Opdrachtgever:

Rijkswaterstaat DWW

Verbetering DIPRO

Rapport

november 2007
Inhoud

1 **Inleiding** .. 1—1
 1.1 Opdracht .. 1—1
 1.2 Doelstelling ... 1—1
 1.3 Aanpak .. 1—1
2 **Afleiding nieuwe berekeningsmethode** .. 2—1
 2.1 Inleiding .. 2—1
 2.2 Gemiddelde waterbeweging ... 2—1
 2.3 Waterbeweging bij de oever .. 2—4
 2.4 Voorstel voor validatie ... 2—7
3 **Numerieke berekeningen met FINEL2D** .. 3—1
 3.1 Inleiding .. 3—1
 3.2 Calibratie FINEL2D ... 3—1
 3.3 Scenario studies ... 3—11
4 **Vergelijken analytische en numerieke resultaten** .. 4—1
 4.1 Inleiding .. 4—1
 4.2 Gemiddelde waterbeweging ... 4—4
 4.3 Waterbeweging bij de oever .. 4—12
5 **Conclusies en aanbevelingen** .. 5—1
6 **Literatuur** ... 6—1

Bijlagen

A **Tabellen** ... A—1
B **Langsraaien voor de waterspiegeldaling en de stroomsnelheid op y= -135m en y= +135m.** .. B—1
C **Dwarsraaien halverwege het schip** ... C—1
D **Contourplots waterspiegeldaling** ... D—1
E **Vectorplots van stroomsnelheden** .. E—1
I Inleiding

1.1 Opdracht

De Dienst Weg- en Waterbouwkunde van Rijkswaterstaat heeft per brief d.d. 19 oktober 2006 met kenmerk AW/062961 het WL | Delft Hydraulics opgedragen enkele studies uit te voeren onder de gemeenschappelijke titel onder de titel Waterbouwkundige Studies 2006 (overeenkomst DWW-2914). Het betreft de volgende deelstudies:

Deelproject 1: Uitbreiding DIPRO model;
Deelproject 2: Verder ontwikkelen van het oeverafslagmodel BEM;
Deelproject 3: Verkenning van de mogelijkheden van een verbeterde doorstroming van de Oosterschelde Stormvloedkering.

In dit rapport wordt verslag gedaan van deelproject 1. De andere deelprojecten worden afzonderlijk gerapporteerd.

1.2 Doelstelling

DIPRO+ is ontstaan uit een eerdere, niet WINDOWS georiënteerde versie en in dit project gaat het er om verbeteringen aan te geven wat betreft de berekening van de extreme waterbeweging nabij de oever. Aspecten daarbij zijn: het ontwikkelen van een “nieuwe” formule, validatie van die formule met het pakket FINEL2D en eventueel bepaling van coëfficiënten.

Het is niet de bedoeling om in dit project de verbeteringen in DIPRO+ te implementeren.

Gegeven het voorgaande luidt de doelstelling:

Verbeteren van de huidige wijze van berekenen van de waterbeweging bij de oever ten gevolge van excentrisch varen door het aanpassen van bestaande formules en de uitkomsten te vergelijken met numerieke berekeningen met FINEL2D.

1.3 Aanpak

Bij toepassing van DIPRO+ blijkt dat de extreme waterbeweging aan de oever wordt overschat. In dat kader zijn de volgende activiteiten uitgevoerd:

- ontwikkelen van verbeterde methode (hoofdstuk 2);
- tweedimensionale numerieke berekeningen (hoofdstuk 3);
- validatie verbeterde methode (hoofdstuk 4).

Conclusies en aanbevelingen worden tenslotte in hoofdstuk 5 gepresenteerd.
Het project is uitgevoerd door WL | Delft Hydraulics in samenwerking met Svasek Hydraulics, waarbij ir H.J. Verheij als projectleider fungeerde. Ir. F.C.M van der Knaap heeft zorg gedragen voor de kwaliteitsborging in het kader van ISO-9001.
Van de zijde van Rijkswaterstaat is het project begeleid door ir. U. Förster; ir. M. van der Wal gaf inhoudelijk adviezen.
2 Afleiding nieuwe berekeningsmethode

2.1 Inleiding

In DIPRO wordt op dit moment al gerekend met fictieve kanaaldoorsneden bij negatieve excentriciteit. Met excentrisch varen wordt bedoeld varen uit de as van het kanaal; negatieve excentriciteit betekent varen op grotere afstand van de beschouwde dan de halve kanaalbreedte (Figuur 2.1). Verder is het in DIPRO+ mogelijk de gradiënt in de breedte te bepalen met de bronnen /putten-methode uitgaande van gemiddelden voor waterspiegeldaling en retourstroomsnelheid. Voorgesteld wordt deze aspecten over te nemen en dat houdt dan vervolgens in:

- altijd rekenen met nauwkeurige mode;
- bij \(y \neq 0 \) fictieve kanaaldoorsneden definiëren en voor die kanaaldoorsneden breedte gemiddelde waarden bepalen en maximale te kiezen;
- vertaling naar waarden bij oever via bronnen/putten-methode.

Het voorgaande zal leiden tot nieuwe waarden bij de oever en deze waarden kunnen worden vergeleken aan metingen (indien beschikbaar) en uitkomsten van simulaties met het tweedimensionale FINEL2D.

Het 1e punt vraagt verder geen aandacht in de zin in dat formules moeten worden aangepast. Het 2e en 3e punt wel en daarop zal onderstaand nader worden ingegaan.

![Figuur 2.1 Definitie excentrisch varen](image)

De aanleiding voor de studie zijn geconstateerde verschillen in de berekende spiegeldaling bij de oever bij waarden voor de excentriciteit \(y \) van -5 m, 0 m en +5 m met zowel de veilige en de nauwkeurige methode. De indruk bestaat daarbij dat de spiegeldaling bij de oever wordt overschat.

2.2 Gemiddelde waterbeweging

In het huidige DIPRO wordt voor negatieve waarden van \(y \) (excentrisch varen op grotere afstand van de oever dan de halve kanaalbreedte) een fictief kanaalprofiel gedefinieerd. Deze aanpak kan ook voor positieve excentriciteit worden gehanteerd, dus voor varen op een kleinere afstand dan de halve kanaalbreedte.
Voor $y < 0$ wordt nu gerekend met 2 kanaaldoorsneden: (i) met een bodembreedte $b_1 = b_b + 2y$ en (ii) met $b_2 = b_b$, waarna de maximale waarde voor de gemiddelde breedte wordt aangehouden (zie bijlage IV van verslag M1115 deel XIX).

Meer algemeen (voor $y > 0$, $y = 0$ en $y < 0$) geldt (Figuur 2.2):

Kanaal-1: $b_1 = b_b - 2y$, en
Kanaal-2: $b_2 = b_b$

Merk op dat bij invoeren van een negatieve waarde voor y de huidige formulering met een plusteken wordt verkregen.

Figuur 2.2 Schematisatie kanaal bij excentrisch varen met positieve y

Bij een positieve excentriciteit zal de natte doorsnede van K-1 (= kanaal-1) kleiner zijn dan die van K-2, en dus zal de gemiddelde waterbeweging juist groter zijn. De werkelijke gemiddelde waterbeweging zal er tussen in zitten:

$$dh_{K,2} < dh_{\text{werkelijk}} < dh_{K,1}$$

(2.1-a)

Bij een negatieve excentriciteit zal juiste het omgekeerde gelden:

$$dh_{K,1} < dh_{\text{werkelijk}} < dh_{K,2}$$

(2.1-b)
Een directe aanpak is beide waarden te berekenen en het gemiddelde te nemen. Dit heeft als voordeel dat ook rekening kan worden gehouden met de grenssnelheid behorend bij een profiel K-1 en K-2.

Een andere benadering is ook mogelijk. Balanin & Bykov hebben de volgende benaderende formules gepresenteerd voor de gemiddelde waterspiegeldaling en de gemiddelde retourstroom:

\[
dh = \frac{v^2}{g} \left(\frac{A}{A_m} - 1 \right)^2 en \quad u = \frac{A_m}{A} \left(\frac{dh \cdot b}{A} \right)
\]

(2.2)

Voor \(A_c/A_m \gg 1\) en een rechthoekige kanaaldoorsnede kunnen beide formules worden benaderd door:

\[
dh = \frac{v^2}{g} \frac{A_m}{b_h} en \quad u = \frac{A_m}{b_h}
\]

(2.3)

Beschouw nu de verhouding tussen de gemiddelde waterspiegeldalingen \(dh\) voor de kanaalprofielen K-1 en K-2. Uitgaande van vgl.(2.3) en substitutie voor \(b\) de waarden voor \(b_1\) en \(b_2\) zoals aangegeven in Figuur 2.2, dan is hiervoor af te leiden:

\[
\frac{dh_{K-2}}{dh_{K-1}} = 1 - \frac{2y}{b_b}
\]

(2.4)

Dit is een lineair afnemende functie van \(y\).

Het betekent ook dat gegeven een berekende gemiddelde spiegeldaling voor K-2 (dus alsof het schip in de as vaart) de gemiddelde spiegeldaling voor \(y > 0\) voor K-1 volgt uit:

\[
dh_{K-1} = \frac{1}{1 - \frac{2y}{b_b}} dh_{K-2}
\]

(2.5)

Meer algemeen:

\[
dh_{K-1} = \frac{1}{1 - \frac{y}{c b_b}} dh_{K-2}
\]

(2.6)

met \(c = f \left(\frac{A_c}{A_m} \right)\) en \(c = 2\) als wordt aangenomen dat er geen water wegstroomt onder het schip van de ene zijde naar de andere zijde (veronderstelling Marchal en Spronck, 1977). Van der Wal bepaalde \(c\) uit metingen en dat houdt in dat impliciet wel rekening wordt gehouden met onder het schip weggelopen water. Als de metingen van Van der Wal worden gecombineerd zijn als functie van \(A_c/A_m\) de volgende waarden af te leiden (Van der Wal, 1987; verslag M1115 dl.IV):
\[\frac{A_c}{A_m} \leq 16,5: \quad c = 0,6 \]
\[\frac{A_c}{A_m} > 16,5: \quad c = 0,0365. \frac{A_c}{A_m} \]

Er zijn nu 2 opties:

1. bepalen gemiddelde waarde van K-1 en K-2:

\[
dh_{\text{werkelijk}} = 0,5(dh_{K-1} + dh_{K-2}) = dh_{K-2} \left(\frac{0,5}{1 - \frac{2y}{b_h}} \right) + 0,5 \quad (2.7)
\]

2. uitgaan van een waarde voor c als functie van \(\frac{A_c}{A_m} \) zoals bepaald door Van der Wal (M1115-IV, 1987)

\[
dh = f(c) = f\left(\frac{A_c}{A_m}\right) \quad (2.8)
\]

Het voorgaande geldt mutatis mutandis ook voor de gemiddelde retourstroom.

