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W, W Wy radial displacement, positive inward
W, Ao' A1 radial imperfection from perfect cylinder
. H
wv Poisson's expansion (= - % T%§;;7 A)
& normalized buckling modes, figures 12, 13 and 14
X, ¥y axial and circumferential coordinates on the middle surface of
the shell, respectively
i, § nondimensional coordinates % and %, respectively
Y unified vector variable, eq. (26)
z radial coordinate, positive inward
5x’ By’ Bz rotation of ring coordinates
8 = Y/R
A nondimensional loading parameter (= i%z NO)
AS value of A at the limit point
v Poisson's ratio
p normalized nondimensional loading parameter (Nx/NxM) where NXM
depends on the boundary condition used
Py , normalized nondimensional collapse load parameter of the
i imperfect shell {(value of p at the limit point)
pexp normalized nondimensional experimental collapse load parameter
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ON THE BUCKLING OF AXIALLY COMPRESSED IMPERFECT ORTHOTROPIC SHELLS WITH ELASTIC
EDGE SUPPORTS
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! Aeronautics Faculty, TU-Delft (The Netherlands)
Z N.I.V.R., TU-Delft (The Netherlands)

SUMMARY

A rigorous solution is presented for the case of axially compressed stiff-
ened cylindrical shells with general imperfections, where the edge supports are
provided by symmetrical or unsymmetrical elastic rings. The circumferential
dependence is eliminated by a truncated Fourier series. The resulting nonlinear
2-point boundary value problem is solved numerically via the 'Shooting Method'.
The changing deformation patterns resulting from the different degrees of
interaction between the given initial imperfections and the specified end rings
are displayed. Recommendations are made as to the minimum stiffnesses required
for optimal load carrying configurations.

INTRODUCTION

Since thinwalled structures exhibit very favorable strength over weight
ratios the design of stiffened or‘*unstiffened shells continue to play an
important role in modern engineering. Unfortunately, thinwalled shells are
prone to buckling instabilities.

In the last decades initial geometric imperfections [1]-[2] and general
elastic supports [3] have been widely accepted as the explanation for the wide
experimental scatter and the poor correlation between the predictions based on
a linearized small deflection theory with SS-3 (Nx = v =w= Mx = 0) boundary
conditions and the experimental values.

The effect of different combinations of in-plane boundary conditions on the
stability of axially compressed perfect shells or shells with axisymmetric
imperfections have been studied analytically and numerically by Hoff [4] and
Almroth [5]. Recently Singer and his coworkers [3] have developed an
experimental technique which makes it possible to estimate the degree of
elastic support present in a particular test set-up.

Despite all these theoretical and experimental results the shell design
manuals in use at the present time adhere to the so-called 'Lower Bound Design
Philosophy', which involves the use of a so-called 'knockdown factor'. The

empirical 'knockdown factor Y' is so chosen that when it is multiplied with the



buckling load of the perfect structure Pc a lower bound to all available
experimental data is obtained.

It has been hoped that with the large scale introduction of computer codes
with advanced nonlinear capabilities an alternate design procedure could be
developed which would no longer penalize innovative shell design because of the
poor experimental results obtained elsewhere.

As a step towards this goal Arbocz [6] in 1984 published the results of an
extensive numerical study of the well characterized stringer stiffened shell
AS-2, which has been tested at Caltech in 1970 [7].

Using an early finite difference version of the well known nonlinear shell

code STAGS [8] the complete shell was modeled. The measured initial

imperfections were fitted by a bivariate cubic spline fit. This model was then
used to compute the first derivatives of the measured initial imperfections
with respect to x and 8 at all nodal points. Employing C-4 (u = v = w = W, = 0)
boundary conditions an iterative step-by-step procedure then located the limit
point of the prebuckling states. The calculated collapse load of ps=0.8563 has
been normalized by -320.8 N/cm, the buckling.-load of the perfect shell using
membrane prebuckling and the same C-4 boundary conditions. The calculated
collapse load is unexpectedly high since the shell AS-2 buckled at pexp=0.715.
In looking for an explanation, a comparison of the calculated prebuckling
deformation for C-Y4 boundary conditions (see Fig. 1) with the experimentally

measured prebuckling deformation (see Fig. 2) is helpful.
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Fig. 1. Calculated prebuckling growth of the stringer stiffened shell AS-2 at

ps=0.8563 (41 x 161 = 6601 mesh points).

