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A B S T R A C T

The fundamental challenge of the origin-destination (OD) matrix estimation problem is that it is
severely under-determined. In this paper we propose a new data driven OD estimation method for
cases where a supply pattern in the form of speeds and flows is available. We show that with these
input data, we do not require an iterative dynamic network loading procedure that results in an
equilibrium assignment, nor do we need an assumption on the kind of equilibrium that emerges
from this process. The minimal number of ingredients which are needed are (a) a method to es-
timate/predict production and attraction time series; (b) a method to compute the N shortest paths
from each OD zone to the next; and (c) two—possibly OD-specific—assumptions on the magnitude
of N; and on the proportionality of path flows between these origins and destinations, respectively.
The latter constitutes the most important behavioral assumption in our method, which relates to
how we assume travelers have chosen their routes between OD pairs. We choose a proportionality
factor that is inversely proportional to realized travel time, where we incorporate a penalty for path
overlap. For large networks, these ingredients may be insufficient to solve the resulting system of
equations. We show how additional constraints can be derived directly from the data by using
principal component analysis, with which we exploit the fact that temporal patterns of production
and attraction are similar across the network. Experimental results on a toy network and a large
city network (Santander, Spain) show that our OD estimation method works satisfactorily, given a
reasonable choice of N, and the use of so-called 3D supply patterns, which provide a compact
representation of the supply dynamics over the entire network. Inclusion of topological information
makes the method scalable both in terms of network size and for different topologies. Although we
use a neural network to predict production and attraction in our experiments (which implies
ground-truth OD data were needed), there are straight-forward paths to improve the method using
additional data, such as demographic data, household survey data, social media and or movement
traces, which could support estimating such ground-truth baseline production and attraction pat-
terns. The proposed framework would fit very nicely in an online traffic modeling and control
framework, and we see many paths to further refine and improve the method.

1. Introduction

Understanding the dynamics of traffic demand over space (from origins to destinations) and time is quintessential for many
applications over the entire transportation domain, from operations, control and management; to planning and policy assessment.
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Since we do not directly observe where everyone is coming from and going to at all times (yet1), we have to estimate time-dependent
origin-destination (OD) flows xk from whatever data and information are available. As it stands, the OD estimation problem is (still)
one of the toughest problems in transportation to date. The most important difficulty in estimating OD matrices is that, particularly
for large congested networks, the problem is severely under-determined, a fact that was already recognized in the early days of the
OD estimation literature (e.g. Van Zuylen and Willumsen, 1980; Cascetta, 1984; Bell, 1991) and is emphasized in virtually all
contemporary OD estimation research as well. To put this problem in a practical perspective, the OD matrix of the planning model for
the Western part of the Randstad (The Netherlands) contains over two million OD-pairs, whereas literally orders of magnitudes fewer
independent equations can be formulated to constrain these OD flows with actual observations, such as OD flow samples, links counts
and speeds, that can be related to the OD matrix. Evidently, when we consider dynamics (e.g. with time steps + = �t k t k, 1, 2, ,
and typically =t 15, 30 or 60min) the situation gets worse. Consequently, solving the OD estimation problem in large networks
requires making a large number of assumptions.

There are essentially two paths to estimating OD matrices. One is a “forward path” in which demand is estimated (predicted)
using models and data that link activity patterns, land use and zone production and attraction potential to the resulting OD flows.
This encompasses a broad research area with modeling approaches ranging from estimating production and attraction potential of
zones in an aggregated way to highly detailed disaggregate activity based models (e.g. Kitamura et al., 2000; Bhat and Zhao, 2002;
Scheffer et al., 2017; Cantelmo et al., 2015; Arentze and Timmermans, 2009). The second path is to “reversely engineer” OD matrices
by assimilating a wide variety of data sources into models that describe the assignment of OD matrices onto actual service and
infrastructure networks and the resulting route choice and network traffic conditions. This is the common connotation of the term OD
estimation and there is a long record of contributions in this area as well (e.g. Van Zuylen and Willumsen, 1980; Cascetta, 1984;
Cremer and Keller, 1987; Bell, 1991; Yang et al., 1992; Ashok and Ben-Akiva, 2000; Zhou and Mahmassani, 2007; Castillo et al.,
2012; Cascetta et al., 2013; Cantelmo et al., 2014; Cipriani et al., 2014; Antoniou et al., 2016 to name a few in chronological order).
Either way, in this data assimilation process, three types of assumptions play a role. First, there are assumptions about the quality and
semantics of the available data (the observations, the evidence). Second, a large number of assumptions are incorporated in quan-
titative models describing the entire chain from activities to traffic flows, which govern how the data presumably relates in math-
ematical terms to OD flows. These are typically behavioral assumptions and assumptions related to how we represent and abstract
transport and traffic flows (micro, meso, macro). Third, there are assumptions involved in the assimilation process itself, and in the
supporting algorithms. This assimilation process may have the form of an off-line (bi-level) minimisation or maximisation problem
(e.g. Cascetta et al., 2013; Lundgren and Peterson, 2008; Cascetta and Postorino, 2001), or of a sequential (recursive) estimation
process (e.g. Okutani and Stephanedes, 1984; Van Der Zijpp, 1997; Zhou and Mahmassani, 2007; Djukic et al., 2012; Carrese et al.,
2017). Below we briefly overview the three categories of assumptions outlined above and how they—in general terms—affect OD
estimation quality. We then use this review to motivate the approach we choose in this paper, which we outline in subsequent
sections. Note that the scope in this paper is car traffic, and, in terms of the modeling literature we discuss, the “reverse engineering”
path to OD estimation.

1.1. OD estimation assumptions: observations

Let us first distinguish between observations that can be directly (i.e. in closed form) related to specific OD flows, and those that
can not. The first category of such direct observations are sampled OD matrices obtained from surveys (e.g. Cascetta, 1984; Bierlaire
and Toint, 1995) or travel diaries (e.g. Scheffer et al., 2017). Increasingly, slightly larger samples can be obtained through vehicle (re)
identification systems (e.g. Kim et al., 2014; Camus et al., 1997; Barcelo et al., 2010; Zhou and Mahmassani, 2006) or data from
mobile phone or GPS based movement traces (e.g. Ge and Fukuda, 2016; Alexander et al., 2015; Zin et al., 2018; Gadzinski, 2018;
Nigro et al., 2018). Such OD samples xk

obs are then typically used to construct a prior OD matrix, e.g. =x xk k
obs, with a possibly OD

flow specific scaling factor. The standard way of exploiting the information in what are called prior OD matrices is to assume that xk

is informative of the spatial (in the dynamic case: spatiotemporal) structure of the (unknown) OD matrix xk. The widely used (static)
formulation of the OD estimation problem (e.g. Cascetta and Marquis, 1993)

