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Summary 
 

The finite difference method (FDM) is widely used in solving plate problems. However, the traditional 

application of FDM on plate problems involves higher-order differential approximation and a number of 

edge and corner molecules. It makes those programs contain larger numbers of code and therefore 

programming errors are probable. One way to avoid that is by decomposing higher-order differential 

approximation into a number of first-order differential equations. Solving these first-order differential 

equations simultaneously can be programmed shortly, however, it requires much computer time and memory. 

Since computer capacity increases every year, this method seems to come within reach. 

 

The research question of this report is: Can plate problems be solved by considering first-order differential 

equations only? 

 

To this end, a 600-line Python program has been built which is able to solve 11 plate equations 

simultaneously only by first-order finite-difference approximation. Analyzed were three isotropic rectangular 

plates with various loadings and edge conditions. The major results (displacement, bending moment, and 

shear force) are generally 10 to 20% smaller than the analytical solutions. The difference can be caused by 

the grid size but also by a programming error. 

 

The conclusion is that the proposed method works and is within reach of modern computation capacity. 
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Introduction 

1.1. Motivation for research 

 

In the classical finite difference method (FDM) for perpendicularly loaded plates, the biharmonic equation is 

solved by a fourth-order differential approximation. However, to including various boundary conditions, 

classical FDM always involves a large number of edge and corner molecules (see Equation 2).  
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Equation 1: Biharmonic 

equation  
Equation 2: Edge and corner molecules adopted from (Doshi, 1964) 
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Equation 3: Central difference approximation of fourth-order derivatives adopted from (Reddy and Gera, 1979) 

 

This report investigates a newly proposed finite difference program, in which only first order differential 

equations are solved, which greatly reduces the number of molecules. For the bending of thin elastic plates, 

the exact plate theory includes three constitutive equations and eight first-order differential equations. The 

new program could solve 11 equations simultaneously without higher-order differential approximation and 

edge and corner molecules. 
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Equation 4: Central difference approximation of first order derivative 

 

Compared to the fourth-order derivatives in classical FDM, the difference approximation of first order 

derivatives is simpler which leads to a smaller size of the proposed program. Moreover, it has potential to be 

extended to shell structures, for which the classical molecules are too large to write down. However, in order 

to have reasonable accuracy, the enormous size of the matrixes causes this program usually to take a 

substantial amount of computing time and computer memory. 
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Figure 1: Deflection of perpendicularly loaded plates 

 

1.2  Why finite differences  

 

Finite element and finite volume methods are industry standard nowadays due the greater generality and 

sophistication of those methods. Various FEM packages are intensively used by structural engineers for plate 

and shell analysis. However, experience shows that often engineers do not understand the software that they 

are using. Compared to FEM, the advantage of finite differences is its simplicity. Finite difference programs 

usually have simpler structure from both mathematical and coding perspective. Especially for education 

purpose, some simple models are frequently used a lot for teaching and in research. It is always good for 

engineers to understand from scratch with easy-to-verify computer codes when they are solving the model 

problems.  

 

1.3  Research questions 

The idea of solving plate equations by first-order finite differential equations was taken from the previous 

code done by Dr. P.C.J. Hoogenboom. He has attempted to use the finite difference method for solving the 

21 Sanders-Koiter equations for any shell with orthogonal parameterization. However, the development of 

his method was not successful yet. 

 

For the purpose of examining the validity of this method, a simplified version of this code is created as 

newly proposed finite difference program aiming to solve 11 thin plate bending equations simultaneously. At 

start of research, the validity of this new program remains unknowns. So, the main question is: “Does the 

proposed method work?”  

 

If the newly proposed program does not work, the potential causes behind its failure will be discussed. The 

next research question will be “What are the fundamental reasons behind its failure?” If the newly proposed 

program does preform reasonably, it has to be validated on its accuracy of the results. So, the next research 

question is “what is level of its accuracy compared to classical FDM?”.  

 

Based on the experience gained in this project, the final research question “Can the proposed method be 

extended to shell structures?” will not be answered. It will be recommended for future research. 

 

1.4  Research workflow 

Based on the research questions, the workflow of research is organized as follows: 

 

1. Comprehend the structure and format of the code developed by Dr. P.C.J. Hoogenboom 

2. Follow the same idea used, write a new code which can evaluate equations of thin plate bending for 

analysis (orthogonal parameterization required) 

3. Obtain analysis results from new code (if this code does works) and compares it with results from 

classical FDM. 
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4. Discuss the reason behind the failure of code (if this code does not work). 

5. Based on gained experience in above, discuss whether this method can be extended to shell structures. 

 

Literature review 

2.1  A short review on plate theories 

A short overview on the development of plate theory is given here to show the understanding for plate 

theories behind the code application. 

 

A certain character of plate and shell structures is that unlike other elastic bodies they can still remain in 

elastic phase with small strains while undergoing large deformation. The classical theories can only treat 

such structures where the displacements and their derivatives are considerably small. Therefore, it is 

necessary to develop a theory that describes the nonlinear behavior of such elastic bodies within small strains. 

 

There are two fundamental methods for solving such a problem in the classical theory of plates. The first 

method is to describe this problem under the general theory of elasticity. The ideal is that the deformation in 

the neighbourhood of each point still can be described linearly. Cauchy given the expression of 

displacements and stresses as a power series of the distance z from the middle surface (1828). Poisson then 

successfully solve the Germain-Lagrange plate equation under static loading condition (Poisson, 1829). The 

second method is developed by Kirchhoff in which he introduced physical meaning into the theory of plates 

by the famous “Kirchhoff’s hypotheses” (1850).  