(Boundary conditions: u = v = w = LA 0).
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Fig. 2. Measured prebuckling growth of the stringer stiffened shell AS-2 at
p=0.629 (21 x 49 = 1029 data points).

After looking at these figures it is obvious that the two deformation
patterns are strikingly different. Since the measured initial imperfections are
modeled quite accurately by the bivariate cubic spline fit used, therefore the
answer must be sought in a possible difference between the C-4 boundary
conditions used with the numerical calculations and the actual elastic boundary
conditions present at the experimental set-up.

This statement is reinforced by the results shown in Figures 3 and 4 of
rerunning the current discrete model using the same spline fitted initial
imperfections as input but changing the boundary conditions successively to C-3
(Nx =VEwWS=W, o= 0) and to SS-3 (Nx = v = W= Mx = O);

It must be mentioned here that for the C-3 boundary conditions the limit
load ps=0.8153 is normalized by -256.9 N/cm, whereas for the SS-3 boundary
conditions the limit load ps=0.8095 is normalized by -229.8 N/cm. These
normalizing factors are the bifurcation buckling loads of the perfect AS-2
shell using membrane prebuckling and the indicated boundary conditions.

From a comparison of the calculated prebuckling deformations using the same
initial imperfections but different boundary conditions with the experimentally
measured prebuckling growth it appears that the best agreement occurs for the

SS-3 boundary conditions.
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Fig. 3. Calculated prebuckling growth of the stringer stiffened shell AS-2 at
6601 mesh points).

pS=O.8153 (41 x 161
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Fig. 4. Calculated prebuckling growth of the stringer stiffened shell AS-2 at

6601 mesh points).
=M = 0).

=V =W
X

ps=0.8095 (41 x 161
(Boundary conditions: NX




Thus it is clear that in order to reproduce the buckling behaviour of the
imperfect shell AS-2 accurately one must not only include the measured .initial
imperfections but also model the experimental boundary conditions more

realistically.

THEORETICAL ANALYSIS

In an effort to gain insight into the possible nonlinear interaction
between elastic boundary conditions and the initial imperfections the following
analytical investigation is carried out, whereby the elastic boundary
conditions are modeled by attaching rings of general cross-sectional shape
eccentrically at the shell edges. The sign convention used for shell and ring
analysis is shown in Fig. 5. For the shell analysis the Donnell type nonlinear
shell equations from Ref. [9] are used, whereas the ring analysis is based on
Cohen's ring eqﬁations [10]. Whenever necessary the corresponding variables
will be distinguished by superscripts ( )s for shell variables and by super-

scripts ( )r for ring variables.

Fig. 5. Sign convention used for shell and ring analysis.



In order to be able to satisfy the displacement compatibility conditions
between the end-rings and the edges of the shell, one must express the ring
displacements in the same form as the one assumed for the shell displacements.
Further the expansion assumed for the load terms must not only be consistent
with the terms assumed for the displacements but they must also form a self-
equilibrating force system. Thus the Fourier decomposition of the ring

equations will be based on the following expressions

r r r T
u = uO + ul cos nf + us cos 2nb
v o= oF sin nb + v sin 2nb
1 2 ,
(1)

r r r

W = Ww_ + w, cos nb
e} 1

bo r r

B =B + B cos nb

y Yo Yy

and

F =F cos nb + F cos 2nb

X X X

1 2

F =PF sin nd + F sin 2n6

y yl 2

(2)

F =F + F cos nb

z z A

Fig. 6. Forces acting on a ring segment.
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Substituting these expressions into Cohen's ring equations and equating
coefficients of like terms results in the following separated set of Cohen's

ring equations:

For n=0"
D2 Hw. | [_aF i
a“EA o il" | Pz
1] | i=! 0 (3)
3. 0 aEI | B i M *
a” | z2 | Vol Lt |
For nz22
n2(n2EI +GJ) —n3EI
z Xz
_3 2 2
lg n EIXz n (EIx+a EA) (1)
a nuEI -n(nZEI +a2EA)
5 Xz X
n (EI_+GJ) -nEI
z Xz
" e 1 e
n EI nza(EI +GJ) u aF
XZ Z 1 Xy
-n(nZEI +a2EA) -naEl v aF
x Xz 1 - yl
anI +a2EA nZaEI w aF
X Xz 1 z1
nZEI a(EI +n2GJ) B M
Xz z 1Yy 2
and — - - - -
2, 2 o3 IV 1
lg 4n” (4n EIZ+GJ) 8n Bl 2 i Y | - aFx2 : (5)
a -8n3E1 Un?(EI_+a°BA) || v aF
Xz 2 2 y2 J

Next one must express the line loads and the torsional moment acting at the
ring centroid in terms of the stress- and moment resultants of the shell edge
attached to it. Considering the free body diagrams at x=0 shown in Fig. 7 one

obtains the following relationships

s
Fa-s= NXR + NO(R—q)

F'a = N° R
y Xy
(6)
F'a = H°R
r - S ! S - S _ _
Mta = MXR + eXH R eZNXR + {q ez) NO(R q)



Fig. 7. Determination of forces and moments at the ring centroid.

