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SUMMARY

The orbits of Earth satellites with perigee heights less than 600km are
liable to be appreciably perturbed by the aerodynamic forces resulting from
winds in the upper atmosphere, and analysis of the changes in the orbits provides
a method of determining zonal (west-to-east) and meridional (north-to-south)
winds. The theory hitherto used has been developed for orbits of eccentricity
e < 0.2 . Here we develop the theory for the effect of zonal and meridional
winds on the inclination i and right ascension of the node § for satellites
in orbits with e > 0.2 moving in an oblate atmosphere. The results are
expressed in terms of the change in orbital period, which is accurately known
for actual satellites, so that the equations are independent of variations in

air density and satellite cross-sectional area.

The results, summarizéd in equations (58) and (59), show that the changes
depend on e through the function (1 - e)*(l +e) ° . For zonal winds,
the change in i is nearly proportional to sin i coszw and the change in @
to sin 2w , where w® is the argument of perigee. For meridional winds, the
change in i 1is nearly proportional to (seczw + tanzi)_% » and the change in
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1 INTRODUCT ION

The orientation of the plane of an Earth satellite orbit may be signifi-
cantly altered by persistent zonal (west-to-east) winds or meridional (north-to-
south) winds in the upper atmosphere near perigee, and the theoretical variation
of the relevant orbital elements needs to be established so that the observed
changes in specific orbits can be analysed to evaluate these winds. The orbital
parameters primarily affected are the inclination to the equator, i , and the

right ascension of the ascending node @ (see Fig.l for definitions).

The theory for the effect of zonal winds on i and Q@ for orbits of
small eccentricity was first developed by Cook and Plimmerl for a spherically
symmetrical atmosphere, and by Cook2 for an oblate atmosphere. These results
are recorded in a revised form by King-HeleB. This theory is for an atmosphere
in which the density scale height H is constant, with the air density at
height y proportional to exp(-y/H) . In the real atmosphere, H varies with
y , and the theory was extended by King-Hele and Scott4 to take account of this
variation. The real atmosphere also has a strong day-to-night variation above
200km, and theory appropriate in these conditions was developed by King-Hele and
Walkers. The effect of meridional winds on orbits of small eccentricity in a

spherical symmetrical atmosphere of constant H was studied by King-He1e6.

In all this previous work the orbital eccéntricity e 1is assumed to be
small, and expansions in powers of e are used. Recently Brierley7 has obtained
accurate values of inclination for rapidly decaying orbits of Molniya satellites
of high eccentricity (e = 0.5) : a theory for high-eccentricity orbits is needed
if upper-atmosphere winds are to be determined from the observed changes in the

orbital parameters of such satellites.

In the present paper we develop the theory for the effect of zonal and
meridional winds on both i and © for high-eccentricity orbits in an oblate
atmosphere. Our results have already been successfully applied8 to determine

upper—atmosphere winds at heights near 110km from the orbit of 1970-114F.

2 SUMMARY OF PREVIOUS BASIC RESULTS

A spherical satellite moving through the upper atmosphere experiences an
aerodynamic drag force in the direction opposite to its motion relative to the
air. If the atmosphere did not rotate, this force would be opposite to the
velocity relative to the Earth's centre, and would have no effect on i and Q .

Both these orbital elements are slightly altered, however, if the upper




atmosphere is in motion; the most important effect is that caused by the steady

west-to—east rotation of the upper atmosphere, generally at an angular velocity
not very different from that of the Earth. This axial rotation produces a
transverse force which has the effect of reducing the inclination in the course
of a satellite's life, often by as much as 0.l°, which is readily measurable.
The effect of axial atmospheric rotation (and hence zonal winds) on inclination
is proportional to coszw , where w 1is the argument of perigee, and the
effect therefore builds up over many revolutions of w . In contrast, the
effects of meridional winds on inclination are proportional to cos w , and are
therefore generally less important, because they tend to cancel out over each

cycle of w .

