
OuJ^WuibeAJi 

NATIONAAL LUCHT- EN RUIMTEVAARTLABORATORIUM 

NATIONAL AEROSPACE LABORATORY NLR 

THE NETHERLANDS 

Bibliotheek TU Delft 
Faculteit der Luditvaart- en Ruimtevaarttechraeli 

Kluyverweg 1 

2629 HS Delft 

NLR CR 89301 L 

EXTENDING THE PROTOTYPE OPTICAL DIAGNOSTIC 

INSTRUMENT (PODI) 

FOR ANALYSES OF TELESCIENCE AND 

IMAGE PROCESSING 

by 

A.J. Mooij, E.A. Kuijpers 

and H. Keppel 



NATIONAAL LUCHT- EN RUIMTEVAARTLABORATORIUM 
NATIONAL AEROSPACE LABORATORY NLR 

Anthony Fokkerweg 2 
P.O. Box 90502 
Telephone 
Telex 
Fax 

1059 CM AMSTERDAM, The Netherlands 
1006 BM AMSTERDAM, The Netherlands 
31-(0)20-5113113 
11118 (niraani) 
31-(0)20-178024 



v̂i ^"y'] 

NLR CONTRACT REPORT 

CR 89301 L 

EXTENDING THE PROTOTYPE OPTICAL DIAGNOSTIC 

INSTRUMENT (PODI) 

FOR ANALYSES OF TELESCIENCE AND IMAGE PROCESSING 

by 

A.J. Mooij, E.A. Kuijpers and H. Keppel 

- 3 JAN. 2000 

Bibliotheek TU Delft 
Fac. Lucht- en Ruimtevaart 

c 3072540 

This investigation has been carried out under a contract awarded by the 
Netherlands Agency for Aerospace Programs (NIVR), Contract number: 02607 N 

Division: 

Prepared: 

Approved: 

Space Completed 

Order number 

Typ. 

890602 

101.918/672.701 

MM 



V 

* 1 



-3-
CR 89301 L 

SUMMARY 

The Prototype Optical Diagnostic Instrument (PODI) has been extended for remote 

control and image processing. A new breadboard called TELEPODI (Teleoperated 

PODI) resulted in which telescience and image processing for microgee 

instrumentation can be studied. 

Software libraries which have been developed to allow for remote control using 

several positioning devices are described. For the stake system in PODI these 

devices are stepper motors, to be controlled by two controllers in a daisy 

chained RS-232 configuration. Via IEEE-488 a Universal IEEE-488 interface is 

controlled. The digital I/O of this interface is used for the control of 

motorised drives which can be used for adjusting the plane of focus and control 

of a mirror for an interferometer as stake passenger. 

The extensions of PODI are being used for several projects related to image 

processing and telescience. 

81 



-4-
CR 89301 L 

% 

CONTENTS 

Page 

SUMMARY 3 

ACKNOWLEDGEMENT 6 

LIST OF ABBREVIATIONS 7 

LIST OF FIGURES 8 

1̂  INTRODUCTION 9 

2 TELEPODI OVERVIEW 10 

2.1 TELEPODI subsystems 10 

2.1.1 Optics 10 

2.1.2 Electronics 10 

2.1.3 Software 12 

2.2 Interfaces 13 

2.2.1 RS-232 13 

2.2.2 IEEE-488 14 

2.2.3 Interfacing via Ethernet 13 

3̂  CONTROL OF STEPPER MOTORS VIA RS232 17 

3.1 Description of stepper motors 17 

3.2 Initialisation of Indexers 17 

3.3 Test software and library 18 

3.3.1 Initstate 18 

3.3.2 Stake 19 

3.4 Prograa library 19 

4 CONTROL OF MOTORISED DRIVES VIA IEEE-488 19 

4.1 Description of motorised drives 19 

4.2 Hardware extensions 20 

4.2.1 Standard Interface IEEE-488 21 

4.2.2 Velocity control 21 

4.2.3 Computer limit detection 22 

4.2.4 Direction Detection 23 

4.2.5 Control of eight motors 23 



CR 89301 L 

4.2.6 Connectors 

4.3 Test software 

4.4 Program library 

CONTENTS (continued) 

Page 

24 

26 

27 

_5 ROUTINES FOR IMAGE PROCESSING 

5.1 Description of image processing 

5.2 General test program 

27 

27 

28 

6 PRELIMINARY EXPERIENCES USING A DEMONSTRATION SET-UP 29 

7 REFERENCES 30 

8 Figures 

APPENDIX A Description of stepper motors 39 

APPENDIX B Description of motorised drives 40 

APPENDIX C Programmers guide for Stake 41 

C.l High level primitives 41 

C.2 Keyboard I/O for test and initialisation 43 

C.3 Low level primitives for the stake system 45 

APPENDIX D Programmers guide for interfaces via IEEE-488 47 

D.l Control of IEEE-488 interface 47 

D.2 Control of motorised drives 48 

D.3 Control of plume 51 

APPENDIX E Library for terminal control 52 

APPENDIX F TCL-image overview 53 

APPENDIX G Description of demonstration program using pseudo-language 58 

G.l Program on PODI 58 

G.2 Program on VAX 59 

G.3 Program on IRIS 3020 60 

(60 pages in total) 



-6-
CR 89301 L 

ACKNOWLEDGEMENT 

As many people have contributed in extending PODI to TELEPODI and the number of 

authors should be limited, the following discussion of contributions is added. 

D. van de Assem and R. Huyser (now with Fokker Space and Systems) have proposed 

many of the hardware extensions of PODI which resulted in a very interesting 

basis for studying telescience and image processing for microgee instruments. 

D. van de Assem, I.G. van de Berg and H. Keppel have selected the positioning 

devices taking into account the requirements for remote control from the optics 

point of view and requirements for interfacing at the NLR Space division. 

H. Keppel designed electronics for positioning devices in TELEPODI. The NLR 

Electrical Engineering department contributed in several ways to TELEPODI (e.g. 

support for integration of VME boards for additional memory and interfacing to 

IEEE-488, support for integration of CADISS, consultancy from M. Versteeg for 

many questions related to VME and UNIX is gratefully acknowledged). A.J. Mooij 

did most of the coding and documentation for the software libraries for position 

control. E.A. Kuijpers was responsible for integration of contributions and 

image processing extensions. 

1 



CR 89301 L 

LIST OF ABBREVIATIONS 

CADISS - Compression And Decompression of Imaging Sensor Signals 

BIN - Binary 

DEC - Decimal 

EOT - End Of Transmission 

FICAD - Fluid Physics Instrumentation Compression and Decompression 

GPIB - General Purpose Interface Bus (brand version of 

IEEE-488 standard) 

HEX - Hexadecimal 

IEEE-488 - bus standard, see GPIB 

MMI - Man/Machine Interface 

PODI - Prototype Optical Diagnostic Instrument 

TCP/IP - Transmission Control Protocol/Internet Protocol 

TELEPODI - TELEoperated PODI 

UDP - Internet User Datagram Protocol 

VDU - Visual Display Unit 

SI 



-8-
CR 89301 L 

LIST OF FIGURES 

Figure 2.1 Description of subsystems in TELEPODI 

Figure 2.2 TELEPODI set-up 

Figure 2.3 Connectors in TELEPODI 

Figure 3.1 Stake system 

Figure 3.2 Daisy chain configuration for stepper motor controllers 

Figure 4.1 Extension of motorised drive controller 

Figure 6.1 Communication between PODI, IRIS and VAX in TELEPODI demonstration 

set-up at NLR. 



1 INTRODUCTION 

Experiments in Columbus will be executed in telescience mode in which 

instruments and experiments will be controlled from the ground. A number of 

activities have been started by NLR to be able to support scientists for 

conducting experiments in telescience mode for Columbus. 

One of these activities is called TELEPODI which is based on extending PODI 

(Ref. 1). PODI is a "Prototype Optical Diagnostic Instrument" for microgravity 

fluid physics research, developed at NLR under (previous) contract with ESA and 

NIVR. Basis of the PODI design are general requirements, including telescience 

possibilities, for fluid physics instrumentation in Columbus. 

This report gives an overview of TELEPODI including documentation of hardware 

and software extensions which have been realised. The extensions are based on a 

proposal for studying telescience and image processing for PODI (Ref. 2). The 

hardware and software extensions are being used for several projects. 

In August 1988 an unsolicited proposal for executing experiments with TELEPODI 

was sent to ESA (Ref. 3). In this unsolicited proposal the installation of a 

Telescience Test Bed was anticipated for experiments, but only a rough estimate 

of work involved could be given. After the installation of the Telescience Test 

Bed at ESTEC, ESA asked for an update of the unsolicited proposal which was sent 

in June 1989 to ESA (Ref. 4). In the new proposal several experiments related to 

fluid physics telescience are proposed. HCS, a Dutch firm, will be responsible 

for developing an MMI using modem software development tools. 

TELEPODI is a general tool for studying telescience and image processing for 

microgee instrumentation. To interface TELEPODI to the Telescience Test Bed at 

ESTEC is not the only follow on. For example, the digitisation, graphics and 

image visualisation possibilities are currently also being used for analysing 

the trajectory of the Wet Satellite Model based on video sequences (experiment 

by Dr. J.P.B. Vreeburg). 

-9-
CR 89301 L 

81 



——. J 

-10-
CR 89301 L 

Chapter 2 will give an overview of TELEPODI. The chapters 3, 4 and 5 describe in 

more detail the hardware and software extensions for control of devices and 

image acquisition. Chapter 6 discusses some preliminary experiences using the 

available functions. 

2̂  TELEPODI OVERVIEW 

2.1 TELEPODI subsystems 

2.1.1 Optics 

PODI consists of a whole-field Schlleren and scene observation system combined 

with a narrow field optical stimulus/observation system which can accommodate 

various optical diagnostic instriiments. An equal beam Twyman-Green 

interferometer and a moiré deflectometer have been developed as passengers for 

the narrow field system. 

As in TELEPODI the telescience aspects are studied, the interferometer will be 

the basic stake passenger as a mirror needs to be controlled by computer to 

adjust the shape and number of fringes. The adjustments needed depend on the 

properties to be measured. This interactive aspect makes the interferometer more 

interesting than the moiré deflectometer in a telescience context. 

In the current set-up the whole-field system of PODI contains two cameras. One 

camera is focused on a grid illuminating the experiment volume. This camera will 

be used for Schlleren or for grid deformation methods. Another camera is focused 

in the experiment volume. For both cameras the plane of focus can be adjusted by 

using motorised drives for position control. 

2.1.2 Electronics 

The electronics for extending PODI has been selected taking into account budget 

limitations, possibility for general use in breadboarding for microgee 

t 



-11-
CR 89301 L 

Instrumentation, compatablllty with NLR equipment, and requirements as generated 

from the point of view of the people who built PODI. 

The following is now available: 

a. PODI workstation (VME/UNIX crate, see ref. 5 for motivation) 

Maxvideo Digimax and Framestore board for image acquisition 

VME/IEEE-488 Interface 

Ethernet board with support for TCP/IP 

68020 based VME board (Tadpole) with UNIX system V with 2 Mbyte of 

memory 

Harddisk, streamer tape, floppy disk 

Memoiry board for 4 Mbyte 

b. Positioning devices and interfaces 

Two stepper motors with controllers for x-y positioning of the stake 

(Ref. 6) 

VME board for general IEEE-488 interface (Ref. 7) 

Universal IEEE-488 Interface (24 bits LISTEN and 32 bits TALK digital 

I/O) (Ref. 8) 

8 motorised drives for position control (see App. B) 

Motorised drive controller for 8 motorised drives 

Two stepper motor control Interfaces 

c. Three video camera 

One Sony camera and two HTH cameras 

In figure 1 the hardware for extending PODI is depicted. The VME/UNIX crate is 

basically a workstation (PODI workstation). In figure 2 TELEPODI set-up is 

depicted in which also the results of the CADISS (Ref. 10) and FICAD (Ref. 11) 

project are included. CADISS is a multi-processor system for compression and 

decompression of images. A VME based connection to the VAX (result of FICAD 

project) makes it possible to use CADISS for the images generated in PODI. 

81 



-12-
CR 89301 L 

t 

2.1.3 Software 

The following software is available: 

Software library for control of stepper motors via RS-232 

This library contains an initialisation procedure and functions for 

relative or absolute positioning with two degrees of freedom. This library 

will be discussed in chapter 3. The functions to be used for the stake are 

based on the L and H parameters and commands as described in the 

instructions for SLO-SYN micro series indexers from Superior Electric (Ref. 

