i Tt

7 10868 HO YN

NATIONAAL LUCHT- EN RUIMTEVAARTLABORATORIUM

NATIONAL AEROSPACE LABORATORY NLR

THE NETHERLANDS

NLR CR 89301 L

Bibliotheek TU Delft

Faculteit der Luchtvaart- en Ruimtevaartiechniek
Kluyverweg 1

2629 HS Delft

EXTENDING THE PROTOTYPE OPTICAL DIAGNOSTIC

INSTRUMENT (PODI)

FOR ANALYSES OF TELESCIENCE AND

IMAGE PROCESSING

by

A.J. Mooij, E.A. Kuijpers

and H. Keppel

?

,\/L.‘ W -

NATIONAAL LUCHT- EN RUIMTEVAARTLABORATORIUM
NATIONAL AEROSPACE LABORATORY NLR

Anthony Fokkerweg 2, 1059 CM AMSTERDAM, The Netherlands
P.O. Box 90502 , 1006 BM AMSTERDAM, The Netherlands
Telephone : 31-(0)20-5113113

Telex : 11118 (nlraa nl)

- Fax : 31-(0)20-178024

¥ V;ij?w

NLR CONTRACT REPORT
CR 89301 L

EXTENDING THE PROTOTYPE OPTICAL DIAGNOSTIC
INSTRUMENT (PODI)
FOR ANALYSES OF TELESCIENCE AND IMAGE PROCESSING
by
A.J. Mooij, E.A. Kuijpers and H. Keppel

- 3 JAN. 2000

Bibliotheek TU Delft

Fac. Lucht- en Ruimtevaart

¢ 3072540
This investigation has been carried out under a contract awarded by the
Netherlands Agency for Aerospace Programs (NIVR), Contract number: 02607 N

Division: Space _ Completed : 890602
Prepared: AJM/(_)&AK// HK/ Order number: 101.918/672.701
/
' Approved: HFARV/ (E; Typ. : MM

81

=
CR 89301 L

&

The Prototype Optical Diagnostic Instrument (PODI) has been extended for remote

SUMMARY

control and image processing. A new breadboard called TELEPODI (Teleoperated
PODI) resulted in which telescience and image processing for microgee

instrumentation can be studied.

Software libraries which have been developed to allow for remote control using
several positioning devices are described. For the stake system in PODI these
devices are stepper motors, to be controlled by two controllers in a daisy
chained RS-232 configuration. Via IEEE-488 a Universal IEEE-488 interface is
controlled. The digital I/O of this interface is used for the control of
motorised drives which can be used for adjusting the plane of focus and control

of a mirror for an interferometer as stake passenger.

The extensions of PODI are being used for several projects related to image

processing and telescience.

S
CR 89301 L

&

CONTENTS

SUMMARY
ACKNOWLEDGEMENT

LIST OF ABBREVIATIONS
LIST OF FIGURES

|~

INTRODUCTION

TELEPODI OVERVIEW

2.1 TELEPODI subsystems
2.1.1 Optics
2.1.2 Electronics
2.1.3 Software

N

2.2 Interfaces
2.2.1 RS-232
2.2.2 1EEE-488
2.2.3 Interfacing via Ethernet

|w

CONTROL OF STEPPER MOTORS VIA RS232
3.1 Description of stepper motors

3.2 1Initialisation of indexers
3 Test software and library
3.3.1 Init_state
3.3.2 Stake

Program library

w |w

I.

w
&

| &

CONTROL OF MOTORISED DRIVES VIA IEEE-488
4.1 Description of motorised drives
4.2 Hardware extensions

4.2.1 Standard Interface IEEE-488

.2.2 Velocity control

S

»

.2.3 Computer limit detection

&
N
>

Direction Detection

&
N
w

Control of eight motors

Page

® N O W

10
10
10
10
12
13
13
14
13

1
17
17
18
18
19
19

19
19
20
21
21
22
23
23

81

S5
CR 89301 L

&

CONTENTS (continued)

4.2.6 Connectors

B~

3 Test software

4.4 Program library

|»o

ROUTINES FOR IMAGE PROCESSING

5.1 Description of image processing

5.2 General test program

|on

|~

8 Figures

APPENDIX A
APPENDIX B
APPENDIX C

APPENDIX D

APPENDIX E
APPENDIX F
APPENDIX G

PRELIMINARY EXPERIENCES USING A DEMONSTRATION SET-UP

REFERENCES

Description of stepper motors

Description of motorised drives

Programmers guide for Stake

C.1 High level primitives

C.2 Keyboard I/O for test and initialisation
C.3 Low level primitives for the stake system
Programmers guide for interfaces via IEEE-488
D.1 Control of IEEE-488 interface

2 Control of motorised drives

=

D.3 Control of plume
Library for terminal control
TCL-image overview

Description of demonstration program using pseudo-language

Q |@
N

1 Program on PODI
Program on VAX
Program on IRIS 3020

@
w

(60 pages in total)

Page
24
26
27

27
27
28

29

30

39
40
41
41
43
45
47
47
48
51
52
53
58
58
59
60

=
CR 89301 L

&

As many people have contributed in extending PODI to TELEPODI and the number of

ACKNOWLEDGEMENT

authors should be limited, the following discussion of contributions is added.
D. van de Assem and R. Huyser (now with Fokker Space and Systems) have proposed
many of the hardware extensions of PODI which resulted in a very interesting
basis for studying telescience and image processing for microgee instruments.
D. van de Assem, I.G. van de Berg and H. Keppel have selected the positioning
devices taking into account the requirements for remote control from the optics
point of view and requirements for interfacing at the NLR Space division.

H. Keppel designed electronics for positioning devices in TELEPODI. The NLR
Electrical Engineering department contributed in several ways to TELEPODI (e.g.
support for integration of VME boards for additional memory and interfacing to
IEEE-488, support for integration of CADISS, consultancy from M. Versteeg for
many questions related to VME and UNIX is gratefully acknowledged). A.J. Mooij
did most of the coding and documentation for the software libraries for position
control. E.A. Kuijpers was responsible for integration of contributions and

image processing extensions.

81

i
CR 89301 L

CADISS
BIN
DEC
EOT
FICAD
GPIB

HEX
IEEE-488
MMI

PODI
TCP/IP
TELEPODI
UDP

VDU

LIST OF ABBREVIATIONS

Compression And Decompression of Imaging Sensor Signals

Binary
Decimal

End Of Transmission

Fluid Physics Instrumentation Compression and Decompression

General Purpose Interface Bus (brand version of
IEEE-488 standard)

Hexadecimal

bus standard, see GPIB

Man/Machine Interface

Prototype Optical Diagnostic Instrument
Transmission Control Protocol/Internet Protocol
TELEoperated PODI

Internet User Datagram Protocol

Visual Display Unit

Figure

Figure

Figure

Figure

Figure

Figure

Figure

bygy,
CR 89301 L

LIST OF FIGURES

Description of subsystems in TELEPODI

TELEPODI set-up

Connectors in TELEPODI

Stake system

Daisy chain configuration for stepper motor controllers

Extension of motorised drive controller

Communication between PODI, IRIS and VAX in TELEPODI demonstration
set-up at NLR.

81

=107
CR 89301 L

&

1 INTRODUCTION

Experiments in Columbus will be executed in telescience mode in which
instruments and experiments will be controlled from the ground. A number of
activities have been started by NLR to be able to support scientists for

conducting experiments in telescience mode for Columbus.

One of these activities is called TELEPODI which is based on extending PODI
(Ref. 1). PODI is a "Prototype Optical Diagnostic Instrument" for microgravity
fluid physics research, developed at NLR under (previous) contract with ESA and
NIVR. Basis of the PODI design are general requirements, including telescience
possibilities, for fluid physics instrumentation in Columbus.

This report gives an overview of TELEPODI including documentation of hardware
and software extensions which have been realised. The extensions are based on a
proposal for studying telescience and image processing for PODI (Ref. 2). The

hardware and software extensions are being used for several projects.

In August 1988 an unsolicited proposal for executing experiments with TELEPODI
was sent to ESA (Ref. 3). In this unsolicited proposal the installation of a
Telescience Test Bed was anticipated for experiments, but only a rough estimate
of work involved could be given. After the installation of the Telescience Test
Bed at ESTEC, ESA asked for an update of the unsolicited proposal which was sent
in June 1989 to ESA (Ref. 4). In the new proposal several experiments related to
fluid physics telescience are proposed. HCS, a Dutch firm, will be responsible

for developing an MMI using modern software development tools.

TELEPODI is a general tool for studying telescience and image processing for
microgee instrumentation. To interface TELEPODI to the Telescience Test Bed at
ESTEC is not the only follow on. For example, the digitisation, graphics and
image visualisation possibilities are currently also being used for analysing
the trajectory of the Wet Satellite Model based on video sequences (experiment
by Dr. J.P.B. Vreeburg).

«10<
CR 89301 L

&

Chapter 2 will give an overview of TELEPODI. The chapters 3, 4 and 5 describe in
more detail the hardware and software extensions for control of devices and
image acquisition. Chapter 6 discusses some preliminary experiences using the

available functions.

2 TELEPODI OVERVIEW
2.1 TELEPODI subsystems
2.1.1 “Optics

PODI consists of a whole-field Schlieren and scene observation system combined
with a narrow field optical stimulus/observation system which can accommodate
various optical diagnostic instruments. An equal beam Twyman-Green
interferometer and a moiré deflectometer have been developed as passengers for

the narrow field system.

As in TELEPODI the telescience aspects are studied, the interferometer will be
the basic stake passenger as a mirror needs to be controlled by computer to
adjust the shape and number of fringes. The adjustments needed depend on the
properties to be measured. This interactive aspect makes the interferometer more

interesting than the moiré deflectometer in a telescience context.

In the current set-up the whole-field system of PODI contains two cameras. One
camera is focused on a grid illuminating the experiment volume. This camera will
be used for Schlieren or for grid deformation methods. Another camera is focused
in the experiment volume. For both cameras the plane of focus can be adjusted by

using motorised drives for position control.

