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Summary

Joined Wing is a concept of nonplanar airplane wing structure. This is a new concept
which is not yet used for commercial airplanes but has proven to have several advan-
tages such as lowering the drag and lighter weight combined with higher stiffness. It
also increases the maneuverability.

However the simulation of the structure using Finite Element Method introduces
too many degrees of freedom. Therefore it is necessary to reduce the system of equa-
tions using modal order reduction. The common methods of using vibration modes
in a reduction basis to reduce the system, fail for nonlinear structures, as with large
displacements, the vibration modes of the structure change.

Modal derivatives show how a certain mode changes in the direction of another
mode. Including modal derivatives in the reduction basis improves the reduction of
the model but is very much dependent on the geometry of the structure.

In this work, the reduction basis is set up using vibration modes and modal deriva-
tives. It is investigated why this basis fails to reduce the system of the joined wing
accurately. By calculating for the remainder, proper orthogonal decomposition and
Krylov sequence the reduction basis is improved. Finally a greedy algorithm applied
to the joined wing problem succeeds in reducing the system by finding the best possible
improvement of the reduction basis for each load step.
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Chapter 1

Introduction

1.1 The joined wing concept

Joined Wing (JW) is one of different concepts for nonplanar wing structures. These
nonplanar wings are primarily intended to reduce drag and wingtip vortices [10] which
can lead to less fuel consumption.
For an airplane with joined wings, the two wings are coupled such that the airplane has
a diamond shape from top and front views. Some of the advantages that are claimed
for the JW are “lighter weight and higher stiffness, higher span-efficiency factor, higher
trimmed maximum lift coefficient, lower wave drag, plus built-in direct lift and direct
side force control capability” which are supported by independent studies [18].
Also because of the resulting diamond shape, the JW increases the maneuverability of
the airplane, which is mostly advantageous for fighter aircrafts.
However because the decrease in fuel consumption is not very high, the financial ben-
efits of the joined wings are minor for commercial use [11].

Figure 1.1: An artist impression of the JW concept [11].
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1.2 Structural modeling of the JW

Before building and using such a structure as the JW, it is necessary to simulate the
structure both statically and dynamically, to find its weak points and to be able to
improve the structure. This includes shape optimizations and material selections. Fur-
thermore the chosen structure must be capable of withstanding operational dynamic
loads.
To simulate such a structure statically, stress equilibrium equations have to be solved
which are partial differential equations, defined on a complicated geometry. The dy-
namic extension of these equations are the equations of motion.
Finite Element Method (FEM) is a numerical method to approximate the solutions
of the continuous partial differential equations. With this method the physical do-
main is divided into subdomains called elements. On these elements the solution is
described by discrete nodal displacements and their admissible deformations known as
shape functions. This approach can be popularly described as ’divide and conquer’. A
disadvantage of FEM is however that each element has several nodes, therefore a FEM
model has a large amount of degrees of freedom. This makes solving a FEM model
computationally expensive, especially if the model is nonlinear.
No phenomenon in nature is linear! But to be able to live and build, mankind can
smartly think of circumstances and assumptions to describe a phenomenon with lin-
ear equations, with other words the nonlinear effects are assumed small enough to be
neglected.
We can assume for example that a pendulum moves linearly, but that would be only
valid when it moves under a small angle, less than 6◦ to be precise. Then the equations
of motion can be linearized for the pendulum. So we can predict the displacement of
the pendulum as a function of time with linear equations. But as this angle grows, the
linearized equations of motion are not sufficient to predict the location of the pendu-
lum.
A case where the nonlinearities need to be considered is when the nonlinear effects have
a crucial influence on the structural stability, strength, deflection, etc. of the design.
This is potential the case for the JW concept.

1.3 Model Order Reduction

It has been mentioned that the Finite Element Method is a suitable approach to model
the structural strength of the JW. However the FEM models are large (a lot of nodal
degrees of freedom) and therefore slow to solve on a computer.
One approach to solve big FEM models is to use Model Order Reduction (MOR) [7].
In that case the number of ways that the model can move and deform is restricted to
a certain set of shapes. It is crucial that this set of shapes allows for enough flexibility
to correctly model the motion of a FEM model.

1.4 MOR fails for the JW

Model order reduction is especially difficult for nonlinear models (e.g. [8]). One reason
is that a set of shapes that is flexible enough for linear models can be too restrictive for
nonlinear models. For a linear system, by increasing the amplitude of the external force
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(and not changing its shape) on the structure, the displacement amplitude increases
but the displacement shapes do not change; while for a nonlinear structure, also the
shapes of the displacements change. Therefore several methods to enhance the sets of
shapes have been developed [5, 14, 15].
This is especially the case for the JW model for which many enhancement methods
that work for other nonlinear problems do not work.

1.5 Goal and lay-out of this report

Goal of this project is to find out why the enhancement methods that work for other
nonlinear problems do not work for the JW and find directions to obtain enhancement
methods that do work for the JW problem.
Therefore in chapter 2 the theory behind the nonlinear FEM model of the JW is dis-
cussed as well as the basics of Model Order Reduction.
In chapter 3 an overview of methods in literature for nonlinear MOR in general an
MOR for JW specifically is given.
Thereafter in chapter 4 the structure of the JW is simplified and the methods intro-
duced in previous chapter are tested on the JW problem to improve MOR for JW. The
simpler cantilever and c-shape problems that were defined to test specific aspects of
the reduction methods.
The most interesting phenomena from chapter 4 are discussed in chapter 5.
Finally the conclusions and recommendations are presented in 6.
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Chapter 2

Theory of Geometrically Nonlinear
Mechanics

The JW is a thin-walled structure which is modeled as a shell finite element model.
The uniform pressure that the JW is exposed to, results in a nonlinear response. There-
fore before reducing the equilibrium equations a well understanding of the nonlinear
mechanical model is needed. The material behaviour is assumed to be linear elastic
(Hooke’s law) and it is assumed that the nonlinearity is caused only by a nonlinear
strain-displacement relation (geometric nonlinearity).
The kinematic relations for plates are explained and then extended for plates modeled
with FEM. The material relations are then defined. The static equilibrium of the struc-
ture is found with the help of the principle of virtual work and nonlinear equilibrium
equations are solved. After assembling the equations of motion, the eigenmodes of the
structure are found which form a reduction basis with the modal derivatives.
Matlab is used to model the problem and the physical relations programmed in Matlab
are verified using Ansys.

2.1 Kinematic relations for shells

A shell is a Three Dimensional (3D) solid structure with a small thickness dimension
(h), compared to its surface dimension. For a shell the kinematic relations can be
written using the von Karman equations. In that case the strains are [15].

ǫx = ∂u
∂x

+ 1
2

(

∂w
∂x

)2
(2.1)

ǫy = ∂v
∂y

+ 1
2

(

∂w
∂y

)2

(2.2)

ǫxy = 1
2

(

∂u
∂y

+ ∂v
∂x

)

+ 1
2

(

∂w
∂x

∂w
∂y

)

(2.3)

where u, v and w denote the displacement in x, y and z directions respectively. These
variables are depicted in figure 2.1. However these equations neglect terms in the order

of
(

∂u
∂x

)2
, which means that nonlinear rotations are neglected. Therefore the simplified
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Figure 2.1: An element of the thin shell of JW in bending [6].

material strain tensor of Green-Lagrange will be used for strain measures

ǫx = ∂u
∂x

+ 1
2

(

∂v
∂x

)2
+ 1

2

(

∂w
∂x

)2
(2.4)

ǫy = ∂v
∂y

+ 1
2

(

∂u
∂y

)2

+ 1
2

(

∂w
∂y

)2

(2.5)

ǫxy = 1
2

(

∂u
∂y

+ ∂v
∂x

)

+ 1
2

(

∂w
∂x

∂w
∂y

)

(2.6)

2.1.1 FEM version of the kinematic relation

Having evaluated the differential equations for the continuous physical model, the
structure is now discretised to be evaluated numerically. In this discretisation, the
domain (surface) is divided into a finite number of sub-domains called elements by
means of nodes [6]. For each node of the structure a displacement vector is defined [15]

us =

















us

vs
ws

θxs

θys
θzs

















s = 1 . . . N (2.7)

where θxs
, θys and θzs define the rotations around x, y and z axis respectively 1 (figure

2.1). This gives every node i six Degrees of freedom (DoF) in the 3D space. JW is
meshed with simplex elements, so each three nodes form an element. In that case the
elemental DoF can be written as

ue =





u1

u2

u3



 (2.8)

The displacement of an element is approximated by the shape functions. Shape

1A point in a 3D continuum, does not have rotations, but in a plate FEM, a point (node) defines
a cross section (thickness h) and the rotations belong to this cross section.
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Figure 2.2: Displacement of simplex element [6].

functions are functions that are used to describe the allowable displacements. It is
assumed that the continuous displacement field can be written as a superposition of
shape functions times nodal displacements. Figure 2.2 shows a simplex element before
(dashed) and after (solid) deformation and displacement. The standard interpolation
function to find the approximation to DoF u is

u(x, y) = a+ bx+ cy (2.9)

which consists of the values for each node 1, 2 and 3

u(x1, y1) = u1 = a+ bx1 + cy1 (2.10)

u(x2, y2) = u2 = a+ bx2 + cy2 (2.11)

u(x1, y3) = u3 = a+ bx3 + cy3 (2.12)

With these three equations, the three unknowns a, b and c can be found. After sub-
stitution in equations 2.10, we find that

u = ζ1(x, y)u1 + ζ2(x, y)u2 + ζ3(x, y)u3 (2.13)

with

ζ1(x, y) =
1

2A
[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y] (2.14)

ζ2(x, y) =
1

2A
[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y] (2.15)

ζ3(x, y) =
1

2A
[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y] (2.16)

13



where A is the surface area of each element

A =
y12x13 − x12y13

2
(2.17)

with xij = xi − xj and yij = yi − yj, i, j = 1 . . . 3. Each shape function ζi, i = 1 . . . 3,
has the value 1 at uj, j = 1 . . . 3, when i = j and zero otherwise, so also the sum of
the shape functions for an element is 1.

