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Two-Dimensional Gravity Waves in a Stratified Ocean
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California Institute of Technology, Pasadena, California

and
C. C. MaI

Massachusetts Institute of 'I'echnology, Cambridge, Massachusetts
(Received 19 September 1966)

The solution of the two-dimensional gravity waves in a plane stratified ocean previously calculated
by the authors is rectified. By formulating a corresponding initial value problem, the steady-state
solution becomes completely determinate without using the radiation condition.

i INTRODUCTION

IN
a previous paper,' the authors considered the

fundamental solution of the two-dimensional
gravity waves due to a local disturbance in a strati-
fied ocean. The surface and the internal wave modes
were determined for two cases of density stratifica-
tion, one of them corresponding to constant Vasala
frequency (with density increasing exponentially
with depth) and the other to a monotonically de-
creasing Vasala frequency with increasing depth.
The surface wave mode, which propagates down-
stream without attenuation, was studied in detail
there. The conclusion regarding the attenuated in-
ternal waves is, however, found in error. Treating
the two-dimensional flow problem when the point
disturbance travels horizontally at a constant veloc-
ity, the authors adopted a steady-state formulation
which does not yield a unique solution unless further
physical conditions are imposed on the radiation
of the generated waves. While the surface wave
mode was calculated correctly by using the radiation
condition, the internal wave mode was determined

C. C. Mei and T. Y. Wu, Phys. Fluids 7, 1117 (1964).

erroneously. This error is due to an incorrect choice
of the path for a Fourier integral, thus leading to
the wrong result that the internal waves appear
symmetrically on both the upstream and down-
stream sides, and that they are attenuated in the
horizontal direction and hence radiate no energy to
infinity. Similar errors have been made in the past
for atmospheric waves2 and a clarification by the
approach of an initial value problem has been given
by Crapper.3

The present note is intended to rectify the previous
incorrect result by obtaining the steady-state solu-
tion as the large time limit of a corresponding initial
value problem. In this limit of the solution, which
is expressed in an integral representation, the path
for the contour integral around a simple pole and
two branch points can be determined definitely. It
is now found that the internal waves in this two-
dimensional stratified flow become outgoing cylin-
drical waves at large distances from the disturbance,

'See for example a discussion by C. S. Yih, Dynamics of
Nonhomogeneous Fluide (The Macmillan Company, New
York, 1965), p. 69.

'G. D. Crapper, J. Fluids Mech. 6, 51(1959).
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and exist ou the downstream side oniy. In prop-
agating downstream, they radiate a finite amount of
energy, and therefore contribute to wave resistance.

2. FORMULATION OF THE INITIAL
VALUE PROBLEM

We consider the initial value problem of a two-
dimensional flow of a stratified heavy fluid due to a
point source submerged at depth h beneath the
initially undisturbed free surface, at y = O, of a
deep stream having a uniform velocity U in the
positive x direction. The strength of the source
depends on the time t as a step function H(t). The
linearized equations for y O and t > O in the

where u and u are the x and y components of the per-
turbation velocity, p and p are the perturbation
density and pressure measured from the basic flow,
Po(Y) and po(y), respectively, with dp0/dy = gp0(y).
Here the subscripts x, y, t denote partial differentia-
tions. The linearized boundary conditions on the
free surface, denoted by y = (x, t), which is under
a constant pressure, are

on y=O; (5)

p = p(y) = p0g, on y = 0. (6)

Furthermore, the perturbations u, y, p, p are re-
quired to vanish at large distances, as x2 + y2 *
y <O, t> O. The initial conditions are that u, y, p, p
and their time derivatives all vanish identically
for t < 0.

We choose an appropriate characteristic length
L to form the nondimensional quantities

x,, = x/L, = y/L, h = h/L, t,, = Ut/L;

= u/U, v,, = v/U, Q = Q/UL;
o(y) = Lp(y)/po(y), X = gL/U2. (7)

In what follows the asterisk will be omitted for
brevity. Equations (1)(6) can be combined to yield
a single equation for u,

[D2V2 0.()(D2 ± - X

= QD2H(t) ö(x)[ô'(y + h) o(h) ô(y + h)] (8)

for y < 0, with the condition

reference frame fixed at the source are

p, + Up,, + u dpo/dy = O,

u,, + y,, = QH(t) (x) ö(y + h),

p0(u, + Uu,,) + p,, = 0,

po(V, + Uy,,) + p,, + gp = 0,

(1)