= +f fx x x y x yargmin ( , ) ( ( ), ),x 1 2 (1)

exploits this assumption by adding a distance function f x x( , )1 to the overall objective function, that gently forces the OD estimation
solution to minimize the distance between the final estimate x and the prior matrix x—the second term f2 penalizes errors on
reconstructing the observations y using the OD estimate, which we discuss below. Clearly, a proper choice of the distance function f1
is crucial. Standard distance metrics (L2 norm or RMSE) may not steer the estimation in a direction that favors similarity in spa-
tiotemporal structure, for which other metrics such as the structure similarity index (SSI) may be more appropriate (Djukic et al.,
2013). Regardless of how f1 is formulated, the validity of the underlying assumption (that x has a similar spatiotemporal structure as
x) depends on the representativity of the sample for the population, i.e. whether the traveler traits (personal characteristics, income,
car ownership, preferences, motives, etc.) and the corresponding destination choices in the sample represent a balanced cross section
of the population (Tolouei et al., 2017). With a large enough sample, survey and diary data collection efforts, can be—to a de-
gree—controlled for representativity. This is more difficult in the case of movement traces, which typically come (to the researcher)
without these contextual and privacy sensitive data (Ge and Fukuda, 2016). There is a clear and large potential of using both active

1 Unfortunately from a scientific perspective, but fortunately from a societal perspective.
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and passive mobile data for inferring activities, origins, destinations, paths and modes from such movement traces (e.g. Chen et al.,
2014; Widhalm et al., 2015; Castro et al., 2013; Yang et al., 2017). Cheng et al. (2014) convincingly show that mobile traces may
improve determining activity patterns, however, it is unclear whether, and under which circumstances, the (much) larger sample
sizes obtained with these data indeed eradicate a possible representativity bias in the resulting (prior) OD matrix, which would
invalidate the assumption that the spatiotemporal structure of a prior OD matrix is fully informative for the population OD matrix.

Under two very strict assumptions, also traffic counts (at cross sections in the network) can be directly related to specific OD
flows.

=y a x ,d
i j k

ijk
d

ijk
, , (2)

where aijk
d depicts an assignment matrix that maps the portion of each OD flow xijk between i and j departing at period k to the count

location d in period . The fundamental problem is that counts in or downstream of congestion are not informative of demand, but of
(discharge) capacity (Frederix et al., 2012). More precisely, Eq. (2) is valid only and only if (a) yd is observed in uncongested
conditions; and (b) no OD path flow xijk

n experienced a saturated bottleneck upstream before passing cross section d. These as-
sumptions are typically violated in even mildly congested networks. Under such circumstances the counts have no direct linear
relation to specific OD flows. Nonetheless, they are still part of an emerging traffic pattern that may be typical for a particular
spatiotemporal OD pattern. As a result, there may exist a complex and nonlinear relation between those counts and the overall
spatiotemporal OD pattern or perhaps a specific subset of OD flows. The same can be said for many other observations such as
densities, speeds, travel times, realized paths, etc. Also these are (highly) non-linearly related to the prevailing dynamic OD pattern or
a specific subset of OD flows, however, the form of this relationship is way more complex than a simple linear sum as in Eq. (2). A
possible alternative interpretation is that aijk

d in (2) depicts a probability (Yang et al., 2017) that is governed by a nonlinear process
that maps the OD flows to the network. This naturally brings us to modeling assumptions.

1.2. OD estimation assumptions: modeling

The unobserved OD pattern xk, in combination with the available network (coded in a graph G); prevailing traffic control uk;
route-choice and driving behavior of travelers ( k, and k); and the external conditions k (e.g. weather, information) affecting these,
ultimately result in an (at least to a degree) observable traffic supply pattern yk, in terms of flows, speeds, travel times, etc. The
natural way to model this complex and non-linear mapping x y :k k

n m from OD pattern to supply pattern is to use a traffic
simulation model of the form

=y x u( , , , , )k
sim

k k k k k (3)

in which may represent any micro-, meso, or macroscopic traffic simulation model, and ,k k represent assumptions (mechanisms
and estimated parameters) related to route choice and driving behaviour. Clearly, the linear mapping between counts and OD flows
in Eq. (2) is a special case of (3), which is valid only, and only if, route choice is fixed and known, and the network is uncongested (i.e.
has no capacity constraints), which means that under most conditions more complex simulation models are required. In many cases
where such a simulation model is used, an additional assumption is added, which pertains to the existence of a (stochastic) equi-
librium state. Whether and under which circumstances (for which purposes) the notion of equilibrium is a valid assumption is highly
contested, due to the many open research questions related to the mechanisms with which travelers make choices and how rational
these really are (Di and Liu, 2016). To the best of our knowledge, no conclusive empirical evidence has been reported that supports
the existence of particular types of equilibria in actual large traffic networks.

As mentioned above, the standard approach to solve the OD estimation problem is to use the same DTA machinery to reversely
engineer dynamic OD patterns from traffic supply data in (2), and by extension, to use the same large amount of assumptions, e.g. the
notion of equilibrium (or not); the assumptions specified in ,k k; and the assumption that all circumstances k, and control uk

affecting route choice and driving behavior are known. In this reverse estimation problem, then iteratively an OD pattern is sought
that is consistent with (a) the observed data; and (b) all the (behavioral) assumptions discussed here. Finally, there are also (ne-
cessary) assumptions pertaining to the data assimilation methodology, that may affect OD estimation quality.

1.3. OD estimation assumptions: solution algorithms

In illustration, we discuss sequential methods. Okutani was one of the first to formulate the time-dependent OD estimation
problem (Okutani and Stephanedes, 1984) in state space form such that it can be recursively solved by a Kalman filter (KF), and many
authors have followed along a similar path (e.g. Van Der Zijpp, 1997; Ashok and Ben-Akiva, 2002; Zhou and Mahmassani, 2006;
Antoniou et al., 2006; Djukic et al., 2012; Carrese et al., 2017; Lu et al., 2015; Cascetta et al., 2013; Barcelo et al., 2013; Marzano
et al., 2018). The central idea of these approaches is a formulation in state-space form, that is,

= ++ Fx x w ,k k k1 (4)

= +Ay x v ,k k k (5)

in which the dynamic Eq. (4) represents a linear (autoregressive) process driven by matrix F, and observation Eq. (5) refers to the
assignment mapping (as in (2)), in which A depicts the assignment matrix. The appeal of the KF approach is that it offers a sequential
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estimation approach that is optimal in terms of error variance. However, the catch lies in the noise terms wk and vk, which, to
guarantee optimality, are assumed to be drawn from independent zero-mean Gaussian noise processes with known co-variance
matrices. Put differently, the KF is optimal if both process and observation models are linear and unbiased and the errors they make
come from known Gaussian white noise processes. Clearly, these assumptions are typically violated for numerous reasons (biased
models, non-negativity flows, autocorrelation in the errors). As a result, many of the “KF approaches” to OD estimation propose ideas
to either reformulate the problem, so that a KF approach is better justified—e.g. Ashok and Ben-Akiva (2000, 2002) propose an OD
state vector that consists of deviations between estimates and prior OD flows; Djukic et al. (2012) also propose a reduced state vector
(obtained through PCA) and propose a “coloured KF” to address autocorrelated errors. Alternatively, more advanced data assim-
ilation methods are proposed to relax some of the highly restrictive assumptions, e.g. Carrese et al. (2017) propose a variation on the
ensemble Kalman filter to alleviate the need for an explicit assignment matrix. In conclusion, whatever the (online or offline) solution
methodology chosen, implicit and explicit data assimilation assumptions are necessary to solve the OD estimation problem, and the
literature offers many great ideas to this end.

