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The international standards for geographic information provide unambiguous definitions
of geometric primitives, with the aim of fostering exchange and interoperability in the geo-
graphical information system (GIS) community. In two dimensions, the standards are well-
accepted and there are algorithms (and implementations of these) to validate primitives, i.e.
given a polygon, they ensure that it respects the standardised definition (and if it does not
a reason is given to the user). However, while there exists an equivalent definition in three
dimensions (for solids), it is ignored by most researchers and by software vendors. Sev-
eral different definitions are indeed used, and none is compliant with the standards: e.g.
solids are often defined as 2-manifold objects only, while in fact they can be non-manifold
objects. Exchanging and converting datasets from one format/platform to another is thus
highly problematic. I present in this paper a methodology to validate solids according to
the international standards. It is hierarchical and permits us to validate the primitives of all
dimensionalities. To understand and study the topological relationships between the dif-
ferent parts of a solid (the shells) the concept of Nef polyhedron is used. The methodology
has been implemented in a prototype, and I report on the main engineering decisions that
were made and on its use for the validation of real-world three-dimensional datasets.

1 Introduction

To facilitate and encourage the exchange and interoperability of geographical information,
the ISO1 and the OGC2 have developed in recent years standards that define what the basic
geographical primitives are (the abstract specifications (ISO, TC211)), and also how they
can be represented in a computer (the implementation specifications (OGC, 2007, 2006)).
While the abstract definitions for the primitives are not restricted to two dimensions (2D),
most of the efforts for the representation and storage of the geographical primitives have
been done only in 2D. However, in recent years, with the adoption of CityGML as an in-
ternational standard (OGC, 2012), the amount of available datasets with three-dimensional

1International Organization for Standardization: www.iso.org
2Open Geospatial Consortium: www.opengeospatial.org
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(3D) primitives is increasing rapidly. Although the topic might appear trivial—“a polygon
is simply a polygon, no?”—it is in practice a problem and a topic of research. As van Oos-
terom et al. (2004) discuss: (i) there are several differences between the standards and their
implementations in different systems, and (ii) in extreme cases, related to the floating-point
arithmetic used by computers, parts of polygons can “collapse” and become invalid.

Having unambiguous definitions for the geometric primitives is important to foster inter-
operability, but perhaps as important is to have algorithms and tools to validate primitives.
That is, given a specific primitive, we need to check if it respects the standardised defi-
nitions. Most GIS operations (e.g. calculation of the area of polygons; creation of buffers;
conversion to other formats; Boolean operations such as intersection, union, etc.) indeed
require that the input primitives be valid, otherwise the output of the operation is not guar-
anteed.

The validation rules for 2D primitives are well-defined and there are several (open-source)
implementations of these: JTS3 and GEOS4 are the most well-known examples, and are used
by different software packages. However, for primitives in 3D (primitives representing a
volume, called either a solid or a polyhedron), there are no such validation rules, imple-
mentation specifications or known implementations. Indeed, as described in Section 3, the
algorithms and tools currently available all use different definitions, and these are often
simpler and more restrictive than these of the international standards. The two principal
restrictions are: (i) holes in faces and voids inside solids are not considered; (ii) solids are
often defined as 2-manifold objects. However, holes, cavities and non-manifold are allowed
according to the ISO and the OGC international standards, and furthermore, they are nec-
essary to represent all the real-world objects.

I present in this paper a methodology to validate solids against the definition of the
ISO/OGC. I first give in Section 2 the definition of an ISO/OGC solid (which forms the
basis for the implementation specifications; these are presently lacking), and then explain
in Section 3 why current methods in GIS and computer-aided design (CAD) are not appro-
priate. As described in Section 4, the methodology I propose is hierarchical (the primitives
of different dimensionalities are validated separately, which ensures that the user does not
get cascading errors, i.e. errors caused by errors in lower dimensionality primitives), and it
requires the use of both 2-manifold and non-manifold data structures and algorithms. Nef
polyhedra, which are defined in Section 4.3, are used to inspect the topological relationships
between the different boundaries that a solid can have, certain topological configurations
are allowed by the standards while others are not (the allowed configurations are described
in Section 2). I also present in Section 5 one implementation of the proposed methodology,
and describe in Section 6 some experiments that were run with unit test solids (a set of
solids containing extreme cases) and real-world examples of 3D city models.

2 What is a solid? And the implications for its validation

There is no single definition for a solid or a polyhedron (notice that these two terms are
often used interchangeably in the scientific literature). This is best illustrated by Grünbaum
(2003) who states that even in the field of mathematics opinions differ as to what constitutes
the term ‘polyhedron’. Some use it only for a regular polyhedron, or only for a convex
one, and some consider non-planar faces as part of the definition. De Berg et al. (2000)
characterise the term as “difficult to define”, and give a simple definition that is probably
the most common one: a polyhedron is a 3D solid bounded by planar faces. The bounding
faces are thus planar surfaces embedded in R3, the three-dimensional Euclidean space, and
the bounding surfaces form a closed two-dimensional manifold (or 2-manifold for short). A 2-
manifold is a topological space that is topologically equivalent to R2. An obvious example is
the surface of the Earth, for which near to every point the surrounding area is topologically
equivalent to a plane. Representing and storing a 2-manifold, even in R3, can be done with
data structures that are intrinsically 2D since each edge is guaranteed to have a maximum
of two incident faces (Kettner, 1999). Examples of popular 2D data structures are the half-

3Topology Suite: www.vividsolutions.com/jts
4Geometry Engine, Open Source: trac.osgeo.org/geos
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exterior shell

interior shell

Figure 1: One solid which respects the international definition. It has one exterior shell and one interior
shell (a cavity).

edge (Mäntylä, 1988), the quad-edge (Guibas and Stolfi, 1985), and the doubly-connected
edge list (DCEL) (Muller and Preparata, 1978); all of these store the edge of a polyhedron as
the atom, with links to its adjacent edges and incident faces.

