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A B S T R A C T   

This study presents a damage pattern recognition approach for corroded steel beams strengthened by CFRP 
anchorage system based on acoustic emission clustering analysis. The proposed method includes four steps: 
acoustic emission signal acquisition, feature extraction, clustering analysis, and damage pattern recognition. 
Four corroded beams with different corrosion levels and strengthening schemes were tested under four-point 
bending loading. The acoustic emission signals were collected during the loading process and analyzed using 
Gaussian mixture model clustering method. The results showed that the collected AE data were analyzed using 
clustering analysis, successfully distinguishing the distinct damage patterns associated with each mode. The AE 
signals exhibited distinct characteristics for different damage modes: concrete matrix damage had high- 
frequency and low-energy characteristics, CFRP-matrix debonding showed intermediate values for all parame
ters, and CFRP tearing had longer durations, lower peak frequencies, and high-energy characteristics. Besides, 
the study identified three stages of the damage process: an initial stage with fewer low-intensity AE signals, a 
damage development stage characterized by an increase in concrete-matrix damage and CFRP – matrix 
debonding signals, and a continuous damage growth stage with significant AE signals associated with three 
damage modes. Furthermore, the degree of corrosion significantly influenced the cumulative AE energy of 
damage modes. Lower degrees of corrosion led to higher cumulative energy from concrete matrix damage and 
CFRP-matrix debonding. These findings provide valuable insights for understanding the damage evolution and 
failure mechanisms of CFRP-strengthened corroded beams. The use of AE techniques for damage pattern 
recognition can enhance the evaluation and design of CFRP anchorage systems, leading to more effective 
rehabilitation strategies for corroded structures.   

1. Introduction 

Corrosion is a significant problem for steel structures as it can lead to 
reduced load carrying capacity and ultimately, structural failure. [1,2] 
Therefore, several techniques have been developed for the rehabilitation 
of corroded steel structures. Some of these techniques include tradi
tional methods such as patch repair, plate bonding, and cathodic pro
tection, while others include more advanced techniques such as the use 
of fiber-reinforced polymers (FRPs) [3–8]. 

Due to the advantages of FRP, such as light weight, high strength, 
corrosion resistance, high designability, and ease of construction and 
molding, FRP has become a major complement to traditional materials 

such as concrete in the field of civil engineering [9–12]. The utilization 
of FRP-concrete combination structures effectively leverages the 
compressive capacity of concrete and the high tensile strength of FRP. 
This approach reduces structural self-weight, enhances durability, and 
provides a solution to longstanding challenges in reinforcing and 
repairing concrete structures [13–16]. Noteworthy, premature 
debonding damage of FRP ends is the most commonly-encountered 
failure mode in FRP-concrete combination structures without reaching 
the ultimate strength of the fibers. It was observed that the FRP sheets 
may debond at 50% or less of their ultimate tensile strength, that re
duces the efficiency of the strengthening system [17]. FRP anchors, as a 
new anchorage method, can not only avoid or control the premature 
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debonding of FRP sheet, but also greatly improve the efficiency of fiber 
utilization. 

Since the FRP composite structure is a combination of FRP sheet, FRP 
anchors and reinforced concrete, its force characteristics and damage 
mechanism are more intricate than for RC structures [18–20]. To 
completely clarify the damage mechanism of FRP composite structures, 
all damage mechanism, such as matrix cracking, the fiber–matrix 
debonding, the fiber breakage, must be elucidated, which poses a 
challenge to the analysis of the damage mechanism of FRP composite 
structures. Acoustic emission (AE) technology is a real-time, non-dam
age monitoring technique, which can effectively detect and record 
transient elastic waves emitted from internal damages by sensors 
attached to the surface of the structure [21–24], which is a superior 
means of damage analysis. 

Currently, there are two main methods to process the AE signals: 
parameter-based and waveform-based analyses. The parametric analysis 
method usually uses waveform characteristic parameters such as 
amplitude, ring count, and energy to characterize different damage 
modes, which is simple, good in real time and easy to operate. Degala 
et al. [25] conducted an AE study of CFRP-strengthened concrete slabs 
under four-point bending test and results showed that the AE parame
ters, including amplitude, energy, and ringing counts can effectively 
characterize the failure modes of CFRP-strengthened RC slabs. Barrell 
et al. [26] showed that damage with a small effect on the overall me
chanical properties of the material, such as matrix cracking, was 
accompanied by a low-amplitude AE signal, while damage with a large 
effect, such as fiber fracture, was accompanied by a high-amplitude AE 
signal. Shahidan et al. [27]conducted experiments involving four-point 
bending tests on reinforced concrete (RC) beams. They employed RA 
analysis, calculated as the ratio of rise time to amplitude, as well as AF 
analysis, determined as the ratio of ringing counts to duration, to 
identify various crack types that developed in the beams at different 
stages of the testing process. Yu et al. [28] investigated the AE signals of 
fiber reinforced composite materials during fracture process, and ob
tained the spectral characteristics of fiber fracture by simultaneous 
observation with polarized light microscopy. Groot et al. [29] investi
gated real-time frequency determination of acoustic emission for 
different fracture mechanisms in carbon epoxy composites. It was found 
that the signal frequency of matrix cracking release was between 90 and 
180 kHz, the signal frequency of fiber breakage was higher than 300 
kHz, the signal frequency of fiber–matrix debonding was between 240 
and 310 kHz, and the signal frequency of fiber pulling was between 180 
and 240 kHz. (concluded that matrix cracking released frequencies be
tween 90 and 180 kHz, fiber failure frequencies above 300 kHz, 
debonding frequencies between 240 and 310 kHz and pull-out fre
quencies between 180 and 240 kHz. Although certain features of the AE 
signal of the damage mechanism can be obtained by parametric analysis 
and spectral analysis, the overlap of parameter distributions between 
different damage modes makes it impossible to completely distinguish 
all damage modes by using only certain parameters as features. There
fore, there is an urgent need for AE analytical methods with stronger 
analytical capabilities. 