(2)

(3)

(4)

(D2_x2)V=o, (y=O), (9)

where the operator D se a/at + O/Ox.
We next introduce the Fourier transform with

respect to x, and the Laplace transform with re-
spect to t, defined by

i(k, y, s) = f e" dt f y, t) dx (10)

for k real and Re s > 0. The tilde and bar over a
variable denote, respectively, the Fourier and the
Laplace transform. Application of these transforms
to (8), (9), under the specified homogeneous initial
condition and boundary condition at infinity, yields

(-_ __(k2_Xio))=ö(y+h),
dy2 dy

(y < 0), (11)

(
= 0, (y = 0), (12)

where
X1 = Xk2/(k - is)2, (13)

and G is related to y by

u(x, y, t) = Q( - (_h))G(x, y, t; h). (14)

As we intend to obtain the steady-state solution
from the large time limit process, we evaluate,
following DePrima and Wu,4 the limit of G(x, y, t)
by applying the Tauberian theorem which statc
that

um G(x, y, t) = um s(x, y, s) (15)

if, and only if

,-.+ t Jo Ot
hm-i- l6)

Thus, to obtain the large time limit, we only have
to evaluate the Laplace transform for small positive
s. Only when the necessary and sufficient condition
(16) is verified will the asymptotic behavior of G
for large t be needed. Following this procedure we
determine below the steady-state solution for one
of the two cases treated earlier in Ref. 1.

3. THE PARTICULAR CASE OF CONSTANT d

For ali exponential density distribution

Po(Y) = p0(0) exp (y/L), a(y) = 1. (17)

C. R. DePrima and T. Y. Wu, in Proceedings of the IXth
International Con gre.ss of Applied Mechanics (University of
Brussels, Brussels, 1957), Vol. I, p. 388.
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Fio. 1. The branch points and branch cuts in the k plane.

In the above expression, the physical dimension of
y is restored to identify the characteristic length
L. With = lin (11), the two complementary solu-
tions are exp (m1y) and exp (ni2y), where

= ± M, M = (k2 (k2)2 + .
(18)

Clearly, M can be factorized as

M = [(k k1)(k k,)( k,)(k k4)](k

showing that M has in the complex k plane, four
branch points at k1, k2, k3, k4. For small positive s,
we find that

k,
b

iXs k,', ±is
k2}

+ + O(s),
k3J (4X) ± + 0(s),

b (X U1.

Ilence for X > -, k, is located in the first quadrant,
k2 in the second quadrant of the k plane, k, on the
positive, and k4 on the negative imaginary k axis.
In practical interest X is generally large. In order
to ensure the convergence of the Fourier inversion
integral, we require that M ± k as k ±
along the real axis. This branch of M can be achieved
by introducing a branch cut between k, and k, in

2. The path of integration r.

(19a)

(lOb)

the upper-half k plane, and a cut from +j to
k,, and another from k4 to j along the imaginary
k axis, as shown in Fig. 1. For small positive s, the
function M(k, s) is then analytic in the entire cut
k plane, which includes in particular the entire real
k axis. In accordance with this branch of M, the
solution of (11) satisfying condition (12) and the
required jump across y = h, and vanishing at
y = ,i5

exp [(y + h)/2]
2sM

(exp ( I + hj M) ' I X1 e(u_h)M)
m1 X1

(y <0). (20)

Aside from the four branch points of M, has poles

at the zeros of (m1 X'). For X > , has only
two simples poles at k = ic,, K2, where

= +X + 2is + 0(s'), K3 = X + 2is + 0(s').

For Re s > 0, K1 and i are located in the upper-half
k plane, symmetrical about the imaginary axis (see
Fig. 1).