However, the ISO’s definition of a solid is broader than that of a 2-manifold, and to permit
us to represent all the real-world features. The following three definitions, taken from ISO
(TC211), summarise the main differences5.
Definition 1. A GM Solid is the basis for 3-dimensional geometry. The extent of a solid is defined
by the boundary surfaces. The boundaries of GM Solids shall be represented as GM SolidBoundary.
Definition 2. A GM Shell is used to represent a single connected component of a GM SolidBoundary.
It consists of a number of references to GM OrientableSurfaces connected in a topological cycle (an
object whose boundary is empty). [...] Like GM Rings, GM Shells are simple.
Definition 3. A GM Object is simple if it has no interior point of self-intersection or self-tangency.
In mathematical formalisms, this means that every point in the interior of the object must have a
metric neighbourhood whose intersection with the object is isomorphic to an n-sphere, where n is the
dimension of this GM Object.

Since shells are simple, they are in fact 2-manifold objects.
Figure 1 shows a solid that respects that definition. First observe that the solid is com-

posed of two shells (its boundaries), one being the exterior and one being the interior shell.
The exterior shell has eleven planar surfaces, and the interior one six. An interior shell cre-
ates a cavity in the solid—cavities are also referred to as “voids” or holes in a solid. A solid
can have no inner shells, or several. Observe that a cavity is not the same as the hole in a
torus—a torus is represented with one exterior shell having a genus of 1 and has no interior
shell. The boundary of each shell of a solid is a representation of a 2-manifold, but it should
be noticed here that since shells are formed of planar surfaces, the ISO definition of a sur-
face is used and this states that a polygon can have inner boundaries. The boundaries of a
polygon are defined as rings, thus a hole in a face is referred to as an interior ring. Observe
that the top face of the solid in Figure 1 has one inner ring, but that other surfaces “fill” that
hole so that the exterior shell is “watertight”. Several disciplines ignore holes because they
are not necessarily needed, and because they complicate the representation of a 2-manifold:
if a graph-based data structure is used, then the graph becomes unconnected.

From a point-set topology point-of-view, a solid is a set of points S ⊆ R3. A boundary of
S, denoted ∂S, is a shell. It should be observed here that while a shell is used to represent a
surface embedded in R3, when referring to a shell from a point-set topology point-of-view,
we refer to the volume that the boundary contains. That is, let H ⊆ R3 be a shell, ∂H refers
to the boundary of the shell, and Ho to its interior. H′ refers to the complement of the shell
(its exterior).

According to the ISO abstract specifications, the different boundaries of a solid are al-
lowed to interact with each other, but only under certain circumstances. To understand
these, we have to generalise to 3D the implementation specifications defined in 2D by the
OGC (since they do not exist yet in 3D). Figure 2 shows the six assertions that have to be true
for a 2D polygon to be valid. Observe that all of them, except the third one, generalise di-

5All the geometric objects have the prefix ‘GM ’

3



1. Polygons are topologically closed;

2. The boundary of a Polygon consists of a set of LinearRings that make up its exterior and interior
boundaries;

3. No two Rings in the boundary cross and the Rings in the boundary of a Polygon may intersect
at a Point but only as a tangent, e.g.

∀P ∈ Polygon, ∀c1, c2 ∈ P.Boundary(), c1 6= c2,

∀p, q ∈ Point, p, q ∈ c1, p 6= q, [p ∈ c2⇒ q /∈ c2];

4. A Polygon may not have cut lines, spikes or punctures e.g. :

∀P ∈ Polygon, P = P.Interior.Closure;

5. The interior of every Polygon is a connected point set;

6. The exterior of a Polygon with 1 or more holes is not connected. Each hole defines a connected
component of the exterior.

Figure 2: The six assertions for the validity of a polygon (OGC, 2006, pages 27–28).

rectly to 3D since a point-set topology nomenclature is used. The only modifications needed
are that, in 3D, polygons become solids, rings become shells, and holes become cavities.

To further explain what the assertions are in 3D, Figure 3 shows 12 solids, some of them
valid, some not; all the statements below refer to solids in this figure The first assertion
of the OGC means that a solid must be closed, or ‘watertight’ (even if it contains interior
shells). The solid s1 is thus not valid but s2 is since the hole in the top surface is ‘filled’ with
other faces.

The second assertion implies that each shell must be simple, i.e. that it is a 2-manifold.
The third assertion means that the boundaries of shells can intersect each others, but the

intersection between the shells can only contain primitives of dimensionality 0 (vertices)
and 1 (edges). If a surface or a volume is contained, then the solid is not valid. The solid s3 is
an example of a valid solid: it has two interior shells whose boundaries intersect at one point
(at the apexes of the tetrahedra), and the apex of one of the tetrahedra is coplanar with the
exterior shell. If the interior of the two interior shells intersects (as in s4) the solid is not valid;
this is also related to the sixth assertion stating that each cavity must define one connected
component: if the interior of two cavities are intersecting they define the same connected
component. Notice also that s5 is not valid since one surface of its cavity intersects with
one surface of the exterior shell (they “share a surface”); s5 should be represented with one
single exterior shell (having a ‘dent’), and no interior shell.

The fourth assertion states that a shell is a 2-manifold and that no dangling pieces can
exist (such as that of s6); it is equivalent to the regularisation of a point-set in R3.