In de 1e benadering wordt uitgegaan van het werkelijke profiel K-2 met het schip varend in de kanaalas en de daarbij behorende grensn snelheid. Of deze benadering beter is dan de eerste methode (berekenen van de gemiddelden met Bouwmeester en dan middelen) is niet na te gaan zonder toetsing aan metingen.

2.3 Waterbeweging bij de oever

In de technische documentatie voor DIPRO+ is een methode opgenomen om de over de lengte gemiddelde waterspiegel- en retourstroom te berekenen als functie van de afstand tot zijkant schip (afnemend bij toenemende afstand, daarbij impliciet het effect van een nabijgelegen oever meenemend). Deze zogenaamde bronnen/putten methode (Figuur 2.3) berekent de dwarsgradiënten in retourstroom en waterspiegel- en is eerder gepubliceerd door Termes et al (1991). Opgemerkt moet worden dat een mogelijk taludeffect niet in de methode is verdisconteerd.
Gebruik wordt gemaakt van de volgende formules voor de spiegeldaling:

voor $0.2 \leq y_d \leq 0.5$:
$$dh_{vd} = dh \cdot f_{vd} \cdot f'_{vd}$$ \hspace{1cm} (2.9-a)

voor $0.5 \leq y_d \leq 2$:
$$dh_{vd} = dh(3 - 2g_{vd} \cdot g'_{vd})$$ \hspace{1cm} (2.9-b)
Waarbij:

\[f_{yd} = \frac{0.04b_w^2 + 0.16L_s^2}{y_d^2 + 0.16L_s^2} \]
(2.10-a)

\[g_{yd} = \frac{0.04b_w^2 + 0.16L_s^2}{(0.4b_w - y_d)^2 + 0.16L_s^2} \]
(2.10-b)

\[f'_{yd} = \frac{(0.64b_w^2 + 0.16L_s^2)(0.32L_s^2 + y_d^2 + (y_d - b_w)^2)}{(0.68b_w^2 + 0.32L_s^2)(0.16L_s^2 + (y_d - b_w)^2)} \]
(2.10-c)

\[g'_{yd} = \frac{(4b_w^2 + L_s^2)(0.16L_s^2 + 0.26b_w^2 + 0.2b_w y_d + y_d^2)}{(2.125b_w^2 + L_s^2)(0.16L_s^2 + 0.36b_w^2 + 1.2b_w y_d + y_d^2)} \]
(2.10-d)

Waarin:

\[B_s = \] breedte schip (m)

\[L_s = \] lengte schip (m)

\[b_w = \] breedte geschematiseerde vaarweg op de waterspiegel (m)

\[y_d = \] afstand in de dwarsrichting uit de scheepsas (m)

\[dh = (\Delta h \text{ in Figuur } 2.3) = \] gemiddelde waterspiegeldaling in de as varend van een geschematiseerde vaarweg (m)

\[dh_{yd} = \] waterspiegeldaling (m) op afstand \(y_d \)

Feitelijk zijn voor het onderhavige doel alleen de formules geldend voor \(0.2 b_w < y_d \leq 0.5 b_w \) relevant.

Voor de retourstroom geldt:

voor \(0.2 b_w < y_d \leq 0.5 b_w \): \[u_{r,yd} = u_r \sqrt{f_{yd} \cdot f'_{yd}} \]
(2.11-a)

voor \(0.5 B_s \leq y_d \leq 0.2 b_w \): \[u_{r,yd} = u_r \sqrt{3 - 2g_{yd} \cdot g'_{yd}} \]
(2.11-b)

Waarin:

\[u_r = \] gemiddelde retourstroomsnelheid in de as varend van een geschematiseerde vaarweg (m/s)

\[u_{r,yd} = \] retourstroomsnelheid (m/s) op afstand \(y_d \)

en waarbij voor \(f_{yd}, g_{yd}, f'_{yd} \) en \(g'_{yd} \) dezelfde vergelijkingen gelden als hiervoor vermeldt.

Door nu voor \(y_d \) de waarde in te vullen tussen schip en oever worden vervolgens de waarden voor spiegeldaling en retourstroom bij de oever verkregen.
2.4 Voorstel voor validatie

Op bovengenoemde wijze is een naar verwachting betere afschatting mogelijk van de waterspiegeldaling en retourstroom bij de oever dan met de tot nu toe gebruikelijke methode die in DIPRO is geïmplementeerd. De resultaten kunnen worden vergeleken met uitkomsten van FINEL2D berekeningen. De gemiddelde waterbeweging kan niet direct worden vergeleken om de eenvoudige reden dat FINEL2D dit niet berekent. Via postprocessing is het echter mogelijk gemiddelden te bepalen.

De verwachting is dat er verschillen zullen worden geconstateerd en of deze samenhangen met de benadering van de gemiddelde waarden bij excentrisch varen of met de berekening van de waarden bij de oever met de bronnen/putten methode is niet na te gaan. Voorgesteld wordt daarom om bij eventuele verschillen een factor toe te voegen aan de formules voor de bronnen/putten methode. De formules gaan dan voor 0.2 \(b_w < y_d \leq 0.5 \ b_w \) over in:

\[
\begin{align*}
\text{waterspiegeldaling:} & \quad dh_{yd} = \left(\alpha_{h,\text{gem}} \right)_{y=0} \left(\alpha_{h,\text{gradient}} \right)_{y=0} \alpha_{h,\text{gradient}} dh \cdot f'_{yd} \cdot f''_{yd} \\
\text{returnstroom:} & \quad u_{r,yd} = \left(\alpha_{u,\text{gem}} \right)_{y=0} \left(\alpha_{u,\text{gradient}} \right)_{y=0} \alpha_{u,\text{gradient}} u_r \sqrt{f_{yd} \cdot f''_{yd}}
\end{align*}
\]

waarbij \(dh \) en \(u_r \) bepaald zijn volgens de methode Schijf alsof er in de kanaalas wordt gevaren.

De gemiddelde waarden zullen worden vergeleken met resultaten uit FINEL2D door de gemiddelde waarden te bepalen van alle uitkomsten. De gradiënt waarden zullen worden bepaald door vergelijking met FINEL2D uitkomsten bij de oever.

Resultaten van bovenstaande formules kunnen worden vergeleken met:

1. formules uit M1115 verslag deel IV:
 - van der Wal: \(u_{\text{max}} = 1,2 a 1,7 \ u_{\text{exc}} \)
 - Andere studies:
 \[
 \frac{dh_{\text{max}}}{dh_{\text{gem}}} = \frac{u_{\text{max}}}{u_{\text{gem}}} = 1,05 - 1,25 \text{ met } dh_{\text{gem}} \text{ en } u_{\text{gem}} \text{ gemiddelde waarden tussen schip en oever uit (2.12-a)}:
 \]
 \[
 \frac{dh_{\text{max}}}{dh_{\text{gem}}} = \left(\alpha_{h,\text{gem}} \right)_{y=0} \left(\alpha_{h,\text{gradient}} \right)_{y=0} \alpha_{h,\text{gradient}} f_{yd} \cdot f''_{yd}
 \]

2. motorschepen Van de Kaa:
 \[
 \begin{align*}
 \frac{dh_{\text{max}}}{dh_{\text{gem}}} & = 2 - 2 \frac{A}{A_s} \text{ geldig voor } b_w \leq 1,5 \ L_s \\
 \frac{dh_{\text{max}}}{dh_{\text{gem}}} & = 3 - 4 \frac{A}{A_s} \text{ geldig voor } b_w > 1,5 \ L_s \\
 \frac{u_{\text{max}}}{u_{\text{gem}}} & = 1,5 - 1,0 \frac{A}{A_v} \text{ geldig voor } b_w \leq 1,5 \ L_s
 \end{align*}
 \]
\[\frac{u_{\text{max}}}{u_{\text{gem}}} = 2,5 - 3,0 \frac{A'}{A_c} \] geldig voor \(b_w > 1,5 \text{ L} \)

waarbij \(A_c \) de kanaaldoorsnede is tussen schip en oever gedefinieerd volgens:
\[A_c = 0,5 A - yh \]

In dl.XIX wordt een andere procedure gevolgd voor een geladen motorschip:
\[u_{\text{exc}} = 0,8 u_{\text{max}} = 0,8 f(u_{\text{exc}}) \]

Voor ongeladen motorschepen en duwstellen gelden andere waarden.

Tenslotte zullen voor in de as van een kanaal varende schepen vergelijkingen kunnen worden gemaakt met de formules vgl.(2-7) waarbij \(c = 2 \) wordt verondersteld en vgl.(2-8) waarbij \(c \) afhankelijk van \(A_c/A_m \) wordt verondersteld.
3 Numerieke berekeningen met FINEL2D

3.1 Inleiding

De tweedimensionale effecten in DIPRO zijn onderzocht met het stromingsmodel FINEL2D. Voordat kan worden begonnen met uitvoeren van scenario runs moet een calibratie worden uitgevoerd. Dit komt in paragraaf 3.2 aan de orde en is uitgevoerd voor de passage van de Grande America langs de Kruithaven in het Noordzeekanaal. Daarna worden in paragraaf 3.3 een aantal scenario’s doorgerekend.

Figuur 3.1 Foto van de Grande America (www.ShipPhotos.co.uk)

3.2 Calibratie FINEL2D

modelbeschrijving

Het twee-dimensionale stromingsmodel FINEL2D wordt toegepast voor de berekening van de spiegeldaling en de retourstroming als gevolg van een passerend schip. FINEL2D maakt gebruik van de diepte geïntegreerde ondiepwatervergelijkingen. Het schip wordt gemodelleerd door middel van een additionele drukhoogte. Deze drukhoogte is gelijk aan de diepteligging van het schip. Hierdoor wordt als het ware door de beweging van het schip het water van bovenaf ingedrukt. Hierdoor ontstaan aan de voor-, zij- en achterkant van het schip drukgradiënten, die tot extra stroming leiden. Deze modellering van het schip heeft de beperking dat de effecten van de schroefstraal niet meegenomen worden. Bovendien zullen driedimensionale effecten die rond het schip optreden niet gereproduceerd worden met een diepte-geïntegreerde aanpak. De berekende stroming in de directe nabijheid van het schip is daarmee beperkt geldig.
Metingen

In opdracht van het Havenbedrijf Amsterdam heeft Svasek Hydraulics metingen uitgevoerd in de Kruithaven langs het Noordzeekanaal ter bepaling van de effecten van langsvarende schepen op aangemeerde schepen. Een luchtfoto is gegeven in Figuur 3.2. Voor de bepaling van de stroming en de waterspiegeldaling is gebruik gemaakt van een Valeport instrument. De relocatie is gegeven in Figuur 3.3. De aanmeerpalen zijn de twee middelste aanmeerpalen in Figuur 3.2. Voor meer details zie Svasekrapport 1353 (2005).