 

Kirchhoff’s hypotheses are a series of fundamental assumptions used in thin plate bending theory in which 

the deflection of plate is assumed to be small, linear and elastic. Restated assumptions (Ventsel and 

Krauthammer, 2001) are list as below: 

 

 The elastic, homogenous, and isotropic material.  

 Initially flat plate.  

 Small vertical deflection of the midplane compared with the thickness of the plate. 

 “Needle hypotheses”: The normal lines of the middle plane remain straight and normal to the middle 

surface during the deformation. Thickness remains constant. Negligible vertical shear strains ( xy ,  yz ) 

and normal strain (  z ). 

 Negligible normal stress z  

 Middle surface remains unstrained 

 

Under the above assumptions, the governing equation of classic plate bending theory (small deflection only) 

can be derived as: 

 
4 4 4 2

4 2 2 4 2
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+ + =  
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w w w w
D h

x x y y t
 

Equation 5: Governing equation of classic plate bending theory 

 

where D  is the flexural rigidity of the plate, w is the deflection of the plate, h  is the plate’s thickness, and   

is the density.  

 

In his method, Kirchhoff declared that the Germain-Lagrange equation can be equivalent to the Euler 

equation under certain conditions and there are only two types of boundary conditions for plate edges: 

dynamic & kinematic boundary conditions.  
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2.2  Analytical solutions by Timoshenko’s text book 

One of the most significant contribution in development of plate theory was made by Timoshenko in earlier 

1910s. He figured out the solutions of large deflections in circular plate problems and developed the theory 

of elastic stability (1913). The text book he wrote with Woinowsky-Krieger (1987) is still fundamental 

material for any beginner of learning plate theories. In the chapter 5 of this text book, the analytical solutions 

on deflection, shear force and bending moment regarding to simply supported rectangular plates are given. 

They are list as following: 

 

Uniformly loaded simply supported rectangular 

plates (Squared plates, length=width= a ) 

 

Maximum deflection 
4

max 0.00406= 
qa

w
D

 

Maximum bending moment 
20.0479= = xx yym m qa  

Maximum shear force 0.338= = xx yyv v qa  

 

where D is the flexural rigidity and q  is an applied uniformly distributed load. The equation that describes 

the flexural rigidity of a plate is given as below: 

( )

3

212 1
=

−

Eh
D

v
 

 

2.3 Analytical solutions of square plate with two-way sine load  

 

A square plate with simply supported edges and under distributed load is described in the following form: 

sin cos
x x

p p
a a

    
=    

   
 

  

The particular solutions that satisfies boundary and load conditions of this plate is given in a the plate theory 

book by the Blaauwendraad (2014). And they are listed as below: 

 

Square plate with two-way sine load  

Maximum deflection 
4

max 24

qa
w

D
=
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Maximum bending moment 
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Given formulas of bending moments are:  
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And the shear force can be derived from the moments above as shown in below: 
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Maximum shear force 
( )2 1

4
xx yyv v qa

+ 
= =


 

 

2.4 Sanders-Koiter equations 

Sanders-Koiter equations is designation of equations individually developed by Sanders (Sanders, 1963) and 

Koiter (1966) for refined nonlinear theory of shells. The development of Sanders-Koiter equations can be 

sourced back to Reissner-Mindlin plate theory 

 

In Reissner-Mindlin plate theory, the transverse shear strains were introduced under the assumption of 

constant shear angle through the thickness. However, in this way transverse shear boundary conditions at the 

top and bottom surfaces dose not be satisfied and shear correction factors are required to reach the 

equilibrium.  

 

Sanders and Koiter found a better way to solve it by introducing in-plane displacement kinematics.  The 

fourth order terms are used to describe the shear deformation through the thickness. The shear boundary 

conditions of shear stress at top and bottom surfaces are satisfied without shear correction factors. In the 

Sanders-Koiter theory, equations of motion include all three displacements and variation of curvature and 

torsion are described linearly. The accuracy of Sanders-Koiter theory on calculating larger vibration 

amplitudes has been proved (Amabili, 2003). 
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2.5  A short review on finite different method  

 

The ideal of finite difference method is studying the continuous process by applying mathematical 

discretization first. By dividing the process into a finite number of sufficiently small parts, the function of 

that process is possible to be approximated by linear expressions. The results of derivative over a continuous 

domain can be approximated as the summation of a weight function multiplied with results of discrete points.  

 

The general procedure of applying different finite difference schemes for the numerical solution of partial 

differential equation is outlined as below: 

 Convert the continuous process variables into a discrete set of points. 

 Approximate partial derivatives using finite difference approximations. 

 Solve the resulting finite difference equation. 

 

For example, domain of variable x of the continuous function ( )f x  is interval AB. The interval AB starts at 

point A (a, 0) and ends at B (b, 0) which is divided into equal division  =x h . Assume the ( )f x is linear 

continuous function with expression: ( ) = + f x a b x  

 

The first order derivative of ( )f x is given by below calculation: 
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And by definition of derivative, the first order derivative can also be calculated as below. The first order 

derivative is the slope at a point of function ( )f x  calculated based on values of adjacent points 

( ) ( ) ( ) ( ) ( ) ( )
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2→ → →
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Figure 2: First order derivative by finite difference method 

For one-sided finite differences of first order 

derivative:  
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For calculating second order derivative, Taylor series expansion of function ( )f x  is used and given by 

below expression:  
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where f  is central difference of second order 

derivative.  