With the rapid development of artificial intelligence technologies, 
the application of pattern recognition methods in AE signal analysis has 
gradually emerged. Pattern recognition methods can be divided into two 
categories: unsupervised and supervised, depending on whether the 
object classification of study is known or not. Cluster analysis is a 
representative of unsupervised pattern recognition methods, which 
classify patterns based on pattern characteristics and similarity mea
sures. Several studies have used pattern recognition algorithms to group 
AE signals with similar characteristics and use these groupings to 
distinguish between damage states [30,31]. Johnson et al. [32] analyzed 
the AE transients in composite laminate tensile test specimens by prin
cipal component analysis (PCA). The unsupervised cluster analysis re
sults showed that AE damage features from matrix cracking and local 
delamination can be separated in different clusters. Pei et al. [33] used 

the fuzzy c-means clustering algorithm to classify the AE events into 
three clusters which correspond to three damage modes of carbon/glass 
fiber-reinforced hybrid laminate composite specimens with different 
structure and indentation. Guo et al. [34] performed principal compo
nent analysis and K-means clustering analysis using relevant AE char
acteristic parameters (including energy, amplitude and duration) to 
identify various fatigue damage modes of carbon fiber/epoxy composite 
laminates with symmetrical architecture. Sause et al. [35] applied the 
validity analysis of clustering to determine the optimal number of 
clusters for the AE data, and the number of clusters obtained was 
consistent with the number of damage types of the CFRP samples. It can 
be found that pattern recognition technology represented by cluster 
analysis shows a powerful signal analysis capability with high recogni
tion rate and intelligence, which has become an effective means for 
composite structure damage pattern recognition and damage mecha
nism exploration. Du et al. [36] investigated the damage evaluation and 
pattern recognition for the FRP/steel-confined RC column using the 
fuzzy C-means (FCM) algorithm and particle swarm optimization (PSO) 
algorithm. It was found that five damage mechanisms were identified 
and their typical damage waveforms were extracted. Nair et al. [37,38] 
applied unsupervised k-means clustering analysis, and the supervised 
neural networks to automatically cluster and separate the AE patterns of 
CFRP retrofitted RC beams. 

While AE technique has been widely used in damage monitoring of 
steel structures, the application of AE in FRP-reinforced structures is still 
limited. Moreover, there is a lack of experimental studies on the iden
tification and monitoring of damage modes in FRP-reinforced corroded 
structures, which is crucial for the maintenance and safety assessment of 
existing structures. Therefore, the development of effective AE-based 
damage pattern recognition methods for FRP-reinforced corroded 
structures is of great significance for enhancing the durability and safety 
of these structures. 

This paper presents a novel approach for damage pattern recognition 
of corroded RC beams strengthened with a CFRP anchorage system 
based on clustering analysis of AE signals. The study aims to investigate 
the potential of the AE technique for monitoring the damage evolution 
in such structures, and develops a clustering analysis-based approach for 
damage pattern recognition of AE signals. Furthermore, the study ana
lyses the correlation between the identified damage patterns and the 
corrosion level of the specimens. The contributions of this research 
include providing a novel approach for damage pattern recognition of 
FRP-reinforced structures, enhancing the understanding of the perfor
mance of FRP-reinforced corroded structures, and improving the reli
ability and efficiency of the AE technique for monitoring the health of 
RC structures. 

2. Experimental setup and data acquisition 

2.1. Materials and specimens 

Four reinforced concrete (RC) beams were cast with cross-sectional 
dimensions of 150 mm × 200 mm × 1600 mm. The concrete was 
made using a design mix proportion of 1:1.65:2.52 (cement: sand: 
aggregate proportions by volume) and a water-to-cement ratio (w/c) of 
0.47 (water: cement proportion by weight) [39]. The beams were con
structed with a 25-millimeter-thick concrete cover. To enhance tensile 
strength, two D14 (14-millimeter diameter) steel bars with a total length 
of 1800 mm were employed at the bottom. For installation purposes, 
two D8 (8-millimeter diameter) steel bars, also with a total length of 
1800 mm, were used at the top. Furthermore, evenly spaced D6 (6- 
millimeter diameter) steel bars were employed as stirrups, with an 80- 
millimeter spacing, to provide additional reinforcement, further 
strengthening the beam’s structural integrity. Epoxy resin was used to 
cover the contact position between the stirrups and longitudinal tensile 
bars to prevent corrosion of the stirrups. Fig. 1 illustrates the dimensions 
and reinforcement details of RC beams. 
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The mechanical properties of the materials used are summarized in 
Table 1. The concrete used had a compressive strength of 42.5 MPa with 
a standard deviation of 3.6 MPa. The longitudinal bars used had yield 
strengths of 462.2 MPa (with a standard deviation of 15.2 MPa) and 
408.9 MPa (with a standard deviation of 5.5 MPa), and ultimate 
strengths of 615.7 MPa (with a standard deviation of 16.2 MPa) and 
611.3 MPa (with a standard deviation of 4.5 MPa), respectively. The 
elastic modulus of the bars was 200 GPa. The CFRP sheet used had a 
thickness of 1.02 mm, a tensile strength of 3000 MPa, an elastic modulus 
of 230 GPa, and an ultimate strain of 1.66%, as provided by the 
manufacturer. 