At the upper edge (at x=L) one obtains the same expressions except for a minus
sign in front of the terms on the right hand side. Notice that NO is the
external compressive line load applied at a distance q from the shell mid-
surface.

Considering now the compatibility at the ring centroid of the ring and
shell displacements and rotations yields the following expressions at the lower

edge (at x=0)

r S
u =u - e w,
A X
vi=2¢ e Wl -e w
R x 'y Y (7)
r S S
w = W + e w,
X X
T S
B = -w,
y X

Notice that at the upper edge (at x=L) identical expressions are obtained.
Using the previously shown Fourier decomposition of the ring wvariables

(Egqs. 1-2) and the following Fourier decomposition of the shell variables

o=t (uz + ui cos nb + uz cos 2nb)
vo = t(vS sin nd + vo sin 2n9)
1 2
s s s (8)
w = t(wv + wO + W, cos nd)
_ s s
Wi = t(wO,x + wl,x cos nb)
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and
S Et2 s s
N ==—— (- A+ N cos nbd + N cos 2nb)
b4 cR X X
1 2
s Et2 s
N == (N sin n8 + N°  sin 2no)
Xy cR Xyq XY,
(9)
B =5 p @ + B cos né)
R3 0 1
Ul 35 D (M5 + M3 cos nd)
R 0 1
where
3
D = EEE and c = J3(1-v?)

One obtains upon substitution and equating coefficients of like terms the

following
lower edge (at x=0)

For n=0
aF. = 55 D Ky
0 R
r t S
aM =e —DH
to X R2 0
For n 22
2
aFi = EE— Ni
1 1
aFr - Et2 i
1. ¢ %
aft = EE D HJ
1 R
2
aM. = -e Et NS
t1 zZ C X

separated form of the forces and moments at the ring centroid at the

(10)
+EpM +nNR
R X o q
0
(11)
t s s
+e —DH, + =DM
X R2 1 x1
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and
2
2 2
2
aFr - Et Ns

and the following separated form of the displacement and rotation compatibility

conditions

For n=0

For n22

and

e

- X . s _a. s
v, = t(2n R Ut R v2)

(13)

(14)

(15)

Substituting now in the separated form of Cohen's ring equations {Egs. 3-5) for

the ring displacements and the ring forces their equivalents in terms of the

shell variables (Egs. 10-15) yields the general elastic boundary conditions,

which can be expressed in two different forms, namely
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the general elastic boundary conditions valid in the limit as Er > 0 (free

edges)
For n=0
o s o] s _4S
agq {Wg * Wy) +ap, wy o= H
(16)
o o s _ uS -
8yy Wy * W) +ay Wy = MxO + Ag
For n22
a1 us + al vS + a1 wS + a1 wS = NS
11 71 12 "1 13 71 "1 x - Xy
al uS + a1 vs + a1 wS + a1 ws = NS
21 "1 22 1 23 "1 24 "1 x XYy
(17)
a1 &S o+ a1 &S s a1 WS+ a1 WS = g
31 71 32 "1 33 "1 34 T1,x T 1
a uS + a vS + a1 wS + a1 wS = MS
41 “1 42 "1 43 "1 44 "1 x Xy
and
a2 S s a2 ¢S = NS
11 72 12 "2 7 X,
(18)
a2 &S s a2 oS = NS
21 "2 22 "2 7 Xy,

and the general elastic boundary conditions valid in the limit as Er s o (fully

clamped edges)

For n=0
0 .S ) s - s
11 Ho * bpp (Mxo v ha) =Wy v W
(19)
o .S o) s - _ s
byy Hg * byy (M + Aa) =Wy
0 X
For n22
1. s 1 s 1 _s 1 ,s _ s
PygNy, * Pip Ny *byg Hy + Dy M=y
1 1 1
1.s 1 .s 1 s 1 s _ s
b21Nx1 * by nyl * by Hy + by Mxl = vy
(20)
1 s 1 .s 1 _s 1 ,s _ s
b31le + g, nyl + bgg H; + by Mxl = W}

