

Finite difference analysis of plate structures

By Chulong Li

To finish the additional master project as part of master course of Science at the Delft University of

Technology

Student: Chulong Li

Project duration Sept 3, 2020 – Oct 31, 2020 TU Delft

Assessment committee Dr.ir. P.C.J. (Pierre) Hoogenboom

Dr.ir. M.A.N. (Max) Hendriks

TU Delft

2

Summary

The finite difference method (FDM) is widely used in solving plate problems. However, the traditional

application of FDM on plate problems involves higher-order differential approximation and a number of

edge and corner molecules. It makes those programs contain larger numbers of code and therefore

programming errors are probable. One way to avoid that is by decomposing higher-order differential

approximation into a number of first-order differential equations. Solving these first-order differential

equations simultaneously can be programmed shortly, however, it requires much computer time and memory.

Since computer capacity increases every year, this method seems to come within reach.

The research question of this report is: Can plate problems be solved by considering first-order differential

equations only?

To this end, a 600-line Python program has been built which is able to solve 11 plate equations

simultaneously only by first-order finite-difference approximation. Analyzed were three isotropic rectangular

plates with various loadings and edge conditions. The major results (displacement, bending moment, and

shear force) are generally 10 to 20% smaller than the analytical solutions. The difference can be caused by

the grid size but also by a programming error.

The conclusion is that the proposed method works and is within reach of modern computation capacity.

3

Content

List of figures ... 4

List of tables ... 5

Introduction .. 7

1.1. Motivation for research ... 7

1.2 Why finite differences ... 8

1.3 Research questions .. 8

1.4 Research workflow .. 8

Literature review .. 9

2.1 A short review on plate theories .. 9

2.2 Analytical solutions by Timoshenko’s text book .. 10

2.3 Analytical solutions of square plate with two-way sine load .. 10

2.4 Sanders-Koiter equations ... 11

2.5 A short review on finite different method ... 12

2.6 A short overview of application of finite difference method on plate theory 13

2.7 Thin plate bending equations ... 14

The example Python code for solving Sanders-Koiter equations .. 16

3.1 General information ... 16

3.2 Formation of matrixes ... 16

3.3 Differentiation approximated by FDM .. 18

3.4 Definition of boundary condition and corner condition .. 19

The Python code for solving thin plate bending .. 20

4.1 General information ... 20

4.2 Formation of matrixes ... 21

4.3 Differentiation approximated by FDM .. 22

Result ... 23

5.1 Analytical solutions ... 23

5.2 Code solutions ... 23

Discussion .. 28

Conclusion ... 30

Reference list .. 31

4

List of figures
Figure 1: Deflection of perpendicularly loaded plates ... 8

Figure 2: First order derivative by finite difference method .. 12

Figure 3: Boundary conditions and corner conditions of square plate .. 15

Figure 4: Add equations to [M] .. 17

Figure 5: Add differentiation of quantity to [M] .. 18

Figure 6: Shell boundary conditions and corner conditions of the canopy .. 19

Figure 7: Corner condition of loaded corner of the canopy ... 19

Figure 8: Distribution pattern of non-zero values in finished matrix [M] ... 22

Figure 9: Result plot of model 1 with the maximum values (10*10) ... 24

Figure 10: Result plot of model 1 with the maximum values (20*20) ... 24

Figure 11: Result plot of model 1 with the maximum values (30*30) ... 24

Figure 12: Result plot of model 2 with the maximum values (10*10) ... 24

Figure 13: Result plot of model 2 with the maximum values (20*20) ... 25

Figure 14: Result plot of model 2 with the maximum values (30*30) ... 25

Figure 15: Result plot of model 3 with the maximum values (20*20) ... 25

Figure 16: Result plot of model 3 with the maximum values (30*30) ... 26

Figure 17: Difference (%) between analytical solution and code results (displacement) 26

Figure 18: Difference (%) between analytical solution and code results (bending moment) 26

Figure 19: Difference (%) between analytical solution and code results (shear force) 27

Figure 20: Result plot of model 2 with the maximum values (higher load q=20kN/m, 20*20) 28

Figure 21: Result plot of model 2 with the maximum values (higher load q=100kN/m, 20*20) 28

Figure 22: Result plot of model 2 with the maximum values (higher load q=1000kN/m, 20*20) 29

Figure 23: Result plot of model 2 with the maximum values (higher load q=100kN/m, 30*30) 29

5

List of tables
Table 1: Equilibrium, constitutive and kinematic equations for plates .. 14

Table 2: Boundary conditions for an edge in the x direction and the y axis pointing outwards 14

Table 3: Boundary conditions for an edge in the x direction and the y axis pointing inwards 14

Table 4: Boundary conditions for an edge in the y direction and the x axis pointing outwards 15

Table 5: Boundary conditions for an edge in the y direction and the x axis pointing inwards 15

Table 6: Boundary conditions for an edge in the x direction and the y axis pointing inwards 19

Table 7: Load & boundary conditions of models... 21

Table 8: Maximum values python code results ... 26

6

List of equations
Equation 1: Biharmonic equation... 7

Equation 2: Edge and corner molecules adopted from (Doshi, 1964) ... 7

Equation 3: Central difference approximation of fourth-order derivatives adopted from (Reddy and

Gera, 1979) ... 7

Equation 4: Central difference approximation of first order derivative ... 7

Equation 5: Governing equation of classic plate bending theory .. 9

Equation 6: Three second-order differential equations used in finite difference approximation 13

Equation 7:Six first-order differential equations used in finite difference approximation (h = plate

thickness) ... 13

7

Introduction

1.1. Motivation for research

In the classical finite difference method (FDM) for perpendicularly loaded plates, the biharmonic equation is

solved by a fourth-order differential approximation. However, to including various boundary conditions,

classical FDM always involves a large number of edge and corner molecules (see Equation 2).