1.4. Motivation and rationale of a new approach

From the brief overview above, it is clear that to solve a severely underdetermined problem like OD estimation, one has to make
many assumptions related to using the data, the models that relate these data to the unobserved OD flows, and the assimilation/
solution methodologies to derive the OD flows from the combination of those data and models. However, it is not self-evident how
many of those assumptions we really need. What is evident, is that the available data (the evidence) should dictate the amount of
assumptions needed, and that we should choose methods that are parsimonious, since we generally lack the information to even
estimate the magnitude and direction of the possible biases caused by (unnecessary) assumptions.

Now consider the case in which we have speeds either on each link, or in the form of so-called 3D supply patterns—speed averages
over regions of the network over space and time (we return to this in the next section). In this case path travel times and consequently
also all (or a selection of say N) shortest paths can be derived between any given OD pair. This implies we do not need an iterative
network loading process to compute travel times over the available paths between origins and destinations, since we already have
those travel times. It doesn’t matter for the OD estimation task whether this pattern of path travel times represents an equilibrium
state, and what the precise nature of this equilibrium is. What matters is that these were the actual realized travel times, given the OD
matrix we seek to find. To do so, we propose an idea that follows the same rationale as Cascetta et al. (2013), in which “an OD
estimator is proposed based on the assumption of constant distribution shares across larger time horizons with respect to the within-day
variation of the production profiles, leading to an estimator which improves dramatically the unknowns/equations ratio”. We (can) go a step
further, since we have available all realized travel times over all (shortest) paths. We will show in this paper that the assumptions we
need to specify are (a) how many of the shortest paths were actually used for each OD pair; and (b) the proportions of each OD flows
over these (N) shortest paths. The latter is, of course, a behavioral assumption, but at the macroscopic scale (a path flow proportion),
and not in the form of a detailed route choice model with (elaborate) trade offs.

However, these two assumptions about the distribution of traffic over the network are not sufficient to estimate the underlying OD
matrix, volumes are needed as well. To this end, we can use flow counts on those locations that meet the two strict requirements
mentioned under Eq. (2). In the remainder of this paper we will show that given production Pik (sum of all outgoing OD flows of zone i
during period k) and attraction Ajk (sum of all incoming OD flows of zone j during period k) are observable, the two distributional
assumptions and counts are sufficient to reliably estimate the full OD matrix in smaller networks. For larger networks, however, we
require additional constraints. We will show these can be derived directly from the data by using principal component analysis (PCA).
Through PCA, we are able to find upper bounds for the so-called “dominant” OD flows, i.e. those OD flows that exhibit the largest
dynamics. With these constraints then finally, also the underlying complete OD matrix can be estimated.

1.5. Paper outline

To this end, Section 2.1 describes the overall estimation framework; Section 2.2 the basic estimation logic from production and
attraction totals to OD flows; Section 2.3 the PCA method to constrain the solution space for large networks; and Section 2.4 the
methodology to estimate the attraction and production totals from so-called 3D supply patterns. In Section 3 we outline how we
assess the method. We do this on two networks: a small network with which we vary extensively with the assumptions in our method;
and a larger network to demonstrate the feasibility. These results are presented in Section 4. We offer conclusions and a discussion on
further research avenues in Section 5.

2. Methodology

For convenient reference, the notation used for recurrent variables in the methodology is first presented as follows:

xijk
n path flows between v v Z,i j for travelers departing in period k with = �n N1, , ijk paths

xijk OD flows between v v Z,i j for travelers departing in period k
Pik production (sum of all outgoing OD flows) of zone i during period k
Ajk attraction (sum of all incoming OD flows) of zone j during period k
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TTijk
n travel time for vehicles traversing path n between node i j, departing in period k

ijk
n route proportion

yk
m link count for link em in period k

FV speed-flow based (SF) feature vector
FV speed-flow-topology (SFT) based feature vector

2.1. Framework: OD estimation with minimal assumptions

Fig. 1 outlines the main components of our framework. We use two data sources: 3D supply patterns—either in the form of the
underlying “raw” link flows and speeds, or in the form of a condensed 3D consensual pattern (Lopez et al., 2017). The method allows
for inclusion of additional data sources that provide more evidence for either the production and attraction patterns, or for the
resulting OD matrices and/or path flows. The overall logic now is as follows. Assume that for a given set of zones we can estimate/
predict production and attraction time series using the 3D speed and flow patterns, possibly augmented with other data sources and/
or models. Fig. 1(a) indicates that in this paper we will use machine learning techniques for this purpose, but any other method would
suffice as well. With the 3D speed patterns we also compute N weighted (by travel time) shortest paths (Fig. 1(b) and (c)), where N
is an assumption that reflects our belief into how many route alternatives—on average—were used for each OD pair. This assumption
is likely topology and circumstance dependent. The second assumption we make (Fig. 1(e)) is that the proportion of each OD flow on
each of the N paths is inversely proportional to the (realized) travel time along that path, where we do take path overlap into
account. We finally constrain the path flow solution space by using all the admissable link counts (Fig. 1(d))—this will be elaborated
further below. We explain our methodology in three parts: (I) the basic rationale of the method; (II) a dimension reduction technique
(PCA) required to make the approach scalable for large networks (Fig. 1(f)); (III) an example approach to infer production and
attraction time series from 3D supply patterns using machine learning.

2.2. Part I: from production and attraction patterns to OD matrices

Consider a directed graphG V E( , ) with nodes (vertices) = �v V i N, 1, ,i v and links (edges) = �e E m N, 1, ,m m. The set Z V
describes the NZ origin and destination zones in this network, and a dynamic OD matrix xijk describes the OD flows between v v Z,i j

for travelers departing in period k. These OD flows are distributed over a set Pijk of Nijk paths = � �p e, ,ijk
n

m resulting in path flows

xijk
n , with = �n N1, , ijk. Our OD estimation method is based on utilizing three data sources; these are: production and attraction per
zone; realized travel times on all routes; and (a limited number of) link counts. For now assume that we can either directly measure or
estimate the production (sum of all outgoing OD flows) of zones i and the attraction (sum of all incoming OD flows) of zones j during
period k (in Section 2.4 we outline a machine learning method to do so). These data then add two constraints to the path flows

=P xik
j n

ijk
n

(6)

=A xjk
i n

ijk
n

(7)

Secondly, consider we have available realized or estimated link speeds with which we can determine for every path n the travel
time TTijk

n for vehicles traversing path n between node i j, departing in period k. Note that we define the travel time for vehicles
traversing path n between node i j, arriving in period k by TTijk

n . We employ the conventional assumption that the distribution of OD

Fig. 1. Framework of the method.
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flows over these paths follows the Logit model using the realized travel times as the key explanatory variable, that is,

= e

e
ijk
n

TT PS

n

TT PS

1

1

ijk
n n

ijk
n n

(8)

where ijk
n is the route proportion; and PSn the path size factor defined as follows (Ben-Akiva and Bierlaire, 1999):