The fifth assertion states that the interior of a solid must form a connected point-set (in
R3). Consider the solid s7, it is valid since its interior is connected and it fulfils the other
assertions; notice that it is a 2-manifold but that unlike other solids in Figure 3 (except
s8) its genus is 1. If we move the location of the triangular prism so that it touches the
boundary of the exterior shell (as in s8), then the solid becomes invalid since its interior is
not connected anymore, and also since its exterior shell is not simple anymore (2 edges have
4 incident planar faces, which is not 2-manifold). It is also possible that the interior shell of
a solid separates the solid into two parts: the interior shell of s9 is a pyramid having four
of its edges intersecting with the exterior shell, but no two surfaces are shared, thus these
interactions are allowed. However, the presence of the pyramid separates the interior of
the solid into two unconnected volumes (violating assertion 5); for both s8 and s9, the only
possible valid representation is with two different solids.

Notice also that for a solid to be valid, all its lower-dimensionality primitives must be
valid. That is, each surface of the shells (represented with polygons) has to be individually
valid according to the assertions in Figure 2. Since these are embedded in R3, they first have
to be projected to a plane. An example of an invalid surface would be one having a hole (an
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s1 s2 s3 s4

invalid (1) invalid (3, 6)valid valid

s9 s10 s11 s12
invalid (3 in 2D) invalid (2)validinvalid (5)

s5 s6 s7 s8
invalid (6) invalid (2, 5)invalid (4) valid

Figure 3: Twelve solids with the numbers in parentheses next to each indicating which OGC assertions
are broken if invalid. For solid s9, which is conceptually similar to the 2D polygon in Figure 4a, the
colour of the exterior shell is not shown to highlight the interior shell.

inner ring) overlapping the exterior ring (see s10).

The implications of the definition for the validation. To implement the validation rules
and assertions in 3D, appropriate data structures must be used. Structures for 2-manifold
modelling are not appropriate since non-manifold objects must be represented and checked.
Furthermore, the data structure must permit us to represent and detect volumes so that the
fifth assertion in Figure 2 can be tested; 2D structures such as the half-edge are not appro-
priate. The methodology described in Section 4 uses one such data structure.

It should also be noticed that when validating a solid both the combinatorial consistency
and the geometric consistency of the representation should be valid. A solid such as s11 is
valid, but if the location of only one of its vertices is modified (for instance if the apex of the
pyramid of s11 is moved downwards to form s12) then it becomes invalid. Both s11 and s12
can be represented with a graph having exactly the same topology (which is valid for both),
but if we consider the geometry then the latter solid is not valid since its exterior shell is not
simple. Enforcing simplicity requires calculating the intersections between the surfaces.

3 Related work

Many application domains where solids are modelled use their own definition of a solid,
and often this definition is driven by the data structure used. In the computer-aided design
(CAD) world, when a boundary representation (b-rep) is used, often 2-manifoldness is en-
forced. An example is Mäntylä (1988) who uses half-edges and Euler operators to construct
and enforce the validity of a solid. The validity constraints are such that if a non-manifold
solid needs to be represented, the geometry of the solid is slightly modified so that it be-
comes a 2-manifold (the triangular prism of the solid s8 in Figure 3 would not touch the
exterior shell along one of the 2 edges for instance, but be infinitesimally close to it). For-
tune (1997) takes this approach one step further and performs symbolic perturbations of the

5



(a) (b)

Figure 4: (a) A polygon in 2D whose inner ring separates the polygon (and it is thus not valid), the
polygon is conceptually the same as the solid s9 in Figure 3. (b) A so-called handle is added to
connect the interior of two cubes sharing an edge.

equation of the planes bounding a non-manifold polyhedron so that the representation is
2-manifold. The modified polyhedron contains 0-volume parts, which need to be processed
with care depending on the application.

In engineering applications where laser-scanners are used, often triangles are used as the
only primitive for surfaces, and no interior shells are allowed; this is primarily because the
size of the models can be large and one wants to ensure efficiency. To ensure validity of
such models, and to repair them, different techniques exist (see for instance Nooruddin and
Turk (2003) or Liepa (2003)).

In GIS-related applications, the definitions are also more restrictive than these of the in-
ternational standards. Bogdahn and Coors (2010) and Wagner et al. (2013) discuss the val-
idation of solids for city modelling, but do not consider holes in surfaces and totally omit
that interior shells are possible. Gröger and Plümer (2011) give axioms to validate 3D city
models, but also do not consider holes in primitives of dimensions 2 and 3; what they define
as solids are in fact shells without holes in surfaces. I use their work on the validity of shells
as a building block of the methodology presented in this paper.

Most commercial GIS companies also ignore interior shells, ESRI (with ArcGIS 10) and
Bentley being two examples. Oracle Spatial considers interior shells in their validation func-
tion, but do not allow holes in surfaces (Oracle, 2012). Also, while they claim to validate
according to the international rules, in practice there are several inconsistencies since they
use a graph-approach and perform graph-traversal algorithms to validate, see Kazar et al.
(2008). This approach is suitable for 2-manifold objects, but for solids having interior shells
interacting with other shells it is not sufficient. One consequence is that it is impossible to
detect that the solid s9 in Figure 3 is not valid (since the configuration of the interior shell
makes it such that the solid should be split in two solids). Observe that the configuration
is akin to that in Figure 4a, but in 3D. In 2D, a planar graph can represent the topological
relationships between the rings and permits us to detect that the polygon is not connected,
but the same data structure cannot be used in 3D. We need one that permits us to represent
non-manifold cases, and that permits us to navigate and identify connected parts.