![Luchtfoto meetlocatie Kruithaven.](image1)

Schematisatie

Het Noordzeekanaal is geschematiseerd tot een recht kanaal, waarin de diepte uniform is in langsrichting. De Kruithaven is een inkassing met een diepte van 11m. Deze schematisatie is gebaseerd op de bodemligging uit 2001 (tekeningnummer NHAN 2001 52185). De resulterende bodemligging is gegeven in Figuur 3.4.
De Grande America voer op 50 m uit de as van het kanaal langs de zuidoever (afstand tot oever $y = 100$ m). De specifieke afmetingen zijn:

- Lengte: $L_s = 214$ m
- Breedte: $B_s = 32$ m
- Diepgang: $T = 10$ m

De vaarsnelheid bedroeg 4,5 m/s. Het aangenomen scheepsprofiel is gegeven in Figuur 3.5. Dit profiel is als additionele druk opgelegd in FINEL2D. De horizontale positie van het drukveld is afhankelijk van de vaarsnelheid en de beginpositie. De schematisatie in FINEL2D is gegeven in Figuur 3.6.

Om de vorm van het schip mee te kunnen nemen dient het rekenrooster fijn te zijn in de vaarweg van het schip. Om de rekentijd zoveel mogelijk te beperken dient het aantal rekenpunten geminimaliseerd te worden. Deze tegenstrijdige eisen hebben geleid tot een rekenrooster dat fijn is in de vaarweg en grover nabij de oevers. Zie Figuur 3.6 voor een uitsnede van het rekenrooster voor de Grande America ter plaatse van het schip en Figuur 3.7 voor het rekenrooster nabij de Kruithaven. De karakteristieke zijde van de driehoeken in de vaarweg is 4m en het rooster bevat 91872 elementen en 46459 knopen. Een lang aanloopkanaal (ca 2 km) is benodigd om de effecten van de golf, die wordt veroorzaakt door het opstarten, te minimaliseren (zie ook Figuur 3.4).
Figuur 3.6 Rekenrooster in het kanaal met waterspiegel op het begintijdstip, representerend het drukveld als gevolg van de Grande America.

Figuur 3.7 Detail van het rekenrooster nabij de Kruithaven.

De tijdstap wordt bepaald door de vaarsnelheid en de golfvoortplantingssnelheid. Een tijdstap van 0,25s is uiteindelijk gekozen. Een kleinere tijdstap gaf geen verandering meer in de resultaten.

De resulterende rekenratio (rekentijd: werkelijke tijd) is 10:1. De simulatie rekent één minuut werkelijke tijd uit in tien minuten.

Aan de west en oostzijde wordt een Riemann-rand opgelegd om golven die ontstaan door het opstarten zoveel mogelijk door te laten en niet terug te laten kaatsen.

Algemeen stroombeeld

Figuur 3.8 geeft de waterspiegel als contour en de snelheid als vectoren als gevolg van de pasage van de Grande America. Het schip bevindt zich nog voor de Kruithaven.
Een zijaanzicht van de waterspiegel (langsdoorsnede) is gegeven in Figuur 3.9. Figuur 3.10 geeft de waterstanden en snelheden in de dwarsdoorsnede x = 2200 m.

Figuur 3.8 Waterspiegel en stroming als gevolg van passage Grande America bovenstrooms van de Kruithaven.

Figuur 3.9 Zijaanzicht waterspiegel Grande America bovenstrooms van de Kruithaven.
Figuur 3.10
(a) Waterspiegel en bodemligging op de dwarsdoorsnede x = 2200 m;
(b) gelijk aan (a), maar ingezoomd op de waterspiegel door aanpassing z-schaling;
(c) stroomsnelheid op dwarsdoorsnede x = 2200 m.
Het uit de as varen geeft een duidelijk asymmetrische waterspiegeldaling. De waterspiegeldaling en de retourstroming is significant sterker aan de stuurboordzijde dan aan de bakboordzijde. Ook de bodemligging heeft een significant effect op de retourstroming. Uit Figuur 3.10c blijkt dat de retourstroming maximaal is ter plaatse van het schip, afneemt richting de stuurboordoever en dichtbij de oever weer toeneemt als gevolg van de verkleining van de waterdiepte. De snelheden aan de oever loodrecht op het kanaal zijn relatief hoog. Dit wordt veroorzaakt door de geringe waterdiepte en de sterke bodemgradiënt. In werkelijkheid zullen lokale driedimensionale aspecten een rol spelen en zal de snelheid mogelijk minder groot zijn. De snelheden op de rand bij een dergelijke kleine waterdiepte dienen buiten beschouwing gelaten te worden.

De grootste snelheden (tot max 3 m/s) zijn aanwezig onder de boeg en het achtersteven van het schip, zie Figuur 3.8. Deze snelheden worden veroorzaakt door de verplaatsing van het additionele drukveld (het varen van het schip). Hierdoor zullen aan de voorzijde van het schip de drukken instantaan toenemen, wat leidt tot snelheden in radiale richting. Bij de achterzijde zal de additionele druk wegvallen, waardoor het water radiaal toestroomt. De verhoging van de snelheid aan de voor- en achterzijde leidt tot een extra verlaging van de waterspiegel, zie Figuur 3.8.

De Kruithaven heeft een duidelijk effect op het stroombeeld. Vergelijkbaar met Figuur 3.8 en 3.10 zijn Figuur 3.11 en 3.12 gegeven, maar dan ter hoogte van de Kruithaven. Door de inkassing worden de snelheden aan stuurboordzijde lager, aangezien er een groter doorstroomoppervlak beschikbaar is. De stroming blijft echter asymmetrisch.

![Figuur 3.11 Waterspiegel en stroming als gevolg van de passage van de Grande America langs de Kruithaven.](image)
Figuur 3.12 (a) Waterspiegel en bodemligging op de dwarsdoorsnede $x = 2800$ m; (b) gelijk aan (a), maar ingezoomd op de waterspiegel; (c) stroomsnelheid op dwarsdoorsnede $x = 2800$ m.
validatie

Voor de validatie van de stroming wordt een vergelijking gemaakt met de gemeten waterspiegeldaling en retourstroming. De meetlocatie bevindt zich in langsrichting halverwege de Kruithaven en in dwarsrichting net binnen de Kruithaven, zie Figuur 3.2.

Het totale meetsignaal beslaat 21 uur. De waterspiegel is gegeven in Figuur 3.13. Er blijken fluctuaties met verschillende tijdschalen in te zitten. De laatste 6 uur is de gemiddelde waterspiegel hoger dan de eerste 12 uur. Om de effecten van de passage van de Grande America te bepalen wordt daarmee geen gebruik gemaakt van een langdurig gemiddelde waterstand, maar van een gemiddelde waterspiegel over een kortere periode. In Figuur 3.14 is een uitsnede van het tijdsignaal gemaakt. Een gemiddelde is bepaald voor de periode 7:42-7:51, zonder de periode van de passage van het schip mee te nemen. Deze gemiddelde waterstand is van het signaal afgetrokken in Figuur 3.14. Opvallend in de meting is een periodiek achtergrondsignaal (periode ca 90 s, amplitude ca 4 cm).

De gemeten en gesimuleerde waterspiegeldalingen zijn gegeven in Figuur 3.14. Vergelijking tussen de meting en de berekening geeft dat de gesimuleerde maximale waterspiegeldaling 3cm te laag is. Deze afwijking kan gedeeltelijk verklaard worden doordat het achtergrondsignaal (amplitude = ca 4 cm) een piek geeft op het moment dat de Grande America passeert. Het verwachte achtergrondsignaal zonder de passage is met een stippellijn aangegeven. De waterspiegeldaling als gevolg van de passage is, na verdiscontering van het achtergrond signaal, redelijk goed gerepresenteerd. Ook de passageperiode is goed gesimuleerd.

![Figuur 3.13](image)

Figuur 3.13 Tijdsverloop van de totale gemeten waterspiegel in de Kruithaven.
Evenals de waterspiegeldaling is de retourstroming over een periode van 21 uur gemeten. Ook voor de stroming is het achtergrondsiaal niet constant. Daarom is voor de vergelijking met de metingen het gemiddelde over de periode van 7:42-7:51 van het signaal afgetrokken, zie Figuur 3.16. De berekening geeft een goede reproductie van de meting.

Figuur 3.15 Tijdsverloop van de totale gemeten stroomsnelheid in de Kruithaven.
De verschillen tussen de berekeningen en de metingen kunnen verschillende oorzaken hebben. Het achtergrondsinaal is niet constant. Helaas is het niet mogelijk het achtergrondsinaal weg te filteren gedurende de passage van het schip. Ook de vorm van het schip en de diepgang is niet precies bekend. Tenslotte heeft de modellering met behulp van een tweedimensionaal stromingsmodel haar beperkingen.

Gegeven bovenstaande beperkingen wordt geconcludeerd dat numerieke simulaties voldoende nauwkeurig zijn voor het vervolg van de studie: de validatie van DIPRO voor excentrisch varende schepen op basis van een aantal scenario runs. In paragraaf 3.3 worden de resultaten van de scenario runs gepresenteerd. In Hoofdstuk 4 komt de validatie aan de orde.

3.3 Scenario studies

In de vorige paragraaf is geconcludeerd dat FINEL2D geschikt is voor de bepaling van de stroming als gevolg van een excentrisch varend schip. Allereerst worden de scenario’s gedefinieerd. Vervolgens wordt de manier van presentatie van de resultaten toegelicht. Tenslotte worden de resultaten beschreven en geïnterpreteerd.

Definitie scenario’s

Voor de validatie van uit de as varende schepen in DIPRO zijn simulaties uitgevoerd met FINEL2D. In overleg met de opdrachtgever is een set scenario's opgesteld om de parameterruimte zoveel mogelijk af te dekken. In navolging van de simulaties in het Noordzeekanaal is een referentiekanaal en referentieschip vastgesteld met de volgende eigenschappen:
Lengte: \(L_s = 200 \text{ m} \)

Breedte: \(B_s = 30 \text{ m} \)

Diepgang: \(T = 8 \text{ m} \)

Grensnelheid: \(V_{\text{grens}} = 7,1 \text{ m/s} \)

Excentriciteit: \(y/b_w = 0,2 \) (\(y_s = 60 \text{ m} \))

Kanaalbreedte: \(b_w = 300 \text{ m} \)

Kanaaldiepte: \(h = 12 \text{ m} \)

Talud: \(m = 0 \)

De vorm van het schip is gelijk genomen aan de vorm zoals gebruikt voor de Grande America, zie Figuur 3.5. Voor elk scenario wordt indien nodig een specifiek rekenrooster gebruikt voor een hoge resolutie in de vaarweg.