=PS l
L

1n

a

a
n

n a
n (9)

where la is the length of link a L, n is the total length of path n and a
n is the link-path incidence variable which equals one if link a is on

path n and zero otherwise. The path size factor inclusion in Eq. (8) ensures that paths are penalized based on the extent to which they
overlap with other paths included in the set of considered paths. This formulation of the flow distribution assumption is inspired by
the path size logit (PSL) model for determining individual route choice probabilities. Accounting for the effect of path overlap is
especially important in the case of larger (and particularly in grid or triangular) networks, where the number of available paths
between zones i j, increases exponentially. The key idea of our approach is that we cut off the number of considered paths, and
compute the path proportions in (8) for a set Pij of N Nijk ijk shortest paths. This implies we now have an approximation of the OD
matrix that reads

=
=

x xijk
n

N

ijk
n

ijk
n

1

ijk

(10)

The quality of this approximation depends on the fraction of the OD flow that was indeed distributed over the cut-off set of paths
Pij ; we return to this point below. By definition, we can also write

= �x x i j k n N, , , , , and 1, ,ijk
n

ijk
n

ijk ijk
(11)

Finally, consider we have - for a limited portion of the links - counts yk
m that are informative of traffic demand, or more precisely

of those path flows that go through link em in period k. This is the case if and only if (a) em is not congested in period k, and (b) none of
the links upstream of em in the set of paths p P l k TT i j n, , , ,ijl

n
k
m

ijk
n m (i.e. all paths that traverse em during period k) were

congested. TTijk
n m depicts the partial arrival travel time (i.e. up to link em) along path pijl

nwhen traversing link em in period k. These
counts now add a fourth constraint on the path flows, that is,

=y xk
m

i j p P
ijl
n

ijl
n

k
m (12)

Eqs. (6), (7), (11), and (12) constitute a system of equations for the path flows and via (10), they can be defined based on OD flows
as formulated in 13, 14, 15. A full derivation of the system of equations is provided in Appendix A. This system is either under-
determined or overdetermined (or in rare cases full rank), depending on the available link counts, and the choice for the number of
shortest paths Nijk.

+ �+ + �=x x Pi k ijk ik1 (13)

+�+ +�=x x Ajk ijk jk1 (14)

+�+ +�=x x yk
n

k ijk
n

ijk k
m

11 11 (15)

This system of equations can be solved by reformulating it as a matrix equality

=C Bx x, 0; (16)

where x is shorthand for the OD matrix x C;ijk contains ones (LHS of Eqs. (6), (7)) the proportionality assumptions in Eq. (12); and B
the RHS of Eqs. (6), (7); and the LHS of Eq. (12), respectively. Matrix equality (16) can be solved using constrained linear least
squares solution (Altman and Gondzio, 1999) with lower bound set to 0 to ensure a non-negative solution. In case a non-negative
solution does not exist, an ordinary least square solution is computed and the negative values of the OD matrix are ignored when
computing the estimation error.

2.3. Part II: OD estimation in large networks: reducing the solution space through PCA

Since the number of unknown OD flows grows quadratically with the number of (production and attraction) zones, and the
number of rows in matrix Eq. (16) only grows linearly in the number of zones (6) and (7) and linearly in the number of link flow
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constraints (12); the linear system in (16) becomes (severely) under determined for large networks with too few link flow constraints.
To solve the estimation problem for such large networks, we make use of the results in Djukic et al. (2012) and Zhou and Mahmassani
(2007) which suggest that, loosely speaking, the largest part of variance in demand flows can be attributed to a few dominant
(temporal) patterns, that essentially reflect (daily, weekly) seasonal patterns; large deviations from those patterns, and random
fluctuations around these patterns (Djukic et al., 2012). Our assumption is that a similar phenomenon may hold for the production
and attraction flows Pik and Ajk, and that—as in Djukic et al. (2012)—principal component analysis (PCA) can be used to (a) reduce
the dimensionality of these time series and (b) as a result help us figure out which production and attraction zones Pik and Ajk are
sufficient to reconstruct a corresponding reduced set of (dominant) OD flows xijk from which in turn (c) the complete OD matrix can
be inferred. Put simply, because we expect a limited and predictable set of dynamical demand patterns, we may be able to infer these
from just a limited set of production and attraction patterns.

We briefly outline the main rationale here; for further details on the PCA method, refer to e.g. Jolliffe (2002). Consider the time
series of attractions � �A[ , , ]k

T , with = �A A A[ , , ]k k N k1 Z , where NZ is the number of OD zones and Ak
T is the column vector of Ak. Let

µA, and A depict the mean and covariance matrix of Ak, and the matrix of eigenvectors, so that =A
1 diagonalizes the

covariance matrix; i.e. is a diagonal matrix with the eigenvalues of A. With these eigenvectors and values, we can now express a
set of new orthogonal uncorrelated variables called “principal components”. Ranked in order of eigenvalues i (diagonal element i in
); these principal components = = �p A i N, 1, ,i k i Z , with i the eigenvector (column i in ), then depict those components in the

data that explain most variance in the data in decreasing order. What this means is that if for example the first 3 principal components
explain say 95% of the variance in the Ak time series, we can use just these 3 components to reconstruct the entire NZ dimensional
time series Ak with a loss of only 5% in terms of variance, which would entail a reduction in dimensionality of N3/ Z! Note that the
columns in represent the eigenvectors of A, the rows in can be interpreted as the weights with which each original dimension in
the data (i.e. the production or attraction of a particular zone) contributes to each principal component. We apply the same (PCA)
process to the time series of production � �P[ , , ]k

T . As a result, we can find the zones that correspond to the largest dynamics in both
production and attraction and use the union of these selected zones for constructing a (strongly) reduced OD solution space.

Consider, for example, we find 3 “dominant” production zones and 2 dominant attraction zones. We can then estimate the 6 OD
flows between this set of selected zones (we explain how below). These OD flows are upper bounds, because in computing them, we
disregard path flows (12) between zones that are not in the “selected” set. In turn, these upper bounds can be used to constrain the
system of equations in (16), which may now be solvable. We propose the following procedure:

1. Compute the principal components of Ak.
2. Select the np principal components that explain X % of the variance, with X an arbitrary threshold (e.g. 95).
3. Use a cutoff threshold 0 1 for the correlation coefficient in to determine the selection of original dimensions (zones) in Ak

we consider are most relevant (i.e. are associated with most variance in the data).
4. Construct a reduced set of OD flows xijk

a for Ak using the selected zones.
5. Repeat steps 1–4 for Pk to construct a second reduced set of OD flows xijk

p for Pk

6. The union of xijk
p and xijk

a constitutes the final reduced set of OD flows x (shorthand for xijk)
7. Filling in x in (16) now leads to an inequality, since B will also contain OD flows not in x . As a result we must now solve

x xC B, 0 (17)

8. With (17) solved (i.e. x are now known), we may be able to solve the “original” matrix equation in (16) using x as upper bounds
for the corresponding set of OD flows in the full OD matrix +x , i.e.

+ +x x x x
C B

where and
x

x
x x

,
0,

, (18)

2.4. Part III: estimating production and attraction patterns

Let us emphasize on beforehand that deriving the production and attraction time series is a (replaceable) component in the OD
estimation method. We may estimate such production and attraction patterns from demographic data or any other source using any
appropriate method. In this section, we propose a machine learning approach to derive the relationship between demand and the
(3D) supply patterns (Fig. 1(a)). The overall idea for this approach to predict production and attraction patterns has its seeds in
previous work on estimating so-called 3D (network time) supply patterns (Lopez et al., 2017; Lopez et al., 2017) using speed data
available in urban networks. In (Lopez et al., 2017) we show (a) that the network of Amsterdam over 35 days can be synthesized into
only 4 such 3D patterns with each 9 clusters (a tremendous reduction in data that nonetheless reveals underlying regularity patterns);
and (b) that these patterns successfully predict the travel time of 84% of all trips with an error margin below 25%. The hypothesis
here is that such 3D supply patterns (that span (sub) networks and multiple time periods) are also informative of demand patterns.