+

1.s 1
b’41Nx1 b42 nyl * b43 H
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and
2 s 2 s S
b N + b = u
11 X, 12 Xy, 2
(21)
b2 NS 4 b2 S = S

N =
21 X5 22 Xy, 2

The components of the boundary stiffness and of the boundary flexibility
matrices are listed in. Appendix A. Next these general elastic boundary
conditions must be expressed in terms of the variables used in the shell
analysis of Ref. [9], where the initial imperfection is given by

W=t Ao(g) + t A, (x) cos nb (22)

1(

the radial displacement W and the Airy stress function F are assumed as

x
n

t Wv +two(x) + t w1(§) cos nbd

0
(23)

< + fo(x) + £, (x) cos nf + f,(x) cos 2n8}

and x = x/R, 0 = y/R. This change of variables results in the fdllowing

expressions
Ni = - nzfl Ni = -4n2f2
1 2
t
NS = nf! NS =2nf
xy1 1 xy2 2
s - - [ . 5 [ l 3 t A ' [}
Hy =-D, [wo B, wo * 3 B3 [(w1 +A2A1)w1] + By A(w) + &)
+ B5 [fl(wl + Al) + fl(wl + Al)]]
S - N v _ 2 1 2 te . 1 o ' '
Hy =D, (v Blg Wi ¥ Byofi" + Byafy + Bog A (W + Aj) (24)
1 t 1 t 1
+n° Byg [(wO + AL+ (W) 4 A7) 2F, + (W, + Al)fz]]
M5 = -D {wr - B w, o+ B, A + lg (w, + 2A,) w, )
Xy 2 %0 2" 6 273 '"1 17 "1
s - N "o_ 3 A " a2
My =D (w] - By, wy + By, £] + By )




16

further
S HXX
uy = ;;5 [fi" - B7fi - Bgwi" + ngi = Byg(wiwy + wiA, + Aéwl)]
s Hxx 1
up = E;;E (£5" - 4B7fé =3 Byg (wiwy * WAL+ Alwy)]
(25)
S HXX
vi T o [f; + Byyf; - Bgw] + ngl
s Hxx 1
V5 = 5o [fg + 4314f2 + 7 By (wy + 2A1) wl]

where ( )' = d/dx and the constants D2, ﬁxx’ etc are listed in Appendix B.
With the help of these expressions one can write the general elastic boundary
conditions derived earlier in terms of the variables used in the shell
analysis.

Introducing now the 16-dimensional vector variable Y defined as

Y o= f Yo = f! Y, =f0 Y = f!"

1= 5 = ) 9 1 13 = 1
- P 1 - 1t - 11
Y=, Yo=1 Yy=f3 Yy =1
(26)
Y3 = wo Y7 = wo Y11 = wO Y15 = w0
— - t — " — tH
Yy =vw Yg=w  Y,=w Yig=w

then the system of governing equations and the general elastic boundary

conditions can be reduced to the following nonlinear 2-point boundary value

problem
d yv-r (% ¥;A) for 0 C % < &
-~ 3 S -~ %2R
dx
g (x =0, Y(O), A) =0 at x = 0 (27)
- _L L - = _L
B(X_R’X(R)’A)—O atx—R

where the general nonlinear boundary conditions are specified by the 8-

dimensional vectors g and h. The solution of this nonlinear 2-point boundary

-~

value problem will then locate the limit point of the prebuckling states. By
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definition, the value of the loading parameter A corresponding to the limit

point will be the theoretical buckling load (see Fig. 8).

|

Fig. 8. Location of the limit point for an imperfect shell.

Using load increments AA the solution fails to converge close to and beyond the
limit point. However, if one switches to using increments in (say) 'end-
shortening' A& then one is able to extend the resbonse curve beyond the limit

point.

NUMERICAL ANALYSIS

Due to the highly nonlinear nature of the above 2-point boundary value
problem anything but a numerical solution is out of question. Due to the very
satisfactory results obtained in Ref. [9] with the so-called 'Parallel Shooting
Method' it was decided to modify it for the present problem. Though the code
has been programmed to employ parallel shooting over 8 intervals, for the
pﬁrpose of discribing the method let us consider just 'double shooting' or
'parallel shooting over 2 intervals'.

Initially let us associate the following 2 initial value problems with the

above 2-point nonlinear boundary wvalue problem

U="f (x, U; A) for 0 ¢ x £ x

~

Forward Integration

Q-IQ.-

%1

.