Both the zonal and meridional winds produce a change in inclination per
revolution, Ai, say, which is proportional to the drag experienced by the
satellite; and this drag also produces a decrease ATd , say, in the orbital
period Td of the satellite, expressed as a fraction of a day. Since AT

d

can be accurately measured, it is convenient to express Ai in terms of ATd -
thereby eliminating terms involving air density, satellite mass and cross-

section, etc., which have the same effect on both Ai and ATd ‘

For an orbit of eccentricity <0.2 in an oblate atmosphere (of constant

scale height H) rotating at A rev/day about the Earth's axis,

. Al e I
M . Asiand {l + —z-cos T ¥ O(e,c)} (1))

814 6/F Ly

Here VF 1is a factor which is nearly always between 0.95 and 1.05, and is
given by (1 - rpw cos i/vp) , where rp and vp are the radial distance and
velocity at perigee, and w 1is the angular velocity of the atmosphere about
the Earth's axis. The quantities I in equation (1) are Bessel functions of
the first kind and imaginary argument, of order n and argument z = ae/H ,
where a is the semi major axis; the quantity c¢ 1in (1) expresses the effect
of atmospheric oblateness, being equal to erp sinzi/ZH , where € 1is the
ellipticity of the atmosphere, which is usually taken equal to that of the
Earth, 0.00335. The terms in e and c¢ in (1) are given explicitly in Ref.3,

and further terms, in ce and e2A, were evaluated by King-Hele and Scottg.

Since the aerodynamic forces are important only near perigee, it is the

wind in this region which is effective in altering i . If yp and ¢p are



the perigee height and latitude, the perigee is at a distance (R + yp) cos ¢p

from the Earth's axis. Hence, if yp is in km and R 1is taken as 6370km, the
rotation rate A corresponds to a west-to—east wind near perigee of
(463 + 0.073yp)(A - 1) cos ¢p m/s.

The change in Q per revolution for an atmosphere with an axial rotation

rate of A rev/day is given by

! 1t
729 S T G s OR T  (88 ‘
ATd - 6/FT [I—O ‘t] + O(E,C)ﬂ (2).

Since the effects of atmospheric rotation on § tend to cancel over half a
cycle of w , it is usually better to determine upper-atmosphere winds by

analysing the cumulative changes in i rather than the smaller changes in Q .

When 2z 1is large enough, the Bessel functions in equations (1) and (2)
may be replaced by their asymptotic expansions, with IZ/IO =1=-2/z+ 0(1/22)

etc. Equations (1) and (2), with the e and c¢ terms restored, then reduce to

%%— - BB (1 = 4e) coszw o e cos 2w + E-sinzi sin22w + O(ez,cz,l/zz)
d 3/E_, Z e
......(3)
%%— - Lsinie 1 - %—— be - %S sinzi cos 2w + O(ez,cz,]/zz)} (4)*.
d 6vF

These simplified forms apply if =z > 10 , corresponding to e > 0,05 for a
typical value of H/a, 0.005: so equations (3) and (4) may be regarded as
applicable for 0.05 < e < 0.2 . These equations are of particular interest
here, because the expressions we find for Ai and AQ due to atmospheric

rotation should reduce to (3) and (4) if expanded in powers of e .

The changes in i and Q caused by a meridional wind for orbits of small
eccentricity, again with the Bessel functions expanded in powers of 1/z , may

be written

* There is a serious misprint in this equation as given in Ref.3, equation
(8.39): the cos 2w is omitted.
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'ﬁ'li:_=_ucc:;si{ 2 }{(1+%)(1-§1;) cosw—%—cos 3w+0(0.1,1/22)}

Bl +-co6-1)

d
...--.(5)
3
%%— = -k cgs 2 { 2 5 (] + %)(l - 5%) sin w --% sin 3w + 0(0.],]/22)
d F(l + cos™1)
.000000(6)
vl 2
where K = sin"i/(l + cos”i)
and ¢ rev/day is the equivalent south-to-north atmospheric rotation rate:

in other words, the south-to-north wind near perigee is

(463 + 0.073yp)u m/s.

Equations (3) to (6) are derived on the assumption that the satellite is
spherical and experiences an aerodynamic force in the direction opposite to its
motion relative to the ambient air. A non-spherical satellite may suffer :
aerodynamic lift forces perpendicular to the drag, but Cooklo and Fiddesll have
shown that 1lift generally has only a very small effect, except for satellites
of peculiar shapes (such as flat plates) with specific variations of incidence
(e.g. flip-over at perigee). The theory developed here for spherical satellites
should apply equally well to satellites of irregular shape which rotate many
times during the course of each revolution round the Earth, and should therefore

be valid for nearly all unstabilized satellites.

It is worth emphasizing again that the results are independent of the
irregular variations in upper-atmosphere density, and independent of any
variations in satellite cross-sectional area or drag coefficient. Such varia-

tions affect Ai and ATd equally and leave their quotient unchanged.

