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Abstract - The éeakeeping performance in oblique seas for a series of 72 cruiser-
stem hull forms has been evaluat.ed analytically land is presen';,ed ina systématic
w'aSi. The hull form series havé been created by Loukakis and Chrysséstonﬁdis
(1975) by extending the principal characteristics of the Sen’es 60 to coVef usual -
shipbuilding; practice. In that work, however; only the seakeeping peffonnance in _
head seas was presented. Recently, the seakeeping perfonnance- of the Extended

| Series 60 was férevaluated for both hgad seas and oblic‘;ue seas. The complete

_results are presented in tabular and graphical form as a fiinction -of the principal

T

NISCHE UNIVERSITENY

TECH

characteristics of the ship, the Fioude number (including Fn=0, missing in the _'

original series), the non-dimensional modal wave period and the heading angle in
~ a separate NTUA report (Grigoropoulos et al, 1994). In the present papef, the re-
sults for one case are given in tabular form -accomp‘anigd by graphical
r'epresentation..— They include: heave, pitch, bending moment amidships, added
resistance, absolute veﬁical acceleration and Arel,avti"ve vertical motion at tﬁe bow
and the sten regions and relative vertical velocity at siations; 2 and 4 where

~

slamming is likely to occur.
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'NOMENCLATURE

A ;.';‘ = wave amplitude
: «'Cgf? = block coefficient -
- Fn, ~ =Froude ﬁumber, - Fn=V; IJgT.: |

g = acceleration of gravity, 9.81 m/sec’

Hys = signiﬁc'ant wave height, in [m]

Ky, = lo,n'gitudina]v rﬁdi‘us of gyration about LCG

Ky, =longitudinal radius of gyration of the forward part of the ship about LCGg
L. Ler = leﬁgth bétwegn{-perpehdicula‘;r‘s | |
Lwi = len glth_'on_ design waterline, for the Extended Series 60 Lgp = 0.983 Lwy
LCB = longitudinal position of centre of buo&a'ncy’ |

LCF = longitudinal position of centre of flotation

LCG =longitudinal position of centre of gravity

LCGe = distance of the centré’of gravity of the fdrebody from amidships

RAO = ResponSe_ Amplitude Operator

RMS = Roo't-Mean‘-Sq'uare value k

RM = amplitude of relative bow motion

SSS = Seakeeping Standard Series

t = thrust deduction factor -
T  =draft
Tp = modal period

Ts = non-dimensional méda] period, . Tp'=T, [\Nts

Vs = ship speed



Wr = weight of forward part of ship

Wr = total weight of ship -

B = heéding éngle, B=180° 'co’rres'ponds to head seas ~
0 = pitch amplitude
K .= wave number
A-  =wavelength - . ' ,
) ' ' Bendi t Amplitu
Ky = RAO of bending‘momcnt; ) S By = Be.n ng MO men = n}gl ;de v
. _ pgABL”
p = specific dens'ity of sea water .
R Added Resist

oaw = RAO of added resistance, G, = Mean A : ze - zfs}f ance

o o _ pgA°(B*/L)
[0 = circular frequéncy

1. INTRODUCTION

The seakeeping 'perfbrmémc’e of a sﬁip can either be prediéted using computer codes or
measured in a seakeeping basin. Héwever, during é feasibility study or in the preiinﬁna;y
ship design phase, tthe-hull lines of the vessel are not yet available aﬁd hence, neitﬁer of the
‘-aforeh]emionedlmethods is applicable. Inan 'attempt. to assist the naval architect in -
'prédictiﬁg the seakeeping behaviohlf in such cases, Loukakis and Chryssostomidis (19755
presented the Seakeeping Standard Series (SS_S) for cruiser-stern' ships. In th,';.lt work the
authors extendedf"th'e principal characteristics of the Series 60 to cover the usual
shipbuilding practice and they Computed the seakcepfng performance of the resulting -
series analytically. “Thus, they generated a set of tables ‘containing the motion.
characteristiés in head seas of 72 Extended Series 60 hull forms. The information was
- given for a systematic variation of the principal ‘.s_hi_p geometric parameters i.e. block -

coefficient Cg, length—to-‘bearh ratio L/B and beam-to-draft ratio B/T. The results were |



presented in ;abhlar form for various fully developed seas, expressed in terms of

significant wave height to length ratio H,,;/LBP and ship speed Vs, expressed as non-

dimensional Froude number Fn = Vg / ng_ , where Ly, is the length of the vessel at the

: desi’gn waterline.