6). 

Software library for the control of the VME/IEEE-488 interface 

General Instruments with an IEEE-488 interface can be added in TELEPODI 

using the VME board for interfacing to the IEEE-488 bus. The software for 

this control had to be adapted for use in the PODI workstation. This 

library is being used for control of motorised drives, see also section 

2.2.2. In the following the acronym GPIB (General Purpose Interface Bus) 

will also be used instead of IEEE-488. 
« 

Library for control of motorised drives using IEEE-488 

A motorised drive can be selected for which a speed and time interval have 

been specified. This library will be discussed in chapter 4. 

Library for control of Maxvideo Digimax and Framestore board (Ref. 12) 

This library is the basis for a number of functions for image acquisition, 

camera selection and display. These functions form the basis for 

interfacing to hardware for image digitisation. 

Image processing package TCL-image (Ref. 14, see for proposal Ref. 13) 

TCL-image is distributed by Multihouse TSI and has been developed at the 

Delft Centre of Image Processing. It contains a general command interface 

to many image processing functions. User written functions can easily be 

added. An image library can be used in combination with application 

programs. About the integration of this image processing package with the 

existing library for the Maxivdeo Digimax and Framestore boards, will be 

reported elsewhere. 

Library for control of CADISS and FICAD 

The software for the FICAD project has been extended to allow interactive 

control of compression and decompression parameters in CADISS. Fixed error 

t 



-13-
CR 89301 L 

or fixed length compression can be chosen with 8x8 or 16x16 subwindows. The 

software of the FICAD project has also been extended to allow direct 

reading and writing via ethernet of images instead of using disk-files. 

For a number of practical reasons all routines are written in the C-programming 

language, except for functions related to the FICAD project on the VAX. Some 

reasons are: experience with the C-programming language exceeded experience for 

other languages considerably, all image processing had to be based on the 

C-programming language, many UNIX operating system related calls were needed 

which can in most cases only be used optimally when programming in the 

C-programming language. The UNIX operating system was chosen for compatibility 

with other requirements. As the number of users will be limited, limitations in 

real-time performance of UNIX were not considered to be a problem. 

2.2 Interfaces 

2.2.1 RS-232 

The workstation for PODI contains two RS-232 ports (Ref. 16). One port is used 

for the console and the other is currently used for control of the stepper 

motors. 

When the terminal port is used for control of the stepper motors, the "getty" 

process which handles access to the computer via a terminal for that port must 

be disabled. This is done by editing the file /etc/inittab as described in the 

UNIX manuals (Ref. 15). 

The stepper motors used in the PODI workstation are controlled via terminal port 

ttyb at 9600 BAUD with start/stop input and output control, ECHO enabled. A 

received STOP character will suspend output and a received START character will 

restart output. All start/stop characters are ignored and not read. The system 

will transmit START/STOP (XON/XOFF) characters when the input queue Is nearly 

81 



-14-
CR 89301 L 

empty/full. This is controlled by the function set_ttyb (see App. C for 

programmers manual). There are 8 data bits. Parity shall be disabled. 

The terminal port which corresponds with device ttya is used for the console 

with specific requirements for the terminal settings. The RS232 Console lead 

should be wired to an asynchronous terminal running at 9600 baud with parity 

disabled, 1 start bit, 1 stop bit, 8 data bits. A minimvmi three wire connection 

should be made to start with, together with any strapping the terminal end may 

require for three wire (Rxd, TxD and GND) operation (see Ref. 16 and Fig. 2.3). 

The initialisation of parameters for the RS232 lines is fairly difficult in 

general. For testing the functions "cu" (a general UNIX utility) and "kermit" 

(Ref. 9) may be used. 

2.2.2 IEEE-488 

The motorised drives are controlled via a Universal IEEE-488 interface with 

digital I/O. This Universal IEEE-488 is controlled via a VME board in the PODI 

workstation for interfacing to IEEE-488. The routines can only be used with the 

effective User Id of root as the "phys" call is used for accessing the VME board 

under the UNIX operating system. To be able to use the routines as normal user, 

the sticky bit for the executable file should be set and the owner of the 

executable must be root. 

2.2.3 Interfacing via ethernet 

An ethernet interface is available with support for the UDP and TCP/IP protocol. 

Using this interface PODI is connected to a VAX and an IRIS 3020 (see Fig. 2.2). 

It is noted that the performance for communication depends not only on the 

receiver but also on the sender. E.g. transfer of files from PODI to the VAX is 

possible at a rate higher than 50 kbytes/s. Transfer of files from PODI to the 

IRIS 3020 is currently possible at a rate of approximately 9 kbyte/s. Strangely 



-15-
CR 89301 L 

enough, transfer of at least 50 kbytes/s is possible for transfer from the IRIS 

3020 to PODI. Transfer of files between the VAX and the IRIS 3020 is possible at 

a data rate higher than 50 kbytes/s. After acceptance testing of the PODI 

workstation at least 50 kbytes/s was measured for transfer from the PODI 

workstation to the IRIS 3020. A considerable decrease in performance was 

measured after installation of a new release of the operating system and 

ethernet software for the IRIS 3020. Probably this new release has less optimal 

parameters from the point of view of PODI. However, formally no one seems to be 

to blame as the protocols are implemented correctly and no specifications about 

speeds are given for UNIX systems, especially for non-standard systems. 

As the data rates of at least 50 kbyte/s using ethernet, were envisaged in the 

original proposal for communication between PODI and the IRIS 3020, and this was 

considered to be near the minimum needed for Columbus infrastructure 

simulations, a considerable effort has been devoted to improving the performance 

as the operating system for the IRIS 3020 should not be replaced by the old 

version. This was only partly successful. 

For high-speed communication between PODI and the IRIS 3020 two solutions were 

analysed: 

1. The UDP protocol is a very simple protocol using internet packages, with no 

error correction. It is possible to design an error correcting protocol on 

top of this protocol. A method in which for every package containing image 

data the line number in the image was included, resulted in approximately 5 

s for transmission of a 512x512 byte image. Therefore the experiments 

showed that performance could be increased considerably but a considerable 

effort was envisaged for the design of a reliable protocol. 

2. When a C-compller for the VAX connected to the LAN to which PODI is also 

connected became available, the flexibility for using ethernet Increased 

considerable. It became possible to write efficient application programs 

which copy incoming messages from PODI to messages to the IRIS 3020 and 

performance for communication from PODI to the IRIS 3020 increased to 

approximately 40 kbytes/s. 

81 



-16-
CR 89301 L 

In the TELEPODI set-up transmission via the VAX is used in general as the effort 

to design a new protocol would distract too much from the objectives of 

TELEPODI. 

% 



-17-
CR 89301 L 

3̂  CONTROL OF STEPPER MOTORS VIA RS232 

3.1 Description Of Stepper Motors 

In figure 3.1 the stake system as originally built under NIVR/ESA contract is 

depicted. The wheels for positioning of the stake are now replaced by two 

stepper motors and two SLO-SYN micro series indexers (from Superior Electric) 

have been installed for control of both stepper motors. 

The SLO-SYN micro series indexer, will hereafter be referred to as Indexer. The 

indexer enables the user to send commands to or receive information from SLO-SYN 

stepper motors. The indexers can be either programmed or be used in direct mode. 

Two indexers and two motors are in use for the PODI stake system in direct mode. 

The next chapters describe the NLR written software to use the indexers with a 

remote computer. The software developed by NLR allows absolute movement with 

respect to the current origin or relative movement within specific limits for 

the stake system. As the indexers are daisy chained (see Fig. 3.2), the motors 

cannot be used simultaneously. 

The parameters for position control refer to the rulers on the stake system (see 

Fig. 3.1). 10 cm In horizontal direction and 10 cm in vertical direction 

corresponds with the stake in the centre before the experiment volume. The unit 

for translation is 0.001 cm. This Implies that the centre corresponds with 

coordinates (x,y) - (10000,10000) where x is position on horizontal ruler and y 

is position on vertical ruler in 10 m. 

3.2 Initialisation of indexers. 

The RS-232 cable for the connection of the indexers and the Tadpole computer has 

one 25 pin connector which should be connected to the upper RS-232 connector of 

the PODI workstation on the backside, which corresponds with the terminal port 

called ttyb. On the other end of the cable are two 9 pin connectors, connected 

as depicted in figure 3.2. 



-18-
CR 89301 L 

The two indexers are mounted together on a baseplate. Seen from the side of the 

indexers where the power switch is located, the first connector must be 

connected to the left indexer and the second connector to the right Indexer. The 

horizontal axis motor of the stake system must be connected to the left Indexer 

and the vertical axis motor to the right indexer. 

3.3 Test software and library 

3.3.1 Initstake 

With the program "init stake" all L parameters and all L and H commands can be 

send to the indexers. For example, the stake can be reinitialised in case for 

some reason the memory for parameters (Electrical Erasable Read Only Memory) is 

corrupted, and the parameters for each indexer can be read. 

The program "inlt_stake" performs the following actions. The indexers are 

initialised by calling "openstake". Then the device attention command <nn is 

sent with nn - 0 addressing both indexers. The command L26 n with n - 1 is sent 

to force the indexers to send an END OF TRANSMISSION (EOT) character (ASCII code 

04) after all transmissions to the host. Then the program asks the operator to 

enter L or H Instructions or END in case he wants to stop the program. As long 

as no END is entered the commands are sent to the indexer(s) with the C-function 

"stake_command". Using the function "print_stake" the contents of a buffer 

containing a reply from the indexer to the host computer can be printed. 

The current status of an indexer can be read by sending the string "H16" to 

indexer with address nn. A list of parameters is returned, including the 

address. If this doesn't work the addressing of indexers is probably corrupted. 

The following procedure should be used to correct the addresses. To set the 

address for a specific indexer, disconnect all other indexers and send "<00 L21 

nn" where nn is an address which can have a value of "00" to "99". 

For application in TELEPODI, the left indexer (horizontal axis) must be assigned 

the device identification number "01" and the right Indexer (vertical axis) the 



-19-
CR 89301 L 

number "02". The program "init_stake" asks for a motor nvimber and an 

instruction. Therefore using the program "initstake" motor number "00" and 

instrument "L21 01" resp. motor nximber "00" and instruction "L21 02" should be 

send to the connected indexer with the other Indexer disconnected. 

3.3.2 Stake 

The purpose of this program is to set both indexers in a well defined state. The 

user is asked to give the current position of the stake as can be read from the 

rulers on the stake system (see Fig. 3.1). The indexers 01 and 02 are 

initialised. The origin is set to the center of the field of view. The screen is 

cleared and, according to a menu, the user can enter new absolute positions or 

relative displacements in order to proof the proper operation of the stake. On 

exit the stake is moved to the center of the field of view. 

3.4 Programmers library 

The library which contains all necessary functions for the control of the stake 

system is described in appendix C. 

4 CONTROL VIA UNIVERSAL IEEE-488 INTERFACE 

4.1 Description of motorised drive 

The routines in the library for control of the motorised drives via an GPIB 

interface (IEEE-488 interface) are discussed in the following sections. The 

routines are written to be used with the GPIB/VME primitives from National 

Instr\iments. For execution root permissions are needed as discussed in section 

2.2.2. 

The interface is assumed to be at GPIB address 0 with talk address (MTA) 0100 

(octal) or '@' (ASCII), and listen address (MLA) 040 (octal) or ' ' (space in 



-20-
CR 89301 L 

ASCII)). The universal IEEE interface is at GPIB address 26 (032 (octal)), with 

talk address 0132 (octal) or 'Z', and listen address 072(octal) or ' : ' ) . 

The digital I/O of the Universal IEEE-488 interface is used for control of the 

motorised drive controller. The switch FORWARD/REVERSE on the motorised drive 

control box shall be in the middle position for computer control. The 1-4/5-8 

motor selection switch shall be in the 1-4 position. The speed control 

potentiometer is to be set to a maximum speed which can be obtained using 

computer control. For control of the Interferometer this potentiometer should 

not be in maximum position, as interactive control would become difficult due to 

the sensitivity for position changes. 

The motorised drives can only be started and stopped. Position readout is not 

possible. To read the limit position of the motor it Is necessary to read the 

status continuously; only at the moment a limit position is reached the status 

gives 1 for the forward limit or 2 for the reverse limit, else the status is 0. 

Forward corresponds with an expansion and reverse corresponds with a retraction 

of the motorised drive axis. 

