( )ω  in all the decision variables are 
omitted for simplicity of notation. 
 
Let ( ) ( )=ijt ijt ijtF P q exp Pγ κ+ , Constraints (3) are rewritten as: 
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( ) ( )                                                                  , ,ijt ijtQ F P i I j I t Tω ≤ ∀ ∈ ∈ ∈  (22) 
 
Since the carsharing demand decreases with the increase in price, a negative relationship exists between 
the two. Hence, Constraints (3) can be further reformulated by expressing ijtP  as a function of ijtQ : 

( ) ( )-1 =                                                 , ,ijt ijt ijt ijtP F Q lnQ lnq i I j I t Tκ γ≤ − − ∀ ∈ ∈ ∈  (23) 
 
We replace ijt ijtP Q  by ( )ijtG Q  in the objective function: 

( ) ( ) ( )1              , ,ijt ijt ijt ijt ijt ijt ijt ijtG Q P Q F Q Q lnQ lnq Q i I j I t Tκ γ−  = ≤ = − − ∀ ∈ ∈ ∈   (24) 
 
A new MINLP model is established via substituting ( )ijtG Q  by ( )ijt ijt ijtlnQ lnq Qκ γ − −   in the 
objective function P0. The two models are equivalent and have the same optimal solution, which has 
been proved by Xu et al. (2018). We use a ε -optimal algorithm in which a piecewise-linear function is 
built to approximate the non-linear function ( )ijtG Q  (Wang and Meng, 2012; Huang et al., 2020b). As 

shown in Fig.2. ε  define the maximum error tolerance implied by the approximation. 
 

 
Fig.2 Outer-approximation procedure 

 
The non-linear term ijt ijtP Q  in the objective function is thus replaced by a set of linear constraints as 
shown below. 
 

( ) +                                      , , , 1,2,...,l l l
ijt ijt ijtG Q Q i I j I t T l Lχ δ≤ ∀ ∈ ∈ ∈ =  (25) 

 
Constraints (25) impose that the term ijt ijtP Q  should be no greater than the given ijtL  linear equations 

+l k l
ijtQχ δ  ijtl L∀ ∈ , where χ  and δ  are the slope and intercept respectively. 

 
The original P0 is thus transformed into a mixed integer linear program (MILP). While it remains an 
NP-hard problem, small-scale instances with a limited number of demand scenarios can be solved by 
commercial solvers, such as CPLEX and Gurobi. The number of original constraints (2), (4)-(6), (9)-(10) 
and the added linearization constraints (11)-(21), (25) all increase with the number of demand scenarios 
considered. It is well known that the computation time of MILP increases exponentially with the 
number of constraints. When considering that the number of variables and constraints in the model is 
already large, solving this MILP by existing solvers is a challenge and is only possible for smaller size 
problems.  
 
In a test network consisting of 52 stations and 26 time steps, it takes 305 seconds to solve P0 under one 
demand scenario by Gurobi. The computation time increases to 2.5 hours when considering three 
demand scenarios. Four and more scenarios cause memory overflow. To deal with the computation 
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( )ijtN ω  and client trips 

( )ijtQ ω  and ( )ikjtO ω  are optimized under uncertain travel demand in scenario ω∈Ξ , while the 
carsharing price ijtP  and fleet size U  should be optimized by anticipating the expected costs owing to 
random demand realization. 
 
3 Two-stage stochastic programming model 

3.1 Model formulation 
According to Constraints (2) and (3), the fleet size U  and price ijtP  must be the same in all scenarios. 
This implies that the different scenarios are interdependent and this in turn makes it challenging to solve 
the large-scale MILP problem. As a consequence, we introduce a novel notion of service reliability to 
decouple the different scenarios and propose a two-stage stochastic programming model. The long-term 
tactical decisions and real-time operational decisions are separated in this two-stage optimization. We 
denote tρ  as the service rate which is the percentage of carsharing trips that is served at time step t  
with the set denoted as { }= tρρ . Given a service rate ρ , Stage-1 aims to determine the price and fleet 
size such that the average service rate at time step t  reaches tρ . With the given price and fleet size, 
Stage-2 is to optimize vehicle relocations under each demand scenario. We then examine ρ  to find a 
promising search direction for which the profit is expected to be maximized. Fig.3 shows the flow chart 
of the two-stage stochastic programming formulation. 
 

...

Stage 1 (P1)
Pricing, Fleet size

Inputs
Demand upper bound, Travel time, Initial Service rate ρt, Parameters

Stage 2 (P2)
Demand scenario 1 

Vehicle relocations 
Clients access trips

Stage 2 (P2)
Demand scenario 2

Vehicle relocations 
Clients access trips

Stage 2 (P2)
Demand scenario ω 

Vehicle relocations 
Clients access trips

Summary
Profits ϕ 

|ϕh -ϕh-1|/ϕh<=τ  

Get the fleet size, trip prices, relocations and access trips

Yes

Customized 
gradient 

algorithm
Service rate ρt

No

 
Fig.3 Flow chart of the two-stage stochastic programming formulation 

 
3.1.1 Stage-1 
For a given service rate { }= tρρ , Stage-1 determines the tactical decisions of price ijtP  and fleet size U . 
Since Stage-1 only considers the expected demand, all the randomness ω∈Ξ  is removed. We introduce 

ijtQ , ikjtO  and ijtN  as variables that represent client trips and vehicle relocations in Stage-1. The 
mathematical model of Stage-1 can be written as follows. 
 

P1
( )

( )

2, ,

                                 

, , ,
max

Ring
i

Circle
i

P U V O Q

car car
ijtf ijt r ijtijtN t T i I j I t T i I j I

access car
ikjta ikt o kjt

t T i I j Ik I

c U G Q g c g N

c g c g O

φ
∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈∈

= − + −

− +

∑∑∑ ∑∑ ∑

∑∑ ∑ ∑
 (26) 
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Subject to: 

Constraints (2), (4)-(6), (9)-(10), (11)-(21), (25), plus: 

=                                                                                    
ijt

i I j I
t

ijt
i I j I

Q
t T

q
ρ∈ ∈

∈ ∈

∀ ∈
∑∑

∑∑
 (27) 

 
Constraints (27) require that the service rate should be equal to tρ . The random variables ( )ijtQ ω , 

( )ikjtO ω , ( )ijtN ω  in all the constraints in P0 should be replaced by the deterministic ones ijtQ , ikjtO  and 

ijtN  respectively. P1 thus has a much smaller size which is independent of the demand scenarios and 
can be readily solved by CPLEX or Gurobi. After solving P1, we can obtain the price ijtP  and fleet size 
U , which will be used as inputs to the following Stage-2 problem.  
 
3.1.2 Stage-2 
For a given price ijtP  and fleet size U , Stage-2 calculates vehicle relocations ( )ijtN ω  and client trips 

( )ijtQ ω  and ( )ikjtO ω  for each scenario ω∈Ξ . We rewrite the mathematical model in the following. 
 