2.1.2 Electronics

The electronics for extending PODI has been selected taking into account budget

limitations, possibility for general use in breadboarding for microgee

81

Y
CR 89301 L

=

instrumentation, compatability with NLR equipment, and requirements as generated

from the point of view of the people who built PODI.
The following is now available:

a. PODI workstation (VME/UNIX crate, see ref. 5 for motivation)
- Maxvideo Digimax and Framestore board for image acquisition
- VME/IEEE-488 Interface
- Ethernet board with support for TCP/IP
- 68020 based VME board (Tadpole) with UNIX system V with 2 Mbyte of
memory
- Harddisk, streamer tape, floppy disk
- Memory board for 4 Mbyte
b. Positioning devices and interfaces
- Two stepper motors with controllers for x-y positioning of the stake
(Ref. 6)
- VME board for general IEEE-488 interface (Ref. 7)
- Universal IEEE-488 interface (24 bits LISTEN and 32 bits TALK digital
I/0) (Ref. 8)
- 8 motorised drives for position control (see App. B)
- Motorised drive controller for 8 motorised drives
- Two stepper motor control interfaces
% Three video camera

- One Sony camera and two HTH cameras

In figure 1 the hardware for extending PODI is depicted. The VME/UNIX crate is
basically a workstation (PODI workstation). In figure 2 TELEPODI set-up is
depicted in which also the results of the CADISS (Ref. 10) and FICAD (Ref. 11)
project are included. CADISS is a multi-processor system for compression and
decompression of images. A VME based connection to the VAX (result of FICAD
project) makes it possible to use CADISS for the images generated in PODI.

&

-19-
CR 89301 L

2.1.3 Software

The following software is available:

Software library for control of stepper motors via RS-232

This 1library contains an initialisation procedure and functions for
relative or absolute positioning with two degrees of freedom. This library
will be discussed in chapter 3. The functions to be used for the stake are
based on the L and H parameters and commands as described in the
instructions for SLO-SYN micro series indexers from Superior Electric (Ref.
&) .

Software library for the control of the VME/IEEE-488 interface

General Instruments with an IEEE-488 interface can be added in TELEPODI
using the VME board for interfacing to the IEEE-488 bus. The software for
this control had to be adapted for use in the PODI workstation. This
library is being used for control of motorised drives, see also section
2.2.2. In the following the acronym GPIB (General Purpose Interface Bus)
will also be used instead of IEEE-488.

Library for control of motorised drives using IEEE-488

A motorised drive can be selected for which a speed and time interval have
been specified. This library will be discussed in chapter 4.

Library for control of Maxvideo Digimax and Framestore board (Ref. 12)

This library is the basis for a number of functions for image acquisition,
camera selection and display. These functions form the basis for
interfacing to hardware for image digitisation.

Image processing package TCL-image (Ref. 14, see for proposal Ref. 13)
TCL-image is distributed by Multihouse TSI and has been developed at the
Delft Centre of Image Processing. It contains a general command interface
to many image processing functions. User written functions can easily be
added. An image library can be used in combination with application
programs. About the integration of this image processing package with the
existing library for the Maxivdeo Digimax and Framestore boards, will be
reported elsewhere.

Library for control of CADISS and FICAD

The software for the FICAD project has been extended to allow interactive

control of compression and decompression parameters in CADISS. Fixed error

<%

é CR 89301 L

or fixed length compression can be chosen with 8x8 or 16x16 subwindows. The

software of the FICAD project has also been extended to allow direct
reading and writing via ethernet of images instead of using disk-files.

For a number of practical reasons all routines are written in the C-programming
language, except for functions related to the FICAD project on the VAX. Some
reasons are: experience with the C-programming language exceeded experience for
other languages considerably, all image processing had to be based on the
C-programming language, many UNIX operating system related calls were needed
which can in most cases only be used optimally when programming in the
C-programming language. The UNIX operating system was chosen for compatibility
with other requirements. As the number of users will be limited, limitations in

real-time performance of UNIX were not considered to be a problem.

2.2 Interfaces

2.2 RS=232

The workstation for PODI contains two RS-232 ports (Ref. 16). One port is wused
for the console and the other is currently used for control of the stepper

motors.

When the terminal port is wused for control of the stepper motors, the "getty"
process which handles access to the computer via a terminal for that port must
be disabled. This is done by editing the file /etc/inittab as described in the
UNIX manuals (Ref. 15).

The stepper motors used in the PODI workstation are controlled via terminal port
ttyb at 9600 BAUD with start/stop input and output control, ECHO enabled. A
received STOP character will suspend output and a received START character will
restart output. All start/stop characters are ignored and not read. The system
will transmit START/STOP (XON/XOFF) characters when the input queue is nearly

<
CR 89301 L

=

empty/full. This is controlled by the function set ttyb (see App. C for
programmers manual). There are 8 data bits. Parity shall be disabled.

The terminal port which corresponds with device ttya is used for the console
with specific requirements for the terminal settings. The RS232 Console lead
should be wired to an asynchronous terminal running at 9600 baud with parity
disabled, 1 start bit, 1 stop bit, 8 data bits. A minimum three wire connection
should be made to start with, together with any strapping the terminal end may
require for three wire (Rxd, TxD and GND) operation (see Ref. 16 and Fig. 2.3).

The initialisation of parameters for the RS232 1lines is fairly difficult in
general. For testing the functions "cu" (a general UNIX utility) and "kermit"
(Ref. 9) may be used.

2.2.2 1EEE-488

The motorised drives are controlled via a Universal IEEE-488 interface with
digital I/0. This Universal IEEE-488 is controlled via a VME board in the PODI
workstation for interfacing to IEEE-488. The routines can only be used with the
effective User Id of root as the "phys" call is used for accessing the VME board
under the UNIX operating system. To be able to use the routines as normal user,
the sticky bit for the executable file should be set and the owner of the

executable must be root.

2.2.3 Interfacing via ethernet

An ethernet interface is available with support for the UDP and TCP/IP protocol.
Using this interface PODI is connected to a VAX and an IRIS 3020 (see Fig. 2.2).

It is noted that the performance for communication depends not only on the
receiver but also on the sender. E.g. transfer of files from PODI to the VAX is
possible at a rate higher than 50 kbytes/s. Transfer of files from PODI to the
IRIS 3020 is currently possible at a rate of approximately 9 kbyte/s. Strangely

215

é CR 89301 L

enough, transfer of at least 50 kbytes/s is possible for transfer from the IRIS
3020 to PODI. Transfer of files between the VAX and the IRIS 3020 is possible at
a data rate higher than 50 kbytes/s. After acceptance testing of the PODI

workstation at 1least 50 kbytes/s was measured for transfer from the PODI
workstation to the IRIS 3020. A considerable decrease in performance was
measured after installation of a new release of the operating system and
ethernet software for the IRIS 3020. Probably this new release has less optimal
parameters from the point of view of PODI. However, formally no one seems to be
to blame as the protocols are implemented correctly and no specifications about

speeds are given for UNIX systems, especially for non-standard systems.

As the data rates of at least 50 kbyte/s using ethernet, were envisaged in the
original proposal for communication between PODI and the IRIS 3020, and this was
considered to be near the minimum needed for Columbus infrastructure
simulations, a considerable effort has been devoted to improving the performance
as the operating system for the IRIS 3020 should not be replaced by the old

version. This was only partly successful.

For high-speed communication between PODI and the IRIS 3020 two solutions were

analysed:

1 The UDP protocol is a very simple protocol using internet packages, with no
error correction. It is possible to design an error correcting protocol on
top of this protocol. A method in which for every package containing image
data the line number in the image was included, resulted in approximately 5
s for transmission of a 512x512 byte image. Therefore the experiments
showed that performance could be increased considerably but a considerable
effort was envisaged for the design of a reliable protocol.

P When a C-compiler for the VAX connected to the LAN to which PODI is also
connected became available. the flexibility for using ethernet increased
considerable. It became possible to write efficient application programs
which copy incoming messages from PODI to messages to the IRIS 3020 and
performance for communication from PODI to the IRIS 3020 increased to

approximately 40 kbytes/s.

81

-18-

é CR 89301 L

In the TELEPODI set-up transmission via the VAX is used in general as the effort

to design a new protocol would distract too much from the objectives of
TELEPODI.

81

Y
CR 89301 L

&

3 CONTROL OF STEPPER MOTORS VIA RS232
3.1 Description Of Stepper Motors

In figure 3.1 the stake system as originally built under NIVR/ESA contract is
depicted. The wheels for positioning of the stake are now replaced by two
stepper motors and two SLO-SYN micro series indexers (from Superior Electric)

have been installed for control of both stepper motors.

The SLO-SYN micro series indexer, will hereafter be referred to as indexer. The
indexer enables the user to send commands to or receive information from SLO-SYN
stepper motors. The indexers can be either programmed or be used in direct mode.

Two indexers and two motors are in use for the PODI stake system in direct mode.

The next chapters describe the NLR written software to use the indexers with a
remote computer. The software developed by NLR allows absolute movement with
respect to the current origin or relative movement within specific limits for
the stake system. As the indexers are daisy chained (see Fig. 3.2), the motors

cannot be used simultaneously.

The parameters for position control refer to the rulers on the stake system (see
Fig. 3.1). 10 cm in horizontal direction and 10 cm in vertical direction
corresponds with the stake in the centre before the experiment volume. The unit
for translation 1is 0.001 cm. This implies that the centre corresponds with
coordinates (x,y) = (10000,10000) where x is position on horizontal ruler and ¥y

is position on vertical ruler in 10'5 m.

3.2 1Initialisation of indexers.

The RS-232 cable for the connection of the indexers and the Tadpole computer has
one 25 pin connector which should be connected to the upper RS-232 connector of
the PODI workstation on the backside, which corresponds with the terminal port
called ttyb. On the other end of the cable are two 9 pin connectors, connected

as depicted in figure 3.2.

-18-
CR 89301 L

&

The two indexers are mounted together on a baseplate. Seen from the side of the
indexers where the power switch is located, the first connector must be
connected to the left indexer and the second connector to the right indexer. The
horizontal axis motor of the stake system must be connected to the left indexer

and the vertical axis motor to the right indexer.

3.3 Test software and library
3.3.1 Init stake

With the program "init stake" all L parameters and all L and H commands can be
send to the indexers. For example, the stake can be reinitialised in case for
some reason the memory for parameters (Electrical Erasable Read Only Memory) is

corrupted, and the parameters for each indexer can be read.

The program "init stake" performs the following actions. The indexers are
initialised by calling "open stake". Then the device attention command <nn is
sent with nn = 0 addressing both indexers. The command L26 n with n = 1 is sent
to force the indexers to send an END OF TRANSMISSION (EOT) character (ASCII code
04) after all transmissions to the host. Then the program asks the operator to
enter L or H instructions or END in case he wants to stop the program. As long
as no END is entered the commands are sent to the indexer(s) with the C-function
"stake command". Using the function "print stake" the contents of a buffer

containing a reply from the indexer to the host computer can be printed.