4.2 Hardware Extensions 

For remote control of instruments in the optical path of the PODI test bed a 

computerised motor control has been developed. The starting-point for this 

design was a control unit, fabricated by the Newport Corporation, who also 

delivered the small DC motors for the necessary linear movements. The control 

unit is primarily meant for manual control of four motors, one at a time, 

selectable by a front-panel mounted switch; the direction of motion also is 

controlled by a switch. The velocity of the selected motor is controlled by a 

slide-potentiometer on the front-panel of the control unit. A simple computer 

interface is integrated in the controller, but this interface did not fulfil our 

requirements, so some modifications had to be implemented. These modifications 

are discussed in the following sections. 



-21-
CR 89301 L 

4.2.1 Standard Interface IEEE-488 

The Newport motorised drive controller has a so called computer interface, but 

this interface is not compatible with any known standard bus concept. In order 

to make the Newport controller controllable by any computer with an IEEE-488 

interface, use is made of an universal IEEE-488 interface unit, constructed at 

NLR and giving an output of 32 bits to the IEEE-488 bus and accepting 24 bits 

input from the bus. For this application not all bits are necessary. 

The controlling computer can also be interrupted with a SRQ from the interface 

unit (Ref. NLR Memo RL-86-004 U). On the frontpanel of this unit an eight 

position dip-switch is available for the selection of the IEEE address; for the 

selection of Talker only or Listener only and for the generation of a Service 

Request (SRQ). The last three switches have to be in the downward position to 

assure proper operation. To control this interface a National Instruments 

GPIB-1014P interface board has been added. 

4.2.2 Velocity Control 

In the Newport controller as delivered, the velocity of the selected motorised 

drive could not be controlled by computer. Computerised drive selection is 

possible, but the velocity control had to be carried out manually. For computer 

controlled velocity a simple D/A converter, consisting of an eight position CMOS 

switch and an eight resistor ladder network was built into the controller. The 

switch positions are controlled by three bits from the computer, giving eight 

possible speeds of which one is for zero speed; three are for reverse speed and 

four are destined to forward speed. The ladder network is used as a voltage 

divider between -K 5 V and 0 V, which gives, starting from 0 V, an increase of 

0.625 V at each tap of the divider. This brings the output of the CMOS, switch, 

depending on the binary selection from the controlling computer, between 0 V and 

-H 5 V in steps of 0.625 V. This output is amplified to a level between + and 

10 V with an operational amplifier. The amplifier has an offset of -i- 2 Volts for 

81 



-22-
CR 89301 L 

the generation of negative outputs for the reverse motions. The output is 

defined as : 

out offset input offset feedback resistor input resistor* 

For an offset-voltage of -t- 2 Volts and a resistor ratio of 4 the output is: 

U - 10 - 4U, 
u i 

giving outputs between + 10 and - 10 Volts in steps of 2.5 Volts. This output is 

connected to the analog input of the Newport controller. The three bits binary 

input from the computer are wired into the controller via three unused pins of 

the computer connector of the Newport controller. This gives the possibility to 

vary the speed and direction of each motorised drive under computer control. 

4.2.3 Computer limit detection 

If the selected motorised drive is at its forward or reverse traverse an 

automatic action shall occur that prevents the drive from stalling. To this end 

a speed command in the opposite direction shall be issued. The Newport 

controller delivers this signal as a 15 Volts kick to release the drive. As a 

sensor for the occurrence of these limits the Newport controller delivers a 

forward and a reverse limit signal, but not a combined limit signal with which 

the computer can be signalled that a limit has been reached. 

On the printed circuit board of the Newport controller a gate is available that 

combines these two signals. This signal, going high if any limit is reached, is 

sent to the controlling computer. The run/stop signal was not needed any more 

because a speed of zero is available, so the wire for this signal was 

disconnected from the board and connected to a voltage divider on the output of 

the or-gate. The combined limit signal could be used to initiate a Service 

Request, which is a bus signal with which the controlling computer can be 

interrupted. 



-23-

# CR 89301 L 

- ^ — ^ — — — — — . ^ ^ - ^ _ — _ _ — _ _ ^ _ _ _ _ - ^ _ ^ — — . 

The interrupt handling routine for the IEEE interface board of the Tadpole 

System is not available, so this scheme cannot be used. Continuous checking of 

the statusbit could be possible if this status was continuously loaded into the 

IEEE system. The combined limit signal is only available if an actual status 

change has occurred, so this would lead to a "hangup" of the controlling 

computer. Inside the Newport controller a so called Jogging oscillator is 

available. This oscillator runs at a frequency of about 12 Hz. The amplitude of 

this signal is 15 Volts. With a built-in voltage divider to 5 Volts this signal 

is used to load the limit status bits in the IEEE controller. In this way 12 

times per second the status of the limit switches (see next paragraph) is 

available for the controlling Tadpole system; 0 for no limit; 1 for forward 

limit and 2 for reverse limit. The status is sent to the computer in the third 

word out of four words. 

4.2.4 Direction Detection 

The forward limit signal of the Newport controller is only available if the 

manual limit switch Is in the forward position; the reverse limit signal only if 

the switch is in the reverse position. This means that after each speed command 

that changes the direction of the motor a manual operation on the Newport 

controller has to be carried out. This makes it useless for computer control. 

Extra wiring has been added to make these switch positions computer controlled, 

but this is only operational if the manual switch is in its neutral (centre) 

position. 

4.2.5 Control of eight motorised drives 

Only four motorised drives can be controlled by the Newport controller; six are 

needed. This asked for a second motor controller, to be modified in the same way 

as described above. Since none of the motors runs simultaneously with any other 

an extra controller is not necessary. 



-24-
CR 89301 L 

Addition of a relay that switches the motor outputs from the original set of 

four motor output connectors to an other set of four connectors and vice versa, 

makes it possible to control eight motors, which is more than adequate. The 

relay is driven by a built in transistor and this transistor is computer 

controlled. The wire, controlling this transistor has been connected to an 

unused pin of the connector of the Newport controller. Instead of the original 

available two bits for computerised motor selection, now three bits are 

available for control of eight motors. The accompanying schematic diagram (Fig. 

4.1) shows the implemented modifications and the connections between the Newport 

controller and the Universal IEEE-488 interface, together with the byte and bit 

numbers for the controlling computer. 

4.2.6 Connectors 

The Newport controller is connected to the Universal IEEE-488 Interface by means 

of a 15 pin connector at the controller side and two 37 pin connectors at the 

interface side. Looking at the interface from the rear, the left connector is 

for input (LISTEN for PODI workstation) and the right connector for output (TALK 

for PODI workstation) (see Fig. 2.3 for nvimbering). The connections are: 

Newport controller Universal IEEE488 interface 

15 pin connector 

9 motor bit 0 

2 motor bit 1 

15 motor group 2/1 

10 computer/manual motor select 

12 run/stop 

7 speed bit 0 

8 speed bit 1 

Right connector 

37 pin connector 

(computer is 

pin 

4 

3 

2 

1 

Not < 

8 

7 

TALKER) 

first byte 

bit 

0 MSB 

1 

2 

3 

connected 

4 

5 



-25-
CR 89301 L 

14 speed bit 2 

3 comp/manual speed select 

ext. data ready 

11 remote forward 

4 remote reverse 

6 

5 

29 

9 

10 

6 

7 LSB 

second byte 

3 

2 

Plume controller (not implemented) 

heat resistor 

select high/low current 

Newport controller 

13 7 

14 6 

Universal IEEE488 Interface 

Left connector 

15 pin connector 

13 forward limit 

5 reverse limit 

37 pin connector 

(computer is LISTENER) 

third byte 

pin bit 

25 0 

26 1 

6 ground 37 on both connectors 

To select motor 1 with full negative speed, the following codes have to be sent: 

BIN DEC HEX DESCRIPTION 
00001101 - 13 - OD full negative speed. 

I II 
I II computer control bit. 
I sign bit. 
\ / 

I 
-- speed selection bits. 

BIN DEC HEX 
00010000 - 16-10 

\ /I 
I computer control bit. 

motor selection bits. 

81 



-26-
CR 89301 L 

Using an OR operation both binary numbers are combined into one byte and 

extended with a second byte containing direction information (bit 2 and bit 3). 

This second byte can also contain information for control of other functions. 

E.g. the plume demonstration experiment as is available in PODI (Refs. 1, 4). In 

this experiment a resistor is heated during a short period which generates a 

"plume" which can be visualised using Schlleren or the stake passengers. This 

resistor may be controlled using relays. 

4.3 Test Software 

The program "tmotor" can send speeds and times to all motors in order to check 

the proper behaviour of the motors. After initialising the GPIB interface the 

VDU screen is cleared and the user is asked to enter a motor number between 1 

and 8 to choose a motor or to enter 0 to stop the program in which case the GPIB 

interface is cleared and set to off-line. If the user did not enter 0, the time 

interval in ms during which the motor shell run is to be entered. Then the 

required speed is asked with 8 choices: one choice is stop, four speeds can be 

chosen in the forward direction and three speeds in the reverse direction. 



-27-
CR 89301 L 

The requested speed and time are sent to the selected motor by "tset_motor". The 

current system time is read from the system clock, the requested motor is 

started with the required speed. The time is read until the elapsed time is 

greater than or equal to the requested time. The motor is set at zero speed. 

4.4 Programmers library 

The library which contains all functions needed for the control of the motorised 

drives, the IEEE-488 interface and the Plume is an option to be implemented in 

hardware, is described in appendix D. 

In the include file tablelib.h the definitions for the various speeds and the 

limit positions are given. 

_5 ROUTINES FOR IMAGE PROCESSING 

5.1 Description of image processing 

For using the Maxvideo Digmax and Framestore board a number of functions have 

been developed based on an existing libraries which accompany these boards. Some 

performance measurements were given in reference 3. 

Important functions which have been used for initial assessment for image 

processing and telescience (see chapter 6) and which are implemented based on 

the existing libraries are: 

1. initialisation 

An input and output look-up table has to be initialised, all multiplexers 

are set in a state used for normal operation. Interlacing and internal 

synchronisation are selected. 

2. acquisition of single camera images 

Camera signals may not be synchronised (e.g. Sony camera generates 

independent synchronisation signal). Therefore for single camera 

acquisition two functions are available. One for single frame acquisition 

tt 



-28-
CR 89301 L 

in case the camera for input is not changed and another for the case the 

camera is changed. 

3. high rate digitisation of images 

Image digitisation is possible in real-time. To store Images in real-time 

on disk is not possible. Using the VME board with 4 Mbyte memory as an 

Intermediate storage capacity, it is possible to digitise approximately 15 

512x512 byte images in 5 seconds. After digitisation the images can be 

stored on disk files. This is very useful for breadboarding of image pro­

cessing algorithms as the real-time capabilities of the processor board in 

the PODI workstation are limited. The plume experiment in PODI (Ref. 1, 4) 

is an example of a dynamic process which can be analysed using the extra 

memory for intermediate storage. 

For the work described in reference 16 a library has been made of standard 

functions, as no general facilities were available. This included algorithms for 

labelling and run-length coding, calculation of image parameters, histogram, 

disk I/O etc. After succeeding in obtaining the image processing TCL-image 

package (Ref. 14), further development of those fairly standard algorithms could 

be stopped and more advanced applications of image processing can be considered. 

See appendix F for an overview of functions available in TCL-image. 

5.2 General test program 

Most of the implemented functions are integrated into a test program called 

"demo" which is tailored to specific experiments. For general image processing 

TCL-image is now used. The test program called "demo" proved to be very useful 

in adjusting TCL-image to the available hardware in PODI and is very useful in 

testing proper functioning of all components. For small experiments and 

developing algorithms for approximation of Schlleren (Ref. 17) this program was 

also used. 

For testing purposes using demo, option choice number 5 can be used to 

initialise the Maxvideo Digimax and Framestore board. This is needed after a 



-29-
CR 89301 L 

system shutdown. Option ntunber 19 is used for selecting continuous framegrabbing 

and option number 4 for to stop after acquiring the current frame. 

6_ PRELIMINARY EXPERIENCES USING A DEMONSTRATION SET-UP 

Based on the libraries discussed in the previous chapters a number of 

telescience demonstration programs have been made. In the demonstration 

configuration PODI is situated in the optical laboratory of the Space Division. 

PODI is controlled from an IRIS 3020 in the Guidance and Control Laboratory of 

the Space Division which is in another building. 

The dataflow is depicted in figure 6.1. First programs are started on PODI 

workstation and the VAX. After that, a program is started on the IRIS 3020 which 

tries to connect to the program running on PODI. After a connection is 

established, the PODI program tries to connect to the VAX program, and if 

successful the communication between the IRIS 3020 and the VAX program is 

established. During initialisation it is possible to select for a program which 

allows compression and decompression using CADISS. 