 

2.6  A short overview of application of finite difference method on plate theory 

 

The analytical solution of the most equations in plate theories are usually expressed in terms of infinite 

trigonometric series since they are partial differential equations. A short analytical solution can only be 

found in limited simple conditions. In earlier years, the further numerical evaluation of those analytical 

solutions is performed through the human effort with limited accuracy and a substantial amount of 

computing time. As described by Rudolph Szilard (1974), since the advancement of electronic computers, 

researchers start to study the plate bending problems with help of approximate methods.   

 

Traditionally, the application of finite difference method on plate theory starts with the biharmonic equation 

from the classic plate theory. Solving such fourth-order differential equation with approximation usually 

results in inaccurate bending moments. To cope with such difficult, Marcus (1932) spilited biharmonic 

equation into three equations: two second-order deflection equations and one normal moment equation. 

However, despite it is mathematically correct, this method only gives good results for plates with simple 

supported edges.  

 

Another alternate approximation was proposed by Reddy and Gera (1979) in which fourth-order differential 

equation is replaced with three second-order differential equations, as shown in Equation 6. For various 

boundary condition, those equations can produce bending moment analysis for rectangular plates with 

conventional finite-difference. 
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Equation 6: Three second-order differential 

equations used in finite difference approximation 
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Equation 7:Six first-order differential equations used in finite 

difference approximation (h = plate thickness) 

 

Instead of three second-order equations, Assadi-Lamouki and Krauthammer (1989) formulate an explicit 

finite difference method to study plate vibration based on six first-order equations from Mindlin plate theory 

and Kirchhoff plate theory (see in equation 8). Compared to the classical plate theory, the truncation errors 

of vibration are negligible for short duration short and severe dynamic loads. By comparing the work done 

by those previous researches, it can be found that the accuracy of finite difference approximation is 

improved when the order of equations used is reduced. 
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2.7  Thin plate bending equations 

 

The thin bending equations used here is modified version of Sanders-Koiter equations where the in-plane 

displacement kinematics including shear deformation through the thickness and torsion are omitted. The 21 

first-order Sanders-Koiter equations are reduced to 11 equations for describing the thin plate bending. Below 

are equations would be applied in the second code including 11 equations of plate theory and 8 equation 

describing the boundary conditions for an edge.  

 

equilibrium  

equations 0
yx

z

vv
p

x y


+ + =

 
 

1 

0
xyxx

x

mm
v

x y


+ − =

 
 

2 

0
yy xy

y

m m
v

y x

 
+ − =

 
 

3 

constitutive 

equations 

3

2
( )

12(1 )
xx xx yy

E t
m =  + 

− 
 

4 

3

2
( )

12(1 )
yy yy xx

E t
m =  + 

− 
 

5 

3

24(1 )
xy xy

E t
m = 

+ 
 

6 

kinematic 

equations 
z

x
u

x


 = −


 

7 

z
y

u

y


 = −


 

8 

x
xx

x


 =


 

9 

y
yy

y


 =


 

10 

yx
xy

y x


 = +

 
 

11 

Table 1: Equilibrium, constitutive and kinematic equations for plates 

 

Boundary conditions for thin plate is defined as following:  
 

Kinematic (K)                               Dynamic (D)  

Impose displacement zu   or apply line load z y
V

q v
x


= +


. 

 

1 

Impose rotation           y−   or apply line moment yym− . 2 

Table 2: Boundary conditions for an edge in the x direction and the y axis pointing outwards 

 

Impose displacement zu   or apply line load z y
V

q v
x


= − −


. 

 

3 

Impose rotation           y−   or apply line moment yym . 4 

Table 3: Boundary conditions for an edge in the x direction and the y axis pointing inwards 

  

Impose displacement zu   or apply line load   z x
V

q v
y


= +


. 

 

5 
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Impose rotation              x   or apply line moment   xxm . 6 

Table 4: Boundary conditions for an edge in the y direction and the x axis pointing outwards 

 
 

Impose displacement zu   or apply line load z x
V

q v
y


= − −


. 

 

7 

Impose rotation              x   or apply line moment xxm− . 8 

Table 5: Boundary conditions for an edge in the y direction and the x axis pointing inwards 

 

For thin plate loaded perpendicularly, the deformation due to shear and membrane force is negligibly small. 

Plate theory mainly described its bending deformation under the perpendicular load as constrained by 

boundary conditions. And for the corner, the support reactionV  is calculated as the sum of torsion moments 

xym  and yxm . 

 

  
Figure 3: Boundary conditions and corner conditions of square plate 

vu

z

vu

z

yxm
xym

2= + =xy yx xyV m m m

V 

−y x

− yym

yym

xxm

− xxm

zq

zu zu

zu
zu
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The example Python code for solving Sanders-Koiter equations 
 

In this work, an example Python code was used for solving Sanders-Koiter equations. This program was 

proposed and developed by Dr. P.C.J. Hoogenboom for validating the idea of solving first-order difference 

plate equations by applying the finite difference method. The selected plate theory is Sanders-Koiter 

equations which can be expressed in the forms of 21 first-order difference equations. Although it did not 

prove validity of this idea, it is important to understand the mechanism and structure of this code.  