The current status of an indexer can be read by sending the string "H16" to
indexer with address nn. A 1list of parameters is returned, including the
address. If this doesn’t work the addressing of indexers is probably corrupted.
The following procedure should be used to correct the addresses. To set the
address for a specific indexer, disconnect all other indexers and send "<00 L21

nn" where nn is an address which can have a value of "00" to "99".

For application in TELEPODI, the left indexer (horizontal axis) must be assigned
the device identification number "Ol" and the right indexer (vertical axis) the

81

=10
CR 89301 L

=

number "02". The program "init stake" asks for a motor number and an
instruction. Therefore using the program "init stake" motor number "00" and
instrument "L21 01" resp. motor number "00" and instruction "L21 02" should be

send to the connected indexer with the other indexer disconnected.

3.3.2 Stake

The purpose of this program is to set both indexers in a well defined state. The
user is asked to give the current position of the stake as can be read from the
rulers on the stake system (see Fig. 3.1). The indexers 0l and 02 are
initialised. The origin is set to the center of the field of view. The screen is
cleared and, according to a menu, the wuser can enter new absolute positions or
relative displacements in order to proof the proper operation of the stake. On

exit the stake is moved to the center of the field of view.

3.4 Programmers library

The library which contains all necessary functions for the control of the stake
system is described in appendix C.

4 CONTROL VIA UNIVERSAL IEEE-488 INTERFACE

4.1 Description of motorised drive

The routines in the library for control of the motorised drives via an GPIB
interface (IEEE-488 interface) are discussed in the following sections. The
routines are written to be used with the GPIB/VME primitives from National
Instruments. For execution root permissions are needed as discussed in section

Sk

The interface is assumed to be at GPIB address 0 with talk address (MTA) 0100
(octal) or '@’ (ASCII), and listen address (MLA) 040 (octal) or ' ' (space in

-20-
CR 89301 L

&

ASCII)). The universal IEEE interface is at GPIB address 26 (032 (octal)), with
talk address 0132 (octal) or 'Z’', and listen address 072(octal) or ':').

The digital I/0 of the Universal IEEE-488 interface is used for control of the
motorised drive controller. The switch FORWARD/REVERSE on the motorised drive
control box shall be in the middle position for computer control. The 1-4/5-8
motor selection switch shall be in the 1-4 position. The speed control
potentiometer is to be set to a maximum speed which can be obtained wusing
computer control. For control of the interferometer this potentiometer should
not be in maximum position, as interactive control would become difficult due to

the sensitivity for position changes.

The motorised drives can only be started and stopped. Position readout is not
possible. To read the limit position of the motor it 1is necessary to read the
status continuously; only at the moment a limit position is reached the status
gives 1 for the forward limit or 2 for the reverse limit, else the status is 0.
Forward corresponds with an expansion and reverse corresponds with a retraction

of the motorised drive axis.

4.2 Hardware Extensions

For remote control of instruments in the optical path of the PODI test bed a
computerised motor control has been developed. The starting-point for this
design was a control unit, fabricated by the Newport Corporation, who also
delivered the small DC motors for the necessary 1linear movements. The control
unit is primarily meant for manual control of four motors, one at a time,
selectable by a front-panel mounted switch; the direction of motion also is
controlled by a switch. The velocity of the selected motor is controlled by a
slide-potentiometer on the front-panel of the control unit. A simple computer
interface is integrated in the controller, but this interface did not fulfil our
requirements, so some modifications had to be implemented. These modifications

are discussed in the following sections.

81

25
CR 89301 L

=

4,2.1 Standard Interface IEEE-488

The Newport motorised drive controller has a so called computer interface, but
this interface is not compatible with any known standard bus concept. In order
to make the Newport controller controllable by any computer with an IEEE-488
interface, use is made of an universal IEEE-488 interface unit, constructed at
NLR and giving an outpuﬁ of 32 bits to the IEEE-488 bus and accepting 24 bits
input from the bus. For this application not all bits are necessary.

The controlling computer can also be interrupted with a SRQ from the interface
unit (Ref. NLR Memo RL-86-004 U). On the frontpanel of this unit an eight
position dip-switch is available for the selection of the IEEE address; for the
selection of Talker only or Listener only and for the generation of a Service
Request (SRQ). The last three switches have to be in the downward position to
assure proper operation. To control this interface a National Instruments
GPIB-1014P interface board has been added.

4.2.2 Velocity Control

In the Newport controller as delivered, the velocity of the selected motorised
drive could not be controlled by computer. Computerised drive selection is
possible, but the velocity control had to be carried out manually. For computer
controlled velocity a simple D/A converter, consisting of an eight position CMOS
switch and an eight resistor ladder network was built into the controller. The
switch positions are controlled by three bits from the computer, giving eight
possible speeds of which one is for zero speed; three are for reverse speed and
four are destined to forward speed. The ladder network is used as a voltage
divider between + 5 V and 0 V, which gives, starting from O V, an increase of
0.625 V at each tap of the divider. This brings the output of the CMOS. switch,
depending on the binary selection from the controlling computer, between 0 V and
+ 5 V in steps of 0.625 V. This output is amplified to a level between + and -
10 V with an operational amplifier. The amplifier has an offset of + 2 Volts for

-22-
CR 89301 L

&

the generation of negative outputs for the reverse motions. The output is
defined as :

Uout = Uotfset - (Uinput * Usttaet’ Rreedback resistor / Rinput resistor”

For an offset-voltage of + 2 Volts and a resistor ratio of 4 the output is:

Uu =10 - AUi
giving outputs between + 10 and - 10 Volts in steps of 2.5 Volts. This output is
connected to the analog input of the Newport controller. The three bits binary
input from the computer are wired into the controller via three unused pins of
the computer connector of the Newport controller. This gives the possibility to

vary the speed and direction of each motorised drive under computer control.

4.2.3 Computer limit detection

If the selected motorised drive is at its forward or reverse traverse an
automatic action shall occur that prevents the drive from stalling. To this end
a speed command in the opposite direction shall be issued. The Newport
controller delivers this signal as a 15 Volts kick to release the drive. As a
sensor for the occurrence of these limits the Newport controller delivers a
forward and a reverse limit signal, but not a combined limit signal with which
the computer can be signalled that a limit has been reached.

On the printed circuit board of the Newport controller a gate is available that
combines these two signals. This signal, going high if any limit is reached, is
sent to the controlling computer. The run/stop signal was not needed any more
because a speed of 2zero is available, so the wire for this signal was
disconnected from the board and connected to a voltage divider on the output of
the or-gate. The combined 1limit signal could be used to initiate a Service
Request, which is a bus signal with which the controlling computer can be

interrupted.

81

5.

é CR 89301 L

The interrupt handling routine for the IEEE interface board of the Tadpole

System is not available, so this scheme cannot be used. Continuous checking of
the statusbit could be possible if this status was continuously loaded into the
IEEE system. The combined limit signal 1is only available if an actual status
change has occurred, so this would lead to a "hangup" of the controlling
computer. Inside the Newport controller a so called Jogging oscillator is
available. This oscillator runs at a frequency of about 12 Hz. The amplitude of
this signal is 15 Volts. With a built-in voltage divider to 5 Volts this signal
is used to load the limit status bits in the IEEE controller. In this way 12
times per second the status of the 1limit switches (see next paragraph) is
available for the controlling Tadpole system; O for no limit; 1 for forward
limit and 2 for reverse limit. The status 1is sent to the computer in the third

word out of four words.

4.2.4 Direction Detection

The forward limit signal of the Newport controller 1is only available if the
manual limit switch is in the forward position; the reverse limit signal only if
the switch is in the reverse position. This means that after each speed command
that changes the direction of the motor a manual operation on the Newport
controller has to be carried out. This makes it useless for computer control.
Extra wiring has been added to make these switch positions computer controlled,
but this is only operational if the manual switch is in its neutral (centre)

position.

4.2.5 Control of eight motorised drives

Only four motorised drives can be controlled by the Newport controller; six are
needed. This asked for a second motor controller, to be modified in the same way
as described above. Since none of the motors runs simultaneously with any other

an extra controller is not necessary.

-24-

é CR 89301 L

Addition of a relay that switches the motor outputs from the original set of

four motor output connectors to an other set of four connectors and vice versa,
makes it possible to control eight motors, which is more than adequate. The
relay is driven by a built in transistor and this transistor is computer
controlled. The wire, controlling this transistor has been connected to an
unused pin of the connector of the Newport controller. Instead of the original
available two bits for computerised motor selection, now three bits are
available for control of eight motors. The accompanying schematic diagram (Fig.
4.1) shows the implemented modifications and the connections between the Newport
controller and the Universal IEEE-488 interface, together with the byte and bit

numbers for the controlling computer.

4.2.6 Connectors

The Newport controller is connected to the Universal IEEE-488 interface by means
of a 15 pin connector at the controller side and two 37 pin connectors at the
interface side. Looking at the interface from the rear, the left connector is
for input (LISTEN for PODI workstation) and the right connector for output (TALK

for PODI workstation) (see Fig. 2.3 for numbering). The connections are:

Newport controller Universal IEEE488 interface
Right connector

15 pin connector 37 pin connector
(computer is TALKER)
first byte
pin bit
9 motor bit 0 4 0 MSB
2 motor bit 1 <) 14
15 motor group 2/1 2 2
10 computer/manual motor select 1 3
12 run/stop Not connected
7 speed bit 0 8 4

8 speed bit 1 7 9

SHE
CR 89301 L

14 speed bit 2

comp/manual speed select
ext. data ready

11 remote forward

remote reverse

Plume controller (not implemented)

heat resistor

select high/low current

Newport controller

15 pin connector

13 forward limit

5 reverse limit

6 ground

6 6

5 7 LSB

29

second byte

9 3 i
10 2 %
13
14

Universal IEEE488 interface

Left connector

37 pin connector
(computer is LISTENER)

third byte
pin bit
25 0
26 1

37 on both connectors

To select motor 1 with full negative speed, the following codes have to be sent:

BIN

DEC HEX DESCRIPTION

00001101 = 13 = OD full negative speed.

computer control bit.

| ------ sign bit.
%
l
------- speed selection bits.
BIN DEC HEX
00010000 = 16 = 10
\ /1

81

computer control bit.
motor selection bits.

-26-

é CR 89301 L

Using an OR operation both binary numbers are combined into one byte and

extended with a second byte containing direction information (bit 2 and bit 3).

This second byte can also contain information for control of other functions.
E.g. the plume demonstration experiment as is available in PODI (Refs. 1, 4). In
this experiment a resistor is heated during a short period which generates a
"plume" which can be visualised using Schlieren or the stake passengers. This

resistor may be controlled using relays.