De verschillende scenario’s zijn zo gekozen dat de volgende effecten onderzocht konden worden:

- excentriciteit;
- vaarsnelheid;
- lengte/breedte verhouding;
- talud aan de oever;
- verhouding tussen de scheepsdiepgang en kanaaldiepte;
- verhouding tussen de scheepsbreedte en kanaalbreedte.

Dit leidt tot het overzicht van de scenario’s, zoals gegeven in Tabel 3.1.

<table>
<thead>
<tr>
<th>Run</th>
<th>(y/b_w)</th>
<th>(V_s/V_{\text{grens}})</th>
<th>(V_s) ((\text{m/s}))</th>
<th>(L_s/b_w)</th>
<th>(m)</th>
<th>(h) ((\text{m}))</th>
<th>(B_s) ((\text{m}))</th>
<th>(A_c/A_m)</th>
<th>te onderzoeken effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0,8</td>
<td>5,7</td>
<td>0,67</td>
<td>0</td>
<td>12</td>
<td>30</td>
<td>15</td>
<td>excentriciteit y</td>
</tr>
<tr>
<td>2</td>
<td>0,2</td>
<td>0,8</td>
<td>5,7</td>
<td>0,67</td>
<td>0</td>
<td>12</td>
<td>30</td>
<td>15</td>
<td>excentriciteit y</td>
</tr>
<tr>
<td>3</td>
<td>0,35</td>
<td>0,8</td>
<td>5,7</td>
<td>0,67</td>
<td>0</td>
<td>12</td>
<td>30</td>
<td>15</td>
<td>excentriciteit y</td>
</tr>
<tr>
<td>4</td>
<td>0,2</td>
<td>0,5</td>
<td>3,6</td>
<td>0,67</td>
<td>0</td>
<td>12</td>
<td>30</td>
<td>15</td>
<td>Vaarsnelheid</td>
</tr>
<tr>
<td>5</td>
<td>0,2</td>
<td>0,8</td>
<td>5,7</td>
<td>1,5</td>
<td>0</td>
<td>12</td>
<td>30</td>
<td>15</td>
<td>(L_s/b_w)</td>
</tr>
<tr>
<td>6</td>
<td>0,2</td>
<td>0,8</td>
<td>5,7</td>
<td>0,67</td>
<td>3</td>
<td>12</td>
<td>30</td>
<td>13,8</td>
<td>kanaalprofiel</td>
</tr>
<tr>
<td>7</td>
<td>0,2</td>
<td>0,8</td>
<td>5,7</td>
<td>0,67</td>
<td>0</td>
<td>18</td>
<td>30</td>
<td>22,5</td>
<td>h/T</td>
</tr>
<tr>
<td>8</td>
<td>0,2</td>
<td>0,8</td>
<td>5,7</td>
<td>0,67</td>
<td>0</td>
<td>12</td>
<td>20</td>
<td>22,5</td>
<td>(b_w/B_s)</td>
</tr>
<tr>
<td>9</td>
<td>0,35</td>
<td>0,5</td>
<td>3,6</td>
<td>0,67</td>
<td>0</td>
<td>12</td>
<td>30</td>
<td>15</td>
<td>excentriciteit y</td>
</tr>
</tbody>
</table>

Tabel 3.1 Overzicht van de scenario instellingen.
Voor scenario 6 is een gebroken profiel met een talud aan de onderwater oever opgelegd. Over een hoogte van 2 m vanaf de waterlijn is de oever vertikaal om droogvallen aan de oever te voorkomen.

![Figure 3.17](image)

Figuur 3.17 Definitie van de doorsnede van Run 6.

Presentatie resultaten

Gebiedmiddeling

Voor de bepaling van de gebiedsgemiddelde waterspiegeldaling en retourstroming is een middelingsgebied gedefinieerd. Het gebied strekt zich in langsrichting uit over de scheepslengte. De stroming onder het schip wordt buiten beschouwing gelaten. Ter illustratie is in Figuur 3.18 voor Run 1 het middelingsgebied aangegeven met het rode oppervlak. Een middeling wordt uitgevoerd voor het gebied aan bakboordzijde, aan stuurboordzijde en het totale gebied. De resultaten van deze middelingsoperatie zijn gegeven in Tabel 1 in Bijlage A.

![Figure 3.18](image)

Figuur 3.18 Definitie middelingsgebied voor Run 1.

Raaien

Aan de oever worden de waterspiegeldaling en stroming in langsrichting bepaald. Over een lengte van 1100m worden de variabelen geïnterpoleerd naar langsraaien op $y=-135m$ en $y=+135m$ (y vanuit de kanaalas), oftewel 15m uit de oever, zie Bijlage B. Uit deze langsraaien kunnen ook de gemiddelde (over de scheepslengte) en maximale waterspiegeldaling en retourstroming bepaald worden. Naast gemiddelden en maxima voor $y=\pm135m$ zijn ook de maxima en gemiddelden voor $y=\pm120m$, $y=\pm140m$ en $y=\pm145m$ bepaald. Deze zijn gegeven in Tabel 2-5 in Bijlage A.
Halverwege het schip is een dwarsraai gedefinieerd. Hiervoor is de waterspiegelstand en de stroming bepaald, zie Bijlage C. Naast de berekende waarden met FINEL2D is ook aangegeven het verloop in dwarsrichting volgens de bronnen/putten methode uit Paragraaf 2.3 van de waterspiegelstand en de retourstroming. Als invoer is een gemiddelde waterspiegelstand en retourstroming benodigd. Hiervoor zijn de waarden op $y = 0,2B$, gebruikt. Als breedte van het kanaal is $2x$ de afstand van het schip tot de oever toegepast. Voor excentrisch varende schepen variëren de breedtes daarmee voor stuurboord en bakboord.

Bovenaanzichten
Contourplots zijn gemaakt voor de waterspiegel en vectorplots voor de snelheden. Deze plots geven de ruimtelijke verdeling van de waterspiegelstand en het snelheidsveld. Deze figuren zijn bedoeld om een kwalitatieve indruk te krijgen.

De contourplots van de waterspiegelstand zijn gegeven in Bijlage D en de vectorplots in Bijlage E.

Beschrijving resultaten

De FINEL2D resultaten zijn bedoeld om DIPRO aan te passen en te valideren. Hiervoor kunnen de resultaten uit de bijlagen gebruikt worden. In deze paragraaf wordt beknopt ingegaan op de effecten als gevolg van:

- excentriciteit;
- vaarsnelheid;
- lengte/breedte verhouding;
- talud aan de oever;
- verhouding tussen de scheepsdiepgang en kanaaldiepte;
- verhouding tussen de scheepsbreedte en kanaalbreedte.

In het voorgaande hoofdstuk is reeds ingegaan op het algemene stroombeeld als gevolg van een varend schip.

excentriciteit
Het effect van de excentriciteit is bepaald met behulp van Run 1-3 met een vaarsnelheid van 5,7 m/s en Run 4 en Run 9 met een vaarsnelheid van 3,6 m/s door steeds dichter langs de oever te varen. Logischerwijs neemt de waterspiegelstand en de retourstroming aan de korte zijde (stuurboordzijde) toe als dichter langs de oever wordt gevaren, zie Figuur 3.3. De doorsnedegemiddelde waterspiegelstand en retourstroming veranderen nauwelijks door het dichter langs de oever varen. Dit geldt voor beide vaarsnelheden. Een verandering in gebiedsgemiddelde retourstroming wordt ook niet verwacht aangezien het doorstroomoppervlak niet verandert. Als gevolg van de sterke drukgradiënten aan de voor- en achterzijde van het schip ontstaan snelheden in radiale richting, die afnemen met toenemende afstand tot het schip. In Run 1 en Run 2 vloeien deze in elkaar over. In Run 3 is een duidelijk onderscheid te zien tussen de snelheid/waterspiegelstand als gevolg van de drukgradiënt aan de voorzijde en aan de achterzijde. De langsraai geeft twee minima.

Ter illustratie is de waterspiegelstand en retourstroming in Figuur 3.4 uitgezet tegen de excentriciteit. De waarden komen uit de tabellen in Bijlage A.
Vaarsnelheid

De effecten van de vaarsnelheid kunnen bepaald worden uit de verschillen tussen Run 2 en Run 4 en tussen Run 3 en Run 9. In Run 4 (Run 9) is de vaarsnelheid met verlaagd t.o.v. Run 2 (Run 3). Dit leidt logischerwijs tot een vermindering van de waterspiegeldaling en retourstroming.

Lengte schip tot breedte kanaal

Het effect van de lengte van het schip tot de breedte van het kanaal kan bepaald worden met behulp van Run 2 en Run 5. Door het verlengen van het schip vloeien de effecten van de drukgradiënten aan de voor- en achterzijde minder in elkaar over. Hierdoor neigen twee minima te ontstaan in de langsraaien op \(y = -135 \) m. Hierdoor wordt de maximale waterspiegeldaling en retourstroming aan de oever ca 10-15% minder groot door verlenging van het schip tot 450 m.

![Diagram](image)

Figuur 3.19 Waterspiegeldaling (a) en stroomsnelheid (b) op de langsraai \(y = -135 \) m (stuurboord) voor Run 1-3. Zie ook Bijlage C.
Talud aan de oever

In Run 6 is een onderwatertalud opgelegd aan de oevers. Aan de oever heeft het talud een duidelijk effect. Door de verkleining van de waterdiepte treden hogere snelheden op langs de oever. Ter vergelijking zijn in Figuur 3.21 de snelheidsvectoren geplot voor Run 2 en Run 6. Ook het totale doorstroomoppervlak wordt verkleind, waardoor de snelheden toenemen.

Zoals reeds aangegeven in paragraaf 3.2 is het discutabel of de snelheden aan de oever realistisch worden gesimuleerd met een dieptegemiddeld stromingsmodel.
Scheepsdiepgang tov kanaaldiepte
In Run 7 is de kanaaldiepte vergroot van 12m naar 20m. Hiermee wordt het doorstroomoppervlak vergroot. Dit leidt tot een geringere waterspiegeldaling en een geringere retourstroming.