ζ1 + ζ2 + ζ3 = 1 (2.18)

This can be used to discretise the displacement field

















u(x, y)
v(x, y)
w(x, y)
θx(x, y)
θy(x, y)
θz(x, y)

















= ζue (2.19)

where ζ is a [6 × 18] sized matrix containing the element shape functions and ue

is the vector with nodal displacements of an element which is [18 × 1]. The shape
function derivatives are used to describe the FEM discretization of the simplified Green-
Lagrange strains (2.4) as

ǫ = Bu+
1

2
C(u)u (2.20)

where B is a constant matrix containing shape function derivatives and C(u) is a
matrix that is linear in u. The matrix B can be written as

B =
[

B1 B2 B3

]

(2.21)

where

B1 =





y23 0 x32

0 x32 [0]3×3 y23
y23(y13−y21)

6
x32(x31−x12)

6
(x31y13−x12y21)

6



 (2.22)

B2 =





y31 0 x13

0 x13 [0]3×3 y31
y31(y21−y32)

6
x13(x12−x23)

6
(x12y21−x23y32)

6



 (2.23)

B3 =





y12 0 x21

0 x21 [0]3×3 y12
y12(y32−y13)

6
x21(x23−x31)

6
(x23y32−x31y13)

6



 (2.24)

and the term 1/2C(u)u defines the quadratic relation between nodal displacements
and strain where matrix C(u) is linear in u and is equal to

C =





uTKxx

uTKyy

uTKxy



 (2.25)
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where Kxx, Kyy and Kxy are geometric stiffness matrices corresponding to the stiffness
of the element in the denoted directions

Kxx = BT
wT

T
xTxBw +BT

v T
T
xTxBv (2.26)

Kyy = BT
wT

T
yTyBw +BT

uT
T
yTyBu (2.27)

Kxy = BT
v

(

TT
xTy +TT

yTx

)

Bu (2.28)

where the matrices Bu, Bv and Bw are expansion matrices to assign the derivatives in
T to the corresponding DoFs u, v and w with dimensions [3 × 18]. Their entries are
equal to zero except for the following

Bu1,1
= 1 (2.29)

Bu2,7
= 1 (2.30)

Bu3,13
= 1 (2.31)

Bv1,2 = 1 (2.32)

Bv2,8 = 1 (2.33)

Bv3,14 = 1 (2.34)

Bw1,3
= 1 (2.35)

Bw2,9
= 1 (2.36)

Bw3,15
= 1 (2.37)

and Tx and Ty are row matrices containing the derivatives of the shape functions in x
and y directions

Tx = 1
2A

[

y23 y31 y12
]

(2.38)

Ty = 1
2A

[

x32 x13 x21

]

(2.39)

2.2 Constitutive relations

The relation between stress and strain is assumed to be linear, therefore following
Hooke’s law

σ = Dǫ (2.40)

where D is a set of elastic constants which for plates can be written as

D =
Eh

1− ν2





1 ν 0
ν 1 0
0 0 1−ν

2



 (2.41)

where h is the thickness of the shell.

2.3 Equilibrium equation

2.3.1 Applying the virtual work principle

The static equilibrium equation can be found by applying the principle of virtual
work [12]. Following this principle, the equilibrium is found when a change caused by

15



a virtual displacement of the external force is compensated by an equal internal energy
change caused by a virtual strain.

δǫTσ = δuT fext (2.42)

The virtual strain is defined as follows

δǫ =
∂ǫ

∂u
δu (2.43)

Using the kinematic relation 2.20

ǫ = Bu+
1

2
C(u)u =

[

B+
1

2
C(u)

]

u (2.44)

the virtual strain δǫ is equal to

δǫ = [B+C(u)] δu (2.45)

and the constitutive relation 2.40 is

σ = Dǫ = D

[

Bu+
1

2
C(u)u

]

(2.46)

Using the above information, the virtual work equation 2.42 becomes

δuT
[

BT +CT (u)
]

D

[

Bu+
1

2
C(u)u

]

= δuT fext (2.47)

which has to be valid for any δu, therefore

BTDBu+
1

2
BTDC(u)u+CT (u)D

[

Bu+
1

2
C(u)u

]

= fext (2.48)

where the first term BTDB is known as the linear stiffness matrix Klin which is the
stiffness matrix at zero displacement (figure 2.3). The complete equation can also be
written as

fint(u) = fext (2.49)

which is an N long set equations of N unknowns.
The tangent stiffness matrix Ktan is defined as follows

Ktan =
∂fint
∂u

= BTDB+
1

2
BTDC(u) +

∂

∂u
(C(u)D [Bu+C(u)u]) (2.50)

The relation between linear and tangent stiffness matrix is as follows

Ktan = Klin + higher order terms Ktan(u = 0) = Klin (2.51)

Both the linear and the tangent stiffness matrices are [N ×N ] sized matrices.
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Figure 2.3: Illustration of Klin and Ktan.

2.3.2 Solving the nonlinear equilibrium equation

The nonlinear equation has to be solved by an iterative procedure. One such iterative
procedure is the Newton-Algorithm [1]. Here the external load is divided in several
increments. At each increment the associated displacement value to that load step is
calculated in an iterative process. At each load step (increment) the following iteration
procedure happens:

1. Guess an u0: a displacement is guessed for the corresponding load increment.

2. Compute fint(u0): to check this guess, the internal force of this displacement is
calculated.

3. Compute error ∆f = fext − fint(u0): for the system to be in equilibrium, the in-
ternal force which is calculated in the previous step must be equal to the external
force.

4. Compute displacement update ∆u = −K−1
tan∆f : if ∆f is not small enough, the

guessed displacement is not correct, the missing piece of the displacement, is cal-
culated with the Ktan (corresponding to the internal force and the displacement)
and ∆f .

5. Update displacements u1 = u0 +∆u: a new displacement is calculated which is
more precise than the first guess.

6. Repeat steps 2 to 5 until the error is small enough.

The procedure above gives the solution for displacement u given the external load fext.
Following this procedure for each load step the curve of the displacement can be traced.
In that case one speaks of an incremental iterative procedure.
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2.4 Equation of motion and eigenfrequencies

If the static equilibrium is extended to the dynamic situation one adds the inertia
effects

Mü+ fint(u) = fext (2.52)

which is an N long set of equations. M is the mass matrix of the structure with
dimensions [N ×N ]. The equation of motion can be linearized to

Mü+Ktanu = fext (2.53)

In that case one can compute the eigenfrequencies by assuming

u = xeiωt (2.54)

ü = −ω2xeiωt (2.55)

Substituting the DoFs u and their corresponding accelerations into equation 2.53 for
the homogeneous case where fext = 0 yields

[

−ω2M+Ktan

]

xeiωt = 0 (2.56)

which must be valid for any time

[

−ω2
iM+Ktan

]

xi = 0 (2.57)

This defines the eigenvalue problem that can be used to compute eigenfrequencies ωi

and eigenmodes xi. The eigenvalue problem describes the linearised dynamic behavior
around the equilibrium position ueq for which Ktan is evaluated.