4.3 Test Software

The program "tmotor" can send speeds and times to all motors in order to check
the proper behaviour of the motors. After initialising the GPIB interface the
VDU screen is cleared and the user is asked to enter a motor number between 1
and 8 to choose a motor or to enter 0 to stop the program in which case the GPIB
interface is cleared and set to off-line. If the user did not enter 0, the time
interval in ms during which the motor shell run is to be entered. Then the
required speed is asked with 8 choices: one choice is stop, four speeds can be

chosen in the forward direction and three speeds in the reverse direction.

81

-27-
CR 89301 L

The requested speed and time are sent to the selected motor by "tset motor". The
current system time is read from the system clock, the requested motor is
started with the required speed. The time is read until the elapsed time is

greater than or equal to the requested time. The motor is set at zero speed.

.4 Programmers library

The library which contains all functions needed for the control of the motorised
drives, the IEEE-488 interface and the Plume is an option to be implemented in
hardware, is described in appendix D.

In the include file tablelib.h the definitions for the various speeds and the

limit positions are given.

5 ROUTINES FOR IMAGE PROCESSING

5.1 Description of image processing

For using the Maxvideo Digmax and Framestore board a number of functions have
been developed based on an existing libraries which accompany these boards. Some

performance measurements were given in reference 3.

Important functions which have been used for initial assessment for image
processing and telescience (see chapter 6) and which are implemented based on
the existing libraries are:
1. initialisation
An input and output look-up table has to be initialised, all multiplexers
are set in a state wused for normal operation. Interlacing and internal
synchronisation are selected.
2. acquisition of single camera images
Camera signals may not be synchronised (e.g. Sony camera generates
independent synchronisation signal). Therefore for single camera

acquisition two functions are available. One for single frame acquisition

5318
CR 89301 L

in case the camera for input is not changed and another for the case the
camera is changed.
3. high rate digitisation of images

Image digitisation is possible in real-time. To store images in real-time
on disk is not possible. Using the VME board with 4 Mbyte memory as an
intermediate storage capacity, it is possible to digitise approximately 15
512x512 byte images in 5 seconds. After digitisation the images can be
stored on disk files. This is very useful for breadboarding of image pro-
cessing algorithms as the real-time capabilities of the processor board in
the PODI workstation are limited. The plume experiment in PODI (Ref. 1, 4)
is an example of a dynamic process which can be analysed using the extra

memory for intermediate storage.

For the work described in reference 16 a library has been made of standard
functions, as no general facilities were available. This included algorithms for
labelling and run-length coding, calculation of image parameters, histogram,
disk I/0 etc. After succeeding in obtaining the image processing TCL-image
package (Ref. 14), further development of those fairly standard algorithms could
be stopped and more advanced applications of image processing can be considered.

See appendix F for an overview of functions available in TCL-image.

5.2 General test program

Most of the implemented functions are integrated into a test program called
"demo" which is tailored to specific experiments. For general image processing
TCL-image is now used. The test program called "demo" proved to be very useful
in adjusting TCL-image to the available hardware in PODI and is very useful in
testing proper functioning of all components. For small experiments and
developing algorithms for approximation of Schlieren (Ref. 17) this program was

also used.

For testing purposes using demo, option choice number 5 can be used to

initialise the Maxvideo Digimax and Framestore board. This is needed after a

81

-29-

é CR 89301 L

system shutdown. Option number 19 is used for selecting continuous framegrabbing

and option number 4 for to stop after acquiring the current frame.

6 PRELIMINARY EXPERIENCES USING A DEMONSTRATION SET-UP

Based on the 1libraries discussed in the previous chapters a number of
telescience demonstration programs have been made. In the demonstration
configuration PODI is situated in the optical laboratory of the Space Division.
PODI is controlled from an IRIS 3020 in the Guidance and Control Laboratory of
the Space Division which is in another building.

The dataflow is depicted 1in figure 6.1. First programs are started on PODI
workstation and the VAX. After that, a program is started on the IRIS 3020 which
tries to connect to the program running on PODI. After a connection is
established, the PODI program tries to connect to the VAX program, and if
successful the communication between the IRIS 3020 and the VAX program is
established. During initialisation it is possible to select for a program which

allows compression and decompression using CADISS.

In a pseudo language the demonstration programs on the three computers involved

are described in appendix G.

The demonstration was considered as a verification of proper functioning of all
components. The MMI on the IRIS 3020 is based on using the menu facilities and
possibilities to visualise digitised video images.

Only limited experience with the set-up was available at the time of writing but
the development of the demonstration programs proved to be useful in itself for
improvement of libraries. The design of the software for control of positioning
devices was adjusted to enable control in the presence of delays. The menu
facilities of the IRIS 3020 had some unexpected shortcomings in using roll-over
menus. An MMI design in which graphics and images are integrated proved to be
very powerful for pointing the desired location of the stake using a mouse in a

window in which digitised images are visualised. During testing of the software

-30-
CR 89301 L

for the stake system, it became clear that the definition of RS-232 protocol
should not be changed when interfacing with another system. Based on
specifications sent by Superior Electric, a reset switch using the parallel
interface of the Indexers has been added. The use of this switch should be

avoided but may prove useful in case the terminal 1line settings have to be

changed.

The performance of a number of features have to be evaluated, e.g. the
repeatability of movements of the motorised drives as no position feedback is
available. Also, in a following phase algorithms for semi-autonomous focusing
and adjustment of the interferometer to allow for calibration with a very low
bandwidth may be developed. As discussed in Ref. 2 many other topics related to

telescience and image processing need further elaboration in the current set-up.

7 REFERENCES

Ity van den Assem, D., R.H. Huijser, Development of an optical diagnostic
instrument, final report, NLR TR 87079 U

2% Kuijpers, E.A., Telescience and image processing for podi: An analysis and
a proposal for a simulation setup. NLR TR 88005 L

3. Proposal for study of MTFF fluid physics Telescience scenarios and
demonstration in TELEPODI, Memorandum RS-88-035 L

4, A Proposal for wusing TELEPODI as part of the Telescience Test Bed pilot
experiment program, Memorandum RS-89-029

=g Kuijpers, E.A., Proposal for an electronic subsystem for the prototype
optical diagnostic instrument (PODI), Memorandum RS-87-086 L

6 Instructions for SLO-SYN micro series motion controls indexer models 230-PI
and 430-PI. Superior Electric

75 GPIB-1014P User Manual, National Instruments

8 Keppel, H., Universal IEEE488 Interface, Memorandum RL-86-004 U

9. Da Cruz, F., Kermit: A File Transfer Protocol, Digital Press, 1987

10. Roefs H.F.A., A. Monkel, CADISS: A multiprocessor system for image
compression/ decompression on board scientific satellites, NLR TR 87076

11. Bdrger, J.B. A., Nauta, A. Monkel, A.J. Mooij, The FICAD image compression
configuration, NLR TR 87172, to be published

81

=
135

14.
L5%
L6%

1875

«31
CR 89301 L

MaxVideo Software Primitives, Datacube, September 1986, Doc. no. UM0000-2
Kuijpers, E.A., Voorstel voof de aanschaf van een aanvullend
beeldverwerkingspakket voor ruimtevaarttoepassingen, Memorandum RS-89-007,
in Dutch

TCL-image user manual and programmers manual

UniPlus+ System V manuals, Unisoft systems, July 16, 1985

TP 20V/TP 20M 68020 Processor card user manual, Tadpole Technology, Manual
version 1.0

Hunsche, P.M. and E.A. Kuijpers, Diagnostics for use in Space:
approximation of Schlieren using image processing, NLR CR 89237 L

-32-

CR 89301 L
TELEPODI SUBSYSTEMS
VAX/IRIS
TCP/IP
RGB MONITOR n——
CCIR (RGB)
STEPPER MOTOR

CONTROL (2 INDEXERS)
RS232

PODI WORKSTATION

INTERFEROMETER CAMERA shia
SCENE AND SCHLIEREN CAMERA
r . —— - ——— - ———— — '__‘, -
I I
|
| : IEEE-488
| I
I I
I I
I I
I
| [STAKE sysTEM wugtag‘e‘m EXPERIMENT :ILLUMIN ATION
I | PLUME PARAM
[|
! |
1 I
l |
I I
I
! :
|
I __|___Pooi__ 3
6x MOTORISED DRIVE
2x DRIVE FOR UNIVERSAL
INTERFEROMETER oo:r':z:ua DIGITAL /0 IEEE.488
INTERFACE

Fig. 2.1 Description of subsystems in TELEPODI

s
CR 89301 L

L
SUPPORT BEAM
LATERAL RACKS
/ 2
Meeao FLOOR PANELS
: i SUPPORT BEAM
: e
i \E el O .
~ i AT O i [P Access:
{ j — i
[
‘ 695 [wwoLE FiELD
| 083 PLATFORAM
/ T |
R] Mo e
--ﬂ' e ol : ® EXPTCELLS
[OIJIETEF"M ® EXP'TVOLUME HW
AQIM.I:V ® EXPT DEDICATED ELECTRONICS
1
B
= 0 rao1
SERVICE SYSTEIM 8 prom— G RONT PANEL
t I
L & VME sus
camtnas —] E g —— acruarons
£ | rrocesson | 5 |3
HHBH
STORA *
R e gal
L1 TP p— i B - €xP PARAMETERS
] conTROL
TERMINAL
"SPACE”
—_— e —— — 1 FICAD - VAX —_——— e ————
ETHERNET
"GROUND”
" TELESCIENTIST
IRIS 3020 WORKSTATION"
) Fig. 2.2 TELEPODI set-up

81

<Gk~

CR 89301 L

LEFT RIGHT

CONNECTOR CONNECTOR

19

PN Py
OO 20 10020
OO 37 19&37
/

O

POWER SWITCH

IEEE-488 CONNECTOR

Edit

1
o o
o o

15 9

Fig.