Since their presentation, the series have been ex;enSively used in naval arch'itecture-
practice as Q;ll as a teaching tool. The usefulnesS of the series has been appreciated,
especially m studies oﬁ the effect of hull form parameters 'on the seakeeping behaviour of
ships. In this réspect, t:he papers of Beukelman and Hu'ijser‘ (1-977), Schmitke and Murdey

(1980), Lee (1983), Pawlowski (1983), Loukakis et al (1983), Grigoropoulos and Loukakis

- (1988. 1990) and Wilson (1985) should be mentioned. Funhemore, Bhattacharyya (1978)

included the series in his book on the dynamics of marine vehicles.
Recently, Townsin et al (1994) recognized the>sigi;iﬁcance of the series and underlined

their two strong points, the wide range of hull forms and the number of the seakeeping

- responses calculated. However, it was pointed out that, the seakeeping performance of the
- 72 hull forms from the Extended Series 60 has been evaluated analytically only for head

seas, while the Hm/LBp' raﬁo raﬁge used, starting from H,;/Lgp = 0.015, corresponds to

only'relatively high sea'states for the longer ships of todéy.. :

B .'I'he‘.afOrementioned shortcomings of the series have also been noticed by the authors

of the original paper. The inconvenient selection of the Hy/3/Lgp ratios is closely connected

to the use -of single-parameter modelling of the sea state (fully developed seas), while the

two-parameter spectral models are better representations of the actual sea conditions. Since

the series refer to vertical motions only, which are linear with respect to the‘ wave height,
or to -added '_resiStance, which is pro,portional to the square of the wave height, these

shoftcomings could be rerﬁedied by appropriate scaling of the H,; for the same modal
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period Ts. However, it would be more conveniént if the results were .presented for a r.angé
of modal periods and for unity signiﬁcv;;i Qave height. -

In addition, the absence of the zero-speed rc,spon'ses- from the seakeeping tables,
prevented the use of the seﬁcs’ in some applicaﬁons e.g. the design of stationa.ty ship-
factories or stor.age‘s’hi[is. Finally, scant usable inf(-)'r’mati.on exists in the literature for ship
regponses m obliquc.:' seas, although such lmowiedge can be useful for ship foutihg and
scakeeping'operébilify studies.

With the above in mind, it was decided to re-evaluaté the seakeepiné m&dﬂﬁmce of
the Extended Scﬁe;‘ 60 for all 'héadin gs, using the same seakeeping responses as :the' -.i.niti_al
. paper and including a wider range of non_-dimens.iona] séa states as well as zero—spee.d—'
responses. The strip theory of Salvesen, 'l;uck and Faltinsen (1970) has again been used for
| the estimation of the ship motions and bending moments. The energy method of Gerﬁ.ts,rﬁa
aﬁd.'Beukelman (l 972), as'exténded by Loukakis and Sclavounos (1978), has Been hsed for
the prédiction of added g;esistance in head to beam seas. | |

The usage of the same theories for analytical prédictio’ns after some,twe-nty three years;
undcr’lines the remarkable fact that the simpié strip fheqry continues to_ give results useﬁl
for prﬁctical bufpo’ses in an efﬁcientl comput,a,t;io'n_ally ‘manner and it ha$ not been
superseded by newer three-dimensiohél theories, .e)‘(cept for the zero-speed case. In this
_respect, it is iméés’tih'g to note that in fwo recent Ihtematidnai Conferencés on Ship and
. High Speed Craft Mb_tions'&' Mano'euvrébili'ty, no less than 8 authors were u_s.in,g strib
_thebfy for predictions in the absence of other tools, even at very high fi:ns! For a review of
seakeeping theories and their applicability ofie can refer to Odabasi and Hearn (1977),

Hearn and Donati ('1980) and to the reports of the'Seakeeping Committee of ITTC (1978,



1984, 1993), where the usefulness of strip theory is generally recognized, at least for
cruiser stern ships sailing at zero to moderate speeds.

In order to demonétrate the applicability of etrip theoly to obllque ship responses, the
analytical results in regular waves have been compared to the experimental results
conducted a long time ago at Wagemngen (Vossers et al, 1960 and l96l) Figures 1, 2, 3
and 4 show that for a LBp -120 m, Cg = O 7, IJB 7, BT = 3.0 Series 60 hull form, the
predictions for pitching motion, relative bow motiori, bending moment and added
resistance can be used m practice, with the bending moment and the added resistance
results being the weaker predictions (in the case of_ added resistance, the measured added
thrust is approximately converted to added resistance using the measured thrust deduction
factor in calm water, t = 0.184). Furthermore, the analytically estimated bow acceleration
attd added reeistance responses. in regular waves, for the S-175 containership proposed by
the LT.T.C. for comparison studies, are ShoWn in Figures 5 and 6 with the respective
experimental results conducted in the towing tank of the Laboratory for Ship and Marine
Hydrodynamics at NTUA (Grekoussns et al 1986).