Scheepsbreedte tov kanaalbreedte
In Run 8 is de breedte van het schip verkleind. Dit leidt tot een verlaging van de retourstroming en een verkleining van de spiegeldaling. Merk op dat de gemiddelde waarden voor Run 8 (breedte schip verkleind) en Run 7 (kanaaldiepte verdiept) nauwelijks verschillen. Een verkleining van de breedte van het schip heeft hetzelfde effect als een vergroting van de kanaaldiepte, beide zorgen in dit geval voor een toename in het doorstroomoppervlak met een factor 1,5.

conclusies
Om DIPRO aan te passen en te valideren voor situaties, waarbij tweedimensionale aspecten een rol spelen zijn FINEL2D simulaties uitgevoerd. Negen verschillende scenario’s zijn gedefinieerd waarbij de volgende aspecten zijn opgenomen:

- excentriciteit;
- vaarsnelheid;
- lengte/breedte verhouding;
- talud aan de oever;
- verhouding tussen de scheepsdiepgang en kanaaldiepte;
- verhouding tussen de scheepsbreedte en kanaalbreedte.

De resultaten zijn gepresenteerd in figuren en tabellen. Een beknopte kwalitatieve beschrijving is gegeven waaruit volgt dat de resultaten in overeenstemming met de verwachte uitkomsten zijn.
4 Vergelijken analytische en numerieke resultaten

4.1 Inleiding

In Hoofdstuk 2 is een verbeterde berekeningsmethode voor de waterspiegeldaling en de retourstroomsnelheden bij de oever voor excentrisch varende schepen voorgesteld uitgaande van oppervlakte gemiddelde waarden zoals die met de methode Schijf worden berekend voor in de as varende schepen. Om de methode te valideren zijn 8 scenario’s doorgerekend met FINEL2D. Dit staat toegelicht in Hoofdstuk 3 en de relevante resultaten zijn in Bijlage A in tabelvorm gepresenteerd.

In dit hoofdstuk zal in paragraaf 4.2 eerst de gemiddelde waterbeweging worden vergeleken en vervolgens in paragraaf 4.3 de waterbeweging bij de oever. Hiertoe was het noodzakelijk de diverse scenario’s ook met DIPRO door te rekenen. Daarbij is de nauwkeurige methode gebruikt en is het schip gedefinieerd als een motorschip met de volgende afmetingen \((c_m = 0.9)\):

- scenario’s 1 t/m 4, 6, 7 en 9 met schip 1:
 - Lengte: \(L_s = 200\) m
 - Breedte: \(B_s = 30\) m
 - Diepgang: \(T = 8\) m

- scenario 5 met schip 2:
 - Lengte: \(L_s = 450\) m
 - Breedte: \(B_s = 30\) m
 - Diepgang: \(T = 8\) m

- scenario 8 met schip 3:
 - Lengte: \(L_s = 200\) m
 - Breedte: \(B_s = 20\) m
 - Diepgang: \(T = 8\) m

Ook het kanaal is geschematiseerd om een vergelijking te kunnen maken. In totaal zijn 7 kanalen gedefinieerd:

- kanaal 1: rechthoekig kanaal met breedte \(b_w = 300\) m en diepte \(h = 12\) m;
- kanaal 2: rechthoekig kanaal met breedte \(b_w = 180\) m en diepte \(h = 12\) m;
- kanaal 3: rechthoekig kanaal met breedte \(b_w = 90\) m en diepte \(h = 12\) m;
- kanaal 4: rechthoekig kanaal met breedte \(b_w = 300\) m en diepte \(h = 18\) m;
- kanaal 5: rechthoekig kanaal met breedte \(b_w = 180\) m en diepte \(h = 18\) m;
- kanaal 6: kanaal met gebroken profiel met breedte \(b_w = 300\) m en diepte \(h = 12\) m;
- kanaal 7: kanaal met gebroken profiel met breedte \(b_w = 180\) m en diepte \(h = 12\) m.
In de Tabellen 4.1 en 4.2 staan de doorgerekende combinaties met karakteristieke waarden. Tabel 4.1 is identiek aan de FINEL2D scenario’s (zie Tabel 3.1). Tabel 4.2 geeft extra scenario’s die met DIPRO zijn doorgerekend ten behoeve van analyse en uiteindelijk verbetering van DIPRO. In geval van scenario’s A betreft het vaarten met y = 0; in geval van scenario’s B vaarten in de as, waarbij de as samenvalt met de positie y in het oorspronkelijke scenario. Het gevolg is dat de kanaalbreedte 2y kleiner wordt.

Verder is in Figuur 4.1 het kanaal voor scenario 6 gegeven. Het gaat dus om een gebroken profiel en niet om een profiel met een talud op de waterlijn.

![Figuur 4.1](image)

Figuur 4.1 Definitie van kanaal 6 (kanaal 7 is identiek uitgezonderd de bodembreedte van 120 m)
De Tabellen 4.1 en 4.2 zijn aanleiding om op te merken dat in de kolom V_s de aangehouden vaarsnelheid staat en die voor alle runs 5,65 m/s bedraagt, behalve voor run 3 waar deze 4,75 m/s bedraagt en voor de runs 4 en 9 waar deze 3,55 m/s is. Dit is conform de waarden die bij de numerieke berekeningen zijn aangehouden met uitzondering van run 3. In dit geval was het niet mogelijk in DIPRO een snelheid van 5,65 m/s te realiseren, omdat de verhouding V_s/V_{gren} dan groter wordt dan de toegestane 0,95.

Overigens zijn de waarden van V_s/V_{gren} bij DIPRO in alle gevallen afwijkend van de waarden bij de numerieke berekeningen, waar waarden van 0,8 en 0,5 voor die verhouding zijn aangehouden. Dit heeft behalve voor run 3, voor de verdere analyse geen gevolgen, omdat met de vaarsnelheid V_s is gerekend.

In de Tabellen 4.3 en 4.4 zijn de uitkomsten van de berekeningen voor de spiegeldalingen en de retourstroomsnelheden gepresenteerd.

De uitkomsten in de Tabellen 4.3 en 4.4 zijn aanleiding voor twee opmerkingen. Allereerst zijn de resultaten zoals DIPRO die geeft conform de verwachtingen. Dus bijvoorbeeld: bij toenemende excentriciteit ook een toename van waterspiegeldaling en retourstroomsnelheid, of bij lagere vaarsnelheid ook lagere waarden voor de waterbewegingscomponenten. In het navolgende zal hierop daarom ook niet meer worden ingegaan.
Ten tweede is bij geen van de berekeningen voor de extra scenario's een verschil geconstateerd tussen over het oppervlak gemiddelde waarde en de extreme waarde bij de oever voor zowel spiegeldaling als retourstroombreedte. Dit is ook logisch want het betreft varen in de as en is conform geïmplementeerde rekenregels in DIPRO.

In de volgende paragrafen zal dus uitsluitend de vergelijking tussen uitkomsten met FINEL2D en DIPRO aan de orde komen. Eerst de gemiddelde waterbeweging in paragraaf 4.2 en daarna de extreme waterbeweging nabij de oever in paragraaf 4.3. Voor de volledigheid wordt opgemerkt dat alle DIPRO berekeningen zijn uitgevoerd met versie 3.02 van WL | Delft Hydraulics en niet met DIPRO+. Voor de uitkomsten maakt dit echter geen verschil.

4.2 Gemiddelde waterbeweging

DIPRO berekent de gemiddelde waterbeweging over het gehele kanaaloppervlak ter weerszijden van het schip tussen een raai bij de boeg en een raai bij het hek van een schip. Om een vergelijking te maken zijn daarom via postprocessing de uitkomsten van FINEL ook vertaald naar oppervlakte gemiddelde waarden. Bij FINEL2D is het echter ook mogelijk oppervlakte gemiddelde waarden te bepalen voor uitsluitend het oppervlak aan stuurboordzijde of het oppervlak aan bakboordzijde. In Tabel 4.5 zijn deze gemiddelde waarden gepresenteerd voor de spiegeldaling dh samen met de DIPRO waarden.

<table>
<thead>
<tr>
<th>scenario</th>
<th>DIPRO+</th>
<th>FINEL2D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dh_gem</td>
<td>dh_gem</td>
</tr>
<tr>
<td>1</td>
<td>0,499</td>
<td>0,206</td>
</tr>
<tr>
<td>2</td>
<td>0,897</td>
<td>0,201</td>
</tr>
<tr>
<td>3</td>
<td>1,088</td>
<td>0,186</td>
</tr>
<tr>
<td>4</td>
<td>0,407</td>
<td>0,070</td>
</tr>
<tr>
<td>5</td>
<td>0,698</td>
<td>0,123</td>
</tr>
<tr>
<td>6</td>
<td>0,978</td>
<td>0,293</td>
</tr>
<tr>
<td>7</td>
<td>0,826</td>
<td>0,111</td>
</tr>
<tr>
<td>8</td>
<td>0,758</td>
<td>0,115</td>
</tr>
<tr>
<td>9</td>
<td>0,524</td>
<td>0,067</td>
</tr>
</tbody>
</table>

Beschouwen we de resultaten van FINEL2D nader dan zien we dat bij excentrisch varen (alle vaarten uitgezonderd scenario 1) de gemiddelde waarde aan SB-zijde groter is dan het gemiddelde over het gehele oppervlak en uiteraard wordt dit gecompenseerd door lagere waarden aan BB-zijde. Dit resultaat is logisch. Voor de scenario’s 1 t/m 3 verandert de totale oppervlakte gemiddelde waarde heel weinig, wat ook logisch is want kanaal en schip blijven gelijk, alleen de positie in de vaarweg verandert. Een vergelijk daarvan is in Figuur 4.2 gepresenteerd. Duidelijk blijkt dat er aanzienlijke scatter is.
Gegeven het voorgaande ligt dus een vergelijk voor de hand tussen de DIPRO uitkomsten en de uitkomsten van FINEL2D aan de SB zijde. De DIPRO en FINEL2D resultaten staan daartoe in Tabel 4.6 samengevat.

Tabel 4.6 Oppervlakte gemiddelde waterbeweging

<table>
<thead>
<tr>
<th>scenario</th>
<th>dh_gem</th>
<th>u_gem</th>
<th>dh_F/dh_D</th>
<th>u_F/u_D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FINEL2D</td>
<td>DIPRO+</td>
<td>FINEL2D</td>
<td>DIPRO+</td>
</tr>
<tr>
<td>1</td>
<td>0.206</td>
<td>0.499</td>
<td>0.350</td>
<td>0.633</td>
</tr>
<tr>
<td>2</td>
<td>0.282</td>
<td>0.897</td>
<td>0.479</td>
<td>0.942</td>
</tr>
<tr>
<td>3</td>
<td>0.400</td>
<td>1.088</td>
<td>0.695</td>
<td>1.152</td>
</tr>
<tr>
<td>4</td>
<td>0.098</td>
<td>0.407</td>
<td>0.263</td>
<td>0.432</td>
</tr>
<tr>
<td>5</td>
<td>0.152</td>
<td>0.698</td>
<td>0.269</td>
<td>0.736</td>
</tr>
<tr>
<td>6</td>
<td>0.414</td>
<td>0.978</td>
<td>0.682</td>
<td>1.054</td>
</tr>
<tr>
<td>7</td>
<td>0.156</td>
<td>0.826</td>
<td>0.269</td>
<td>0.579</td>
</tr>
<tr>
<td>8</td>
<td>0.160</td>
<td>0.758</td>
<td>0.281</td>
<td>0.682</td>
</tr>
<tr>
<td>9</td>
<td>0.147</td>
<td>0.524</td>
<td>0.396</td>
<td>0.549</td>
</tr>
</tbody>
</table>

Aan de hand van Tabel 4.6 kan worden bepaald dat voor de scenario’s 1 t/m 3 FINEL voor de waterspiegeldaling en retourstroomsnelheid gemiddeld 0,365 en 0,555 lagere waarden berekend dan DIPRO. Bij een lagere vaarsnelheid (scenario’s 4 en 9) is die factor 0,260 en 0,665. Deze resultaten zijn meer in detail weergegeven in de Figuren 4.3 en 4.4 voor respectievelijk waterspiegeldaling en retourstroomsnelheid.