P2- ( )ω
( ) ( ) ( )

( ) ( )

3, , ,
max

                    

Ring
i

Circle Out
i i

car car
ijtf ijt ijt r ijt ijtN t T i I j I t T i I j I

access car
a ikt o kjt ikjt

t T i I k

V O Q

I j I

c U P Q g c N g

c g c g O

φ ω ω ω

ω

∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

= − + −

− +

∑∑∑ ∑∑ ∑

∑∑ ∑ ∑
 (28) 

Subject to: 
Constraints (4)-(6), (9), (11)-(21), plus: 

( )1i
i I

V Uω
∈

=∑  (29) 

( ) ( ) ( )                                                         , ,ijtijt ijt exp P i I I t Tq jQ ω ω γ κ≤ + ∀ ∈ ∈ ∈  (30) 

( ) ( ) ( ) 0,                                                         , , , ,  ijt ikjt ijtN O Q i I k I j I t Tω ω ω ∈Ζ ∀ ∈ ∈ ∈ ∈  (31) 
 
Since the tactical decisions and operational decisions have been decoupled by the service rate ρ , the 
demand scenarios can be handled separately which significantly reduces the computation difficulty. P2-
( )ω  is solved for each demand scenario ω  generated, and is repeated Ξ  times. After solving P1 and 
P2- ( )ω , we combine the two stages. The final profit of the system can be calculated as: 

( ) ( )

( ) ( )
+

Ring
i

Circle
i

car car
ijt ijt ijt r ijt ijt

t T i I j I t T i I j I
f access car

a ikt o kjt ikjt
t T i I j Ik I

P Q g c N g

c U
c g c g O

ω
ω

ω ω

φ
ω

∈ ∈ ∈ ∈ ∈ ∈

∈Ξ
∈Ξ

∈ ∈ ∈∈

 −
  = −  
− + 
  

∑∑∑ ∑∑ ∑
∑

∑∑ ∑ ∑
Ε , (32) 

where the carsharing price ijtP  and fleet size U  are obtained in P1, while other decision variables 
including serviced demand ( )ijtQ ω  and ( )ikjtO ω , and vehicle relocations ( )ijtN ω  are obtained in P2-

( )ω  under demand realizations ω∈Ξ . 
 
The final profits are calculated based on Eq.(32). Once changing the service rate, the total profits will 
be changed. The method rationale is to develop a service rate-based solution procedure to solve P1 and 
then P2- ( )ω  repeatedly until the stopping criterion is satisfied.  
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3.2 Optimization algorithm 
3.2.1 Gradient search algorithm 
We develop a Gradient Search Algorithm (GSA) to solve the two-stage stochastic programming model. 
With a given service rate { }= tρρ in Constraints (27), we can get the fleet size and price in P1, and then 
optimize the vehicle relocation and access trips in P2. The final system profits are obtained in Eq. (32). 
Via rolling the service rate, we can get a better solution step by step. The update of the gradient is 
decided by the decent direction vector hφ∇  and step size hπ . The service reliability 

2 ...h h h h
1 T=    ρ ρ ρ 

 ρ is a vector. We increase its element once in each time and examine its 

influence on the objective value (the profit). For example, the initial reliability in iteration h  is 

2 ...h h h h
1 T=    ρ ρ ρ 

 ρ . We increase its element h
tρ  by h

tδ  while maintaining the other elements in 

the vector unchanged, i.e. set 2 1, ,h h h h h h h
t 1 t t T T= ... + ...ρ ρ ρ δ ρ ρ−

 
 ρ  and calculate the objective 

value h
tφ . By comparing the profit difference, we can obtain the ratio of changes ( )h h h

t tφ φ δ− . After 

doing the same for all elements in h
tρ , we can obtain the decent direction in the form of vector which is 

written as hφ∇ . Step size of hπ  is calculated in the equation ( ) 2*
1

h h
h hπ λ φ γ φ φ= − ∇ . The 

utilization of a service rate vector (time dependent service rates) allows different reliabilities for 
different time periods. Otherwise, a fixed value of service rate may lead to sub-optimality. Moreover, 
higher service rates happen at off-peak hours, but lower service rates occur at morning and afternoon 
peak hours. Time dependent service rate also better captures the reality. Please note that we cannot 
ensure that a global optimum is obtained. This algorithm tries to find a better  solution step by step until 
a local optimum is reached. The following pseudo-code shows such an algorithm. Let h  be the iteration 
number and φ  be the objective function value. 
 

Step 1: Set 1h = , initialize h=ρ ρ . 
Step 2: Given hρ , optimize model P1 to get the carsharing price ijtP  and fleet size U , and then 
use the given price and fleet size to optimize model P2 and get the vehicle relocations, and then 
calculate the profit by Eq.(32). The final profit ( )h hφ ρ  can be obtained. 

Step 3: Update the maximum objective value, and save it as *φ . 
Step 4: If 1h h hφ φ φ τ−− ≤ , stop. Otherwise, proceed to Step 5. 
Step 5: Determine the optimal ρ . 

Step 5.1: Calculate the partial derivative of hφ  with respect to tρ  as below.  
Step 5.1.1: Given hρ  as the following T  dimensional vector and its corresponding 

objective value hφ , 2 ...h h h h
1 T=    ρ ρ ρ 

 ρ , do the following for each element in 
hρ . 

Step 5.1.2:  
a. Set 2 1, ,h h h h h h h

t 1 t t T T= ... + ...ρ ρ ρ δ ρ ρ−
 
 ρ , where h

tδ  is a small positive 

number. 
b. If 1h h

t tρ δ+ > , go to Step e. Otherwise, proceed to Step c. 
c. Solve P1 and P2 with given h

tρ . If h h
tφ φ≠ , go to Step 5.1.3; otherwise set 

0h h
t tδ δ δ= + , where the small positive number 0δ  is the step size. 

d. Go back to Step a. 
e. Set 2 1, ,h h h h h h h

t 1 t t T T= ... ...ρ ρ ρ δ ρ ρ−
 − ρ ; solve P1 and P2 with given h

tρ . If 
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h h
tφ φ≠ , go to Step 5.1.3; otherwise set 0h h

t tδ δ δ= + . 
f. If 0h h

t tρ δ− > , go to Step e. Otherwise, the sensitivity of h
tρ  is set to zero. 

Step 5.1.3: The sensitivity of element h
tρ  can be obtained: 

( ) ( )'h h h h h h
t t t tφ ρ φ φ ρ ρ∆ ∆ = − − , where 'h h h

t t tρ ρ δ= +  or 'h h h
t t tρ ρ δ= − . 

Step 5.1.4: If t T≠ , set 1t t= + , and go to Step 5.1.2. Otherwise, the whole set of 
sensitivities of hφ  with respect to hρ  has been obtained, denoted by the vector hφ∇ . 

Step 5.2: Take the sensitivity vector hφ∇  as the descent direction. The step size hπ  is 

chosen in the same way as in Wang and Lo (2008): ( ) 2*
1

h h
h hπ λ φ γ φ φ= − ∇ . *

1γ φ  is an 

estimate of the minimum of hφ . The value of parameters 1γ , hλ  should be specified for 
different model applications. 
Step 5.3: Calculate the service rate 1h h h

hπ φ+ = + ∇ρ ρ . Project the new value 1h+ρ  onto the 
feasible space [0,1] ; this result is set to be the service rate 1h+ρ  for the next step. Set 

1h h= + , and go to Step 2. 
 
To save computation time, parallel computing is adopted in Step 2 in the GSA. In Stage-2, P2 models 
for different demand scenarios ω∈Ξ  are independent and thus can be solved at the same time with 
multiprocessing modules in parallel computing. In this way, the computation time of the Stage-2 
problem is reduced to 1 Ξ .  
 
3.2.2 Genetic algorithm 
To demonstrate the efficiency of the GSA, we also develop a genetic algorithm (GA) to solve the two-
stage stochastic programming model. One chromosome can be decoded for a ρ . The solution update is 
facilitated by swapping genes in the chromosome. The following shows the pseudo-code. Let h  be the 
iteration number, φ  be the objective function value, ψ  be the population size, η  be the chromosome 
length, ο  be the crossover rate, π  be the mutation rate.  
 