The SSS in obhque seas contain, in tabular form and as a function of the principal
characteristics. of the slup, the Froude number, the non-dimensional modal' wave period

and the heading ang_le, the results of the aforemention_ed computations, Table 1. Due to

-obvious space limitations, the ~seakeeping responses for only one case could be

. accommodated in the present paper in tabular form, accompanied by graphical

representation. The complete results, for all 72 cases, are available in a separate technical

report accompanied by a PC floppy disk (Gﬁgofopoulos. et al, 1994). The resdlts of the

) Seakeepmg Tables can be interpolated for the predlctlon of the seakeepmg performance of

cruiser-stern shxps not necessanly with Series 60 hull forms.



Finally, it should be noted that only vemcal responses have been considered in the

seakeeping tables. The lateral shlp responses are’ hlghly dependent on the non- lmear
behaviour of rolling motion, where roll damping is mostly induced by bil_ge keels, active

fins and other anti-rolling devices.

2. CONTENTS OF THE SEAKEEPING TABLES

"The seakeepmg performance of the 72 Extended Series 60 hull forms has been
éalculated for all headings and for the same sea.keepmg responses as the initial »parper, that
s : heave, pitch, wave bending moment amidships, added resistance, ab$ol‘uie vertical
acceleration at stations 2, 4 and 20, relative venicél‘motion at stations 2, 4 and 20 and
relative vertical 'vel'ocity at stations 2 aJ_1d. 4

The la_cc'elgration and the felativc motion have been calculated at three po’iﬁis aldng the
ship, the AP (station 20), 20% aft of FP (station 4) aﬁd 1 O% aft of FP (station 2), while the
- relative velocity has been computed at the latter two points in the bow reglon The above
pomts for the calculation of the relative motions and velocities have been selected so that
3 the random events (propeller emérgence, deck wetness and bottom slamming) could be
estimated. The veitical ﬁcceleraﬁon, depending on the wave direction, has its max1mum
 value in the FP and AP regions..‘
| Since vertical sh‘i‘p responses and added resistance vary linearly with thé signiﬁcaht'
wave heiight- Hy; and ‘its square respectively, they have been calculated for sea states
following the Bretschneider two-parameter spectral' model (B_r’etséh‘neider, 1959)-»?ith His
equal to unity. The calculations have been performed for a range of eight modal periods,
~ with non—dimensjdnal ‘values T,,'= T,/ m ranging from 1.5 to 5.0 at 05 intervals.

These values of Tp' correspond to Tp= 3.4+1 1.3 sec fora S0'm vessél, to Tp=4.8+16.0 sec



for a 100 m vessel and to Tp = 6.8+22.6 sec for a 200 m vessel. Thus, they correspond to

~ sea states appropriate for the determination of the seakeeping responses of different size

ships, if the naturally observed relationship between wave height and wave period is taken
into account.

The results are in the‘ form of integer values in the range O - §999. In order to restrict
the results in this range, the following "non-dimensionalizations" have been used:
Heaving motion ‘= (RMS heave at amidships) * 108/ (Lsp Hi)

Pitching motion =(RMS pitch in degrees) * 10*/ Hy |
Bending moment = (RMS bending moment at ar_nidShips) *10°/ (pg Lﬁp‘ Hin)

Added resistance - = (mean added resistance) * 10'%/ (rg Lgp3 H,»)

Relative motioni = (RMS relative motion) * 108/ (Lsp Hin)

' Rélative velocity ‘= (RMS relative velocity) * 10°/ (,/gL,L H,pz)

AcCeie_ration ) =l (RMS acceleration) * 10°/ (g Hip),
where all rgsulté refer to unit signiﬁcam wave height. .
In thig fashion, three pages are necessary for the tabular presentation of the results. for
each hull form and a sample page is shown in i‘abl_c 1. |
The Seékegping responses have been calculated for each of the 72 hull forms of the |

Extended Series 60 with Cg = 0.55 (0.05)' 0.90,L/B = 5.5', 7.0 and 8.5 and B/T = 2.0, 3.0

~ and 4.0, at four ship speeds corresponding to Froude numbers 0.0, 0.1, 0.2 and 0.3 and for

heading angles ranging from head seas (180°) to following seas (0°) at 15° intervals. It
should be noted that the radius of gyration Kyy has been assumed to be equal to 0.24 Lgp,
while the weight of the forebody Wy and the distance of the centre of gravity of the

forebody LCGr from.anﬁd#hjps are connected to .CB by the following relations:



=5 =020C, +036 - | W

LCG

BP

£ =010C, +013° - (2)

where Wi is the total weight of the vessel.

