SEAKEEPING STANDARD SERIES FOR OBLIQUE SEAS

Delit 781836

Mekelweg

Scheepshydromechan

(A SYNOPSIS)

by Grigoropoulos, G.J.¹, Loukakis, T.A.¹ and Perakis, A.N.²

ECHRISCHE UNIVERSITEN Caboratorium voor National Technical University of Athens, 9 Heroon Polytechniou str., 15773 Zografos, Gr Michigan University, Ann Arbor, Michigan, USA

Abstract - The seakeeping performance in oblique seas for a series of 72 cruiserstern hull forms has been evaluated analytically and is presented in a systematic way. The hull form series have been created by Loukakis and Chryssostomidis (1975) by extending the principal characteristics of the Series 60 to cover usual shipbuilding practice. In that work, however, only the seakeeping performance in head seas was presented. Recently, the seakeeping performance of the Extended Series 60 was re-evaluated for both head seas and oblique seas. The complete results are presented in tabular and graphical form as a function of the principal characteristics of the ship, the Froude number (including Fn=0, missing in the original series), the non-dimensional modal wave period and the heading angle in a separate NTUA report (Grigoropoulos et al, 1994). In the present paper, the results for one case are given in tabular form accompanied by graphical representation. They include: heave, pitch, bending moment amidships, added resistance, absolute vertical acceleration and relative vertical motion at the bow and the stern regions and relative vertical velocity at stations 2 and 4 where slamming is likely to occur.

Keywords : seakeeping responses, Seakeeping Standard Series, Series 60, oblique seas, strip theory, vertical ship motions, added resistance in waves

	1.1	
·• .	<u>نې</u> :	NOMENCLATURE
	A .	= wave amplitude
	B	= beam
	Св	= block coefficient
• •	Fn	= Froude number, $Fn = V_s / \sqrt{gL_{WL}}$
	.g	= acceleration of gravity, 9.81 m/sec ²
	H _{1/3}	= significant wave height, in [m]
	K _{yy}	= longitudinal radius of gyration about LCG
	K _{yy}	= longitudinal radius of gyration of the forward part of the ship about LCG_F
	Ĺ, Ĺ _{bp}	= length between perpendiculars
•	Lwl	= length on design waterline, for the Extended Series 60 L_{BP} = 0.983 L_{WL}
	LCB	= longitudinal position of centre of buoyancy
	LCF	= longitudinal position of centre of flotation
	LCG	= longitudinal position of centre of gravity
	LCG _F	= distance of the centre of gravity of the forebody from amidships
	RAO	= Response Amplitude Operator
	RMS	= Root-Mean-Square value
	RM	= amplitude of relative bow motion
•	SSS	= Seakeeping Standard Series
•	t	= thrust deduction factor
	T	= draft
	Tp	= modal period
	Τ _Ρ ΄	= non-dimensional modal period, $T_{\rm P}' = T_{\rm P} / \sqrt{L/g}$
	Vs	= ship speed

ia.

W _F	= weight of forward part of ship	
ŴŢ	= total weight of ship	
β	= heading angle, β =180° corresponds t	o head seas
θ	= pitch amplitude	:
ĸ	= wave number	
λ	= wave length	and and a second se
μv	= RAO of bending moment, μ_v	$= \frac{\text{Bending Moment Amplitude}}{\rho \text{gABL}^2}$
ρ	= specific density of sea water	
σ _{aw}	= RAO of added resistance, σ_{aw}	$= \frac{\text{Mean Added Resistance}}{\rho g A^2 (B^2 / L)}$
М	= circular frequêncy	

1. INTRODUCTION

The seakeeping performance of a ship can either be predicted using computer codes or measured in a seakeeping basin. However, during a feasibility study or in the preliminary ship design phase, the hull lines of the vessel are not yet available and hence, neither of the aforementioned methods is applicable. In an attempt to assist the naval architect in predicting the seakeeping behaviour in such cases, Loukakis and Chryssostomidis (1975) presented the Seakeeping Standard Series (SSS) for cruiser-stern ships. In that work the authors extended the principal characteristics of the Series 60 to cover the usual shipbuilding practice and they computed the seakeeping performance of the resulting series analytically. Thus, they generated a set of tables containing the motion characteristics in head seas of 72 Extended Series 60 hull forms. The information was given for a systematic variation of the principal ship geometric parameters i.e. block coefficient C_B , length-to-beam ratio L/B and beam-to-draft ratio B/T. The results were

presented in tabular form for various fully developed seas, expressed in terms of significant wave height to length ratio $H_{1/3}/L_{BP}$ and ship speed V_S, expressed as non-dimensional Froude number $Fn = V_S / \sqrt{gL_{wL}}$, where L_{wL} is the length of the vessel at the design waterline.