3 EFFECT OF AN OBLATE ROTATING ATMOSPHERE ON i AND § , FOR ORBITS
OF ECCENTRICITY GREATER THAN 0.2

31 Effect on inclination

¥l Al S invtermsiofl o and: 56

An atmosphere rotating at an angular velocity w about the Earth's axis

produces a rate of change of i given by equation (8.11) of Ref.3 as

1

3

g_é e s %rzpws {r(l e co; E)} sin i cos®(w + 6) ),
GMF (1 - &%)



where p 1is the air density at distance r from the Earth's centre,

E 1is the eccentric anomaly,
@ is the true anomaly,
GM is the gravitational constant for the Earth (398601km3/sz),
and § = FSCD/m » where Cj is the drag coefficient of the satellite based on

the effective cross—sectional area S , and m 1is its mass.

In equation (7) we first express w in the form w = AwE , where v s

the Earth's angular velocity and A 1is the axial atmospheric rotation rate in
rev/day. Also the anomalistic orbital period expressed as a fraction of a day,
Td , 1s equal to wE/n , where n 1is the satellite's mean motion, which is

linked to a by Kepler's equation, nZa3 = GM . Hence

T
w o= ATd(GM)za 2 (8),
and equation (7) becomes
di 3 .2 1 + e cos E 2 W 2
= ® = Ir2a 2Apo6 Ayl #AE 1 €08 (w+0) . ).
E F(l = &)

For the orbits we are studying, with e > 0.2, it proves fruitful to change

the independent variable from E to A , where
2
cosE = 1 -2z (10)

with 2z = ae/H as before, and then to use expansions in powers of Az/z . From

equation (10),

sin E = 2%z'5x(1 - A2/2z)i
and > €1 )s

dE 25{2(1 = 22122y Hax

e

If we use the standard equations for an unperturbed ellipse,

r=a(l —ecosE); rcos 6 =a(cosE=-e); and r sin 6 = a(l - e2)£ sin E

3 vees GEE )y
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and write

22— a)

S (13),

we find, on expanding in powers of A/x ,

2 3 P
2 i - T N A _
cos " (w +8) = cos‘w ~ sin 2w 5 COS 2w + 0 —3)
X X
4 (14)
2 3
sinz(w +0) = sinzw + %-sin 2w + &7 cos 2w + 0 <Z§>
X X a
2 3 ]
cos (w+86) = cos w{l i 4 tan w - e + 0 A
X 2 3
2X X
o G
A A A
sin (w + 8) = sinw{l+—cotw——-—-+0(—)}
X 2 3
2x X 4

= (]_ ) 1 + e)\2 6
r = a e = e | (16).

If equations (10), (11), (14) and (16) are used to eliminate E, (w + 6) and

r , equation (9) gives

di 1\ 2.-4 - e ; xzei
ﬁ-=—aApoa('2—'FT)(l‘_6) (]‘e)r{]+z—(l—_—ey ]+G_T}

)\2 % 2 A )\2 A3
X (z o sin i |cos™w il sin 2w - ;f cos 2w + 0 ;3 (17),

To obtain the change Ai in i during one revolution, we integrate
equation (17) between E = -r and E = 7 , that is between A = - V/2z and
A = ¥2z , Equation (17) then becomes, after expanding the curly brackets in

powers of A2/z >



e -‘—-%(1— YEAT S Big i
i 2Fz % 5 d

g A° 2
x | cos"w - ;-sin 20 = —5 cos 2w + 0| —= )|pdr (18).
X X

e

{] O % Be % RS (x")}
+ 3 + 0 -
4(1 - e7)z z

>
W)

3.1.2 Density p in terms of A

In an atmosphere of constant scale height H and ellipticity e (taken

equal to the Earth's ellipticity, 0.00335), the density p may be expressed as
p = b, exp {- - 0)/u} (19),

where o 1is the radius vector of the surface of constant density that passes

through the perigee point and pp is the density at perigee. From equations
(5.2) and (5.4) of Ref.3,

g = rp[} - € sinzi {sinz(w +6) - sinzw} + O(ez)] (20),

where rp is the perigee distance, a(l — e) . On substituting this expression

for o into equation (19), we have

1 o 2 s 2 2
= e - = |r-r + er sin“i {sin"(w + 6) - sin“w{ + 0(e i] (21).
J G- XP[[H[ P P { } )
Now, from equations (10) and (12),

r - rp = ae(l = cos E) = aeAz/z B HAZ (22),

since z = ae/H . With the aid of equations (l4) and (22) we may rewrite
equation (21) as

' 2
i - _ge ] . X A
p = pp exp(—- A7) exp [: 1 {s1n 2w + % cos 2w + 0(:2)}] (23),

where ci = (erp sinzi)/ZH (24).