Step 1: Set 1h = , randomly generate initial population size hψ  with the chromosome length η . 
Step 2: Given hψ , convert binary chromosome to decimal service rate hρ . 
Step 3: Given hρ , optimize the model P1 to get the carsharing price ijtP  and fleet size U , and 
then optimize the model P2 and get the vehicle relocations, finally calculating the profit using 
Eq.(32). The final profit ( )h hφ ψ  can then be obtained. 

Step 4: If h  is equal to the maximum iteration number, stop and return the maximum objective 
value ( )h hφ ψ . Otherwise, proceed to Step 5. 
Step 5: Create a new population ψ . 

Step 5.1: Generate a random value. If the random value is less than the crossover rate ο , 
generate an initial population by combining a father chromosome and mother 
chromosome; otherwise, go to Step 5.2. 
Step 5.2: Generate a random value. If the random value is less than the mutation rate π , 
update the initial population via random swapping the genes in chromosomes; otherwise, 
go to Step 5.3. 
Step 5.3: Calculate the fitness based on the profit ( )h hφ ψ  in Step 3 via a fitness function 

which is equal to the current profit minus the minimum profit in the population. 
Step 5.4: Generate a new population 1hψ +  based on the updated initial population and 
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probability of fitness. Set 1h h= + , and go to Step 2. 
 
Similarly, we adopt parallel computing in Step 3 of the GA. Moreover, the computation time can be 
further reduced to 1 ψ  if individual optimization in a population is solved simultaneously by using 
parallel computing. 
 
3.2.3 Iterated local search algorithm 
An Iterated Local Search Algorithm (ILSA) is also used to further explore the neighborhood of the 
solutions obtained by the GSA and GA. We set a neighbor threshold of , ∈ ρ ρ ρ  and a fixed small 

positive number δ  to mimic the perturbation in service rate. There will be ( ) +1t tρ ρ δ−  values of tρ  

in each time step and ( ) +1
T

t tρ ρ δ −   iterations for the whole search algorithm. For the ρ  obtained 

by the GSA or GA, we firstly optimize model P1 to get the carsharing price ijtP  and fleet size U , and 
then use them to optimize model P2. The profit ( )φ ρ  can be obtained by Eq.(32). Also, to save 
computation time, parallel computing in Step 3 is adopted in Iterated local search algorithm. 
 
4 Case study 

4.1 Setting up the case study 
To demonstrate the applicability of the proposed models and algorithms, the traffic network of SIP in 
Suzhou, China (traffic zones and travel time information) is used. The area is divided into a total of 54 
zones: residential zones from #1 to #20, industrial zones from #21 to #40, commercial zones from #41 
to #50 and undeveloped land from #51 to #54. A carsharing station is assumed to be located at the 
centroid of each zone. We consider 13 hours’ of operation time from 7:00 to 20:00, which are divided 
into 26 time steps with a duration of 30 minutes each. It is further assumed that daily carsharing 
requests departing from one zone follow a Poisson distribution. A total of Ξ =30 demand scenarios are 
generated for each zone (see Fig.4 for three example zones). Most existing studies adopt 7 scenarios for 
a week or 30 scenarios for a month in carsharing case analysis (Brandstätter et al., 2017; Biondi et al., 
2016; Fan, 2014; He et al., 2017; 2020). Yet having more scenarios could further improve the 
robustness of the optimization results. (Lu et al., 2018).  
 
Refer to Fig.4(a) as an example of the daily carsharing requests in zone #5. It follows a Poisson 
distribution with a mean value of approximately 860. The carsharing requests leaving one zone 
throughout a typical day are seen in Fig.5 (for average time-varying departures). The random demand 
generation of Zone 5 at 8:00-8:30 can be considered as an example. It is a residential zone with the 
demand ratio of 8:00-8:30 over a whole day calculated by 110/935 (see the blue line in Fig. 5). Suppose 
on a particular day, the realized trip departures from zone #5 for a day is 800. The departures at 8:00-
8:30 should be 800*110/935=94.  

 
                              (a)                                                        (b)                                                       (c) 

Fig.4 Poisson distribution of travel requests in one day  
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Fig.5 Average time-varying departures 
 
The free flow travel time on the shortest paths is represented as the base travel time, and the average 
free-flow travel speed of vehicles is set to 25 km/h. The delay time caused by traffic congestion at peak 
hours is simulated by setting growth factors in different time steps, as shown in Table 2. The in-vehicle 
travel time car

ijtg  is equal to the free-flow travel time multiplied by the growth factors. In the case study, 
we assume clients ride dockless sharing bicycles with an average speed of 10 km/h to pick up vehicles 
in neighboring zones. The access travel time access

ijtg  by bike equals 2.5 times the free-flow travel time, 
and it is not affected by traffic congestion. 
 

Table 2 Growth factors of travel time in relation to the shortest travel time 

Time 7:00-7:59; 19:00-
19:59; 20:00-6:59+1 

11:00-11:59; 
14:00-15:59 12:00-13:59 10:00-10:59; 

18:00-18:59 
8:00-9:59; 

16:00-17:59 
Growth factor 1.0 1.1 1.2 1.3 1.5 
 
In this paper, the parameters to be applied in the model are based on a one-way carsharing company 
(EVCARD) operating in SIP, China (SIP, 2017; EVCARD, 2021), and previous studies (Huang et al., 
2018; Huang et al., 2020a). The vehicle fixed cost fc  is set as ￥100 per veh*day, petrol consumption 
cost oc  is ￥20 per hour, vehicle relocation cost rc  is ￥80 per hour, and client access cost by riding a 
bicycle ac  is ￥30 per hour. The radius of the virtual zones α  and β  are set as 1 km and 4 km 
respectively. The parameters γ  and κ  in the elastic demand function are set to -0.0231 and 0. The 
daily operations are divided into 3 periods: morning peak hours from 7:00 to 10:59, noon peak hours 
from 11:00-15.59, and afternoon peak hours from 16:00 to 19:59.  
 
4.2 Results 
The proposed two-stage stochastic programming model is solved by Python calling Gurobi 7.0.2 solver 
on an i7 processor @3.60GHz, 48GB RAM computer with a Windows 10 64 bit operating system. 
Parallel computing is adopted by using 6 processors in solving the Stage-2 problem. In the gradient 
search algorithm, the Stage-1 model and Stage-2 models are solved sequentially for 23 iterations until 
the stopping criterion is met. The total computation time is 11.5 hours. The total profits are ￥240,580, 
average price is ￥78/h, fleet size is 1,010 and average service rate is 85.78%.  
 
4.2.1 Carsharing tactical decisions 
Fig.6 shows the price fluctuations over time in the three types of zones. It is found that there is a 
positive relationship between the carsharing price and the time-varying demand. Higher demand leads 
to higher prices, and high prices conversely reduce demand for carsharing during peak hours. Take the 
morning peak hours as an example, the carsharing trips leaving the residential zones experience a 
significantly higher price than the trips from the other two types of zones. Fig 5 shows the average of 
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ijtq  in the demand elastic function. This can also be interpreted as the total 
demand for many competing modes including carsharing, taxi and bus. Intuitively, filling all the peak 
demand in the morning peak by carsharing is inefficient from an economic perspective as it requires a 
large fleet of vehicles. Many vehicles could be idle during off-peak hours. Hence, a high price is set at 
peak hours to reduce the carsharing demand to obtain maximum daily profits.  
 