2.5 Model order reduction in general

Reduced order modeling starts with the assumption that the displacement can be
approximated as a function of a set of shapes Φ times their amplitudes q known as
generalized DoFs q (similar to the shape functions defined for FEM discretization)

u = Φq (2.58)

where Φ is a matrix with dimension N ×R where R << N . The number of vectors in
the basis r determines the number of generalized degrees of freedom that remain after
the reduction.
These shapes in the basis can be anything, but classical examples are

• Eigenmodes

• Static modes

• Second order modes

• Modes resulting from a POD analysis of a nonlinear displacement curve
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Introducing the approximated displacement and their corresponding accelerations

ü = Φq̈ (2.59)

into equations of motion 2.53 one finds

MΦq̈ + fint(Φq) = fext + r (2.60)

where r is the reduction error or residual made by restricting the allowable displacement
to the space spanned by the chosen reduction basis Φ.
The next step is to restrict to allowable error to the space orthogonal to the basis which
is done by projection of equation 2.60 on the reduction basis

ΦT r = 0 (2.61)

thus
ΦTMΦq̈ +ΦT fint(Φq) = ΦT fext (2.62)

which can be written
Mredq̈ +ΦT fint(Φq) = fred (2.63)

where the subscript ’red’ denotes the matrices in the reduced system. The matrix fred
with dimensions [R×N ] is the modal participation of the force. Hereby the size of the
equations is reduced to R with R unknowns.
In the linear case fint(Φq) simplifies toKlinΦq therefore the reduced equation of motion
simplifies to:

Mredq̈ +ΦTKlinΦq = fred (2.64)

or
Mredq̈ +Kredq = fred (2.65)

Further in this report the analysis using MOR is referred to as the “reduced analysis”
and the solution of the unreduced system is called the “full analysis”.
If the reduction basis is filled with eigenmodes

Φ = [xi] , i = 1 . . . R (2.66)

and the problem is nonlinear, there arises a problem. The eigenmodes are found using
the linear stiffness matrix in equation 2.57 which is Ktan(u = 0), thus these eigenmodes
are valid as long as the system is in the linear region. When the structure undergoes
large displacements, the stiffness matrix changes as it is a function of displacements,
hence the eigenmodes change with displacement. Thus a reduction basis that contains
only eigenmodes can not be used for nonlinear calculations as it the stiffness matrix
is assumed to be constant while computing eigenmodes and thus the eigenmodes sim-
ply neglect the change in stiffness due to ’higher order terms’ mentioned in equation
2.51. Because the nonlinear effects become significant mainly at larger displacements,
it is likely that the modes have changed significantly when nonlinear effects become
important. Therefore the reduction basis filled with only the original eigenmodes can
be too restrictive, it does not allow for displacements that actually induce the proper
nonlinear effects.
On the other hand it is also not possible to compute for the eigenmodes for each and
every load increment as it is a very computationally expensive task. In the next section
one way to overcome this problem is introduced.
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2.6 Second order modes

As has just been mentioned eigenmodes in the reduction basis do not capture the change
in stiffness due to change in displacement. One method to overcome this problem is
to use second order modes. Second order modes give a measure of how modes change
with respect to displacement.
The meaning and derivation of second order modes can be understood by starting
with the tangent stiffness matrix. The tangent stiffness matrix Ktan is a function of
the displacement u around which the linearisation has been found, Ktan(u).
Assume that this displacement is equal to a mode shape xi times some modal amplitude
αi

u = xiαi (2.67)

Therefore the eigenvalue problem needed to compute another mode xj is

[

−ω2
jM+Ktan(αi)

]

xj = 0 (2.68)

In that case the mode xj is a function of αi. A first order approximation of how mode
xj changes when the displacement grows in the direction of xi is given by the derivative

xji =
∂xj

∂αi

(2.69)

This sensitivity is known as the second order mode. Therefore the second order mode
shows how mode j changes if the load on structure excites mode i.
To compute the sensitivity first the complete eigenvalue problem is differentiated with
respect to αi (assuming M constant)

(

Ktan − ω2
jM
) ∂xj

∂αi

=

(

−
∂Ktan

∂αi

+
∂ω2

j

∂αi

M

)

xj (2.70)

Which is very difficult to solve because the matrix
(

Ktan − ω2
jM
)

is singular. Therefore
it is often simplified by neglecting mass M = 0, since it has been shown that by
increasing M by a factor γ the modes xk decrease by the same factor γ, but their
shapes will not change [14]

Ktan

∂xj

∂αi

=

(

−
∂Ktan

∂αi

)

xj (2.71)

This can be written as [15]

Ktan

∂xj

∂αi

= g(xi,xj) (2.72)

Thus the second order mode follows from

xij = K−1
tang(xi,xj) (2.73)

under the orthogonality condition xiMxjk = 0, where the pseudo load vector g is the
sum over the elemental contributions

g(xi,xj) = −
1

2

∑

e

Ae
(

neT

i Ce(xj) + neT

j Ce(xi) + xeT

j CeT

i DBe
)T

(2.74)
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where ni is the stress variation induced by a mode (the stress-mode)

ni = DBxi (2.75)

and Ae is the area of the element.

If the second order modes are used to overcome the problem of a too restrictive
reduction basis, they are included in the basis directly

Φ =
[

xi xij

]

, i = 1 . . . R, j = 1 . . . R (2.76)

2.7 Verification of the JW by Ansys

The finite element discretisation along with the mathematical model (full model) is
programmed in Matlab for the JW. The structure is also simulated in Ansys, which
is a commercial FE analysis tool and sets up the mathematical model internally. Fig-
ure 2.4 shows the geometry of the JW. The material used is aluminum with density
ρ = 2.7× 10−6Kg/mm3, Young’s modulus of E = 69GPa and Poisson ratio ν = 0.33.
The thickness of the plates is 2mm except for the slope plate which has a thickness of
0.5mm. The structure is clamped at lines shown with ’C’ in the figure. The structure is
subjected to a uniform vertical (in −z direction) pressure of P = 0.55125Kg/(mm.s2)
corresponding to a dynamic pressure of a speed of v = 30m/s [5].

G

Figure 2.4: Joined Wing model geometry and material properties. h1 = h2 = h3 =
2mm and h4 = 0.5mm [5].

The response obtained by Matlab is compared with response obtained by Ansys
for the node at [50, 500, 0], which is shown with letter G in figure 2.4. Figures 2.5,
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2.6 and 2.7 show the comparison between Matlab and Ansys for the displacement of
this node in x, y and z direction respectively. There is a good match between the two
results. In figure 2.5 the curves are not exactly the same but it should be noticed that
the displacement in the x direction is very small (in the order of 10−3mm) because the
pressure is applied in the vertical direction z. These results suggest that the simplified
kinematic equations sufficiently agree with the more advanced kinematic equations in
Ansys and that the Matlab model suffices for the investigation in this thesis.
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Figure 2.5: Comparison between Matlab and Ansys for displacement of the node with
coordinates [50, 500, 0] in x direction.
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Figure 2.6: Comparison between Matlab and Ansys for displacement of the node with
coordinates [50, 500, 0] in y direction.
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Figure 2.7: Comparison between Matlab and Ansys for displacement of the node with
coordinates [50, 500, 0] in z direction.

23



Chapter 3

Literature Review

3.1 Optimal second order reduction basis selection

for nonlinear transient analysis

This section summarises [16]. For geometrically nonlinear structural dynamics prob-
lems, the model is reduced by projecting the finite element (FE) equations on a basis
containing vibration mode (VM) and associated modal derivative (MD). The dimen-
sion of this basis however can become very large considering that the number of MDs
are quadratic with respect to the number of chosen VMs. Considering the fact that
large displacements may occur in aeronautics and that minimum weight is a design
factor, it is important to consider nonlinearity. Therefore effective model order reduc-
tion is necessary. In order to reduce the number of DoF, several VMs of the structure
at a certain dynamic equilibrium are extracted and form a reduction basis. Then the
dynamic equations are projected on the basis. Although this is a common approach to
reduce DoFs, high frequency VMs can be very important for nonlinear systems, these
modes are expensive to calculate for a large FE model. A major issue in nonlinear
structural applications is the bending-stretching coupling, arising from the finite out
of plane displacements a slender or thin-walled structure exhibits during operation.
Typically, low frequency VMs are bending dominated and do not contain the proper
membrane displacement contribution which is necessary to accurately represent the
effect of the nonlinearity [16]. Including higher order modes in the reduction basis
can enrich the basis and no expensive computing is needed. Higher order modes or
MDs are the derivative of the linear eigenmodes with respect to the modal amplitudes.
Because the number of MDs is quadratic with respect to the chosen VMs, these VMs
and MDs should be selected effectively.
The discretized, N dimensional, nonlinear, undamped FE equations of motions are as
follows

Mü+ fint(u) = f(t) (3.1)

where u is the generalized displacement vector, M is the mass matrix, fint(u) is the
nonlinear force vector and f(t) is the applied force. The initial conditions are zero.
The nonlinearity of g(u) is caused by geometrical effects only, that is when the dis-
placements are so large that a linear kinematic model does not hold, the thin-walled
structure stays in the elastic range. In order to reduce the number of DoFs, we ap-
proximate the displacement u

uN×1 = ΦN×Rq(t) (3.2)
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where Φ is a suitable reduction basis and R << N . Projecting equation 3.1 on this
basis results in