Expanding the second exponential in equation (23) in powers of A/x , and

assuming that c¢ 1is of order 1, we have

2 3
p = pp exp (- AZ) [l - 2—;)‘- sin 2w + 2c§ (c sin22w - cos 2w) + 0(-}‘—3>] (25).
X X

3.1.3 Ai 1in terms of ppG

We now substitute the expression (25) for p into the equation (18) for
Ai , multiply out the expressions in square brackets, and ignore all terms in

A5 A3, AS ..., which vanish when integrated between -/2z and v2z . We find:

Y2z
} 2ei2 4
8i = - (54=) aCl - &)’AT,p 6§ sin i ks AR |\ ofde
2Fz d'p 2 2
4l -e" )2 z
-/2z

2 2
X {%oszw ~ 57 cos 2w + 2c2 coszw(6 sinzm -1+c sin22w{} exp(-Az)dA (26).
X X

We are assuming that e > 0.2 and a/H > 150 , so that z = ae/H > 30
and 2z > 7 : since exp(- 49) = 5 x 10_22 , the value of the integrand is

negligible for A > Y2z, and the limit v2z may be replaced by « . Hence,
multiplying out the curly brackets, we may rewrite (26) as
Al = = (—l—)ia(l - e)2AT p.6 8in 1 coszw
2Fz d"p
= 2 2
o [ i & {8(1 i e)zseczw - (15 + 24e + 5e )}A
/ 4201 - &%)
2 4
+ 22 (6 sin’w - 1 + c sin’2) + 0 (%):I exp(- A2)ax  (27).
X z

We now eliminate x2 using (13), and utilize the standard integrals
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[ eme- 2Ban - 77 5 [ 32 e aDan = 17 5 [ 3 emeahan = 15 o,

=00

Equation (27) then becomes

Bt el T 2
AL = (ff;) a(l e) ApoPG sin 1 cos™w

o [} & 8(1 + e)zseczm - (15 + 24e + 5e2)

Bell &)
S €Y 45w . 2 .2 (1)]
+ — (6 sin“w = 1 + ¢ sin“2w) + 0 ( — (29) .-
z (1 e) z2
3.1.4 ATd in terms of ppd

From equation (4.14) of Ref.3 the change Aa in a during one revolution

is

w
ha = - a26 .[ (1 + e cos E)%

=T

(1 - e cos E)_%pdE (30).

Changing the variable from E to A by means of equations (10) and (11):

Ky = = (2)5 2 ‘3 s 3 _ xog i . g %
a = ;a& f l+e-—z—- 1 e + — 1 Ty pdA (31).
-2z

Expanding in powers of AZ/z , and using equation (25) for p , we have

V2
P - 2 : (1 + e)% g (8e - 3" = 1)7\2 »
Aa = ap § \— -———————{ 3= > + 0 -
PO R I 4z (1 - e7) z

2 4
X {l + ch (c sin22w - cos 2w) + 0 (AZ>} exp (- kz)dk (32)

X X
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In equation (32) the terms in A and A3 from equation (25) have been dropped
because they lead only to terms of odd degree in A , which vanish when

integrated between =-v2z and 2z .

Since Td « a° , we have

8. & e (33).

Substituting for Aa from equation (32), altering the limits of integration to
-» and «, using the integrals (28), and expressing x2 in terms of z by
(13), we have

3 4
i i (1 + e)
ATd = 3 (-——zz) apoPG m

2 $
x |1 = Nl + 2c(1 + e) (c sin22w - cos 2w) + 0 e (34).
2 z(1 - e) 2
8z (1 - e7) z

3.1.5 Expression for Ai/ATd

We now divide equation (29) by equation (34). From equation (24),

z(l - e) e

2c € sinzi
(35).

On using (35) and expanding in powers of 1/z , we obtain

S
M gk ) e ay g e e (e T %Y i
AT X % cos w + 7

d 3/F(1 + e) 2(l ~e")

z

+ %-(1 + e) sinzi sin22w +0 (—%)] (36).

This is the required expression for Ai/ATd 3 it reduces to the same form as

equation (3) when expanded in powers of e .

3.2 Effect on right ascension of the node

For @ , the equation corresponding to (7) is equation (8.10) of Ref.3:
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3
?1% —_——. {r(l —— co; E)} rzpw6 sin (w + 6) cos (w + 0) (37).
GMF (1 - e")
Thus the analysis is the same as for i , except that sin i does not appear
and cosz(w +6) in (7) is replaced by sin (w + 6) cos (w + 8) . From

equations (15),

2 3
: 4 : 21 ey A
sin (w + 0) cos (w + 6) = 1} sin 2w {1 + S cot 2w - 0 <-;3-)} (38).