Now, by applying the Fourier inversion theorem,

- 1 f ikG(x, y, s) = - j e G(k, y, s) dk

in which the last expression follows from the sym-
metry of the branch cuts and the location of the
poles of with respect to the imaginary axis and
that Ô(k, y, s) is complex conjugate to Ö(k, y, s),
with s real, positive. We next seek the limit of G
as s - 0+. In this limit, k1 * b, k, * b, k, 0,

Kj X, 2 X, all from above the real k axis, and
k4 O from below. Consequently, we may deform
the path of integration in (22) to I' which lies along
the positive real k axis except that it circumvents
below the branch cut from k = O to b, and also
below the pole at k = X, as shown in Fig. 2. Hence,
by the Tauberian theorem (15), the steady-state
solution of G is

1
G(x, y) e" Re

where

B = (k' b')1, b = (X - U1,

(X)+B
(X - ) B

exp [(y - h)B]) dk (23)

= 1 Re f e(k, y, s) dk

k
/
exp (Iy+hI 13)
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provided the necessary and sufficient condition (15)
is satisfied. The fulfillment of this condition can be
shown in a manner similar to that by De Prima and
Wu.4 In short, it follows from the asymptotic be-
havior that the time-dependent part of G falls off
like t exp (iwt) for t large, with O < a < i and

real, nonzero. The details of this verification, how-
ever, will be left out here.

The resulting branch cuts for the integrand in
(23) are different from those arbitrarily chosen in
Ref. 1. Without the guidance of the corresponding
initial-value problem, the branch cuts along the
imaginary k axis disappear completely, and the
branch cuts from k = ±b on the different sides of
the real k axis lead to erroneous result of the internal
waves, as will be shown below.

The contour I' may be further deformed for x < O
to a new path along the entire negative imaginary
k axis, from k = O to joe (see Fig. 2). For x > O,
we may introduce a closed contour by adding to
r a large circular arc Iki K from k = K to iK,
returning to k = +iO along the positive imaginary
axis, and then circumventing the branch cut around
the point k = b back to k = iO. Within this
contour there is only one simple pole at k = X.
By applying the theorem of residue, we obtain, after
some straightforward manipulation, the following
result, valid for X > :

G(x, y) = G1(x, y) + G2(x, y) + G3(x, y), (24a)

G3 = [2 - (1/X)]H(x)e ''" sin Xx. (24b)

G - 4ú,+h) R f 1 iXcosß
2

2
e ej 1e

X + ibSifl3e_Yiuß}d (24c)X - ib sin ¡3

G3 = Re f e'"2ir Jo

X + ib cosh t e_i"°°t}
dt, (24d)

X - ib cosh t

X=btxl, Yj=bly+hI,

Y=b(hy), b=(X,
where H(x) = i or O according as x > or < O. In
the above expression for G, G3 is the contribution
from the residue, G2 conies from the integration
around the right half of the branch cut, and G3
from the integration along the imaginary axis. Since
GL satisfies the Laplace equation, it represents an
irrotational surface wave. As wifi be seen below, G2
represents the internal gravity waves arising from
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(24e)

the density stratification, and G3 exhibits a local
effect since it decays more rapidly than G3 at large
distances.

3.1 Asymptotic Behavior of the Flow Field;
Internai Waves

The asymptotic behavior of G3 and G3 at large
distances can be evaluated by usual asymptotic
methods. G, contains integrals of the form

F2(X, Y) = '2 e1(sin ¡3) dß, (25)

f(ß) = iX cos ¡3 - iY sin /3 = iR cos (/3 + O).
R2 = X2 + Y2, O = tan' (Y/X),

where X and Y are real positive parameters. For
R large, F2 can be evaluated by the method of
steepest descent. By treating ¡3 as a complex variable,

= + i, the iiitegrand has a saddle point at ß =
- O, which is located in the region r < ß < O.
The original path of integration along the real ¡3-axis,
which is a level line, can be deformed to the following
steepest paths: (i) path C1 from ¡3' = r to ß
(ir/2 + O) + joe along cosh = sin Osec ( + 8)
then (ii) path C2 from /33 to /33 = (ir - 8) joe
along cosh ij = sec ( + O), and finally (iii) patl
C3 from ß to ß = ir along cosh rj = - sin O sec
( + O). The most significant contributions come
from the integration along three short stretches of
these paths near ¡3 = sir, O, and tir. If in the
integrals along C, and C3 one further expands
(sinh2 n + cos2 O)

cos O + sec Osinh2 sinh < cos
sinh n + cos2 O cosh , (sinh n > cos O).

one finally obtains, noting that (+1) equals the
complex conjugate of ç2(l) in the present case,
the following result:

F3(X, Y) (2ir/R)1e'p(sin O)
+ 2i Re t(1)e 3[X'(i -
+ (r/4R)1(1 - i sin O) erfc (R cos O)] } + O(R)

(26a)

