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Preface
In the autumn of 2014, I was searching for a Ph.D. topic that would combine my
background in aerospace and computer science. The keywords of open, data min-
ing, and aircraft caught my eye in a proposal from the TU Delft, and I immediately
decided to submit an application. On a chilly spring morning half a year later, I
joined the TU Delft’s Aerospace Engineering faculty. I was warmly welcomed by
Prof. Hoekstra and Dr. Ellerbroek and introduced to the department, colleagues,
researches, and the BlueSky project. My final stop of the first day - the faculty’s De
Atmosfeer bar - certainly confirmed I had made the right choice.

This dissertation records my progress and findings over the past four years. It
essentially answers one question: how can we use open data to model and estimate
aircraft performance? Most of the chapters are based on my journal articles and
conference proceedings published since 2016. The primary goal of my Ph.D. re-
search has been to make an open aircraft performance model. As such, the models
and tools produced in this dissertation are shared, and I am proud that some of
these open-source tools have already been adopted by other researchers.

This four-year journey seems long at the start but certainly feels much shorter
now that it is approaching the finishing line. I would like to thank my promoters,
Prof. Hoekstra and Dr. Ellerbroek, who have been extremely supportive and given
valuable guidance. I would like to thank Prof. Blom and Ir. Vû, who provided
great ideas and co-authored some of the chapters of this dissertation, as well as
my Ph.D. committee members for their helpful comments and suggestions on the
dissertation. I would also like to extend my thanks to all my colleagues from the
Department of Control and Simulation, especially for all the inspiring philosophi-
cal conversations we shared at the coffee corner. A final thanks to my wife, Marie,
who has spent many hours proofreading and improving the stylistics of my papers
and this dissertation. In the end, I feel that she may have secretly mastered all this
ADS-B stuff.

On a personal note, I am deeply grateful for my parents’ love, support, and
encouragement of my pursuit of science since I was a young boy. I have also
been extremely blessed to have fallen in love with and married Marie, as well as
welcomed my son William to the world, during my doctoral studies.

Junzi Sun
Delft, May 2019
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Summary
Given the large number of stakeholders in the modern air traffic management
ecosystem, air transportation studies benefit from collaboration and the sharing
of knowledge and findings between these different players. However, not all par-
ties have equal access to information. Due to the lack of open-source tools and
models, it is not always possible to undertake comparative studies and to repeat
experiments. The barriers to accessing proprietary tools and models create major
limitations in the field of air traffic management research.

This dissertation investigates the methods necessary to construct an aircraft
performance model based on open data, which can be used freely and redis-
tributed without restrictions. The primary data source presented in this disser-
tation is aircraft surveillance data that can be intercepted openly with little to
no restriction in most regions of the world. The aircraft performance model ad-
dressed in this dissertation consists of kinematics, thrust, drag polar, fuel flow, and
weather components. The eleven chapters in this dissertation follow the sequence
of open data, open models, and performance estimations. This order corresponds
to the three main parts of the dissertation.

In the first part of the dissertation, open surveillance data is investigated. In
Chapter 2, the focus is on how to decode hidden information contained in the sec-
ondary surveillance data. The algorithms designed in this chapter can effectively
infer the message types and decode the messages. In addition to automatically
broadcast data, secondary surveillance messages can greatly increase the amount
of information regarding aircraft states. In Chapter 3, the main goal is to use ma-
chine learning algorithms to construct and segment flights. Based on previously
obtained surveillance data, a clustering algorithm is used to efficiently extract con-
tinuous flights from the scattered flight data. Then, a fuzzy logic based identifica-
tion algorithm is designed to segment a flight into different flight phases. These
segmented flights become one of the foundations for later performance analysis
and modeling.

The chapters in the second part examine the main components of the open air-
craft performance model. First, a novel weather model, the Meteo-Particle model,
is proposed in Chapter 4. This model is able to utilize the continuous stream of
surveillance data to construct accurate wind and temperature fields. It can be used
for both offline weather reconstruction and real-time local weather assimilation.
With improved knowledge of wind speed, the accuracy of aircraft performance
studies can be further improved. In Chapter 5, the kinematic performance of dif-
ferent aircraft types at each flight phase is modeled. A large quantity of flight data
collected through a crowd-sourced receiver network is used to construct models
for these parameters. Kinematic parameters, such as distance, speed, vertical rate,
and acceleration are modeled for the flight phases of takeoff, initial climb, climb,
cruise, descent, final approach, and landing respectively. At the end of this chap-
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ter, a comprehensive open kinematic database, WRAP, is produced and shared. In
Chapter 6, engine thrust and fuel flow are investigated. Based on an open thrust
model from the literature, maximum thrust during the flight can be computed for
common passenger aircraft types, as long as basic engine performance parameters
are known. In this chapter, a fuel consumption model is also proposed. The fuel
model is based on the open engine emission data-bank information from the Inter-
national Civil Aviation Organization. Thanks to the excellent coverage of engine
types in this dataset, fuel flow for almost all common turbofan engines can be
modeled. In Chapter 7, one of the most important aircraft performance compo-
nents, the drag polar, is studied. Accurate flight data is combined with the Markov
chain Monte Carlo Bayesian method in order to derive drag polar coefficients. The
study in this chapter results in a fully open drag polar models that can be applied
to common transportation aircraft types.