UNIVERSAL IEEE-488 DIGITAL I/0 CONNECTORS

SECONDARY TD (STD) -

TRANSMITTER CLOCK (TC) — IN
SECONDARY RD (SRC) - IN
RECEIVED CLOCK (RC) - IN
(UNASSIGNED) — *

SECONDARY RTS (SRTS) — OUT

DATA TERMINAL READY (DTR) — OUT
SIGNAL QUALITY DETECT (SQ) — IN
RING INDICATOR (RI) - IN-

RATE DATA SELECT - OUT

EXTERNAL TRANSMIT CLOCK — OUT
(UNASSIGNED) — %

NUMBERING ON FEMALE
CABLE CONNECTOR FOR
MOTORISED DRIVES

* — PROTECTIVE GROUND (FG)
140
02|| OUT — TRANSMIT DATA (TD)
150 o3|l IN-RecEIVE DATA (RD)
160 5 4||0UT - REQUEST TO SEND (RTS)
:;g 05|| IN-CLEAR TO SEND (CTS)
aé 06|| IN-DATASET READY (DSR)
hos °7 * — SIGNAL GROUND (SG)
o o8|l IN-CARRIER DETECT (RLSD)
i IN — POSITIVE DC TEST VOLTAGE
= 010{| IN—NEGATIVE DC TEST VOLTAGE
340 o1 # — (UNASSIGNED)
so O IN — SECONDARY CD (SRLD)
% IN — SECONDARY CTS (SCTS)
B O » [* = GROUND OR NOT USED |

RS-232 CONNECTION WITH DB-25 PIN ASSIGNMENTS

2.3 Some connectors in TELEPODI

18

DETECTION
SUBSYSTEM

®

ol I

il

STAKE PASSENGER

®

STAKE PLATFORM

)

i

a) FRONT VIEW

efy

ILLUMINATION
SUBSYSTEM

®

O

EXPERIMENT VOLUME
FRONT WINDOW

R

STAKE HEAD

D

SISO

RULERS

b) SIDE VIEW

Fig. 3.1 Drawing of completely integrated stake system accomodating the interferometer passenger

ol

T 10€68 ¥D

gE

- 6=
CR 89301 L

HOST
RS-232
PORT

3 WIRE CONNECTION

Rx
Tx
Vo

NO ECHO

14
24

34

44

e § 4

B
7
— 8
-9

Vo

CHAIN OUT
Rx

Vo

Vo

ECHO
CHAIN IN
+5 volts

+5 volts

Vo

CHAIN OUT
Rx

Vo

Vo

ECHO
CHAIN IN
+5 voits

+5 volts

Vo

CHAIN OUT
Rx

Vo

Vo

ECHO
CHAIN IN
+5 volts

+5 volts

Vo

CHAIN OUT
Rx

Vo

Vo

ECHO
CHAIN IN
+5 volits

+5 volts

INDEXER #1
9-PIN CONNECTOR

INDEXER #2
9-PIN CONNECTOR

INDEXER #3
9-PIN CONNECTOR

INDEXER #4
9-PIN CONNECTOR

Fig. 3.2 Daisy chain configuration for stepper motor

controllers

I8

+5VO0—

2 | [8 !
lte 390K 10K
+5V 1 [T -1
TP el
CD4051 TO PIN 1 OF
100K Wil = COMPUTER
TN o 3 = 2 N CONNECTOR
: 2 1/2NEG u1 = g T&,G SPEED
% Uu=U2 — (U1 — U2)400/100
+5V e AT 7
RO . B 1y YAaNEG 1 FOR U2=+2V:
Uu =10 — 4U1
+25V 1310 zeRo spEED 0—+15V
+1875V &1 Siksos
+1.25V 2 Nt [RETURN >— RETURN
. MOTOR 1
MOT 1 ¢ —IMOTOR
CONTROL COMPUTER: +0.625V $15 ' a4pos MOT 1> .
TADPOLE VIA UNIVERSAL :
IEEE INTERFACE [MOY 20— —ROTon
TALK: oV 114 MAXPOS MOT 3 I — MOTOR 7
BYTE A A INH :—{MOTOR 4
BITNO. 1 [10 |9 6 T I
0 3 SPEEDBIT 0 :
1 = SPEEDBIT 1 . +15V
2 3 EEDBIT 2
3 = MP/MAN SPEED (SEL 1)
TO
KAMMRELAIS
4 - = COMP/MAN MOTSEL (SEL 4)
5 2 MOTOR PSE ET2 PRINTED
6 5 MOT BIT 1 (SEL 3) SET 2
7 2 EL 2) CIRCUIT 5,6,78
LISTEN:
S L s CAN CAUS SR0
BITNO. BYTE B LOAD LIMIT A
0 BITNO. L, /11; "FORWARD LIMIT OUT
1 % 2% | BEVERSE LIMIT OUT
‘ 5 B - FORWARD SWITCH FROM US PIN 10
8 oS r REVERSE SWITCH FROM US PIN 8
e . CONNECTOR DB15 ON MOTOR CONTROLLER _—}—FROM JOGGING SWITCH _

CONNECTOR DB37
ON UNIVERSAL IEEE-488 INTERFACE

Fig. 4.1 Extension of motorised drive controller

1K 2K2

T 10€68 ¥D

LE

3R~
CR 89301 L

CONNECT TO VAX (1045)

PODI
ACCEPT FROM IRIS (1044)

ACCEPT FROM PODI (1045)
VAX/FICAD/CADISS

CONNECT TO RIS (1046)

CONNECT TO PODI (1044)

IRIS 3020

ACCEPT FROM VAX (1046)

Fig. 6.1 Communication between PODI, IRIS
and VAX in TELEPODI demonstration
set-up at NLR

s0=
CR 89301 L

&

APPENDIX A

Description of stepper motors

Model M061-CS08 stepper motor

(3o 20
—

— ’ paiN
§ aa 3 (/‘ . .
£ ’ & Lmn {2, 2vpe = E
z| » LN 2l %
1| 12 7 N 5
'6‘- uznon 7/ / \ T~ 8 E
w 3 3
RELS N H
§ an 7 — 3

0 0
0O 1000 2000 3000 4000 S000 6000 7000 8000 S000 0000

SPEED (1.8° STEPS PER SECONO)

SERIES CONNECTION
M061-CS08

SLO-SYN micro series motion controls indexer models 230-PI

81

Motorized Drives

U.S. Patent Nos. 4,467,250; 4,496,865

¢ Easily interchangeable with micrometers in most
Newport mounts

* Smooth-running, quiet DC motors
Continuously variable, load-independent speed

* 0.02 micron resolution
* >30 Ib. (13 kg) load capability
* Up to 4 in. travel
o C pact, rugged
860 Series Motorized Drives provide high-resol

Motorized Drives

Travel (T) Length (L) Model
[in. (mm)] [in. (mm))

0.25(6) 3.44(87) 860-025
05 (13) 4.10(104) 860-05
05 (13) 5.22(133) 860-05MM*
1.0 (25) 4.66(118) 860-1

20 (51) 5.72(145) 860-2

4.0 (102) 7.91 (201) 860-4

* Used with Models 400 and 405 stages; 600A, 625A, 630A,
670, 675 and 605 Series Mirror Mounts; 960 and 965 beam-
splitter mounts.

linear motion for automated position control in microposi-
tioning and measurement system applications. These
micrometer replacement units are compatible with most
Newport English and metric mounls and stages. They are

d by DC for high
and freedom from mechanical and acoustic noise. Ruggedly
coanstructed for long life, they easily handle axial loads
exceeding 30 Ibs (13 kg). Versions with travel from 0.25
10 4 in. (6 to 102 mm) are offered.

When used with 860 Series Controllers (opposite),
these drives provide continuously variable, load-independ
speed with dynamic braking for fast start/stop response. For
extra jam-resistance, 860 actuators have cushioned end-stops
that provide a slow deceleration at the ends of travel, and 860
Series controllers incorporate a p d limit/stall g
design that automatically backs off the actuator when an
overload condition occurs.

Submicron ruohmon is obtained with a precision-

d and elec d stainless steel leadscrew, driven
mmugh a low—backhshreﬁactnn gear. A patented design
constrains gearhead/motor rotation while mechanically
“floating” the motor 1o decouple slight eccentricities from the
rotating spindle. Spindle position indicators are provided with
English and metric scales.

L] s o AL 0 as k)
LOAD (ibs)
860 Seres iypecal speed us load characterisics lusirating 30 Ib lvad capucuy
Ouer a ude speed range.

MODEL 860025 =~ —
- -\
B - -

MODEL 860-05MM
- A o ———
o - 25 MIN
i
L1 e 8

O ¢ = 175

Specifications e — DELS
Speed Range 40-400 micron/sec (Drives can be xIlO e DA
provided with speed ranges up to a s T
factor of 30 faster or slower. Call e &
_— . _
Resolution 0.02 micron
Max. Axial Load 351b. (15 kg) R
Vacuum Compatibility ~ Special-order vacuum-compatibl SRl = z‘” Jc)s
vemons for operauon to 10* are 86005 500 ;; : »
ble. Vi for il to 860 l?l; 88 458
10" Torr are available on a semi- 0602 2000 472 564
860 4 4000 691 783

custom basis.

o Conti ly variable, load-independ
speed control
Integral velocity servos

« Patented limit/stall protection

* Dynamic braking for fast start/stop

* JOG tunction provides fine micro-motion control
» Control up to 4 drives

* Optional computer interface

* Compact; low cost

This selection of velocity-servo controllers for
860 Series Motorized Actuators provides continuously-
variable, load-independent speed control with fast start/stop.
Patented electronic limit/stall protection protects the motor
from possible burnout at both extremes of travel and under
stall conditions, so — unlike most DC motorized positioners —
860 Series motorized drives will not bind at an end-of-travel
limit. The controllers also have circuitry which provides an
automatic “kick"” for a short time to ensure non-stick separa-
tion when reversing direction even at low speeds. 115 V/60
Hz power supplies are included (220 V/50 Hz versions are
available on special order).

4-Drive Controller

Up to four 860 Series drives can be sequentially con-
trolled with the Model 860SC Servo Controller. This hand-
sized unit provides continuously variable speed control from
32 to 320 micron/sec using standard 860 Series drives. Motion
is initiated by a FORWARD/STOP/ REVI-'JGE swnlch enablmg
Yyou to take ad of the ¢ ller’s dy i i
capability to make tu(changes of direction (or a sudden s(op)
Wwithout changing the velocity setting. A separate JOG switch
Provides a slow slew — with speed reduced to 0.1 to 1 mic-
ron/sec — allowing single-step approaching the
drive resolution of 0.02 micron. A front-panel mdlca(or shows
end-of-travel or stall conditions.

Computer Interface Option: Model 850§C C adds a
Computer interface connector to allow access o signals nec-
essary for computer or remote electronic control. including
dm.-cuon speed. limit indication and drive selection.

S9ATIp pesiio3jom Jo uojadiaoseq

g XIANZdav

T TOE68 WO
-0b-

81

=
CR 89301 L

APPENDIX C

Programmers librﬁry for stake system

The following sections contain a description of the library for the stake system
(version 12 April 1989).