 
Fig.6 Time-varying price 

 
4.2.2 Carsharing operational decisions 
The optimization results for the carsharing operational decisions obtained via the gradient search 
algorithm are shown in Table 3, where the minimum value, mean value, and maximum value in the 30 
demand scenarios are provided. The total profits have minor fluctuations in the 30 scenarios. Their 
average is ￥240,580 and the Coefficient of Variation (C.V) is 0.85%. Over 84% demand can be 
satisfied, which equals the number of serviced trips divided by the actual demand for carsharing. A high 
demand service rate demonstrates the effectiveness of the combination strategy of price incentives and 
relocations under stochastic demand. As complete service of demand is not required, the operator may 
reject some non-profitable client requests. As a result, 16% demand is rejected due to the profit 
maximization objective of the operator. In addition, the demand-supply imbalance also contributes to 
the demand loss. It can be noted that a total of 405 vehicle relocations are required to tackle the vehicle 
demand-supply imbalance problem. Moreover, a total of 659 access trips were created where clients 
took detours to pick up vehicles in the neighboring stations. The relocations and access trips contribute 
to around 10% of the serviced trips. Another main reason is that the demand in this problem is 
considered to be stochastic. Vehicle shortage may eventually be amplified if random demand 
realizations surged in several neighboring zones. It is challenging to use the given fleet size obtained in 
the tactical decision level to service all demand in the different scenarios. Moreover, Table 3 shows that 
all C.Vs are no larger than 7.00%.  
 

Table 3 Optimization results in Stage-2 
 Profits (￥1,000) Service rate (% Relocations Access trips 
Minimum value 234 83.74 362 565 
Mean value 241 85.78 405 659 
Maximum value 245 87.39 464 712 
C.V 0.85% 1.27% 6.85% 6.33% 
 
We randomly select a demand scenario as an example to present more details concerning the 
operational performance including carsharing demand service rate, the number of vehicle relocations, 
and access trips. The optimization results for all the 30 scenarios are shown in the Appendix. 
 
The carsharing demand service rate for the 50*50 OD pairs is shown in Fig.7, where the column 
number represents the origin index and the row number represents the destination index. The grayscale 
indicates that there is no carsharing demand for this specific OD pair. The green-yellow-red cells 
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indicate an increasing demand service rate. The number in each cell shows the exact demand service 
rate %. Fig.7(a) shows the average demand service rate for a whole day between each OD pair. More 
yellow and red cells indicate a higher service rate. Fig.7(b) is the demand service rate in the morning 
peak hours. We use the black frame to emphasize the carsharing demand leaving and arriving at 
residential zones. Most trips in the black frame can be serviced. Especially in the upper-left cells, the 
red and yellow cells are much denser. It indicates that most demand traveling within the residential 
zones is serviced due to the high vehicle supply in morning peak hours. The cells in the black frame of 
Fig.7(c) are trips leaving or arriving at commercial zones at noon peak hours. Overall, the trip service 
rates are more evenly distributed while the zones in the black frame have relatively more red/yellow 
cells, or equivalently a higher demand service rate. Fig.7(d) presents carsharing service rates in the 
afternoon peak period. The black frame emphasizes trips leaving and arriving at industrial zones. A 
similar trend as in the morning peak is observed. 
 

 
                               (a) Whole day average                                                       (b) Morning peak  

 
                                (c) Noon peak                                                                   (d) Afternoon peak  

Fig.7 Carsharing demand service rates (%) 
 
There are 440 vehicle relocations in this scenario. Fig.8 shows the vehicle relocation distribution in the 
SIP area. The green/red scales show the number of vehicles relocated in/out of the zone. A darker color 
indicates more vehicle relocations. The negative value indicates the number of vehicles relocated into 
this zone and positive values mean the number of vehicles relocated out of this zone. Grayscale 
indicates that no vehicle relocations happen in the zone. The vehicle relocations that happen in the 
morning, noon, and afternoon peak hours are presented in Fig.8(a), (b), and (c), respectively. In Fig.8(a), 
many vehicles are relocated into residential zones, such as zones #9, #11, and #12. It is because of the 
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huge carsharing demand occurring in these zones in the morning hours. The commercial zones at noon 
peak hours and industrial zones at afternoon peak hours indicate a similar pattern in which vehicles are 
relocated into these zones to address the imbalance problem. Recall that, according to the model, 
relocations only happen inside the virtual relocation zones. For example, regarding zone #46 in Fig.8(b) 
as an example, 33 relocations are conducted using vehicles from nearby zones #1, #20, #36 and #39, 
these are inside the border of the virtual relocation zone of zone #46. 
 

 
               (a) Morning peak                                  (b) Noon peak                                    (c) Afternoon peak  

Fig.8 Relocation trip distribution 
 
Fig.9 represents the number of trips in which clients have to bike to another neighboring station to pick 
up a vehicle because of the vehicle shortage at their desired pick-up location. We use the green/red 
scales to show the number of access trips in Fig.9. The negative values indicate the number of clients 
arriving at this zone and the positive values correspond to the number of clients leaving this zone. 
Fig.9(a) is the access trip distribution in the morning peak. As the carsharing demand is highly 
concentrated in the morning peak, many clients choose to pick up vehicles from their neighboring zones. 
As shown in Fig.9(a), the black dotted circle represents the virtual access zone for station #17. Clients 
can cycle from station #17 to #39 and #46 in the access zone to pick up a vehicle. Fig.9(b) and (c) show 
the access trip distribution at the noon and afternoon periods. A similar pattern is observed in that many 
access trips are leaving the commercial zones at noon and the industrial zones at the afternoon peak. In 
this way, the vehicle imbalance problem can be further mitigated.  
 

 
                (a) Morning peak                                    (b) Noon peak                                 (c) Afternoon peak  

Fig.9 Access trips distribution 
 
Moreover, in comparing Fig.8 to Fig.9, it can be noted that the vehicle relocations and client access 
trips to a station are complementary. In the morning peak hours, fewer relocation trips occur as can be 
seen in Fig.8(a) but more access trips happen as seen in Fig.9(a). The main reason is that clients have to 
bike for vehicle pick-up if vehicles cannot be relocated into their origins in time. In contrast, it is 
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unnecessary for clients to rent vehicles from neighboring stations if the vehicles’ shortage can be 
handled by relocations. 
 
4.3 Analysis of system performance 
4.3.1 Virtual zone size 
In this section, we conduct a sensitivity analysis on the size of virtual access zones and virtual 
relocation zones by setting different service radiuses. Four cases are examined: Case 1 with α =1 km 
and β =4 km; Case 2 with α =0 and β =4 km; Case 3 with α =1 km and β =0; Case 4 with α =1 km 
and β = +∞ . Case 1 is a base case considering both access trips and relocation operations in virtual 
zones. Case 2 allows relocation operations alone. Case 3 allows access trips alone. Case 4 is an extreme 
case of Case 1 that the maximum relocation distance can be infinity. Table 4 shows the optimization 
results. 
 

Table 4 Optimization results of different virtual zone sizes 

Case 
Stage-1 Stage-2 

Average 
price (￥/h) Fleet size  Profit 

(￥1,000) 
Service rate 

(%) Relocations Access trips 

1 
α =1, β =4 78 1,010 

Minimum value 234 83.74 362 565 
Mean value 241 85.78 405 659 

Maximum value 245 87.39 464 712 
2 

α =0, β =4 78 1,038 
Minimum value 231 88.55 810 0 

Mean value 235 88.96 835 0 
Maximum value 237 89.60 890 0 

3 
α =1, β =0 79 845 

Minimum value 209 74.11 0 563 
Mean value 216 75.81 0 616 

Maximum value 220 76.92 0 685 
4 

α =1, β = +∞  78 983 
Minimum value 237 83.41 370 610 

Mean value 241 85.11 399 698 
Maximum value 244 86.12 439 751 

 
The comparison between the proposed access trips & relocations and relocations alone can be found in 
Case 1 and Case 2. When the access distance reduces from 1 km to 0 km, the average number of access 
trips naturally reduces to zero while the average number of vehicle relocations increases substantially 
by 106.17%. When access trips are not allowed in the carsharing system, more vehicle relocation 
operations are carried out to address the imbalance problem. In this way, more drivers should be 
employed and larger labor burden occurs. Moreover, the fleet size in Case 2 increases by 2.77% that 
may lead to traffic burden. The total profit decreases slightly due to the lack of access trips. It indicates 
that allowing access trips plays an important role in this carsharing system. 
 