In a pseudo language the demonstration programs on the three computers involved 

are described in appendix G. 

The demonstration was considered as a verification of proper functioning of all 

components. The MMI on the IRIS 3020 is based on using the menu facilities and 

possibilities to visualise digitised video images. 

Only limited experience with the set-up was available at the time of writing but 

the development of the demonstration programs proved to be useful in itself for 

improvement of libraries. The design of the software for control of positioning 

devices was adjusted to enable control in the presence of delays. The menu 

facilities of the IRIS 3020 had some unexpected shortcomings in using roll-over 

menus. An MMI design in which graphics and images are integrated proved to be 

very powerful for pointing the desired location of the stake using a mouse in a 

window in which digitised images are visualised. During testing of the software 



-30-
CR 89301 L 

» i 

for the stake system, it became clear that the definition of RS-232 protocol 

should not be changed when interfacing with another system. Based on 

specifications sent by Superior Electric, a reset switch using the parallel 

interface of the Indexers has been added. The use of this switch should be 

avoided but may prove useful in case the terminal line settings have to be 

changed. 

The performance of a number of features have to be evaluated, e.g. the 

repeatability of movements of the motorised drives as no position feedback is 

available. Also, in a following phase algorithms for semi-autonomous focusing 

and adjustment of the interferometer to allow for calibration with a very low 

bandwidth may be developed. As discussed in Ref. 2 many other topics related to 

telescience and image processing need further elaboration in the current set-up. 

7_ REFERENCES 

1. van den Assem, D., R.H. Huijser, Development of an optical diagnostic 

instrviment, final report, NLR TR 87079 U 

2. Kuijpers, E.A., Telescience and image processing for podi: An analysis and 

a proposal for a simulation setup. NUR TR 88005 L 

3. Proposal for study of MTFF fluid physics Telescience scenarios and 

demonstration in TELEPODI, Memorandum RS-88-035 L 

4. A Proposal for using TELEPODI as part of the Telescience Test Bed pilot 

experiment program, Memorandum RS-89-029 

5. Kuijpers, E.A., Proposal for an electronic subsystem for the prototype 

optical diagnostic instrument (PODI), Memorandum RS-87-086 L 

6 Instructions for SLO-SYN micro series motion controls indexer models 230-PI 

and 430-PI. Superior Electric 

7. GPIB-1014P User Manual, National Instruments 

8 Keppel, H., Universal IEEE488 Interface, Memorandum RL-86-004 U 

9. Da Cruz, F., Kermit: A File Transfer Protocol, Digital Press, 1987 

10. Roefs H.F.A., A. Monkel, CADISS: A multiprocessor system for image 

compression/ decompression on board scientific satellites, NLR TR 87076 

11. Borger, J.B. A., Nauta, A. Monkel, A.J. Mooij, The FICAD image compression 

configuration, NLR TR 87172, to be published 



-31-
CR 89301 L 

12. 

13. 

14. 

15. 

16. 

17. 

MaxVideo Software Primitives, Datacube, September 1986, Doe. no. UMOOOO-2 

Kuijpers, E.A., Voorstel voor de aanschaf van een aanvullend 

beeldverwerkingspakket voor ruimtevaarttoepassingen. Memorandum RS-89-007, 

in Dutch 

TCL-image user manual and programmers manual 

UniPlus-i- System V manuals, Unisoft systems, July 16, 1985 

TP 20V/TP 20M 68020 Processor card user manual. Tadpole Technology, Manual 

version 1.0 

Hunsche, P.M. and E.A. Kuijpers, Diagnostics for use in Space: 

approximation of Schlleren using image processing, NLR CR 89237 L 

•1 



-32-
CR 89301 L 

TELEPODISUBSYSTEMS 
VAX/IRIS 

n 

STEPPER MOTOR 
CONTROL (2 INDEXERS) 

RGB MONITOR 

CCIR(RGB) 

RS232 

INTERFEROMETER CAMERA 

STAKE SYSTEM 

SCENE AND SCHUIEREN CAMERA 

TCP/IP 
ETHERNET 

POOI WORKSTATION 

CCIR 

WHOLE-FIELD 
SYSTEM 

2x DRIVE FOR 
INTERFEROMETER 

EXPERIMENT 

IEEE-488 

ILLUMINATION 
PLUME PARAM 

_ _ P O D I I , 

6x MOTORISED DRIVE 

DRIVE 
CONTROLLER 

DIGITAL I/O UNIVERSAL 
IEEE-488 
INTERFACE 

Fig. 2.1 Description of subsystems In TELEPODI 



- 3 3 -
CR 89301 L 

SUPPORT SEAM 

L A T f R A L RACKS 

Access: 
IXeHAMOg Of 

STAKI rAfSIPiaifl 

o ACCISS: 
IXCHAWOI o* 
• ixrrciCLS 
• i x r r VOLUMI H/w 
• ixrTDioteATioiucTnoNics 

rnociuoN 
ANO 

fTORAOi 

— VAX 

"SPACE" 

ETHEBNET 

"GROUND' 

IRIS 3020 
"TELESCIENTIST 
WORKSTATION" 

F i g . 2 . 2 TELEPODI s e t - u p 

81 



- 3 4 -
CR 89301 L 

LEFT 
CONNECTOR 

RIGHT 
CONNECTOR 

20 
1 

19 

° l̂ 

Ô  J 

o 
POWER SWITCH 

37 

IEEE-488 CONNECTOR 

UNIVERSAL IEEE-488 DIGITAL I/O CONNECTORS 

xrzu 
IS 9 

NUMBERING ON FEMALE 
CABLE CONNECTOR FOR 
MOTORISED DRIVES 

SECONDARY TD (STD) • 

TRANSMITTER CLOCK (TO -

SECONDARY RO (SRC) -

RECEIVED CLOCK (RCI-
(UNASSIGNED) -

SECONDARY RTS (SRTS) • 

DATA TERMINAL READY (DTR) • 
SIGNAL QUALITY DETECT (SQ) • 

RING INDICATOR (Rl) • 

RATE DATA SELECT -

EXTERNAL TRANSMIT CLOCK -

(UNASSIGNED) -

IN 
IN 
IN 
* 
ÜUT 
OUT 
IN 
IN 
OUT 
UUI 
* 

[l40 
150 

160 

170 

180 
190 
20O 

210 

220 

p30 

240 

^ 

0 

0 

0 1 

0 2 

0 3 

0 4 

0 5 
0 6 

0 7 

0 8 
0 9 

O10 

on 
012 

013 

• - PROTECTIVE GROUND (FG) 

OUT - TRANSMIT DATA (TD) 

IN-RECEIVE DATA (RD) 

OUT - REQUEST TO SEND (RTS) 

IN - CLEAR TO SEND (CTS) 

IN - DATA SET READY (DSR) 

* - SIGNAL GROUND (SG) 

IN -CARRIER DETECT (RLSD) 

IN - POSITIVE DC TEST VOLTAGE 

IN - NEGATIVE DC TEST VOLTAGE 

«-(UNASSIGNED) 

IN - SECONDARY CO (SRLO) 

IN - SECONDARY CTS (SCTS) 

* = GROUND OR NOT USED 

RS-232 CONNECTION WITH DB-25 PIN ASSIGNMENTS 

Fig. 2.3 Some connectors in TELEPODI 



t 

DETECTION-, 
SUBSYSTEM 

p OQQ O. 

a) FRONT VIEW 

Fig. 3.1 Drawing of completely integrated stake system accomodating the Interferometer passenger 

STAKE PASSENGER 

0 
STAKE PLATFORM 

© 
ILLUMINATION 

SUBSYSTEM 



- 3 6 -
CR 89301 L 

3 WIRE CONNECTION NO ECHO 

HOST 

RS-232 
PORT 

Rx 
Tx 
Vo 

1-

• 2 -

•3 

-4-

-5 

•6 

•7 
- 8 -

- 9 

Vo 

CHAIN OUT 

Rx 

Vo 

Vo 

ECHO 

CHAIN IN 

-t-5 volti 

+5 volt! 

Vo 

CHAIN OUT 

Rx 

Vo 

Vo 

ECHO 

CHAIN IN 

-̂ 5 volti 

-i-S volti 

Vo 

CHAIN OUT 

Rx 

Vo 

Vo 

ECHO 

CHAIN IN 

-̂ 5 volt» 

•t-Svotti 

IN0EXER#1 
9PIN CONNECTOR 

INDEXER#2 
9-PIN CONNECTOR 

1-
2-

3-
4-

5-
8-
7-
8-
9-

Vo 
CHAIN OUT 

Rx 
Vo 
Vo 

ECHO 

CHAIN IN 

+5 volti 
-I-5 volts 

INDEXER#3 
9-PIN CONNECTOR 

INDEXER #4 
9-PIN CONNECTOR 

Fig . 3.2 Daisy chain configuration for stepper motor 
contro l l ers 



+5VO 

CONTROL COMPUTER: 
TADPOLE VIA UNIVERSAL 
IEEE INTERFACE 

LISTEN: 
BYTE D 
BITNO. 

LEFT RIGHT 
CONNECTOR DB37 
ON UNIVERSAL IEEE-488 INTERFACE 

Fig. 4.1 Extension of motorised drive controller 



-38-

CR 89301 L 

' 

CONNECT TO VAX (1045) 

PODI 

ACCEPT FROM IRIS (1044) 

ACCEPT FROM PODI (1045) 

VAX/FICAD/CADISS 

CONNECT TO IRIS (1048) 

* 

( 

CONNECT TO PODI (1044) 

IRIS 3020 

Fig. 6.1 Communication between PODI, IRIS 
and VAX in TELEPODI demonstration 
set-up at NLR 



-39-
CR 89301 L 

APPENDIX A 

Description of stepper motors 

Model MO61-CS08 stepper motor 

•? 

i 
z 1 

3 

JO 
OS. l l 

«0 
128.2) 

30 
(21.21 

20 
114.11 

to 

17.11 

0 

'N 

/ 
/ 

> 
/ 

• ^ 

\ 
\ 

^"^ 

^ 

/ 

/̂f 
V . 

7"-
« » € • 

'TOUOUi 

^ 

' " « ^ 
ZA.zn «- - •^ 

^^ 

20 

. 1 

0 
KJOO 2000 yx» 4000 woo sooo 7000 aooo sooo nooo 

SPEED (1.8- STEPS PER SCCONO) 

SERIES CONNECTION 
M061-CS08 

SLO-SYN micro series motion controls indexer models 230-PI 

81 



Motorized Drives 
U.S. Patent Nos. 4,467.250; 4.496.865 

Motorized Drives 

860-4 

• Easily Inlcrcliangcable with micrometers in 
Newport mounts 

• Smooth-running, quiet DC motors 
Continuously variable, load-independent speed 

• 0.02 micron resolution 

• >301b.(13kg)loadcapabiUty 

• Up to 4 in. travel 

• Compact, rugged construction 

860 Series Motorized Drives provide high-resolution 
linear motion lor automated position control in microposi-
tioning and measurement system applications. These 
micrometer replacement units are compatible with most 
Newport Elnglish and metric mounts and stages. They are 
powered by DC motors for smooth movement, high resolution 
and freedom from mechanical and acoustic noise. Ruggedly 
constructed for long life, they easily handle axial loatte 
exceeding 30 lbs (13 kg). Versions with travel from 0.25 
10 4 in. (6 to 102 mm) are offered. 

When used with 860 Series Controllers (opposite), 
these drives provide continuously variable, load-independent 
speed with dynamic braking for fast start/slop response. For 
extra jam-resistance. 860 actuators have cushioned end-stops 
that provide a slow deceleration at the ends of travel, and 860 
Series controllers incorporate a patented limit/stall sensing 
design that automatically backs oH the actuator when an 
overload condition occurs. 

Submicron resolution is obtained with a precision-
ground and electropolished stainless steel leatbcrew. driven 
through a low-backlash reduction gear. A patented design 
constrains gearhead/motor rotation while mechanically 
"floating" the motcH- to decouple slight eccentricities trom the 
rotating spindle. Spindle position indicators are provided with 
English and metric scales. 

Specificatioas 
Speed Range 

Resolution 

Max. Axial Load 

Vacuum Compatibility 

40-400 micron/sec (Drives can be 
provided with speed ranges up to a 
factor of 30 faster or slower. Call 
Newport for pricing and delivery. 