2.2. Corrosion treatment 

Accelerated corrosion tests were conducted using an electrochemical 
method to obtain RC beams with different degrees of corrosion. To 
perform the electrochemical corrosion test, the specimens were placed 
on a corrosion trough with the exposed reinforcement bars outside the 
trough. A 5% NaCl solution was used as the electrolyte, and a constant 
DC voltage source (eTM-305F, with a voltage range of 0–30 V and a 
current range of 0–5 A) was used to provide the required voltage and 
current for the corrosion process. The tensile steel bars were made anode 
and connected to the positive terminal of the power supply, while the 
concrete was wrapped with a wire mesh outside, which was made 
cathode and connected to the negative terminal of the power supply. 
Furthermore, it is important to monitor the liquid level in the corrosion 
trough and promptly add more solution as needed to maintain a 5% 
concentration of NaCl, as the solution may evaporate faster in high 
temperature conditions. 

To achieve different degrees of corrosion, different durations of 
electrochemical corrosion were applied to the reinforce16ment bars. 
The duration of corrosion was determined by Faraday’s second law. 
According to Faraday’s law, the amount of corrosion products is pro
portional to the quantity of electricity passing through the corroding 
steel. Thus, the corrosion time required to obtain a certain amount of 
corrosion can be calculated based on the amount of electricity passed 
through the steel and the charge needed for the formation of iron oxide. 
The theoretical mass loss is defined by Eq. (1). 

Mass loss =
ItM
Fn

(1) 

Where t is the time elapsed (s); M is the atomic weight (for iron: M =
55.84 g/mol); n is the ion charge; and F is Faraday’s constant, equal to 
96,485C/mol, which is the amount of electrical charge in 1 mol of the 
metal; a constant electric current denoted as I was maintained at a 
current density of 180 μA/cm2. 

As previously mentioned, the corrosion time was set to 25, 50, and 
100 days to induce mild, moderate, and severe corrosion damage, cor
responding to the corrosion levels of 5%, 10%, and 20%, respectively. 
The beams were labeled as C0, C5, C10, and C20, in accordance with 
these corrosion levels. 

2.3. CFRP anchorage system strengthening 

2.3.1. Fabrication of CFRP anchors 
The manufacturing method of CFRP anchors typically involves 

several steps [40,41]. First, a suitable unidirectional CFRP sheet is 
selected and cut to the required dimensions, with a width of 150 mm and 
a length of 80 mm. The 80 mm length is then divided into two sections, a 
50 mm fan-shaped section and a 30 mm pre-built section that includes a 
small margin for a 90-degree bend section. A 10 mm dowel is inserted 
into the fan-shaped section to form the main body of the anchor. Ac
cording to Llauradó [41], the hardened length of the anchor should not 
exceed two-thirds of the embedment length to prevent damage to the 
bending area. Therefore, epoxy is applied to an end part spanning ten 
millimeters over the entire width of the sheet to produce the hardened 
shaft. A small margin is left in the pre-built 30 mm section to form a 90- 
degree bend section, which creates a bendable area between the main 
body and the hardened section of the CFRP anchor. Finally, to create 
bow-tie CFRP anchors, two different lengths of CFRP sheet are cut and 
the above steps are followed to create the main body, hardened section 
and bending section of the anchor. The detailed construction process 
was illustrated in Fig. 2. 

2.3.2. Strengthening procedure 
The CFRP anchorage system strengthening procedure involves the 

following steps:  

a) Surface preparation: To prepare the surface of weakened concrete for 
reinforcement, a pneumatic needle scaler was used to roughen the 

Fig. 1. Dimensions and reinforcement details of RC beams.  

Table 1 
Mechanical properties of concrete, steel bars, concrete and CFRP sheets.  

Materials Strength and strain Elastic modulus 
Concrete Compressive strength 42.5 ± 3.6 MPa — 

D14 Yield strength 615.7 ± 16.2 MPa 200GPa 
Ultimate strength 462.2 ± 5.5 MPa 

D8 Yield strength 611.3 ± 15.2 MPa 200GPa 
Ultimate strength 408.9 ± 4.5 MPa 

CFRP Tensile strength 3000 MPa 230GPa 
Ultimate strain 1.66%  Fig. 2. The construction process of CFRP anchors.  
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surface and remove the top layer of concrete. This process exposed 
the aggregates across the area where the CFRP sheets were to be 
bonded, creating a textured surface that is conducive to bonding. 
This type of surface preparation is critical in ensuring the strong 
adhesion of the CFRP sheets to the concrete surface, and ultimately, 
the effectiveness of the reinforcement.  

b) Hole drilling: Four holes were drilled into the bottom faces of the 
beams using a diamond-tipped drill bit with a diameter of 10 mm and 
a depth of 35 mm. The location of the anchor holes was marked on 
the beam surface prior to drilling for accuracy. To ensure better 
adherence between the concrete surface and epoxy resin, pressurized 
air and a vacuum were used to remove concrete particles and dust 
from the drilled holes and the bottom surface of the beams.  

c) CFRP sheet application: epoxy resin was applied to the surface of the 
RC beams to be reinforced, and the fabricated CFRP sheets were 
quickly pasted on it. A small amount of epoxy resin was applied 
evenly on the surface of the CFRP sheet and squeezed several times 
along the direction of the CFRP sheet texture with a roller to remove 
air bubbles.  

d) Anchor installation: The CFRP anchoring rods were inserted into the 
drilled holes, leaving the predetermined anchoring depth protruding 
from the beam surface, as illustrated in Fig. 3 (b). A small amount of 
epoxy adhesive was applied to the anchor rod before installation to 
enhance the bond strength between the rod and the concrete.  

e) Curing: The curing time of the epoxy adhesive and CFRP sheets was 
allowed according to the manufacturer’s instructions, usually 7 days, 
to ensure the adhesive reaches maximum strength. 

By following these steps, the CFRP anchorage system can effectively 
increase the load capacity and extend the service life of corroded beams. 
The CFRP anchorage system is lightweight, easy to install, and has 
excellent durability, making it a reliable solution for the repair and 
reinforcement of corroded beams. 