4 4 4

4 2 2 4
2

  
+ + =

   

w w w q

Dx x y y

Point adjacent to fixed edge

() ()
4

0
021 8 2N E S NE SE NN SS EE

P
w w w w w w w w w

D


− + + + + + + + =

Point adjacent to fixed-free corner

() () ()
4

0
020 8 6 2 2 2N E S NE SE NN EE

P
w w w w w w w w

D


− + + − +  + + − + + =

Point adjacent to fixed corner on free edge

() () () ()

() ()

2 2
0

4 3
2 0

0

17 8 5 12 4 8 4 4 4 2 2

2
1

N E NE NN

EE y

w w w w w

P
w R

D D

−  +  + − + + − +  +  + −  +

 
+ − = +

Equation 1: Biharmonic

equation
Equation 2: Edge and corner molecules adopted from (Doshi, 1964)

()
() ()

4
4

, 1, 1, , 1 , 1 1. 1 1. 1 1. 1 1. 12 2 2

1
4 2m n m n m n m n m n m n m n m n m n xy

f
f f f f f f f f f L f

x y x y
+ − + − + + + − − + − −


  − + + + + + + + 
    

Equation 3: Central difference approximation of fourth-order derivatives adopted from (Reddy and Gera, 1979)

This report investigates a newly proposed finite difference program, in which only first order differential

equations are solved, which greatly reduces the number of molecules. For the bending of thin elastic plates,

the exact plate theory includes three constitutive equations and eight first-order differential equations. The

new program could solve 11 equations simultaneously without higher-order differential approximation and

edge and corner molecules.

()

()

2 2 3 3 4 4

0 2 3 4

2

2 6 24

         
     = + + + +                

 +  + 

u x u x u x u
u x u x

x x x x

u x a b x c x

()

()

()

0
0 2

1

2

0
2

 = − 
  −  

=   = −   
   

=  

u u x
u uu

u u b
x x

u u x

Equation 4: Central difference approximation of first order derivative

Compared to the fourth-order derivatives in classical FDM, the difference approximation of first order

derivatives is simpler which leads to a smaller size of the proposed program. Moreover, it has potential to be

extended to shell structures, for which the classical molecules are too large to write down. However, in order

to have reasonable accuracy, the enormous size of the matrixes causes this program usually to take a

substantial amount of computing time and computer memory.

8

Figure 1: Deflection of perpendicularly loaded plates

1.2 Why finite differences

Finite element and finite volume methods are industry standard nowadays due the greater generality and

sophistication of those methods. Various FEM packages are intensively used by structural engineers for plate

and shell analysis. However, experience shows that often engineers do not understand the software that they

are using. Compared to FEM, the advantage of finite differences is its simplicity. Finite difference programs

usually have simpler structure from both mathematical and coding perspective. Especially for education

purpose, some simple models are frequently used a lot for teaching and in research. It is always good for

engineers to understand from scratch with easy-to-verify computer codes when they are solving the model

problems.

1.3 Research questions

The idea of solving plate equations by first-order finite differential equations was taken from the previous

code done by Dr. P.C.J. Hoogenboom. He has attempted to use the finite difference method for solving the

21 Sanders-Koiter equations for any shell with orthogonal parameterization. However, the development of

his method was not successful yet.

For the purpose of examining the validity of this method, a simplified version of this code is created as

newly proposed finite difference program aiming to solve 11 thin plate bending equations simultaneously. At

start of research, the validity of this new program remains unknowns. So, the main question is: “Does the

proposed method work?”

If the newly proposed program does not work, the potential causes behind its failure will be discussed. The

next research question will be “What are the fundamental reasons behind its failure?” If the newly proposed

program does preform reasonably, it has to be validated on its accuracy of the results. So, the next research

question is “what is level of its accuracy compared to classical FDM?”.

Based on the experience gained in this project, the final research question “Can the proposed method be

extended to shell structures?” will not be answered. It will be recommended for future research.

1.4 Research workflow

Based on the research questions, the workflow of research is organized as follows:

1. Comprehend the structure and format of the code developed by Dr. P.C.J. Hoogenboom

2. Follow the same idea used, write a new code which can evaluate equations of thin plate bending for

analysis (orthogonal parameterization required)

3. Obtain analysis results from new code (if this code does works) and compares it with results from

classical FDM.

9

4. Discuss the reason behind the failure of code (if this code does not work).

5. Based on gained experience in above, discuss whether this method can be extended to shell structures.

Literature review

2.1 A short review on plate theories

A short overview on the development of plate theory is given here to show the understanding for plate

theories behind the code application.

A certain character of plate and shell structures is that unlike other elastic bodies they can still remain in

elastic phase with small strains while undergoing large deformation. The classical theories can only treat

such structures where the displacements and their derivatives are considerably small. Therefore, it is

necessary to develop a theory that describes the nonlinear behavior of such elastic bodies within small strains.

There are two fundamental methods for solving such a problem in the classical theory of plates. The first

method is to describe this problem under the general theory of elasticity. The ideal is that the deformation in

the neighbourhood of each point still can be described linearly. Cauchy given the expression of

displacements and stresses as a power series of the distance z from the middle surface (1828). Poisson then

successfully solve the Germain-Lagrange plate equation under static loading condition (Poisson, 1829). The

second method is developed by Kirchhoff in which he introduced physical meaning into the theory of plates

by the famous “Kirchhoff’s hypotheses” (1850).

Kirchhoff’s hypotheses are a series of fundamental assumptions used in thin plate bending theory in which

the deflection of plate is assumed to be small, linear and elastic. Restated assumptions (Ventsel and

Krauthammer, 2001) are list as below:

 The elastic, homogenous, and isotropic material.

 Initially flat plate.

 Small vertical deflection of the midplane compared with the thickness of the plate.

 “Needle hypotheses”: The normal lines of the middle plane remain straight and normal to the middle

surface during the deformation. Thickness remains constant. Negligible vertical shear strains (xy ,  yz)

and normal strain ( z).

 Negligible normal stress z

 Middle surface remains unstrained

Under the above assumptions, the governing equation of classic plate bending theory (small deflection only)

can be derived as:

4 4 4 2

4 2 2 4 2
2

    
+ + =  

      

w w w w
D h

x x y y t

Equation 5: Governing equation of classic plate bending theory

where D is the flexural rigidity of the plate, w is the deflection of the plate, h is the plate’s thickness, and 

is the density.

In his method, Kirchhoff declared that the Germain-Lagrange equation can be equivalent to the Euler

equation under certain conditions and there are only two types of boundary conditions for plate edges:

dynamic & kinematic boundary conditions.

10

2.2 Analytical solutions by Timoshenko’s text book

One of the most significant contribution in development of plate theory was made by Timoshenko in earlier

1910s. He figured out the solutions of large deflections in circular plate problems and developed the theory

of elastic stability (1913). The text book he wrote with Woinowsky-Krieger (1987) is still fundamental

material for any beginner of learning plate theories. In the chapter 5 of this text book, the analytical solutions

on deflection, shear force and bending moment regarding to simply supported rectangular plates are given.