3.1  General information 

 

The work procedure of main code can be categorized as 8 major steps by their execution order and they are 

list as following:  

 

Step 1: Inputs of material parameters, geometry and boundary condition type 

Step 2: Define load components  

Step 3: Define differential equations in x and y direction by finite difference methods 

Step 4: Create empty matrixes for stiffness [M], motions [u] and load [f] 

Step 5: Add Sanders-Koiter equations to stiffness matrix [M] 

Step 6: Add load components to load matrix [f] while define the boundary conditions 

Step 7: Solve [u] from [M]*[u] = [f] by least square method  

Step 8: Postprocessing and display results of solved [u] 

 

The studied geometry in this program is canopy defined by the geometry parameters 1xxk = and 

2

1
yyk

a
= − where a is radius of curved surface. The general purpose of this program is to solve the 

displacement matrix [u] from [M]* [u] = [f] while stiffness matrix [M] and load matrix [f] are defined by 

Sanders-Koiter equations, boundary and corner conditions.  

 

3.2  Formation of matrixes 

First, empty matrixes are created waiting to be filled. Size of matrixes are determined by number of nodes of 

model. For the matrix [M], the column number is 21mn  (m: number of nodes in u-direction, n: number of 

nodes in v-direction) and row number is 21 8 8 10 +  +  +mn m n  (8 8 + m n : 4 boundary conditions per edge, 

10: 5 corner conditions for per corner). 

 

As defined in Sanders-Koiter equations, 21 unknown quantities are assigned to each node. which are xu , yu , 

zu , xx , yy , xy , x , y , z , xx , yy , xy , xxn , yyn , xyn , yxn , xv , yv , xxm , yym  and xym . During 

the tests of code, they are assigned with an integral value from 0 to 21 indicating their proposed location in a 

solved [u], so that the results can be extracted accordingly.   

 

For example, the Sanders-Koiter equation 1 is added to the matrix [M] by the blow code. For adding one 

value to matrix, the process can be described as [Row number][ ]M K m n j m i  +  +  

Parameter of unkown= where K represents the location value.  

 

( ) 0


+ + + + + + + + =
 

yx
xx xx xy xy yx yy yy y x x y z

qq
k n k n n k n k q k q p

x y
 

 

Sanders-Koiter equation 1 

1: M[row][nxx*m*n+j*m+i]=kxx(i/(m-1),j/(n-1)) 

2: M[row][nxy*m*n+j*m+i]=kxy(i/(m-1),j/(n-1)) 

3: M[row][nyx*m*n+j*m+i]=kxy(i/(m-1),j/(n-1)) 
Adding process 

① ② ③
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And the similar procedure is repeated for other quantities in the equation. The function of adding equation to 

matrixes is divided into two parts (Loop ① & Loop ②). The parameters of unknowns are added into 

matrixes and their starting point is determined by the assigned location value. Loop ① repeats the adding 

process for every node at one line along u-direction. Loop ② repeats Loop ① until all lines are fulfilled, so 

that unknown quantities are added to every node.  

 
row=-1 

for j in range(n): # Add Sanders-Koiter equation 1 to the matrix ----------------------------- 

   for i in range(m): 

      row=row+1 

      M[row][nxx*m*n+j*m+i]=kxx(i/(m-1),j/(n-1)) 

      M[row][nxy*m*n+j*m+i]=kxy(i/(m-1),j/(n-1)) 

      M[row][nyx*m*n+j*m+i]=kxy(i/(m-1),j/(n-1)) 

      M[row][nyy*m*n+j*m+i]=kyy(i/(m-1),j/(n-1)) 

      Dx(vx,1.0) 

      Dy(vy,1.0) 

      M[row][vx*m*n+j*m+i]=ky(i/(m-1),j/(n-1)) 

      M[row][vy*m*n+j*m+i]=kx(i/(m-1),j/(n-1)) 

      f[row]=-pz(i/(m-1),j/(n-1)) 

Code 1: Add Sanders-Koiter equation 1 to the matrix [M] 

 

The column number of starting points for unknown quantity K is  K m n . For each adding process in Loop 

①, the column number and row number increased accordingly for m times. Then Loop ② repeats Loop ① 

for n times. Meanwhile for every Loop ①, the row number is incremented by one. By adding one equation, 

m n  rows of matrix have been generated. 

 

Below figure shows the pattern of non-zero values in matrix [M] during this adding procedure where the 

values are diagonally distributed. The same adding procedure is also utilized for adding boundary conditions 

and corner conditions.  

 

 

 

 

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

 

 

 
Figure 4: Add equations to [M] 

 

_①Loop

 

_②Loop

1  K m n

_①Loop

 1= +row row

=row m

 

2  K m n

_②Loop  

3  K m n

=i m

1   + K m n j m

0=j

1=j

 
=row m

……

= row m n=j n

……

1   +  +K m n j m i

=i m
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3.3  Differentiation approximated by FDM 

( ) 0
yx

xx xx xy xy yx yy yy y x x y z

vv
k n k n n k n k q k q p

x y


+ + + + + + + + =

 
 

 

Sanders-Koiter equation 1 

…… 

1: Dx(vx,1.0) 

2: Dy(vy,1.0) 

…… 

Differentiation 

 

As discussed in section 3.4, first order derivative of ( )f x  is given as 
( ) 1 1

2

i if x f f

x h

− + −
=


and the one-sided 

finite differences of first order derivative is 
( ) 1 23 4

2

i i if x f f f

x h

+ +  −  +
= −


 where h  represents the distance 

between nodes. And h  here is replaced with Lamé parameters ( ,  x y  ). The differentiation of one quantity 

( ,
 

 x y
)in the program is approximated by finite difference method ( ( ),xD k g , ( ),xD k g ) defined in below 

where k is the location value of the unknown quantity while g  works as positive/negative sign of the value 

(g = -1/1). 