To overcome the problems with a graph-based approach, a space-filling data structure
should be used. Verbree and Si (2008) decompose the solid into tetrahedra and use the
properties of the tetrahedralization to perform validation. However they do not consider
holes in faces, interior shells and do not discuss how to verify that a shell is a 2-manifold.
Ledoux et al. (2009) extend that methodology to solids as defined in Section 2, but their
work has not been implemented.

Finally, Thompson and van Oosterom (2011) give axioms for the validation of solids (tak-
ing into account holes in faces and interior shells), but do not follow the international stan-
dards. According to their definition, shells do not have to be 2-manifold (an edge is allowed
to be incident to more than 2 surfaces), the only criterion is that a solid must have an interior
that is connected. Figure 4b shows one example of a valid solid according to their definition,
notice that one edge has 4 surfaces incident to it and thus this solid is not valid according
the international standards. To be valid, one would have to split the solid into (at least) two
solids.

6
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Surfaces
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Shells

2D validation rules applied to 
primitives embedded in 3D space

1. planarity of surface
2. combinatorial consistency
3. geometric consistency
4. orientation of normals
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operations
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Solid is Invalid

valid

valid
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Figure 5: Workflow of the methodology proposed.

4 A methodology to validate the geometry of a solid

The international standard ISO 19107, as described in Section 2, states that for a three-
dimensional primitive to be valid, all its lower-dimensionality primitives should also be
valid. The methodology proposed in this paper for the validation of a solid is thus per-
formed in a hierarchical way, starting from the lowest dimensionality primitives. Figure 5
shows the workflow used, with some of the verifications that need to be performed.

I describe in this section a methodology to validate each of these primitives. Rings and
polygons are validated together with a graph-based data structure since it permits us to
represent both the rings and the interactions between them. The validation of a shell is a
topic that has been extensively discussed, and I report on the main existing techniques and
I highlight pitfalls. The novelty of this paper lies in the Sections 4.3 and 4.5.

4.1 Validation of 2D surfaces with a planar graph

The validation rules for 2D polygons are defined by the ISO (ISO, TC211), but there exists an
implementation specification (OGC, 2006). The problem is considered as solved, although
some implementation issues related to the tolerance (shortest distance allowed between
points and lines, which is called the robustness of a polygon) are still problematic. Van Oos-
terom et al. (2004) highlight that fact, which has not been solved yet in consistent manner.
There exist several implementations of these implementation rules (GEOS and JTS are two
open-source examples), these usually build a planar graph of all the rings of a polygon
and enforce topological and geometrical constraints. To deal with floating-point arithmetic,
these two libraries snap all vertices to an integer grid, which can cause sliver polygons to
collapse to lines. Other methods are also known, for instance the use of a constrained trian-
gulation combined with robust arithmetic (Ledoux et al., 2012).

To use the existing algorithms, each surface of a solid will be processed individually and
be projected to a plane so that a two-dimensional coordinate system is used. It is possible
to find the equation of the plane supporting the surface, but that requires unnecessary and
expensive computations. Indeed, if we ensure that a projected polygon does not become a
line, then the topology of a polygon is preserved after being projected to a surface. It suffices
to project a polygon to either the x− y, the x− y or the y− z plane.

7



4.2 Validation of individual shells with a 2-manifold data structure

The validation of 2-manifold models is a well-studied topic. Most algorithms employ a
graph-based data structure to ensure that the topology between the faces is correct and
that the surface of the 2-manifold does not have a boundary (in the topological sense of
the term) (Kettner, 1999). The geometric consistency is ensured in another step: pair-wise
intersection tests for all the faces must be performed. Ensuring that a 2-manifold is valid
(combinatorially and geometrically) can be done with 13 axioms, as Gröger and Plümer
(2011) demonstrate. However, to implement these one must first build a graph represen-
tation of the object, and if this object is not valid then it might not be possible (depending
on the data structure used). In practice, building incrementally a 2-manifold with Euler op-
erators (which are topological operators) is a better alternative. It is known that orientable
2-manifold models are closed under Euler operations (Mäntylä, 1988). If the construction of
a 2-manifold object has succeeded with a series of Euler operators, the resulting object is not
necessarily closed (a surface could have been created). To ensure that the object is closed, it
suffices to ensure that each edge has 2 incident faces.

Both Gröger and Plümer (2011) and Mäntylä (1988) assume that the graph representing
the 2-manifold object is connected, which is not always the case with ISO solids. Braid et al.
(1978) first presented a modification to handle holes and to use Euler operators, but a sim-
pler solution is to triangulate the surfaces having holes. To be triangulated, a polygon must
first be projected to a plane; the same method as presented in Section 4.1 can be used. The
triangulation itself can be performed with known algorithms for constrained triangulation,
see for instance Shewchuk (1997).

Verifying the geometric consistency of a 2-manifold model has a quadratic behaviour. To
speed up the process, auxiliary data structures and algorithms have been designed: in Zhou
and Suri (1999) and Zomorodian and Edelsbrunner (2002) only surfaces whose bounding
boxes overlap are tested for intersection.

I discuss in the following two further requirements that are part of the ISO definition: (1)
planarity of surfaces; (2) orientation of surfaces.