They are list as following:

Uniformly loaded simply supported rectangular

plates (Squared plates, length=width= a)

Maximum deflection
4

max 0.00406= 
qa

w
D

Maximum bending moment
20.0479= = xx yym m qa

Maximum shear force 0.338= = xx yyv v qa

where D is the flexural rigidity and q is an applied uniformly distributed load. The equation that describes

the flexural rigidity of a plate is given as below:

()

3

212 1
=

−

Eh
D

v

2.3 Analytical solutions of square plate with two-way sine load

A square plate with simply supported edges and under distributed load is described in the following form:

sin cos
x x

p p
a a

    
=    

   

The particular solutions that satisfies boundary and load conditions of this plate is given in a the plate theory

book by the Blaauwendraad (2014). And they are listed as below:

Square plate with two-way sine load

Maximum deflection
4

max 24

qa
w

D
=



Maximum bending moment
() 2

2

1

4
xx yym m qa

+ 
= =



Given formulas of bending moments are:

2 2 2

2 2 2

1 1 1
sin cos ; cos sin ; cos cos

4 4 4
xx yy xy

x y x y x y
m qa m qa m qa

a a a a a a

        

  

+ + −           
= = = −           

           

And the shear force can be derived from the moments above as shown in below:

2

2

1
cos cos sin

4

yxxx
x

mm x y y
v qa

x y a a a a

    



  +      
= + = +      

        

2

2

1
cos sin cos

4

yy xy

y

m m y x x
v qa

x y a a a a

    



   +      
= + = +      

        

11

Maximum shear force
()2 1

4
xx yyv v qa

+ 
= =



2.4 Sanders-Koiter equations

Sanders-Koiter equations is designation of equations individually developed by Sanders (Sanders, 1963) and

Koiter (1966) for refined nonlinear theory of shells. The development of Sanders-Koiter equations can be

sourced back to Reissner-Mindlin plate theory

In Reissner-Mindlin plate theory, the transverse shear strains were introduced under the assumption of

constant shear angle through the thickness. However, in this way transverse shear boundary conditions at the

top and bottom surfaces dose not be satisfied and shear correction factors are required to reach the

equilibrium.

Sanders and Koiter found a better way to solve it by introducing in-plane displacement kinematics. The

fourth order terms are used to describe the shear deformation through the thickness. The shear boundary

conditions of shear stress at top and bottom surfaces are satisfied without shear correction factors. In the

Sanders-Koiter theory, equations of motion include all three displacements and variation of curvature and

torsion are described linearly. The accuracy of Sanders-Koiter theory on calculating larger vibration

amplitudes has been proved (Amabili, 2003).

12

2.5 A short review on finite different method

The ideal of finite difference method is studying the continuous process by applying mathematical

discretization first. By dividing the process into a finite number of sufficiently small parts, the function of

that process is possible to be approximated by linear expressions. The results of derivative over a continuous

domain can be approximated as the summation of a weight function multiplied with results of discrete points.

The general procedure of applying different finite difference schemes for the numerical solution of partial

differential equation is outlined as below:

 Convert the continuous process variables into a discrete set of points.

 Approximate partial derivatives using finite difference approximations.

 Solve the resulting finite difference equation.

For example, domain of variable x of the continuous function ()f x is interval AB. The interval AB starts at

point A (a, 0) and ends at B (b, 0) which is divided into equal division  =x h . Assume the ()f x is linear

continuous function with expression: () = + f x a b x

The first order derivative of ()f x is given by below calculation:

()

()

()

()
1

1 1 1 1

1

2 2

i
i i i i

i

i

f f x h
f xf f f f

f f x b b
h x h

f f x h

−
− + − +

+

 = − 
  − − 

=  = −  = =   
  

= + 

And by definition of derivative, the first order derivative can also be calculated as below. The first order

derivative is the slope at a point of function ()f x calculated based on values of adjacent points

() () () () () ()

0 0 0
lim lim lim

2→ → →

+ − − − + − −
 = = =

h h h

f x h f x f x f x h f x h f x h
f

h h h

Figure 2: First order derivative by finite difference method

For one-sided finite differences of first order

derivative:

()

()

()

()

1 2
1

2

1 2

3 4

2
2

3 4

2

i
i i i

i

i

i i i

f f x
f f f

f f x h b
h

f f x h

f x f f f
b

x h

+ +
+

+

+ +

 = 
   −  + 

= +  = −   
  

= + 

  −  +
 = = −



For calculating second order derivative, Taylor series expansion of function ()f x is used and given by

below expression:

13

()
()

0

2 2 3 3

1 1 2 3

2 2 3 3

2 1 2 3

!

:
2 6

:
2 6



=

+

−

 − 
 =
  

      
   = + + + +           

      
   = − + − +           


n n

i

n
n i

i i
i i i

i i
i i i

x x f
f x

n x

f h f h f
T f f h

x x x

f h f h f
T f f h

x x x

() () ()

2
2

1 2 1 1 2

2
1 1

2 2

2

2

2

+ −

+ −

 
 +  + = +
  

+ −
 =



+ − + −
 =

i i i

i

i i i

f
T T f f f h

x

f f ff

x h

f x h f x f x h
f

h

where f is central difference of second order

derivative.

2.6 A short overview of application of finite difference method on plate theory

The analytical solution of the most equations in plate theories are usually expressed in terms of infinite

trigonometric series since they are partial differential equations. A short analytical solution can only be

found in limited simple conditions. In earlier years, the further numerical evaluation of those analytical

solutions is performed through the human effort with limited accuracy and a substantial amount of

computing time. As described by Rudolph Szilard (1974), since the advancement of electronic computers,

researchers start to study the plate bending problems with help of approximate methods.

Traditionally, the application of finite difference method on plate theory starts with the biharmonic equation

from the classic plate theory. Solving such fourth-order differential equation with approximation usually

results in inaccurate bending moments. To cope with such difficult, Marcus (1932) spilited biharmonic

equation into three equations: two second-order deflection equations and one normal moment equation.

However, despite it is mathematically correct, this method only gives good results for plates with simple

supported edges.

Another alternate approximation was proposed by Reddy and Gera (1979) in which fourth-order differential

equation is replaced with three second-order differential equations, as shown in Equation 6. For various

boundary condition, those equations can produce bending moment analysis for rectangular plates with

conventional finite-difference.

