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A liquid of optical vortices in a photonic sea of
vector waves
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1Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
2SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
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Abstract: Phase singularities arise in scalar random waves, with spatial distribution
reminiscent of particles in liquids. Supporting near-field experiment with analytical theory we
show how such spatial distribution changes when considering vector waves.

OCIS codes: (260.6042) Singular optics; (140.1540) Chaos; (180.4243) Near-field microscopy.

Chaotic systems are everywhere around us, and unearthing correlations in their structure is a powerful route towards
understanding them. With respect to optics, the investigation of random wave fields has already led to outstanding
phenomena like the Anderson localization of light [1], or to more recent fascinating observations as rogue waves in
photonic seas [2]. However, when considering the structure of a random wave field is useful to recognize the presence
of deep-subwavelength dislocations known as phase singularities [3]. These points of undetermined phase abundantly
arise in scalar random waves, where their spatial distribution exhibits a clear correlation structure, reminiscent of that
of particles in a liquid [4,5]. Light is a wave field, but it is in general vectorial in nature. We investigate the distribution
of phase singularities in a photonic sea of random optical waves, of which the vectorial nature cannot be ignored.

We generate optical random waves by injecting monochromatic light (λ = 1550 nm) in a silicon-on-insulator pho-
tonic crystal cavity. The shape of this chaotic cavity is a quarter of a stadium, so that the resulting field pattern consists
of a superposition of plane waves interfering with the same momentum k and random phases δk [2], i.e.,

E(r) = ∑
k

Ak exp(ik · r+ iδk). (1)

With phase- and polarization-resolved near-field measurement we map the in-plane optical field (Ex,Ey) above the
cavity [6]. Figure 1 presents as an example a subsection of the measured amplitude Ax (a) and phase ϕx (b) of the Ex
field. Additionally, figure 1(b) shows the phase singularities that arise in such field component. The position of phase
singularities is determined together with their topological charge s, defined by the circulation of the phase around the
singular points [Fig. 1(b)].
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Fig. 1. Measured amplitude (a) and phase (b) of the x component of the in-plane optical near-field
measured above a chaotic cavity. Phase singularities are represented in the phase map with their
topological charge: +1 (positive) or -1 (negative). The zoom highlights how the direction of the
circulation of the phase around the singular point determines its topological charge.



A natural way of describing the distribution of phase singularities is by calculating their pair (g) and charge (gQ)
correlation function [4, 5]:

g(r) =
1

Nρ
〈∑

i 6= j
δ (r−|r j− ri|)〉 and gQ(r) =

1
Nρ
〈∑

i6= j
δ (r−|r j− ri|)si s j〉, (2)

where N is the total number of singularities, ρ the surrounding density, and the Dirac function δ selects the pairs (i, j)
of singularities displaced by a distance r. Figure 2(a) presents g(r) and gQ(r) calculated from our experimental data
(circles) of the Ex field (similar for Ey). We compare these distribution functions with the analytical model for scalar
random waves [4] (solid gray lines), observing some significant quantitative and qualitative deviation.

The model for scalar random waves is built on the assumption of an isotropic distribution of waves. Contrarily,
in vector waves there is a direct relation between field and propagation direction, that causes an anisotropy in the
distribution of the waves in the single field components. This anisotropy violates the assumption of ref. [4].
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Fig. 2. (a) Pair (blue) and charge (orange) correlation function of phase singularities in the Ex field.
The experimental results (circles) are compared with the analytical model for isotropic scalar random
waves (gray lines) and with our new model for anisotropic random waves of light (black lines). (b)
Direction-dependent charge correlation function. The gQ(r) is averaged within angles π/4 around
the directions parallel and perpendicular to the field projection axis.

Starting from the theory for scalar random waves, we develop a new theory that accounts for the vectorial nature of
light. The outcome of this model (Anisotropic Model) is reported with solid black lines in Fig. 2(a). The agreement
between experiment and new theory is now excellent. Moreover, the anisotropic wave distribution also results in an
anisotropic distribution of phase singularities. A clear evidence of this is reported in Fig. 2(b), in which we show that
the charge correlation function gQ(r) presents a strong direction-dependence. Agreement between experiment and the
new theory is now excellent.
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