Print Email Facebook Twitter Untangling reaction pathways through modern approaches to high-throughput single-molecule force-spectroscopy experiments Title Untangling reaction pathways through modern approaches to high-throughput single-molecule force-spectroscopy experiments Author Dulin, D. (University Of Oxford) Berghuis, B.A. (TU Delft BN/Nynke Dekker Lab) Depken, S.M. (TU Delft BN/Martin Depken Lab) Dekker, N.H. (TU Delft BN/Nynke Dekker Lab) Date 2015 Abstract Single-molecule experiments provide a unique means for real-time observation of the activity of individual biomolecular machines. Through such techniques, insights into the mechanics of for example, polymerases, helicases, and packaging motors have been gleaned. Here we describe the recent advances in single-molecule force spectroscopy instrumentation that have facilitated high-throughput acquisition at high spatiotemporal resolution. The large datasets attained by such methods can capture rare but important events, and contain information regarding stochastic behaviors covering many orders of magnitude in time. We further discuss analysis of such data sets, and with a special focus on the pause states described in the general literature on RNA polymerase pausing we compare and contrast the signatures of different reaction pathways. To reference this document use: http://resolver.tudelft.nl/uuid:aecce8f2-e3a9-493e-b295-467bae75633d DOI https://doi.org/10.1016/j.sbi.2015.08.007 ISSN 0959-440X Source Current Opinion in Structural Biology, 34, 116-122 Part of collection Institutional Repository Document type journal article Rights © 2015 D. Dulin, B.A. Berghuis, S.M. Depken, N.H. Dekker Files PDF text_Untagangling_reactio ... inal_E.pdf 697.35 KB Close viewer /islandora/object/uuid:aecce8f2-e3a9-493e-b295-467bae75633d/datastream/OBJ/view