0.02 micron 

35 lb. (15 kg) 

Special-order vacuum<ompatible 
versions for operation to 10* are 
available. Versions for operation to 
10' Turr are available on a semi-
custom basis. 

Travel (T) 
|in. (mm)| 

0.25(6) 
0.5 (13) 
0.5 (13) 
1.0 (25) 
2.0 (51) 
4.0 (102) 

Length (L) 
|in (inm)| 

3 44 (87) 
4.10(104) 
5.22(133) 
4.66(118) 
5.72(145) 
7 91 (201) 

Model 

860-025 
8604)5 
8604)5.VIW 
860-1 
8602 
8604 

* Used with Models 400 and 405 stages: 6Ü0A, 625A. 630A. 
670.675 and 605 Series Mirror Mounts: 960 and 965 beam­
splitter mounts. 

LQAOtlbU 

860 Sertn lyptcat iptrd la toad charaarrniKa ilbuirahng 30 Ih load capucuv 
ov*r a HHOne^ta ranft. 

MOOEL 

[HO 

MODEL lib»
 

MODEL «60-025 

•00-OSMM 

A 

2M 
M » 
UO 

1000 
2000 
40OO 

9 -

OiMENSiO 
B 

200 
309 
309 
3Bé 
4 72 
691 

":JC~.;r^ 

'•<ÉD-^ 
;:. . ' - 0 

^ 

MODELS S60-05, 1 . 2 . 4 

- • » • - •.• 

^ - 1 i • 
N 

C 

3 35 
4 0) 
5 09 
4 M 

' 8 1 

• Continuously variable, laMi.hulepeiident 
speed conlrol 
Integral velocity servos 

• Patented limit/stall protection 

• Dynamic braking for fast start/slop 

« JOG function provides fine micro-molion cwMral 

• Control up to 4 drives 

• Optional computer interface 

• Compact; low coal 

This selection of velocily-servo controllers for 
860 Series Motorized Actuators provides continuously-
variable, load-independent speed control with fast start/stop 
Patented electronic limit/stall protection protects the motor 
from possible burnout at both extremes of travel and under 
stall conditions, so — unlike most DC motorized positioners — 
860 Series motorized drives will not bind at an end-of-travel 
limit. The controllers also have circuitry which provides an 
automatic 'kicit" for a short lime to ensure non-stick separa-
tk>n when reversing direction even at low speeds. 115 V/60 
Hz power supplies are included (22U V/5U Hz versions are 
available on special order). 

4-Drive Controller 
Up to lour 860 Series drives can be sequentially con­

trolled with the Model 860SC Servo Controller. This hand-
sized unit provides continuously variable speed control from 
32 to 320 micron/sec using standard 860 Series drives. Motion 
is initiated by a FORWARD/STOP/REVERSE switch, enabling 
you to take advantage of the controller's dynamic braking 
capability to make fast changes of direction (or a sudden stop) 
without changing the velocity setting A separate JOG switch 
provides a slow slew — with speed reduced to 0 1 lo I mic­
ron/sec — allowing single-step movements approaching the 
drive resolution of 0 02 micron A Iront-panel indicator shows 
end-of-travel or stall conditions. '. 

Computer Interface Option: Model HSOSCC adds a 
computer interface connector lo .illuw access to signals nec­
essary lor computer or remote electronic conlrol. including 
direction, speed, limit indicaiiun and drive selection. 



-41-
CR 89301 L 

APPENDIX C 

Programmers library for stake system 

The following sections contain a description of the library for the stake system 

(version 12 April 1989). 

C.l High Level Primitives 

FUNCTION 

int centerstake (); 

DESCRIPTION 

This function moves the stake to the absolute center position. This is the 

position given by center_x_max, center_y_max. The default values are (10000, 

10000). 

The unit is 0.001 cm on rulers of stake (see Fig. 3.1). The new position becomes 

the home position. The maximtom and minimum allowed displacements are updated. 

This function should be called before exiting the user program, in order to set 

the stake in a well defined position for future use. The function returns 1 on 

success or 0 on failure. 

FUNCTION 

int close_stake (); 

DESCRIPTION 

The channel ttyb, which was opened for read and write by open_ttyb in 

initialise_ stake, is closed. The function returns 0 on success and -1 on 

failures. 

FUNCTION 

int initialize stake (); 

81 



-42-
CR 89301 L 

DESCRIPTION 

This function sends "L26 1" to both indexers giving EOT after all transmissions 

to the host. Both indexers are set to electrical home and in jog mode. All pa­

rameters are set to there default values in both indexers. The function returns 

1 on success and 0 on failure. 

FUNCTION 

int movestakeX (newx); 

int newx; 

DESCRIPTION 

This function moves the stake in X direction. The new position becomes the home 

position. The maximum and minimvtm allowed displacements in X direction are 

updated. The distance from the center of the field of view is updated. The 

function returns 1 on success and 0 on failure. 

FUNCTION 

int move_stake_Y (newy); 

int new_y 

DESCRIPTION 

This function moves the stake in Y direction. The new position becomes the home 

position. The maximum and minimum allowed displacements in Y direction are 

updated. The distance from the center of the field of view is updated. The 

function returns 1 on success and 0 on failure. 

FUNCTION 

int reset_orlgln (); 

DESCRIPTION 

Set origin to current absolute position. Update maximum and minimum allowed 

displacements in X and Y direction. 

FUNCTION 

int s e t o r i g i n (newx, new_y, choice); 

int new_x, new_y, choice; 



-43-
CR 89301 L 

DESCRIPTION 

The stake is moved to the required origin in the center or in the lower left 

corner of the field of view. The maximvim and minimum allowed X and Y 

displacements are updated. The default origin is at (10000, 10000). See figure 

3.1. The function returns 1 on success and 0 on failure. 

FUNCTION 

int set_stake_X (new_x); 

int new_x; 

DESCRIPTION 

This function sets the stake to the requested absolute X position with respect 

to the current origin. The new position becomes the home position. The maximum 

and minimum allowed displacements in X direction are updated. The distance from 

the center of the field of view is updated. The function returns 1 on success or 

0 on failure. 

FUNCTION 

int set_stake_Y (newy); 

int new^ 

DESCRIPTION 

This function sets the stake to the requested absolute Y position with respect 

to the current origin. The new position becomes the home position. The maximum 

and minimua allowed displacements in Y direction are updated. The distance from 

the center of the field of view is updated. The function returns 1 on success 

and 0 on failure. 

C.2 Keyboard I/O for test and initialisation 

FUNCTION 

int make_origin (); 



-44-
CR 89301 L 

DESCRIPTION 

The user is asked to give the position of the stake as given by the rulers on 

the stake system (see Fig. 3.1). Then the user can choose the position of the 

origin in the center or in the lower left comer of the field of view. The 

routine calls setorigin to update the origin. The function returns 1 on success 

and 0 on failure. 

FUNCTION 

void print_stake (); 

DESCRIPTION 

Print the comment associated with the last given command. Print the contents of 

the stake_buffer. If the first character of a buffer line is 'L', then add the 

proper L comment. 

FUNCTION 

void print_position (row, col); 

int row, col; 

DESCRIPTION 

Print absolute X and Y position with respect to current origin on screen at row 

"row" and column "col". 

FUNCTION 

void read_new_position (row, col); 

int row, col; 

DESCRIPTION 

Ask for new X position at row "row" and column "col" and for new Y position at 

row "row + 2" and column "col". Get new position, within current limits, from 

keyboard. 

FUNCTION 

void read new displacement (row, col); int row, col; 



-q 

-45-
CR 89301 L 

DESCRIPTION 

Ask for X displacement at row "row" and column "col" and for Y displacement at 

row "row + 2" and column "col". Get displacements, within current limits, from 

keyboard. 

C.3 Low level primitives for the stake system 

These functions are called from the user functions. They require global 

parameters from the include file stakelib.h and should not be called by user 

written routines. 

FUNCTION 

#include stakelib.h 

int move_stake (motor, new_position, currentposition); 

char motor[]; 

int new_position; 

int currentposition; 

DESCRIPTION 

For this motor, calculate the required displacement from the new and the current 

position. Dependant on the sign of the required displacement, set a new 

clockwise (L18) or counterclockwise (L19) travel limit and start the motor in 

clockwise resp counterclockwise direction. If necessary go step by step to the 

new position. Read the new motor position and save this position in 

stake_buffer. The function returns 1 on success and 0 on failure. 

FUNCTION 

#include stakelib.h 

int open_s take (); 

DESCRIPTION 

Open ttyb for read and write, with 9600 BAUD, echo enabled and XON/XOFF 

protocol. If open fails, send a message. The function returns 1 on success and 0 

on failure. 

81 



-46-
CR 89301 L 

FUNCTION 

#include stakelib.h 

int readstake (); 

DESCRIPTION 

Until EOF received, read the indexer response. Ignore ':', '-', XON and XOFF. If 

a carriage return is received increment the output buffer pointer. Stop reading 

if the input buffer is empty. The function returns 1 on success and 0 on 

failure. 

FUNCTION 

#include stakelib.h 

int set_ttyb (); 

DESCRIPTION 

Set tty terminal to enable start/stop in and output control. A received STOP 

character will suspend output and a received START character will restart 
.1 

output. All start/stop characters are ignored and not read. The system will 

transmit START/STOP (XON/XOFF) characters when the input queue is nearly 

empty/full. Echo is enabled. The baud rate is 9600. A character contains 8 bits. 

The function returns 1 on success and 0 on failure. 

FUNCTION 

#include stakelib.h 

int stake_command (motor, instruction); 

char motor[]; 

char instruetion{]; 

DESCRIPTION 

Combine the motor number and the instruction into the indexer command, add a 

carriage return and a linefeed. Use the write function to send the indexer 

command to ttyb. If the number of bytes returned by write is not the number of 

bytes send, give an error message. Wait a few milliseconds before continuing, to 

allow the indexer to get ready to acknowledge. Read the output of the indexer 

and save the result in the buffer "stake buffer" defined in stakelib.h. 

« 



-47-
CR 89301 L 

APPENDIX D 

Programmers library for control via IEEE-488 

The following functions are available in the version of 12 April 1989. 

D.l Control of IEEE-488 interface 

FUNCTION 

void clearGPIB (); 

DESCRIPTION 

Send IFC to clear the GPIB. 

FUNCTION 

void InitializeGPIB (); 

DESCRIPTION 

Initialise the interface to the motorised drives. Set the interface in on-line 

mode. Clear the interface. 

FUNCTION 

void terminate_GPIB (); 

DESCRIPTION 

terminate GPIB activity by clearing the GPIB. Set the GPIB in off line mode and 

disable the interface. 

The following functions are the basis for message communication via GPIB. A full 

description can be found on the source code accompanying the GPIP-1014 P board. 

FUNCTIONS 

int ibrd(buf,cnt) 

char buf[]; 

int ent; 



-48-
CR 89301 L 

int ibwrt(buf,cnt) 

char buf(]; 

int ent; 

int ibcmd(buf,cnt) 

char buf[]; 

int ent; 

DESCRIPTION 

The function "ibrd" is used to read up to cnt bytes of data from the GBIP into 

buf. 

The function "ibwrt" is used to write cnt command bytes from buf to the GPIB. 

The function "ibemd" is used to write command bytes from buf to the GPIB. This 

function needs to be called for addressing before using the functions "ibrd" and 

"ibwrt". 

D.2 Control of motorised drives 

FUNCTION 

#include table.h 

char motor_llait () 

DESCRIPTION 

The routine reads the motor status which is returned in 4 bytes. The third byte 

gives the status of the motor limit. If the motor is at the forward limit 

position the status - 1 and in reverse limit position the status - 2. Else the 

function returns 0. 

FUNCTION 

#lnclude table.h 

void set_motor (motor, speed); 



-49-
CR 89301 L 

int motor; 

int speed; 

DESCRIPTION 

The user can call this function with the motor niomber (1 - 8) and the speed 

number (1 - 8). The function finds the bit combination for the required motor 

from the array MOTOR[] (most significant nibble) and performs a binary OR with 

the bit combination for the requested speed found from the array SPEED[] (least 

significant nibble). The result is saved in character array command[]. The 

direction of motion is derived from bit 7 (least significant bit) of the speed. 