We now seek a way to represent the traffic dynamics of the network with compact yet insightful feature vectors. We use two
different approaches to build these feature vectors. The first is a Speed-flow based (SF) feature vector, in which we simply use the raw
speed and flow time series in the network, and concatenate these as a (high dimensional) multivariate time series. The second is a
Speed-flow-topology based (SFT) feature vector. In this case we use a condensed 3D pattern we build using the methodology in Lopez
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et al. (2017) and add topological information to it. This is a much lower dimensional feature vector. In the SF based approach, the
supply information is formulated as a time series of speeds and flows, that is

= �FV u y p q V k n{ , } ; , and {1, , },pqk pqk (19)

where for a link between node p q, for period =k u u u, pqk pqk pq
max is the speed relative to the speed limit; ypqk the link flow; and n the

number of time periods considered for incorporating the time dynamics of the supply information. The relative link speed is used
since the network contains links with different functional road classes with different speed limits. Note that the SF based feature
vector formulation does not contain any topology information or any relationship between the static OD zones Z in the demand space
and the speeds or flows in supply space.

In order to incorporate spatiotemporal dynamics in the supply data, we construct the alternative SFT based feature vector using
the 3D dynamic clustering proposed by Lopez et al. (2017). The 3D clustering provides a compressed form to represent spatio-
temporal dynamics in a supply pattern. The 3D clustering can be summarized in the following steps:

1. Spatiotemporal link speeds are clustered using datapoint clustering technique - we use Growing Neural Gas (Martinetz et al.,
1991) to do this.

2. The unconnected clusters undergo post treatment to generate connected clusters that minimize the speed variance within the
clusters and maximize speed variance between the clusters.

3. Each connected 3D cluster is represented by a single speed (mean speed of the 3D cluster) and flow (mean flow of the 3D cluster)
values.

The result is a very compact representation of the same spatiotemporal dynamics contained in the raw speed and flow time series,
but now in the form of a few 3D zone variables (average speeds and average flows). The OD zones are conventionally designed by
experts with prior knowledge about the infrastructure network and using additional information such as surveys, socio-economic
data, etc. (Cascetta, 2013). The OD zone is connected to the infrastructure network via unweighted directional virtual links known as
connectors which are also defined by experts. A key missing ingredient is the relationship between the OD zones Z and supply space.
We incorporate this relationship between these two different spaces using the 3D zones Z in supply space with

= � �FV u y i m j n{ , , , , } ; {1, , }and {1, , },ij i i u y
2 2
i i (20)

where m is the number of 3D zones in the supply space and n is the number of OD zones in the demand space. ui is the average link
speed of the 3D zone i for all time periods k y, i is the average flow, u

2
i is the speed variance within the 3D zone i and y

2
i
is the flow

variance. ij is the zonal incidence variable that represent the relationship between the 3D supply zone and OD zone given by

=
=

i Z j Z, ,ij
k

t

ijk
1 (21)

where ijk is 1 if the 3D zone i intersects with OD zone j at time period k and 0, otherwise. t is the total number of time periods in the
3D zones. A 3D zone i intersects with OD zone j if a connector (that connect the OD zone to the supply space) directly connects that
OD zone to any node or link in that particular 3D zone. This is under the assumption that the OD zones and the connectors between
the supply space and OD zones are known. Thus the ij represents the topological relationship between the supply and demand space,
ui corresponds to the zonal speed, yi the zonal flow, u

2
i the zonal speed variance and y

2
i the zonal flow variance. These attributes

together define the SFT based feature vector FV . Additional attributes can easily be incorporated to extend the definition of the FV .
There is no known relationship between supply patterns and productions and attractions and hence supervised learning is needed

for estimating that relationship. Assuming that the feature vectors FV(19) and FV (20) that represent the supply space have non-linear
relationships with the demand space (productions and attractions), we choose a non-linear machine learning approach to model this
relationship - an artificial neural network (ANN). ANN is trained with the feature vectors (FV and FV ) as the input and some ground
truth for production and attraction as the output. We choose a standard feed-forward model with three layers: an input, hidden and
output layer, with linear output functions and the well known hyperbolic tangent sigmoid function as activation functions for the
neurons in the hidden layer (Vogl et al., 1988). Two separate neural network models are trained (with feature vectors FV and FV as
input vectors respectively) to predict the two demand variables (production and attraction respectively), resulting in a total of four
neural networks.

In order to minimize model complexity (i.e. keeping the number of weights as small as possible) while retrieving the relevant
relationship within the data, we use a relatively small neural net with just 5 hidden neurons. We did not perform an extensive method
to converge to the “optimal” number of neurons in our models, but rather used a heuristic trial and error method. It turned out that
SFT models did not converge with 1–4 neurons, but both SFT and SF did with 5, yielding the simplest still effective neural net design.
Our assumption is that since traffic knowledge has been incorporated into the feature vector, the correlations with the demand and
supply space will be more evident. Since the feature vector contains different types of measurements with different units, we nor-
malize the feature vector in order to avoid biasing the neural net against a particular feature dimension or data source. The neural
network models for FV and FV are given in Fig. 2.

In this work, we use Levenberg-Marquardt optimization (Marquardt, 1963) for updating the weights and bias values of the neural
network (Hagan and Menhaj, 1994). To avoid overfitting we choose a (time-consuming but robust) leave-one-out strategy for the
training and testing. This strategy works like this: given a dataset of say 100 elements (inputs and targets), 99 are used for training
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and validation to construct the neural network whereas predictive performance is done on the remaining 1 data element. This is
repeated iteratively for all the elements in the data set to achieve a robust prediction accuracy.

3. Experimental setup

3.1. Data and networks

As outlined in Fig. 1, our method consists of two main components. The first is to predict time series of production and attraction
for each demand zone; and the second is to use these predictions to estimate the OD matrix. We demonstrate and validate both
components with two networks. First, a relatively simple toy network depicted in Table 1 (middle column), in which nodes A, B and C
represent both origins and destinations. This results in 6 OD pairs, each of which has between 2 and 6 (reasonable) routes over which
the OD flows are distributed. Note that the graph is directed; however, we use the same link number (1–6) to refer to both directions.
We simulate this simple network in Aimsun Next (Aimsun, 2017) with a ground-truth OD matrix such that (mild) congestion occurs at
the merges (i.e. upstream of some nodes). The entire framework is also applied to a much larger and (with actual data) validated
network of Santander, Spain, to demonstrate its scalability in terms of estimation quality and in its ability to reconstruct the correct
spatiotemporal structure of the OD matrix. The properties of the network and data availability of the toy network and Santander
network are described in Table 1. Note that a zone as defined here may contain multiple origin and destination nodes (sources and
sinks) that all connect to different links in the infrastructure network. In both networks the simulated data sufficiently cover supply
space, that is, we have a sufficient spread over congested and uncongested conditions, varied over different parts of both networks.
This assures the generalization power of the method for different traffic states.