- Furthermore, the longitudinal radius of gyration for the forebod_y about the LCGr of the

~vessel Kyy' has been taken equal to 0.125 Lzp.

The justification of these chonces has been deecnbed in Loukakis and Chryssostomidis
(1975) |

The three-parameter E'xtended Lewis-form fanﬁly, proposed by Athanassoulis and
Lo,ukai-(is (1985) has been used for_the representation of the hull forms. Besides 10 the
sectional breadth, draft and area, the sectional KB is used in the coﬁfoﬁnal mapping of the

sections to the unit circle. Thus, the actual longitudinal KB(x) distribution was taken into

- account during the compl‘lta'tio/ns.’On the contrary the two-parameter Lewis-form family

(Lewis, 1929) has been used for the calculations in the initial paper.

3. DISCUSSION

Seakeeping predlcnons as a tool for desxgners of merchant shxps is not of paramount .

'lmponance to the ship design spiral. Merchant ships are primarily de51gned to carry a

glven amount of deadweight at a prescnbed speed They have, however, to sail th:ough

- rough seas and their seakeeping qualities are therefore of some importance, especiall_y__ in

the form of the sustained sea speed. In this situationi the analytical contents of the
seakeepmg tables do support the practising naval archltect in mcludmg seakeeping

consnderauons in sh1p design and operauons



This is true in particular for the case of oblique seas, since most of the reference

_ material pertains to head seas only. This is a void the present series can help to fill, as they

pertain to ship responses in all headings in realistic seaways and as strip theory is well

known to predict real life with adequate engineering approximation for the hull form and
the speeds of the series. |

Usian the tables, sufﬁcignt information can be obtained for a qu#litaﬁve and
quantitative estimation of the seakeeping qualitiés of any hull form resembling the parent.
Furthermore, takingAadv_avntagg of the quite wide ranges of the Cgicoefﬁcient_ and the L/B
and B/T ratios of the data Base, cor.lclu'sions can be drawn on the effect of an'y variation of
these parameters on .the seakeeping performance of the ship to be designed. Since.
according to usual p’ractlice, these'_parameters are always determined at the preliminary ship
design stage, when the hull form is 6nly vaguely defined, the vp.ropos'ed series can support
the designer for thé creation of a hull form with good seakeeping qualities. -

Moreover, the existence of information about seakeeping responses in oblique seas can

: .help the naval architect broaden his uﬁdérstandi_ng about what happens at sea’ Using as
- _example the central ship of the series, the following responses are plotted: heave (Fig. 7),

| pitch (Fig. 8), bending moment (Fig. 9), mean added reSistance (Fig. 1'0), all at Froude

number Fn = 0.20 and bow acceleration at Fn = 0.00, 0.10, 0.20 and 0.30 (Figs. 11, 12, 13
and 14).

(5bvioﬁsly,'the ﬁon-dimensional resuit_s'are pone_,d to real life, i.e. the ship in real sea
states,"via the ship leﬁgth and the wave he;ig;ht.‘ But, nevertheless, the shape of the

corresponding curves is interesting per se. Thus, heave resonance occurs around 100°

~ heading angle (Fig. 7) and pitch resonance for the lower sea states (low values of Tp) is not

for head seas but for headings close to the 90° minimum, from both directions (Fig. 8).
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Similar behaviour pertains for the rberllding moment (Fig. 9) aﬁd .even added resistghce is
"not largest fc_)r héad seas, when m the “'lc;wer_ sea sta;t;;(;fig. 10). Fo.r'the case ‘ot; bow
acceleration, the results (Figs. 11, 12, 13 and 14) are even more interestmg as the
resonance is both pronounced and‘far -away, (around beam séas), from head .scas at zefo
speed. Gradually, as'speéd increases, the situation moves tow.ard the con‘v.entional' wisdom

that head seas induce larger responses, althou_.gh this is not true for thé three lower sea

states even at Fn = 0.30.

4. CONCLUSION

The _widely recognized usefullness of the §eakeeping standard series has.beén extended
by- including the zero séeed and the oblique seas cases.