The comparison between the proposed access trips & relocations and access trips only can be found in 
Case 1 and Case 3. It reveals that when we reduce the outer radius of the virtual relocation zone from 4 
km to 0 km, no vehicle relocations are performed. The fleet size, profits, and demand service rate drop 
significantly. Even though the higher price is set to reduce clients’ demand and access trips are allowed 
for vehicle pick-up, the imbalance problem cannot be properly managed. As a result, 24% of the 
requests cannot be serviced. It supports previous research conclusions that one-way carsharing 
performance is critically dependent on real-time vehicle relocations. 
 
In Case 4, we expand the outer radius of the virtual relocation zone to infinity. Comparing to Case 1, 
the same average total profits are obtained, and the difference in fleet size, average demand service rate, 
average number of relocations, and average access trips between the two cases are 2.67%, 0.78%, 
1.48%, and 5.92%, respectively. A similar performance between the two cases demonstrates that setting 
proper virtual relocation zones can maintain high profits for the carsharing operator whilst not reducing 
the served demand. Please note that whether relocations are profitable is also dependent on the tradeoff 
between different cost components.  
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We made the comparative analysis via setting =1β , =1.5β , =2β , =2.5β , =3β , =3.5β , =4β , and 
=+β ∞ . The Profit changes are shown in Fig.10. With the increase of the outer radius β  in the virtual 

relocation zone, the profit increases. It indicates that the proposed virtual relocation zones will cut off 
some feasible solutions and thus may lead to loss of optimality. However, no larger profit is obtained 
when enlarging β  to positive infinite. It represents that =4β  in this paper is acceptable that might not 
cut off feasible solutions.  
 

 
Fig.10 Profit changes under different outer radius β  

 
4.3.2 Cost components 
We conduce sensitivity analysis on unit relocation cost ( rc =40, 80, 120 ￥/hour) and unit access trip 
cost ( ac =20, 30, 40 ￥/hour) respectively. The other parameters are maintained the same as in the base 
case with rc =80 and rc =30. To virtually illustrate the connections between the relocation and access 
trips, we plot out the percentage of changes in the performance measures of the four added cases 
comparing to the base case. According to Fig.11(a) and (b), we found that the number of access trips 
and the number of relocation trips changes inversely, in order to handle the imbalance problem. Yet 
neither of them has significant impacts on the average price, fleet size and service rate. This further 
proves the complementary effects of relocation and access trips in dealing with demand supply 
imbalance problem. 
 
When increasing the unit relocation cost from 40 to 120￥/hour, fewer relocations are carried out yet 
more access trips occur. As a consequence, the profit and service rate also drop a little. When increasing 
unit the access cost from 20 to 40 ￥/ hour, fewer clients are rerouted to pick up vehicles in neighboring 
zones, but more vehicle relocations occur.  
 

 
                     (a)  sensitivity on relocation cost                                       (b) sensitivity on access trip cost 

Fig.11 Comparative analysis with base case ( rc =80 and rc =30) 
 

4.3.3 Uncertain demand 
The performance of the stochastic programming model is tested by fixing solutions in the out-of-sample 
scenarios.  
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Firstly, we carried out an out-of-sample test by generating 100, 200, 500 and 1,000 scenarios assuming 
the carsharing demand for a day in one parking station follows a Poisson distribution. It takes 2.58 
hours, 4.52 hours,8.24 hours, 16.50 hours, respectively. Another group of tests is conducted assuming 
Normal distribution with C.V of 0.05 and 0.1 with 30 scenarios. As shown in Table 5, The profits 
obtained in 100, 200, 500 and 1,000 scenarios are slightly lower than that in the base case. The 
maximum gaps in profits and service rate are 0.69% and 0.33%, respectively. In the case of Normal 
distribution test, the profits decrease by 20.33%-26.14%. The service rates also drop by 0.09%-6.54%. 
It indicates that a different distribution pattern has significant impacts on the solution performance. A 
careful fitting of the demand distribution pattern or careful selection of representative demand scenarios 
is important.  
 

Table 5 Optimization results with different demand scenario size 
  Profits (￥1,000) Service rate (%) 

Poisson distribution  
(100 Scenarios) 

Minimum value 220 81.19 
Mean value 241 86.06 
Maximum value 249 88.67 

Poisson distribution  
(200 Scenarios) 

Minimum value 224 81.48 
Mean value 241 86.00 
Maximum value 249 88.75 

Poisson distribution  
(500 Scenarios) 

Minimum value 122 58.75 
Mean value 238 85.67 
Maximum value 249 89.08 

Poisson distribution  
(1,000 Scenarios) 

Minimum value 147 63.26 
Mean value 240 85.79 
Maximum value 250 88.96 

Normal distribution (C.V 
= 0.05) 

Minimum value 174 83.46 
Mean value 198 84.88 
Maximum value 234 86.54 

Normal distribution (C.V 
= 0.1) 

Minimum value 121 72.91 
Mean value 184 80.05 
Maximum value 227 85.99 

 
Though demand uncertainty is carefully considered in optimizing the strategic decisions, it is still a 
challenge to guide vehicle relocation when a demand realization different from estimation occurs. 
Please note that the relocation plan could change from day to day according to the estimated demand 
scenario. In the transit timetable design problem (Shakibayifar et al., 2017), when demand overflow 
occurs, waiting passengers can be regarded as lost (Lee et al., 2014) or flexible dial-a-ride services are 
provided as dynamic supplements (Chen and An, 2021). Similarly, in the carsharing system, if a 
different demand scenario other than the estimated one occurs, we could either allow client loss or 
adjust the relocation plan to maintain a minimum number of vehicles at a station. 
 
4.4 Analysis of solutions 
4.4.1 Comparative analysis between integrated and separated approaches 
We build a separated model, which solves tactical and operational decisions respectively. Tactical 
decision model P1’ is the same as P1 but with service rate Constraints (27) removed. Operational 
decision model P2’ ( )ω  is exactly the same as P2 ( )ω . Constraints (27) are no longer required since 
the connection between the tactical and operational decisions is intentionally broken. Only price and 
fleet size are optimized in the tactical level problem P1’, and its solutions are used as inputs to the 
operational level problem P2’ ( )ω  under different scenarios. The simplified problem P1’ is solved 
once and P2’ ( )ω  is solved Ξ  times. No feedback loop is required. The profit of the system can be 
calculated by Equation (32). 
 