Ter illustratie zijn in de Figuren 4.5 en 4.6 voor alle scenario’s de berekende verhoudingen voor de waterspiegeldaling en de retourstroomsnelheid gepresenteerd. De gemiddelde waarde voor de verhouding is 0,30 voor de spiegeldaling, maar de spreiding is groot (range: 0,19 à 0,42); en 0,54 voor de retourstroomsnelheid (range: 0,36 à 0,72).
Figuur 4.3 Vergelijk gemiddelde spiegeldaling voor scenario’s 1 t/m 3

Figuur 4.4 Vergelijk gemiddelde retourstroom voor scenario’s 1 t/m 3

Figuur 4.5 Verhouding gemiddelde spiegeldalingen voor alle scenario’s
Samengevat: DIPRO lijkt in geval van de gemiddelde spiegeldaling 2,5 à 5 keer grotere waarden te berekenen dan FINEL2D. In geval van de retourstroomsnelheid geeft DIPRO 1,5 à 2,5 keer grotere waarden dan FINEL2D. De vraag is wat hiervan de oorzaak is. Als we alle randvoorwaarden beschouwen die ten grondslag liggen aan de gekozen oorspronkelijke scenario’s (zie Tabel 4.1), zoals h/T verhouding en B_s/b_w verhouding, dan zijn deze allemaal redelijk. Een uitzondering moet echter worden gemaakt voor de verhouding L_s/b_w (scheeps lengte/waterspiegelbreedte) waarvoor een waarde van 0,67 geldt (behalve voor scenario 5 met verhouding 1,5).

DIPRO is ontwikkeld voor een situatie met een oneindig lang schip (bij de berekening van de gemiddelde waterbeweging) en daarvoor ook getoetst. In vaarwegen voor binnenschepen wordt vrijwel altijd voldaan aan de voorwaarde dat L_s/b_w > 1. De onderhavige situatie betreft het Noordzeekanaal met een zeeschip. DIPRO is daarvoor niet ontwikkeld en niet gevalideerd, maar wordt wel toegepast voor dergelijke condities.

Een verhouding 0,67 zoals hier van toepassing voor alle scenario’s uitgezonderd scenario 5, betekent dat het invloedsgebied van het schip geringer is ten opzichte van een verhouding groter dan 1. Per definitie zullen de uitkomsten van DIPRO dus groter zijn dan die van FINEL2D waar impliciet wel rekening wordt gehouden met het beperktere invloedsgebied.

De grote van het effect van L_s/b_w op de uitkomsten kan helaas met de beschikbare data niet worden bepaald. Wel kan een onderbouwing worden gezocht door vergelijken van de uitkomsten van de scenario’s 2 en 5 voor verschillende L_s/b_w verhoudingen. De verwachting is dat voor een grotere verhouding van L_s/b_w (i) de gemiddelde spiegeldaling of retourstroom zal toenemen door het grotere invloedsgebied, en (ii) de verhouding tussen FINEL2D en DIPRO zal afnemen.

Op basis van de presentatie in de Figuren 4.7 t/m 4.9 kan worden geconcludeerd dat de verhouding tussen FINEL2D en DIPRO inderdaad afneemt (Figuur 4.9) maar dat de gemiddelde waarden van spiegeldaling en retourstroomsnelheid juist afnemen in plaats van toenemen (Figuren 4.7 en 4.8).

Het voorgaande kan niet anders dan leiden tot de conclusie dat de schematisatie zoals geïmplementeerd in DIPRO niet geschikt is voor situaties waarvoor geldt L_s/b_w < 1. Voor veel zeevaartwegen geldt deze conditie.

Figuur 4.6 Verhouding gemiddelde retourstroomsnelheden voor alle scenario’s
Figuur 4.7 Gemiddelde waterspiegeldaling als functie van Ls/bw voor scenario’s 2 en 5

Figuur 4.8 Gemiddelde retourstroom als functie van Ls/bw voor scenario’s 2 en 5

Figuur 4.9 Vergelijk gemiddelde waterspiegeldaling en retourstroom als functie van Ls/bw voor scenario’s 2 en 5

Ter verdere illustratie van het effect van Ls/bw wordt onderstaand een beschouwing gegeven van het invloedsgebied van de primaire waterbeweging. In Figuur 4.10 is aangegeven welk gebied tussen schip en oever wordt beïnvloed door het varende schip.
Daarbij worden de volgende uitgangspunten aangehouden:

- formules (zie voor definities Figuur 4.10):

 \[
 L_{pm} = L_s - 2L_c \quad \text{met} \quad L_c = \alpha L_s (1 - c_B) \\
 L_i = L_{pm} + 2y
 \]

 waarin: \(c_B \) = blokcoëfficiënt en \(\alpha = 0,5 \);

- de invloedsgebieden breiden zich uit onder 45 graden.

![Figuur 4.10 Invloedsgebied rondom een schip van de primaire waterbeweging](image_url)

Stel nu \(c_B = 0,7 \) dan volgt \(L_s = 0,15 L_s \) en \(L_{pm} = 0,7 L_s \)

Dit betekent dat een vlak gedeelte in het spiegeldalingsgebied ontbreekt voor \(y > 0,5 L_{pm} \) of met \(c_B = 0,7: y > 0,35 L_s \).

Bij binnenvaart geldt een iets andere waarde: \(c_B = 0,9 \) en dan volgt: \(L_s = 0,05 L_s \) en \(L_{pm} = 0,9 L_s \) en \(y > 0,45 L_s \). Dit strookt redelijk met in het verleden aangenomen waarden voor de “entrance length” \(L_s \) bij binnenvaartschepen van 10% van \(L_s \).
Wat betekent dit nu. DIPRO gaat uit van oneindig lange (binnenvaart) schepen in oneindig lange kanalen, maar met beperkte breedte en diepte. Dit impliceert: \(L_{pm} \gg 2y \) en dus: \(L_i \sim L_{pm} \sim L_o \) bij de oever.
Het in Figuur 4.10 geschetste beeld van het invloedsgebied speelt dus nauwelijks of niet bij standaard binnenvaartschepen.
Bij zeevaartschepen in zeevaartkanalen ligt dit dus anders. Daar geldt: \(L_{pm} \sim 2y \) en dus bij de oever: \(L_i > L_o \)

Duidelijk mag zijn dat bij het bepalen van de gemiddelde waterspiegeldaling (en retourstroomsnelheid) tussen schip en oever met voorgaande rekening moet worden gehouden. DIPRO bepaalt het gemiddelde in een gebied naast het schip vanaf een raai bij de boeg tot een raai bij het hek. Dit leidt dus tot aanzienlijk hogere gemiddelde waarden dan in een situatie met een invloedsgebied zoals in Figuur 4.10 geschetst. Vergelijken van beide uitkomsten is dus niet mogelijk; de uitgangspunten zijn immers verschillend.

Bovenstaand effect is in de resultaten van de FINEL2D berekeningen duidelijk te zien, bijvoorbeeld in Figuur 3.11. Ook is het waargenomen bij het systematisch onderzoek M1115. In Figuur 4.11 zijn lijnen van gelijke spiegelhelling aangegeven rondom een onderzoekingsvaartuig. In de linker figuur is aan beide zijden van het schip de wigvorm herkenbaar; in de rechter figuur waar het schip zeer dicht bij de oever vaart is de wigvorm vrijwel verdwenen. Voor de volledigheid wordt opgemerkt dat in geval van een onderzoekingsvaartuig niet wordt voldaan aan de uitgangspunten van DIPRO.
In Figuur 4.12 is het invloedsgebied rond een duwstel aangegeven. Aan stuurboordzijde is geen wigvorm te zien, maar aan bakboordzijde wel. Maar meestal zijn we niet geïnteresseerd in de belastingen aan de bakboordzijde.

Ter verklaring van de verschillen tussen DIPRO en FINEL2D is van de zijde van de opdrachtgever gesuggereerd dat bij de berekening met FINEL2D mogelijk assenstelsels (aardvast en scheepsvast) zouden zijn verwisseld. Dit lijkt onwaarschijnlijk omdat in een situatie zonder natuurlijke stroomsnelheid dan voor de retourstroomsnelheid verschillen in de orde van grootte van de vaarsnelheid zouden moeten resulteren. Dit is niet geconstateerd.
Het voorgaande betekent dat een verdere analyse van de uitkomsten van berekeningen met DIPRO en FINEL2D verder weinig zinvol is en dit is daarom ook achterwege gelaten. Ter illustratie is tenslotte nog de invloed gepresenteerd van de excentriciteit op de gemiddelde waterspiegeldaling in Figuur 4.13.

Figuur 4.12 Invloedsgebied rondom een duwstel (varend op 43,1 m uit as van trapeziumvormig kanaalprofiel met bodembreedte 118 m)

Figuur 4.13 Gemiddelde waterspiegeldaling als functie van y voor scenario’s 1 t/m 3
4.3 Waterbeweging bij de oever

In deze paragraaf zal kort worden ingegaan op de waterbeweging bij de oever. Vooraf moet echter worden opgemerkt dat de conclusie in paragraaf 4.2 dat de schematisatie van DIPRO in principe niet geschikt is voor een zeevaartkanaal zoals hier onderzocht, ook hier van toepassing is. Een gedetailleerde analyse is dus niet zinvol en zal achterwege blijven.

In Tabel 4.7 staan de resultaten zoals die volgen uit de berekeningen met DIPRO en FINEL2D voor de oorspronkelijke scenario’s. Voor de FINEL2D scenario’s geldt daarbij dat de resultaten op een afstand van 15 m uit de oever zijn aangehouden (y = 135 m uit de as van het kanaal). De data zijn te vinden in Bijlage A.