Since their presentation, the series have been extensively used in naval architecture practice as well as a teaching tool. The usefulness of the series has been appreciated, especially in studies on the effect of hull form parameters on the seakeeping behaviour of ships. In this respect, the papers of Beukelman and Huijser (1977), Schmitke and Murdey (1980), Lee (1983), Pawlowski (1983), Loukakis et al (1983), Grigoropoulos and Loukakis (1988. 1990) and Wilson (1985) should be mentioned. Furthermore, Bhattacharyya (1978) included the series in his book on the dynamics of marine vehicles.

Recently, Townsin et al (1994) recognized the significance of the series and underlined their two strong points, the wide range of hull forms and the number of the seakeeping responses calculated. However, it was pointed out that, the seakeeping performance of the 72 hull forms from the Extended Series 60 has been evaluated analytically only for head seas, while the $H_{1/3}/L_{BP}$ ratio range used, starting from $H_{1/3}/L_{BP} = 0.015$, corresponds to only relatively high sea states for the longer ships of today.

The aforementioned shortcomings of the series have also been noticed by the authors of the original paper. The inconvenient selection of the $H_{1/3}/L_{BP}$ ratios is closely connected to the use of single-parameter modelling of the sea state (fully developed seas), while the two-parameter spectral models are better representations of the actual sea conditions. Since the series refer to vertical motions only, which are linear with respect to the wave height, or to added resistance, which is proportional to the square of the wave height, these shortcomings could be remedied by appropriate scaling of the $H_{1/3}$ for the same modal

period T_P. However, it would be more convenient if the results were presented for a range of modal periods and for unity significant wave height.

Mana Mana and a start

In addition, the absence of the zero-speed responses from the seakeeping tables, prevented the use of the series in some applications e.g. the design of stationary shipfactories or storage ships. Finally, scant usable information exists in the literature for ship responses in oblique seas, although such knowledge can be useful for ship routing and seakeeping operability studies.

With the above in mind, it was decided to re-evaluate the seakeeping performance of the Extended Series 60 for all headings, using the same seakeeping responses as the initial paper and including a wider range of non-dimensional sea states as well as zero-speed responses. The strip theory of Salvesen, Tuck and Faltinsen (1970) has again been used for the estimation of the ship motions and bending moments. The energy method of Gerritsma and Beukelman (1972), as extended by Loukakis and Sclavounos (1978), has been used for the prediction of added resistance in head to beam seas.

The usage of the same theories for analytical predictions after some twenty three years, underlines the remarkable fact that the simple strip theory continues to give results useful for practical purposes in an efficient computationally manner and it has not been superseded by newer three-dimensional theories, except for the zero-speed case. In this respect, it is interesting to note that in two recent International Conferences on Ship and High Speed Craft Motions & Manoeuvrability, no less than 8 authors were using strip theory for predictions in the absence of other tools, even at very high Fins! For a review of seakeeping theories and their applicability one can refer to Odabasi and Hearn (1977), Hearn and Donati (1980) and to the reports of the Seakeeping Committee of ITTC (1978,

1984, 1993), where the usefulness of strip theory is generally recognized, at least for cruiser stern ships sailing at zero to moderate speeds.

In order to demonstrate the applicability of strip theory to oblique ship responses, the analytical results in regular waves have been compared to the experimental results conducted a long time ago at Wageningen (Vossers et al, 1960 and 1961). Figures 1, 2, 3 and 4 show that for a $L_{BP} = 120$ m, $C_B = 0.7$, L/B = 7, B/T = 3.0 Series 60 hull form, the predictions for pitching motion, relative bow motion, bending moment and added resistance can be used in practice, with the bending moment and the added resistance results being the weaker predictions (in the case of added resistance, the measured added thrust is approximately converted to added resistance using the measured thrust deduction factor in calm water, t = 0.184). Furthermore, the analytically estimated bow acceleration and added resistance responses in regular waves, for the S-175 containership proposed by the I.T.T.C. for comparison studies, are shown in Figures 5 and 6 with the respective experimental results conducted in the towing tank of the Laboratory for Ship and Marine Hydrodynamics at NTUA (Grekoussis et al, 1986).

The SSS in oblique seas contain, in tabular form and as a function of the principal characteristics of the ship, the Froude number, the non-dimensional modal wave period and the heading angle, the results of the aforementioned computations, Table 1. Due to obvious space limitations, the seakeeping responses for only one case could be accommodated in the present paper in tabular form, accompanied by graphical representation. The complete results, for all 72 cases, are available in a separate technical report accompanied by a PC floppy disk (Grigoropoulos et al, 1994). The results of the Seakeeping Tables can be interpolated for the prediction of the seakeeping performance of cruiser-stern ships not necessarily with Series 60 hull forms.