If this bit is 1 then the direction is forward which is represented by setting 

bit 3 of command[l]. If bit 7 is 0 the direction is reverse and bit 2 of 

command[l] is set. The byte array is send via the unibus with ibwrt. The motors 

are assigned by: 

NR 

MOTOR[0] - 1 

M0T0R[1] - 2 

M0T0R[2] - 3 

M0T0R[3] - 4 

M0T0R[4] - 5 

M0T0R[5] - 6 

M0T0R[6] - 7 

M0T0R[7] - 8 

The speeds are: 

NR 

SPEED[0] - 1 

SPEED[1] - 2 

SPEED[2] - 3 

SPEED[3] - 4 

SPEED[4] - 5 

SPEED(5] - 6 

BIN DEC HEX 

00010000 - 16-10 

10010000 - 144 - 90 

01010000 - 80-50 

11010000 - 208 - DO 

00110000 - 48-30 

10110000 - 176 - BO 

10110000 - 112 - 70 

11110000 - 240 - FO 

\ /I 
I computer control bit. 

motor selection bits. 

BIN DEC HEX DESCRIPTION 

00001101 - 13 - OD full negative speed. 

00000101 - 5 - 05 1/2 full negative. 

00001001 - 9-09 1/4 full negative. 

00000001 - 1-01 zero speed. 

00001111 - 15 - OF 1/4 full positive. 

00000111 - 7 - 07 1/2 full positive. 

81 



-50-
CR 89301 L 

SPEED[6] - 7 - 00001011 - 11 - OB 3/4 full positive. 

SPEED[7] - 8 - 00000011 - 3-03 full positive speed. 

I II 
I I computer control bit. 
I sign bit. 
\ / 

I 
-- speed selection bits. 

The byte obtained for speed is combined using an bitwise-or operation to obtain 

the first byte which is sent to the IEEE-488 interface. A second byte will 

contain derived direction information as discussed above. 

In the include file table.h the speeds are defined as: 

FULLREVERSE 

HALFREVERSE 

QUATREVERSE 

STOP 

QUATFORWARD 

HALFFORWARD 

THRE_QUA_FRW 

FULL FORWARD 

1 

2 

3 

4 

5 

6 

7 

8 

See figure 4.1. 

FUNCTION 

void tset_motor (motor, speed, time); 

int motor, speed, time; 

DESCRIPTION 

This routine gets the current processor time using the function "getetime". Then 

starts the required motor with the requested speed. The time is read until the 

demanded time has elapsed. Then the motor is stopped. 

FUNCTION 

long getetime (); 



-51-
CR 89301 L 

DESCRIPTION 

This routine returns the current elapsed real time in milliseconds. The accuracy 

is 1/16 s. 

D.3 Control of plume 

For the plume experiment the following function is proposed. This function is 

not implemented. 

FUNCTION 

#include table.h 

void plume (condition, msec); 

int condition; 

int msec; 

DESCRIPTION 

Calling this routine will cause a puis of "msec" milliseconds to be send to the 

plume. If condition is 1 a high amplitude puis will be sent, else if condition 

is 0 a low amplitude puis is sent. 

81 



-52-
CR 89301 L 

1 
APPENDIX E 

Library for terminal control 

The routines in this library perform terminal Independent l/o functions based on 

the "termcap" capabilities in UNIX. I.e. Clear the screen, goto a certain line 

and column, and goto a line and column and clear to the end of the line. The 

following routines are available in the version of 12 April 1989. 

FUNCTION 

void clearscreen (); 

DESCRIPTION 

The screen is cleared. 

FUNCTION 

void clear_eol (row, col); 

int row, col; 

DESCRIPTION 

Goto row "row" and column "col" and clear to end of line. Row 0 and column 0 is 

in the upper left corner of the screen. 

FUNCTION 

void goto_row_col (row, col); 

int row, col; 

DESCRIPTION 

Set the cursor to row "row" and column "col". Row 0 and column 0 is the upper 

left corner of the screen. 



TCLrDftGE I7VERVXEH OF FUNCTIONS 
Version 4 .3 dated 29 sept enter 1988 

multihouse 

Arcendrx t o TCL-D«GE Product "•'•jvriptipni 

TC3/-IMMX FUNCnCMS 

Below an overvrieu I s given of the present (October 1988) functions within 
TCL-DOCE V 4 . 3 . U i i s l i s t w i l l be extended on a zagular b a s i s , p lease c a l l 
us for the l a t e s t vers ion. 

1 TOrom., Tca. o n u r y OOHMMOS 

1.1 GEHERAL OCUP IMFCRKnCN 
1.2 OCHANCS 
1.2 .1 OcmMI, Display Coaiiand Smmazy 
1 .2 .2 HELP, On-line Docunentaticin 
1 .2 .3 NDiS, Hew Features Display 
1.2.4 VBOBK, On-line Perfocnanoe Rqnrtingf 
1 .2 .5 EOT, Teminata In An Indixect Hay 
1 .2 .6 STOP, 1\enunata In A Direct Hay 
1 .2 .7 CETDIE, Define A Soft Oaoaand 
1 .2 .8 (JNDEFHIE, fiaxf/a Def ini t ion Of A Soft <3cmnanl 
1 .2 .9 TlMtK, l i a b l e Ocnmanl Bcecution Tine Display 
1 .2 .10 NUriHLH, Diseible Connand Bcacuticn Tina O i ^ l a y 
1 .2 .11 NM1E, Specify A User Nana 
1.2.12 DEBUG, Make A Deta^ F i l e 
1 .2 .13 NGCEBX:, Stop Uigginj Into Debug FUa 

a ICIr-RQL, BKDkFOQL OOMMCS 

2 . 1 IHE TO. DKOFOOL aOMXPr. 
2 . 1 . 1 Introduction 
2 . 1 . 2 Datapool EookJoeeping 
2 . 1 . 3 DBta(xx>l Datatypes 
2 . 1 . 4 Diiiensicns Of Variables. 
2 . 1 . 5 Subscription Of Variables 
2 . 1 . 6 Soope l ^ e s Ftir Variables. 
2 . 1 . 7 Declaration Nodes. 
2 . 1 . 8 Scattering Of Hie Datapool. 
2 . 1 . 9 I n i t i i d i s a t i o n Of The Datapool 
2 .1 .10 SuOTnary Of Datapool Oamarels 
2.2 DEScniPnoN OF COmAKDS 
2 . 2 . 1 DECLARE, Declare A Variable 
2 . 2 . 1 . 1 CEXIARE, Declaration In NEW Mode 
2 . 2 . 1 . 2 DEO^U^ARGUMEin', Declaration In ARGUMENT Mode 
2 . 2 . 1 . 3 DECXARE/rasmON, Declaration In OVERLAV Mode 
2 . 2 . 1 . 4 CEXXARE/SAVE, Declaration In SAVE Mode 
2 .2 .2 KILL, Renove A Variable 
2 . 2 . 1 SHQil, Show Datapool Infonnation 
2 .2 .4 FB, Display Ihe Contents Of A Bool Variable 
2 . 2 . 5 ARCTST, Check COinand F i l e Argument Fie ld 
2 . 2 . 6 VAKTST, Get One Of The Properties Of A Variable 
2 .2 .7 VARCKK, Check Ihe Properties Of A Variable 
2 . 2 . 8 VARCHP. Ctnpare Ihe Properties of IVo Variables 

page - 1 
TIPSFUNC 

Tdr-Baa OWOIVIIH OF RMCnONS 
VBEBim 4.3 datad 29 t c p f t w 1988 

multiliause K D N 

ICEr-DOFLY, DOPLICaaE VARIABLES 

3 .1 GENERAL OtOUP INFCmKnCN 
3.2 a»1AND6 
3 . 2 . 1 CLEAR, Clear Variable 
3 .2 .2 RANDCM , Ranlcra Generator 
3 .2 .3 copy. Duplicate (aid lype Conversion) Between Pools 
3 .2 .4 DÜVS, Duplicate (Copy) With Specif ied Wiidow Size 
3 .2 .5 QUESy, Pit3if)t For A Boolean Value 
3 .2 .6 (JSCXO', Qulcksorter 

Tar-IQRKIO, IDRHATIED TXtVT OUnVf aOMMCS 

4.1 GENERAL OVUP INFOnOTICN 
4 .2 CCHONCS 
4 . 2 . 1 W<n£, Formatted Write 
4 .2 .2 READ, Foraatted Read 

ICL-CSMCP, OFQIATiaiB ON (3AIDICIER VA8IABI£S 

5 .1 GQIERAL CR3UF INFOnealON 
5.2 OCHONDS 
5.2.1 im. Determine Length Of Ovaracter Strirq 
5.2.2 INDEX, Determine Oiaracter In Character String 
5.2.3 acMC3\X, QancaCenate Character Strinjs 
5.2.4 UFCAS, Convert TO Utfier Case 
5.2.5 UMCAS, Convert To Louer Case 

H 
n 
f 
I 

H« 

B 
OQ 
(0 

O 
< 
m 

< 

• t J w z 
Ö 
M 
X 

n 
CO I 
vo Ol 
OJ LO 
O I 

TdHCEsi, ARnaHcnc TEST oisKncMs 

6.1 GEHERAL caojp mFORnnoN 
6.2 CaVONDS 
6 .2 .1 AVERAGE, Average Value 
6 .2 .2 HAXVAL, Maximin Value 
6 .2 .3 MINVAL, Hiniaum Value 
6 .2 .4 HAXELM, Eleirent Nuntier Of Maxijaa. 
6 . 2 . 5 MINEUi, Elaient Nunber Of Hiniaui. 

TIKHMC 
page - I 



Version 4 . 3 dated 29 ««-prfber 1988 

7 vsi-ioac, naxnoMM, (looic) H H W — 

7 . 1 GDIERAL UWJUP INFOOKIICN 
7 .2 aMMNDB 
7 . 2 . 1 vr, CDifiare If Less Ihan 
7 . 2 . 2 I£ , OoBfiare I f Less Ihan Or Bf ia l 
7 . 2 . 3 GT, Ocafiara I f Greatar Than 
7 . 2 . 4 GE, CCBfiara I f Graatar n a n Or Equal 
7 . 2 . 5 EQ, Cai(>ar« I f Egual 
7 . 2 . 6 ME, aai(>ara I f Not Egual 

8 TOi-iKxaiNt, ocMiAM) n u s CKxzssna COMOMIS 

8 .1 GEMERAL laUJP IMFGRMATICN 
8 . 1 . 1 Prograa Flow Oaitrol 
8 . 1 . 2 Omtrol Of Ocnaand F i l e EMmition Moda. 
8 . 1 . 3 Control Of Error Handling 
8 .1 .4 logging And Joumal irg . 
8 .2 RVCRAH FUM CONIX}L CCMONDS 
8 . 2 . 1 IF, EISE, n S E i r , Rf)(TF], Ormrtitinnnl Eimnitinn Of 

Ocnnands 
8 . 2 . 2 CASE, lABEL, EMDCASE, Oxiiae Of Prograa Block 
8 . 2 . 3 CUITCASE, Terainata CJVSC OF Construct I i a d i a t e l y 
8 . 2 . 4 MKUE, DO, END[Vlin£] FtogtaB loqp Wiila Q n U t i c n 

I s True 
8 . 2 . 5 QUnVHUE, Teminata MIIIE loop I n n d i a t e l y 
8 . 2 . 6 DO, UKTU, Prograa loop Ukitil Ooniit ion I s TZue 
8 . 2 . 7 gununXL, Terainita Until locp T — H n l i l y 
8 . 2 . 8 FOR, DO, E}<D(FCR] Prograa loop With Countar 
8 . 2 . 9 g u n r t » . Terminate FCR locp iMBdiate ly 
8 . 2 . 1 0 QJTTEO, Taminata Prograa toqp T i r l i a t a l y 
8 .3 OOMXIL OF CCMMO FII£ BOXIXIICM (BCE 
8 . 3 . 1 SIEP, Operate In Stap Moda 
8 . 3 . 2 NQSTCP, Terainata Step Moda Operation 
8 . 3 . 3 WAIT, Wait For CCntinuaticn Of Qaaaand F l l a 
8 .3 .4 B«AK, I n t e m f i t cc^and F i l e Processing 
8 . 3 . 5 W2MIE, Resuu Interri^Jtad Oaanand F l l a . 
8 . 3 . 6 RCIUBM, Return Ftoa COnand F l l a 
8 .4 OCWnOL OF ERROR HAtCONG 
8 . 4 . 1 ccrrr. Disable I n t e r n ^ At Errors 
8 . 4 . 2 KXIlNr, Diable Interrupt At Errors 
8 . 4 . 3 ERRVAL, Specify Storage Far Last Error Status 
8 . 4 . 4 ERROR, Generate A TCL Error Message 
8 .5 iCXr.JHa AND JCURNALING 
8 . 5 . 1 l£C, Start Qcmund Fi l e Logging 
8 . 5 . 2 NOLOG. Stop OxBiiand F i l e Logging 
8 . 5 . 3 CREATE, Start Joumaling Session 
8 .5 .4 EUDOtE/ai:, Terminate Joumaling Sess ion 

page - 3 

TnsnMc 

• t 

Ml 
Version 4 .3 dated 29 septanher 1988 

9 .1 GENERAL (MJUP INFQtMATICN 
9.2 OCNtANDS 
9 . 2 . 1 CLRS, Clear The Terminal Screen 
9 . 2 . 2 EDIT, E>lit A Text F i l e 
9 . 2 . 3 Dm, Display F i l e Directory 
9 .2 .4 FHD, Print Working Directory 
9 . 2 . 5 CD, Qiange Workiiq Directory 
9 . 2 . 6 EDIT, Edit A TextfUe 
9 .2 .7 TXFE, Display Contents Of A Text F i l e 
9 . 2 . 8 HUKT, Print Contents Of A Text F i l e 
9 . 2 . 9 RJRO:, Delete Old Versiots Of F i l e s 
9 .2 .10 tHETC, Delete A Fi le From The System 
9 .2 .11 EXIX:, Fxnrute An Operatiiq System COnand 
9 .2 .12 SYNC, Flush Outstanding Disk Output 
9 .2 .13 BYE, Terminate And Log Out 
9 . 2 . 9 UttX:, Execute An Operating Systaa Oonsand 