Planarity of surfaces. The ISO 19107 standards state that a surface must be planar, i.e. all
its vertices (exterior and interior rings) must lie on a plane. Interestingly, the concept of
tolerance is not mentioned in the standards, nor is any algorithm describing how planarity
should be tested. A naı̈ve implementation (without tolerance) with real-world data (using
floating-point arithmetic) will almost in all cases return that the face is not planar. Wagner
et al. (2013) investigate three different methods to ensure flatness of a surface, and they re-
port that with their test dataset the method that catches the most errors is the one where a
triangulation of the surface is performed, and then the orientation of the normal of each tri-
angle is compared. Other methods where a plane is fitted through the points is not robust
for small and sharp variations. Since the methodology I propose already triangulates all
surfaces, this is the method chosen for the implementation. It should however be noticed
that in mechanical engineering there are specific standards to verify the flatness of a surface
(see for instance ASME (2009)), and that these use more complex methods—Hossein Cher-
aghi et al. (1996) and Lee (1997) are two examples.

Orientation of surfaces A surface used to represent a shell must be oriented in such as
way that when viewed from outside the shell its vertices are ordered counterclockwise (ISO,
TC211)—in other words, the normal of the surface point outwards if a right-hand system is
used. If the polygon used to represent the surface has interior rings, then these have to be
ordered clockwise. Given a simple surface, it is not possible to define if its orientation is cor-
rect since this is an operation requiring a global view on the shell. Therefore, if the previous
validation tests are successful then either the normals are all in the correct direction, or all
in the wrong direction (if only one surface had a wrong orientation, then the data structure
used to validate the topology would be invalid). It suffices to test if the normal (the vector)
of one surface incident to the lowest-right vertex intersects another surface. This can be
performed efficiently if the auxiliary data structure used for the geometry consistency tests

8



(a) (b)

Figure 6: (a) A Nef polyhedron composed of a tetrahedron, a dangling triangular face incident to the
tetrahedra and an unconnected vertex. (b) The sphere map used to store the local neighbourhood of
one corner of a cube. The grey part of the sphere represents the interior of the cube, obtained from
oriented half-spaces.

is used. Observe that for interior shells, the orientation of the surfaces must be the opposite:
the normals must point inwards (but outwards for the solid).

4.3 Validation of solids with the Nef polyhedron

From a point-set topology point-of-view, a shell is a point set H ⊆ R3 (i.e. the planar faces
of the shell represent ∂H; H is both the boundary of the shell and its interior Ho), and a solid
is a point set S ⊆ R3 such that S = G \ (Ho

1 ∪ Ho
2 ∪ ... ∪ Ho

n), where G is the exterior shell,
and Ho

i the interior of interior shells (for i = {1, 2, ..., n}).
If 2 shells overlap or touch, we need to be able to detect it to validate a solid. Simply

testing for intersections of the primitives of different dimensionality is not enough since the
boundaries of shells are allowed to intersect (solid s3 in Figure 3 is valid) but if they intersect
at several locations the solid might become unconnected (s9 in Figure 3 is not valid). A
global view of the 2 shells is thus needed.

Nef polyhedra. To understand and extract the topological relationships between the dif-
ferent shells forming a solid, I propose using the concept of Nef polyhedra. Nef (1978) and
Bieri and Nef (1988) describe a three-dimensional Nef polyhedron as follows.
Definition 4. A Nef polyhedron in dimension 3 is a point-set S ⊆ R3 generated from a finite
number of open half-spaces by set complement and set intersection operations.

The fact that they are obtained by intersecting oriented half-spaces implies that they are
very general. Unbounded solids, primitives of different dimensionalities (for instance a
single point), non-manifold objects, and the empty set are allowed. Figure 6a shows one ex-
ample, notice that the Nef polyhedron has one dangling surface, and also one unconnected
vertex forms the polyhedron. Each half-space is oriented: one side is labelled as IN and the
other as OUT. Also, the Nef polyhedra are solids closed under Boolean operations. Observe
that it is not possible to use 2-manifold objects to perform a series of Boolean operations
since the result of one operation can be one or several non-manifold objects.

An important concept is that of a face, which is defined as a maximal subset of R3 such
that all its points have the same local neighbourhood. Based on that concept, we can partition
a Nef polyhedron into faces of different dimensionalities: a 0-face is a vertex, a 1-face is an
edge, a 2-face is a planar surface, and a 3-face is a volume (defined as a connected point-set
in R3).

The generality of Nef polyhedra is not per se needed for the validation of ISO solids. How-
ever, I exploit two of their characteristics to analyse the topological relationships between
shells. First, non-manifold objects can be represented, and second, we can construct and
manipulate Nef polyhedra with a series of Boolean operations. It should be stressed that
validating solids requires representing and storing invalid solids too. In brief, the general-
ity of the Nef polyhedra permits us to identify invalid solids, which is the purpose of this
paper.
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svertex sedge

edge-use

oriented surface

Figure 7: The two interconnected data structures, used to store Nef polyhedra, for the top surface of the
sphere map shown in Figure 6b. Figure after Granados et al. (2003).

4.4 Storing and manipulating Nef polyhedra

To perform Boolean operations, we first need to represent a Nef polyhedron with an appro-
priate data structure. Bieri and Nef (1988) describe a potential data structure, but it does not
support Boolean operations. Granados et al. (2003) improve on that structure to support
Boolean operations. For the methodology presented in this paper, I make use of this struc-
ture (without any modifications). What follows is a summary of the data structures used by
Granados et al. (2003), for all the details the reader is referred to the original paper.

While a Nef polyhedron is a three-dimensional object that is potentially non-manifold,
Granados et al. (2003) represent one with a set of 2D data structures. Indeed, two different
data structures are used, both of these being similar to an edge-based data structure for
2-manifold objects. The two data structures are inter-connected, and are as follows.