The third part of the dissertation looks into the possibility of using open surveil-
lance data to estimate aircraft performance parameters of individual flights. In
Chapter 8, performance parameters related to aircraft turns are estimated. Using
broadcast surveillance data, the radius of turn is first inferred. Then, the bank
angle and load factor can be derived. The accuracy of this estimation is validated
using the independent reference information from the secondary surveillance com-
munication. In Chapter 9 and 10, two methods are designed to estimate the mass
of an aircraft. One of the main differences between these two methods involves
the flight stages used for estimation. In Chapter 9, the entire trajectory is required.
Aircraft masses are first computed at different stages of a flight. Then, considering
the empirical knowledge of the mass as a priori, the initial mass is produced as the
maximum a posteriori estimation. Chapter 10 makes use of a short flight segment
at the start of the climb and applies a Bayesian estimator to the flight dynamics
level. A particle filter is constructed to estimate aircraft states using observations
from surveillance data. These states include position, speed, vertical rate, wind,
temperature, mass, and thrust setting. The particle filter is able to infer not only
the mass but also to determine the uncertainty of estimates. The study indicates
the level of data quality needed to produce a meaningful estimation. This repre-
sents one of the first studies in the air traffic management domain that quantifies
the uncertainty of mass estimation caused by surveillance data accuracy.

In the final chapter of this dissertation, final conclusions and future recom-
mendations are made. With the goal of making future air traffic management
studies more transparent, comparable, and reproducible, the models and source
code proposed in this dissertation are fully open, including, for example, the py-
ModeS, OpenAP, Meteo-Particle, and particle filter libraries. A major part of the
open performance model has already been implemented in the BlueSky air traffic
simulator. The performance model proposed in this dissertation has proven to be
an efficient open-source alternative to current closed-source models. It also has
the potential to be used in other studies, for example, those investigating trajec-
tory optimization and prediction. These areas of investigation could be considered
as interesting paths to extend this doctoral research.



Samenvatting
Het huidige ecosysteem voor luchtverkeer kent vele belanghebbenden. Onder-
zoek gerelateerd aan luchtverkeer profiteert van open samenwerking tussen we-
tenschappers. Er is echter geen sprake van gelijke toegang tot informatie. Door
een gebrek aan vrij toegankelijke tools en modellen is het niet altijd mogelijk om
vergelijkende studies en herhaalbare experimenten uit te voeren. De beperkte
toegang tot commerciële tools en modellen hindert luchtverkeersonderzoek.

Dit proefschrift beschrijft methoden voor het genereren van vliegtuigpresta-
tiemodellen op basis van open data, die vrij kunnen worden gebruikt en zonder
beperkingen kunnen worden gedistribueerd. De voornaamste bron van data die in
dit proefschrift wordt gebruikt, komt voort uit vluchtgegevens die periodiek door
moderne vliegtuigen worden verstuurd. Deze informatie kan openlijk worden on-
derschept met weinig tot geen beperkingen in de meeste delen van de wereld.
Het in dit proefschrift gepresenteerde vliegtuigprestatiemodel beschrijft kinema-
tica, stuwkracht, aerodynamische eigenschappen, brandstofverbruik en weersom-
standigheden. De elf hoofdstukken in dit proefschrift zijn gerangschikt in drie
onderdelen; open data, open modellen en prestatiemodel schattingen.

In het eerste deel van het proefschrift worden de toepassingen van open vlieg-
tuiggegevens onderzocht. In hoofdstuk 2 ligt de nadruk op het decoderen van
informatie uit antwoorden van vliegtuigen op verzoeken van de secundaire radar.
De gepresenteerde algoritmen kunnen de berichttypen effectief afleiden en de be-
richten decoderen. Met deze gegevensbron kan de hoeveelheid informatie over
de vluchtstoestand van vliegtuigen aanzienlijk worden vergroot. In hoofdstuk 3
worden verschillende algoritmen gebruikt om vluchten en vluchtsegmenten te re-
construeren uit ongesorteerde data. Met een clusteralgoritme worden continue
vluchten efficiënt gedetecteerd in de verzamelde vluchtgegevens. Met een fuzzy
logic algoritme worden de vluchten in verschillende vluchtfasen verdeeld. Deze
gegroepeerde vluchtdata vormt een van de fundamenten voor latere analyse en
modellering van de vliegtuigeigenschappen.