<table>
<thead>
<tr>
<th>scenario</th>
<th>FINEL2D</th>
<th>DIPRO</th>
<th>dh_F/dh_D</th>
<th>u_F/u_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.189</td>
<td>0.330</td>
<td>0.499</td>
<td>0.633</td>
</tr>
<tr>
<td>2</td>
<td>0.348</td>
<td>0.595</td>
<td>1.121</td>
<td>1.178</td>
</tr>
<tr>
<td>3</td>
<td>0.786</td>
<td>1.337</td>
<td>1.360</td>
<td>1.440</td>
</tr>
<tr>
<td>4</td>
<td>0.117</td>
<td>0.315</td>
<td>0.508</td>
<td>0.540</td>
</tr>
<tr>
<td>5</td>
<td>0.298</td>
<td>0.519</td>
<td>0.872</td>
<td>0.883</td>
</tr>
<tr>
<td>6</td>
<td>0.553</td>
<td>0.907</td>
<td>1.222</td>
<td>1.317</td>
</tr>
<tr>
<td>7</td>
<td>0.194</td>
<td>0.329</td>
<td>1.032</td>
<td>0.724</td>
</tr>
<tr>
<td>8</td>
<td>0.196</td>
<td>0.342</td>
<td>0.948</td>
<td>0.852</td>
</tr>
<tr>
<td>9</td>
<td>0.235</td>
<td>0.632</td>
<td>0.656</td>
<td>0.686</td>
</tr>
</tbody>
</table>

In de Figuren 4.14 en 4.15 is de verhouding tussen extreme en gemiddelde waterbeweging uitgezet (door combineren van data gepresenteerd in de Tabellen 4.6 en 4.7). Gemiddeld zijn de maximale waarden ongeveer 20% groter dan de oppervlakte gemiddelde waarden. Dit is conform de verwachting; zie hiertoe paragraaf 2.4. Een uitzondering vormt de FINEL2D uitkomst voor scenario 3. De oorzaak hiervan is gelegen in de vaarsnelheid die hoger is dan 0.8 keer de grenssnelheid.

Verder kan worden geconcludeerd dat deze verhouding voor alle scenario’s geldt en dat dus de invloed van h/T, B_v/b_w, L_v/b_w of kanaalprofiel geen invloed hierop heeft.

![Verhouding maximale en gemiddelde spiegeldaling bij de oever](image-url)
Uit de Figuren 4.14 en 4.15 kan ook worden afgelezen dat FINEL2D lagere maximale waarden berekend dan DIPRO. Ter illustratie hiervan zijn in Figuur 4.17 de verhoudingen tussen spiegeldalingen en retourstroomsnelheden voor alle scenarios tegen elkaar uitgezet. De figuur bevestigt de eerdere conclusie dat DIPRO en FINEL2D niet vergelijkbaar zijn.
5 Conclusies en aanbevelingen

Op grond van de uitgevoerde berekeningen met FINEL2D, DIPRO+ en het vergelijken van de resultaten kan een aantal conclusies worden getrokken. Onderstaand zijn de hoofdconclusies gepresenteerd.

De hoofdconclusies zijn:

- De scheepsgeïnduceerde waterbeweging gesimuleerd met FINEL2D lijkt correct. Het programma is immers gevalideerd aan metingen in het Noordzeekanaal en de resultaten van de gesimuleerde scenario’s geven geen aanleiding onjuistheden te veronderstellen.
- De scheepsgeïnduceerde waterbeweging gesimuleerd met DIPRO+ is correct. Er is geen reden te twijfelen aan de voorspelkracht van DIPRO+ voor binnenvaartsituaties; het programma is immers gebaseerd op 15 jaar onderzoek voor binnenvaart. Het ligt anders voor zeevaart situaties waar feitelijk nauwelijks onderzoek heeft plaats gehad.
- Vergelijken van de resultaten van FINEL2D en DIPRO+ leidt niet tot een match. DIPRO+ lijkt systematisch een factor 3 hogere waarden te berekenen dan FINEL2D. Een deel van de verklaring ligt in het gegeven dat DIPRO+ is ontwikkeld en gevalideerd voor verhoudingen scheepslengte-kanaalbreedte veel groter dan 1, terwijl de uitgevoerde berekeningen zijn gedaan voor een verhouding kleiner dan 1. Verder is DIPRO+ afgeleid voor binnenvaartschepen in binnenvaartkanalen, dus beperkte breedte en diepte. Toch verklaart dit niet alles. DIPRO+ rekent per definitie ook aan de veilige kant.

Op grond van het bovenstaande wordt geconcludeerd dat de beschikbare FINEL2D en DIPRO+ resultaten niet bruikbaar zijn voor een verbetering van DIPRO+, wat de doelstelling van het onderzoek was. Dit is teleurstellend, maar de winst is dat nu duidelijk is dat DIPRO+ niet zo maar kan worden toegepast voor andere situaties dan beperkte breedte en diepte. Daartoe is een uitgebreide validatie noodzakelijk.

Het voorgaande is aanleiding de volgende aanbevelingen te doen:

- Aanpassingen in DIPRO+ doorvoeren zodat altijd wordt gerekend met de nauwkeurige mode, ook bij asvaren en positieve excentriciteit;
- Updaten van DIPRO+ dat wil zeggen: testen, modificeren (verwijderen wachtwoord, invullen database vereenvoudigen, fouten verwijderen), ombouwen handleiding DIPRO3.02 naar handleiding DIPRO+;
- Opstarten van een studie door middel van afstudeerders bij de vakgroep Havens & Scheepvaartwegen op de TU Delft (samen met bijvoorbeeld de onderzoeksgroep van prof Bernhard Sohngen in Karlsruhe) naar de oorzaak van de verschillen in uitkomst. Nadrukkelijk zal aandacht moeten worden besteed aan (i) toepasbaarheid van DIPRO+ voor situaties met onbeperkte breedte en diepte (zeeschepen op kanalen voor de zeescheepvaart) en (ii) algemene geldigheid van FINEL2D voor simulatie scheepsgeïnduceerde waterbeweging.
6 Literatuur

Waterloopkundig Laboratorium, verslag Q1046, Delft

Waterloopkundig Laboratorium, verslag M1115 deel IV, Delft

Svasek (2005): *Noordzeekanaal, troskrachten en scheepsbewegingen – metingen*
25 oktober 2005
Svasek Hydraulics, rapport 1353

24th International Navigation Congress, Section I, Subject 3, Leningrad.
A Tabellen

TABEL 1:
Gebiedsgemiddelde spiegeldaling en retourstroming. Het gebied is als volgt bepaald:
Stuurboord : $y>y_0+B_{schip}+5m$, $0.15 L_{schip} < x < 0.85 L_{schip}$
Bakboord : $y<y_0-B_{schip}-5m$, $0.15 L_{schip} < x < 0.85 L_{schip}$

H in [m] en U in [m/s].

<table>
<thead>
<tr>
<th></th>
<th>$H_{stuurboord}$</th>
<th>$U_{stuurboord}$</th>
<th>$H_{bakboord}$</th>
<th>$U_{bakboord}$</th>
<th>H_{totaal}</th>
<th>U_{totaal}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.2062</td>
<td>-0.35</td>
<td>-0.2054</td>
<td>-0.3491</td>
<td>-0.2058</td>
<td>-0.3496</td>
</tr>
<tr>
<td>2</td>
<td>-0.2817</td>
<td>-0.4793</td>
<td>-0.1697</td>
<td>-0.2878</td>
<td>-0.2008</td>
<td>-0.341</td>
</tr>
<tr>
<td>3</td>
<td>-0.4001</td>
<td>-0.6948</td>
<td>-0.1592</td>
<td>-0.2687</td>
<td>-0.1859</td>
<td>-0.316</td>
</tr>
<tr>
<td>4</td>
<td>-0.0978</td>
<td>-0.2632</td>
<td>-0.0587</td>
<td>-0.1571</td>
<td>-0.0696</td>
<td>-0.1867</td>
</tr>
<tr>
<td>5</td>
<td>-0.1523</td>
<td>-0.2694</td>
<td>-0.1119</td>
<td>-0.1946</td>
<td>-0.1231</td>
<td>-0.2154</td>
</tr>
<tr>
<td>6</td>
<td>-0.4136</td>
<td>-0.6817</td>
<td>-0.2469</td>
<td>-0.4107</td>
<td>-0.2932</td>
<td>-0.486</td>
</tr>
<tr>
<td>7</td>
<td>-0.1559</td>
<td>-0.2687</td>
<td>-0.0937</td>
<td>-0.1612</td>
<td>-0.111</td>
<td>-0.1911</td>
</tr>
<tr>
<td>8</td>
<td>-0.1599</td>
<td>-0.2808</td>
<td>-0.0975</td>
<td>-0.169</td>
<td>-0.1153</td>
<td>-0.201</td>
</tr>
<tr>
<td>9</td>
<td>-0.147</td>
<td>-0.3962</td>
<td>-0.0572</td>
<td>-0.1518</td>
<td>-0.0672</td>
<td>-0.1789</td>
</tr>
</tbody>
</table>

TABEL 2:
Gemiddelde en extreme waterspiegeldaling en retourstroming voor de langsraaien $y=-120m$ (bakboord) en $y=120m$ (stuurboord). H in [m] en U in [m/s].