()

2 2

2 2

2 2

2 2

22 2

2 2 2 2
2 1

  
 = − +
   

  
 = − +
   

 
− = − − +

   

x

y

yx

w w
M D v

x y

w w
M D v

x y

MM w
P D v

x x y x

Equation 6: Three second-order differential

equations used in finite difference approximation

()

2

2

 Q
12

 Q
12

1
2

    
= − + = − −        

     
= − + = − −        

 
= − − +    

yx
x x x

y x
y y y

y x
xy

w
M D v Gh

x y x

w
M D v Gh

y x y

D
M v

x y

 

 = −   = − 
 

x zx y zy
w w

x y

Equation 7:Six first-order differential equations used in finite

difference approximation (h = plate thickness)

Instead of three second-order equations, Assadi-Lamouki and Krauthammer (1989) formulate an explicit

finite difference method to study plate vibration based on six first-order equations from Mindlin plate theory

and Kirchhoff plate theory (see in equation 8). Compared to the classical plate theory, the truncation errors

of vibration are negligible for short duration short and severe dynamic loads. By comparing the work done

by those previous researches, it can be found that the accuracy of finite difference approximation is

improved when the order of equations used is reduced.

14

2.7 Thin plate bending equations

The thin bending equations used here is modified version of Sanders-Koiter equations where the in-plane

displacement kinematics including shear deformation through the thickness and torsion are omitted. The 21

first-order Sanders-Koiter equations are reduced to 11 equations for describing the thin plate bending. Below

are equations would be applied in the second code including 11 equations of plate theory and 8 equation

describing the boundary conditions for an edge.

equilibrium

equations 0
yx

z

vv
p

x y


+ + =

 

1

0
xyxx

x

mm
v

x y


+ − =

 

2

0
yy xy

y

m m
v

y x

 
+ − =

 

3

constitutive

equations

3

2
()

12(1)
xx xx yy

E t
m =  + 

− 

4

3

2
()

12(1)
yy yy xx

E t
m =  + 

− 

5

3

24(1)
xy xy

E t
m = 

+ 

6

kinematic

equations
z

x
u

x


 = −



7

z
y

u

y


 = −



8

x
xx

x


 =



9

y
yy

y


 =



10

yx
xy

y x


 = +

 

11

Table 1: Equilibrium, constitutive and kinematic equations for plates

Boundary conditions for thin plate is defined as following:

Kinematic (K) Dynamic (D)

Impose displacement zu or apply line load z y
V

q v
x


= +


.

1

Impose rotation y− or apply line moment yym− . 2

Table 2: Boundary conditions for an edge in the x direction and the y axis pointing outwards

Impose displacement zu or apply line load z y
V

q v
x


= − −


.

3

Impose rotation y− or apply line moment yym . 4

Table 3: Boundary conditions for an edge in the x direction and the y axis pointing inwards

Impose displacement zu or apply line load z x
V

q v
y


= +


.

5

15

Impose rotation x or apply line moment xxm . 6

Table 4: Boundary conditions for an edge in the y direction and the x axis pointing outwards

Impose displacement zu or apply line load z x
V

q v
y


= − −


.

7

Impose rotation x or apply line moment xxm− . 8

Table 5: Boundary conditions for an edge in the y direction and the x axis pointing inwards

For thin plate loaded perpendicularly, the deformation due to shear and membrane force is negligibly small.

Plate theory mainly described its bending deformation under the perpendicular load as constrained by

boundary conditions. And for the corner, the support reactionV is calculated as the sum of torsion moments

xym and yxm .

Figure 3: Boundary conditions and corner conditions of square plate

vu

z

vu

z

yxm
xym

2= + =xy yx xyV m m m

V

−y x

− yym

yym

xxm

− xxm

zq

zu zu

zu
zu

16

The example Python code for solving Sanders-Koiter equations

In this work, an example Python code was used for solving Sanders-Koiter equations. This program was

proposed and developed by Dr. P.C.J. Hoogenboom for validating the idea of solving first-order difference

plate equations by applying the finite difference method. The selected plate theory is Sanders-Koiter

equations which can be expressed in the forms of 21 first-order difference equations. Although it did not

prove validity of this idea, it is important to understand the mechanism and structure of this code.

3.1 General information

The work procedure of main code can be categorized as 8 major steps by their execution order and they are

list as following:

Step 1: Inputs of material parameters, geometry and boundary condition type

Step 2: Define load components

Step 3: Define differential equations in x and y direction by finite difference methods

Step 4: Create empty matrixes for stiffness [M], motions [u] and load [f]

Step 5: Add Sanders-Koiter equations to stiffness matrix [M]

Step 6: Add load components to load matrix [f] while define the boundary conditions

Step 7: Solve [u] from [M]*[u] = [f] by least square method

Step 8: Postprocessing and display results of solved [u]

The studied geometry in this program is canopy defined by the geometry parameters 1xxk = and

2

1
yyk

a
= − where a is radius of curved surface. The general purpose of this program is to solve the

displacement matrix [u] from [M]* [u] = [f] while stiffness matrix [M] and load matrix [f] are defined by

Sanders-Koiter equations, boundary and corner conditions.

3.2 Formation of matrixes

First, empty matrixes are created waiting to be filled. Size of matrixes are determined by number of nodes of

model. For the matrix [M], the column number is 21mn (m: number of nodes in u-direction, n: number of

nodes in v-direction) and row number is 21 8 8 10 +  +  +mn m n (8 8 + m n : 4 boundary conditions per edge,

10: 5 corner conditions for per corner).

As defined in Sanders-Koiter equations, 21 unknown quantities are assigned to each node. which are xu , yu ,

zu , xx , yy , xy , x , y , z , xx , yy , xy , xxn , yyn , xyn , yxn , xv , yv , xxm , yym and xym . During

the tests of code, they are assigned with an integral value from 0 to 21 indicating their proposed location in a

solved [u], so that the results can be extracted accordingly.

For example, the Sanders-Koiter equation 1 is added to the matrix [M] by the blow code. For adding one

value to matrix, the process can be described as [Row number][]M K m n j m i  +  +

Parameter of unkown= where K represents the location value.