2.4. Load testing and AE monitoring 

The loading test was conducted at the Laboratory of Engineering 
Structural Performance Evolution and Control, Tongji University, using 
an electro-hydraulic servo testing machine with a maximum load ca
pacity of 2,000 kN. Two pre-loading was performed before the formal 
loading, and the pre-loading value was 5% of the theoretical calculated 
ultimate load of the beam to ensure close contact between the loading 
device and the RC beam. Thereafter, a displacement-controlled loading 
scheme with a loading rate of 1 mm/min was utilized until the specimen 
failed. During the loading process, high-definition cameras were used to 
record the whole process on both sides of the loaded test beam, which 
facilitated accurate observation of the crack development and failure 
mode of the RC beams. 

AE monitoring setups conform to international standards for acoustic 
emission monitoring in concrete structures [42]. AE signal acquisition 
was performed using a 16-channel Micro-II Express Digital AE system, 

provided by Mistras Group, Inc. A constant threshold of 40 dB and a pre- 
amplification of 40 dB were implemented. The pre-trigger and sampling 
rate were initialized at 256 microseconds and 5 MHz, respectively. To 
optimize signal detection, all sensors were equipped with a band-pass 
filter ranging from 20 kHz to 400 kHz, which is consistent with the 
expected frequency range for most detected AE signals in concrete [43]. 
The hit lock time and hit definition time were 300us and 1000us, 
respectively. Five broadband, resonant-type, single-crystal piezoelectric 
transducers from Physical Acoustics Corporation (PAC), called PICO, 
were used as the AE sensors. As shown in Fig. 4, three sensors were 
evenly arranged near the top of the beam (two at the end and one in the 
middle), and the remaining two sensors were placed at the bottom of the 
beam. Before the actual AE monitoring, the AE sensors were checked for 
sensitivity using pencil lead break test. The AE signals were recorded 
continuously during the flexural testing of RC beams corroded to 
different ages during the entire duration of loading. 

3. Clustering methodology 

The Gaussian Mixture Model (GMM), an unsupervised learning al
gorithm, has been widely used in grouping data into clusters. A GMM is a 
parametric probability density function represented as a weighted sum 
of Gaussian component densities [44–46]. The model is trained using 
the Expectation Maximization (EM) algorithm, and most parameters are 
adjusted automatically. The expectation is maximized by iteratively 
updating the mean μ and standard deviation σ of the distribution until 
the variation in these two parameters is very small. Therefore, the AE 
signal to be clustered can be viewed as a number of joint probability 
distributions from multiple Gaussian distributions. The GMM (or the 
linear superposition of Gaussians) is expressed as Eq. (2). 

p(x) =
∑K

k=1
πkN(x|μk,Σk) (2) 

Where K is the desired number of Gaussians or number clusters), 
∑K

k=1N(x|μk,Σk) is a normal multivariate Gaussian distribution of class, 
πk is the kth weight coefficient of Gaussian density functions. A D- variate 
Gaussian distribution function is given in Eq. (3). 

Fig. 3. Anchors installation procedure.  

Fig. 4. Layout of the AE sensors.  
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Where μk is the mean vector of kth Gaussian density functions; Σk is 
the covariance matrix of kth Gaussian density functions. 

The mixing coefficient (or weightage) satisfies the constraint 0 ≤ πk 
≤ 1 and is given in Eq. (4). 

∑K

k=1
πk = 1 (4) 

For a univariate Gaussian distribution, the probability density 
function [F(x)] is given in Eq. (5). 

F(x) = G(x|μ, σ) = 1
̅̅̅̅̅̅̅̅̅̅
2πσ2

√ e
− 1
2

(
x− μ

σ

)2

(5) 

Where - ∞ ≤ x ≤ ∞, μ is the mean, and σ is the standard deviation of 
the data. Standard deviation (σ) can be thought of measuring how far the 
data values lie from the mean (μ). Assuming that the variables are in
dependent with probability density function’s N

(
μ1, σ2

1
)
, N
(
μ2, σ2

2
)
, ⋯,

N
(
μP, σ2

P

)
, respectively. The joint densities are given by Eq. (6). 

F(x1, x2,⋯xP) = f (x1)⋅f (x2)⋅⋯⋅f (xP) (6) 

The variance and standard deviation describe how spread out the 
data are. If the data all lie close to the mean, then the standard deviation 
is small, whereas if the data are spread out over large range of values, σ 
is large. Solving Equation A5: 

F(x1, x2,⋯xP) =
1

(2π)P/2
(σ2

1σ2
2⋯σ2

P)
1/2e− 1

2

[(
x1 − μ1

σ1

)2

+⋯+

(
xP − μP

σP

)2
]

(7)  

4. Data preprocessing and cluster analysis 

4.1. Data preprocessing and feature selection 

The AE signal collected by an AE acquisition system can been rep
resented by a set of characteristic parameters, including rise time, count, 
amplitude, average frequency, center of mass frequency, duration, peak 
frequency, signal strength, etc. Selecting appropriate parameters for 
cluster analysis can greatly simplify the clustering calculation process. 
The parameters used for clustering analysis should not only describe the 
majority of the information in the AE signal waveform, but also exclude 
the interference of unrelated parameters. Therefore, correlation analysis 
was adopted to select the AE characteristic parameters. Correlations 
were evaluated using the spearman correlation test: the spearman co
efficient was considered to indicate poor correlation if < 0.2, moderate 
if < 0.4, relatively strong if < 0.6, strong if < 0.8, and very strong if >
0.8. 