ΦTMΦq̈(t) +ΦT fint(Φq) = ΦT f(t) (3.3)

M̂q̈(t) + ˆfint(Φq) = f̂ (3.4)

The solution of equation 3.1 is referred to as the full solution and the solution to
equation 3.4 is referred to as the reduced solution. The reduction basis Φ in this
case is formed by VMs (xi) and MDs (xij), therefore Φ = [ xi xij] . The VMs are
calculated using the linear equation of motion around an equilibrium. The MDs are
defined as follows (see also the previous chapter)

xij =
∂xi

∂qj

(3.5)

where xi are the calculated VMs and qj are the associated modal amplitudes. This
equation shows how a certain mode xi changes if the structure is displaced according
to the shape described by mode xj.
The big advantage of this method is that the most important contributions can be
estimated prior the actual calculation of the MDs, here follows how. By calculating
of R, VMs and their associated eigenfrequencies ωi, we can approximate the response
u(t)

u(t) =
M
∑

i=1

xix
T
i f

µi

∫ t

0

sin(ωi(t− τ))

ωi

φ(τ)dτ =
k
∑

i=1

αiθi(t) (3.6)

here µi = ΦT
i MΦi is the modal mass associated to the mode number i. The convergence

of this approximation depends on a quasi-static contribution (associated to the spatial
factors αi) and a spectral contribution, which is determined by the convergence of the
convolution integral in equation 3.6.

αi =
xix

T
i f

µi

(3.7)

implies that the load shape f has to be nearly orthogonal to the N −R modes left out
of the approximation. The temporal factors θi(t) depend in general on the frequency
content of the system and of the applied load. We consider two cases:

• for a step load φ(t) = 1 for t > 0

θi(t) =
1− cos(ωit)

ω2
i

(3.8)

• for a harmonic load φ(t) = cos(Ωt)

θi(t) =
ωi sin(Ωt)− Ω sin(ωit)

ωi(ω2
i − Ω2)

(3.9)

We can now assume that the R VMs will interact when nonlinearity is considered.
Another assumption is that the contribution of the MDs is of second order and their
mutual relevance could be indicated by:

25



• for step load

bijstep =
|αi||αj|

ω2
i ω

2
j

(3.10)

• for harmonic load

bijharm = |αi||αj|βiβj βk(Ω) = |
1

ω2
k − Ω2

|+ |
Ω

ωk(ω2
k − Ω2)

| (3.11)

The factors bijstep and bijharm indicate the relative amplitude of the MD mode xij given
the contribution of xi and xj to the linear solution. The most relevant MDs will be
the ones with the highest values of the corresponding bij coefficients.
These methods are used further in a numerical example for a simple cantilever. It
shows that by using the most relevant MDs in the reduction basis, the dynamic re-
sponse of the loaded cantilever in the reduced solution agrees with the full solution.
The power of this method lies in the second order modes enrichment can be seen as
higher order expansion of the solution. Therefore the convergence properties of the
base linearized problem should naturally provide a guideline also for the higher order
expansion.

This paper forms the basis of the research that is done in this report. The modal
derivatives are a powerful ... to compensate for the high frequency vibration modes.
The question that arises however, is that why this method fails to give accurate results
for the JW.

3.2 A reduced order nonlinear aeroelastic analysis

of joined wings based on the proper orthogonal

decomposition

This section summarises [5]. In this paper, a method is introduced in order to reduce
the order of the nonlinear analysis for the JW. Here the method of snapshots is used
which is an efficient method when the resolution of the domain in space (N) is higher
than the number of observations. The method of snapshots which can be used both for
numerical and / or experimental observations is based on the fact that the data vectors
(snapshots ui), and the eigenvectors xk span the same linear space. At each load step,
the solution is calculated and these solutions form the snapshots. Furthermore the
Proper Orthogonal Decomposition (POD) method is used which is based on Singular
Value Decomposition (SVD), a useful factorization method which gives the eigenvectors
and eigenvalues of a matrix multiplied by its transpose.

First the eigenvectors of the linear equations of motion around an equilibrium point
are calculated and a reduction basis is formed with the first low frequency eigenvectors.
Then the snapshots which are displacement vectors from increasing load steps are
calculated. At each snapshot, the tangent stiffness matrix is calculated. Using this
tangent stiffness matrix, we can have new set of eigenmodes. POD is used to factorize
the matrix of eigenmodes and in each snapshot this POD is updated. This gives
a nonlinear description of the eigenmodes in POD modes as a function of the load.
These eigenmodes are used as reduction basis. Therefore the basis is updated at each
time step.
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The procedure of updating the structural tangent modes for each load step, results
in excellent approximation of the full order solution for a joined wing and a delta wing
if this approach used to interpolate. The use of the POD modes to extrapolate the
results, shows that the extrapolation is only accurate if the the aerodynamic speed
is increase for about 10%. Therefore it is impossible to really extrapolate using this
method, only interpolation gives really accurate results.

3.3 Model reduction tools for nonlinear structural

dynamics

This section summarises [14]. Despite the increase of computer capacities, reduction
techniques for FE systems are still very interesting. An important factor for the re-
duction technique to be successful lies in the selection of the basic vectors (modes of
the structure at a certain time instant with a certain deformation). Proper selection of
basic vectors results in maximum result quality and minimum effort of the computation
time for the reduced system integration and minimum effort to obtain these modes.
Using momentum equations, strain relations with initial and boundary conditions, the
system of N nonlinear equations for a finite element model is obtained

Mü(t) = fext(t)− fint(u(t)) with u(t = 0) = u0 u̇(t = 0) = v0 (3.12)

where M is the mass matrix, u(t) is a column matrix containing the nodal DoFs,
fint(u(t)) is the internal nodal forces and fext(t) is the external nodal forces. We consider
systems without damping. In this paper only geometrical nonlinearities are considered
but the derivations still hold when applying material nonlinearities.
We reduce the system of N equation (N unknowns) by approximating the nodal DoFs

u(t) = u0 +Φq(t) (3.13)

whereΦ is the reduction matrix of sizeN×R (R << N) and q(t) the modal coordinates
are the set of R new unknowns which are easier to compute as R is much smaller than
N . Vector u0 denotes the initial displacements of the structure; also the columns of
the reduction matrix (modes of the structure) are calculated using this initial state.
Substituting equation 3.13 in equation 3.12 and premultiplying by the transpose of the
reduction matrix results in the reduced nonlinear system

Mredq̈(t) +ΦT fint(u0 +Φq) = fred(t) (3.14)

Mred = ΦTMΦ, f̄red = ΨT fext (3.15)

The modes used in the reduction basis can be tangent modes which are eigenvectors
obtained by solving the eigenvalue problem, linearized around an initial configuration.
Consider the FE system in an initial state with nodal displacements u0. The system
is linearized around u0, using the tangent stiffness matrix

Ktan(u = u0) =
∂fint
∂u

(u = u0) = Klin (3.16)

Tangent modes are then determined from the eigenvalue problem

(Ktan − ω2
pM)xp = 0 p = 1 . . . N (3.17)
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From now on in this section Ktan will be written simply as K. If the reduction basis
has the first p tangent modes, then we have a linear approximation of nodal DoFs
(equation 3.13) in the ordinary modal coordinates αp which is a good approximation
only around u0. Reduced coordinates q are then the same as αp and equation 3.13
becomes

u− u0 =
R
∑

p=1

(xpαp) = Φq (3.18)

If the system is nonlinear, these modes change for large deformations and therefore fail
to describe the system. Adding second order terms consisting of modal derivatives to
the reduction basis can improve the description of the system.
For large deformations the tangent stiffness matrix changes a lot. As a result the
tangent modes also change, as a function of u and αp. So with all N tangent modes
equation 3.18 can be written as

u− u0 ≡ ∆u =
N
∑

p=1

(xp(u)αp) = Φq (3.19)

Assume ∆u can be evaluated around its starting configuration ∆u = 0 by a second
order Taylor series

∆u =
N
∑

p=1

(

∂∆u

∂αp

(α = 0)αp +
r
∑

r=1

(

∂2∆u

∂αp∂αr

(α = 0)
αr

2

)

αp

)

(3.20)

where the derivatives of the nodal displacements are calculated using equation 3.19

∂∆u

∂αp

= xp +
N
∑

p=1

(

∂xr

∂αp

αr

)

(3.21)

∂2∆u

∂αp∂αr

=
∂xr

∂αp

+
∂φp

∂αr

+
N
∑

l=1

(

∂2xl

∂αpαr

αl

)

(3.22)

At u0 the ordinary modal coordinates α are zero. The nodal displacement derivatives
of equation 3.22 become

∂∆u

∂αp

(α = 0) = xp(u = u0) (3.23)

∂2∆u

∂αp∂αr

(α = 0) =
∂xr

∂αp

(u = u0) +
∂xp

∂αr

(u = u0) (3.24)

In the presence of nonlinearities the reduction matrix can be made of p ordinary tangent
modes and R − p derivatives as in second part of equation 3.24. Then q contains p
ordinary modal coordinates αp and R−p kind of quadratic ordinary modal coordinates.
Three ways for calculating modal derivatives ∂xr/∂αp are studied.