() 0


+ + + + + + + + =
 

yx
xx xx xy xy yx yy yy y x x y z

qq
k n k n n k n k q k q p

x y

Sanders-Koiter equation 1

1: M[row][nxx*m*n+j*m+i]=kxx(i/(m-1),j/(n-1))

2: M[row][nxy*m*n+j*m+i]=kxy(i/(m-1),j/(n-1))

3: M[row][nyx*m*n+j*m+i]=kxy(i/(m-1),j/(n-1))
Adding process

① ② ③

17

And the similar procedure is repeated for other quantities in the equation. The function of adding equation to

matrixes is divided into two parts (Loop ① & Loop ②). The parameters of unknowns are added into

matrixes and their starting point is determined by the assigned location value. Loop ① repeats the adding

process for every node at one line along u-direction. Loop ② repeats Loop ① until all lines are fulfilled, so

that unknown quantities are added to every node.

row=-1

for j in range(n): # Add Sanders-Koiter equation 1 to the matrix -----------------------------

 for i in range(m):

 row=row+1

 M[row][nxx*m*n+j*m+i]=kxx(i/(m-1),j/(n-1))

 M[row][nxy*m*n+j*m+i]=kxy(i/(m-1),j/(n-1))

 M[row][nyx*m*n+j*m+i]=kxy(i/(m-1),j/(n-1))

 M[row][nyy*m*n+j*m+i]=kyy(i/(m-1),j/(n-1))

 Dx(vx,1.0)

 Dy(vy,1.0)

 M[row][vx*m*n+j*m+i]=ky(i/(m-1),j/(n-1))

 M[row][vy*m*n+j*m+i]=kx(i/(m-1),j/(n-1))

 f[row]=-pz(i/(m-1),j/(n-1))

Code 1: Add Sanders-Koiter equation 1 to the matrix [M]

The column number of starting points for unknown quantity K is  K m n . For each adding process in Loop

①, the column number and row number increased accordingly for m times. Then Loop ② repeats Loop ①

for n times. Meanwhile for every Loop ①, the row number is incremented by one. By adding one equation,

m n rows of matrix have been generated.

Below figure shows the pattern of non-zero values in matrix [M] during this adding procedure where the

values are diagonally distributed. The same adding procedure is also utilized for adding boundary conditions

and corner conditions.

Figure 4: Add equations to [M]

_①Loop

_②Loop

1  K m n

_①Loop

 1= +row row

=row m

2  K m n

_②Loop

3  K m n

=i m

1   + K m n j m

0=j

1=j

=row m

……

= row m n=j n

……

1   +  +K m n j m i

=i m

18

3.3 Differentiation approximated by FDM

() 0
yx

xx xx xy xy yx yy yy y x x y z

vv
k n k n n k n k q k q p

x y


+ + + + + + + + =

 

Sanders-Koiter equation 1

……

1: Dx(vx,1.0)

2: Dy(vy,1.0)

……

Differentiation

As discussed in section 3.4, first order derivative of ()f x is given as
() 1 1

2

i if x f f

x h

− + −
=


and the one-sided

finite differences of first order derivative is
() 1 23 4

2

i i if x f f f

x h

+ +  −  +
= −


 where h represents the distance

between nodes. And h here is replaced with Lamé parameters (, x y ). The differentiation of one quantity

(,
 

 x y
)in the program is approximated by finite difference method ((),xD k g , (),xD k g) defined in below

where k is the location value of the unknown quantity while g works as positive/negative sign of the value

(g = -1/1).

Inside grids: () ()1 1,
2

x i i
x

g
D k g f f− += −


 () ()1 1,

2
y i i

y

g
D k g f f+ −= −



At edges () ()1 2, 3 4
2

x i i i
x

g
D k g f f f+ +=  −  +


 () ()1 2, 3 4

2
y i i i

y

g
D k g f f f+ +=  −  +



 () ()1 2, 3 4
2

x i i i
x

g
D k g f f f+ += −  −  +


 () ()1 2, 3 4

2
y i i i

y

g
D k g f f f+ += −  −  +



def Dx(k,g):

 if i==0:

 M[row][k*m*n+j*m+i+2]=-1*g/(2*alphax(i/(m-1),j/(n-1))/(m-1))

 M[row][k*m*n+j*m+i+1]= 4*g/(2*alphax(i/(m-1),j/(n-1))/(m-1))

 M[row][k*m*n+j*m+i]=-3*g/(2*alphax(i/(m-1),j/(n-1))/(m-1))

 elif i==m-1:

 M[row][k*m*n+j*m+i]= 3*g/(2*alphax(i/(m-1),j/(n-1))/(m-1))

 M[row][k*m*n+j*m+i-1]=-4*g/(2*alphax(i/(m-1),j/(n-1))/(m-1))

 M[row][k*m*n+j*m+i-2]= 1*g/(2*alphax(i/(m-1),j/(n-1))/(m-1))

 else:

 M[row][k*m*n+j*m+i+1]= 1*g/(2*alphax(i/(m-1),j/(n-1))/(m-1))

 M[row][k*m*n+j*m+i-1]=-1*g/(2*alphax(i/(m-1),j/(n-1))/(m-1))

 Return

Location:

(at left edge)

k3 = k*m*n+j*m+i+2

k2 = k*m*n+j*m+i+1

k1 = k*m*n+j*m+i

(at right edge)

k3 = k*m*n+j*m+i

k2 = k*m*n+j*m+i-1

k1 = k*m*n+j*m+i-2

(inside grids)

k2 = k*m*n+j*m+i+1

k1 = k*m*n+j*m+i-1

Code 2: Finite difference approximation in x direction

1k 2k 3k

1k 2k

 1k 2k

 1k 2k

 1k 2k 3k

Figure 5: Add differentiation of quantity to [M]

① ②

=row m

()_ 0=At edge i

()_ 1= −At edge i m

 1= +row row

19

3.4 Definition of boundary condition and corner condition

This model has three free edges and one fixed edge. For each edge, four boundary conditions are defined

They can be type D or type K (D = dynamic boundary condition, K= kinematic boundary condition). For

example, the edge 1 is an edge in the x direction and y axis point outwards. For four boundary conditions

from BC1 to BC4, type D and type K are both defined.

Type K Type D

Impose displacement xu or line load = −x yx xxq n k V BC1

Impose displacement yu or line load = −y yy xyq n k V BC2

Impose displacement zu or line load


= +


z y
V

q v
x

 BC3

Impose displacement −y or line load − yym BC4

Table 6: Boundary conditions for an edge in the x direction and the y axis pointing inwards

For example, the boundary condition BC1 is defined as below:

BC1='D'; BC1Value=0

BC2='D'; BC2Value=0

BC3='D'; BC3Value=0

BC4='D'; BC4Value=0

……
BC13='K'; BC13Value=0

BC14='K'; BC14Value=0

BC15='K'; BC15Value=0

BC16='K'; BC16Value=0

if BC1=='K':

 for i in range(1,m):

 row=row+1

 M[row][ux*m*n+j*m+i]=1

 f[row]=BC1Value

else:

 for i in range(1,m):

 row=row+1

 M[row][nyx*m*n+j*m+i]=1

 M[row][mxy*m*n+j*m+i]=-kxx(i/(m-1),j/(n-1))

 f[row]=BC1Value

Code 3: Definition of boundary condition for BC1

Figure 6: Shell boundary conditions and corner conditions of the canopy

Figure 7: Corner condition of loaded corner of the canopy

F

xv

2 xym yv

z

v

u

F

yyn

xyn

xxn

yxn

z

v

u

2

l
2

a

20

The condition of corners on the free curved edge is defined in the following. For each corner, 5 conditions

are defined. Half of the free curved edge and half of length edge are involved for the equilibrium at the

loaded corner.