Fig. 5 shows the correlation coefficient matrix of each AE parameter. 
It can be observed that there is a strong correlation between the ring 
count, duration, and amplitude. Additionally, there is a strong correla
tion between absolute energy, energy, and signal intensity, as well as 
between backcalculation frequency and average frequency. Further
more, it is worth noting that some studies have shown that AE param
eters, such as rise time, ringing counts, energy, duration, and amplitude, 
can be used to assess the development of damage cracks in the sample. 
By utilizing parameter correlation analysis, it is possible to reduce the 
subset of acoustic emission descriptors and subsequently decrease 
computational workload, leading to improved clustering results. After 
conducting a correlation analysis, the parameter set was reduced to five 
parameters: AE ring counts, rise time, average frequency, absolute en
ergy, and peak frequency. These parameters were then utilized in 
principal component analysis and cluster analysis. 

Fig. 5. Correlation coefficient matrix of each AE parameter.  
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4.2. Principal component analysis 

Before performing principal component analysis on the AE data, the 
sample values were normalized to a range of 0 to 1. The Z-score method 
was used for data normalization, which can accelerate the convergence 
of the model parameters during training and improves learning accu
racy. 

z =
x − μ

σ (8) 

Where μ and σ denote the mean and standard deviation of each 
column, respectively. 

The key to conducting principal component analysis is to determine 
the number of new composite parameters that can describe all the 
characteristic information of the original AE signal parameters to the 
greatest extent possible, while minimizing the number of new parame
ters [47–49]. Therefore, PCA analyses are employed to recombine AE 
characteristic parameters, including rise time, count, energy, duration, 
amplitude, amplitude frequency, signal strength, central frequency, and 

peak frequency, which have a certain relevance, to form a new set of 
independent characteristics. Besides, the required number of principal 
components was determined by introducing the contribution of eigen
values and cumulative eigenvalues contribution rate, which can reflect 
the comprehensive ability of the original feature parameters. 

Fig. 6 illustrates the eigenvalues and their contributions. It is 
apparent that the first principal component accounted for 50.0% of the 
total variation, and the second principal component contributed 
38.30%. Given that the cumulative contribution rate of the first two 
principal components reached 88.3% and the eigenvalues exceeded 1, 
the first two new integrated parameters already contain the main in
formation characteristics of the original AE signal parameters. There
fore, the first two principal components, PCA1 and PCA2, have been 
deliberately chosen. These components symbolize fresh attributes 
extracted through PCA analysis, residing within a transformed coordi
nate framework. They are amenable for delving into the analysis of the 
interrelationship among volatile constituents within CFRP-reinforced 
corroded beams. 

Fig. 6. The variance of principal components of specimens. The y axis on the right side shows the cumulative variances (a line in the graphs).  
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4.3. Choice of clusters number 

Cluster analysis is a vital field of research that aims to determine the 
optimal number of clusters by assessing the results of clustering using 
computational indicators. In this study, we employ two evaluation in
dicators, namely the Silhouette Index (SI) and the Davies-Bouldin Index 
(DB), to evaluate the clustering results. 

The Silhouette Index is calculated as the ratio of the distance be
tween a data point and other data points within its cluster to the distance 
between the same data point and its nearest neighboring cluster [33]. A 
smaller Silhouette Index indicates that the distance between the cluster 
containing the data point and its nearest neighboring cluster is greater, 
implying better clustering results [18,36]. Mathematically, the Silhou
ette Index is defined as Eq.(9). 

SC =
b(i) − a(i)

max{a(i), b(i) }
(9) 

where a(i) is the average distance from point i to all other vectors in 
the same cluster, which measures the closeness of the AE data points in 
the cluster; b(i) is the average distance from point i to vectors in other 
clusters, with the aim of finding the minimum value in the cluster. 

Davies - Bouldin Index, proposed by David L. Davies and Donald 
Bouldin, an internal metric for evaluating the clustering algorithm. A 
smaller value of DB index indicated a smaller intra-class distance and a 
larger inter-class distance. The DB index is defined as Eq. (10). 

DB =
1
k

∑k

i=1
max

i∕=j,i,j∈[1,K]

si + sj

Mij
(10) 

Fig. 7. The number of clusters evaluated by Silhouette coefficient and Davies–Bouldin index.  
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Where Si, Sj denotes the dispersion of AE date points for i-th and j-th 
clusters; as shown in Eq. (11). Mij is the distance between the center of i- 
th cluster and the center of j-th cluster, as shown in Eq. (12). 

si =

{
1
n
∑n

j=1

⃒
⃒Xij − Ai

⃒
⃒q
}1

q

(11) 

Where Xij denotes the j-th data point in cluster i; Ai denotes the center 
of cluster i; n denotes the number of data points in cluster i; If q is taken 
as 1, it represents the mean of the distances from each point to the 
center; if q is taken as 2, it represents the standard deviation of the 
distances from each point to the center, and they can both be used to 
measure the degree of dispersion. 

Mij =

{
∑K

k=1

⃒
⃒aki − akj

⃒
⃒q
}1

q

(12) 

Where aki denotes the value of the k-th attribute of the centroid of the 
i-th class. 

It is worth noting that the Silhouette and Davies-Bouldin indices 
have different strengths and weaknesses. The Silhouette index is sensi
tive to the shape of the clusters and tends to favor convex clusters, while 
the Davies-Bouldin index is sensitive to the distance between clusters 

and tends to favor compact and well-separated clusters. Therefore, using 
both indices can provide a more robust evaluation of the clustering 
results. 

Fig. 7 shows the evaluation of the number of clusters for four spec
imens using the Silhouette Index (SI) and the Davies - Bouldin Index 
(DB). It is worth noting that a higher Silhouette coefficient and a lower 
Davies-Bouldin index imply a better number of clusters. In order to 
determine the optimal number of clusters for the acoustic emission 
signals during the loading process, two clustering evaluation criteria 
were considered: the Davies-Bouldin index and the Silhouette coeffi
cient. For beams C0, C5, and C10, both criteria indicated that the 
optimal number of clusters was K = 3. However, for beam C20, the 
Davies-Bouldin index suggested K = 3 while the Silhouette coefficient 
suggested K = 5. Taking both criteria into account, it was concluded that 
K = 3 was the optimal number of clusters for the AE signals during the 
loading process of CFRP reinforced corroded beams. 