Finally, it should be noted that only vertical responses have been considered in the seakeeping tables. The lateral ship responses, are highly dependent on the non-linear behaviour of rolling motion, where roll damping is mostly induced by bilge keels, active fins and other anti-rolling devices.

2. CONTENTS OF THE SEAKEEPING TABLES

The seakeeping performance of the 72 Extended Series 60 hull forms has been calculated for all headings and for the same seakeeping responses as the initial paper, that is : heave, pitch, wave bending moment amidships, added resistance, absolute vertical acceleration at stations 2, 4 and 20, relative vertical motion at stations 2, 4 and 20 and relative vertical velocity at stations 2 and 4.

The acceleration and the relative motion have been calculated at three points along the ship, the AP (station 20), 20% aft of FP (station 4) and 10% aft of FP (station 2), while the relative velocity has been computed at the latter two points in the bow region. The above points for the calculation of the relative motions and velocities have been selected so that the random events (propeller emergence, deck wetness and bottom slamming) could be estimated. The vertical acceleration, depending on the wave direction, has its maximum value in the FP and AP regions.

Since vertical ship responses and added resistance vary linearly with the significant wave height H_{1/3} and its square respectively, they have been calculated for sea states following the Bretschneider two-parameter spectral model (Bretschneider, 1959) with H_{1/3} equal to unity. The calculations have been performed for a range of eight modal periods, with non-dimensional values $T_P = T_P / \sqrt{L_{BP}/g}$ ranging from 1.5 to 5.0 at 0.5 intervals. These values of T_P correspond to $T_P = 3.4 \div 11.3$ sec for a 50 m vessel, to $T_P = 4.8 \div 16.0$ sec

for a 100 m vessel and to $T_P = 6.8 \div 22.6$ sec for a 200 m vessel. Thus, they correspond to sea states appropriate for the determination of the seakeeping responses of different size ships, if the naturally observed relationship between wave height and wave period is taken into account.

The results are in the form of integer values in the range 0 - 9999. In order to restrict the results in this range, the following "non-dimensionalizations" have been used:

Heaving motion = (RMS heave at amidships) * $10^6 / (L_{BP} H_{1/3})$

Pitching motion = (RMS pitch in degrees) * $10^4 / H_{1/3}$

Bending moment = (RMS bending moment at amidships) * $10^9 / (\rho g L_{BP}^4 H_{1/3})$

Added resistance = (mean added resistance) * $10^{10} / (\rho g L_{BP}^3 H_{1/3})$

Relative motion = (RMS relative motion) * 10^6 / (L_{BP} H_{1/3})

Relative velocity = (RMS relative velocity) * $10^5 / (\sqrt{gL_{BL}} H_{1/3})$

Acceleration = (RMS acceleration) * 10^5 / (g H_{1/3}),

where all results refer to unit significant wave height.

In this fashion, three pages are necessary for the tabular presentation of the results for each hull form and a sample page is shown in Table 1.

The seakeeping responses have been calculated for each of the 72 hull forms of the Extended Series 60 with $C_B = 0.55 (0.05) 0.90$, L/B = 5.5, 7.0 and 8.5 and B/T = 2.0, 3.0 and 4.0, at four ship speeds corresponding to Froude numbers 0.0, 0.1, 0.2 and 0.3 and for heading angles ranging from head seas (180°) to following seas (0°) at 15° intervals. It should be noted that the radius of gyration K_{yy} has been assumed to be equal to 0.24 L_{BP} , while the weight of the forebody W_F and the distance of the centre of gravity of the forebody LCG_F from amidships are connected to C_B by the following relations:

$$\frac{W_F}{W_T} = 0.20C_B + 0.36$$

$$\frac{LCG_{F}}{L_{BP}} = 0.10C_{B} + 0.13$$
 (2)

Sec. 4

(1)

where W_T is the total weight of the vessel.

Furthermore, the longitudinal radius of gyration for the forebody about the LCG_F of the vessel K_{yy} has been taken equal to 0.125 L_{BP} .

The justification of these choices has been described in Loukakis and Chryssostomidis (1975).

The three-parameter Extended Lewis-form family, proposed by Athanassoulis and Loukakis (1985) has been used for the representation of the hull forms. Besides to the sectional breadth, draft and area, the sectional KB is used in the conformal mapping of the sections to the unit circle. Thus, the actual longitudinal KB(x) distribution was taken into account during the computations. On the contrary the two-parameter Lewis-form family (Lewis, 1929) has been used for the calculations in the initial paper.