The zero-speed énd mc oblique seas results can be of further use to the designer in the
case of special _Ships, which operate at rest 6r when oblique -seas operafion is of‘
importance. Thus, for a given route of the vessel under iqvéstigation, the designer, uSing
the tables and the related énvironmental data, can éstimatc the operational characteristics
~ of the proposed hull form and decide upon necessamylmodjﬁcations.'

‘ ﬁbwe_ver, in addition to ;ﬁe, hull form pa.rameters-cohsidered in the initial series,
additional parameters référr’iﬁg to thefwaterpla‘mc area (Cw and LCF) and the’LCB positioﬁ
éffect the seakeeping béhavic)u‘r of ships too. The same is true for me shape of me bow
region sections (U or. V) as. well as for above water ch;a?acteristks of tﬁe hﬁll form (flare.

~stem angle and oLhérs). These parameters can not be examined Wl;thin the Scope of SSS, as
they would increase _dramatically me numbe_r of the lmulj variam_s, w'hiclh is 'inéo‘nsistent
with the .§tat_ed intention of using the “Tables ‘during the feasibility study and .the

preliminary design stage only.
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Thus, the selection of 'main hull form parameters should be accompanied by a

subsequent selection of the waterline form parameters Cw and LCF and the longttudrnal

distribution of KB. The statlstlcal method of Bales (1980) or the direct technlque proposed

by Gngoropoulos and Loukakis (1988, 1990) could assist the desrgned in this phase. Both

techmq_ues refer to head seas results.
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LABELS OF FIGURES
Fig. 1. Ana]yncally esnmated (Salvesen-Tuck Faltmsen stnp Lhcory, 1970) and
experimentally measured (Vossers et al, 1960) pnch RAO for a 120-metre Series 60 ship
with Cg =0.70, L/B = 7.0 and B/T = 3.0 at Fn = 0.20.
Fig. 2.- Analyucally estimated (Salvesen-Tuck Faltinsen strip theory, 1970) and
.expenmentally measured (Vossers et al, 1960) relaﬂve bow motion RAO for a 120-metre
Senes605h1pw1thC3=070 UB=70andB/T=30atFn=020

Fig. 3. Analyucally estxmated (Salvesen Tuck-Faltmsen stnp theory, 1970) and

* experimentally measured (Vossers et al (1960) bendmg moment RAO for a 120-metre

Series 60 ship with Cg = 0.70. IJB 7.0 and BfI‘ 3.0at Fn=0.20.

Fxg. 4, Analyn_cally estimated (Lo_uka.kls and Sclavounos, 1978) and expenmentally _

derived (Vossers et al 1960) added resistaricé RAO for a 120-metre Series 60 ship with Cg

=0.70, L/B = 7.0 and B/T = 3.0 at Fn = 0.20.
.Fig. 5 Comparison of strip theory ‘pfedicti'on to experimental results for the verti'ca]
acceleration RAO at a position 15% L aft of the F.P of the S- 175 standard ship adoptcd by

ITTC. Head seas.

Fig. 6. Comparison of strip theory prediction to experimental r'ésults for thé added

resistance RAO of the S-175 standard ship adopted by ITTC. Head seas.

Fig. 7. Analytically estimated RMS heave for a set of heading angles for the Series 60 -

central ship at Fn=0.20,

Fig. 8. Analytically estimated RMS pitch for a set of heading angles for the Series 60 -

'cemral ship at Fn =020, |
Fig. 9. Analytically estimated RMS bending moment for a set of headmg ang]es for the

Series 60 central shlp at Fn 0. 20
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Fig. lO_._Analytica_lly estimated_ RMS'added resistahcg for a set of hcading angles for the

Series 60 central ship atFn=020.

-Fig: 11. Analytically estimated RMS vertical acceleration at station 2 (10% éft of FP) for a

 setof heading angles for the Series 60 central sh1p at Fn = 0.00.

Fig. 12. Analyucally estlmated RMS vemcal acceleratlon at station 2 (10% aft of FP) fora
set of heading angles for the Series 60 central shlp atFn= 0 10.
Fig. 13. Analytically estlmated RMS vertlcal acceleratlon at stanon 2 (10% aft of FP) for a
set of headmg angles for the Senes 60 central ship at Fn 0. 20
F1g 14. Analytma]ly estimated RMS vertical acceleration at station 2 (10% aft of FP) fora

set of heading ancrles for the Senes 60 centra] Shlp at Fn = 0.30.
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