Fig. 2. Neural network model with 5 neurons in the hidden layers for (a) SF (with FV) based predictions (b) SFT (with FV ) based predictions.

Table 1
Data description for the case study - toy network and large scale Santander network.

Properties Toy Network Santander Network

Network Description

Network Size (Number of links, Number of nodes) (40, 25) (4205, 1630)
Number of OD Zones 3 115
Supply Aggregation 5min 5min
Demand Aggregation 10min 5min
Supply Time Periods 288 timeslices for 24 h 48 timeslices for 4 h of peak period
Demand Time Periods 96 timeslices for 24 h 48 timeslices for 4 h of peak period
Data Availability 7 days 7 days
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A key assumption in this study is the size Nijk of the path set Pij between the OD zones for computing the proportionality (Eq. (8))
and the time dependent travel time for the OD estimations. Although this is not necessary for the method, we choose one cut-off value

=N Nijk for all OD pairs and departure time periods within a single scenario and vary with N over different scenarios (see below).
We emphasize, however, that in principle Nijk may be origin, destination, or OD specific and/or even time dependent. We return to
this point in the conclusion and discussion section. For the toy network, it is viable to compute all the possible paths between each of
the OD zone pairs. The paths between two zones i j, are computed by finding the paths between centroid of a given zone (source) to
centroid of the other zone (sinks). This computation can easily explode when the network is larger. For example, using a simple
Dijkstra algorithm to find the top 10 shortest paths between the 115 OD zone pairs in Santander requires a computation time of
approximately 2 weeks on a decent 64-bit windows machine. There are different approaches for speeding up this computation, such
as using link elimination to find alternative routes. In this study, for the toy network, we use all the possible paths between the OD
zones; for the Santander network, we use the top 10 shortest paths between a given zone to the target zone.

3.2. Scenarios and performance measures

We conduct an extensive validation study on the toy network for the two components of our method described in Sections 2.2 and
2.4 using different scenarios. Firstly, we assess the quality of estimated OD matrix as a function of the accuracy with which we predict
production and attraction. Prediction accuracy for all the scenarios in this study is measured using mean absolute percentage error
(MAPE) given by

=
=

M
n

x x
x

1
100%,

t

n
t t

t1 (22)

where xt is the ground truth and xt is the predicted value. We consider 11 equally distributed prediction error bins from 0 to 100%to
analyze this.

Second, we vary with the time aggregation of the production and attraction time series, and as a consequence of the dynamic OD
matrix. For the feature vector that contains topology information, we use 3D zones through clustering. One of the key parameters for
building these 3D zones is the number of clusters relative to the size of the network. A third scenario we consider is hence the number
of clusters or 3D zones we consider. Fourth, we vary with the number of paths N between the OD zones. The optimal choice for N
will likely heavily depend on the network topology but a thorough sensitivity analysis can provide insight into the number of paths
required for fully describing the OD space of that network. We consider six “N scenarios”: =N 1, 2, 3, 4, 5, 6for the toy network
and 10 for Santander network.

Finally, link counts are necessary to solve the system of equations for the OD estimates. The link counts are available for all the
links in the network for every 5min. However, it is more important to have the counts at the right locations than having more counts
at irrelevant locations. For the toy network, we study three link-count availability scenarios:

1. counts on the outer ring (links 1, 2, 3 in Table 1),
2. counts on the inner ring (links 4, 5, 6 in Table 1),
3. counts on both inner and outer ring (links 1–6 in Table 1).

This will shed some light on the sensitivity of the OD estimation in the absence of such data. Thus, with the 3 link count scenario
and 6 N scenarios, we have a total of × × =3 6 11 198scenarios for the OD estimation in the toy network. For the Santander
network, there are 334 detectors available and we use the link counts at these locations for the OD estimation error analysis. Thus,
there are × =10 11 110scenarios for the Santander network with 10 shortest paths. A summary of all the parameters and scenarios
used in the study is given in Table 2.

In the next section, we discuss the results of the two methods, that is, production and attraction prediction and OD estimation. To
this end we give an extensive sensitivity analysis of different parameters in both the methods for the toy network along the di-
mensions in Table 2. A thorough sensitivity analysis is not performed on Santander. The aim here is to show that the method is
scalable and that the assumptions are valid for different networks as well.

Table 2
Summary of the parameters used in the scenarios.

Parameters Toy Network Santander Network

FV X
FV X X
Aggregation X
Number of clusters X
Number of shortest paths X X
Link count availability X

P. Krishnakumari, et al. Transportation Research Part C 113 (2020) 38–56

47



4. Results and discussion

4.1. Production and attraction prediction

Before discussing prediction quality, we first discuss the differences between applying the two feature vectors we introduced in
the previous section. Fig. 3 illustrates the difference between the two feature vectors FV and FV (Section 2.4) for a relatively short
period of 4 time periods, see Fig. 3(a). The color represents the relative speed (negative values imply a lower speed). Note that the
relative speed of the toy network for the whole data set range from < <u60 km/ h 30 km/hpqk . The associated 3D clustering results
for the 4 example time periods into 6 3D zones are shown in Fig. 3(b). The zones are clearly connected in space and time and each
zone can be represented by a single relative speed (and an average flow computed for the same links). Fig. 3(c) and (d) show
representations of the feature vectors FV and FV respectively. The feature vectors are clearly different from each other for the same
traffic state. Obviously, FV is much more compact than FV—it contains 6 speeds, flows and variances of both, and an incidence vector
depicting how the six zones connect to the demand zones, in total 42 dimensions. The dimension of FV is much larger (over 320), and
is a function of the number of time periods considered. Whereas the dimension of FV will explode with increasing number of time
periods; the dimension of FV will remain the same.

Fig. 4 shows a single instance of the production and attraction prediction accuracy using the FV and FV feature vectors re-
spectively. Both the approaches have a median prediction error of 17 18%. Closer inspection shows that particularly in predicting
production the FV results follow the ground-truth more closely (Fig. 4—a result we found consistently over the various scenarios. We
can safely conclude that it is advantageous to construct a feature vector using the 3D supply patterns developed in Lopez et al. (2017).
By encoding mean and variance of 3D cluster speed and flow in combination with the topological connection of the 3D clusters to the
demand zones, this reduced feature vector FV offers a parsimonious abstraction of the entire spatiotemporal supply dynamics of a
network. It turns out that the neural net is quite able to correlate FV with production and attraction dynamics, and it does so equally
well or better than with the much larger feature vector FV, in which simply a time series of all link speeds and flows are used. In the
ensuing, we show result with the reduced feature vector only.

Fig. 3. Feature vector representation for SF based predictions (a, c) and SFT based predictions (b, d). (a) Speed for 4 time slices. Red represents high
speed difference. (b) 3D zones for 4 time slices (c) Corresponding feature vector FV for SF contains normalized {speed, flow} as defined in (19) (d)
Corresponding feature vector FV for SFT contains normalized vector for representing topology relationship between OD zones and 3D supply zones
and supply information for the 3D zones as {topology, zonal speed, zonal flow, zonal speed variance, zonal flow variance} as defined in (20). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5 shows boxplots of the leave-one-out production and attraction prediction errors using the FV feature vectors with 6 3D
zones and a time aggregation of 20min. The figure shows that 75%of the predictions for both attraction and production have errors
less than 35%with a median error of 17%for each production and attraction dimension. This is solid support for the hypothesis that
there are strong correlations between supply and demand patterns that can be exploited for OD estimation. We will discuss in the next
section whether these errors are small enough to estimate the resulting OD matrix.