 

Inside grids:  ( ) ( )1 1,
2

x i i
x

g
D k g f f− += −


 ( ) ( )1 1,

2
y i i

y

g
D k g f f+ −= −


 

At edges ( ) ( )1 2, 3 4
2

x i i i
x

g
D k g f f f+ +=  −  +


 ( ) ( )1 2, 3 4

2
y i i i

y

g
D k g f f f+ +=  −  +


 

 ( ) ( )1 2, 3 4
2

x i i i
x

g
D k g f f f+ += −  −  +


 ( ) ( )1 2, 3 4

2
y i i i

y

g
D k g f f f+ += −  −  +


 

 
def Dx(k,g): 

   if i==0: 

      M[row][k*m*n+j*m+i+2]=-1*g/(2*alphax(i/(m-1),j/(n-1))/(m-1)) 

      M[row][k*m*n+j*m+i+1]= 4*g/(2*alphax(i/(m-1),j/(n-1))/(m-1)) 

      M[row][k*m*n+j*m+i  ]=-3*g/(2*alphax(i/(m-1),j/(n-1))/(m-1))    

   elif i==m-1: 

      M[row][k*m*n+j*m+i  ]= 3*g/(2*alphax(i/(m-1),j/(n-1))/(m-1)) 

      M[row][k*m*n+j*m+i-1]=-4*g/(2*alphax(i/(m-1),j/(n-1))/(m-1)) 

      M[row][k*m*n+j*m+i-2]= 1*g/(2*alphax(i/(m-1),j/(n-1))/(m-1)) 

   else: 

      M[row][k*m*n+j*m+i+1]= 1*g/(2*alphax(i/(m-1),j/(n-1))/(m-1)) 

      M[row][k*m*n+j*m+i-1]=-1*g/(2*alphax(i/(m-1),j/(n-1))/(m-1)) 

   Return 

Location:  

(at left edge) 

k3 = k*m*n+j*m+i+2 

k2 = k*m*n+j*m+i+1 

k1 = k*m*n+j*m+i 

(at right edge) 

k3 = k*m*n+j*m+i 

k2 = k*m*n+j*m+i-1 

k1 = k*m*n+j*m+i-2 

(inside grids) 

k2 = k*m*n+j*m+i+1 

k1 = k*m*n+j*m+i-1 

 

Code 2: Finite difference approximation in x direction  

 

 

1k  2k  3k    

1k   2k    

 1k   2k   

  1k   2k  

  1k  2k  3k  

Figure 5: Add differentiation of quantity to [M] 

 

 

 

 

① ②

=row m

 

 

( )_ 0=At edge i

( )_ 1= −At edge i m

 1= +row row
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3.4  Definition of boundary condition and corner condition  

This model has three free edges and one fixed edge. For each edge, four boundary conditions are defined 

They can be type D or type K (D = dynamic boundary condition, K= kinematic boundary condition). For 

example, the edge 1 is an edge in the x direction and y axis point outwards. For four boundary conditions 

from BC1 to BC4, type D and type K are both defined.  

 

Type K Type D  

Impose displacement xu  or line load = −x yx xxq n k V  BC1 

Impose displacement yu  or line load = −y yy xyq n k V  BC2 

Impose displacement zu  or line load 


= +


z y
V

q v
x

 BC3 

Impose displacement −y  or line load − yym  BC4 

Table 6: Boundary conditions for an edge in the x direction and the y axis pointing inwards 

 

For example, the boundary condition BC1 is defined as below:  

 
BC1='D';  BC1Value=0 

BC2='D';  BC2Value=0 

BC3='D';  BC3Value=0 

BC4='D';  BC4Value=0 

…… 
BC13='K'; BC13Value=0 

BC14='K'; BC14Value=0 

BC15='K'; BC15Value=0 

BC16='K'; BC16Value=0 

if BC1=='K': 

   for i in range(1,m): 

      row=row+1 

      M[row][ux*m*n+j*m+i]=1 

      f[row]=BC1Value 

else: 

   for i in range(1,m): 

      row=row+1 

      M[row][nyx*m*n+j*m+i]=1 

      M[row][mxy*m*n+j*m+i]=-kxx(i/(m-1),j/(n-1)) 

      f[row]=BC1Value 

Code 3: Definition of boundary condition for BC1 

 

 
Figure 6: Shell boundary conditions and corner conditions of the canopy 

 
Figure 7: Corner condition of loaded corner of the canopy 

 

F

xv

2 xym yv

z

v

u

F

yyn

xyn

xxn

yxn

z

v

u

 

2

l
2
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The condition of corners on the free curved edge is defined in the following. For each corner, 5 conditions 

are defined. Half of the free curved edge and half of length edge are involved for the equilibrium at the 

loaded corner. 