De hoofdstukken in het tweede deel onderzoeken de belangrijkste componen-
ten van het open vliegtuigmodel. Allereerst wordt in hoofdstuk 4 een nieuw weer-
model voorgesteld. Dit model kan de continue stroom aan vliegtuigdata gebrui-
ken om nauwkeurige wind- en temperatuurvelden te construeren, voor zowel of-
fline weerreconstructie als realtime lokale weerschatting. Met dit weermodel kan
de nauwkeurigheid van vliegtuigprestatiemodellen verder worden verbeterd. In
Hoofdstuk 5 worden de kinematische prestaties van verschillende vliegtuigtypen
op elke vluchtfase gemodelleerd. Een grote hoeveelheid vluchtgegevens die zijn
verzameld via een openbaar ontvangernetwerk wordt hier gebruikt om modellen
voor deze parameters te schatten. Kinematische parameters zoals afstand, snel-
heid, verticale snelheid en versnelling zijn gemodelleerd voor respectievelijk de
vluchtsegmenten start, initiële klim, klim, kruisvlucht, afdaling, eindnadering en
landing. Het resultaat is een uitgebreide open kinematische database. In hoofd-

xix



xx Samenvatting (Summary in Dutch)

stuk 6 worden de stuwkracht van de motor en het brandstofverbruik bestudeerd.
Op basis van een open stuwkrachtmodel uit de literatuur kan de maximale stuw-
kracht tijdens de vlucht worden berekend voor gewone typen passagiersvliegtui-
gen, op voorwaarde dat de basisparameters van de motorprestaties bekend zijn.
In dit hoofdstuk wordt ook een brandstofverbruiksmodel voorgesteld. Het brand-
stofmodel is gebaseerd op de open-engine-emissie-gegevensbankinformatie van de
International Civil Aviation Organization. Dankzij de uitstekende dekking van mo-
tortypen in deze dataset kan het brandstofverbruik voor bijna alle gangbare turbo-
fanmotoren worden gemodelleerd. In Hoofdstuk 7 wordt een van de belangrijkste
onderdelen van de vliegtuigprestaties, de ’drag polar’, bestudeerd. De vluchtgege-
vens worden hier gecombineerd met een Markov-chain Monte Carlo Bayesiaanse
methode om drag-polarcoëfficiënten af te leiden. Het resultaat is de eerste vrij
beschikbare set drag-polar-modellen voor gewone typen transportvliegtuigen.

Het derde deel van dit proefschrift onderzoekt de mogelijkheid om open sur-
veillancegegevens te gebruiken om prestatieparameters van individuele vluchten
te schatten. In Hoofdstuk 8 worden de prestatieparameters gerelateerd aan boch-
ten geschat. Met behulp van de periodiek verstuurde vluchtgegevens kan eerst de
radius van de bocht worden afgeleid. Vervolgens kunnen de rolhoek en de belas-
tingsfactor worden afgeleid. De nauwkeurigheid van deze schatting is gevalideerd
met behulp van de secundaire surveillancecommunicatie als onafhankelijke refe-
rentie. In hoofdstuk 9 en 10 zijn twee methoden ontworpen om de vliegtuigmassa
in individuele vluchten te schatten. Een van de belangrijkste verschillen tussen
deze twee methoden betreft de vluchtstadia die worden gebruikt voor de schat-
ting. In hoofdstuk 9 is het hele traject vereist. De massa wordt eerst in verschil-
lende stadia van een vlucht berekend. Vervolgens, met empirische kennis van de
massa van de vlucht als a priori informatie, wordt de initiële massa bepaald als de
maximale a posteriori schatting. Hoofdstuk 10 maakt gebruik van een kort vlucht-
segment aan het begin van de klim en past een Bayesiaanse methode toe op het
niveau van de vluchtdynamiek. Met een deeltjesfilter worden vliegtuigtoestanden
geschat met behulp van observaties uit surveillancegegevens. Deze toestanden
omvatten positie, snelheid, verticale snelheid, wind, temperatuur, massa en stuw-
krachtinstelling. Het deeltjesfilter kan niet alleen de massa afleiden, maar geeft
ook inzicht in de onzekerheid van de schattingen. De studie geeft het niveau
aan datakwaliteit aan dat nodig is om een betrouwbare schatting te kunnen ma-
ken. Dit is een van de eerste onderzoeken die de onzekerheid van massaschatting
kwantificeert, op basis van surveillancegegevens in luchtverkeersstudies.