1. Analytical approach using mass consideration: To find a modal derivative, ∂xr/∂αp,
we differentiate the eigenvalue problem equation 3.17

(K− ω2
rM)

∂xr

∂αp

=

(

∂ω2
r

∂αp

M−
∂K

∂αp

)

xr (3.25)
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where the derivation of the tangent stiffness matrix is done numerically as follows

∂K

∂αp

≈
K(u0 + xpδαp)−K(u0)

δαp

(3.26)

If two tangent modes (φr and φr+1) belong to the same ωr, then the matrix
(K− ω2

rM) is not full rank (N − 2) and these tangent modes are the null space
of this matrix. The general solution of ∂φr/∂αp is the sum of the homogeneous
and particular solutions. The homogeneous solution is equal to

{

∂xr

∂αp

}

hom

=
2
∑

i=1

βixr+i−1 (3.27)

To find the particular solution, the right hand side of equation 3.25 must satisfy
two conditions. To find these conditions we first represent the unknown particular
solution in a new basis by using a transformation matrix T

{

∂xr

∂αp

}

par

= T

{

∂xr

∂αp

}

′

(3.28)

Matrix T is the unity matrix except that its kth and lth column are the tangent
modes φr and φr+1 respectively. Numbers k and l are chosen in a way that T
would not be singular. Substituting 3.28 in equation 3.25 and premultiplying by
TT we get

TT (K− ω2
rM)T

{

∂xr

∂αp

}

′

= TT

(

∂ω2
r

∂αp

M−
∂K

∂αp

)

xr (3.29)

where the kth and lth equations are as follows

0 = xT
r Mxr

∂ω2
r

∂αp

− xT
r

∂K

∂αp

xr (3.30)

0 = xT
r+1Mxr

∂ω2
r

∂αp

− xT
r+1

∂K

∂αp

xr (3.31)

which when normalized with respect to the mass matrix, are

∂ω2
r

∂αp

= xT
r

∂K

∂αp

xr (3.32)

0 = xT
r+1

∂K

∂αp

xr (3.33)

Because the kth and lth columns and rows of TT (K−ω2
rM)T are full of zeros the

kth and lth equation of equation 3.29 can be left out. Subsequent substitution of
equation 3.32 into equation 3.29 gives the final equation which can be solved to
give the modal derivative, without the kth and lth entries. These entries should
be zero. Thereafter the result is transformed using equation 3.28 to give the
particular solution.
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2. Analytical approach excluding mass consideration The mass of the system does
not have any effect on the shape of the modal derivatives, as a decrease γ in the
modal derivatives can be shown by multiplying the mass matrix by γ. Now we
can simplify equation 3.25 by neglecting the inertia terms

∂xr

∂αp

= −K−1 ∂K

∂αp

xr (3.34)

and rigid body modes are prevented. Because of the symmetry of the modal
derivatives

∂xr

∂αp

=
∂xp

∂αr

(3.35)

the number of modal derivative evaluations using this method is less than the
previous and the next methods.

3. Numerical approach to determine modal derivatives In this method the modal
derivative is found by varying the pth ordinary modal coordinate and its influence
on the tangent stiffness matrix is computed by calculating K(u0) and K(u0 +
xpδαp. Using these two stiffness matrices, two eigenvalue problems are solved
and the modal derivative is found as follows

∂xr

∂αp

≈
xr(u0 + xpδαp)− xr(u0)

δαp

(3.36)

Now we consider the application of static modes to the reduction process. ’Static
modes are the steady state solution to the originally nonlinear dynamic system and
they depend on the external loads applied to the system. Static modes are obtained
by an incremental Newton-Raphson iteration procedure, where inertia terms are not
considered’. Hereby the nonlinear set of algebraic equations is

fext − fint(u) = 0 (3.37)

Furthermore the combinations of modes and modal derivatives obtained by these meth-
ods, is used to solve two FE problems with 13 and 39 DoFs and the results are com-
pared.
Using analytical approach including mass consideration, good results are obtained
which are in agreement with the results obtained by using numerical approach. Results
from the reduction matrices containing only tangent modes are not acceptable, modal
derivatives should be added to the reduction basis to improve the reduced solutions.
Hereby the addition of static modes to the reduction basis (with tangent modes and
modal derivatives) can give better solutions but these are not generalisable.

3.4 Rigorous improvement of semi-analytical de-

sign sensitivities by exact differentiation of rigid

body motions

This section summarises [17]. Computing shape design sensitivities using the semi-
analytical method show inaccuracy problems which are due to the numerical differ-
entiation of the finite element stiffness matrices. These inaccuracies become specially
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dominant when the individual elements have large rigid body motions. In this pa-
per a method is introduced to overcome these inaccuracies by exact differentiation of
the rigid body motions. Static analysis of a linear mechanical structure lead to the
governing equations

K(d)u(d) = f(d) (3.38)

where K(d) is the symmetric stiffness matrix, u(d) is the vector of nodal displacements
and f(d) is the vector of external loads. Here d denotes the set of design variables that
the sensitivities are taken with respect to them. Differentiating this equation w.r.t.
the design variables gives

K′u+Ku′ = f ′ (3.39)

u′ = K−1(f ′ −K′u) (3.40)

where the term q = f ′−K′u is referred to as the pseudo load vector. In this method the
nodal displacement vector for each element (ue) is decomposed into a part containing
pure deformations and a part containing rigid body modes contributions.

ue = uǫ
e +

s
∑

k=1

ue.rk
rk.rk

rk = uǫ
e + αkrk (3.41)

where rk k = 1 . . . s shows the rigid body motions and αk = (ue.rk)/(rk.rk). The
second term in the right hand side is a projection of the displacement vector on the
rigid body modes and denotes the part of ue that contains rigid body mode. The
pseudo load vector for a single element then reads

qe = f ′e −K′

eu
ǫ
e −K′

e(α
krk) (3.42)

where the last term of the right hand side can be written as

K′

e(α
krk) = αk(K′

erk) = −αk(Ker
′

k) (3.43)

which comes from the definition of rigid body modes and that they cause no deforma-
tions (Ker = 0 so the differentiation w.r.t. design variables gives K′

erk + Ker
′

k = 0).
The pseudo load vector now takes the form

qe = f ′e −K′

eu
ǫ
e + αkKer

′

k (3.44)

As the rigid body modes and the external load vector are function of design variables,
the first and last term in the right hand side of equation 3.44 can be evaluated exactly
and with minor programming effort. The middle term however is where inaccuracies
come from. The errors due to approximating K′

e manifest themselves only in this term.
However, the components of this term along the rigid body modes rk can be evaluated
exactly

rkK
′

eu
ǫ
e

rk.rk
= −

r′kKeu
ǫ
e

rk.rk
(3.45)

by using the definition of rigid body modes. Using these results the pseudo load vector
is

qe = f ′e −K′

eu
ǫ
e +

[

rkK
′

eu
ǫ
e

rk.rk

]

rk +

[

r′kKeu
ǫ
e

rk.rk

]

rk + αkKer
′

k (3.46)
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’The third term in the right hand side removes the part of contribution due to K′

eu
ǫ
e

which is in the space spanned by rk. This term maybe inaccurate as K′

e is obtained by
applying finite differences. The forth term compensates for these inaccuracies, for it is
evaluated exactly. It is stressed that r′k can be evaluated in an exact manner, whereas
K′

e and f ′e are generally determined by their forward finite difference approximations.
Thus the last two terms of equation 3.46 are computed exactly. In cases of relatively
large rigid body motions, these terms may become large as compared to K′

eu
ǫ
e. There-

fore, the proposed method will drastically reduce the abnormal errors which occur in
the standard sensitivity analysis method [17].’

Furthermore this paper shows how the method can be implemented for a curved
triangular shell element. Furthermore this paper compares the results of traditional
and refined (the method introduced) sensitivity analysis (using forward and central
finite differences) with each other. The examples of a strip in tension, square plate,
cantilever beam, cylindrical panel (with pure bending) and cylindrical support are
used to compare different methods. Finally it can be concluded that there are three
advantages of the proposed method. Firstly this method eliminates the abnormal
errors due to large rigid body motions, which happened in the traditional sensitivity
analysis methods. Secondly, by implementing some basic vector manipulations and
defining a set of rigid body modes for each class of elements, the refined sensitivity
analysis method can be easily implemented in the existing software. Thirdly, because
the vector manipulations per element are not a lot, the additional computational effort
is very small.