3. DISCUSSION

Seakeeping predictions as a tool for designers of merchant ships is not of paramount importance to the ship design spiral. Merchant ships are primarily designed to carry a given amount of deadweight at a prescribed speed. They have, however, to sail through rough seas and their seakeeping qualities are therefore of some importance, especially in the form of the sustained sea speed. In this situation, the analytical contents of the seakeeping tables do support the practising naval architect in including seakeeping considerations in ship design and operations.

This is true in particular for the case of oblique seas, since most of the reference material pertains to head seas only. This is a void the present series can help to fill, as they pertain to ship responses in all headings in realistic seaways and as strip theory is well known to predict real life with adequate engineering approximation for the hull form and the speeds of the series.

Using the tables, sufficient information can be obtained for a qualitative and quantitative estimation of the seakeeping qualities of any hull form resembling the parent. Furthermore, taking advantage of the quite wide ranges of the C_B coefficient and the L/B and B/T ratios of the data base, conclusions can be drawn on the effect of any variation of these parameters on the seakeeping performance of the ship to be designed. Since, according to usual practice, these parameters are always determined at the preliminary ship design stage, when the hull form is only vaguely defined, the proposed series can support the designer for the creation of a hull form with good seakeeping qualities.

Moreover, the existence of information about seakeeping responses in oblique seas can help the naval architect broaden his understanding about what happens at sea. Using as example the central ship of the series, the following responses are plotted: heave (Fig. 7), pitch (Fig. 8), bending moment (Fig. 9), mean added resistance (Fig. 10), all at Froude number Fn = 0.20 and bow acceleration at Fn = 0.00, 0.10, 0.20 and 0.30 (Figs. 11, 12, 13 and 14).

Obviously, the non-dimensional results are ported to real life, i.e. the ship in real sea states, via the ship length and the wave height. But, nevertheless, the shape of the corresponding curves is interesting per se. Thus, heave resonance occurs around 100° heading angle (Fig. 7) and pitch resonance for the lower sea states (low values of T_P) is not for head seas but for headings close to the 90° minimum, from both directions (Fig. 8).

Similar behaviour pertains for the bending moment (Fig. 9) and even added resistance is not largest for head seas, when in the lower sea states (Fig. 10). For the case of bow acceleration, the results (Figs. 11, 12, 13 and 14) are even more interesting as the resonance is both pronounced and far away, (around beam seas), from head seas at zero speed. Gradually, as speed increases, the situation moves toward the conventional wisdom that head seas induce larger responses, although this is not true for the three lower sea states even at Fn = 0.30.

19.19. C

CONCLUSION

The widely recognized usefulness of the seakeeping standard series has been extended by including the zero speed and the oblique seas cases.

The zero-speed and the oblique seas results can be of further use to the designer in the case of special ships, which operate at rest or when oblique seas operation is of importance. Thus, for a given route of the vessel under investigation, the designer, using the tables and the related environmental data, can estimate the operational characteristics of the proposed hull form and decide upon necessary modifications.

However, in addition to the hull form parameters considered in the initial series, additional parameters referring to the waterplane area (C_w and LCF) and the LCB position affect the seakeeping behaviour of ships too. The same is true for the shape of the bow region sections (U or V) as well as for above water characteristics of the hull form (flare. stem angle and others). These parameters can not be examined within the scope of SSS, as they would increase dramatically the number of the hull variants, which is inconsistent with the stated intention of using the Tables during the feasibility study and the preliminary design stage only. Thus, the selection of main hull form parameters should be accompanied by a subsequent selection of the waterline form parameters C_w and LCF and the longitudinal distribution of KB. The statistical method of Bales (1980) or the direct technique proposed by Grigoropoulos and Loukakis (1988, 1990) could assist the designed in this phase. Both techniques refer to head seas results.

5. REFERENCES

Athanassoulis, G.A. and Loukakis, T.A. (1985) An extended Lewis form family of ship sections and its applications to seakeeping calculations, *International Shipbuilding Progress* 32. No.366. 33-43.

Beukelman, W. and Huijser, A. (1977) Variation of parameters determining seakeeping, International Shipbuilding Progress 24, No. 275, 171-186.

Bhattacharyya, R. (1978) Dynamics of marine vehicles, edited by M.E. Mc Cormick, John Wiley & Sons, New York.

Bretschneider, C.L. (1959) Wave variability and wave spectra for wind-generated gravity waves, *Beach Erosion Board, Corps. of Engineers, Technical Memo* 118.