In het laatste hoofdstuk van dit proefschrift worden definitieve conclusies en
aanbevelingen gedaan. Met het doel om toekomstige luchtverkeersstudies trans-
paranter, vergelijkbaar en reproduceerbaar te maken, zijn de modellen en de
broncode die in dit proefschrift worden voorgesteld vrij beschikbaar gemaakt,
waaronder bijvoorbeeld de pyModeS, OpenAP, Meteo-Particle en deeltjesfilterbi-
bliotheken. Een groot deel van het open prestatiemodel is al geïmplementeerd
in de BlueSky-luchtverkeerssimulator. Het prestatiemodel dat in dit proefschrift
wordt voorgesteld, is een efficiënt open-source alternatief gebleken voor de hui-
dige closed-source modellen. Het heeft ook het potentieel om te worden gebruikt
in andere studies, bijvoorbeeld die onderzoeken naar trajectoptimalisatie en voor-
spelling. Deze onderzoeksgebieden kunnen worden beschouwd als interessante
paden om dit doctoraatsonderzoek uit te breiden.
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Introduction

1.1. Background
As of 2018, all the top 500 supercomputers in the world use Linux as their operat-
ing systems. Compare this to 20 years before, in 1998, when only one of the top
500 supercomputers operated on Linux. The success of Linux is a representation
of the wider success of the open-source movement and a recognition of the value
created by open collaborations. The open-source philosophy has not only created
a powerful and flexible operating system, but it has also enabled people from all
over the world to work collaboratively towards the same goals. The benefits of
sharing code and data publicly apply to studies in all scientific domains, and the
air transportation domain is no exception.

Air transportation science deals with different subsystems supporting all seg-
ments of air transportation, such as terminal areas, departures, and arrivals, as
well as en-route flights. Centered on passenger service, it also involves numerous
stakeholders, such as airlines, regional regulators, air navigation service providers,
air traffic controllers, and pilots. Studies that address challenges and solutions in
the domain of air traffic management often involve these different stakeholders
and a baseline of shared knowledge is necessary to ensure that results can be
reproduced and compared.

As one example, many air transportation studies involve (fast-time) simu-
lations. To perform such studies, several closed-source commercial tools exist,
including the commercial simulators, AirTOp, ATMOS, NARSIM, and SIMMOD.
While these commercial tools offer convenient simulation capabilities, their pro-
prietary licenses make it difficult for third-parties to freely undertake comparative
studies. Moreover, as source code is not available to users, it is often difficult to
evaluate the underlying algorithms or to extend their functionalities. The closed-
source tools could also contain software bugs that users are not aware of and that
could alter the true nature of air transportation research outputs.

In the field of air traffic management (ATM), it is not uncommon to see multi-
ple individual approaches to address a specific problem, where all claim to provide
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the optimal solution [54]. Without a common foundation, validations and verifi-
cations of different research approaches are often limited. This situation can be
improved by introducing open tools and open models in the air traffic manage-
ment community.

With the aim of making repeatable and comparable studies available for ATM
researchers, the open-source air traffic simulator BlueSky [54] was developed by
a team from TU Delft. Its goal is to provide a fully portable, open-source simula-
tor. Since its first release on GitHub in 2015, the BlueSky simulator has become
a joint open-source effort supported by many institutes in the global air traffic
management community. One of the core aspects of this simulator is its aircraft
performance model.

To study how aircraft fly, performance models of flight mechanics have been
developed. There are different categories of performance models, with varying
levels of details. The most detailed, non-linear six-degree-of-freedom models are
commonly used in aircraft control studies. Air traffic management research often
assumes a stable aircraft and neglects fast rotational dynamics. This assumption
means that a point-mass aircraft performance model is sufficient in most use cases.
Such a point-mass model is used throughout this entire dissertation.

The most common aircraft performance model used in ATM research is the
Base of Aircraft Data (BADA) model, which was developed by Eurocontrol. BADA
is a proprietary performance model that forbids sharing of the model’s data. Al-
though BlueSky is compatible with the BADA performance files, its final goal is
to include an open model that can be distributed freely with BlueSky. A prelimi-
nary open model based on textbook data was developed when BlueSky was first
released [93]. Since the model that was first released with BlueSky relies on the
literature data based on old aircraft models, its capabilities are limited. The need
for a more comprehensive open performance model initiated the studies that are
conducted in this dissertation. Furthermore, an open aircraft performance model
is not only critical to the success of the BlueSky simulator but also an advantage
for other air traffic management related studies.

With this goal in mind, the simple key research question to start our investiga-
tion is: how can we model aircraft performance using only open data?

This dissertation takes a data-driven approach and makes use of the abundance
of openly available aircraft surveillance data. Unlike conventional data-driven
approaches (e.g.: [60]) which often ignore underlying physical relationships, most
of the modeling efforts proposed in this dissertation are centered on the point-
mass model of flight dynamics. In general, this dissertation is built upon three
cornerstones: data, models, and estimations, as shown in the diagram of Figure
1.1.