We conduct 3 groups of comparative analysis on the integrated and separated approaches via using 10, 
15 and 30 demand scenarios respectively. Table 7 presents the solution results. 
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Table 7 Comparative analysis of the solutions obtained by integrated and separated approaches 

No. of 
scenarios Model Profits 

(￥1,000) 

Average 
price 
(￥/h) 

Fleet 
size 

Average 
service 
rate (%) 

Average 
number of 
relocations 

Average 
number of 
access trips 

Computat-
ion time 
(hours) 

10 
Integrated 236 78 976 87.45 812 677 3.80 
Separated 199 78 569 62.76 750 383 0.12 

Gap -15.68% 0 -41.70% -28.23% -7.64% -43.43% -96.84 

15 
Integrated 236 78 975 87.21 816 671 5.75 
Separated 200 78 563 62.01 644 473 0.22 

Gap -15.25% 0 -42.26% -28.90% -21.08% -29.51% -96.17% 

30 
Integrated 241 78 1,010 85.78 405 659 11.50 
Separated 205 78 569 61.55 321 448 0.53 

Gap -15.10% 0 -43.66% -28.25% -20.63% -32.01% -95.39% 
 
Results show that the optimization results obtained by the integrated approach outperform that obtained 
by the separated approach. The gaps in profits and fleet size between the two methods are as high as -
15% and -28% respectively. The separated approach tends to maintain a smaller fleet size since the 
potential benefits from vehicle relocations are overlooked, leading to a large profit loss and service rate 
drop. On the other hand, it saves significant computation time by breaking the connection between the 
tactical and operational problems. The integrated method is more applicable for a median-scale network 
with around 50 zones and 1000 vehicles under demand uncertainty. 
 
4.4.2 Comparative analysis between gradient search and other algorithms 
We conduct the comparative analysis among 4 algorithms including Gurobi, GA, ILSA and GSA under 
6 different scale instances with 1, 2, 3, 10, 15, 30 scenarios.  
 
In Gurobi (Benchmark 1), we use default settings in solving P0. For ILSA (Benchmark 2), the step size 
of δ  is set as 0.1 and 125 iterations are conducted. In GA (Benchmark 3), the iteration number is 8, 
population size is 10, chromosome length is 24, crossover rate is 0.8, and mutation rate is 0.005.  
 
For small scale problems with 1, 2 or 3 demand scenarios, the global optimal solution can be obtained 
by solving P0 via Gurobi directly. Hence, we only compare this global optimal solution with that by the 
proposed GSA. For cases with 4 or more scenarios, Gurobi had memory overflow. The cases with 10, 
15 and 30 demand scenarios are tested by comparing the results among ILSA, GA and GSA. To the 
authors’ best knowledge, the genetic, ant colony, simulated annealing and particle swarm optimization 
algorithms belong to random searching heuristic algorithms. They have the same disadvantage: only 
local optimal solution can be obtained and we are unable to quantify the solution quality. Hence, we 
introduce ILSA, which searches the neighborhoods of the local optimal solution obtained by GA and 
GSA. It works as a new benchmark algorithm. However, we have to acknowledge that the global 
optimal still cannot be guaranteed - unless no constraints on neighborhood boundary and search time. 
Table 8 shows the solution results. 
 

Table 8 Comparative analysis of global and near global optimal solutions 
Problem 

scale: No. 
of 

scenarios 

Solution 
approaches 

Profits 
(￥1,000) 

Average 
price 
(￥/h) 

Fleet size 
Average 
service 
rate (%) 

Average 
number of 
relocations 

Average 
number of 
access trips 

Computat-
ion time 

(seconds) 

1 
Gurobi 263 82 1,060 88.42 620 800 210 
GSA 260 82 1,051 88.67 746 686 5,380 
Gap -1.03% 0 -0.85% 0.29% 20.32% -14.25% 2461.90% 

2 
Gurobi 207 81 1,060 87.30 485 548 3,322 
GSA 205 82 1,051 87.39 447 527 6,846 
Gap -1.24% 1.23% -0.85% 0.10% -7.94% -3.92% 106.08% 

3 Gurobi 211 81 1060 87.26 469 539 9,462 
GSA 208 81 1064 87.43 436 511 8,809 
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Gap -1.53% 0 0.38% 0.19% -6.90% -5.20% -6.90% 

10 

ILSA 238 78 1,021 86.14 739 733 75,000 
GA 231 79 936 87.56 806 645 33,744 

GSA 236 78 976 87.45 812 677 13,680 
Gap between 

ILSA and GSA  -0.84% 0 -4.41% 1.52% 9.88% -7.64% -81.76% 

Gap between 
GA and GSA 2.16% -1.27% 4.27% -0.13% 0.74% 4.96% -59.46% 

15 

ILSA 238 78 1,019 86.11 763 733 112,500 
GA 234 78 1,010 86.18 815 690 47643 

GSA 236 78 975 87.21 816 671 20,700 
Gap between 

ILSA and GSA  -0.84% 0 -4.32% 1.28% 6.95% -8.46% -81.60% 

Gap between 
GA and GSA 0.85% 0 -3.47% 1.20% 0.12% -2.75% -56.55% 

30 

ILSA 245 78 1,055 85.41 407 668 225,000 
GA 243 78 1,045 85.17 404 694 144,000 

GSA 241 78 1,010 85.78 405 659 41,400 
Gap between 

ILSA and GSA  -1.63% 0 -4.27% 0.43% -0.49% -1.35% -81.60% 

Gap between 
GA and GSA -0.82% 0 -3.35% 0.72% 0.25% 5.04% -71.25% 

 
For very small-scale problem with less than 3 scenarios, Gurobi is better in terms of both solution 
quality and computation time. However, 3 scenarios are far from representative. Those cases are 
presented here for illustration purpose only. For large-scale problem with over 3 scenarios, a better 
solution is obtained by using ILSA. Comparing to ILSA for the case of 30 scenarios, the GSA can 
obtain near optimal solutions with a optimality gap in profits less than 1.63%, yet grain as high as 
81.6% savings in computation time. Comparing to GA, the GSA performs better in both solution 
quality and efficiency in most cases except the case of 10 scenarios. The differences in average price 
and profits are marginal. Overall, the solution quality obtained by GA and GSA algorithms is similar, 
but GA and ILSA needs a much longer computation time. 
 
Further, we tested GA with four different population sizes: GA1 ( =4ψ ), GA2 ( =6ψ ), GA3 ( =8ψ ), 
GA4 ( =10ψ ). As shown in Table 9, a larger population size leads to a higher computation time 
(increases from 16 hours to 40 hours) yet a better solution quality (profit increases by 20%). One must 
find a tradeoff between the solution quality and computation time. Yet GA is unable to improve the 
solution quality further at a large population size. When we increase the population size from 8 (GA3) 
to 10 (GA4). the computation time increases significantly by 8 hours, yet the profit only increases by 
1.6%. A better optimization result cannot be assured if increasing the population size further. 
 

Table 9 Optimization results of the four GAs 

Algorithms Profits 
(￥1,000) 

Average 
price 
(￥/h) 

Fleet 
size 

Average 
service rate 

(%) 

Average 
number of 
relocations 

Average 
number of 
access trips 

Computation 
time (hours) 

GA1 203 82 834 91.19 803 301 16 
GA2 229 79 1,012 88.80 805 589 24 
GA3 239 78 1,045 87.40 750 718 32 
GA4 243 78 1,045 85.17 404 694 40 

 
4.5 Remarks 
According to the state-of-the-art studies in carsharing pricing, there are clear differences between trip 
pricing and user-based relocation strategies that both methods can be used to address the demand and 
supply imbalance problem. The trip pricing is used based on a demand-pricing elastic function that can 
estimate the maximum potential travel demand. The user-based relocation method can modify personal 
travel behavior including departure time and location with a given demand (Schiffer et al., 2021). 
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Normally, the carsharing operator offers payment discounts for user to conduct user-based relocations. 
The trip-joining and trip-splitting strategies (Barth et al., 2004; Uesugi et al., 2007), and trip-based or 
station-based discount strategies (Huang et al., 2020) are also used in user-based vehicle relocation 
operations. In this paper, we propose a new mode to address the vehicle supply shortage in operational 
level, which allows access trips by giving users allowances (access costs) together with staff-based 
relocations. 
 