4.4. Clustering analysis using GMM 

After parametric correlation analysis and principal component 
analysis, the AE signals were clustered using Gaussian mixture model 
algorithm. The withdrawal criterion for the end of the Gaussian mixture 
model clustering algorithm is a threshold value of 10-4 or a cumulative 

Fig. 8. Clustering along PCA axis of specimens.  
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number of iterations set to 1000. The AE data of 4 CFRP strengthened RC 
beams were dimensionality reduced into three clusters. 

Fig. 8 shows the scatter plot of the AE signals collected during the 
loading process for all four specimens. PCA1 is represented along the x- 
axis, while PCA2 is represented along the y-axis. Each color in the scatter 
plot corresponds to a cluster obtained from the GMM algorithm. As can 
be seen from Fig. 8, the clustering results are well-distinguished, and 
each cluster represents a different type of AE signal generated during the 
loading process. Therefore, the results demonstrate the potential of 
using cluster analysis for damage pattern recognition in corroded steel 
beams strengthened with CFRP anchorage systems. 

5. Results and discussion 

5.1. Expectations of damage modes 

The damage modes observed in corroded CFRP reinforced beams is a 
complex phenomenon influenced by several factors. Primarily, corro
sion is a significant factor affecting the durability and strength of rein
forced beams, resulting in reduced cross-sectional area of steel bars, 
increased surface roughness, and decreased bond strength between steel 
and concrete. These factors can lead to concrete spalling and cracking, 
ultimately causing a reduction in the beam’s strength and stiffness. In 
addition to corrosion, steel bar slippage and concrete plastic deforma
tion during the loading process of CFRP reinforced beams can also 
impact the beam’s strength and stiffness. Steel bar slippage can lead to 
the failure of the bond between concrete and steel, causing further 
damage. Meanwhile, concrete plastic deformation can increase the 
beam’s deformation, resulting in additional cracks. 

Fig. 9 depicts the final failure modes of corroded beams strengthend 
by CFRP anchorage system. It can be observed that debonding, tearing, 
and fracture at the interface between CFRP and the beam can occur 
during the failure process of CFRP reinforced beams.interface can occur 
during the failure process of CFRP reinforced beams. When the stress on 
the beam surpasses the ultimate strength of CFRP, the CFRP laminate 
may tear and fracture, resulting in beam failure. Debonding can also 
occur at the interface between CFRP and the beam, decreasing the 
beam’s strength and stiffness. Lastly, microcracks’ initiation and prop
agation inside the beam are also observed in the damage pattern of CFRP 
reinforced corroded beams. Microcracks’ initiation and propagation can 
be caused by several factors, such as corrosion, concrete cracking, and 
steel bar corrosion. As these microcracks extend to the surface of the 
beam, they form macrocracks, resulting in beam failure. 

The main damage patterns vary across different periods, and multi
ple damage patterns can occur simultaneously. Due to the lack of prior 
knowledge of signal characteristics associated with each failure mech
anism and the absence of micro-scale evidence confirming the existence 
of specific damage patterns, principal component clustering was 
employed to separate the data representing three damage patterns 
identified by the acoustic emission (AE) feature parameters. The results 
of the three clusters corresponded to the damage modes of concrete 
matrix damage, CFRP debonding, and CFRP tearing, providing a robust 
data foundation for subsequent analysis. 

5.2. Expectations and results of AE clustering 

The AE clustering analysis was conducted to identify the damage 
patterns in corroded beams strengthened by CFRP anchorage system. 
The three clusters were obtained through principal component analysis 
and Gaussian mixture model clustering algorithm. In this section, we 
will discuss the expectations and results of AE clustering based on the 
analysis of the AE parameters of the three clusters. 

Table 2 - 4 present the mean values of the rise time, ring count, 
amplitude, absolute energy, duration, and peak frequency for each 
cluster. As expected, the AE parameters of the three clusters showed 
distinct differences. Cluster 0 had the shortest rise time of 132 μs, the 

lowest ring count of 21, and the lowest absolute energy of 1053 mV2s, 
indicating a shorter duration of the AE signal and less AE sources. It also 
had the shortest duration of 550 μs and the highest peak frequency of 77 
kHz, suggesting a higher frequency range of the AE signal. Cluster 1 had 
intermediate values for all parameters, with a rise time of 500 μs, a ring 
count of 88, an amplitude of 60 dB, an absolute energy of 5.8 ×106 

mV2s, a duration of 2651 μs, and a peak frequency of 65 kHz. The 
acoustic emission parameters of cluster 1 were in between those of 
cluster 0 and cluster 2. Cluster 2 had the longest rise time of 1267 μs and 
the highest ring count of 503, indicating a longer duration of the AE 
signal and more AE sources. It also had the highest absolute energy of 
4.8 ×108 mV2s and the longest duration of 30277 μs, suggesting a large 
amount of energy released during the damage process. In terms of fre
quency, cluster 2 had the lowest peak frequency of 32 kHz, indicating a 
lower frequency range of the AE signal. 

The peak frequency showed a decreasing trend from cluster 0 to 
cluster 2, whereas other parameters showed an increasing trend. Among 
them, the absolute energy showed the largest increase trend, and the 
amplitude and ring count also showed a significant increase trend. It is 
very obvious that cluster 0 showed the characteristics of low frequency 
and high energy, while cluster 2 showed the characteristics of high 
frequency and low energy. 

5.3. Association of clusters to damage modes 

Based on the clustering results, the next step was to associate the 
identified clusters with the expected damage modes. The three clusters 
were assigned to three damage modes: concrete matrix damage, CFRP- 
matrix debonding, and CFRP tearing. The identification of the damage 
modes was based on the analysis of AE feature parameters, which pro
vided a clear separation of the different types of signals associated with 
each damage mode. 