Data Models Estimations

Figure 1.1: The relationships among the parts of the dissertation
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Data represents aircraft surveillance data. Models represent models that are
related to aircraft performance, such as thrust, fuel flow, and drag polar. Estima-
tions represent the estimated aircraft parameters in individual flights. The arrow
between data and model indicates the effort to construct the open model from
data. The junction of data and models to estimations indicates the effort to derive
aircraft parameters for individual flights. These parameters include, for example,
mass, thrust setting, and bank angles, which are reflected in the estimation part of
this dissertation.

This dissertation consists of three parts that correspond to the cornerstones. In
the following sections of the introduction, these main concepts are futher divided
into different components. These components, in turn, reflect the nine chapters of
this dissertation.

1.2. Data
As one of the foundations of this dissertation, almost all of its chapters depend
heavily on data, specifically aircraft surveillance data. Traditionally, aircraft surveil-
lance is performed by primary surveillance radar. The resulting surveillance data
are not openly transmitted. A rotating radar determines its distance to aircraft by
measuring the time difference of the emitted signal and the reception of the reflec-
tion of the signal from the aircraft. The primary radar is able to obtain the distance
and azimuth of the aircraft. However, without the altitude, the position cannot be
accurately determined. The secondary surveillance radar was introduced to ad-
dress these problems.

The secondary surveillance radar implements different interrogation technolo-
gies (Mode-A/C/S) that are able to inquire additional information from aircraft.
Mode A is used to interrogate a 4-digit octal identification code (or squawk code),
while Mode-C is used to interrogate the barometric altitude of the aircraft. Mode-C
is commonly combined with Mode-A as Mode-A/C, which provides both the air-
craft identity and altitude. Mode-S (select) is a newer technology that is able to
selectively interrogate a more comprehensive set of information from an aircraft.

In addition to interrogation-based information downlinked to air traffic con-
trol, recent technology has been designed to extend the Mode S capacity, allow-
ing periodic broadcast of aircraft state information without the need for inter-
rogation. The technology is called Automatic Dependent Surveillance-Broadcast
(ADS-B), an implementation of the Mode-S Extended Squitter. Aircraft equipped
with an ADS-B transponder periodically broadcast essential state information of
the flight. These states include, for example, identity, position, altitude, velocity,
and operation status. Since the information is broadcast omnidirectionally and
un-encrypted, these messages can be decoded by anyone according to pre-defined
standards.

These Mode-S communications are documented by ICAO Annex 10 - Aeronau-
tical Telecommunications [64]. In total, there are 24 message formats, which can
be identified by a 5-bit Downlink Format (DF) code at the start of any message.
Among all 24 possible formats, 11 downlink formats are actively used. The con-
tents of these messages are defined in Table 1.1, where the downlink format, con-
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tent, and message length (in bits) are indicated.

Table 1.1: Mode-S downlink formats defined by ICAO Annex 10

DF Message content Length
0 Short air-air surveillance (ACAS) 56
4 Surveillance, altitude reply 56
5 Surveillance, identity reply 56

11 All-call reply 56
16 Long air-air surveillance (ACAS) 112
17 Extended squitter (ADS-B) 112
18 Extended squitter/non transponder 112
19 Military extended squitter 112
20 Comm-B, altitude reply 112
21 Comm-B, identity reply 112
24 Comm-D, extended length message 112

In this dissertation, our main source of data is Comm-B (DF 20/21) and ADS-
B (DF 17) messages described in the previous table. The Technical Provisions for
Mode-S Services and Extended Squitter [66] and its second revision [67] define the
content of ADS-B and Comm-B messages.

Information transmitted through ADS-B is not dependent on interrogations.
Each message contains the identification of the aircraft, given by a 24-bit unique
ICAO transponder code. Each transponder code can be related to a specific air-
craft. In all ADS-B messages, a Type Code (TC) is included. Based on the Type Code,
we can identify the message format and then decode transmitted data accordingly.

The information contained in ADS-B messages is not sufficient for all studies in
this dissertation. For instance, the speed information contained in ADS-B messages
refers to the ground speed 1 of the aircraft. In many chapters of the dissertation,
we need to obtain the true airspeed of the aircraft to more accurately model the
performance of the aircraft. In these cases, we try to make use of the airspeed data
contained in the Comm-B messages originating from Mode-S interrogations.

As a third-party observer, the decoding of Comm-B messages is not as sim-
ple as that of ADS-B messages. Critical indicators necessary to identify aircraft 2

and message types are not included in these messages. Identifying information
in Comm-B messages has been a complex but fundamental part of this disserta-
tion. We have developed new methods to decode the data in the absence of the
interrogation information transmitted by the surveillance radar.

Most of the data used in this dissertation are collected using the receiver
mounted on the top of the Aerospace Faculty building at the TU Delft. Thanks
to the flat terrain in the Netherlands, the receiver has a large coverage area of
more than 400 km radius. In Figure 1.2, the coverage and normalized density of
traffic over one day are illustrated.

In addition to surveillance data, other public data sources are also considered.