 

Free corner 0− =yy xyn n , 0− =xx yyn n , 0=xym , 0=xv , 0=yv  

Loaded corner 
2 2


+ =yy xy

l a
n n F , 0

2 2


+ =yx xx

l a
n n , 2 0

2 2


− − =xy y x

l a
m v v , 0=yym , 0=xv  

 

In the code, they are defined as below:  

 
i=m-1 # 5 corner conditions 

j=0 

row=row+1; M[row][nyy*m*n+j*m+i]=1; M[row][nxy*m*n+j*m+i]=-1; f[row]=0 

row=row+1; M[row][nxx*m*n+j*m+i]=1; M[row][nyx*m*n+j*m+i]=-1; f[row]=0 

row=row+1; M[row][mxy*m*n+j*m+i]=1; f[row]=0 

row=row+1; M[row][vx*m*n+j*m+i]=1; f[row]=0 

row=row+1; M[row][vy*m*n+j*m+i]=1; f[row]=0 

 

i=m-1 

j=n-1 

row=row+1; M[row][nyy*m*n+j*m+i]=l/2/(m-1); M[row][nxy*m*n+j*m+i]=3.1415*a/2/(n-1); f[row]=F 

row=row+1; M[row][nxx*m*n+j*m+i]=3.1415*a/2/(n-1); M[row][nyx*m*n+j*m+i]=l/2/(m-1); f[row]=0 

row=row+1; M[row][mxy*m*n+j*m+i]=2; M[row][vy*m*n+j*m+i]=-l/2/(m-1); M[row][vx*m*n+j*m+i]=-

3.1415*a/2/(n-1); f[row]=0 

row=row+1; M[row][myy*m*n+j*m+i]=1; f[row]=0 

row=row+1; M[row][vx*m*n+j*m+i]=1;  f[row]=0 

Code 4: Two corner conditions for free corner and loaded corner 

 

The Python code for solving thin plate bending  
 

In this chapter a program is developed based on the example shown in above section where the major 

difference is the applied plate theory. Instead of 21 Sanders-Koiter equations, 11 equations for describing 

thin plate bending are used which are discussed in section 2.7. A simpler plate theory used means smaller 

size of matrixes and less computational time. It helps to debugger and prove the validity of method with 

higher effectiveness.   

4.1  General information 

The major steps of work procedure keep same with that of example where the studied geometry is replaced 

with flat square plate. The general purpose of this program is to solve the displacement matrix [u] from [M]* 

[u] = [f] while stiffness matrix [M] and load matrix [f] are defined by 11 equations and boundary conditions.  

 

The material parameters used in this program are defined as following: 

 

Young's modulus of steel:  7 221 10  kN/mE =   

Poisson's ratio of steel: 0.3nu =  

Length of plate: 1 mL =  
Thickness of plate:  / 25 0.04 mt L= =  

Number of nodes in x direction: m  

Number of nodes in y direction: n  

 

For above configuration, two types of boundary condition are defined. The first one is simply supported 

conditions for all edges (two-way slab). The second one is two simply supported edges with two free edges 

(one-way slab). They are set for testing the accuracy of numerical results of the models by compared to the 

corresponding analytical solution results.  
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The two load cases used in this program are defined as following  

 

Distributed load: 210 kN/mq =  

Two-way sine load 
sin coss

x y
q q

L L

    
=     

   
 

 

There are three models defined in code whose load and boundary conditions are listed as following: 

 

Model Load case  Boundary condition  

Model 1 Distributed load two-way slab 

Model 2 Two-way sine load two-way slab 

Model 3 Distributed load one-way slab 
Table 7: Load & boundary conditions of models 

 

After each running, 11 unknown quantities are plot, and the maximum value of each plot is found. For the 

propose of mesh refinement study, the execution of code is repeated for each model with different node 

number m and n which is set as 10, 20, 30.  

 

Linear least squares method is used to solve [u] from the overdetermined system where matrix [M] is the 

“Coefficient” matrix and force vector [f] is the “dependent variable”. It returns the least-squares solution [u] 

to a linear matrix equation [M]*[u]=[f]. 

 

4.2 Formation of matrixes 

First, empty matrixes are created waiting to be filled. For the matrix [M], the column number is 11 mn  (m: 

number of nodes in u-direction, n: number of nodes in v-direction) and row number is 11 4 4mn m n +  +   

( 4 4m n +  : 2 boundary conditions per edge). 

 

As defined in equations, 11 unknown quantities are assigned to each node. which are zu , x , y  , xx , yy , 

xy , xv , yv , xxm , yym  and xym . They are assigned with an integral value from 0 to 11 indicating their 

proposed location in a solved [u], so that the results can be extracted accordingly.  

 

For example, the equation 1 is added to the matrix [M] by the blow code. And the similar procedure is 

repeated for other quantities in the equation. 

 

0
yx

z

vv
p

x y


+ + =

 
 Thin plate equation 1 

row=-1 

for j in range(n): # TODO Add plate equation 1 to the matrix  

      row=row+1 

      D1x(vx,1/Delta_x(0,0)) 

      D1y(vy,1/Delta_y(0,0)) 

      f[row]=-pz(i/m,j/n) 

Adding process 

 

The same adding procedure is also utilized for adding boundary conditions. Below figure shows the pattern 

of non-zero values in matrix [M] after formation of matrix [M] is finished. As predicted, those values are 

diagonally distributed.  