Cluster 0 was associated with concrete matrix damage, characterized 
by the presence of low-amplitude AE signals with a high frequency 
content. The analysis of AE feature parameters revealed a significant 
number of short-duration, high-frequency events within this cluster. 
These signals were primarily generated by the micro-cracking occurring 
within the concrete matrix as a result of the applied load on the corroded 
beam. The loss of bond between the reinforcement and the concrete was 
a critical contributing factor to the initiation and propagation of cracks 
in the concrete matrix. This mode of damage poses a significant threat to 
the overall structural integrity of the CFRP-strengthened beam, as it 
weakens the load-bearing capacity of the structure and may lead to 
progressive deterioration if not addressed promptly. 

Cluster 1 was associated with CFRP-matrix debonding, characterized 
by the presence of high-amplitude AE signals with a low frequency 
content. The AE feature parameters analysis revealed a considerable 
number of long-duration, low-frequency events within this cluster. 
These signals were primarily generated by the debonding of the CFRP 
sheets from the surface of the corroded beam. CFRP-matrix debonding is 
a critical mode of damage that undermines the effectiveness of the 
reinforcement in carrying the applied load. If left untreated, this damage 
mode can lead to a significant reduction in the load-carrying capacity of 
the structure, compromising its overall stability and safety. 

Cluster 2 was associated with CFRP tearing, characterized by the 
presence of high-amplitude AE signals with a low peak frequency con
tent. The AE feature parameters analysis revealed a high number of 
high-energy, low-peak-frequency events within this cluster, confirming 
the presence of CFRP tearing. The signals were primarily generated by 
the tearing of the CFRP sheets due to the excessive tensile stress induced 
by the applied load. CFRP tearing is a critical mode of damage that 
directly affects the load-carrying capacity of the CFRP reinforcement. It 
can lead to sudden structural failure if not detected and addressed in a 
timely manner. 

The association of the identified clusters with the specific damage 
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Fig. 9. The final failure modes of test beams.  
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modes provided valuable insights into the structural behavior of the 
CFRP-strengthened beam under different loading conditions. The load- 
time analysis for each cluster offered a comprehensive understanding 
of how the damage modes influenced the overall structural perfor
mance. Moreover, real-time monitoring of the CFRP-strengthened beam 
allowed for the early detection of damage initiation and progression, 
enabling timely intervention and maintenance actions. 

5.4. Analysis of failure mechanisms for CFRP-reinforced beams 

In the previous section, unsupervised identification methods were 
used to distinguish the three types of damage mechanisms in the spec
imens and obtain reasonable classification results. Next, these results 
will be used to examine the AE activity characteristics and damage 
failure process of the CFRP strengthened beams. 

As shown in Fig. 10, AE signals appeared almost at the beginning of 
the loading process. From the total activity level of the three types of AE 
signals, the damage process can be roughly divided into three stages: the 
initial damage stage, damage development stage, the continuous dam
age growth stage. During the initial damage stage, fewer low-intensity 
AE signals are detected, which can be attributed to the fact that under 
the action of the applied load, voids in the concrete may undergo 
shrinkage or collapse, resulting in small displacements and deformations 
that trigger AE signals. At the damage development stage (from the 
rapid increase point of the cumulative AE hits curve to the yield point), 
where there is a significant increase in signals related to concrete matrix 
damage and CFRP-matrix debonding, while signals related to CFRP 
tearing remain relatively low level of increase. This indicates that during 
this stage, the damage in the concrete begins to propagate, leading to 
larger cracks and localized failure zones. As the load increases, the FRP 
continues to bear tension in the concrete beam. Near the damaged 
concrete region, there may be phenomena such as interface shearing and 
stress redistribution in the sensitive area, which can result in minor 

interface shearing and stress release, thereby triggering acoustic emis
sion (AE) signals. At the continuous damage growth stage (i.e., from the 
beginning of steel yielding up to the final failure), As the beam ap
proaches or reaches the failure load, there is a significant increase in the 
proportion of AE signals associated with different damage modes. This is 
because at this stage, the damage modes such as concrete matrix failure, 
debonding between the FRP and concrete matrix, and tearing of the FRP 
intensify, resulting in a higher occurrence of AE events. 

Fig. 11 illustrates the Cumulative Energy and Load vs. Time curves 
for the various damage modes observed in the test beam. The Cumula
tive Energy curve represents the accumulated energy release during the 
loading process, while the Load vs. Time curve depicts the applied load 
over time. The different damage modes, including concrete damage, 
CFRP -matrix debonding, and CFRP tearing, are evident from the distinct 
patterns in the Cumulative Energy curves. 

Based on the observations from the Fig. 11, it can be observed that 
signals related to matrix cracking are produced relatively steadily 
throughout the entire damage process, indicating that matrix deforma
tion damage is a gradual process. These signals account for 60––80% of 
the total AE signals produced and are one of the more important damage 
mechanisms in CFRP strengthened beams. Furthermore, it is evident 
that as the degree of corrosion increases, the cumulative energy result
ing from concrete damage decreases. This can be attributed to several 
factors. Firstly, when the degree of corrosion is lower, the concrete 
matrix retains higher strength. As a result, it can withstand greater stress 
during loading, leading to increased energy release during concrete 
damage. Additionally, a lower degree of corrosion also indicates a more 
uniform stress distribution within the concrete matrix, resulting in a 
more uniform release of energy and higher cumulative AE energy. 

Observations from the Fig. 11 indicate that there is an inverse rela
tionship between the degree of corrosion and the acoustic emission (AE) 
energy generated during CFRP debonding. Specifically, as the degree of 
corrosion increases, the AE energy generated during CFRP debonding 

Table 2 
Feature statistics of cluster 0.  