(o]

o
S

1]
[15]
N
oo




and

V="> (x, Vi A) for x

A
)
IA
i

Backward Integration

VR -t | (29)

where g = Y (0) and t = ¥ (%) are 16-dimensional initial guess vectors. Under
appropriate smoothness conditions on the nonlinear vector function f (§, Ye A)
one is assured of the existence of unique solution of these initial value

problems, here denoted by
U(x, s, A) and V (x, t, A).

These solutions must satisfy matching conditions at x= §O(see alsoc Fig. 9).

v-X
X=L
R
Fig. 9. Matching Eonditions at x = §O'
Introducing the new vector function ¢ the matching conditions at X = ;O can be
written as
@ (8 = Ulx=x5, 5, &) -V (x=X5 & A) =0 | (30)
where
£
5= () (31)

Thus the solution of the nonlinear 2-point boundary-value problem (27) has been
transformed to the solution.of the two associated initial value problems (28)-
(29) and to the finding of the roots S (a 32-dimensional veétor) of the

following system of simultanecus equations

g (x =0, s, A)
8(8) = | @ (x=Xx5 8, M) | =0 ' (32)
h (x=E & A)
_ J
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Using Newton's method for finding the roots of $(S) = O one has the

following iteration scheme

[+¥)
R=d

&l
twnlt
—
193]
<
~
[~g
[{6)]
]
|
te
—
[19)]
<
~—
—
w
4=
~—

;i%l - i%i_ ; 0 S 0 b
1138, 3B ¥
; o l
LT Pl T |
.38 3g 1| I
= - = 0o ---- 0 |
13S as b |
gﬂ_}_«_‘_,___ _ __}q__ll ____________ !
e, e, i e de, |
i35 7 S 1 3 = |
aS1 3816 ;: 8817 3832I
1 [ '
v 3l v o ‘E - !
J(E) =35 (8) = oo X ) ! (35)
~ il |
A 3e, ¢ N 36 ) 3%¢ o 3¢, ¢
aS1 8816 j! 8817 3832i
o - - - - - - _——.-_“ ’— - - - - - - :
| . ‘ . ¥ 3h, ahy
SRS 33,
T T ,
! b1 ah 3hg !
(o) - 0 il _§§_ - - _§§_g
3 3 :
i LT 32

Notice that the componehts of this Jacobian involving derivatives of the

components of the specified boundary vectors g anf h can be calculated

-~

analytically. However, the components involving derivatives of the matching
conditions must be obtained by solving the appropriate variational equations.

In order to solve for these components let us introduce the following new

vectors
2y
Ei = 3§; for i = 1,2,...,16
and (36)
2y

Zi = sgz for i= 17,18,...,32
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which are the solutions of the corresponding variational equations obtained by

implicit differentiation of the associated initial value problems. Thus for

i=1,2,...,16 one must solve

g 2 _ o

~ W, = — (x, U, A) W, for 0 < x < x Forward Integration

- ~i aU < ~i - =70
dx =
(37)

~i(0) = ~I-1
and for i = 17,18,...,32

d i - - L

i Zi =37 (x, V, A) Zi for X, <x < R Backward Integration

dx ~

(38)
L

Z1(R) li
where Ii = [0,...,0,1,0,...,0]T is the ith-unit vector in the n-space. Notice
that now the components of the Jacobian matrix J'

aU1 aU2 3U16
af _ af  _ af2
[ = — = < .- -
J = ag (X’ LJ: A) ay (X, Yv )\) aUl (39)
aU1 aU16

can be calculated analytically.

Since the Jacobian J' is a function of 9 (or y), therefore the variational
equations (37) depend step-by-step on the results of the associated initial’
value problem (28) and the variational equations (38) depend step-by-step on
the results of the associated initial value problem (29). Thus the variational
equations depend on the initial guess §v. Also, it is advantageous to integrate
the 16 variational equations simultaneously with the corresponding associated
initial value problem. This results, for double shooting, in a 272 dimensional,
1st-order, nonlinear differential equation.