Fig. 6(a) shows the relation between level of aggregation and prediction quality. Both attraction and production predictions show
similar trends of increasing errors with larger time aggregation. For both we find a median MAPE error of 16%for aggregation
levels of 20 and 60min. This is good news, a 20min dynamic production and attraction pattern provides a better basis for estimating
dynamic OD matrices in many contexts than a very coarse aggregation that encompasses an entire peak period. The knife cuts both
ways here: lower aggregation also provides more training data for the neural network. We return to this point also in the final section
of this paper.

Fig. 6(b) shows the relation between the number of 3D clusters that constitute the FV feature vector and the production/
attraction prediction quality. Our assumption was that as the number of clusters increases, we can capture more dynamics in the data.
However, as can be seen from Fig. 6(b), having more clusters in a small network actually impedes learning the patterns. In Fig. 6(b),
the graph is relatively stable until the number of clusters exceeds about 25%of the network size which is equal to 10 links for the toy
network. In hindsight, this inverse proportional relationship between cluster size and prediction error can be easily understood. In the
extreme case when the number of clusters is for example 50%relative to the size of the whole network, each cluster contains on
average only 1 or 2 links. Such small clusters do not provide much meaningful information about the spatiotemporal traffic dynamics.
Hence, the number of clusters have to be chosen relative to the size of the network. We will now look at the OD estimation results on
the basis of these predicted production and attraction patterns. For this analysis we consider the optimal time aggregation of 20min,
and a feature vector with 6 3D clusters.

4.2. OD estimation accuracy

Fig. 7 presents the OD estimation errors as a function of (vertically) the errors in production (and attraction—these figures look
very similar and are not shown here), and (horizontally) the number of shortest paths (N ) that is considered. The errors are provided
as a discrete contour plot, with the color indicating the error size. Each picture in Fig. 7 represents 1 of the 3 detector availability
scenarios for the toy network. The figure shows that the OD estimation error gradually increases with increasing production errors. A

Fig. 4. Single instance of production and attraction prediction for 20min time horizon respectively for toy network.

Fig. 5. Leave-one-out production and attraction errors respectively for toy network.
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0 10%mean prediction error in the production results in an OD estimation error of 20%in the first detector scenario (counts on
the outer ring). The error then increases at an almost constant 10%rate with each 10%increase in production error.

The relationship with the number of shortest paths N is very different, There appears to be an optimal N for a given network to
obtain the smallest OD matrix error—in the toy network case we find =N 5. The optimal N will likely depend on the network
topology and the prevailing travel patterns in the network. OD estimation accuracy deteriorates when N is smaller than the actual
average number of routes between OD pairs for obvious reasons: too much flow is distributed over too few routes. The estimation
accuracy also deteriorates when N is larger than the actual average number of routes between OD pairs, because the proportionality
constraint will now redistribute the flow to these additional irrelevant paths. Fig. 7 provides clear evidence for this. For all 3 cases,
the optimal N indeed equals 5. Note that we could have diversified Nij for different OD pairs i j, to account for the fact that different
OD pairs may have different “optimal” number of paths.

A look at the three different scenarios of link count availability in Fig. 7 shows that case 1 and 3 outperform case 2. This is because
the top shortest paths between the zones all use the links in the outer ring. This implies that the counts in the inner ring links are not
used for solving the equations. However, case 2 also fairs better when =N 5, since this route set will now include links in the inner
ring. When the number of shortest paths is 1 for case 2, some of the scenarios did not provide a non-negative solution. This is depicted
by the shaded region in Fig. 7. In all the scenarios non-negative solutions were found for the OD estimation. That case 3 (link counts
in both inner and outer ring) does not provide better results than case 1 is easily explained. The number of link counts are not as
important as having counts at relevant locations. The key lies in the number of linearly independent equations that can be con-
structed, i.e. in the rank of matrix C in Eq. (16).

The error distribution of the 198 scenarios can be inferred from Fig. 7 and shows that approximately 34% of the scenarios have
100% estimation error. We did not explore these error regions in this paper. However, a 100% error for a particular OD flow may not
always be as detrimental as it sounds. Particularly for very small OD flows, of which in the Santander network there are many and in
the toy network still quite a few, a 100% relative error may involve a very small absolute error. An alternative assessment method
would be feeding the estimated OD matrices back into the simulation to check if it produces similar traffic conditions as the original
matrix. Given all other variables (e.g. random seeds, driving and route choice parameters, control timings, etc.) kept equal, this may
be a better verification method for OD estimation than simply assessing the OD error itself.

Fig. 6. Sensitivity analysis of production and attraction prediction accuracy with respect to time aggregation and number of 3D zones respectively.

Fig. 7. Mean OD matrix estimation error for the 198 scenarios of the toy network (a) Case 1 - counts on the outer ring, (b) Case 2 - counts on the
inner ring, and (c) Case 3 - counts on the inner and outer ring. The shaded region in the case 2 corresponds to the cases where some of the OD matrix
estimates returned negative values implying there is no solution for these cases. These estimates were not considered when computing the mean OD
matrix errors.
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4.3. Santander case study

Finally, we apply the framework on a larger network of the city of Santander. We did not perform an extensive sensitivity analysis
to estimate the optimal number of 3D zones and aggregation level for production-attraction prediction. We used an aggregation of
20min (which was optimal in the Toy network case). An initial attempt to use 10 3D zones was unsuccessful as the neural network
was not able to converge. The traffic dynamics were perhaps aggregated too much and the neural net may not have been able to
separate the resulting patterns. However, by using 20 clusters, the neural network was able to achieve a median accuracy of 20 22%
for both production and attraction. A look at one of the (favorable) predictions in Fig. 8 shows that the neural network was able to
capture the high-dimensional pattern accurately. In the figure we see for one time period the 115 values of the production vector (a)
and the attraction vector (b) for one time period.

In the Santander case, we apply the PCA method of Section 2.3 to construct a reduced solution space. This is indeed necessary,
because the full matrix equality (16) could not be solved (was quite severely under determined). It turned out that only a single
principal component was needed to explain 99%of the variance in the production and attraction over a single day. The explanation
is that the (calibrated) OD matrix for this network is created by scaling the entire OD matrix by time dependent factor t( ) and thus
the original dimension varies in the same direction. This is illustrated in Fig. 9(a) which shows the production dynamics for all the
time periods for a particular day and it is evident that only the magnitude varies for different periods while the demand distribution
between zones remains unchanged. Thus, we consider only a single principal component to extract the reduced OD matrix. Note that
deriving this single principal component is an emergent result of the method and provides us with confidence that the dimension
reduction strategy is effective. However, in reality, OD matrices likely have varying structural similarity throughout the day (different

t( ) for each OD) and applying the method with such more complex dynamical OD matrices may provide additional evidence of the
efficacy of the approach, or, possibly, limitations in applying a linear method such as PCA to sufficiently capture OD dynamics.
Fig. 9(b) shows the eigenvector 1 of the production and attraction time series w.r.t. to the first principal component. Clearly, some of
the dimensions (zones) have high correlation with the principal component. We use a cutoff threshold of 0.1 to select a total of 20
zones (as a consequence of the union of 16 production and 9 attraction zones, of which 5 overlap). This leads to a reduced OD space of

×20 20(400 unknowns)—a reduction in dimensionality of 97%(!) compared to the original ×115 115OD matrix (13225 unknowns).
We use the 8 steps in Section 2.3 to estimate the full OD matrix, with the reduced OD matrix used as upper bounds for 400 of in

total 13,225 unknowns. Fig. 10(a) presents the OD estimation error for the Santander network in the same way as in Fig. 7(a). The

Fig. 8. Single instance of production and attraction prediction for 20min time horizon respectively.