Sphere maps: the local neighbourhood of a given point in a Nef polyhedron is represented
with an infinitesimally small sphere called a sphere map. Figure 6b shows an example
for one vertex of a cube. Notice that each oriented half-space partitions the boundary
of the sphere and creates an edge (called a sedge, it is a great circle if only one half-space
intersects a sphere map); vertices on the sphere are svertices representing the intersec-
tion of at least two half-spaces (thus an edge in a Nef polyhedron); faces (sfaces) of the
sphere represent volumes in the Nef polyhedron. As is the case for half-spaces, each
sface will have either an IN or an OUT label to keep track of the interior of the Nef poly-
hedron. The partitioning of the sphere is stored with an edge-based structure similar
to the half-edge (Mäntylä, 1988). Not all the points of R3 need to be represented with
a sphere map, but only the vertices of the Nef polyhedron. This permits us to detect
non-manifold cases of vertices lying directly on another face, as s3 in Figure 3 shows
(the apex of one interior shell is coplanar with one side surface of the exterior shell).
Other non-manifold data structures such as the radial-edge (Weiler, 1988) encode non-
manifold situations for edges, but would need modifications to explicitly represent the
cases arising at vertices (and thus cannot be used directly for the validation of solids).

b-rep for surfaces: another data structure, also inspired by the half-edge, is used for the
surfaces, and that structure is linked to the incident sphere maps. Each half-edge be-
longing to one orientation of a surface (an edge-use) is stored, and is linked to the inci-
dent edge-uses on the face. It is furthermore linked to the svertex of the sphere map it
represents, and vice-versa.

Figure 7 shows the two data structures for one 2-face of a Nef polyhedron.
A Boolean operation is performed by either updating the sphere maps, or by creating

new ones at the locations of the intersections of half-spaces.
These two inter-connected data structures permit us to navigate and keep track of the

primitives (including the connected parts), which allows us to identify, for instance, the fact
that solid s9 in Figure 3 contains more than one volume. The incident surfaces of a given
edge can for instance be obtained by identifying the incident sedges to the svertex that the
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edge represents. And the sphere maps allow us to navigate to all the primitives around a
vertex, even if it is non-manifold.

The unconnected components of a Nef polyhedron are maintained with a kd-tree, which
permits fast point location (to detect that one volume is located inside another one for in-
stance).

4.5 Boolean operations to analyse the topological relationships between
shells

At this point of the validation each shell is individually valid. The invalid solid of Figure 4b
would therefore not be processed at this step because the validation rules of Section 4.2
would fail.

The algorithm to extract the topological relationships between the different shells of a
solid is based on the fact that we can navigate in a Nef polyhedron and report on its primi-
tives (the two inter-connected data structures permit that). It is based on a series of Boolean
operations, which are expressed with the following three axioms. G is the exterior shell of
a solid S containing n interior shells, and Hi is an interior shell. The operator dim() returns
the maximum dimensionality of a set of primitives.

1. G′ ∩ Hi = ∅

2. dim(Hi ∩ Hj) < 2

3. Si = G \ (Ho
1 ∪ Ho

2 ∪ ...∪ Ho
i ), for each i in {1, 2, ..., n}, contains exactly i + 1 volumes.

The first axiom ensures that no interior shell is located outside, or partially outside, the
exterior shell. The second axiom ensures that the intersection of two interior shells returns
only primitives of dimensionality 0 or 1—as described in Section 2 two interior shells can
only ‘touch’ along vertices and edges. The third axiom ensures that the intersections be-
tween the different shells respect the ISO definition of a solid, and that they do not create,
among others, a disconnected volume. Verifying the third axiom involves doing a set dif-
ference on G and each interior shell Hi incrementally, ensuring that the number of volumes
is increased by 1 at each step. Figure 8 shows the idea for three solids; the figure is in two
dimensions for the sake of clarity, but since Nef polyhedra can be manipulated using topo-
logical operators the result is the same. In three dimensions, a square becomes a cube, and
a triangle a tetrahedron. The number of shells determines the number of volumes that the
solid should have, according to assertion 6 in Figure 2. Notice that none of the solids have
the correct amount of volumes, and thus none are valid. Observe also that it is not necessary
to have an axiom verifying if G and one shell Hi have adjacent faces, since the third axiom
implicitly does that.

5 A robust C++ implementation using CGAL

The methodology described in this paper has been implemented in a prototype, called
val3dity6, that is freely available under a GPL-license. The code is written in C++ and is
mostly based on the CGAL library7. The only other library used is GEOS8 which performs
the two-dimensional validation with the approach described in Section 4.1.

CGAL was chosen because it contains several of the building blocks required to imple-
ment a validator for ISO solids: (i) a package for constructing shells and representing them
with the half-edge data structure; (ii) the algorithm of Zomorodian and Edelsbrunner (2002)
to avoid a quadratic behaviour when performing the geometric tests for the shells is imple-
mented; (iii) a constrained triangulator (Boissonnat et al., 2002); (iv) and the Nef polyhedra
data structures and Boolean operators described in Granados et al. (2003). Because the
building blocks are available, the code for the validation is rather short: about 2500 lines of
code, which makes it easy to maintain and modify.

6https://github.com/tudelft-gist/val3dity
7Computational Geometry Algorithms Library: http://www.cgal.org
8Geometry Engine—Open Source: http://trac.osgeo.org/geos/
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G

H1

H2

G \Ho
1

(a) (b) (c)

(G \Ho
1 ) \Ho

2

2 volumes 2 volumes 2 volumes

4 volumes 2 volumes 4 volumes

Figure 8: Three invalid solids formed by an exterior shell G and two interior shell(s) (H1 and H2). The
resulting number of volumes in the Nef polyhedron for each G \Ho

i is shown. (a) three of the vertices
of ∂H2 intersect ∂G, thus the interior of the solid is unconnected. (b) H2 is face adjacent with G
(∂G ∩ ∂H2 returns a triangle surface). (c) H2 makes the interior of the solid unconnected (as in (a)).
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I describe briefly in this section some of the engineering choices that were made for the
development of the prototype. Some were made to ensure that the prototype runs correctly
and efficiently, and some to provide meaningful feedback to the users of the prototype.
A trade-off between speed and the granularity of the error returned to the user had to be
made.