Since in the case of an axially compressed imperfect cylindrical shell the
nonlinear solution approaches the linearized solution asymptotically as A-sO,
therefore for sufficiently low values of the axial load parameter A one can use

the linearized solutions as starting values for the nonlinear iteration schemne.
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Solutions of the linearized problem are also obtained by the shooting method.
It has been shown in the literature [12] that for the linearized 2-point
boundary value problem Newton's method yields the correct initial vector $
directly without the need of iterations. The solution of the associated initial
value problems and of the variational equations was done by the library
subroutine DEQ from Caltech's Willis Booth Computing Center. DEQ uses the
method of Runge-Kutta-Gill to compute starting values for an Adams-Moulton
corrector-predictor scheme. The program includes an option with variable

interval size and uses automatic truncation error control.

NUMERICAL RESULTS

To investigate the effect of elastic boundary conditions initially the
perfect stringer stiffened shell AS-2 has been analyzed. The elastic boundary
conditions were modeled by symmetrically placed symmetrical rings of square
cross-section. Following an idea by Almroth [5] the ring area is set equal to
Ct2 where C is a number and t is the wall thickness of the shell (see Fig. 10).
The general elastic boundary conditions in the limit as Er+w (Eqs. 19-21)
reduce in this case to

For n=0

(40)
0 S -y _ .8
by, (M, +Aa) = wy o
0
For n22
1 .s 1.s s
b, ,N b, M =u
11 Xy 14 Xy 1
1.,s 1,5 _ s
bzszy1 bosfly = vy
(41)
1.5 1 s _ s
32y, * P33 T 1
1,8 1 .s _ s
bule * b44MX = Yx
1 1
and
2., _ .8
blle2 “2.
(42)
2 .8 Vs
2
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It is interesting that even for this symmetrical case the stiffness matrix of
the ring does not reduce to a diagonal matrix. Thus using a diagonal matrix to
model ring supported elastic boundary conditions may lead to serious
inaccuracies in the predicted critical load and buckling mode as has been

pointed out in Ref. [13].

Fig. 10. Symmetrically placed symmetrical end-ring.

Nx (LB/IN)

-300.

-200.

-100.

o g 1 L L ~ A . L I i C

0 100 500 1000

1500
Fig. 11. Critical loads for shell AS-2 with elastic end rings.

Varying the size of the end-rings one can calculate the critical buckling loads
of the perfect stringer stiffened shell AS-2 supported by elastic end-rings
yielding the results shown in Fig. 11. The properties of t‘he shell AS-2 are
listed in Table 1.

Looking now at the buckling mode shapes corresponding to the 3 curves shown

in Fig. 11, the variation of the antisymmetric mode shapes with n (the number
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of full waves in the circumferential direction) for C=500 is displayed in Fig.
12. Notice that for n=2 the large deformation of the end-ring leads to the
inextensional buckling mode at a relatively low buckling load.

Variation of the antisymmetrical mode shapes with the ring size parameter C
for n=14 is shown in Fig. 13. Whereas Fig. 14 displays the variation of the
symmetrical mode shapes with the ring size parameter C for n=11. Notice that in
both cases weak end-rings result in edge buckling at relatively low buckling
loads.

Returning to the results plotted in Fig. 11 it is clear that there is a
critical size of the end-ring below which the ring strain energy controls the
buckling and the buckling mode is inextensional. This phenomena is governed by

Cohen's critical threshold parameter [14]

= 100 (43)

where IX is the moment of inertia of the ring cross-section and for stringer

stiffened shells :

2
o3 E(I +A e ™)

D = Et - sd s's (= 044) : (44)
12(1-v"7) s

the bending stiffness of the shell wall plus stringer combination.

All the buckling load calculations for the 3 curves shown in Fig. 11 were
done with the SRA [10] computer code with the exception of the point labeled
ELNL8. This point was computed with the program described in this paper. As can
be seen from Fig. 15 for vanishingly small initial imperfections the 2 separate
branches of the response curve clearly define the location of the bifurcation

point. The accuracy of this approach is quite satisfactory.

Table 1. Geometric and material properties of shell AS-2.

£ = 1.96596 x 102 cm (= 0.00774 N )
L =13.97 cm (= 5.5 IN )
R = 10.16 ecm (= 4O N )
d, = 8.03402 x 107 cn (= 0.3161 IN )
e, = 3.36804 x 1072 cm (= 0.01326 IN )
A, = 7.98708 x 1072 en® (= 0.1238 x 1072 18%%)
I, = 1.50384 x 107° cn (= 0.3613 x 1077 INq)
Itl = L4.,94483 x 10°® ca (= 0.1188 x 1070 IN4)
E = 6.89472 x 10° N/en® (= 10.10° PSI)
v = 0.3
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Fig. 12. Variation of anti-symmetric mode shapes with n for C=500.
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Fig. 13. Variation of anti-symmetric mode shapes with the ring size-parameter C
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{n=11).
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Fig. 15. Response paths for vanishingly small imperfections.