In this paper, the primary goal is to optimize the tactical decisions on fleet size and pricing. Based on 
the demand estimation on a particular day, vehicle relocations and access-trips are carried out to further 
balance the vehicle demand and supply. The user-based (allowing access trips) and operator-based 
(vehicle relocations) methods are used to handle the vehicle overflow and shortage under a particular 
demand scenario. In real-world operation, in case that demand estimation is only available in a few 
hours, we can take the tactical decisions as given and use the rolling horizon algorithm to optimize the 
number of relocations and access trips. This would ensure the absolute feasibility of the solutions while 
not overcomplicating the model. However, the shortcoming is that if future demand data of high 
accuracy is available, the rolling horizon method could lead to sub-optimal. Finally, in this paper, we do 
not use the rolling horizon method in case making this paper too long and complex. 
 
5 Conclusion 

This study developed a novel strategy that combines long-term prices, real-time relocations and access 
trips for the demand-supply imbalance problem under demand uncertainty. The carsharing vehicle fleet 
size and the price of trips are optimized in order to maximize the total profits of the operator by 
anticipating the vehicle relocations and access trips via walking or biking in the operational planning 
under uncertain demand. A two-stage stochastic programming is formulated on the basis of a service 
rate. A gradient search algorithm, a genetic algorithm and an iterated local search algorithm are 
proposed as a means to solve the program. To reduce computation time, parallel computing is used for 
solving different demand scenarios. A case study is conducted to demonstrate the applicability of the 
algorithms and to generate insights with respect to the management of one-way carsharing systems. The 
case study is based on a real traffic network in SIP in China and randomly generated demand 
formations from Poisson distributions. 
 
The optimization results suggest that price of carsharing plays an important role in solving the long-
term imbalance problem. A higher price reduces demand at high demand stations at peak hours, while 
maintaining profitability of the system. Considering the operational decisions for a typical day, real-
time vehicle relocations in virtual relocation zones can reduce the imbalance problem. In addition, 
access trips in virtual access zones may further help to mitigate this problem since several clients can 
walk or cycle to the neighboring zones to pick-up vehicles. For the whole carsharing system, by using 
the pricing strategy, conducting real-time vehicle relocations, and allowing access trips, over 84% of all 
carsharing requests can be serviced.  
 
Despite the fact that this research is already considering the flexible departure origins, it can still be 
improved by considering the full trip chain of clients. Clients may choose their pick-up or drop-off 
stations according to their activities. This can further improve the realism and the service level of the 
system. However, establishing a corresponding mathematical representation for such a problem is 
challenging. Moreover, to reduce the computational complexity, personnel movements are not 
considered in this paper. Another possible extension is to introduce rebalancing the staff to optimize the 
personnel movement routes and rebalance the drivers.  
 
Acknowledgement 

This research was financially supported by the Fundamental Research Funds for the Central 
Universities (No. 22120210111) at Tongji University. 



   27 

References 

An, K. (2014). Transit network design with stochastic demand. Doctoral dissertation. The Hong Kong 
University of Science and Technology. 

An, K., & Lo, H. K. (2014). Ferry service network design with stochastic demand under user 
equilibrium flows. Transportation Research Part B, 66(8), 70-89. 

An, K., & Lo, H. K. (2015). Robust transit network design with stochastic demand considering 
development density. Transportation Research Part B, 81, 737-754. 

An, K., & Lo, H. K. (2016). Two-phase stochastic program for transit network design under demand 
uncertainty. Transportation Research Part B, 84, 157-181. 

Balac, M., Becker, H., Ciari, F., & Axhausen, K. W. (2019). Modeling competing free-floating 
carsharing operators-A case study for Zurich, Switzerland. Transportation Research Part C, 98, 
101-117. 

Barrios, J. A., & Godier, J. D. (2014). Fleet sizing for flexible carsharing systems: Simulation-based 
approach. Transportation Research Record, 2416(1), 1-9. 

Barth, M., Todd, M., & Xue, L. (2004). User-based vehicle relocation techniques for multiple-station 
shared-use vehicle systems. Transportation Research Record: Journal of the Transportation 
Research Board, 4161, 145-152. 

Biondi, E., Boldrini, C., & Bruno, R. (2016). Optimal deployment of stations for a car sharing system 
with stochastic demands: a queueing theoretical perspective. In 2016 IEEE 19th International 
Conference on Intelligent Transportation Systems (ITSC), 1089-1095. 

Boyacı, B., Zografos, K. G., & Geroliminis, N. (2015). An optimization framework for the development 
of efficient one-way car-sharing systems. European Journal of Operational Research, 240(3), 
718-733. 

Boyacı, B., Zografos, K. G., & Geroliminis, N. (2017). An integrated optimization-simulation 
framework for vehicle and personnel relocations of electric carsharing systems with 
reservations. Transportation Research Part B, 95, 214-237. 

Boyacı, B., & Zografos, K. G. (2019). Investigating the effect of temporal and spatial flexibility on the 
performance of one-way electric carsharing systems. Transportation Research Part B, 129, 244-
272. 

Brandstätter, G., Kahr, M., & Leitner, M. (2017). Determining optimal locations for charging stations of 
electric car-sharing systems under stochastic demand. Transportation Research Part B, 104, 17-
35. 

Catalano, M., Lo Casto, B., & Migliore, M. (2008). Car sharing demand estimation and urban transport 
demand modelling using stated preference techniques. 

Chen, Y., & An, K. (2021). Integrated optimization of bus bridging routes and timetables for rail 
disruptions. European Journal of Operational Research. 

Ciari, F., Balac, M., & Balmer, M. (2015). Modelling the effect of different pricing schemes on free-
floating carsharing travel demand: a test case for Zurich, Switzerland. Transportation, 42(3), 
413-433. 

Cocca, M., Giordano, D., Mellia, M., & Vassio, L. (2019). Free floating electric car sharing design: 
Data driven optimisation. Pervasive and Mobile Computing, 55, 59-75. 

Correia, G. H., Jorge, D. R., & Antunes, D. M. (2014). The added value of accounting for users’ 
flexibility and information on the potential of a station-based one-way car-sharing system: An 
application in Lisbon, Portugal. Journal of Intelligent Transportation Systems, 18(3), 299-308.  

Dandl, F., & Bogenberger, K. (2018). Comparing future autonomous electric taxis with an existing free-
floating carsharing system. IEEE Transactions on Intelligent Transportation Systems, 20(6), 
2037-2047. 

Di Febbraro, A., Sacco, N., & Saeednia, M. (2012). One-way carsharing: solving the relocation problem. 
Transportation research record, 2319(1), 113-120. 

EVCARD, 2021.< https://www.evcard.com >(accessed: 2021-02-28). 
Fan, W. D. (2014). Optimizing strategic allocation of vehicles for one-way car-sharing systems under 

demand uncertainty. In Journal of the Transportation Research Forum.  
He, L., Hu, Z., & Zhang, M. (2020). Robust repositioning for vehicle sharing. Manufacturing & Service 

Operations Management, 22(2), 241-256. 



   28 

He, L., Mak, H. Y., & Rong, Y. (2019). Operations management of vehicle sharing systems. Sharing 
Economy, 461-484. 

He, L., Mak, H. Y., Rong, Y., & Shen, Z. J. M. (2017). Service region design for urban electric vehicle 
sharing systems. Manufacturing & Service Operations Management, 19(2), 309-327. 