Free corner 0− =yy xyn n , 0− =xx yyn n , 0=xym , 0=xv , 0=yv

Loaded corner
2 2


+ =yy xy

l a
n n F , 0

2 2


+ =yx xx

l a
n n , 2 0

2 2


− − =xy y x

l a
m v v , 0=yym , 0=xv

In the code, they are defined as below:

i=m-1 # 5 corner conditions

j=0

row=row+1; M[row][nyy*m*n+j*m+i]=1; M[row][nxy*m*n+j*m+i]=-1; f[row]=0

row=row+1; M[row][nxx*m*n+j*m+i]=1; M[row][nyx*m*n+j*m+i]=-1; f[row]=0

row=row+1; M[row][mxy*m*n+j*m+i]=1; f[row]=0

row=row+1; M[row][vx*m*n+j*m+i]=1; f[row]=0

row=row+1; M[row][vy*m*n+j*m+i]=1; f[row]=0

i=m-1

j=n-1

row=row+1; M[row][nyy*m*n+j*m+i]=l/2/(m-1); M[row][nxy*m*n+j*m+i]=3.1415*a/2/(n-1); f[row]=F

row=row+1; M[row][nxx*m*n+j*m+i]=3.1415*a/2/(n-1); M[row][nyx*m*n+j*m+i]=l/2/(m-1); f[row]=0

row=row+1; M[row][mxy*m*n+j*m+i]=2; M[row][vy*m*n+j*m+i]=-l/2/(m-1); M[row][vx*m*n+j*m+i]=-

3.1415*a/2/(n-1); f[row]=0

row=row+1; M[row][myy*m*n+j*m+i]=1; f[row]=0

row=row+1; M[row][vx*m*n+j*m+i]=1; f[row]=0

Code 4: Two corner conditions for free corner and loaded corner

The Python code for solving thin plate bending

In this chapter a program is developed based on the example shown in above section where the major

difference is the applied plate theory. Instead of 21 Sanders-Koiter equations, 11 equations for describing

thin plate bending are used which are discussed in section 2.7. A simpler plate theory used means smaller

size of matrixes and less computational time. It helps to debugger and prove the validity of method with

higher effectiveness.

4.1 General information

The major steps of work procedure keep same with that of example where the studied geometry is replaced

with flat square plate. The general purpose of this program is to solve the displacement matrix [u] from [M]*

[u] = [f] while stiffness matrix [M] and load matrix [f] are defined by 11 equations and boundary conditions.

The material parameters used in this program are defined as following:

Young's modulus of steel: 7 221 10 kN/mE = 

Poisson's ratio of steel: 0.3nu =

Length of plate: 1 mL =
Thickness of plate: / 25 0.04 mt L= =

Number of nodes in x direction: m

Number of nodes in y direction: n

For above configuration, two types of boundary condition are defined. The first one is simply supported

conditions for all edges (two-way slab). The second one is two simply supported edges with two free edges

(one-way slab). They are set for testing the accuracy of numerical results of the models by compared to the

corresponding analytical solution results.

21

The two load cases used in this program are defined as following

Distributed load: 210 kN/mq =

Two-way sine load
sin coss

x y
q q

L L

    
=     

   

There are three models defined in code whose load and boundary conditions are listed as following:

Model Load case Boundary condition

Model 1 Distributed load two-way slab

Model 2 Two-way sine load two-way slab

Model 3 Distributed load one-way slab
Table 7: Load & boundary conditions of models

After each running, 11 unknown quantities are plot, and the maximum value of each plot is found. For the

propose of mesh refinement study, the execution of code is repeated for each model with different node

number m and n which is set as 10, 20, 30.

Linear least squares method is used to solve [u] from the overdetermined system where matrix [M] is the

“Coefficient” matrix and force vector [f] is the “dependent variable”. It returns the least-squares solution [u]

to a linear matrix equation [M]*[u]=[f].

4.2 Formation of matrixes

First, empty matrixes are created waiting to be filled. For the matrix [M], the column number is 11 mn (m:

number of nodes in u-direction, n: number of nodes in v-direction) and row number is 11 4 4mn m n +  + 

(4 4m n +  : 2 boundary conditions per edge).

As defined in equations, 11 unknown quantities are assigned to each node. which are zu , x , y , xx , yy ,

xy , xv , yv , xxm , yym and xym . They are assigned with an integral value from 0 to 11 indicating their

proposed location in a solved [u], so that the results can be extracted accordingly.

For example, the equation 1 is added to the matrix [M] by the blow code. And the similar procedure is

repeated for other quantities in the equation.

0
yx

z

vv
p

x y


+ + =

 
 Thin plate equation 1

row=-1

for j in range(n): # TODO Add plate equation 1 to the matrix

 row=row+1

 D1x(vx,1/Delta_x(0,0))

 D1y(vy,1/Delta_y(0,0))

 f[row]=-pz(i/m,j/n)

Adding process

The same adding procedure is also utilized for adding boundary conditions. Below figure shows the pattern

of non-zero values in matrix [M] after formation of matrix [M] is finished. As predicted, those values are

diagonally distributed.