5.1 Robustness

The implementation of geometric algorithms is known to be a time-consuming and error-
prone task because of the several degeneracies arising and because of floating-point arith-
metic, especially for three-dimensional operations (Hoffmann, 1989). CGAL offers the pos-
sibility to use exact arithmetic (Yap and Dubé, 1995) for all the packages and val3ditymakes
use of it to ensure that it is robust. All the important steps make use of it: the constrained
triangulator and the polyhedra use robust predicates, and the Nef polyhedra use a robust
kernel for all the Boolean operations. Hachenberger et al. (2007) show that the Nef polyhe-
dra implementation in CGAL is in practice fast (comparable speed as a commercial kernel),
but it is also more robust. Filtering of the floating-point numbers is performed so that exact
computations only take place when needed (Pion and Fabri, 2011).

5.2 Errors returned to the user

The validator for solids in Oracle Spatial permits us to validate solids (although, as ex-
plained in Section 3 it is neither according to the ISO rules nor complete) but returns only
one error when the solid is not valid: the first one encountered (even if a given solid con-
tains hundreds of errors). The error comes with a code explaining its nature and, when
suitable, its location (for example if a shell is not closed the centre of the hole is given). This
means that a user has to fix the solid for the error mentioned, and to run again the validation
function. This step has to be followed for all the errors present, which can be a rather long
and painful process for the user.

Ideally, all the errors in a solid should be reported so that a user can fix them in one
operation. However, cascading effects when validating should be avoid—one example is
if a surface is not a valid polygon in 2D, then the validation of the shell whose boundary
contains that surface should not be attempted as it will most likely not be valid. In the pro-
totype val3dity, a “hierarchical validation” is used and efforts are made to avoid cascading
errors. As Figure 9 shows, first the surfaces of every shell are validated, if all of them are
valid then the shells are validated individually, and finally only when all the shells of a solid
are valid is the validation of the solid with the Nef polyhedron data structure performed.

Informing the user about the nature of the error and having the most efficient code are
contradictory goals. In val3dity, a trade-off has been made for the implementation. For
instance, it is relatively easy to report that a given shell is not a 2-manifold object if a batch
construction is performed and exited as soon as an error is encountered. Reporting on
the exact error often makes the process slower (and more cumbersome to program); it was
nevertheless chosen for the prototype as it was deemed more useful for the user. In this case,
it means that if a dangling face exists (let us assume there is only one), then the identifier
of the face in the input dataset should be reported. An incremental construction of the shell
should therefore be used, with verification of the validity at each step.

6 Experiments with real-world datasets

The prototype has been tested with different datasets, both real-world and synthetic. It takes
as input a set of shells, the first one being the exterior one and the others the interior shells.
Each shell is represented with a simple ASCII file following the format POLY9, which can
be seen as a generalisation of a simpler format for representing a simple polyhedron—this
is needed since holes in surfaces must be explicitly stored.

9http://tetgen.berlios.de/fformats.poly.html
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Surface level
=============
200 : exterior ring and interior rings have same orientation
210 : surface is not planar
220 : surface is not valid in 2D (its projection)

221 : interior ring intersect exterior ring
222 : interior ring outside exterior ring
223 : interior rings intersect
224 : interior not connected

Shell level
===========
300 : is not a 2-manifold

301 : surface is not closed
302 : dangling faces
303 : one(several) face(s) not connected to the 2-manifold
304 : orientation of one/several face(s) not correct
305 : surface self-intersect

310 : normals not pointing in correct direction (all of them)

Solid level
==========
400 : shells are face adjacent
410 : interior of shells intersect
420 : interior shell outside the exterior shell
430 : interior not connected

Figure 9: Error codes used in the prototype.

(a)

Wrong orientation of faces

(b)

Dangling face

(c)

Figure 10: (a) Overview of a CityGML test dataset, in Great Britain. (Figure from
http://www.citygml.org) (b–c) Two examples of validation errors in the dataset.

“Unit test” solids. Figure 3 contains some of the unit test solids that were tested. These are
purposefully constructed solids that represent extreme and special cases. They are meant
as a sort of unit testing solids to evaluate the methodology and its implementation (Burns,
2001). All the solids shown in the figure, and other similar ones, have been used during the
development and are validated correctly.

3D city models. City models are often stored in the CityGML format (OGC, 2012), which
uses GML (OGC, 2007, the Geography Markup Language)10. This representation does
not store any topological relationships between the surfaces forming a shell, i.e. a cube
is represented with 6 faces and for each one of these the coordinates of the 4 vertices are
enumerated. Snapping must thus be performed to extract unique vertices in one shell; a
user-defined tolerance must be used. To validate the solids in a city model, they are first
converted to POLY files (where vertices have labels and faces of shells are represented by
enumerating labels), and then validated.

One experiment was performed with a test dataset available on the CityGML webpage11,
it is from the UK’s Ordnance Survey and it contains 567 buildings, all obtained by extru-
sion. Figure 10a shows an overview of the dataset. A snapping of 0.01m was used, and each
building was validated independently. Probably because the algorithm/implementation
used to construct the dataset contained errors, none of the buildings are valid. Figure 10b

10It should be noticed that CityGML does not use the latest version, but version 3.1.1.
11http://www.citygml.org
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Figure 11: The CityGML data “Berlin Alexanderplatz”, the darker solids are invalid.