C.1 High Level Primitives

FUNCTION

int center stake ();

DESCRIPTION

This function moves the stake to the absolute center position. This is the
position given by center x max, center y max. The default values are (10000,
10000) .

The unit is 0.001 cm on rulers of stake (see Fig. 3.1). The new position becomes
the home position. The maximum and minimum allowed displacements are updated.
This function should be called before exiting the user program, in order to set
the stake in a well defined position for future use. The function returns 1 on

success or 0 on failure.

FUNCTION
int close_stake ();

DESCRIPTION
The channel ttyb, which was opened for read and write by open ttyb in
initialise stake, 1is closed. The function returns O on success and -1 on

failures.

FUNCTION
int initialize stake ();

=)=
CR 89301 L

&

DESCRIPTION

This function sends "L26 1" to both indexers giving EOT after all transmissions
to the host. Both indexers are set to electrical home and in jog mode. All pa-
rameters are set to there default values in both indexers. The function returns

1 on success and 0 on failure.

FUNCTION
int move stake X (new x);

int new x;

DESCRIPTION

This function moves the stake in X direction. The new position becomes the home
position. The maximum and minimum allowed displacements in X direction are
updated. The distance from the center of the field of view is updated. The

function returns 1 on success and 0 on failure.

FUNCTION
int move stake Y (new y);

int new y

DESCRIPTION

This function moves the stake in Y direction. The new position becomes the home
position. The maximum and minimum allowed displacements in Y direction are
updated. The distance from the center of the field of view 1is updated. The

function returns 1 on success and 0 on failure.

FUNCTION
int reset origin ();

DESCRIPTION
Set origin to current absolute position. Update maximum and minimum allowed

displacements in X and Y direction.

FUNCTION
int set origin (new x, new_y, choice);

int new x, new y, choice;

81

43

é CR 89301 L

DESCRIPTION

The stake is moved to the required origin in the center or in the lower left

corner of the field of view. The maximum and minimum allowed X and Y
displacements are updated. The default origin is at (10000, 10000). See figure

3.1. The function returns 1 on success and 0 on failure.

FUNCTION
int set_stake;x (new_x);

int new x;

DESCRIPTION

This function sets the stake to the requested absolute X position with respect
to the current origin. The new position becomes the home position. The maximum
and minimum allowed displacements in X direction are updated. The distance from
the center of the field of view is updated. The function returns 1 on success or

0 on failure.

FUNCTION
int set stake Y (new_ y);

int new y

DESCRIPTION

This function sets the stake to the requested absolute Y position with respect
to the current origin. The new position becomes the home position. The maximum
and minimum allowed displacements in Y direction are updated. The distance from
the center of the field of view is updated. The function returns 1 on success

and 0 on failure.

C.2 Keyboard I/O for test and initialisation

FUNCTION
int make origin ();

-

é' CR 89301 L

DESCRIPTION
The user is asked to give the position of the stake as given by the rulers on

the stake system (see Fig. 3.1). Then the user can choose the position of the
origin in the center or in the lower 1left corner of the field of view. The
routine calls set origin to update the origin. The function returns 1 on success

and 0 on failure.

FUNCTION
void print_stake ();

DESCRIPTION
Print the comment associated with the last given command. Print the contents of
the stake buffer. If the first character of a buffer line is 'L’, then add the

proper L comment.

FUNCTION
void print position (row, col);

int row, col;

DESCRIPTION
Print absolute X and Y position with respect to current origin on screen at row

"row" and column "col".

FUNCTION
void read new position (row, col);

int row, col;

DESCRIPTION
Ask for new X position at row "row" and column "col" and for new Y position at
row "row + 2" and column "col". Get new position, within current limits, from

keyboard.

FUNCTION

void read new displacement (row, col); int row, col;

81

-45-

é CR 89301 L

DESCRIPTION

Ask for X displacement at row "row" and column "col" and for Y displacement at
row "row + 2" and column "col". Get displacements, within current limits, from

keyboard.

C.3 Low level primitives for the stake system

These functions are called from the user functions. They require global
parameters from the include file stakelib.h and should not be called by user

written routines.

FUNCTION

#include stakelib.h

int move stake (motor, new position, current_position);
char motor([];

int new _position;

int current position;

DESCRIPTION

For this motor, calculate the required displacement from the new and the current
position. Dependant on the sign of the required displacement, set a new
clockwise (L18) or counterclockwise (L19) travel limit and start the motor in
clockwise resp counterclockwise direction. If necessary go step by step to the
new position. Read the new motor position and save this position in

stake buffer. The function returns 1 on success and 0 on failure.

FUNCTION
#include stakelib.h

int open stake ();

DESCRIPTION
Open ttyb for read and write, with 9600 BAUD, echo enabled and XON/XOFF
protocol. If open fails, send a message. The function returns 1 on success and 0

on failure.

=46~
CR 89301 L

FUNCTION

#include stakelib.h
int read stake ();

DESCRIPTION

Until EOF received, read the indexer response. Ignore ':’', ’'=', XON and XOFF. If
a carriage return is received increment the output buffer pointer. Stop reading
if the input buffer is empty. The function returns 1 on success and 0 on

failure.

FUNCTION
#include stakelib.h
int set_ttyb ();

DESCRIPTION

Set tty terminal to enable start/stop in and output control. A received STOP
character will suspend output and a received START character will restart
output. All start/stop characters are ignored and not read. The system will
transmit START/STOP (XON/XOFF) characters when the input queue is nearly
empty/full. Echo is enabled. The baud rate is 9600. A character contains 8 bits.

The function returns 1 on success and 0 on failure.

FUNCTION

#include stakelib.h

int stake command (motor, instruction);
char motor([];

char instruction[];

DESCRIPTION

Combine the motor number and the instruction into the indexer command, add a
carriage return and a linefeed. Use the write function to send the indexer
command to ttyb. If the number of bytes returned by write is not the number of
bytes send, give an error message. Wait a few milliseconds before continuing, to
allow the indexer to get ready to acknowledge. Read the output of the indexer
and save the result in the buffer "stake buffer" defined in stakelib.h.

81

wil) ol
CR 89301 L

APPENDIX D
Programmers library for control via IEEE-488

The following functions are available in the version of 12 April 1989.

D.1 Control of IEEE-488 interface

FUNCTION
void clear GPIB ();

DESCRIPTION
Send IFC to clear the GPIB.

FUNCTION
void initialize GPIB ();

DESCRIPTION
Initialise the interface to the motorised drives. Set the interface in on-line

mode. Clear the interface.

FUNCTION
void terminate GPIB ();

DESCRIPTION
terminate GPIB activity by clearing the GPIB. Set the GPIB in off line mode and
disable the interface.

The following functions are the basis for message communication via GPIB. A full

description can be found on the source code accompanying the GPIP-1014 P board.

FUNCTIONS
int ibrd(buf,cnt)
char buf(};

int ent;

-48~
CR 89301 L -

int ibwrt(buf,cnt)
char buf([];

int ent:

int ibcmd(buf,cnt)
char buf[];

int cnt;

DESCRIPTION

The function "ibrd" is used to read up to cnt bytes of data from the GBIP into
buf.

The function "ibwrt" is used to write cnt command bytes from buf to the GPIB.

The function "ibemd" is used to write command bytes from buf to the GPIB. This
function needs to be called for addressing before using the functions "ibrd" and

S{buwrt”.

D.2 Control of motorised drives

FUNCTION
#include table.h
char motor limit ()

DESCRIPTION

The routine reads the motor status which is returned in 4 bytes. The third byte
gives the status of the motor 1limit. If the motor is at the forward limit
position the status = 1 and in reverse 1limit position the status = 2. Else the

function returns 0.

FUNCTION
#include table.h

void set motor (motor, speed);

81

-49-~
é CR 89301 L
int motor;
int speed;
DESCRIPTION
The user can call this function with the motor number (1 - 8) and the speed

number (1 - 8). The function finds the bit combination for the required motor
from the array MOTOR[] (most significant nibble) and performs a binary OR with
the bit combination for the requested speed found from the array SPEED[] (least
significant nibble). The result is saved in character array command[]. The
direction of motion is derived from bit 7 (least significant bit) of the speed.
If this bit is 1 then the direction is forward which is represented by setting
bit 3 of command[l]. If bit 7 is O the direction is reverse and bit 2 of
command[1l] is set. The byte array is send via the uni bus with ibwrt. The motors

are assigned by:

NR BIN DEC HEX
MOTOR[0O] = 1 = 00010000 = 16 = 10
MOTOR[1] = 2 = 10010000 = 144 = 90
MOTOR[2] = 3 = 01010000 = 80 = 50
MOTOR[3] = 4 = 11010000 = 208 = DO
MOTOR([4] = 5 = 00110000 = 48 = 30
MOTOR[5] = 6 = 10110000 = 176 = BO
MOTOR[6] = 7 = 10110000 = 112 = 70
MOTOR(7] = 8 = 11110000 = 240 = FO

\ /I
| ==--- computer control bit.
------- motor selection bits.
The speeds are:

NR BIN DEC HEX DESCRIPTION
SPEED[O] = 1 = 00001101 = 13 = OD full negative speed.
SPEED(1] = 2 = 00000101 = 5 = 05 1/2 full negative.
SPEED[2] = 3 = 00001001 = 9 = 09 1/4 full negative.
SPEED[3] = 4 = 00000001 = 1 = 01 =zero speed.
SPEED[4] = 5 = 00001111 = 15 = OF 1/4 full positive.
SPEED([5] = 6 = 00000111 = 7 = 07 1/2 full positive.

=50 =
CR 89301 L

SPEED[6] = 7 = 00001011 = 11 = OB 3/4 full positive.
SPEED(7] = 8 = 00000011 = 3 = 03 full positive speed.

| | ==--- computer control bit.
| ==e---- sign bit.

....... speed selection bits.

The byte obtained for speed is combined using an bitwise-or operation to obtain
the first byte which is sent to the IEEE-488 interface. A second byte will

contain derived direction information as discussed above.
In the include file table.h the speeds are defined as:

FULL REVERSE
HALF_REVERSE
QUAT REVERSE
STOP

QUAT_FORWARD
HALF FORWARD
THRE QUA_FRW
FULL_FORWARD

® N O B W e

See figure 4.1.

FUNCTION

void tset motor (motor, speed, time);
int motor, speed, time;
DESCRIPTION

This routine gets the current processor time using the function "getetime". Then
starts the required motor with the requested speed. The time is read until the
demanded time has elapsed. Then the motor is stopped.

FUNCTION
long getetime ();

81

-51-

é CR 89301 L

DESCRIPTION :
This routine returns the current elapsed real time in milliseconds. The accuracy
is 1/16 s.