1Airspeed is broadcast only when the accurate position cannot be determined using the global naviga-
tion system. This only happens in rare cases.

2In general, an aircraft is identified by its 24-bit transponder address in this dissertation.
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Figure 1.2: Coverage of the ADS-B antenna at TU Delft. The different shades of gray indicate the
ADS-B data density. Common flight routes are distinguished by darker shades of gray.

For example, weather data from numerical weather prediction models [74] is used
in Chapter 4, where the wind information is integrated with the ground speed to
estimate the airspeed of the aircraft. In Chapter 6, we construct a model for
estimating fuel consumption, which is based on the ICAO engine emission data-
bank [63]. In Chapter 7, data on basic aircraft characteristics are gathered from
published aircraft manufacture data sheets [105].

1.3. Models
The second foundation of the dissertation consists of different models that are in-
volved in calculating aircraft performance. They are the kinematic model, dynamic
model 3, weather model, thrust and fuel flow models, and drag polar model.

1.3.1. Kinematic model
There are two different types of point-mass models: kinematic and dynamic. The
primary difference is that while a dynamic model focuses on forces and energy,
a kinematic model deals only with aircraft motions. BADA, for instance, employs
both model types: the BADA aircraft performance operation file (OPF) models the
dynamic properties of the aircraft, while the airline procedures file (APF) mod-
els the kinematic aspects of flights. The General Aircraft Modelling Environment
(GAME) [15], also developed by Eurocontrol, is another example of a kinematic
performance model.

The kinematic model describes the motions of aircraft without involving the

3Some other studies also refer to the dynamic model as the kinetic model.



1

6 1. Introduction

forces. It is a simplified form of the model, which is used to describe the aircraft
motion at different flight phases, such as takeoff, initial climb, climb, cruise, de-
scent, final approach, and landing. In each flight phase, the kinematic properties
(velocity, acceleration, or distance) can be modeled based on ADS-B data.

1.3.2. Dynamic model
When aircraft forces are considered, most studies require a more complicated
model to describe performance than a kinematic model can provide. Commonly,
the total energy model has been used in air traffic management related studies.
The total energy model describes the conservation of total energy that is generated
by the engines to compensate drag and the change of kinetic and potential energy.
In this model, velocity and altitude can be obtained through aircraft surveillance
data, leaving thrust, drag, and mass to be determined.

Thrust
Thrust is produced by the engines of the aircraft, and modeling aircraft engine
performance is a complicated research area. In air traffic management studies, the
thrust model is simplified. Instead of trying to model the performance of engines,
we are interested in the net force that is produced by the aircraft in different stages
of the flight. For example, in BADA v3 [103], thrust is modeled as a polynomial
model related to the aircraft altitude.

Aircraft thrust is a parameter that cannot be derived using surveillance data.
We have to rely on open models that are created by other researchers. In several
chapters of the dissertation, we use an empirical model for two-shaft turbofan en-
gine thrust calculation proposed by [8]. The model is constructed and evaluated
based on real engine performance data. Thus, in this dissertation, thrust is mod-
eled as functions of both altitude and speed, as well as the vertical rate. This offers
a more accurate interpolation than the BADA v3 model, in which the thrust is only
dependent on aircraft altitude.

Drag and drag polar
To compute aircraft drag in a point-mass performance model, we need knowledge
of the drag polar. The challenge here is to accurately estimate the drag polar
parameters for different aircraft types using other available components of the
performance model.

Based on the deterministic total energy equation, we introduce a stochastic to-
tal energy (STE) model in this dissertation. The stochastic model treats the param-
eters of the total energy model as random variables. Introducing these stochastic
components allows us to construct a hierarchical model that can be solved us-
ing Bayesian computing. Numerical solvers based on Markov Chain Monte Carlo
sampling are used. In the end, this new technique allows us to derive drag polar
models for different aircraft types.

1.3.3. Weather
In order to obtain a better estimation of aircraft performance parameters such
as airspeed, it is crucial to understand weather conditions during flight, specifi-
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cally wind and temperature. Traditionally, air traffic management studies rely on
weather data generated from the numerical weather forecast system. The most
common datasets are from the National Centers for Environmental Information
(NCEI) and the European Centre for Medium-Range Weather Forecasts (ECMWF).
Studies that focus on predictions require forecasting datasets that predict weather
conditions in the future, while performance studies often take advantage of more
accurate re-analysis data.

Re-analysis datasets are generated using data assimilation techniques that com-
bine information from different sources, such as multiple satellites, weather bal-
loons, and weather stations. The advantage of these datasets is that a wide (often
global) coverage is guaranteed. However, they are not without their own lim-
itations. Due to the global grid representation of the weather information, the
resolution is relatively low. For example, the Global Forecast System Analysis
dataset from NCEI offers the highest resolution of 0.5 degrees. In the context of
the Netherlands, this indicates that local wind variation in an area of approxi-
mately 35 by 55 kilometers is smoothed out. For performing studies that predict
short flight segments, a higher resolution is often desired.