Gerritsma, J. and Beukelman, W. (1972) Analysis of resistance increase in waves of a fast cargo ship, *International Shipbuilding Progress* 19, No. 217, 285-293.

Grigoropoulos, J.G., Loukakis, T.A. and Perakis, A.N. (1994) Seakeeping standard series for oblique seas, National Technical Univ. of Athens, Dept. of N.A. & M.E., Rept. NAL 114-F-1994, Athens.

Hearn, G.E. and Donati, E. (1981) Sea-keeping theories: Applying some choice, Transactions North-East Coast Institution of Engineers and Shipbuilders 97, 53-72. International Conference on High Speed Craft Motions & Manoeuvrabilty (1998) The Royal Institution of Naval Architects, London.

International Conference on Ship Motions & Manoeuvrabilty (1998) The Royal Institution of Naval Architects, London.

15th I.T.T.C Seakeeping Committee (1978) Report of the Seakeeping Committee, Proceedings of the 15th International Towing Tank Conference 1, 55-114, The Hague, The Netherlands.

17th I.T.T.C. Seakeeping Committee (1984), Report of the Seakeeping Committee, Proceedings of the 17th International Towing Tank Conference 1, 457-534, Goetenborg, Sweden.

20th I.T.T.C. Seakeeping Committee (1993), Report of the Seakeeping Committee, Proceedings of the 20th International Towing Tank Conference 1, 415-468, San Franzisco, California.

Lee, C.M. (1983) Preliminary studies leading to seakeeping hull design, 2nd International Symposium on Practical Design in Shipbuilding PRADS 83, 1-10, Tokyo and Seoul, Japan and Korea.

Lewis, F.M. (1929) The inertia of the water surrounding a vibrating ship, *Transactions* SNAME 37, 1-20.

Loukakis, T.A. and Chryssostomidis, C. (1975) Seakeeping Standard Series for Cruiser-Stern Ships, *Transactions SNAME* 83, 67-127.

Loukakis, T.A. and Sclavounos, P. (1978) Some extensions of the classical approach to strip theory of ship motion, including the calculation of mean added forces and moments, *Journal of Ship Research* 22, No. 1, 1-19.

Loukakis T.A., Perakis N. and Papoulias F.A. (1983) The effect of some hull form parameters on the seakeeping behaviour of surface ships, *Conference on Seagoing Qualities of Ships and Marine Structures*, Paper 57, 57.1-57.17, Varna, Bulgaria.

Odabasi, A.Y. and Hearn, G.E. (1978) Sea-keeping theories: What is the choice?, Transactions North-East Coast Institution of Engineers and Shipbuilders 94, 53-84.

Pawlowski, J.S. (1983) Form parameters for ship design, based upon hydrodynamic theory, International Symposium on Ship Hydrodynamics and Energy Saving ISSHES'83, Paper I-4, I-4.1-I-4..21, El Pardo.

Salvesen, N., Tuck, E.O. and Faltinsen, O. (1970) Ship motions and sea loads, Transactions SNAME 78. 250-287.

Schmitke, R.T. and Murdey, D.C. (1980) Seakeeping and resistance trade-offs in frigate hull form design, 13th Symposium on Naval Hydrodynamics, Office of Naval Research, Tokyo.

Townsin, R.L., Kwon, Y.J., Baree, M.S. and Kim, D.Y. (1994) Estimating the influence of weather on ship performance, *Transactions RINA* 134, Part B, 191-209.

Vossers, G., Swaan, W.A. and Rijken, H. (1960) Experiments with Series 60 models in waves, *Transactions SNAME* 68, 364-450.

Vossers, G., Swaan, W.A. and Rijken, H. (1961) Vertical and lateral bending moment measurements on Series 60 models, *International Shipbuilding Progress* 8, No. 83, 302-320.

Wilson, P.A. (1985) A review of the methods of calculation of added resistance for ships in a seaway, *Windtech '85 Symposium* 4, Paper 31, 31.1-31.13, Southampton.

LABELS OF FIGURES

100

Sec. 24 Mars

<u>्र</u>्या वर्गन्द्र क्रिय

Fig. 1. Analytically estimated (Salvesen-Tuck-Faltinsen strip theory, 1970) and experimentally measured (Vossers et al, 1960) pitch RAO for a 120-metre Series 60 ship with $C_B = 0.70$, L/B = 7.0 and B/T = 3.0 at Fn = 0.20.