X

So the Q-equation corresponding to (18) is

1 1 } 2 ' (1 + 8e + ]le2)>\2 X4
A = == |=—] a(l - e)"AT,§ sin 2w / 1 =+ + 0|\ —
2 \2Fz d 2 2

/2 4(1 = e7)z z

2 3
2\ 2\ A
X lE + =~ cot 2w x—z- +0 (;—:’-)jlpdk (39).

In equation (39) we insert the expression (25) for p , multiply out,

ignore odd powers of )\ and evaluate the integrals, as with i . We find:

o el Y :
AQ = 5 (2Fz§ a(l e) ApopcS sin 2w
15 + 24e + 5e2 2c (1 + e) 2 1
X 11 = + (c 8in“2w = 3 cos 2uw) + 0| — (40).
2 z(1 - e) 2
8z(1 - e7) z

Finally, dividing equation (40) by equation (34) and eliminating c¢ by

means of (35), we find:
-
1 + e) sin"1i cos 2m+0( )]
z

sessss(41).

5
AR _ A sin 2w (l-e)2 2-4-2e+e2 2e
= ] - = - = (

ATd % z(1l - e2)
6/F(1 + e)

—

N

This is the required expression for AQ/ATd ; it reduces to the same form as

equation (4) when expanded in powers of e .
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3.3 Critique of the assumptions

We assume in equations (14) that an expansion in powers of A/x is
legitimate and we go on to neglect terms of order A4/x4 or )\4/z2 » leading
to the neglect of terms of O(]/zz) in the final solutions. Since z > 30

and is normally of order 102, this assumption has a posteriori justification.

The assumption that c is of order 1, made in equation (25), is nearly
always valid, since c¢ cannot appreciably exceed | unless H < 10km , i.e.
the perigee height is less than 115km - low enough to make most satellites
decay within a few hours. A dense satellite may survive with a slightly lower
perigee and an extreme upper limit for c¢ of 2 should be considered. A
possible extra term of 0(c4k4/x4) would then appear in equation (26), giving
a possible extra term in (36) of 0(c4/22) = 0(c262/e2) < 10_3

e > 0.2 . This is less than the 0(1/22) at its maximum, and so does not

1f- e ksl tiand

deserve to be included.

4 EFFECT OF MERIDIONAL WINDS ON i AND Q FOR ORBITS WITH e > 0.2
IN AN OBLATE ATMOSPHERE

o) Effect on 1

If the south-to-north atmospheric rotation rate near perigee is ¢ ,
i.e. the south-to-north wind component is r® , the change in i due to &

is obtained from equation (35) of Ref.6 as

3
g%_ = £r2p¢6 {r(l + e co; E)} cos 12cos (2 + 0) - 42).
GMF (1 - ) {1 - sin®i sin®(w + 0)} 4

As before, we express r and E in terms of X by (10), (11) and (16), write

cos (w + 6) 1in powers of A/x using (15), and write

ha= wwp = qu(GM)-ia_% by (8) (43).

Equation (42) then becomes

S 1
-}

s ]\t auTgpd a2\ a2 i
a = (ZFZ) 5 % ] - e + T 1l + e - ——z—- 1 - -2—5 cos 1 cos W
(1 -e

2 3 -1
x {1 = l tan w - SN + 0 S {l = sinzi sin2 (w + e)} (44).
= 2x2 x3

-

150
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Now, from equations (14),
2 2 A sinzi A A3
1 - sin"i sin"(w + 8) = o I-T(51n2m+;c032w)+0<;3- (45)
where o = 1 - sinzi sinzw = coszi + sinzi coszw (46).
From equation (45),
2 2 -1 -1 A sinzi sin 2w
{l - sin"i sin (w+6)} = a 1 + VT

28 e 2 e 3

& A sin 1 sl Bas 3 sin i sin 2w Wi A 7).
2 4o 3
200X b’

In equation (44) we may now expand the first three main factors in powers

of )\2/z , insert p from (25), use (47) and integrate. This gives:

1\ 2 7 (= Be o+ a0~ . Ji*

AL = (—-—) auT.p 8§(1 - e)” cos i cos w 1 + + 0| —=
2Fza d"p 2 2

4z (1 - &%) z

-2z -

2 i 2y
. 1-'->‘—tanw—>\ ]+)\51n151n2w
X 2 20X
o D st

)\2 s1n21 3 sin"1i sin 2w AB
+ —————— [(cos 2w + + 0| —
2 4o, 3

_ 2ax X

2 3
x {1 - z;—x sin 2w + 2c2 (c sin22w - cos 2w) +* 0(?3)}3@(— Xz)dx (48) .