D.3 Control of plume

For the plume experiment the following function is proposed. This function is

not implemented.

FUNCTION

#include table.h

void plume (condition, msec);
int condition;

int msec;

DESCRIPTION

Calling this routine will cause a puls of "msec" milliseconds to be send to the
plume. If condition is 1 a high amplitude puls will be sent, else if condition
is 0 a low amplitude puls is sent.

e85
CR 89301 L

&

APPENDIX E
Library for terminal control

The routines in this library perform terminal independent i/o functions based on
the "termcap" capabilities in UNIX. I.e. Clear the screen, goto a certain line
and column, and goto a line and column and clear to the end of the line. The

following routines are available in the version of 12 April 1989.

FUNCTION

void clear_screen ();

DESCRIPTION

The screen is cleared.

FUNCTION
void clear eol (row, col);

int row, col;

DESCRIPTION
Goto row "row" and column "col" and clear to end of line. Row 0 and column 0 is

in the upper left corner of the screen.

FUNCTION
void goto row col (row, col);

int row, col;

DESCRIPTION
Set the cursor to row "row" and column "col". Row 0 and column O is the upper

left corner of the screen.

18

mullilmusg(zﬁ)\

TCL-IMAGE OVERVIEW OF FUNCTIONS multihouse
Version 4.3 dated 29 september 1988 T vm'm OVERVIEW OF FUNCTIONS
lersion 4.3 dated 29 september 1988

Appendix to TCL-IMAGE Product Description,

T TOE68 ¥D

3 TCL-DUPLY, DOPLICATE VARIABLES
L 3.1 GENERAL GROUP INFORMATION
Below an overview is given of the present (October 1988) functions within gg 1 C:m"wm Clear Variable
TCL-IMAGE V 4.3. This list will be extended on a regular basis, please call 3'2'2 m SR ST
i2e ‘
us for the latest yecsdon. 3.2.3 COPY, Duplicate (and Type Conversion) Between Pools
3.2.4 DUVS, Duplicate (Copy) With Specified Window Size
3 TCL~UTIL, TCL UTILITY COMMANDS 32,5 m" R & pacletn Wlie
1.1 GENERAL GROUP INFORMATION 3.2.6 QSORT, Quicksorter
3:-2 COMMANDS
1.2.1 COMMAN, Display Command Summary
1.2.2 HELP, hlis Do o 4 TCL-FORMIO, FORMATTED INPUT OUTPUT COMMANDS
1.2.3 NEWS, New Features Display
1.2.4 REMARK, On-line Performance | e A b
1.2.5 EXIT, Terminate In An Indirect Way "2 1 WRITE, F Tiey Neite a
1.2.6 STOP, Terminate In A Direct Way "2'2 READ, 'l-‘ } Read - =
1.2.7 DEFINE, Define A Soft Command g o |
1.2.8 UNDEFINE, Remove Definition Of A Soft Cammand E' ﬁ
31-2-9 TIMER, Enable Command Execution Time Display o
1.2.10 NOTIMER, Disable Command Execution Time Display § N RTINS NS TG o s
1.2.11 NAME, Specify A User Name : o
1.2.12 DEBUG, Make A Debug File | :; mﬁuyp THFORMATION & 5
1.2.13 NODEBUG, Stop Logging Into Debug File 5.2.1 LEN, Det ine Length Of Q ter String >
5.2.2 INDEX, Determine Character In Character String %
$.2.3 CONCAT, Concatenate Character Strings <
2 TCL~FOOL, DATAFOOL COMMANDS 55 Um,' To D . ;.
x THE TCL DATAROOL CONCEPT. 5.2.9 LOWCAS, m'lvert'lblaarmse g
5 5 ¢ Introduction
s W Datapool Bookkeeping
1.3 Datapool Datatypes 6 TCL~TEST, ARITHMETIC TEST OPERATIONS
.1.4 Dimensions Of Variables.
‘2’5 suscription Of Variables 61 GRERAL GROWP INFORAITIN
s Wmaz:&: m“'m"" 6.2.1 AVERAGE, Average Value
e : & 6.2.2 MAXVAL, Maximum Value
-1.8 sgmruqqtmmumol. 6.2.3 MINVAL, Mini Value
X9 Initialisation Of The Datapool 6:2:4 mmm' 'mm““"' of =
.1.10 Summary Of Datapool Cammands 6.2.5 MINETH, m"""" Nusber of Maxim “““

DESCRIPTION OF QOMMANDS
1 DECIARE, Declare A Variable
1.1 DECIARE, Declaration In NEW Mode
1.2 DECIARE/ARGUMENT, Declaration In ARGUMENT Mode
1.3 DBECIARE/POSITION, Declaration In OVERLAY Mode
1.4 DBECLARE/SAVE, Declaration In SAVE Mode
2 KIIL, Remove A Variable
23 SHOW, Show Datapool Information
4 PB, Display The Contents Of A Pool Variable
5 ARGTST, Check Command File Argument Field
6 VARTST, Get One Of The Properties Of A Variable
7 VARCHK, Check The Properties Of A Variable
8 VARQYP. Campare The Properties of Two Variables
page - 1

NNNNNNNNNNNDNMNNNNNNNNNNNNN
.
NNNNNNNNNNNNNN B R e e o ol o ot pd

B
:

TIPSFUNC

Eg

-54-
CR 89301 L

multihouse

Version 4.3 dated 29 september 1988

TCL~IMAGE OVERVIEW OF FUNCTIQNS

multiiguse

TCL~IMAGE OVERVIEW OF FUNCTIONS
Version 4.3 dated 29 september 1988

244
il TR
5 ._m. 8y o 8 $2 4 .um .m.uu
|l 11, Balglh
sttt 1 Mgl
iseesokeidiniu m idesnisinadidan:dalauaniian:
Annsaeread3dla HunenereaddARIRRNRARANAINANS

7 38 :
mwmmmmﬁ, e

1 mmmm c.wm : i
ol g
Hl .h.mm mmm mmm i mmmm. [Tk
i |l e
R o el A T e
i i w hi il M
AR | R T RILINELIEGE

TIPSFUNC

18

TCL~IMAGE OVERVIEW OF FUNCTIONS
Version 4.3 dated 29 september 1988

MUL, Multiplication.

MU, Caplex Conjugate Multiplication.
DIV, Division.

ABSD, Absolute Difference.

MAX, Elementwise Maximm.

MIN, Elementwise Minimmm.

MOD, Modulo (remainder Of Integer Division)
PFOW, Power Raising

QMPLX, Couplex Value.

ATAN2, Arc Tangent (2 Input).

AND, Bit-wise And.

OR, Bit-wise Or.

XOR, Bit-wise Exclusive Or.

BQV, Bit-wise Equivalencea.

-0

.
H":PHUO"OULUNH

QGGAU

.=>‘h-l

DISPIAY, DISPLAY AND FRAME GRAEBING

TCL~IMAGE DISPLAY CONCEPTS
DISPIAY GROUP COMMAND OVERVIEW.

.

DISON, Enable And Set-up Display Device
DISOFF, Disable Display Device
VIDEFS, Set Window Default Settings
VIUT, Select Default Virtual Look-up Table
DISPIAY COMMANDS
DISPIAY, Display An Image
(DU), Duplicate Image Into Frame Store
(DUVS), Windowed Duplication Of Image Into Frame Store
VCLEAR, Clear The Display Screen
WINDOW MANIPULATION COMMANDS
VFOP, Pop Display Window On Top Of Others
VPUSH, Push Display Window Behind Others
VICON, Shrink Display Window Into Icon
VXPAND, Expand Icon To Display Window
VLEL, Delete Display Window
COLOR MAPPER LOOK-UP TABLE SETTINGS
VIAB, Select Predefined Color Mapper Look-up Tables
VIH, Select Color Mapper Video Threshold
VGR, Select Color Mapper Video Contrast Ratio
IVLT, Load Color Mapper With User Defined Look-up Tables

b
.

o
SWNKM WNM

Sl S . 88 ¥
.
- wN e

Wi e M
. ot 8
Med WwN -

.
. .
& WN -

FEERRRERRERREERRERERNRERREEERRER
VOVEREDBDENNNNNNOLLAIILLLLLNNNNK

_é
|
E
b
|

page - 5

TIPSFUNC

multihouse

TCL~-IMAGE OVERVIEW OF FUNCTIONS

Version 4.3 dated 29 september 1988

.9.2 VPAN, Select Hardware Pan Settings

.10 HARDWARE TEXT GENERATION

.10.1 VIEXT, Draw A Text String On Display Screen

.10.2 VCZF, Select Character Generator Zoamfactor

10.3 VOMASK, Select Bitplanes Active For Character Generation
0.4 VCBACK, Select Background For Character Generation

HARDWARE VECTOR DRAWING |

VVECT, Draw A Line On Display Screen

VKADER, Draw A Rectangle On Display Screen
VIDEO SERVICE COMMANDS

VIOAD, Force Hard Reset For Display Unit

VWRBUF, Load Display Device With User Defined Ctrl Words
IMAGE EDITING ’

.
N

BhbuEEEERECERRREEES

.
.