 

① ② ③

①
②

③
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Figure 8: Distribution pattern of non-zero values in finished matrix [M] 

 

4.3  Differentiation approximated by FDM 

 

The same finite difference approximation is used in this program  

 

Inside grids:  ( ) ( )1 1,
2

x i i
x

g
D k g f f− += −


 ( ) ( )1 1,

2
y i i

y

g
D k g f f+ −= −


 

At edges ( ) ( )1 2, 3 4
2

x i i i
x

g
D k g f f f+ +=  −  +


 ( ) ( )1 2, 3 4

2
y i i i

y

g
D k g f f f+ +=  −  +


 

 ( ) ( )1 2, 3 4
2

x i i i
x

g
D k g f f f+ += −  −  +


 ( ) ( )1 2, 3 4

2
y i i i

y

g
D k g f f f+ += −  −  +


 

 

xv

x





yv

y





 Equation 1
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Result 

5.1  Analytical solutions 

 

Based on the analytical solutions given in literature review section, the analytical solution of the maximum 

value of three major quantities (displacement, bending moment and shear force) used to describing plate 

behaviours are calculated as shown in following:  

 

Flexural rigidity 
( )

3
2

2
1230.8 kN/m

12 1

E t
D

nu


= =

−
 

Model 1   

Load & boundary conditions: Uniformly load, two-way slab  

Maximum deflection: 
4

5
max 0.00406 3.3 10  m

qL
w

D

−=  =   53.299 10  m−  

Maximum bending moment: 
20.0479 0.479 kNm/mxx yym m qL= =  =  0.479 kNm/m  

Maximum shear force: 0.338 3.38 kN/mxx yyv v qL= =  =  3.38 kN/m  

Model 2   

Load & boundary conditions: Two-way sine load, two-way slab  

Maximum deflection: 
4

5
max 2.1 10  m

4
 
qL

w
D

−= = 


 52.085 10  m−  

Maximum bending moment: 
( ) 2

2

1
0.329 kNm/m

4
xx yym m qL

+ 
= = =


 0.329 kNm/m  

Maximum shear force: 
( )2 1

1.463 kN/m
4

xxv qL
+ 

= =


 1.463 kN/m  

Model 3   

Load & boundary conditions: Uniformly load, one-way slab  

Maximum deflection: 
5

4
max

5
1.163 10  m

384

qL
w

EI

−= =   41.163 10  m−  

Maximum bending moment: 
21

2.5 kNm/m
8

yym qL=  =  1.25 kNm/m  

Maximum shear force: 
1

5 kN/m
2

yyv qL=  =  5 kN/m  

 

5.2  Code solutions 

 

The generated plots and maximum value results are collected from the execution results of the python code.  

For each model, the plots of displacement zu , bending moment xxm  and shear force xv  are shown with their 

maximum value. 

  

Plots of displacement zu , bending moment xxm  and shear force xv  with their maximum value 
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a) Displacement (max = 0.000022) b) Bending moment (max = 0.375784) c) Shear force (max = 2.958091) 

Figure 9:  Result plot of model 1 with the maximum values (10*10) 

 

   
a) Displacement (max = 0.000027) c) Bending moment (max = 0.427163) c) Shear force (max = 3.216659) 

Figure 10:  Result plot of model 1 with the maximum values (20*20) 

 

 
  

a) Displacement (max = 0.000029) d) Bending moment (max = 0.444856) c) Shear force (max = 3.212631) 

Figure 11:  Result plot of model 1 with the maximum values (30*30) 

 

   
a) Displacement (max = 0.000014) b) Bending moment (max = 0.271283) c) Shear force (max = 1.648043) 

Figure 12:  Result plot of model 2 with the maximum values (10*10) 
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a) Displacement (max = 0. 000016) b) Bending moment (max = 0.288521) c) Shear force (max = 1.704489) 

Figure 13:  Result plot of model 2 with the maximum values (20*20) 

 

 
  

a) Displacement (max = 0. 000017) b) Bending moment (max = 0.291384) c) Shear force (max = 4.703133) 

Figure 14:  Result plot of model 2 with the maximum values (30*30) 

 

   
a) Displacement (max = 0.000101) b) Bending moment (max = 1.312363) c) Shear force (max = 4.990231) 

Figure 3:  Result plot of model 3 with the maximum values (10*10) 

 

   
a) Displacement (max = 0.000123) b) Bending moment (max = 1.458606) c) Shear force (max = 5.217669) 

Figure 15:  Result plot of model 3 with the maximum values (20*20) 
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a) Displacement (max = 0. 000132) b) Bending moment (max = 1.510968) c) Shear force (max = 5.313728) 

Figure 16:  Result plot of model 3 with the maximum values (30*30) 

 

Based on the observation of those contour plots, except for model 2, contour lines become more smoothly 

with increased node number. It indicates the better interpolation of values between nodes by introducing 

smaller element size. However, for model 2, while under two-way sine load, the plots become heavily 

distorted with increased node number. Especially for the shear force plot with 30*30 nodes, the maximum 

value and contour lines dramatically deviate from previous results. And for the rest of model 2 plots, jagged 

patterns appear more frequently as node numbers increased. 