The method advocated in this paper does not promise to provide an improvement
for the JW problem, because the pseudo load vector of the geometric nonlinear model
is not obtained by a semi-analytic method but by a full analytic differentiation.

3.5 Asymptotic study of the elastic postbuckling

behavior of structures by the finite element method

This section presents a summary of [3]. In the paper the goal is to find the nonlinear
quasi-static load displacement curve during buckling. The approach is to use model
order reduction. The paper starts by defining the deformation energy

E(u) =
1

2
uTKlinu+Q(u)− λfTextu (3.47)

where Klin is the linear stiffness matrix, Q the non linear term in the deformation
energy and λfext the external load.

The linear static solution to a load fext is determined

u0 = K−1
linfext (3.48)

Furthermore the linear buckling loads λi and buckling modes xi are determined

[Klin − λiKG]xi = 0 (3.49)

where KG is the geometric stiffness matrix.
It is subsequently assumed that the displacement at load λfext can be written as

u = λu0 + Σi=1...r(aixi) + φ (3.50)
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where ai are the generalized DoFs and φ is a correction for the data missing in the
modal basis.

An approximation for φ is computed based on substitution of (3.50) into the de-
formation energy, then determine the Taylor expansion of E around φ and neglecting
cubic and higer terms.

E(u, λ) = P0 + P1(φ) + P2(φ) + neglected higher order terms (3.51)

where P0 is not depending on φ, P1 is linear in φ and P2 is quadratic in φ. It can be
shown that

P1 = φTg(λ, ai) (3.52)

P2 = 1
2
φTKφ+ 1

2
φTKφ (3.53)

where K is the tangent stiffness matrix, C is a matrix with terms that will be neglected
as well and g is a vector depending on the load and displacement.

This energy must remain stationary to define an equilibrium, which allows the
combination of the derivatives of Pi with φ to form the equation which can be used to
compute an approximation of the correction

Kφ = −g (3.54)

where G acts as a pseudo load.
It can be shown that the extra displacements required to reach the correction can

be computed using:
∂2E

∂ai∂aj
∆aj = −

∂

2∂ai
(φTCφ) (3.55)

and the error therefore can be computed as

ej =
∆aj
aj

(3.56)

During the solution of the load displacement curve using an incremental iterative
procedure the correction φ is computed for each increment. If an error ej is too large the
correction φ is normalized and added to the reduction basis and a correction φnew with
this enhanced basis is computed. This is repeated until ej is small enough. Therefore
this approach acts as a greedy algorithm.
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Chapter 4

Model Order Reduction applied to
the JW Problem

The system of JW is reduced using VMs and MDs as explained in section 2.5. But
because of high geometrical nonlinearities that exist in the system, this reduction basis
is still not rich enough to support for the nonlinearities of the system. In this chapter we
take a close look to the JW, and try to find and compensate for the missing information.
Other examples that a reduction basis with VMs and MDs contain enough information
are analysed. Afterwards the reason that this basis is not working for JW is further
explained. Finally other methods are discussed to enrich the reduction basis.

4.1 Full and reduced analysis for Joined Wing and

a cantilever

For the reduced analysis, the first 60 VMs of the JW is calculated and based on the
load 20 most important VMs are chosen

αi =

∣

∣

∣

∣

φT
i f

φT
i Mφi

∣

∣

∣

∣

i = 1 . . . 60 (4.1)

where φis are the first 60 modes, f and M denote the external load and the mass
matrix respectively. By projecting the load on the VMs, we can find the VMs that
the external load strikes mostly. Using the selected VMs, their corresponding MDs are
calculated. The reduction basis Φ is then made of VMs and MDs. Figure 4.1 shows
the solution to the full and reduced analysis. The reduced analysis shown with blue
dashed line, does not match the full analysis shown with solid black line. This means
that the approximation of the system by the reduced basis is not a good (sufficient)
approximation.

4.1.1 Thin cantilever plate

The reduction basis containing VMs and MDs is in this section used for a geometrically
simple example namely a simple, thin cantilever plate shown in figure 4.2. It is can-
tilevered along the line y = 0 and the solution is for node with coordinates [0, 350, 0]
shown as point G. This structure has the same material properties as the JW and is
subjected to a uniform pressure of P = 2.2050Kg/(mms2). Because the geometry is
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Figure 4.1: The response of the JW full and reduced analysis at point [50, 500, 0] in
the vertical direction.
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Figure 4.2: Simple thin plate, cantilevered at line y = 0. Thickness is h = 2mm and
a = 350mm and b = 50mm.
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simpler than the JW, only 10 most important VMs are selected out of a total 30 VMs
calculated. As it can be seen in figure 4.3 the approximation of the system using VMs
and MDs is sufficient to approximate the full solution. But by omitting the MDs from
the reduction basis, the information in the reduction basis is not sufficient to describe
the system.
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Figure 4.3: The response of a cantilever plate full and reduced analysis at point G in
the vertical direction.

Now the question arises that why is it that this approach perfectly reduces the
system for a simple cantilever plate but not for the JW? The reason must be in the
geometry difference. Taking a look at the JW (Figure 2.4), the flat horizontal plate
underneath and the slope plate above it are fixed under two angles around x and z
axis. Thus JW is not geometrically symmetric, which could have an influence on the
results. In the next section the geometry of the JW will be made simpler and the effect
of geometrical symmetry on the effectiveness of the reduction basis will be analysed.

4.2 Symmetric C-shape Structure

In this part the influence of the symmetry of the structure upon the reduction basis
is discussed. The structure of the JW has been simplified to a symmetric c-shape
structure as in figure 4.4, left hand side. Material properties are the same as intro-
duced in section 4.1. The structure is subjected to a uniform vertical pressure of
P = 0.55125Kg/(mm.s2).
The thickness of upper and lower plates is h1 = 1mm and the thickness of the vertical
plate is h2 = 0.25mm. To reduce the system, 20 VMs are selected out of 40 VMs and
along with their MDs, they form the reduction basis. But the basis is still not rich
enough as it can be seen in figure 4.5
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Figure 4.4: Simplification of JW to c-shape. Left: symmetric c-shape; right: asym-
metric c-shape. a = 350mm, b = 50mm and c = 20mm. Solutions found for point G
with coordinates [0, 350, 20].
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Figure 4.5: The response of a c-shape full and reduced analysis at point [0, 350, 20] in
the vertical direction.
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4.3 Asymmetric C-shape Structure

In section 4.2 we saw that even for a symmetric c-shape structure, the reduction basis
with VMs and MDs, fails to approximate the displacements accurately. Here the
symmetric c-shape structure is changed for the upper horizontal plate. This plate is
firstly moved with an angle αx around the x axis. This variation starts with and angle
of 0◦ which corresponds to the symmetric c-shape, to an angle of 6.5◦ which corresponds
to two times the αx angle of the JW. For the comparison, the displacements calculated
with full and reduced analysis at each load step are divided

l =
‖umodal‖

‖ufull‖
(4.2)

and then plotted as a function of ‖ufull‖. Clearly the ideal line is a constant line
l = 1. Figure 4.6 shows the comparison with different angles around x axis. The upper

0 200 400 600 800 1000 1200 1400 1600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

norm(Ufull)

n
o

rm
(U

m
o

d
al

)/
n

o
rm

(U
fu

ll)

 

 
Angle around x direction

0 deg
1.5 deg
3 deg
4.8 deg
6.5 deg

Figure 4.6: Comparison of the results for different angles around x axis.

horizontal plate is then moved with an angle αz around the z axis between 0◦ and 15◦

corresponding to αz angle of the JW. Results of this comparison are plotted in figure
4.7. Results of angle variation around x and z axis shows that the more symmetric
the structure, the more accurate the approximation of displacement by the reduction
basis. Thus symmetry can indeed have an influence on the effectiveness of the reduc-
tion basis. But even in the best result which is the symmetric c-shape the calculated
displacement is not accurate.

For both the JW and the c-shape structures, the vertical plate that joins the other
plates together has a small surface are. This makes the stiffness of this plate higher
than the rest of the structure. Figure 4.8 shows a triangular c-shape without the
vertical plate. As it can be seen in figure 4.9 the approximation of the displacement
by the reduction basis is still not accurate.
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Figure 4.8: Triangular c-shape structure.
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Figure 4.9: Solution of the full and reduced analysis for the triangular c-shape at node
G.

For JW the flat horizontal plate underneath and the slope plate above it are flexi-
ble structures, because of their rather large surface area and small thickness. But the
small vertical plate that joins these two plates is more stiff than the other two due to
its geometry. But also the lines that joins the plates form places of high stiffness in
the structure. In fact by closely examining the shapes in the reduction basis (figures
are included in appendices A and B), one finds out that there are numerous possible
deformations of these flexible plates but not very much of the vertical plate and the
joining lines. Thus a conclusion is that there is not enough information about this ver-
tical part in the reduction basis. Also because the deformations of this vertical plate
are not included in the basis, it restricts the movements of the free end of the structure.