① ② ③

①
②

③

22

Figure 8: Distribution pattern of non-zero values in finished matrix [M]

4.3 Differentiation approximated by FDM

The same finite difference approximation is used in this program

Inside grids: () ()1 1,
2

x i i
x

g
D k g f f− += −


 () ()1 1,

2
y i i

y

g
D k g f f+ −= −



At edges () ()1 2, 3 4
2

x i i i
x

g
D k g f f f+ +=  −  +


 () ()1 2, 3 4

2
y i i i

y

g
D k g f f f+ +=  −  +



 () ()1 2, 3 4
2

x i i i
x

g
D k g f f f+ += −  −  +


 () ()1 2, 3 4

2
y i i i

y

g
D k g f f f+ += −  −  +



xv

x





yv

y





 Equation 1

23

Result

5.1 Analytical solutions

Based on the analytical solutions given in literature review section, the analytical solution of the maximum

value of three major quantities (displacement, bending moment and shear force) used to describing plate

behaviours are calculated as shown in following:

Flexural rigidity
()

3
2

2
1230.8 kN/m

12 1

E t
D

nu


= =

−

Model 1

Load & boundary conditions: Uniformly load, two-way slab

Maximum deflection:
4

5
max 0.00406 3.3 10 m

qL
w

D

−=  =  53.299 10 m−

Maximum bending moment:
20.0479 0.479 kNm/mxx yym m qL= =  = 0.479 kNm/m

Maximum shear force: 0.338 3.38 kN/mxx yyv v qL= =  = 3.38 kN/m

Model 2

Load & boundary conditions: Two-way sine load, two-way slab

Maximum deflection:
4

5
max 2.1 10 m

4

qL

w
D

−= = 


 52.085 10 m−

Maximum bending moment:
() 2

2

1
0.329 kNm/m

4
xx yym m qL

+ 
= = =


 0.329 kNm/m

Maximum shear force:
()2 1

1.463 kN/m
4

xxv qL
+ 

= =


 1.463 kN/m

Model 3

Load & boundary conditions: Uniformly load, one-way slab

Maximum deflection:
5

4
max

5
1.163 10 m

384

qL
w

EI

−= =  41.163 10 m−

Maximum bending moment:
21

2.5 kNm/m
8

yym qL=  = 1.25 kNm/m

Maximum shear force:
1

5 kN/m
2

yyv qL=  = 5 kN/m

5.2 Code solutions

The generated plots and maximum value results are collected from the execution results of the python code.

For each model, the plots of displacement zu , bending moment xxm and shear force xv are shown with their

maximum value.

Plots of displacement zu , bending moment xxm and shear force xv with their maximum value

24

a) Displacement (max = 0.000022) b) Bending moment (max = 0.375784) c) Shear force (max = 2.958091)

Figure 9: Result plot of model 1 with the maximum values (10*10)

a) Displacement (max = 0.000027) c) Bending moment (max = 0.427163) c) Shear force (max = 3.216659)

Figure 10: Result plot of model 1 with the maximum values (20*20)

a) Displacement (max = 0.000029) d) Bending moment (max = 0.444856) c) Shear force (max = 3.212631)

Figure 11: Result plot of model 1 with the maximum values (30*30)

a) Displacement (max = 0.000014) b) Bending moment (max = 0.271283) c) Shear force (max = 1.648043)

Figure 12: Result plot of model 2 with the maximum values (10*10)

25

a) Displacement (max = 0. 000016) b) Bending moment (max = 0.288521) c) Shear force (max = 1.704489)

Figure 13: Result plot of model 2 with the maximum values (20*20)

a) Displacement (max = 0. 000017) b) Bending moment (max = 0.291384) c) Shear force (max = 4.703133)

Figure 14: Result plot of model 2 with the maximum values (30*30)

a) Displacement (max = 0.000101) b) Bending moment (max = 1.312363) c) Shear force (max = 4.990231)

Figure 3: Result plot of model 3 with the maximum values (10*10)

a) Displacement (max = 0.000123) b) Bending moment (max = 1.458606) c) Shear force (max = 5.217669)

Figure 15: Result plot of model 3 with the maximum values (20*20)

26

a) Displacement (max = 0. 000132) b) Bending moment (max = 1.510968) c) Shear force (max = 5.313728)

Figure 16: Result plot of model 3 with the maximum values (30*30)

Based on the observation of those contour plots, except for model 2, contour lines become more smoothly

with increased node number. It indicates the better interpolation of values between nodes by introducing

smaller element size. However, for model 2, while under two-way sine load, the plots become heavily

distorted with increased node number. Especially for the shear force plot with 30*30 nodes, the maximum

value and contour lines dramatically deviate from previous results. And for the rest of model 2 plots, jagged

patterns appear more frequently as node numbers increased.

Meanwhile, the maximum values per model are summarized as below:

Node number Maximum values Model 1 Model 2 Model 3

10*10

Displacement 2.200E-05 1.400E-05 1.010E-04

Bending moment 3.758E-01 2.713E-01 1.312E+00

Shear force 2.958E+00 1.648E+00 4.990E+00

20*20

Displacement 2.700E-05 1.600E-05 1.230E-04

Bending moment 4.272E-01 2.885E-01 1.459E+00

Shear force 3.217E+00 1.704E+00 5.218E+00

30*30

Displacement 2.900E-05 1.700E-05 1.320E-04

Bending moment 4.449E-01 2.914E-01 1.511E+00

Shear force 3.213E+00 4.703E+00 5.314E+00

 Displacement 3.299E-05 2.085E-05 1.163E-05

Analytical solution Bending moment 4.79E-01 0.329E-01 1.25E+00

 Shear force 3.38E+00 1.463E+00 5E+00

Table 8: Maximum values python code results

By comparing the code result with the analytical solutions, the rate of difference in percentage is calculated

for each quantity as shown in below figures:

Figure 17: Difference (%) between analytical

solution and code results (displacement)

Figure 18: Difference (%) between analytical

solution and code results (bending moment)

27

Figure 19: Difference (%) between analytical solution and code results (shear force)

As shown in the above figures, most results are lower compared to the analytical solution. With increased

number of nodes, the difference in percentage is generally reduced but the extent of reduction deviates

between models and quantities. For displacement and bending moment results, the difference drops faster

where the difference is reduced by averaging 20% and 10% respectively. For shear force results, the

dropping of difference is less than 10% regardless of models. When the node number is 10*10, the shear

force results have an averaged smaller difference rate. Contrary to other models, the all results of model 3

and shear force results of model 2 are generally higher than its analytical solution. As the node number

increased, the difference is even increased. The maximum value of shear force result of model 2 with 30*30

node is four times its analytical solution so that it is not marked in figure 20.

Although some result shows good approximation, for example the shear force of model 3, the most results

are far from being accurate compared to the analytical solutions.

28

Discussion
From figure 13 to figure 15, the distortion of contour lines becomes more severe as the node number

increased. It is can be explained as an expression of the disadvantage of the linear least squared method

which is used in this program to solve matrixes. For such a sparse matrix, it can be difficult to find a

precisely linear solution that complies with data points. And the solution given by least square method is

significantly sensitive to existence of data points with extreme values.