Finally the effect of varying the size of the end-rings while keeping the
initial imperfections constant is investigated. Using the following

imperfection

_ 2nx . TMX 11y :
= -0.01 cos "' + 0.50 sin = cos g (45)

ot £

the calculated buckling loads are tabulated in Table 2 for various size end-

rings.

Table 2. Calculated buckling loads {(n=11, symmetric).

N

c PERFECT IMPERFECT b= Sy

S BIF
NBIF (N/cm) NS (N/cm)
50 - 226.406 - 165.568 0.731
100 - 2L6. 460 - 174.520 0.708
500 - 292,“08 - 195.236 0.668
1000 - 328.610 - 215.841 0.657
-l - 358.607 - 238.868 0.666
C-4: u=v=w=w, =20
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From these results it is evident that increasing the sizes of the end-rings
produces an increase of the buckling loads. That the shells with weak end-rings
appear to be less imperfection sensitive has a simple explanation. It is well
known that imperfections affine to the buckling mode produce the largest
decrease in the buckling load. However, since weak end rings result in edge-
buckling whereas the initial imperfection used (see Eq. 21) consists of
trigonometric functions, therefore in these cases the initial imperfections and

the buckling modes are not affine, hence they are less damaging.

Circumferential angle (rad)

-~

Fig. 16. Calculated prebuckling grbwth of the stringer stiffened shell AS-2 at
As=1.0430

(Boundary conditions: symmetrical end rings - C=50).

Figures 16 and 17 display the calculated prebuckling growth at the limit
point for a weak end-ring (C=50) and a strong end-ring (C=1000). Notice that

besides increasing the buckling load a stronger end-ring reduces the maximum

normal displacement at the limit point.
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Circumferential angle (rad)

Fig. 17. Calculated prebuckling growth of the stringer stiffened shell AS-2 at
A =1.3597

(Boundary conditions: symmetrical end rings - C=1000).

CONCLUSIONS

The results obtained sofar clearly indicate that there exists a critical
threshold parameter, consisting of the ratio of the in-plane ring bending
stiffness and the bending stiffness of the shell wall-stringer combination,
which governs the buckling behaviour of axially compressed stringer stiffened.
shells with elastic edge supports.

If the end-rings are weaker than the critical value of the threshold
parameter then the ring strain energy controls the buckling and the buckling
mode tends to be inextensional. That is the end-rings deform and the shell
generators remain essentially straight.

If, however, the rigidity of the end-rings exceeds the critical value of
the threshold parameter then the ring strain energy is negligible and the
buckling mode tends to be sinusoidal. That is, the end-rings remain essentially
undeformed.

Finally, as a continuation of the present work it appears necessary to
investigate the interaction between the dominant initial imperfection of the
‘shell body with n full waves in the circumferential direction and an imperfect
end-ring with nR full waves in the circumferential direction. It is hoped that
this addition will make a more reliable modeling of the actual experimental

boundary conditions possible.
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Appendix A The boundary stiffness and boundary flexibility matrices

The components of the boundary stiffness matrices in Egs. (16), (17) and (18)

are respectively

for n=0
0_ Ry2 3 0 _ ,R2 =
a;y= (307 Dy a;,= ()7 Dy,

ag1= ) (2)2 Dy, agz - [Py, (2)2 gé Dy, ]
for n 2 2
gy %e (2)2 : D33 ap,° i% G - Dy,
a7 B (@7 By 22 = e (D7 2 § Dy
aél ) (2)2 : Ds3 aéz - (2)2 n g Dy
ayy = () 0 (Dg3 * ZE D3 - Zﬁ Dy3)
@z () n (F Bgy - ‘“2 = Dy = Dy
ais = %E (i)z n* I335 aiu = %E (5)2 n’ -36
a3 = i (7 n By a = 1 (57 n Dy
a3 = (2)° B 2 = (7 Do



and
2
2 _ ,t2n =
a;; = (37 % Dog
3
2 _ ,,t2n =
8y = 2(3)7 o Dgg

[\S}

= _ a FEA

Dll aD

- (S5 x
12 aD R

_ EIZ

Dro” ad

ﬁ _ n2 [(_E_E_Z_ X (EIXZ)]
33 aD R aD
_ EIXZ

D34— ( aD )

_ EIxz ez

D= (32) (1 - 39)