Figure 12: A mechanical piece, already triangulated.

and Figure 10c show the two most common errors: surfaces (which were all triangulated
by the provider of the dataset) do not have the correct orientation, and some shells con-
tain dangling surfaces (probably caused by a faulty triangulator for non-convex surfaces).
Another error that was present in the dataset: surfaces were not planar.

Another experiment was performed with the dataset “Berlin Alexanderplatz” available
from the same website, it contains 1123 solids, 237 of them being invalid. The errors present
were (from Figure 9): 210, 301, 302, 304 and 305. The prototype val3dity can also return a
CityGML file where the invalid solids are highlighted, with the error code for each solid, as
Figure 11 shows.

Larger datasets. Most of the solids in real-world datasets obtained by extrusion have very
few surfaces (usually less than 30), so experiments were made with larger dataset. One ex-
ample is shown in Figure 12 it contains 1696 faces (triangles), and 836 vertices. The valida-
tion was performed in about 1.5s on a standard laptop.

Other software. For the reasons elaborated in Section 3, other tools could not be tested in a
meaningful manner with the previous datasets. Some would be suitable (e.g. for the simple
extrusion dataset of the UK’s Ordnance Survey), but if holes and cavities were present, these
would not be able to handle them.

7 Discussion and conclusions

Having validation tools that respect the international standards help foster interoperability
and help applications where city models form the input to models. Examples are flood
modelling (Schulte and Coors, 2008), 3D navigation (Lee and Zlatanova, 2008), disaster
management (Kolbe et al., 2008) and urban planning (Köninger and Bartel, 1998). Having
invalid primitives could prevent these models from running properly.

While for years there have been implementation specifications and tools to validate two-
dimensional primitives, three-dimensional volumetric primitives have been represented
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and stored in databases according to different rules and definitions. Particularly prob-
lematic is the fact that holes in surfaces and cavities are ignored, while they are allowed
according to the ISO/OGC abstract specifications and there exists several datasets contain-
ing them. It is expected that more and more datasets having holes and cavities will become
available in the near future. Two concrete examples are the interior of buildings obtained
from IFC models (Lee et al., 2003) and geological datasets (Adams, 1994).

The results of this paper are two-fold:

1. the implementation specifications for 3D geometric primitives have been proposed,
and concrete examples of these have been shown. The main issue with solids repre-
sented with the ISO/OGC standards is that cavities require the use of non-manifold
data structures.

2. a methodology for validating solids has been proposed, and I have shown that it is
possible to implement it in a robust and efficient manner. The prototype implemen-
tation reuses many of the building blocks developed in other research about the rep-
resentation and the validation of 3D data, but goes one step further as solids having
interior shells are considered, which is consistent with the international standards ISO
19107 (ISO, TC211). As the developed prototype is available under an open-source
license, I hope that it will encourage software vendors and others to adhere to the
international standards.

The methodology, and its implementation, presented in this paper permits us to verify
that an individual solid respects the ISO/OGC definition. However, it does not permit us to
detect that two solids touch or overlap each other. That is useful in different applications
where the topological consistency of a whole city model is needed, for instance for analysing
the energy consumption of buildings the area shared between buildings is one factor to
model (Krüger and Kolbe, 2012). Ledoux and Meijers (2011) propose a methodology to
construct by extrusion such a dataset from two-dimensional footprints, but I am not aware
of any methodology for already available datasets. One potential solution would be to use
Nef polyhedra (and Boolean operations), but that would be costly for big datasets.

At this moment, only the geometry and the topology of a solid is considered when vali-
dating. However, as Bogdahn and Coors (2010) state, validation rules are often application-
specific. Wagner et al. (2013), for the modelling of 3D buildings, discuss the use of seman-
tics information when validating, i.e. if for instance one surface is labelled as the roof of the
building, then an extra validation rule (over the geometry) would be to ensure that the roof
is located ‘above’ the surface labelled as the ground floor. Since the methodology I present
in this paper is hierarchical and it uses data structures supporting Boolean operations, the
implementation of similar rules should be straightforward.

Finally, one obvious extension of the work presented in this paper is the automatic repair
of invalid solids. At this moment, the prototype informs the user—as best as it can—about
the nature of the errors and of their locations, but the user has to manually modify the
faulty primitives, which is tedious and time-consuming. The automatic filling of holes in 2-
manifold objects is a well-studied topic of research, and the existing techniques developed
could be reused. Nooruddin and Turk (2003) fill the object with voxels, but this method
could introduce errors depending on the resolution used. Liepa (2003) and Attene and Fal-
cidieno (2006) attempt the same by modifying the triangles on the surface; their approach
require a triangulated surface but this is inline with the methodology presented in this pa-
per. Other useful automatic repair functions for shells are the flipping of surface when their
orientation are wrong, and the triangulation of a non-planar surface so that only planar sur-
faces exists. Shells having several holes and intersecting surfaces are more problematic to
repair, although work done in surface reconstruction could be used, see for instance Chauve
et al. (2010). To automatically repair solids whose shells do not interact according to the in-
ternational standards is in theory possible since with the Nef polyhedra we can perform
Boolean operations. However, how to repair is also application-dependent: if for instance
one solid has an interior shell located outside its exterior shell, what should be the outcome
of a repair operation? Two solids or only the exterior solid? When two or more interior
shells overlap, it is however trivial to union them and return one interior shell.
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