 

Meanwhile, the maximum values per model are summarized as below: 

 
Node number Maximum values Model 1 Model 2 Model 3 

10*10 

Displacement 2.200E-05 1.400E-05 1.010E-04 

Bending moment 3.758E-01 2.713E-01 1.312E+00 

Shear force 2.958E+00 1.648E+00 4.990E+00 

20*20 

Displacement 2.700E-05 1.600E-05 1.230E-04 

Bending moment 4.272E-01 2.885E-01 1.459E+00 

Shear force 3.217E+00 1.704E+00 5.218E+00 

30*30 

Displacement 2.900E-05 1.700E-05 1.320E-04 

Bending moment 4.449E-01 2.914E-01 1.511E+00 

Shear force 3.213E+00 4.703E+00 5.314E+00 

 Displacement 3.299E-05 2.085E-05 1.163E-05 

Analytical solution Bending moment 4.79E-01 0.329E-01 1.25E+00 

 Shear force 3.38E+00 1.463E+00 5E+00 

Table 8: Maximum values python code results 

 

By comparing the code result with the analytical solutions, the rate of difference in percentage is calculated 

for each quantity as shown in below figures: 

 

  
Figure 17: Difference (%) between analytical 

solution and code results (displacement) 

Figure 18: Difference (%) between analytical 

solution and code results (bending moment) 
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Figure 19: Difference (%) between analytical solution and code results (shear force) 

 

As shown in the above figures, most results are lower compared to the analytical solution. With increased 

number of nodes, the difference in percentage is generally reduced but the extent of reduction deviates 

between models and quantities. For displacement and bending moment results, the difference drops faster 

where the difference is reduced by averaging 20% and 10% respectively. For shear force results, the 

dropping of difference is less than 10% regardless of models. When the node number is 10*10, the shear 

force results have an averaged smaller difference rate. Contrary to other models, the all results of model 3 

and shear force results of model 2 are generally higher than its analytical solution. As the node number 

increased, the difference is even increased. The maximum value of shear force result of model 2 with 30*30 

node is four times its analytical solution so that it is not marked in figure 20. 

 

Although some result shows good approximation, for example the shear force of model 3, the most results 

are far from being accurate compared to the analytical solutions. 
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Discussion 
From figure 13 to figure 15, the distortion of contour lines becomes more severe as the node number 

increased.  It is can be explained as an expression of the disadvantage of the linear least squared method 

which is used in this program to solve matrixes. For such a sparse matrix, it can be difficult to find a 

precisely linear solution that complies with data points. And the solution given by least square method is 

significantly sensitive to existence of data points with extreme values.  

 

In the practice, the only non-zero values in the load vector [F] are in equilibrium with shear force distribution 

(thin plate bending equation 1) which are the extreme values in the vector that dominate the process of 

finding the optimal estimation when using the least squares method to solve the matrix. This is why the error 

in shear force results are significantly smaller compared to displacement and bending moment results. 

 

Another possible source of error is the noise of the data point. Since there is no weight function ever 

considered, extrapolating the results might be misleading as the linear model takes error from each data 

equally. When directly adopting this data for the optimal fitting, the noise of data in different position could 

have amplification or reduction effect, which leads to fitting errors. 

 

The distortion of contour lines in model 2 results might be caused by data noise. To verify such assumption, 

the load value is altered from 10kN/m to 100kN/m and 1000kN/m for model 2 with node number of 20*20. 

By using large value of load, the data error will become less significant.  

 

   
a) Displacement (max = 0.000035) b) Bending moment (max = 0.604248) c) Shear force (max =5.345979) 

Figure 20: Result plot of model 2 with the maximum values (higher load q=20kN/m, 20*20) 

 

   
a) Displacement (max = 0.000178) b) Bending moment (max = 3.064449) c) Shear force (max =17.255760) 

Figure 21: Result plot of model 2 with the maximum values (higher load q=100kN/m, 20*20) 
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a) Displacement (max = 0.001790) b) Bending moment (max = 30.874547) c) Shear force (max =180.396483) 

Figure 22: Result plot of model 2 with the maximum values (higher load q=1000kN/m, 20*20) 

 

As shown in above figures, the extent of distortion of contour lines has been decreased as the using the 

higher load. To comparing to the figure 15 (q=10kN/m, 30*30). the load is altered to 100 kN/m with same 

load number is used. The plot is shown in following. The severe distortion in figure 15 is dramatically 

reduced as a higher load value is used. 

 

 
  

a) Displacement (max = 0.000187) b) Bending moment (max = 3.133083) c) Shear force (max =17.122023) 

Figure 23: Result plot of model 2 with the maximum values (higher load q=100kN/m, 30*30) 

 

By observing figures 18, 19, and 20, there is a clear trend of converging of results shown as the node number 

increased. However, all results of model 3 and shear force results of model 2 intend to converge to some 

values higher than their analytical solutions. It indicates that this program could underestimate the 

distribution of shear force on the plate. Based on model 3 results, the stiffness of the plate in terms of 

bending and deformation is also underestimated. To compensate for such underestimation, a higher node 

number is recommended to use. However, the node number that gives results with a satisfying accuracy level 

will require enormous computational time, which basically could make this program unpractical to use.  
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Conclusion 
 

The method of solving plate equations by only applying first-order finite-difference approximation has been 

proved to be workable by the python code newly proposed by this report. Several models with various 

loadings and edge conditions are analyzed and have produced manfully results. The plots of displacement, 

shear force, and bending moments can be viewed as only approximations compared to the analytical as the 

produced results are usually 10 to 20% lower. Meanwhile, the matrix will be enormous if the denser grid is 

applied to minimize computational error. In that case, the consumed computational time will basically make 

this program unpractical to use. A possible solution to this is using Scipy’s sparse matrices where the only 

non-zero element is stored to save memory usage. For a small program whose effective lines of code is 

merely around 600, while being capable to produce solve 11 plate equations per node, its simplicity gives its 

advantage in terms of educational purpose. This program has been proved as an easy-to-verify computer 

code that can solve model problems. As a feasible and simple method to solve plate problems, further 

research could focus on its application with more sophisticated plate theory like Sanders-Koiter equations to 

prove its capability. 
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