X

On multiplying out the brackets, ignoring all odd powers of A , and replacing

the limits by - and +~ as before, we find that equation (47) reduces to

} £ R e
AR R auT .p 8(1 - e)2 cos i cos w 1+ e b LA f(i,w)
2Fza d'p 2 2
4z(1 - e7) X

=00

2 gl 4
+ 2cg {1 = 2 cos8 2w + <c - %2——]-') sinZZm} + 0 (%)] exp (- )\2)‘”‘ (49)
< 2z

-
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% sinzi 2 3 coszi sinzw :
where f(li,w) = —=—=|cosw - (50).

When we evaluate the integrals in (49), and eliminate x2 using (13), we

obtain

}

5 m 2 .
Al = (E?EE) aquppé(l e)” cos 1 cos w

2 2
7Je- - 3 1+e 5 2c (1+e) i W 0 T
x I:l + * TS f(l’w>+'27]_—-é_r{] 2 cos 2w+(c T—)mn Zm}

8z(l—e2)
+0 <l2->:| (51).
VA

Dividing (51) by (34), eliminating c by (35), and restoring the explicit form
(46) for o , we find

R u(l - e)g cos i cos W
ATd 3VE(1 + e)g(coszi + sinzi coszw)%

& [E & e2 + 2e - 1 i (1 + e)f(i,w) % 2e(l + e) siﬁzi coszi sinzw

2z (1 - e2) z(]‘- e) e(coszi + sinzi coszw)

¥ o(Lz)] (52).
z

42 Effect on

Equation (36) of Ref.6 gives the change in 2 as

%% L £¢r206 {r(l + e co; E)} cot 1231n (g + 0) + (53).
GMF (1 - &%) {1 - sin®i sin®(w + 0)}

Equation (53) is similar to equation (42) for i , except that (53) has
cot i sin (w + ) where (42) has sin i cos (w + 8) . So the analysis is

similar, and the Q-equation corresponding to (48) is
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vV2z g
3 A 4
AR = = auT.p 6(1 = e)2 cot i sin w j[ 1 + fLroe > Mia d) + 6,
2F zo d"p 4z (1 2 2
/22 L £

2
X {l + % cot w - ;—x—z-}{}{} exp (- )\z)dk (54)

where the curly brackets filled with dots are identical to the last two curly
brackets in (48).

On multiplying out the brackets, ignoring all odd powers of A , and
evaluating the integrals, as for i , we find, as the Q-equation corresponding
tol. (51)

T : 2 P
AQ = EFEE) aqupPG(] - e) cot i sin w
, -
% |1 428 32 - 2zl(l+_ee) g(i,w)
8z(1 - &)
2c(1 + e) sinzi 2 1
-2t — 2 {2 cos 2w+ 1 - |c -=—=]sin 2w} +0(—5 (55)
z(l - e) 20 _ z2
inz' 2 3 sinzi sin22m
where ' g(i,w) = E—a—i- 1 -4 cos"w - i (56).

Dividing (55) by (34), we obtain

AQ n(l - e)%cot i sin w

d 3VF(1 + e)}(coszi + sinzi coszw)£

.0 & e2 + 2e -1 (1 +e)gli,w) _ 2 + e) sinzi coszw &0 1
2.  2z(1 - e) 2 - o 2 R
2z(1 - %) e(cos“i + sin"i cos“w)

sannvekBl) .

5 DISCUSSION OF RESULTS

5.1 Combined effects of zonal and meridional winds

From equations (36) and (52) the combined effect on i of an axial

rotation rate A rev/day and a south-to-north meridional wind equivalent to
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a rotation rate of u rev/day is given by

¥

Al ie (1 - e)

ATy 3+ o)

2 2 2
¥ [} bl g {coszw & (1 + e) (2 + 2e + e7) cos™w

z(1 - e2)
+-E- (1 + e) sinzi sin22w + 0<L2>}
z
; 2 ;
N {1+e+2e~1+<1+e>f<1,m>
(coszi + sinzi coszm)‘;t 2z(1 - eZ) z(l - e)

. 2e (1 + e) sinzi coszi sinzm (1)}:‘
+ 0| —
2% N2 2 2
e(cos”i + sin"i cos w) z
I 12y

where £(i,w) 1is given by (50).