<table>
<thead>
<tr>
<th></th>
<th>H_{gem_bak}</th>
<th>H_{gem_stu}</th>
<th>U_{gem_bak}</th>
<th>U_{gem_stu}</th>
<th>H_{min_bak}</th>
<th>H_{min_stu}</th>
<th>U_{min_bak}</th>
<th>U_{min_stu}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.1405</td>
<td>-0.1409</td>
<td>-0.2455</td>
<td>-0.2464</td>
<td>-0.1894</td>
<td>-0.1907</td>
<td>-0.3289</td>
<td>-0.3298</td>
</tr>
<tr>
<td>2</td>
<td>-0.0958</td>
<td>-0.2387</td>
<td>-0.1682</td>
<td>-0.4072</td>
<td>-0.1225</td>
<td>-0.3528</td>
<td>-0.2137</td>
<td>-0.598</td>
</tr>
<tr>
<td>3</td>
<td>-0.075</td>
<td>-0.3998</td>
<td>-0.1326</td>
<td>-0.6949</td>
<td>-0.0982</td>
<td>-0.8472</td>
<td>-0.1717</td>
<td>-1.4036</td>
</tr>
<tr>
<td>4</td>
<td>-0.0355</td>
<td>-0.0829</td>
<td>-0.0972</td>
<td>-0.2272</td>
<td>-0.0423</td>
<td>-0.1184</td>
<td>-0.1147</td>
<td>-0.3172</td>
</tr>
<tr>
<td>5</td>
<td>-0.0829</td>
<td>-0.1436</td>
<td>-0.1483</td>
<td>-0.2544</td>
<td>-0.1482</td>
<td>-0.3021</td>
<td>-0.2589</td>
<td>-0.5233</td>
</tr>
<tr>
<td>6</td>
<td>-0.1773</td>
<td>-0.3857</td>
<td>-0.3029</td>
<td>-0.6369</td>
<td>-0.2136</td>
<td>-0.5332</td>
<td>-0.3623</td>
<td>-0.8764</td>
</tr>
<tr>
<td>7</td>
<td>-0.0555</td>
<td>-0.1359</td>
<td>-0.0961</td>
<td>-0.2285</td>
<td>-0.0678</td>
<td>-0.1959</td>
<td>-0.1171</td>
<td>-0.3303</td>
</tr>
<tr>
<td>8</td>
<td>-0.0532</td>
<td>-0.1329</td>
<td>-0.095</td>
<td>-0.2327</td>
<td>-0.069</td>
<td>-0.1985</td>
<td>-0.1218</td>
<td>-0.3434</td>
</tr>
<tr>
<td>9</td>
<td>-0.0299</td>
<td>-0.1454</td>
<td>-0.0822</td>
<td>-0.3932</td>
<td>-0.0351</td>
<td>-0.2424</td>
<td>-0.0955</td>
<td>-0.6516</td>
</tr>
</tbody>
</table>

TABEL 3:
Gemiddelde en extreme waterspiegeldaling en retourstroming voor de langsraaien $y=-135m$ (bakboord) en $y=135m$ (stuurboord). H in [m] en U in [m/s].

<table>
<thead>
<tr>
<th></th>
<th>H_{gem_bak}</th>
<th>H_{gem_stu}</th>
<th>U_{gem_bak}</th>
<th>U_{gem_stu}</th>
<th>H_{min_bak}</th>
<th>H_{min_stu}</th>
<th>U_{min_bak}</th>
<th>U_{min_stu}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.1383</td>
<td>-0.1388</td>
<td>-0.2445</td>
<td>-0.2454</td>
<td>-0.1873</td>
<td>-0.1886</td>
<td>-0.3287</td>
<td>-0.3296</td>
</tr>
<tr>
<td>2</td>
<td>-0.0947</td>
<td>-0.2336</td>
<td>-0.1677</td>
<td>-0.4038</td>
<td>-0.1218</td>
<td>-0.3479</td>
<td>-0.2138</td>
<td>-0.5948</td>
</tr>
<tr>
<td>3</td>
<td>-0.074</td>
<td>-0.3888</td>
<td>-0.1322</td>
<td>-0.682</td>
<td>-0.0977</td>
<td>-0.7859</td>
<td>-0.172</td>
<td>-1.3368</td>
</tr>
<tr>
<td>4</td>
<td>-0.0353</td>
<td>-0.0819</td>
<td>-0.097</td>
<td>-0.2253</td>
<td>-0.0421</td>
<td>-0.117</td>
<td>-0.1145</td>
<td>-0.3152</td>
</tr>
<tr>
<td>5</td>
<td>-0.0822</td>
<td>-0.1424</td>
<td>-0.148</td>
<td>-0.2537</td>
<td>-0.1477</td>
<td>-0.2981</td>
<td>-0.2591</td>
<td>-0.519</td>
</tr>
<tr>
<td>6</td>
<td>-0.1845</td>
<td>-0.3934</td>
<td>-0.3049</td>
<td>-0.6516</td>
<td>-0.2228</td>
<td>-0.5532</td>
<td>-0.3655</td>
<td>-0.907</td>
</tr>
<tr>
<td>7</td>
<td>-0.0551</td>
<td>-0.1341</td>
<td>-0.0956</td>
<td>-0.2265</td>
<td>-0.0673</td>
<td>-0.1937</td>
<td>-0.1168</td>
<td>-0.3286</td>
</tr>
<tr>
<td>8</td>
<td>-0.0524</td>
<td>-0.1304</td>
<td>-0.0947</td>
<td>-0.2308</td>
<td>-0.0685</td>
<td>-0.1962</td>
<td>-0.1218</td>
<td>-0.3416</td>
</tr>
<tr>
<td>9</td>
<td>-0.0296</td>
<td>-0.1428</td>
<td>-0.082</td>
<td>-0.3877</td>
<td>-0.0348</td>
<td>-0.2348</td>
<td>-0.0954</td>
<td>-0.6324</td>
</tr>
</tbody>
</table>
TABEL 4:
Gemiddelde en extreme waterspiegeldaling en retourstroming voor de langsraaien y=-140 m (bakboord) en y=140 m (stuurboord). H in [m] en U in [m/s].

<table>
<thead>
<tr>
<th></th>
<th>H_gem_bak</th>
<th>H_gem_stu</th>
<th>U_gem_bak</th>
<th>U_gem_stu</th>
<th>H_min_bak</th>
<th>H_min_stu</th>
<th>U_min_bak</th>
<th>U_min_stu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.1364</td>
<td>-0.1371</td>
<td>-0.2441</td>
<td>-0.245</td>
<td>-0.1856</td>
<td>-0.1869</td>
<td>-0.3288</td>
<td>-0.3298</td>
</tr>
<tr>
<td>2</td>
<td>-0.0936</td>
<td>-0.2298</td>
<td>-0.1675</td>
<td>-0.4024</td>
<td>-0.1212</td>
<td>-0.3443</td>
<td>-0.2141</td>
<td>-0.5937</td>
</tr>
<tr>
<td>3</td>
<td>-0.0729</td>
<td>-0.3796</td>
<td>-0.132</td>
<td>-0.6751</td>
<td>-0.0973</td>
<td>-0.7553</td>
<td>-0.1723</td>
<td>-1.304</td>
</tr>
<tr>
<td>4</td>
<td>-0.0351</td>
<td>-0.0812</td>
<td>-0.0969</td>
<td>-0.2245</td>
<td>-0.0419</td>
<td>-0.116</td>
<td>-0.1144</td>
<td>-0.3146</td>
</tr>
<tr>
<td>5</td>
<td>-0.0813</td>
<td>-0.1414</td>
<td>-0.1479</td>
<td>-0.2534</td>
<td>-0.1473</td>
<td>-0.2955</td>
<td>-0.2594</td>
<td>-0.5177</td>
</tr>
<tr>
<td>6</td>
<td>-0.1899</td>
<td>-0.4475</td>
<td>-0.3065</td>
<td>-0.6575</td>
<td>-0.2326</td>
<td>-0.6482</td>
<td>-0.3682</td>
<td>-0.9166</td>
</tr>
<tr>
<td>7</td>
<td>-0.0547</td>
<td>-0.1328</td>
<td>-0.0955</td>
<td>-0.226</td>
<td>-0.0671</td>
<td>-0.1922</td>
<td>-0.1169</td>
<td>-0.3291</td>
</tr>
<tr>
<td>8</td>
<td>-0.0517</td>
<td>-0.1285</td>
<td>-0.0945</td>
<td>-0.23</td>
<td>-0.068</td>
<td>-0.1949</td>
<td>-0.122</td>
<td>-0.341</td>
</tr>
<tr>
<td>9</td>
<td>-0.0293</td>
<td>-0.1405</td>
<td>-0.0819</td>
<td>-0.3845</td>
<td>-0.0346</td>
<td>-0.2299</td>
<td>-0.0953</td>
<td>-0.6214</td>
</tr>
</tbody>
</table>

TABEL 5:
Gemiddelde en extreme waterspiegeldaling en retourstroming voor de langsraaien y=-145 m (bakboord) en y=145 m (stuurboord). H in [m] en U in [m/s].

<table>
<thead>
<tr>
<th></th>
<th>H_gem_bak</th>
<th>H_gem_stu</th>
<th>U_gem_bak</th>
<th>U_gem_stu</th>
<th>H_min_bak</th>
<th>H_min_stu</th>
<th>U_min_bak</th>
<th>U_min_stu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.149</td>
<td>-0.149</td>
<td>-0.2534</td>
<td>-0.2541</td>
<td>-0.1993</td>
<td>-0.2002</td>
<td>-0.3362</td>
<td>-0.3368</td>
</tr>
<tr>
<td>2</td>
<td>-0.0999</td>
<td>-0.2582</td>
<td>-0.1724</td>
<td>-0.4312</td>
<td>-0.1262</td>
<td>-0.3792</td>
<td>-0.217</td>
<td>-0.6301</td>
</tr>
<tr>
<td>3</td>
<td>-0.0786</td>
<td>-0.4451</td>
<td>-0.1361</td>
<td>-0.7749</td>
<td>-0.1009</td>
<td>-1.4605</td>
<td>-0.1735</td>
<td>-2.2278</td>
</tr>
<tr>
<td>4</td>
<td>-0.0363</td>
<td>-0.0886</td>
<td>-0.0989</td>
<td>-0.2395</td>
<td>-0.0434</td>
<td>-0.1251</td>
<td>-0.1169</td>
<td>-0.333</td>
</tr>
<tr>
<td>5</td>
<td>-0.0858</td>
<td>-0.1478</td>
<td>-0.1503</td>
<td>-0.2601</td>
<td>-0.1508</td>
<td>-0.3218</td>
<td>-0.26</td>
<td>-0.5511</td>
</tr>
<tr>
<td>6</td>
<td>-0.1746</td>
<td>-0.3857</td>
<td>-0.2987</td>
<td>-0.6369</td>
<td>-0.2093</td>
<td>-0.5332</td>
<td>-0.3556</td>
<td>-0.8764</td>
</tr>
<tr>
<td>7</td>
<td>-0.0575</td>
<td>-0.1441</td>
<td>-0.0991</td>
<td>-0.2416</td>
<td>-0.0698</td>
<td>-0.2081</td>
<td>-0.1203</td>
<td>-0.3489</td>
</tr>
<tr>
<td>8</td>
<td>-0.0559</td>
<td>-0.1439</td>
<td>-0.0976</td>
<td>-0.2462</td>
<td>-0.0716</td>
<td>-0.2105</td>
<td>-0.1238</td>
<td>-0.3616</td>
</tr>
<tr>
<td>9</td>
<td>-0.0308</td>
<td>-0.1597</td>
<td>-0.0835</td>
<td>-0.4231</td>
<td>-0.036</td>
<td>-0.7801</td>
<td>-0.0968</td>
<td>-0.8807</td>
</tr>
</tbody>
</table>
B Langsraaien voor de waterspiegeldaling en de stroomsnelheid op $y=-135m$ en $y=+135m$.
C Dwarsraaien halverwege het schip
D Contourplots waterspiegeldaling
E Vectorplots van stroomsnelheden