Heilig, M., Mallig, N., Schröder, O., Kagerbauer, M., & Vortisch, P. (2018). Implementation of free-
floating and station-based carsharing in an agent-based travel demand model. Travel Behaviour 
and Society, 12, 151-158. 

Herbawi, W., Knoll, M., Kaiser, M., & Gruel, W. (2016). An evolutionary algorithm for the vehicle 
relocation problem in free floating carsharing. In 2016 IEEE Congress on Evolutionary 
Computation, 2873-2879. 

Huang, K., An, K., & Correia, G. H. (2020a). Planning Station Capacity and Fleet Size of One-way 
Electric Carsharing Systems with Continuous State of Charge Functions. European Journal of 
Operational Research. DOI: 10.1016/j.ejor.2020.05.001. 

Huang, K., An, K., Rich. J., & Ma, W. (2020b). Vehicle relocation in one-way station-based electric 
carsharing systems: A comparative study of operator-based and user-based methods. 
Transportation Research Part E, 102081. 

Huang, K., Correia, G. H., & An, K. (2018). Solving the station-based one-way carsharing network 
planning problem with relocations and non-linear demand. Transportation Research Part C, 90, 
1-17. 

Jorge, D., Molnar, G., & Correia, G. H. (2015). Trip pricing of one-way station-based carsharing 
networks with zone and time of day price variations. Transportation Research Part B, 81, 461-
482. 

Lee Y, Shariat S, Choi K. (2014). Optimizing skip-stop rail transit stopping strategy using a genetic 
algorithm. Journal of Public Transportation. 17(2): 135-164. 

Li, X., Wang, C., & Huang, X. (2019). A Two-Stage Stochastic Programming Model for Car-Sharing 
Problem using Kernel Density Estimation. arXiv preprint arXiv:1909.09293. 

Liu, Z., Meng, Q., & Wang, S. (2013). Speed-based toll design for cordon-based congestion pricing 
scheme. Transportation Research Part C, 31, 83-98. 

Lu, M., Chen, Z., & Shen, S. (2018). Optimizing the profitability and quality of service in carshare 
systems under demand uncertainty. Manufacturing & Service Operations Management, 20(2), 
162-180. 

Lu, R., Correia, G. H. D. A., Zhao, X., Liang, X., & Lv, Y. (2020). Performance of one-way carsharing 
systems under combined strategy of pricing and relocations. Transportmetrica B: Transport 
Dynamics, 1-19. 

Martínez, L. M., Correia, G. H., Moura, F., & Mendes Lopes, M. (2017). Insights into carsharing 
demand dynamics: Outputs of an agent-based model application to Lisbon, Portugal. 
International Journal of Sustainable Transportation, 11(2), 148-159. 

Molnar, G., & Correia, G. H. (2019). Long-term vehicle reservations in one-way free-floating 
carsharing systems: A variable quality of service model. Transportation Research Part C, 98, 
298-322. 

Santos, G. G. D., & Correia, G. H. (2019). Finding the relevance of staff-based vehicle relocations in 
one-way carsharing systems through the use of a simulation-based optimization tool. Journal of 
Intelligent Transportation Systems, 1-22. 

Schiffer, M., Hiermann, G., Rüdel, F., & Walther, G. (2021). A polynomial-time algorithm for user-
based relocation in free-floating car sharing systems. Transportation Research Part B: 
Methodological, 143, 65-85. 

Shaheen, S. A., & Cohen, A. P. (2013). Carsharing and personal vehicle services: worldwide market 
developments and emerging trends. International journal of sustainable transportation, 7(1), 5-
34. 

Shaheen, S. A., Cohen, A. P., & Roberts, J. D. (2006). Carsharing in North America: Market growth, 
current developments, and future potential. Transportation Research Record, 1986(1), 116-124. 

SIP., 2017. <http://www.sipac.gov.cn/dept/wtjd/xwzx/201701/t20170119_524571.htm> (website 
accessed: 2019-10-10). 

Vasconcelos, A. S., Martinez, L. M., Correia, G. H., Guimarães, D. C., & Farias, T. L. (2017). 
Environmental and financial impacts of adopting alternative vehicle technologies and relocation 



   29 

strategies in station-based one-way carsharing: An application in the city of Lisbon, Portugal. 
Transportation Research Part D, 57, 350-362. 

Xu, M., & Meng, Q. (2019). Fleet sizing for one-way electric carsharing services considering dynamic 
vehicle relocation and nonlinear charging profile. Transportation Research Part B, 128, 23-49. 

Xu, M., Meng, Q., & Liu, Z. (2018). Electric vehicle fleet size and trip pricing for one-way carsharing 
services considering vehicle relocation and personnel assignment. Transportation Research Part 
B, 111, 60-82. 

Uesugi, K., Mukai, N., & Watanabe, T. (2007). Optimization of vehicle assignment for car sharing 
system. In International Conference on Knowledge-Based and Intelligent Information and 
Engineering Systems, 1105-1111. Springer, Berlin, Heidelberg. 

Wang, D.Z.W., Lo, H.K., 2008. Multi-fleet ferry service network design with passenger preferences for 
differential services. Transportation Research Part B, 42 (9), 798-822. 

Wang, S., & Meng, Q. (2012). Sailing speed optimization for container ships in a liner shipping 
network. Transportation Research Part E, 48(3), 701-714. 

Weikl, S., & Bogenberger, K. (2015). A practice-ready relocation model for free-floating carsharing 
systems with electric vehicles–Mesoscopic approach and field trial results. Transportation 
Research Part C, 57, 206-223. 

Zheng, J., Scott, M., Rodriguez, M., Sierzchula, W., Platz, D., Guo, J. Y., & Adams, T. M. (2009). 
Carsharing in a university community: Assessing potential demand and distinct market 
characteristics. Transportation Research Record, 2110(1), 18-26. 

Zhou, F., Zheng, Z., Whitehead, J., Perrons, R., Page, L., & Washington, S. (2017). Projected 
prevalence of car-sharing in four Asian-Pacific countries in 2030: What the experts think. 
Transportation Research Part C, 84, 158-177. 

 
 



   30 

Appendix 

Table A1 Optimization results in Stage-2 

Scenario Profits 
(￥) Service rate (%) Relocations Access trips 

1 240,999 87.20 464 709 
2 244,509 86.18 371 711 
3 238,521 85.12 396 614 
4 239,256 85.15 375 584 
5 240,392 86.64 432 688 
6 239,540 85.25 395 639 
7 242,232 86.53 402 712 
8 242,505 86.77 448 699 
9 239,326 86.12 391 646 

10 238,786 84.53 419 565 
11 239,774 83.92 362 603 
12 242,181 86.38 377 678 
13 241,464 86.60 396 704 
14 239,407 87.39 454 684 
15 241,240 85.15 461 632 
16 238,819 83.83 389 592 
17 243,219 85.92 389 693 
18 241,793 86.33 390 709 
19 243,266 87.03 440 673 
20 239,921 84.34 408 639 
21 237,930 85.30 390 645 
22 240,150 84.55 374 643 
23 233,889 85.37 408 630 
24 242,684 85.96 404 678 
25 240,921 86.94 436 688 
26 240,006 83.74 376 621 
27 242,129 84.52 401 619 
28 242,861 86.39 398 709 
29 239,015 87.35 428 660 
30 240,649 86.77 382 691 

Minimum value 233,889 83.74 362 565 
Mean value 240,580 85.78 405 659 

Maximum value 244,509 87.39 464 712 
C.V 0.85% 1.27% 6.85% 6.33% 
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