U TCXr-ARTDa, OC IHFDrr MUTBHEnC OCMONDS 

10.1 GEUERAL GROUP BffORIAXICM 
10.2 OOMANDB 
10 .2 .1 IMOt, Incraient 
10 .2 .2 UU( , Decraaent 
10 .2 .3 IHT, Ttuicated Integer 
10 .2 .4 NINr, Nearest Integer 
10 .2 .5 BfrUM, Lowest Integer 
10 .2 .6 FRAC, Fraction 
10 .2 .7 S i a i , Sign 
10 .2 .8 NEC, Negation 
10 .2 .9 NOT, Bit-wise Inversion. 
10 .2 .10 ABS, AbHolute Value Or MoikilUB. 
10 .2 .11 REAL, iteal Fart. 
10.2 .12 D M : . Imaginary I^rt. 
10.2 .13 HIASE, OnnT)lex Rtase. 
10.2 .14 c a o , Qaifjlex Conjujate. 
10 .2 .15 SUKl', Square Root. 
10.2 .16 W, Natural logaritm. 
10.2.17 liDGlO, 10 Based logarithm. 
10.2 .18 EXP, Natural Exponentation. 
10 .2 .19 EXFIO, 10 Based Expcnentaticn. 
10 .2 .20 SIN, Sine. 
10.2 .21 006, cos ine . 
10.2 .22 TAN, Tïmgent. 
10.2.23 Asni, Arc Sine. 
10.2 .24 A006, Arc Cosine. 
10 .2 .25 KDM, Arc Tangent. 
10.2 .26 s o n , Sine Hyperbolicus. 
10.2.27 ÜUtiH, Cosine Hyperbolicus 
10.2.28 TMM, T&iqent Hyperbolicus. 

page - 4 

msniic 

• • • 

h 

n 
pa 
00 1 
vo i-n 
CJ -C^ 

O 1 
1—1 

t-

» 



TCLrIMAGE OVERVIEM OF FUNCTIONS I l l U U I i l U U ^ t ! 
Version 4 .3 dated 29 septenber 1988 

11 SC3r-ARnK2, VO IMVr ARTIBHEnC OOMBIBS 

1 1 . 1 GENERAL CKXIP INFQRHAnCN 
1 1 . 2 OCTMANDG 
1 1 . 2 . 1 ADD, AiUition. 
11 .2 .2 SUB, Substraction. 
11 .2 .3 ADOl, ••Scaled" Addition. 
U . 2 . 4 SUBl, ••Scaled" Substraction. 
11 .2 .5 MIL, H i l t i p l i c a t i o n . 
11 .2 .6 HUa, Oaiplex Oonjugata H i l t l p U c a t l a i . 
11 .2 .7 OIV, Divis ion. 
U.2.8 ABSO, Absolute Differenoa. 
11 .2 .9 MAX, E loentwi sa Haxin» . 
11 .2 .10 KIN, Elegentwise MiniBB. 
11 .2 .11 MX), Modulo (remainder Of Intagar Division) 
U . 2 . U FOW, Itawer Raising , 
11.2 .13 OCMPUf, Ooiplex Value. 
U . 2 . 1 4 A33M2, Arc Tangent (2 I i f u t ) . 
11 .2 .15 AND, Bit-wise And. 
11.2 .16 OR, Bit-wise Or. 
11.2 .17 XOR. Bit -wise Exclusive Or. 
U . 2 . 1 8 GOV. Bit-wisa Equiva lent . 

OISPLAX, DISPLAX AH) nOIMB ORABBINB 

1 2 . 1 TCL-DOGE DISETAÏ CCNCEFIS 
12.2 DISPLAY CROUP CCMAND OVEXVH». 
12 .2 .1 Window Hanagaant Display Oonoept 
12 .2 .2 Frana Store Display Oonoept 
12 .2 .3 Emulated Window Managoent Display Oonoept. 
12.3 DISPLAY FRESEmAHON SE3TDIGS 
1 2 . 3 . 1 DISCN, Diable And Set-if> Display Device 
12 .3 .2 DISQFF, Disable Display Device 
12 .3 .3 VDEFS, Set Window Default Se t t ings 
12 .3 .4 Vlin*, Se lect Default Virtual I<»k-\v T^bla 
12.4 DISPLAY QCMIANDS 
12 .4 .1 DISPLAY, Display An Image 
12 .4 .2 (DU), DL^licate Image Into Frame Store 
i : t .4 .3 (DUVS), Win±MBd Duplication Of Image Into Frame Store 
12 .6 .4 VCLEAR, Clear The Display Screen 
12.7 WINDOU HANmJIAnON OCItlANEG 
12.7.1 VFOP, [tip Display Window On Top Of Others 
12.7.2 VHISH, push Display Window Behind Others 
12.7.3 VIOCM, Shrink Display Window Into loon 
12.7.4 VXPAND, Expand loon Tb Display Window 
12.7.5 VEEL, Delete Display Winlow 
12.8 COLOR MAPPER La3K-<IP TABLE SETTINGS 
12.8.1 VIAB, Select Predefined Color Mapper Look-up Tables 
12.8.2 VIH, Select Color Mapper Video Threshold 
12.8.3 Wat, Select Color Mapper Video Contrast Ratio 
12.8.4 Il/IT, load Color Mapper With User Defined look-iq> Tobias 
12.9 HARDWARE ZOCrdNG AND mwONG 
12.9.1 VZOCM, Select Harduare Zooi Factor 

page - 5 
TIBSFUIC 

TCXf-IMAGE OVÏ3WIEW OF FUNCTICNS 
Version 4.3 dated 29 sepbonber 1988 

mulUiiouse KDv 

12.9.2 
12.10 
12.10.1 
12.10.2 
12.10.3 
12.10.4 
12.11 
12.11.1 
12.11.2 
12.12 
U . 1 2 . 1 
12.12.2 
12.13 
1 2 . U . 1 
12.13.2 
12.14 
12.14.1 
12.14.2 
12.14.3 
12.15 
12.15.1 
U . 1 S . 2 
U . 1 5 . 3 
12.15.4 

VPAN, S e l e c t Hardware Pan Set t ings 
HARDWARE TEXT GENERATION 

VIEXT, Draw A Text String On Display Screen 
VCZF, S e l e c t Ouracter Generator Zoonfactor 
VCMASK, S e l e c t Bitplanes Active For Character Generation 
VCBACK, S e l e c t Background For Character Generation 

HARDWARE VBCICR CRAWING 
WGCT, Draw A Line On Display Screen 
WfiOH, Draw A Rectaiqla On Display Screen 

vnxo sExvia: oatANCs 
VI£IAD, Force Hard Reset For Display Unit 
VW<BUF, Load Display Dsvioe With User Defined Ctrl Words 

n m z EDITING 
HUH, Edit An Image Interact ive ly 
VCUR, Video Cursor 

CCNIROL OF VHXD OVUWC REQQRDER 
ORCM, Biable Video Graphic Reooder 
GRDFF, Disable Video Graphic Recorder 
OWR, Send control String Tt> Video Graphic Reoorder 

FRAME OttBBINa 
WRAB, S e l e c t Frame Grabber Operation Mode 
VSYNC, S e l e c t Frame Grabber Synchronization Mode 
(OU), Duplicate Iiuge Fïoa Frame Buffer 
(DUVS), Nindowed Duplication Of Image Frat Frama Buffer 

O 
pa 
00 I 

o I 
16 rnnn, nx£ i/o OOHMMIS 

1 6 . 1 GENERAL OCUP INFCRIAXION . 
16.2 OaMUIDS 
16 .2 .1 READF, Read An Image Fipn F i l e 
16.2.2 MUTF, Write An Image Ta F i l e 
16 .2 .3 ASSIcai, Make A T^pe Uhit Available For F i l e I i fut /output 
16.2.4 DEASS, Terminate Connection T>3 A Tape Unit 
16 .2 .5 APQS, R s i t i o n T^pe Unit To An Absolute Pos i t ion 
16 .2 .6 RF06, IXasition T^pe Unit Tto A Rslat ive Pos i t ion 
16.2 .7 REMIND, Rewind Tafa U i i t 

17 TIMAG, GREXVALDE TEST SAGE <33allAXI0M 

1 7 . 1 GDIERAL OOJP INFOFHAXION 
17.2 OrtlANDS 
17.2.1 m s . Generate Lineair Shading Image 
17.2.2 TIQ6, Generate Quadratic Shading Image 
17.2.3 TICB, Generate Oiessboard Test Image 
17.2.4 TTLH, Generate Test Image With Horizonted Lines 
17.2.5 TILV, Generate Test Image With Vertical Lines 
17.2.6 TUN, Generate Test Image With Crossing Lines 
17.2.7 TlFl', Generate Test Image With Synmetric Baints 
17.2.8 TICC, Generate Test Image With Concentric Circles 

Tzisnnc 
page - 6 



TOy-IMAGE OVERVIIM OF fWCTICNS fïlültinOUSE 
Varsion 4.3 dated 29 B<T*^«iiter 19M 

18 ocMvscr, ocMVEia VARIABLE IMACXB 

18.1 GENERAL OUUP INFORlAnOM 
18.2 OCMANDS 
1 8 . 2 . 1 BUM, Image Blow-tf] 
18 .2 .2 REIU, Image Reduce 
18 .2 .3 FBIOW, Interpolating 
18 .2 .4 SPLIT, Image S p l i t - i ^ 
18 .2 .5 MERGE, Image Merge 
18 .2 .6 MtAP, Pixel Wrap Around 
18 .2 .7 Hnsi, Mirror Image 
18 .2 .8 ROTA, Image Rotation 
18 .2 .9 SPIX, Pixel Swappiiq 
18.2 .10 DOTS, Graphic Dotting 
18.2 .11 a s n j , Creyvalue Itai^iction Dy CXaphic Hotting 
1 8 . 2 . U PSEUDO, Pseudo Greyvalua Gtaf]iuca 
18 .2 .13 RASIQt, Rastarisat ion 

1» RM3IP, tooDic romr oiowncMB ui l u c x 

19.1 GENERAL CRXA> INTCRMAHON 
19.2 OMAICG 
1 9 . 2 . 1 CST, Contrast Stretch 
19 .2 .2 EQL, Histograa Fqualisatinn 
19 .2 .3 CUP, laaga Clipping 
19 .2 .4 m r , 3-stata l l i resholdin) 
19 .2 .5 SHIF, Plxalwiaa B i t S h i f t 
1 9 . 2 . 6 IfiOKUP, Tabla Iook-19 Based Grey l a v e l W n d l f l r t t o n 

lOMIIP, MISCZLLAWDOB lOIKr OIBIAXIONB W IUCE 

20 .1 GENERAL GWUP nffCRAnON 
20.2 OCNANDB 
30.2.1 lOX, Pixel Wise Cai(iara And Select New Pixel Valua 

81 MaoiP, m o u a c wrromnnHMxiD OVBIAXIOMS n i RACE 

21.1 GDIERAL OCUP INFCXVIAnoN 
21.2 OOMAIffiE 
2 1 . 2 . 1 IMIF, Ikiifom F i l t e r i n g 
21 .2 .2 IMAX, local Maxiaua 
21 .2 .3 UUM, local Minimua 
21 .2 .4 HJHA, Edge Preserving Smoothing (Kuuahara) 
21 .2 .5 K K , Beroentile F i l t e r i n g 

m n a , m o o i c HacBBoaRuxo OFEHATICMS NOT H I FIACZ 

22.1 C2NERAL OCUP nffDRtOTICN 
22.2 OOtiANDS 

P»9« 

n - i f l - i i i innrn, . i r i , - < a . r ^ i t o m i . i ' f rl. ir iii '11. 