Similarly, from equations (41) and (57), the effect on § 1is given by

5
L R . 1. e)’sin w
v a2
oty 3VF( + e)?
2 + 2e + e2 2¢ 2 1
X [N cos wi{l - ——————=-"— (1 + e) sin'i1 cos 20+ 0| —
2 e 2
z(1 - &) Z
. 2 o
i U cot 1 {l L. 2¢ = 1 (1.4 e)gliw
(coszi + sin2i coszw)2 2z (1 - e2) 2z(l = e)

2, 2
_2c(l + e) sin"i cos'w 1
SRR i (‘2‘)}] (59)
e(cos”i + sin"i cos w) z
where g(i,w) is given by (56).

52 The effect of zonal winds

Taking p = 0 in equations (58) and (59) gives the effect of zonal winds
alone. The second and third terms within the curly brackets in (58) and (59)

become negligible as e (and hence 2z) become large, so we may assess their
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importance by taking the lowest values of e and 2z , namely 0.2 and 30. The
terms are then (0.05 - 0.08 coszw) and 0.02 sinzi sin22w s in equation (58).
Thus both terms are small, although it should be noted that the main term is
also small if ® is near 90° or 270°. So, for a given change in T and given
A, Ai is normally proportional to (I - e)° (1 + ey ” ‘sin i coszm i

5
shows the variation of (1 - e)’> (1 + e) with e , for 0.2 < e < 0.9 .

For AQ , the variation with e 1is the same, AR being proportional to

a - e)i(l + e)_% sin 2w ;3 but AR is to a first approximdtion independent of

o}

i , and has its maxima at w = 457, 1350, eeey Dbeing zero for w = 0, 900;

1

5.3 The effect of meridional winds

Taking A = O 1in equations (58) and (59) gives the effect of meridional
winds alone. Again the second, third and fourth terms in curly brackets are
largest when e = 0.2 and z = 30 , and in the i-equation (58) these three

terms have the values

0.04 sinzi coszi sinzw

- 0.01, 0.05£(i,w) and 5 5
' cos'1l + sin"1 cos W

respectively. Generally, therefore, these three terms are small compared with
the main term, and the major variation is that due to e , given by Fig.2. The

same conclusion applies to equation (59) for Q .

For the meridional winds, the effect of variations in i and w on Ai

is best seen by writing

cos i cos w 1

2. S 2.3 2 2.

(cos™i + sin”i cos“w)? (sec”w + tan 1)}
This factor is greatest when seczw is smallest, i.e. when w = 0 or 180° -
when perigee is on the equator: the factor then reduces to cos i . Even this

maximum effect of meridional winds, therefore, is not especially large.

PR |
The corresponding factor for AR 1is cot i sin w (1 - sinzi sinzw) 2y

and this has its greatest numerical value when sin w is greatest,
. o o :
7.e. at apex when w = 90  or 270 : the factor then becomes * cosec i . So the

rate of change of §Q 1is large for near—equatorial orbits, as always happens
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unless the force producing the perturbation in Q vanishes when the orbit
becomes equatorial: for zonal winds the force does vanish, but not for meridional

winds.
The effect of variations in e 1is the same for meridional as for zonal
winds, and is given by Fig.2.

Equation (58) shows that, to the first order, there is a symmetry between
the effects of zonal and meridional winds on inclination if perigee is on the

equator, for then

; 3
o1 = (L e [A sini *tucosi+0 l-] %
ATd 3WFQ + e§§f (Z)

(The + is for w = 1800, the minus for ® = 0.) No such symmetry exists for
AR o

So far we have assumed that the functions £(i,w) and g(i,w) in
equations (58) and (59) are not unduly large, but this assumption is not always
valid. Figs.3 and 4 show the variations of £(i,w) and g(i,w) with i and
w . (Only the squares of sines and cosines occur in f and g , which are
therefore only plotted for 0 < {i,w}=< 90°.) When i and w are both less
than 600, |fl <1 and Igl < 2,3 : the £ and g terms are then likely to
be negligible. However, when i and w are both near 900, large values of £
and g may arise and the terms need to be computed. At i = w = 90° there is
a singularity which ought to be noted and avoided in programming equations (58)
and (59) for numerical computation. The singularity is of no significance
physically, because Lagrange's planetary equations, from which (42) and (53)
are derived, show that both Ai and AQ are proportional to the force normal
to the orbit, which is zero when a polar orbit experiences a purely meridional

wind*.

5.4 Day-to-night variations in density

In developing the theory, we have taken the surfaces of constant atmos-

pheric density to be oblate spheriods. However, the actual constant-density

* The singularity arises through a substitution made in equation (19) of Ref.6,
where the angle )\ between the orbit and the easterly direction is eliminated
by the equation cos A = cos i/cos ¢ , where ¢ 1is the latitude (1) .