Fig. 9. (a) Production dynamics for 48 time periods for a particular day (b) Eigenvector of production and attraction for the first principal com-
ponent.
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optimal number of shortest paths for the Santander network is =N 1 which has an overall average error of 26% for 0 10%
production error. There are many possible reasons for this - the alternative routes do not provide much additional travel time gain
under low or high traffic congestion; the alternative routes have large path overlap; the alternative routes might contain topologically
inferior road stretches. Therefore, for a majority of the OD flows, the top shortest path is the only valid route. This is also the reason
for the marginal influence of the number of shortest paths on the OD estimation error. From Fig. 10(a), the error only varies from 26%
to 37%for =N 1 to =N 10. To illustrate the error distribution in the actual OD matrix, Fig. 10(b) shows the RMSE of the reduced
OD matrix for a single peak period for =N 1 (Due to the sparsity of the OD matrix, we use the reduced OD matrix to visualise the
error in detail) The full OD matrix has a mean error of 22%with a mean RMSE value of 1.5 and a maximum of 150 vehicles/h.

5. Conclusion and discussion

In this paper we make an argument for a new data driven OD estimation method for cases where a supply pattern in the form of
speeds and flows is available. We show that with these input data, an iterative traffic loading procedure with many assumptions on
average (or individual) driving behavior; individual route choice trade-offs, and the type of equilibrium network traffic state that
emerges is not needed to solve the OD estimation problem. The ingredients of this data driven method are (a) a method to estimate/
predict production and attraction time series; (b) a method to compute the N shortest paths from each OD zone to the next; and (c)
assumptions on the magnitude of N , and on the proportionality of pathflows between these origins and destinations, respectively.
The latter constitutes the only behavioral assumption in our method, and we choose a proportionality factor that is inversely pro-
portional to realized travel time, where we do incorporate a penalty for path overlap. For large networks, these ingredients may not
be sufficient to find a unique OD matrix. We show that with a relatively simple and well-known feature space reduction technique
(PCA: principal component analysis) we can derive additional constraints directly from the data to solve this underdeterminedness,
and as a result a full OD matrix.

From the results on a small toy network and a large real network (of the Spanish city of Santander) we can draw the following
conclusions. Most importantly, our simplified OD estimation method works, given a reasonable choice of N and a supply pattern
(speed in the network) from which all route travel times between all ODs can be estimated. Second, we show that production and
attraction time series can be predicted with a coarse 3D supply pattern that includes network topology. This makes the method
scalable both in terms of network size and for different topologies, and for cases when the available data is coarse. Third, in the toy
network case, we find that OD estimation quality is linearly related to production/attraction prediction quality. With a 10% P/A
prediction error, the OD estimation error is about 20% with an additional 10% for every additional 10% P/A prediction error. In the
full network we applied the PCA method and were indeed able to estimate the full OD matrix with a mean error of 22% and
associated RMSE of 1.5 vehicles.

There are many paths to further explore, refine, and improve the properties of the method. Here we provide just a few main ideas.
The method can be validated against OD matrices with different structural similarity for large networks to test the robustness of the
approach. For large networks, we can refine the “8-step PCA procedure” proposed in computing also lower bounds (instead of just
upper bounds). This would necessitate an iterative procedure, but may improve estimation accuracy considerably. Thirdly, a key
point is that we chose a single assumption on the (average) number of shortest paths N for the entire network. Particularly for larger
networks, literature (e.g. Viti et al., 2014; Cipriani et al., 2014) suggests this assumption is likely too crude. The method, however,
allows the analyst to diversify different assumptions on N for different (groups of) OD pairs, and similarly, add other factors than just
travel time that may play a role here (costs, topological considerations, etc). Another avenue of future research is to identify
parameters for the method such as the number of clusters, N*, for a given transport network, etc. without extensive sensitivity
analysis. We believe this strongly depends on the topology of the network, choice set per OD patterns, etc. A fifth direction of further
research relates to predicting the production and attraction patterns, which in the method is essentially an exchangeable building
block. We see many research avenues here, because there are many aspects with which we may (systematically) vary. For example,
what if we can actually (partially) observe production and attraction patterns? Perhaps we do not need supervised prediction models

Fig. 10. (a) Mean OD matrix estimation error for the 110 scenarios of Santander network (b) OD estimation error for the reduced matrix for =N 1.
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altogether? In this paper, we use a neural network model, which implies a ground-truth data set is required (including production-
attraction time series). However, there are straight-forward paths for alternative approaches. For example, by using and fusing
demographic data with specific cordon counts, household surveys or movement traces. These latter sources could also be used as
extra (soft) constraints on the spatial structure of the predicted production and attraction patterns and/or the estimated OD matrix.

Finally, the framework would fit very nicely in an online (DTA) modeling and management framework (with or without as-
sumptions on equilibrium, response to ITS/information, etc), since the OD is now estimated independently from any disaggregated
route choice or (micro/mes/macro) traffic assumptions. We are excited this idea turned out so fruitful, and hope it will open up many
avenues for new research and applications within our field!.
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Appendix A

The system of equations given in (13), (14), (15) is obtained from Eqs. (6), (7), (11), and (12). Here, we give a detailed derivation
of the system of equations and formulate it as a matrix equality for solving it. First, we reiterate the equations used:
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Eq. (A.1) can be expanded as follows:
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Eq. (A.5) can be redefined as sum of OD flows instead of path flows based on Eq. (A.3) as follows:
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Since the route proportion i k
n
1 is summed across all routes n ranging from 1 to Nijk, it can be reformulated as follows:
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where =TTijk
n implies that no path exists between origin i and destination j. Thus, Eq. (A.6) can be written as:
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Eqs. (A.5) and (A.6) are reproduced for Eq. (A.2) as given below:
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Using Eq. (A.7), (A.10) can rewritten as:
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The link count given in (A.4) can be expanded as:
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(A.12) can rewritten in terms of OD flows using Eq. (A.3) as follows:
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This term is considered if and only if (a) link em is not congested in period k, and (b) none of the links upstream of em in the set of
paths p P l k TT i j n, , , ,ijl
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Based on (A.14), (A.13) can be rewritten as:
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Combining the expanded form of production, attraction and link counts given in (A.8), (A.11) and (A.15) respectively, the system

of equations can be formulated as:
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We can reformulate the system of equations as a matrix equation as:
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.trc.2019.05.014.
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