:
E
;
§
E

GRWR, Send Qontrol String To Video Graphic Recorder
FRAME GRABBING)

VGRAB, Select Frame Grabber Operation Mode

VSYNC, Select Frame Grabber Synchronization Mode

(DU), Duplicate Image From Frame Buffer

© (DUVS), Windowed Duplication Of Image From Frame Buffer

ERRERRRRRREERRREEREEREEBRERER

PR

16 FILEIO, FILE I/O COMMANDS
16.1 GENERAL GROUP INFURMATION .
16.2 QOaMANDS
16.2.1 READF, Read An Image Frym File
16.2.2 WRITF, Write An Image To File
16.2.3 ASSIGN, Make A Tape Unit Available For File Input/output
16.2.4 DEASS, Teminate Comection To A Tape Unit
16.2.5 AFOS, Position Tape Unit To An Absolute Position
16.2.6 RPOS, Position Tape Unit To A Relative Position
16.2.7 REWIND, Rewind Tape Unit
17 TIMAG, GREYVALUE TEST IMAGE GENERATION
17.1 GENERAL GROUP INFORMATION
17.2 QOMMANDS
17.2.2 TILS, Generate Lineair Shading Image
17.2.2 TIQS, Generate Quadratic Shading Image
17.2.3 TICB, Generate Chessboard Test Image
17.2.4 TIIH, Generate Test Image With Horizontal Lines
17:2°5 TILV, Generate Test Image With Vertical Lines
17.2.6 TIIN, Generate Test Image With Crossing Lines
17.3.7 TIPFT, Generate Test Image With Symmetric Points
17.2.8 TICC, Generate Test Image With Concentric Circles
page - 6
TIPSFUNC

mullilmus:G)\

T TOE68 ¥O

-CC—

TCL~-IMAGE OVERVIEW OF FUNCTT i
Version 4.3 dated 2gruptah::s 1988 m

1 CONVERT, CONVERT VARIABLE IMAGES
18.1 GENERAL GROUP INFORMATION
18.2 COMMANDS
18.2.1 BLOW, Image Blow-up
18.2.2 REIU, Image Reduce
18.2.3 FBIOW, ating Image Blow-up
18.2.4 SPLIT, Image Split-up
18.2.5 MERGE, Image Merge
18.2.6 WRAP, Pixel Wrap Around
18.2.7 MIRR, Mirror Image
18.2.8 FOTA, Image Rotation
18.2.9 SPIX, Pixel Swapping
18.2.10 DOTS, Graphic Dotting

.2.6 1OOKUP, Table Look-up Based Grey Level Modification
20 POMITP, MISCELLANEOUS FOINT OPERATIONS IN PLACE

21 NEMOIP, MONADIC NEIGHBOURHOOD OPERATIONS IN PLACE

21.2.1 UNIF, Uniform Filtering
21.2.2 IMAX, local Maximum
21.2.3 IMIN, local Minimmm
21.2.4 KUWA, Edge Preserving Smoothing (Kuwahara
21.2.5 PERC, Percentile Filtering '
22 NEMONI, MONADIC NEIGHBOURHOOD OPERATIONS NOT IN PLACE
22.1 GENERAL GROUP INFORMATION
22.2 COMMANDS
TIPSFUNC ol

TCL~-IMAGE OVERVIEW OF FUNCTIONS

Version 4.3 dated 29 september 1988

23

24

27

aNVO, 2-D Convolution

ROBG, Roberts Gradient Edge Detector

SOBEL, Scbel Edge Detector

PREWD, Prewitt Differential Type Edge Detector
PREWT, Prewitt Template Type Edge Detector

22.2.1
22.2.2
22.2.3
22.2.4
22.2.5
22.2.6
22.2.7
22.2.8
22.2.9

24.1

24.2

24.2.1 SIZE, Object Size Estimation

24.2.2 S0S, OGbject Select On Size

24.2.3 HULL, Object Convex Hull Detection
24.2.4 RHULL, Restricted Convex Hull Detection

1 , Thresholding Into Bit-plane
.2 BIABEL, Bit-plane Labeling

|
|

27.2

27.2.1 BSET, Set Bit-plane Value
27.2.2 BCIR, Clear Bit-plane

27.2.3 BEDGE, Set Bit-plane Edges
27.2.4 BLINE, Draw Line Into Bit-plane

TIPSFUNC

multilluuse® :

T TOE68 ¥D

gg

18

TCL~IMAGE OVERVIEW OF FUNCTIONS

Version 4.3 dated 29 september 1988

28 BPMOIP, MONADIC BINARY FOINT OPERATIONS IN PLACE
28.1 GENERAL GROUP INFORMATION
28.2 COMMANDS
28.2.1 BOOPY, Copy Bit-plane
28.2.2 BINV, Invert Bit-plane
29 BPDIIP, DYADIC BINARY FOINT OPERATIONS IN PLACE
29.1 GENERAL GROUP INFORMATION
29.2 COMMANDS
29.2.1 BOR, Bit-plane Logical Or
29.2.2 BAND, Bit-plane Logical And
29.2.3 BXOR, Bit-plane Logical Exclusive Or
29.2.4 BEQV, Bit-plane Logical Equivalence
30 BENMOIP, MONADIC BINARY NEIGHBOURHOOD OPERATIONS IN PLACE
30.1 GENERAL GROUP INFORMATION
30.2 COMMANDS
30.2.1 BEROS, Bit-plane Exrusion
30.2.2 BDITA, Bit-plane Dilation
30.2.3 BOPEN, Bit-plane Open
30.2.4 BCIOS, Bit-plane Close
30.2.5 BPERC, Bit-plane Percentile Filter
30.2.6 BMAJ, Bit-plane Majority Voting
30.2.7 BPSR, Bit-plane Pepper And Salt Removal
30.2.8 BSNGL, Bit-plane Single Point Detection
30.2.9 BSKLP, Skeleton Link-pixel Detection
30.2.10 BSKEP, Skeleton BEnd-pixel Detection
30.2.11 BSKBP, Skeleton Branch-point Detection
30.2.12 BANGLE, Bit-plane Line-angle Datactor
30.2.13 BLIFE, Bit-plane Game Of Life
N BOMOIP, MONADIC BINARY GBJECT OPERATIONS IN PLACE
31.1 GENERAL GROUP INFORMATION
31.2 COMMANDS
31.2.1 BSKEL, Bit-plane Skeleton 5
31.2.2 BCONT, Bit-plane Contour Detection
32 BODIIP, DYADIC BINARY OBJECT OPERATIONS IN PLACE
32.1 GENERAL GROUP INFORMATION
32.2 COMMANDS
32.2.1 BASKEL, Bit-plane Anchor Skeleton
32.2.2 BPROP, Bit-plane Propagation
Page - 9
TIPSFUNC

multihouse

TCL~IMAGE OVERVIEW OF FUNCTIONS
Version 4.3 dated 29 september 1988

a3

M

s

1
2
2.1 BDIST, Distance Transformation

caa BCDIST, Constrained Distance Transformation

2.3 BREMH, Remove Small Holes In Bit-plane Image

2.4 BDSKEL, Bit-plane Skeleton, Based On Distance Transform

MEASURE, MEASUREMENTS IN IMAGES

34.1 GENERAL GROUP INFORMATION

34.2 QOMMANDS

34.2.1 SSIM, Calculate Sum Of Pixel Values

34.2.2 SMIN, Calculate Minimm Pixel Value

34.2.3 SMAX, Calculate Maximm Pixel Value .
34.2.4 SAVER, Calculate Avarage Pixel Value

34.2.5 HISTO, Image Histogram Calculation

34.2.6 HIST2D, 2-dimensional Image Histogram Calculation
34.2.7 PHIST, Plot Histogram On Terminal

34.2.8 BOOUNT, Bit-plane Pixel Counting

34.2.9 DENS, Object Size And Density Measurement

34.2.10 (DENS, Object Size And Calibrated Density Measurement

QOBJECTS, LABELED OBJECTS MEASUREMENTS

35.1 GENERAL GROUP INFORMATION
35.2 CQOMMANDS

35.2.1 SHAPE, Calculate Shape Parameters Of Objects

MISCEL, MISCELLANBOUS OPERATIONS

36.1 GENERAL GROUP INFORMATION

36.2 QOMMANDS

36.2.1 TXT, Generate Text Within Image

36.2.2 QafP, Image Comparison (Maintenance Cammand)

APPENDIX A: BINARY IMAGE FILE FORMAT

A.l FORMAT OF TAPE FILES
A.2 FORMAT OF DISK FILES
A.3 LAYQUT OF THE FILE HEADER

APPENDIX B: SUPFORTED DISPLAY AND FRAME GRABEBING DEVICES

FG100 IMAGING TEQNOLOGY
Dr1451 DATA TRANSIATION VME BUS
Dr2851 DATA TRANSLATION AT BUS

TIPSFUNC

multihouse

T TOE€68 ¥D

Lg

=58
CR 89301 L

&

APPENDIX G

Description of demonstration program using pseudo-language
G.1 Program on PODI

The PODI program running on the PODI workstation is an intermediate between the
TELEPODI setup and the IRIS computer. On the IRIS computer runs also a program
(source name teleiris) which is used by the telescientist to give commands to
and to receive pictures from the PODI computer. As the transfer rate between
PODI and IRIS is only approximately 10 Kbytes/sec while the transfer rate PODI/
VAX and VAX/IRIS is much higher, the pictures are sent to the IRIS computer via
the VAX. The program running on the VAX (source televax) only receives and sends
8 blocks of 1024 bytes. Optional another program can be used which uses the

capabilities of CADISS for compression and decompression of images.

The program on the PODI computer performs the following actions (between
parentheses the C-functions are given):
Accept a connection to a remote host with (accept IRIS)
and wait for anyone to connect.
Then try to connect to the VAX (connect VAX).
If the connection is granted i
Initialise the table motors (initialise table)
Initialise the stake systems (initialise stake)
Initialise the video system (init video)
Set the origin of the stake in the center (set origin)
Repeat the next instructions
Receive a command from IRIS (get IRIS podi_ command)
Perform the requested function (handle podi_ command)

These function can be:
Stake commands:
Make an absolute move in X and/or Y direction

Reset stake to center position

Interferometer commands:

59
CR 89301 L

Move motor 1 during a given time at a given speed

Move motor 2 during a given time at a given speed

Whole schlieren commands:
Move motors 3, 4, 5, 6, 7 or 8 during a given time

at a given speed

Video commands:

Send a picture from camera 1, 2 or 3 to the IRIS

End command:

Exit Repeat Until Loop

Until an end command is received

Set the stake system in the center position with "center stake"
Send an end instruction to the VAX

Close the connections with the VAX and the IRIS

Exit the program

G.2 Program on VAX

The program on the VAX computer performs the following actions (not wusing
CADISS)
Accept a connection to a remote host (net_listen)
and wait for anyone to connect.
Then try to connect to the IRIS (net_connect)
If the connection is granted
Repeat the next instructions
Read 8 blocks of 1024 bytes from PODI (net read)
Write 8 blocks of 1024 bytes to the IRIS (net write)
If less than 8 * 1024 bytes are received
send them anyway in order to keep the communication running
Until an end instruction is received

Close the connections with PODI and the IRIS

81

—~60=
CR 89301 L

6

Exit the program

G.3 Frogram on IRIS 3020

This program on the IRIS computer performs the following actions:
Try to connect to PODI workstation (connect PODI)
Then accept a connection to a remote host (accept VAX)
and wait for anyone to connect.
If the connection with the VAX is established
Initialise a window of 512 * 512 pixels on the graphics screen
Set double buffer mode
Make a colour map

Send a command to PODI to send a picture from camera 1

Using the menu possibilities in the graphics library

the functions as discussed in sections G.l1l are selected.

If the user wants to select a new position for the stake, a cross wire
is drawn in the image which can be moved wusing the mouse. If the
desired position is selected, the position of the cross on the screen
is converted to a command for the stake. For the implementation of

this feature double buffering is used.