Fig. 2. Analytically estimated (Salvesen-Tuck-Faltinsen strip theory, 1970) and experimentally measured (Vossers et al, 1960) relative bow motion RAO for a 120-metre Series 60 ship with $C_B = 0.70$, L/B = 7.0 and B/T = 3.0 at Fn = 0.20.

Fig. 3. Analytically estimated (Salvesen-Tuck-Faltinsen strip theory, 1970) and experimentally measured (Vossers et al (1960) bending moment RAO for a 120-metre Series 60 ship with $C_B = 0.70$. L/B = 7.0 and B/T = 3.0 at Fn = 0.20.

Fig. 4. Analytically estimated (Loukakis and Sclavounos, 1978) and experimentally derived (Vossers et al 1960) added resistance RAO for a 120-metre Series 60 ship with $C_B = 0.70$, L/B = 7.0 and B/T = 3.0 at Fn = 0.20.

Fig. 5. Comparison of strip theory prediction to experimental results for the vertical acceleration RAO at a position 15% L aft of the F.P of the S-175 standard ship adopted by ITTC. Head seas.

Fig. 6. Comparison of strip theory prediction to experimental results for the added resistance RAO of the S-175 standard ship adopted by ITTC. Head seas.

Fig. 7. Analytically estimated RMS heave for a set of heading angles for the Series 60 central ship at Fn = 0.20.

Fig. 8. Analytically estimated RMS pitch for a set of heading angles for the Series 60 central ship at Fn = 0.20.

Fig. 9. Analytically estimated RMS bending moment for a set of heading angles for the Series 60 central ship at Fn = 0.20.

Fig. 10. Analytically estimated RMS added resistance for a set of heading angles for the Series 60 central ship at Fn = 0.20.

Fig. 11. Analytically estimated RMS vertical acceleration at station 2 (10% aft of FP) for a set of heading angles for the Series 60 central ship at Fn = 0.00.

Fig. 12. Analytically estimated RMS vertical acceleration at station 2 (10% aft of FP) for a set of heading angles for the Series 60 central ship at Fn = 0.10.

Fig. 13. Analytically estimated RMS vertical acceleration at station 2 (10% aft of FP) for a set of heading angles for the Series 60 central ship at Fn = 0.20.

Fig. 14. Analytically estimated RMS vertical acceleration at station 2 (10% aft of FP) for a set of heading angles for the Series 60 central ship at Fn = 0.30.

Table 1. Seakeeping responses per meter of $H_{1/3}$ for Series 60 with $C_B=0.700$, L/B=7.0, B/T=3.0