Cluster 0 
Specimen Rise time Ring counts Duration Amplitude Absolute energy Peak frequency 

C0 100 21 461 48 1889 96 
C5 129 16 469 46 383 68 
C10 123 21 537 47 914 78 
C20 176 26 733 46 1028 67 
Average 132 21 550 47 1053 77  

Table 3 
Feature statistics of cluster 1.  

Cluster 1 
Specimen Rise time Ring counts Duration Amplitude Absolute energy Peak frequency 

C0 235 66 1601 60 2.8×106 76 
C5 273 54 1582 56 7.0×105 53 
C10 617 88 3219 63 8.0×106 58 
C20 873 143 4203 63 1.2×107 72 
Average 500 88 2651 60 5.9×106 65  

Table 4 
Feature statistics of cluster 2.  

Cluster 2 
Specimen Rise time Ring counts Duration Amplitude Absolute energy Peak frequency 

C0 298 198 16,414 94 4.1×108 37 
C5 1209 823 39,340 89 3.0×108 34 
C10 1635 342 23,563 95 4.1×108 24 
C20 1927 650 41,792 97 7.8×108 34 
Average 1267 503 30,277 94 4.8×108 32  
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decreases. This phenomenon can be attributed to two main factors. 
Firstly, the decrease in interfacial bond strength between the concrete 
and CFRP due to the presence of surface corrosion cracks. Weaker bond 
strength makes it easier for the CFRP to detach from the concrete surface 
during delamination. As a result, the reduced bond strength leads to a 
decrease in the energy released at the debonding interface, resulting in 
lower cumulative AE energy. Secondly, the presence of corrosion cracks 
may complicate the crack propagation path during CFRP – matrix 
debonding. The crack propagation path refers to the direction or route 
that a crack takes as it extends or grows within a material. The variation 
in crack propagation path can affect the mode and extent of energy 
release. If corrosion cracks exist and intertwine with the delamination 
process, it can result in discontinuous or dispersed energy release, 
leading to a decrease in cumulative AE energy. 

Signals related to CFRP tearing account for 5–15% of the total AE 
signals produced, and their signals increase suddenly in the final stage of 
tensile, indicating that the specimen experienced serious fiber rupture, 
which is the main cause of failure. Although the count of CFRP tearing 
events is relatively low, the cumulative energy released during these 

events is significant. This can be attributed to the nature of energy 
release in CFRP tearing processes. During CFRP tearing, the tearing and 
rupture of the fibers and interfacial shearing result in a greater amount 
of energy conversion and transfer. These processes involve more com
plex energy dissipation mechanisms compared to the relatively smaller 
energy release associated with CFRP debonding, which mainly occurs 
due to the failure of the bonding interface. Moreover, CFRP tearing 
typically occurs at multiple locations and levels, exhibiting complex 
crack propagation paths. These complexities and variations contribute 
to the release of a higher amount of energy during CFRP tearing events. 

6. Conclusions 

In conclusion, this study demonstrated the effectiveness of using 
acoustic emission (AE) techniques for damage pattern recognition of 
corroded beams strengthened by CFRP anchorage. The results showed 
that AE monitoring can provide valuable information on the damage 
evolution process and failure mechanisms of the CFRP-reinforced 
beams. Based on the experimental study, the following conclusions 

Fig. 10. Cumulative AE hits ratio and Load vs. Time curves for different damage modes of the test beams.  
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Fig. 11. Cumulative Energy and Load vs. Time curves for different damage modes of the test beams.  
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can be drawn:  

(1) Four corroded beams strengthened by CFRP anchorage system 
were tested with flexural loads and monitored using AE tech
nique. Three major failure modes were observed in the speci
mens, i.e., concrete matrix damage, CFRP debonding, and CFRP 
tearing.  

(2) The proposed pattern recognition method was applied on the 
collected AE data. The AE signals exhibited distinct characteris
tics for different damage modes: concrete matrix damage had 
high-frequency and low-energy characteristics, CFRP-matrix 
debonding showed intermediate values for all parameters, and 
CFRP tearing had longer durations, lower peak frequencies, and 
high-energy characteristics. The results demonstrate the effec
tiveness of AE clustering in identifying different damage modes 
and reveal a clear relationship between AE parameters and the 
identified patterns.  

(3) The analysis of AE signals revealed that the damage process in the 
tested beams can be divided into three stages, with an initial stage 
showing fewer low-intensity AE signals, a damage development 
stage characterized by an increase in concrete-matrix damage 
and CFRP – matrix debonding signals, and a continuous damage 
growth stage marked by a significant increase in AE signals 
associated with three damage modes.  

(4) For CFRP-strengthened corroded concrete beams, the degree of 
corrosion significantly affects the cumulative acoustic emission 
(AE) energy and damage patterns.  

• Lower degrees of corrosion result in higher cumulative energy 
from concrete damage, and the concrete damage exhibits a 
gradual development process.  

• In the CFRP debonding process, an increase in the degree of 
corrosion leads to a decrease in the cumulative AE energy. This 
can be attributed to the reduced bond strength between the 
concrete and CFRP caused by surface corrosion cracks, making it 
easier for the CFRP to detach from the concrete surface during 
debonding. Additionally, the presence of corrosion cracks may 
complicate the crack propagation path during CFRP-matrix 
debonding, affecting the mode and extent of energy release.  

• CFRP tearing generates a high cumulative AE energy despite the 
relatively low frequency of tearing events. This can be attributed 
to the complex energy conversion and transfer mechanisms 
involved in the tearing and rupture of fibers and interfacial 
shearing. 

Overall, the results of this study can provide valuable guidance for 
the design and evaluation of CFRP anchorage systems for the rehabili
tation of corroded structures. The use of AE techniques for damage 
pattern recognition can improve the understanding of the damage 
mechanism and contribute to the development of more effective main
tenance strategies. 
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