32

D55)
1 R, = 2 % -
ayy = (3) (Bgg + n7 = Dgg
3
2 _ _ 58 (2105
a5 2(g) (3)7 & Dqg
2
2 _ 3 (52n 3
a5, = (g) (37 < Dgg
3
. (where D = Etz)
4e






D o= p2(— X2y X _ "z, (& 2%, _ 261 a, %
Do (ep ) R~ () g+ g) -np R+g)
EI e EI
B = Ll (—2) - X Xz GJ
= EIXZ
D28™ ~aD
EI 2 e EI
= X a EAy x _ Xz
Dgr= () * ") 7 - (=) ,
EI 2
= _ X a EA
D88 (aD ) ( aD )
and the load parameter is
NI‘
A o/EtZ a = bc qu

Writing eq.(16) in matrix form the inversion can be done easily in closed form

yielding eq.(19), where the components of the flexibility matrix are

forn =0

e e
0 _ (321 %21 0_x1
b= [ s (g 5 ] 5% R 5
11 22 22
e

0 x. 1 0 1
b0 = - (%) L p) = -1
21 R 3 22" 7 5
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Writing eq.(17) in matrix form the inveréion cannot be done easily in closed
form.

The inversion will be done numerically in the computerprogram. So in general
the components of the flexibility matrix will not be written out explicitly as

in eq. (20) for n 2 2

Finally, writing eq. (18) in matrix form the inversion can be done once again
easily in closed form yielding eq. (21), where the components of the

flexibility matrix are

forn 2 2
2. (82 Pgs
117 §) 5 T w2 5
n” (Dg; Dgg+ Hn Dg Dgo)
' D
bfz’ 2(%)2 ﬁ - 7 2 = =
(B Dgg + 4n° Dg Do)
2 R, ,a,2 ¢ 1387
R U N S
77 88 78 “87
D
b2e By (32 ¢ T

- - 2 - -
n (D77 D88 + 4n D78 D87)

In a special case, for a symmetrical ring with ex=ez=Ixz=O and a=R these
equations become considerably simpler. To start with the constants, the

stiffness coefficients are now



D12= 0
byp= n° (%) (&
535— 0
543= 0

GJ

) * (gp)

Now the components of the flexibility matrix in eq. {(19) reduce to

Dgg=

= - [+

36

EI

" RD

EIX 2
(&p) *

EI 5

G

aJ
RD
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for n=0
0_1 0 _
b11 5 blZ- 0
11
0 _ o __1
b21= © P27 7 5

Writing eq. (17) in matrix form and putting in the ﬁij's and zero's for the

simple case of the symmetrical ring we arrive at

2
2 = 2 = s R s
n D33 0 0 n D36 uy be = NX
t 1
2
2 = = s R S
t 1
= = s s
0 -n D5u D55 0 wy H1
2 = = s S
n D63 0 0 D66 wl,x MXl

It must be remarked here that also in the case of a‘symmetrical ring there are
off-diagonal terms, so the first and the last equations and the second and the
third equations remain coupled.

The inversion of the stiffness matrix into the fléxibility matrix can now be
done rather easily yielding eq. (20) where the components bij are explicitly

fornz2 2
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b13= 0
ol Pys
23 - - -
1 Puy
3" 5 5 .5 3
(Pyy P55 = Dys Dgy)
1
bq3= 0

and the components of eq.

(21) reduce to

b

1
32"

n2t2

2

(qu D55 - D45 D54)

D

_ 4cR 54
2 - - - -
nt (qu D55 - D45 D54)
0
- D36
- = 2 - -
(D35 Dgg = n° Dy D)
0
0
P33
(B35 Dgg - n” Dyg Dgs)
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(24) and (25) are:

o>
il

w0
1}

o
N



4o

(L +ny) _
B.= [c - -t L Q n2] 1
9 2R v vy fi
XX
2
tn
B,.= C
10 R B
XX
B
~ 2 -~ 1.
Bjyg=v 1 +pgyx;)n By1® -
XX
B
R = - 12
Bio® 2 T %« P12 75
XX
o Bg TP - 13
137 “t “xx v 13 =
XX
v 2
B,,= n
14 1y
‘ 2 s . 15
B15= (2 - v + nt1+ nt2+ v B 4 X2) n 315= -
XX
- ber 1 By
823= - - =
tD D
XX XX

=2
- Qe
D2= Dxx * i = Bl
XX
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f)‘ED‘l#- _(1+u2)QXX
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(See ref. 15, pages 242 - 243)
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