• 

TOr-BKZ OVERVIEW OF TTMCnCtlS 
«Mtmion 4 .3 datad 29 sfT^frtier 1988 

X» 

u 

25 

M 

87 

22 .2 .1 
22 .2 .2 
22 .2 .3 
22 .2 .4 
22 .2 .5 
2 2 . 2 . 6 
22 .2 .7 
22 .2 .8 
22 .2 .9 

MDna, 

23.1 
23.2 
2 3 . 2 . 1 

6UOIF, 

2 4 . 1 
24.2 
2 4 . 2 . 1 
24 .2 .2 
2 4 . 2 . 3 
24 .2 .4 

IDORIEII 

25.1 
25 .2 
2 5 . 2 . 1 
25 .2 .2 

SEXaOMI 

26 .1 
26 .2 
26 .2 .1 
26 .2 .2 

a w o , 2-D convolution 
RDBG, Vctxrts Gradient Edge Detector 
SOBEL, Scbel Edge Detector 
HtEHD, Prewitt Dif ferent ia l Type Edge Drtad 
PBOrr. Prewitt Tenplate Type EÜge Dataober 
KIRSCH, Kirsch Frtje Detector 
ROBIN, Robinsons Edge Detector 
lAFL, ljf>Iaoe Edge Detector 
HAVE, I«e-Harallck-Verbeelc Edge Detector 

DYADIC tdCBBODRIEDO OFCRATICIB MOT IM FLACZ 

GENERALUCUP INFOMAnON 
OCmANDG 

EUUPS, 

GEKEBAL CRXJP INFOROJION 
CCHHAND6 

SIZE, Object Size Estimation 
SC6, Object Se lec t On Size 
HULL, Object Convex Hull Detection 
tUHL, Restricted Convex Hull Detect ion 

, FODRnX TBANEOmAIICie 

GENERAL OCUP DffOiMaTON 
OOtlANDG 

ITT, Fbrward Fourier Ttansfom 
U l T , Inverse Fourier Transfom 

, IMAtX EEXaiEinAnON 

GENERALUhOUP INFQHiAnCN 
OCMiANDS 

THRESH. Thresholding Into B i t -p lMa 
BLABEL, Bit-plane Labeling 

27 .1 
27.2 
27 .2 .1 
27 .2 .2 
2 7 . 2 . 3 
27 .2 .4 

rmtmc 

* 

GENERAL CaWJP IHPQIWATIOM 
QCMIANDS 

BSET, Set Bit-plane Value 
BCLR, Clear Bit-plane 
nrnr., s e t Bit-plane Edges 
BLINE, Draw Line Into Bit-plane 

mulliliouse^ 

Ear 

PB9> - t 

» 

^ 

n 
!» 
OO 1 
vO Ol 
L*> ON 
O 1 

f 

9 



TCLi-IMAGE OVERVIEW OF EUNCITCINS I I I U I I I I I U Ü J C 
Versicn 4 . 3 dated 29 sppTfniher 1988 

28 BIM3IF, IGMADIC BQARY POINT OiaOOIOMB ÜI l U C l 

2 8 . 1 GENEBAL QOUP mFORMAHCN 
28 .2 a>MAM£ 
28.2.1 BQOPY, Oopy Bit-plane 
28.2.2 BINV, Invert Bit-plana 

29 BIDIIP, DYADIC BINARY FOmr OIOmlCaB Hl I U C E 

2 9 . 1 GENERAL CKUP INIORATIOH 
29 .2 CCM1AND6 
2 9 . 2 . 1 BQR, Bit-plana l o g i c a l Or 
2 9 . 2 . 2 BAND, Bit-plane l o g i c a l And 
2 9 . 2 . 3 BXCR, Bit-plane l o g i c a l Exclusive Or 
2 9 . 2 . 4 BBCf), Bit-plana Ingiral Egoivalanoa 

30 BMOIF, M3MADIC BIMARX MEaUHBUIIiaUJU OIEBAZiaMa I S lUCE 

3 0 . 1 GENERAL OCUP INFORAXION 
30.2 oatmics 
3 0 . 2 . 1 BESQ6, Bit-plane Erosion 
30 .2 .2 BDHA, Bit-plane Di lat ion 
3 0 . 2 . 3 BOEfN, Bit-plana Open 
30 .2 .4 BCIOS, Bit-plana (Uose 
3 0 . 2 . 5 BPERC, Bit-plane I^roenti le F i l t e r 
3 0 . 2 . 6 BMAJ, Bit-plane Majority Voting 
30 .2 .7 BFSR, Bit-plana Pepper And S a l t Ranoval 
3 0 . 2 . 8 BENGL, Bit-plane Single taint Detection 
3 0 . 2 . 9 BSKLP, Skeleton Link-pixel Detaction 
30 .2 .10 BSKEP, Skeleton Eïid-pixel Detection 
3 0 . 2 . 1 1 EEKBP, Skeleton Branii-point Detection 
30 .2 .12 BANGLE, Bit-plana Lina-angla Datactrir 
30 .2 .13 BLUE, Bit-plana C O M Of Life 

31 BQMaiF, KMADIC BINARX OBIECT 0IBIAII0N3 IN lUCZ 

3 1 . 1 GENERAL OUUP INFGRWnON 
31.2 (UMANDG 
3 1 . 2 . 1 BSKEL, Bit-plane Skeleton 
3 1 . 2 . 2 BCXMT, Bit-plane Contour Detection 

32 BOOUP, DYADIC BINARX OBIBCrr OIERAXICia IN lUCZ 

3 2 . 1 GENERAL OOJP INFDR1ATICN 
32 .2 OatlANDS 
3 2 . 2 . 1 BASKEL, Bit-plane Anclur Skeleton 
3 2 . 2 . 2 BFBOP, Bit-plane Propagation 

TTPSFUNC 
page - 9 

TCI<-IMMZ OVESVIBf OF IIHCnOMS 
Vaxslon 4 .3 datad 39 a t i t i i i a c 1988 multihouse 

MDv 

33 

34 

OISIS, BINARX 0IfiI3U(Z TRAtGFQRHAnaB 

3 3 . 1 GENERAL GROUP INFQRHATICN 
33 .2 OCttlANDS 
33 .2 .1 BDIsr, Distance Transformation 
33 .2 .2 BCDIST, Ocinstrained Distance Transformation 
33 .2 .3 B^ENH, Rsniave Small Holes In Bit-plane Image 
33 .2 .4 BOSKEL, Bit-plana Skeleton, Based Cn Distance Tkaitttom 

MÊ SORE, MEASUMtMBlIS IN DOGES 

. 1 

.2 

. 2 . 

. 2 . 

. 2 . 

. 2 . 

. 2 . 
34 .2 .6 
34 .2 .7 
34 .2 .8 
34 .2 .9 
34.2 .10 

34. 
34 . 
34 . 
34 . 
34 . 
34 . 
34 . 

GENERAL C3UUP INFOBMATICN 
CXrrlANDS 

SSUH, Calculate Sun Of Pixel Values 
SMIN, Calculate Hinijium Pixel Value 
SMAX, C^culate Haxisun Pixel Value • 
SAVER, Calculate Avarage Pixel Value 
HISTO, Image Histogram Calculation 
HIST2D, 2-dimensional Image Histogram Calculation 
EHIsr, Plot Histogram On Terminal 
BCDUHT, Bit-plane Pixel ccuntirq 
(XNS, Object S i ze And Density Measurcoent 
dXNS, Object S i z e And Cali lxated Density Measuroient 

QBJECCS, UBCIED DBJECTB MraSDRBSHTS 

35.1 
35.2 
3 5 . 2 . 1 

36.1 
36.2 
36 .2 .1 
36 .2 .2 

GENERAL OUUP INFORttTICN 
OCMONDS 

SHAPE, ca lcu la te Shape FaraaataiB Of Gbjacts 

n 
pa 
oo 
vo 
LJ 
O 

1 
t-n 
~J 
1 

; 0EBIAXICI6 

GENERAL OiaUP INFOROIIQH 
OCMONDS 

TXT, Generate Ttext Within Imnjn 
(HP, Image CCmparison (Haintananoe 

m a n i z A: BINARY noes ixu: FORMAT 

A . l ÏCMIAT OF TAPE FILES 
A.2 FOmAT OF DISK flLES 
A . 3 lAYOUr OF THE ETLE HEADER 

B: bUVHlKl'U) DISPLAY AND FRAME GRABBOB DEVIOS 

PGIOO IMACING TEaiUOLOJY 
ET14S1 DATA TSANSLATICN VME BUS 
012851 DATA TRANSLAHCN AT BUS 

TIPSrUNC 



-58-
CR 89301 L 

APPENDIX G 

Description of demonstration program using pseudo-language 

G.l Program on PODI 

The PODI program running on the PODI workstation is an intermediate between the 

TELEPODI setup and the IRIS computer. On the IRIS computer runs also a program 

(source name teleiris) which is used by the telescientist to give commands to 

and to receive pictures from the PODI computer. As the transfer rate between 

PODI and IRIS is only approximately 10 Kbytes/sec while the transfer rate PODI/ 

VAX and VAX/IRIS is much higher, the pictures are sent to the IRIS computer via 

the VAX. The program running on the VAX (source televax) only receives and sends 

8 blocks of 1024 bytes. Optional another program can be used which uses the 

capabilities of CADISS for compression and decompression of images. 

The program on the PODI computer performs the following actions (between 

parentheses the C-functions are given): 

Accept a connection to a remote host with (acceptlRIS) 

and wait for anyone to connect. 

Then try to connect to the VAX (connectVAX). 

If the connection is granted 

Initialise the table motors (initialise_table) 

Initialise the stake systems (initialisestake) 

Initialise the video system (init_video) 

Set the origin of the stake in the center (set_origln) 

Repeat the next instructions 

Receive a command from IRIS (getlRISpodicommand) 

Perform the requested function (handle_podl_command) 

These function can be: 

Stake commands: 

Hake an absolute move in X and/or Y direction 

Reset stake to center position 

Interferometer commands: 



-59-
CR 89301 L 

Move motor 1 during a given time at a given speed 

Move motor 2 during a given time at a given speed 

Whole schlleren commands: 

Move motors 3, 4, 5, 6, 7 or 8 during a given time 

at a given speed 

Video commands: 

Send a picture from camera 1, 2 or 3 to the IRIS 

End command: 

Exit Repeat Until Loop 

Until an end command is received 

Set the stake system in the center position with "center_stake'' 

Send an end instruction to the VAX 

Close the connections with the VAX and the IRIS 

Exit the program 

G.2 Program on VAX 

The program on the VAX computer performs the following actions (not using 

CADISS) : 

Accept a connection to a remote host (net_llsten) 

and wait for anyone to connect. 

Then try to connect to the IRIS (net_connect) 

If the connection is granted 

Repeat the next Instructions 

Read 8 blocks of 1024 bytes from PODI (netread) 

Write 8 blocks of 1024 bytes to the IRIS (netwrlte) 

If less than 8 * 1024 bytes are received 

send them anyway in order to keep the communication running 

Until an end instruction is received 

Close the connections with PODI and the IRIS 



-60-
CR 89301 L 

Exit the program 

G.3 Program on IRIS 3020 

This program on the IRIS computer performs the following actions: 

Try to connect to PODI workstation (connect_P0DI) 

Then accept a connection to a remote host (acceptVAX) 

and wait for anyone to connect. 

If the connection with the VAX is established 

Initialise a window of 512 * 512 pixels on the graphics screen 

Set double buffer mode 

Make a colour map 

Send a command to PODI to send a picture from camera 1 

Using the menu possibilities in the graphics library 

the functions as discussed In sections G.l are selected. 

If the user wants to select a new position for the stake, a cross wire 

is drawn in the image which can be moved using the mouse. If the 

desired position is selected, the position of the cross on the screen 

is converted to a command for the stake. For the implementation of 

this feature double buffering is used. 