4

·***

19 - 19 - 11

શન્દ્ર જ વાર્યુ

and LCB=1.0% L

				SHIP HEADING ANGLE IN DEGREES											SHIP HENDING ANGLE IN DEGREE															
			HE	Ð								HEA	HEAD HEAM POLICI																	
	.Ph	Ţ,	180	165	150	135	120	105	90	75	60	6	30	15	0	Ph	Ţ.	180	165	150	135	120	105	90	75	60	45	30	15	0
HEAME	0.0	1.5	236	253	286	286	428	1085	1348	754	320	22 2	201	186	187	0.1	1.5	5 123	124	136	224	496	992	1335	877	363	172	131	107	100
		2.0	භා මා	. 427 . 662	ମ 7ଘ	571 958	989 1370) 1798) 2002	2118	1517	845 1283	506 915	362	. 335 . 612	330 584)	2.0) 403 ; 770	627 812	534 956	801 1241	1279	1877 2137	2104	1508 1774	788	- 637 - 842	234 645	239 546	223 516
		3.0	.946	980	1087	1279	1605	2046	2235	1954	1555	1253	1060	954	922		3.0	1102	110	1273	1512	1845	2168	2231	1888	140	1179	995	893	861
		4.0	1432	1458	1534	1660	1/49	2055	2169	2021	1720	1490	123	147	1422		4.0) 1545	1572	1655	1792	1922	22	2186	1945	1762	1991	1467	1393	1368
		4.5	1585	1606	1667	1765	1899	2053	2119	2032	1888	1758	1660	1599	1578	l I	4.5	1677	1698	1762	1865	1994	2107	2119	1997	1839	1708	1610	1550	1530
		5.0	1090	1/12	1/60	1837	.1233	2069	2,56	/202	1991	1832	1/20	1/0/	1091		5.0	1/10	1/6/	1851	2915	ДЩ	ANI	4.90	209	1992	1191	1/13	1000	TOES
	0.2	1.5	6	68 597	99 713	182	389	876	1332	1045	274	121	<u>86</u> ଅଗ	74	70	0.3	1.5	38	61 599	47	110	275	768	1353	966 1387	265	100	80 249	77	76 167
		2.5	1177	1226	เรื่อ	161	1958	2242	2230	1711	1122	795	ຄັ້	28	489		2.5	1437	1490	1647	1877	2156	2341	2199	1625	1076	764	588	500	473
		3.0	1521	1561	1663	1877 1974	2103	2230	2215	1827	1403	1128	954 1225	857	827 1111		3.0) 1957 ; 2129	1990 2148	2078 2201	2206	2336	2387	2193	1763	1359 1551	1093	925 1194	832 1111	802 1063
		4.0	1809	1833	1904	2010	2124	2194	2142	1938	1716	1547	1626	1354	1330		4.0	2178	2191	2219	2257	2265	26	2132	1902	1682	1515	1396	1325	1302
		4.5	1924	1896	1950	2039	2101	2133	2093	1965 1983	1801	1670	1680	1614	1634		4.5	2161	2152	2192	2024	2257	2174	2068	1962	1//3 1837	1641	165	1607	1467
21717-1	• •	1 E	746	700		1000	1075	2020		2020	1077	11 6	097	634	-700	• 1	.1 6		400	-	040	1610	לחדו	En c	77 67	1000	1000		517	A TT
ribn	0.0	2.0	1029	1711	1958	2495	3174	2575	1034	3542	3274	2440	1969	1719	1647	0.1	2.0	1911	2013	2318	2786	3121	2451	ଞ୍ଚ	3406	Z740	1981	1513	1281	1208
		2.5	2540	2605	2794	3096	3304	2397	813	3091	3382	3047	2762	2571	.2509		2.5	3122	3195	3379	3565	3441	2350	_511 	2893	2872	2000	2285	2115	2057
		3.5	3002	2999	2979	2903	2639	1718	459	2050	2681	2882	2958	2976	2977		3.5	3514	3505	3452	3271	2795	1706	290	1923	2366	2545	2607	2621	2621
		4.0	2867	2848	2775	2617	2285	1442	362	1691	2315	2604	2761	2831	2851		4.0	3284	3256	3152	2917	2415	1439	227	1577	2077	2337	2476	2538	2556
	•	5.0	2429	2393	2280	2075	1713	1013	186	1125	1731	2066	2273	2386	2422		5.0	2706	2665	229	2268	1809	1024	117	1034	1583	1897	2088	2192	2225
	0.2	1.5	268	294	400	596	1112	1505	366	3146	1424	689	415	333	303	0.3	1.5	141	155	217	371	773	1382	335	2763	1220	571	365	373	382
		2.0	1796	1888	21@	2585	2953	2455	399	3151	2315	1662	1267	1071	1009		2.0	1463	1548	1820	2279	2775	2580	449	2849	2111	1500	1173	1059	1045
		2.5	3917	3924	3561 3915	3676	3481	2415	260	2669 2193	2524 2399	2245 2400	2338	2283	2262		2.5	4075	3340	4054	3913	3627	2268	397 317	24/3	ଥରେ 2267	2250	2203	2181	2179
		3.5	3897	3870	3768	3498	2896	1760	203	1803	2168	2328	2386	2402	2404		3.5	4116	4083	3957	3672	3051	1887	251	1714	2066	2202	2263	2298	2312
		4.5	3290	3238	3066	2732	2166	1247	125	1204	1697	2163 1972	237	232 2223	2250		4.5	3487	3428	3241	2877	2262	1325	102	1173	1634	1888	2067	2139	2171