When i = ¢ = 90° the value of XA from this equation is indeterminate,

though a geographical approach shows that A = 90° when i = 90° , whatever
the value of ¢ .

150
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surfaces also have a slight diurnal bulge towards the Sunlz, the density having

a maximum at local times near 14h and a minimum near O4h.- We have previously5
assessed the effect of this asymmetry for orbits of eccentricity less than 0.2,
and found that it had a negligible influence except for certain special orbits
with eccentricities of order 0.01 and perigee héights near 500km. When the
asymtotic expansions of the Bessel functions are used in equation (27) of Ref.5,
it is seen that the contribution to Ai of the day-to-night variation in density
has 1/z as a multiplying factor, and hence becomes even less important as the
eccentricity increases above 0.2. So the day-to-night variation in density can

be ignored.

5.5 Variation of scale height H with height

We have developed the theory on the assumption that the density is given
by equation (19), with constant density scale height H . In reality H varies
with height, and the variation of density with r may more realistically be

represented by the equation]3

e 2 E =T
po= p, {1 +2—2(r-rp)}exp(- —-H——R> (61)
Hp )

where Hp is the value of H at perigee and «k 1is, very nearly, the gradient
of H, so that k = dH/dr : we assume that «k 1is constant and less than 0.2,
and ignore terms of order %Kz . Eliminating (r - rp) by use of equation (22),

we may write equation (61) as
2 2
p = pp 1 + §kZ°(1 = cos E) exp{— Z(1 = cos E)} (62)

where zZ = ae/Hp (63).
If we redefine )\ by writing 2z = Z in equation (10), equation (62) reduces to

p e pp(l + 4kcd’) exp(- A7) (64).

Substituting this expression for p into equation (18), we obtain

equation (27) with ¢ = 0, z = Z and an extra factor {1 + %KA4} within the

integrand. On integration this leads to an extra term, and equation (29)

becomes




7 (—2-17;—2)5 a(l - e)’AT

dpp6 sin 1 coszw

2 2 2
% E . %;_+ 8(1 + e)” sec’w - (lg + 24e + 5e7) 0 <§ ,_%é>] 65).
8Z(1 - &%)

To reduce equation (65) to the same form as (29), to order «k , we have to

write
Z = 2'"(1 + ) (66).

Substituting (66) into (65) gives

1
AL = - —JLT)Z a(l - e)ZAT p_6 sin 1 coszw
2Fz d"p
2 2 2 '
W 8(1 + e)” sec”™w = (15 + 24e + 5e&°7) 4 B KZ’ J;_’ 1 67).
2 z 12
8z'(l - e7) z

The neglected 0(K2) term in (67) is 9K2/]28 , which is less than 0.003 if
k < 0.2 . Apart from the O terms, equation (67) is the same as (29), with =z
replaced by z' . Hence, to the first order in «k, the effect of variation of

H with height may be allowed for by using

' [ ae
® T Ean e

instead of 2z = ae/H . In other words, the equations previously derived may be

used unchanged, provided the scale height H 1is evaluated at a height } of a

scale height above perigee: for, since « is the gradient of H ,
He= HUCl 4 e
(1 + §6)

at a height %Hp above perigee. The same conclusions apply for § and for

meridional winds.
6 CONCLUSIONS

We have considered a satellite moving in an orbit of eccentricity > 0.2

through an oblate atmosphere, and have derived expressions for the changes in
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inclination and right ascension of the node caused by zonal and meridional winds,
equations (58) and (59). The theory is developed for an atmosphere in which the
scale height H is constant, but the effect of variations in H can be allowed
for by evaluating H at 3 of a scale height above perigee. Day-to-night
variations in density have negligible effects. The equations, being expressed

in terms of the change in orbital period, are independent of variations in air
density or satellite cross-sectional area. They are also unaffected by lunisolar

perturbations unless these are large during one revolution of the satellite.

The changes Ai and AQ depend stronglyéon the vglues of e, i and w .
All depend on e through the function (1 - e)?2(l + e) 2, plotted in Fig.2.
The dependence on i and w is more complicated. For zonal winds, Ai 1is
proportional to sin i coszw , and AQ is proportional to sin 2w , if only the
main terms are considered. For meridional winds, Ai 1is proportional to
(seczw + tanzi)—% , which ranges between zero, when 1 = 90° , and cos w , when
i = 0; AR 1is proportional to cot i sinw (1 - sinzi sinzm)—i , which ranges

s o
between zero when w = 0 and cosec i when w = 90" .
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