In the next section the remainder is defined and calculated. Intention is to find
missing shapes in the reduction basis.

4.4 Remainder

To reduce the system, the displacements are approximated by ured = Φq. This approx-
imation differs from the displacements obtained using the full analysis, by a remainder
r

ufull = Φq+ r (4.3)

where Φ, is the reduction basis, q is the vector of modal amplitudes and r is the
remainder (i.e. what is missing in the approximation). Premultiplying this equation
with the mass matrix M and projecting the result on the reduction basis results in

ΦTMufull = ΦTMΦq+ΦTMr (4.4)
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if the basis was formed only by VMs, the term ΦTMΦ would have been equal to unity
matrix I, but as Φ contains also MDs, this matrix is close to I (i.e. 1s on the diagonal
and there are off diagonal terms that are not zero). We call it Î. The term ΦTMr is
equal to zero as we impose that the remainder r produces no work for the assumed
modes that are stored in Φ [7]. Thus the modal amplitudes can be found and also the
remainder

q = Î−1ΦTMufull (4.5)

r = (I−ΦÎ−1ΦTM)ufull (4.6)

where ufull is the matrix of displacement snapshots for the load steps, calculated with
the full analysis. The SVD1 of the remainder shows the most important shapes that r
contains.

For the c-shape, adding the first three important modes to Φ results in the response
of figure 4.10 (the dotted green line). The new basis perfectly approximates the dis-
placement. These three modes are plotted in figure 4.11 and their side views are shown
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Figure 4.10: The response of the c-shape, full analysis, VM+MD, VM+MD+remainder

in figure 4.12. These modes show a lot of out of plane deformations mostly around the
vertical part.

Calculating this remainder for the JW results in the response of figure 4.13 and the
first three remainder modes are plotted in figure 4.14. In figure 4.15 the out of plane
displacements of these shapes are clearer as it shows the side view of the first three
remainder modes.

To see the remainder around the vertical plate, we take a look at the shape of the
forces that the remainders produce

F = Klinr (4.7)

1Singular Value decomposition is explained in section 4.5
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Figure 4.11: The shape of the first three remainder shapes of the c-shape. Left to right
is 1 to 3.

Figure 4.12: The shape of the first three remainder shapes of the c-shape, side view.
Left to right is 1 to 3.
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Figure 4.13: The response of the JW, full analysis, VM+MD, VM+MD+remainder
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Figure 4.14: The shape of the first three remainder shapes of the JW. Left to right is
1 to 3.

Figure 4.15: The shape of the first three remainder shapes of the JW side view. Left
to right is 1 to 3.

These forces are in figure 4.16 for the JW structure. Obviously the out of plane forces
and therefore displacements are greater around the vertical plate than elsewhere in the
structure.

Figure 4.16: The shape of the first three force remainder shapes of the JW side view.
Top to bottom is 1 to 3.
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4.5 Proper Orthogonal Decomposition

The POD defines a basis for the modal decomposition of set of vectors. These vectors
can be experimental data set or a set of numerically generated data as for example
displacement snapshots of the JW full analysis response [9].

The idea behind the POD method starts as follows. Assume that you have a series
of snapshots of the displacement u (vector of N long) at several time or load steps
U = [u1, . . . ,uk]. These snapshots span a space V = span{u1, . . . ,uk}. The goal
of POD is to find orthonormal vectors Ψi, where i = 1, . . . , r, where r ≤ dim(V ),
such that the Ψi can approximate the space V as effciently as possible. Therefore the
following quadratic error is minimized

J(Ψ1, . . . ,Ψr) = Σk
j=1

∣

∣uj − Σr
i=1(u

T
j Ψi)Ψi

∣

∣

2
(4.8)

given the orthonormality constraint

ΨT
i Ψj =

{

1 if i = j
0 otherwise

(4.9)

It can be shown that this minimisation problem yields the following optimality
condition [13]

UUTΨi = σ2
iΨi (4.10)

where σ2
i are the eigenvalues of matrixUUT and the σi are the singular values of matrix

U. This can be solved by finding the Singular Value Decomposition of the matrix U
with dimensions [N × k]

U = YΣV∗ (4.11)

where V∗ denotes a complex conjugate and Σ is a [N × k] diagonal matrix

Σ =

[

D 0
0 0

]

(4.12)

where D is a [r × r] diagonal matrix containing the singular values σi on its diagonal.
Furthermore the singular value decomposition will ensure that [13]

UUTYi = σ2
iYi (4.13)

Thus the left singular vectors in Y form the optimal basis to approximate the space
spanned by the snapshots

Ψi = Yi (4.14)

Because the proper orthogonal decomposition Ψ is tailored to approximate the
space spanned by the snapshots, Ψ forms an ideal basis for non linear model order
reduction

Φ = Ψ (4.15)

The singular values σi give the energy stored in the shapes Yi, therefore the shapes
with larger singular values are more important to use in the reduction basis. In this
way the most important shapes of the displacement snapshots are used. Figure 4.17
shows modes 3, 4 and 5 of these shapes for the JW.
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Figure 4.17: Shapes 3,4 and 5 of most important shapes of the POD of the full analysis
displacement snapshots.
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Figure 4.18: The response of the JW, using 5 POD modes in the reduction basis.
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Figure 4.18 shows the response of the JW using only first 5 POD modes in the re-
duction basis. The response using POD modes in the reduction basis perfectly matches
the full analysis.

Although using the SVD modes of the remainder or POD modes of the full analysis
displacement snapshots in the basis can reduce the system perfectly, there is the dis-
advantage that still results of the full analysis are needed to build the basis. While the
goal is to reduce the system in such a way that there is no need for the full analysis.

4.6 Wilson vectors of the remainder (Krylov se-

quence)

Krylov sequence is a mathematical iterative method to generate vectors that can ap-
proximate the system. Normally it is a cheap method to find vectors for the reduction
basis that resemble vibration modes [2]. In this method sequential vectors are found
starting with a displacement and using the mass matrix M and static stiffness matrix
K. These vectors are then orthogonalized and mass normalized.

W = [u1,u2, . . . ,un] (4.16)

W = [u1,K
−1Mu1, . . . ,K

−1Mun−1] i = 1 . . . n (4.17)

where the starting vector u1 and the number of generated vectors can be chosen. That
the results of this scheme resemble eigenmode shapes can be seen by the similarity of
this algorithm to a power iteration eigenvalue scheme.

The physical meaning of ui, can be seen by considering Mui−1, which gives the
force due to an acceleration ui−1. The resulting elastic displacement ui is then equal
to K−1 times this force.

In our case the first vector u1 will be the first SVD vector of the set of remainder
snapshots as discussed in section 4.4 and 2 additional vectors from the Wilson sequence
are calculated (total of three vectors). The modal derivatives of these Wilson vectors
and the VMs are calculated and the reduction basis is formed with VMs, MDs of
VMs and Wilson vectors and MDs of Wilson vectors. As the basis contains the most
important shape of the remainder, it is expected that the reduction basis is rich enough
to approximate the full system. And figure 4.19 shows that the approximation is
improved using Wilson vectors. Furthermore figure 4.20 shows shapes of the three
Wilson vectors. It can be seen that they contain higher bending modes and in-plane
effects that obviously can not exist in the lower eigenmodes (VMs).

A disadvantage of the method is that also in this case the full analysis is needed to
build the reduction basis. The full analysis is needed because the SVD of the remainder
snapshots obtained from a full analysis is used to start the Krylov sequence.

4.7 Greedy Algorithm

Greedy algorithm is an optimisation algorithm which is used here to optimise the
reduction basis. This algorithm looks for the best possible enrichment in each increment
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Figure 4.19: The response of the c-shape structure, using Wilson vectors and their
modal derivatives in the reduction basis.

Figure 4.20: Three Wilson vectors calculated from the remainder of the c-shape.

Figure 4.21: Three Wilson vectors calculated from the remainder of the c-shape side
view.
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in the hope to obtain the best possible response for the whole set of increments [4]. We
start with the reduction basis Φ containing vibration modes and modal derivatives.
Using this basis we can solve for the first load step and obtain the modal amplitudes
q. The approximate displacement for the first increment is then

ui = Φiqi (4.18)

which results in fint(u) = fint(Φq). Because the displacement is approximated by Φq
and thus is not the displacement obtained by the full analysis, the internal force is not
equal to the external force. This enables the definition of the residual at load step i

ei = f iint(Φqi)− f iext (4.19)

Therefore the force error at load step i can be defined as

ei =
‖f iint − f iext‖

‖f iext‖
(4.20)

where i denotes the increment number (load step). If the error is greater than a specific
value, the greedy algorithm uses the residual ei to generate Wilson vectors and adds
these vectors together with their modal derivatives and VMs to the reduction basis.
The increment is solved again until the error value drops to the set value. In this
way the greedy algorithm optimises the reduction basis by finding the best (using the
residual of that increment) possible Wilson vectors for an increment. The flowchart of
the greedy algorithm is in figure 4.22.

start

 Form basis

 Solve reduced problem

    Residual evaluation

If |res|

> tol
Compute extra basis

vectors (wilson)

Yes

end

Figure 4.22: Flowchart of the greedy algorithm.