This asymptotic representation of F3 is valid uni-
formly for R» 1, 0 O fir. In particular, we have,
respectively, for (i) X > i, Y arbitrary; and (ii)
X « 1« Y,
F2(X, Y) '- (2i /R)e '4p(sin O)

+ (2i/X) { Re [ç(1)e"] } + O(R), (2Gb)

F2(X, Y) '.-' (2ir/Y)1{Re [(i)e'4]}
+ O(X/Y). (26c)
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In (24d), G3 contains integrals of the form

For R large, one may regard t to be complex, t =
+ ii, and deform the path of integration to the

steepest path from t = O and t = - iO along
cosh = sin O ese (n + O). The resulting integral
is similar to that along C, for F2. We finally obtain

F3(X, Y) (1)e3[X'(1 -
+ (ir/4J?)(1 - i sin O) erfc (R' cos O)]

+ O(R). (28a)

I lence

F3(X, Y) e-' e11'[(1)/X1 + O(X2), (X» 1),
(28b)

F3(X, Y) '- (1)(ir/2Y)e' + OCX/Y),
(X « i « Y). (28e)

Making use of the above asymptotic expansions in
(24), we obtain for X» 1,

G2(x, y) r' H(x)e''
(sin(R, tir) sin(R., - tir) 2bsin O,
'\ (2irR,) - (2irR,') + (9R)
(A - ) cos (R, air) + b sin 8, sin (R, - ±ir)

(A
1)2 + b2 sin2 8,

2H(x)G3(x, y) + OR), (29a)

(73(x, y) '--' (i/2ir)e+Ic {X'(cos Y, - cos Y,)
+ (2b/A2X)[b cos Y, (A ) sin Y,]

+ O(X2), (29h)

where
X = b xl,
Y, = b y + h( = R, sin 81,
Y, = b (h - y) = R,sin 8,.

For X < i « Y, we have
G2 + G3

j (,+h)(srn (Y, - jir) sin (Y, - tir)e
(2irY,) (2irY,)

2b (A ) cos (Y, tir) + b sin (Y,
A2 (2irl',)

+ O(X/Y). (30)

This result holds valid for both x positive and nega-
tive.

Summarizing the above result, we note that G,

represents an irrotational surface wave which decays
exponentially into the interior and propagates to
x = + without attenuation. Its effect on wave
drag has been studied in detail'. G2 represents the
internal waves produced in the nonhomogeneous
medium. At large distances, the leading term of G2,
given by the first term in (29a), exhibits two cylin-
drical waves centered, respectively, at (0, h) and
(0, h), which exist only on the downstream side,
x > 0, and are attenuated like R (when the three
terms are considered together). This wave mode was
calculated incorrectly in Ref. (1) because of the
wrong branch cuts chosen, yielding the wrong result
that the internal waves exist on both the downstream
and upstream side. Since the amplitude of these
internal waves decays like R, their energy falls
off like R' as R , and hence the rate of transfer
of the wave energy across a large circle of radius
R will be constant. Therefore, on physical grounds,
we conclude that this wave mode, like the surface
wave, also radiates energy, and consequently con-
tributes a finite wave resistance. The next order
term of G2 is equal to 2G3 for x positive and large.
This term and G3 combined produce a secondary
internal wave mode which oscillates only in the
vertical direction, exists ori both sides of z = O
(actually an odd function of x), and decays like
1xI' for 1x1 large. The higher-order terms of G2 and
G3 can be seen to be less significant.

In a small neighborhood of the singularity, X
and Y, being both small, it can be shown, by ex-
panding the integrand of G2 in a Taylor series and
integrating termwise, that G2 is bounded as R, * 0.
For the integral representation of G3, one may use
the formula for t.he Bessel function of the second
kind,

_. f sinzsinß) 2 r" -
dß - J

e dt, (31)
ir

(29c) and show that

G3(X, Y) r--' Y0(R,) + 0(1)
(32)

Y0(z)

'-i (l/2ir) log R, + O(i) as R, 0.

This result implies that the inertial effect predomi-
nates in the neighborhood of R, = 0, and hence G
retains there its behavior i n a homogeneous medium,
as should be expected.

The case of arbitrary oy), but with A large, will
be discussed later in a separate work.
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F3(X, Y) = f e_X _cobe,(cosh t) dt
(27)

= f °çi(cosh t) dt.