In this dissertation, we introduce a new model called the Meteo-Particle model,
which allows us to re-construct weather conditions in real time using aircraft
surveillance data. We are able to estimate wind and temperature field using ob-
servations derived from the combination of ADS-B and Comm-B information.

1.4. Estimations
Once we know the data and models, it is possible to estimate aircraft performance
parameters. In this dissertation, aircraft turn performance, aircraft mass, and
thrust settings are estimated.

Turn performance is often overlooked in studies related to air traffic manage-
ment. Air traffic controllers often rely on track and turn reports from aircraft
Mode-S secondary surveillance data to gather performance indicators such as roll
angle and track rate. However, this data has a low update rate and is not always
available. An accurate estimation method for roll angles would be beneficial for
performance analysis.

The mass is commonly considered as an input parameter for most air traffic
management related studies. With a known mass, we can compute the drag of the
aircraft in the point-mass model. If we are able to model the thrust, drag, speed,
the derivative of the speed (i.e., acceleration), and vertical rate, it is possible to
estimate the mass of an aircraft. Since mass is a crucial parameter for predicting a
trajectory or performing fuel optimization, an accurate method to determine mass
could bring welcome insights to air traffic management studies.

Previous studies were conducted aiming to estimate mass using flight data such
as radar data [2, 3, 4] or flight recorder data [19, 17]. However, low accuracy
and a lack of knowledge of the uncertainty of the estimation remain issues for
these existing methods. Based on ADS-B and Comm-B data, we investigate two
improved methods to address the estimation of mass. We also propose a new way
to study the uncertainties in estimations.
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1.5. Research questions
In the previous sections, we discussed the details of the core concepts of the disser-
tation: data, models, and estimations. With these connections in mind, our main
research question is posed as follows:

How can we use aircraft surveillance and other open data to improve aircraft
performance modeling and parameter estimation?

Based on the above discussion, this question can be divided into the following
sub-questions:

1. How to extract valuable information from open aircraft surveillance signals?
2. How to turn scattered broadcast data into continuous and segmented flights?
3. How to use surveillance data to improve aviation weather models?
4. How to construct a kinematic model using surveillance data?
5. How to model thrust and fuel flow with open data?
6. How to use open data to construct aircraft drag polar models?
7. How to estimate performance parameters using open surveillance data?

1.6. Structure
In this dissertation, with the exception of the introduction and conclusion, the
chapters focus on answering one (or a part) of the sub-research questions. Most
of the chapters are based on journal or conference articles published or submit-
ted during the period of the Ph.D. research, but with a consolidated structure to
emphasize the main arguments of the dissertation.

Figure 1.3 illustrates the inter-connectivity between all parts of this disserta-
tion. Arrows indicate dependent relationships among the components. Dashed
arrows illustrate the modeling and estimation efforts. In addition, circled num-
bers indicate the chapter where the corresponding components are discussed.

1.6.1. Part One: Data
Chapter 2 deals with the foundation of the dissertation, which are aircraft surveil-
lance data. Two types of Mode-S data are introduced: ADS-B (DF=17) and Comm-
B (DF=20/21). The chapter starts with the fundamental concepts of Mode-S data
and its importance in aircraft performance modeling research. The detailed mes-
sage formats of ADS-B and Comm-B are laid out in this chapter. Decoding ADS-B
messages is straightforward. However, as a third-party observer, decoding Comm-
B messages is challenging. Most of the chapter is focused on developing a set of
methods to infer and decode the information contained in these Comm-B messages
with unknown types. In addition, an error checking mechanism is introduced that
allows us to evaluate the accuracy of the Comm-B messages. At the end of this
chapter, we are able to offer a stable solution to infer and decode Mode-S (ADS-B
and Comm-B) data. An open-source tool, pyModeS [135], is developed along with
the chapter.
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Figure 1.3: Connections between the aircraft performance components in this dissertation

In Chapter 3, following the decoding of scattered surveillance data in the pre-
vious chapter, we continue to extract useful information related to flights. This
chapter first introduces a clustering algorithm that allows us to automatically
group data points from the same flights and export them into continuous flight
trajectories. Once a trajectory is given, a fuzzy logic identification method is used
to segment trajectories into different flight phase segments. By the end of this
chapter, we are able to extract ground, climb, descent, cruise, and level flight
segments from scattered surveillance data.

1.6.2. Part Two: Models
Chapter 4 proposes a new model to reconstruct aviation weather fields. Due to
the limitations of the weather data as provided by numerical forecast models,
we identify the valuable information contained in Mode-S data as a new source
of data. If derived correctly, Mode-S data can be used to accurately model the
weather. In this chapter, the novel Meteo-Particle model allows us to construct
real-time wind and temperature field using only Mode-S data. Using the wind
field, we can further derive true airspeed of aircraft based on their ADS-B ground
speed. This enables us to model aircraft performance more accurately for later
chapters.