As a short example the linear case is analysed

• using the reduction basis the stiffness matrix and the load vector are reduced

K̃ = ΦTKΦ f̃ext = ΦT fext (4.21)
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• the modal amplitudes and the displacement approximation are calculated

q = K̃f̃ext u = Φq (4.22)

• now the internal force fint is
fint = KΦq (4.23)

as it is a linear case, the solution is exact and no more than one increment (namely
the last increment) is needed. So the difference between the internal load found
by the approximation, and the external load is

e = fint − fext (4.24)

and by adding the displacement resulted from this force difference e to the re-
duction basis, the exact solution is found.

In other words, we want to solve the equation

Ku = fext (4.25)

in the linear case, given the stiffness matrix and the external load vector. As there are
a large number of DoFs, we want to reduce the system, so an approximation for u is

u = Φq (4.26)

introducing equation 4.26 in equation 4.25

KΦq = fext + e (4.27)

Now assume that there exists a displacement φGreedy that when multiplied by the
stiffness matrix, results in the residual force vector

KφGreedy = r ⇒ φGreedy = K−1e (4.28)

The basis takes the form
Φnew = [Φold φGreedy] (4.29)

In the linear case φGreedy gives the exact solution and e is calculated exactly.

It is interesting to see the so called static mode xst

xst = K−1fext (4.30)

which after orthogonalisation to the basis is equal to

xst,orth = K−1e (4.31)

Therefore in the linear case the extra basis vector φGreedy is in that case equal to the
so called static mode.

In the nonlinear greedy case the for each increment first the displacement is com-
puted with the original basis. Then the fint is calculated, this gives e. If the error is
greater than a set value the wilson sequence is calculated where the starting vector
of the wilson sequence u1 at increment i is equal to the orthogonalized static mode
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Figure 4.23: The result of the greedy algorithm for the c-shape.

computed with Ktan at the increment i.

The algorithm is used to reduce the basis of the c-shape structure. Figure 4.23
shows that the algorithm gives a good result, it also shows that only adding the static
mode for the u = 0 equilibrium to the initial reduction basis, without basis updating
already improves the result significantly

The algorithm is used to reduce the basis of the JW. Figure 4.24 shows that the
algorithm gives a good result, it also shows that only adding the static mode for the
u = 0 equilibrium to the initial reduction basis, without basis updating in this case
does not significantly improve the result. One reason for this is that the c-shape be-
haviour is closer to linear behavior as the JW behaviour. The greedy algorithm only
needed to compute a Wilson vector about 8 times.

The advantage of the greedy algorithm is that the results of the full analysis are
not needed anymore.

50



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

Load [kg/(mm*s2)]

D
is

p
la

ce
m

en
t 

[m
m

]

 

 
Full Analysis
20VMs+MDs+StaticMode
20VMs+Greedy with 1 Wilson vector

Figure 4.24: The result of the greedy algorithm for the JW.
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Chapter 5

Discussion

In the previous chapter different methods where discussed in order to enrich the re-
duction basis for the JW structure.

First the simple cantilever is discussed. For this structure the use of VMs and
MDs in the reduction basis, perfectly approximates the displacement. Afterwards the
c-shape structure is introduced and the influence of the symmetry of the structure on
the effectiveness of the reduction basis is analysed. Although symmetry is advanta-
geous for the effectiveness of the reduction basis, the work of the reduction basis in
approximating the displacement is still poor. The expectation is that the reduction
basis lacks flexible displacement shapes around joins of the structure.

We looked at the set of remainders of the reduction basis. The set of remainders
contains the remainders of the reduction basis at each increment. A remainder ’con-
tains’ the mode shape that, for that increment, is missing from the reduction basis
constructed out of VMs and MDs. The shapes of the remainder shows indeed lots
of out of plane displacements around the joining lines with the vertical plate. The
most important shapes that captures the data for all increments into one shape can be
computed using SVD. Including this most important shapes into the reduction basis
resulted in a basis that could perfectly approximate the system. The disadvantage of
this method is that it needs the results of the full analysis, while the goal is to enrich
the basis in a way that the full analysis is not needed anymore.

Also the POD method is discussed, in this method the displacement snapshots (for
the load steps) are used to construct the reduction basis. Calculating the SVD of the
snapshots gives the shapes that contain the most energy values. This gives the oppor-
tunity to construct the basis with a small number of modes, while the reduction basis
containing VMs and MDs had at least hundreds of modes. Again a disadvantage is
that the POD method needs the results of the full analysis. However using POD might
give the possibility to find the right enrichment to use for dynamic analysis. Another
theoretical option would be to extrapolate the results of the static analysis to large
loads, although this was proven to be not very effective by [5].

The method of Wilson vectors is an efficient, computationally cheap method to
calculate for a set of shapes that can be used to fill a base, e.g. a reduction base.
They work well because Wilson’s method resembles the power iteration method for
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eigenvalue computation.
But in a nonlinear case like the JW, the starting point to calculate the Krylov

sequence is crucial. As it was discussed that the eigenmodes of the nonlinear struc-
ture change with different load steps, as the stiffness matrix and the geometry of the
structure change rigorously. Using the results of the full analysis, in this case the most
important remainder, gives good initial vectors to start the Krylov sequence and gives
good results for the c-shape.

Comparing the important shapes extracted using these methods, with VMs and
MDs of the JW structure (appendices A and B) we see a lot of out of plane displace-
ments around the joining lines with the vertical plate. This part is geometrically very
different than the rest of the JW structure and therefore its stiffness is greater than
the other two plates it joins.

Also a lot of in plane deformations can be seen for the slope plate of the JW. For
the simple cantilever structure, MDs contain a lot of in plane information, which helps
enriching the reduction basis very cheaply and efficiently. But for the JW structure
the MDs can not fully describe the in plane deformations of the structure.

Therefore one idea can be to use substructuring methods such as Craig-Bampton
to analyse different plates of the structure separately. Another idea is to look at higher
order modal derivatives, to see whether the missing information can be found in there.

The greedy algorithm searches for the best possible enrichment of the basis at each
load step, with the expectation that the final overall result will also be the best. Which
indeed gives a very good result both for the c-shape and the JW. This method is mostly
advantageous in comparing with methods mentioned before, because it does not need
the results of the full analysis. However the effectiveness of the algorithm was highly
sensitive to the error tolerance used to decide whether to update the basis or not.

For any thin walled structure in plane deformations will create very high in plane
internal forces. These high internal forces do not influence the out-of plane result too
much, however they do influence the norm of the error estimate. This influence on the
error estimate makes the choice of a Greedy tolerance especially difficult.
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Chapter 6

Conclusions and recommendations

The goal of this project was to find out why modal order reduction using VMs and
MDs fails to approximate the displacement for the reduced JW problem.

The reduction basis with VMs and MDs works perfectly for the problem of a simple
cantilever. For this structure the MDs show in plane deformations. However for more
complex structures such as c-shape and JW, this method fails because of geometrical
asymmetry of the structure and plates with high stiffnesses. Also the joins of the plates
together, form areas with higher stiffness.

POD method and the method of Wilson vectors can enrich the reduction basis in
order to obtain results that approximate the displacements accurately. However these
methods need the results of the full analysis, which is a disadvantage. An alternative
is to use the greedy algorithm.

The greedy algorithm works for all situations presented in this work. By tuning the
error tolerance also better convergence times can be achieved. The results obtained by
greedy algorithm can fully describe the reduced system and can be used to investigate
the model of JW dynamically. Thus from the methods tested in this report, greedy is
optimal.

It is recommended to test other methods for model order reduction of JW as well.
The reduction basis obtained by greedy algorithm can fully describe the reduced system
and can be used to investigate the model of JW dynamically.

The modal order reduction for a nonlinear structure such as JW can also be done
using nonlinear substructuring methods. One such method is the Craig-Bampton
method. In this way the stiffnesses and out of plane deformations that occur at the
joining lines could be less effective.

If the structure is to be investigated not as substructures, including higher order
modal derivatives could add more information to the reduction basis.
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Appendix A

First 24 VMs of JW

Figure A.1: First 9 VMs of the JW.
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Figure A.2: VMs 10 to 24 of the JW.
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Appendix B

First 24 most important MDs of
JW

Figure B.1: First 9 important MDs of the JW. Obtained by taking SVD of the MDs
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Figure B.2: Important MDs of the JW 10 to 24. Obtained by taking SVD of the MDs
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