In the practice, the only non-zero values in the load vector [F] are in equilibrium with shear force distribution

(thin plate bending equation 1) which are the extreme values in the vector that dominate the process of

finding the optimal estimation when using the least squares method to solve the matrix. This is why the error

in shear force results are significantly smaller compared to displacement and bending moment results.

Another possible source of error is the noise of the data point. Since there is no weight function ever

considered, extrapolating the results might be misleading as the linear model takes error from each data

equally. When directly adopting this data for the optimal fitting, the noise of data in different position could

have amplification or reduction effect, which leads to fitting errors.

The distortion of contour lines in model 2 results might be caused by data noise. To verify such assumption,

the load value is altered from 10kN/m to 100kN/m and 1000kN/m for model 2 with node number of 20*20.

By using large value of load, the data error will become less significant.

a) Displacement (max = 0.000035) b) Bending moment (max = 0.604248) c) Shear force (max =5.345979)

Figure 20: Result plot of model 2 with the maximum values (higher load q=20kN/m, 20*20)

a) Displacement (max = 0.000178) b) Bending moment (max = 3.064449) c) Shear force (max =17.255760)

Figure 21: Result plot of model 2 with the maximum values (higher load q=100kN/m, 20*20)

29

a) Displacement (max = 0.001790) b) Bending moment (max = 30.874547) c) Shear force (max =180.396483)

Figure 22: Result plot of model 2 with the maximum values (higher load q=1000kN/m, 20*20)

As shown in above figures, the extent of distortion of contour lines has been decreased as the using the

higher load. To comparing to the figure 15 (q=10kN/m, 30*30). the load is altered to 100 kN/m with same

load number is used. The plot is shown in following. The severe distortion in figure 15 is dramatically

reduced as a higher load value is used.

a) Displacement (max = 0.000187) b) Bending moment (max = 3.133083) c) Shear force (max =17.122023)

Figure 23: Result plot of model 2 with the maximum values (higher load q=100kN/m, 30*30)

By observing figures 18, 19, and 20, there is a clear trend of converging of results shown as the node number

increased. However, all results of model 3 and shear force results of model 2 intend to converge to some

values higher than their analytical solutions. It indicates that this program could underestimate the

distribution of shear force on the plate. Based on model 3 results, the stiffness of the plate in terms of

bending and deformation is also underestimated. To compensate for such underestimation, a higher node

number is recommended to use. However, the node number that gives results with a satisfying accuracy level

will require enormous computational time, which basically could make this program unpractical to use.

30

Conclusion

The method of solving plate equations by only applying first-order finite-difference approximation has been

proved to be workable by the python code newly proposed by this report. Several models with various

loadings and edge conditions are analyzed and have produced manfully results. The plots of displacement,

shear force, and bending moments can be viewed as only approximations compared to the analytical as the

produced results are usually 10 to 20% lower. Meanwhile, the matrix will be enormous if the denser grid is

applied to minimize computational error. In that case, the consumed computational time will basically make

this program unpractical to use. A possible solution to this is using Scipy’s sparse matrices where the only

non-zero element is stored to save memory usage. For a small program whose effective lines of code is

merely around 600, while being capable to produce solve 11 plate equations per node, its simplicity gives its

advantage in terms of educational purpose. This program has been proved as an easy-to-verify computer

code that can solve model problems. As a feasible and simple method to solve plate problems, further

research could focus on its application with more sophisticated plate theory like Sanders-Koiter equations to

prove its capability.

31

Reference list
Amabili, M. (2003) ‘A comparison of shell theories for large-amplitude vibrations of circular cylindrical

shells: Lagrangian approach’, Journal of Sound and Vibration TA - TT -, 264(5), pp. 1091–1125. doi:

10.1016/S0022-460X(02)01385-8 LK - https://tudelft.on.worldcat.org/oclc/4924705977.

Assadi-Lamouki, A. and Krauthammer, T. (1989) ‘An explicit finite difference approach for the Mindlin

plate analysis’, Computers & structures. Elsevier, 31(4), pp. 487–494.

Blaauwendraad, J. (2014) Plates and FEM, Surprises and pitfall. Volume 171, Springer Science. Volume

171. Edited by G.M.L. GLADWELL. Dordrecht Heidelberg: Springer Science. doi: 10.1007/978-90-481-

3596-7.

Cauchy, A. L. (1828) Exercices de Mathematiques. Kessinger Publishing. Available at:

https://books.google.nl/books?id=5lbgRwAACAAJ.

Doshi, A. D. (1964) ACCURACY OF SEVERAL FINITE DIFFERENCE METHODS FOR PLATE

PROBLEMS. RICE UNIVERSITY.

Kirchhoff, G. (1850) Über das Gleichgewicht und die Bewegung einer elastischen Scheibe.

Koiter, W. T. and Delft University of Technology, D. of M. E. L. of E. M. (1966) Purpose and achievements

of research in elastic stability., Report Department of Mechanical Engineering, Delft University of

Technology ; 363 TA - TT -. Delft SE - 29 blz. ; .. cm.: Delft University of Technology. Available at:

https://tudelft.on.worldcat.org/oclc/841152853.

Marcus, H. (1932) Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer

Platten. Springer.

Reddy, J. N. and Gera, R. (1979) ‘An improved finite-difference analysis of bending of thin rectangular

elastic plates’, Computers and Structures, 10(3), pp. 431–438. doi: 10.1016/0045-7949(79)90018-X.

Sanders, J. L. (1963) ‘Nonlinear theories for thin shells’, Quarterly of Applied Mathematics, 21(1), pp. 21–

36. doi: 10.1090/qam/147023.

Szilard, R. T. A.-T. T.- (1974) ‘Theories and Applications of Plate Analysis : Classical Numerical and

Engineering Methods’. Hoboken: Wiley [Imprint]. Available at:

http://onlinelibrary.wiley.com/book/10.1002/9780470172872.

Timoshenko, S. (1913) Sur la stabilité des systèmes élastiques. A. Dumas.

Timoshenko, S. and Woinowsky-Krieger, S. (1987) Theory of plates and shells. 2nd ed., Engineering

societies monographs TA - TT -. 2nd ed. New York SE - 580 blz. ; .. cm.: McGraw-Hill. Available at:

https://tudelft.on.worldcat.org/oclc/840267388.

Ventsel, E. and Krauthammer, T. T. A.-T. T.- (2001) ‘Thin plates and shells : theory, analysis, and

applications’. New York: Marcel Dekker. doi: 10.1201/9780203908723 LK -

https://tudelft.on.worldcat.org/oclc/54351771.