		5.0	2950	2896	2724	2403	1877	1055	96	99 0	1492	1785	1965	2064	2095		5.0	3124	3063	2873	2518	1961	1121	130	974	1666	1715	1889	1992	2026
BEND.MOHENT	0.0	1,5	1183	1254	1675	2289	2808	1892	2071	2245	2625	1997	1503	1283	1230	0.1	1.5	1382	1388	1638	2137	2222	1679	2168	2495	3150	255	1785	1394	1295
		2.0	3246 4228	3300 4202	3545 4150	3814 3954	3592	2197 1924	2039 1614	1961 1608	3005 2742	3261 3440	3202 3791	3087 3934	3060 3980		2.0	3676 6799	3739 4776	3893 4669	3957 4312	3420 3397	2224 2046	2146 1696	2189 1768	1578 1152	3801. 3837	3604 4095	3394 4172	3318 4187
		3.0	229	4153	3938	3523	2755	1538	1222	1277	2310	3115	3635	3910	4001		3.0	4748	4676	4426	3905	2930	1670	1283	1368	2585	3375	3830	4059	4130
		3.5 4.0	3825	3731	3458 2857	2988 2502	2251 1834	1220 963	936 727	1006	1901 1564	2671 2254	321.8 2768	3077	3639 3181		3.5	2268 3687	4175	3872 3294	2772	2406 1979	1076	962 765	1051 809	2094 1695	2344 2373	3338 2844	3619	3219
		4.5	2867	2777	2515	2097	1500	803	502	82	1290	1900	2364	2668	2745		4.5	3154	3064	2789	2318	162	886	589	66	1368	1984	2414	2675	2763
		5.0	2,904	2982	2196	1/36	1223	600	924	270	TORO	TONE	<i>a</i> 922	211	200		5.0	2007	.401/	23/12	1990	1340	/30		334			ACL	66.71	23/1
	0.2	1.5	1375	1419	1490	1904	1975 2472	1564	2118	3136	4255 455	3039 4404	2096	1565 7497	1404	0.3	1.5	1390	1444	1509	1899	1902	1687 2270	1949	4731 3946	5646 . 5990 .	3997 5517	2711	1982	1744
		2.5	5357	5323	2120	6700	3654	2100	1605	2109	3852	272	20	4146	<u>6</u> 02		2.5	5606	5588	5470	5040	3976	2176	1382	2867	6968	5231	4838	4467	4333
		3.0	5013	5414 4994	5076- 4502	4392	3230 2696	1755 1414	1214	1595 1206	3070	3660	3882	3960 3489	3981 3537		3.0	6139 5728	6032 5565	5663 5131	4904	3589 3041	1826 1466	1045	2125 1575	3096	4020 3621	4350	4185 3648	4114 3631
		4.0	6337	4214	3834	3172	2220	11¢1	723	929	1941	2497	2811	2968	3045		4.0	5057	4907	4437	3638	2505	1187	20	1148	265	2958	3091	3101	3094
		4.5 5.0 :	зль 3156	3593 . 3055 :	2748 2748	2656 2234 "	1525	941. 781	555 413	715 542	1529	2065 1698 -	2368 1999	2501 2164	2598 2219		4.5	3690	41.77 3566	३७६३ ३१९५	3061 2576	20/4 1729	976 608	475 356	603	1451	1971	2158 2158	2218	2023
	0 0	1.5	1441	1411	1617	1967	1956	1376	0							0 1	15	4577	498	65	987	1290	1129	0						
<i></i>	0.0	2.0	1645	1581	1548	1538	1503	1179	ŏ	•	•	•	•	•	•	U. 4	2.0	1123	1127	1222	1453	1612	1176	õ	•	•	•	•	•	•
		2.5 3.0	1265 839	1198 787	1091 686	998 594	933 536	726 414	0	:	:	:	:	:			2.5	1285	1267 998	1262	1295 908	1233 790	792 671	0	•	:	:	:		:
		3.5	233	498	421	348	309	238	ō	•	•	•	•	•	•		3.5	726	701	642	578	484	281	Ō	•	•	•	•	•	•
		4.0	338 214	314 198	260 161	206 122	178	139 80	0	•	:		:				4.0	331	317	283	372 241	297 198	102	0	:	-	:			:
		5.0	135	125	98	72	59	43	0	•	•	•	•	•	•		5.0	227	216	191	159	119	න	0	. •	•	•	. •	. •	•
	0.2	1.5	149	160	220	514	867	882	Ó	•	•	•.	•	•	•	Q.3	1.5	42	46	86	202	<u>415</u>	696	-Q		•	•	•	•	•
		2.0	865	909 1765	1072	1413	1616	1123	0	•	:	:			••		2.0	542 1877	585	750 1951	1089	1352 1618	1039	0	:	:	:	:	:	•
		3.0	1743	1713	1619	1433	1079	517 517	Ō	•	•	•	•	•	•		3.0	2310	2266	zījī	1901	1265	52	ŏ	•	•	•	•	•	•
		3.5 : 4.0	1364 966	1325 930	1209	998 661	684 461	315 192	0	:	:	;	:	:	:		3.5	1976 1577	1908 1435	1698 1225	1350 925	869 555	334	0	:	:		:	:	:
		4.5	678	ŝ	569	442	286	120	ŏ	•	•	•	•	•	•		4.5	1059	1008	864	68	367	122	ō	•	•	•	•	•	•
		50	A 7A	453	रचर	यार	191	74	•						•		50	759	719	ADR	440	751	94	0						

<u>Fig. 2</u>

252.2

.

<u>Fig. 4</u>

<u>Fig. 6</u>

States of the states of

No 1 - Want Startis

1. . **.**

<u>Fig 8</u>

Fig. 10

<u>Fig. 12</u>

Fig. 14