In Chapter 5, the kinematic performance models for common commercial air-
craft are constructed. In this chapter, we use a larger dataset gathered by a crowd-
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sourced ADS-B network (FlightRadar24). Combined with the segmentation al-
gorithm from Chapter 1, aircraft motion in seven flight phases is modeled. The
results of this chapter provide a comprehensive open-source model on kinematic
performances for common commercial aircraft.

In Chapter 6, the thrust and fuel flow model are studied. The thrust model is
primarily based on the two-shaft turbofan model proposed in [8]. In combination
with data from [136], this chapter constructs a thrust model that can be used to
calculate the maximum net thrust of common aircraft types. Based on the ICAO
emission databank [63], we also construct a fuel flow model that can be used to
calculate the fuel consumption of the aircraft based on Mode-S data. The model is
verified with the flight recorder data from the TU Delft Cessna Citation II aircraft.

In Chapter 7, the aerodynamic model (drag polar) is studied. This chapter
focuses on deriving the drag polar of different aircraft types using Mode-S data.
Other open data sources, such as the characteristics of the aircraft published by
aircraft manufacturers, are used. In order to cope with the large dimension of the
parameters, Bayesian computing is introduced to solve a hierarchical stochastic
total energy model. Using this new method, the drag polar models for the 20 most
common commercial aircraft types are computed and provided.

1.6.3. Part Three: Estimations
Chapter 8 investigates the possibility of using aircraft surveillance data to study
turn performances of aircraft. In this chapter, we develop a set of methods to infer
hidden parameters such as turn radius, bank angle, and load factor.

Chapter 9 proposes using Bayesian inference to estimate aircraft initial mass,
taking into account empirical knowledge about an aircraft. This method first com-
putes the mass at different phases of a flight. Then, a maximum likelihood es-
timate is derived based on a prior probability density function. The drawback
of this method is that it requires the complete trajectory in order to perform the
estimation.

To overcome this drawback, Chapter 10 introduces a new approach. The prin-
ciple is to integrate Bayesian philosophy in the performance system. This concept
is comparable to the stochastic total energy model used in Chapter 7. Here, a Se-
quential Monte Carlo estimator (also known as the particle filter) is developed to
estimate the mass and thrust settings of a flight at the initial segment of the climb.
In addition to providing the estimation, the particle filtering approach allows us
to better understand and study the accuracy of estimation that is inherited from
ADS-B uncertainties.

1.6.4. Conclusion
Finally, Chapter 11 revisits the research questions and findings. It summarizes the
studies conducted in this dissertation. Recommendations for future research are
given based on studies undertaken and the conclusions derived throughout the
chapters of this dissertation.
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Mode-S data decoding

The availability of low-cost Automatic Dependent Surveillance-broadcast (ADS-B) re-
ceivers has given researchers the ability to make use of large amounts of aircraft state
data. This data are being used to support air transportation research in performance
study, trajectory prediction, procedure analysis, and airspace design. However, air-
craft states contained in ADS-B messages are limited. More performance parameters
are downlinked as Mode-S Comm-B replies, upon automatic and periodic interroga-
tion of air traffic control secondary surveillance radar. These replies reveal aircraft
airspeed, turn rate, target altitude, and so on. They can be intercepted using the
same 1090 MHz receiver that receives ADS-B messages. However, a third-party ob-
server does not know the interrogations, that originated the Comm-B replies. Thus,
it is difficult to decode these messages without knowing the type and source aircraft.
Furthermore, the parity check also cannot be performed without knowing the inter-
rogations. In this study, we propose a new heuristic-probabilistic method to decode
Comm-B replies and to check the correctness of the messages. Based on a reference
dataset provided by air traffic control of the Netherlands, the method yields a suc-
cess rate of 97.68% with an error below 0.01%. The performance of the proposed
method is further examined with data from eight different regions of the world. The
implementation of the inference and decoding process, pyModeS, is shared as an
open-source library.

This chapter is based on the following publication:
Sun, J., Vû, H., Ellerbroek, J. and Hoekstra, J.M., 2019. PyModeS: Decoding Mode-S Surveillance Data
for Open Air Transportation Research. IEEE Transactions on Intelligent Transportation Systems [133].

13
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2.1. Introduction
In air transportation research, studies related to aircraft performance are often
dependent on the airspeed of the aircraft. This speed information is used in the
dynamic model of the aircraft to perform, state estimations and trajectory predic-
tions for example. In addition to airspeed, the performance model also takes into
account other trajectory state information, such as positions, ground speeds, and
altitudes.

Many of these states in the dynamic model can be openly observed using
modern aircraft surveillance technology, for instance, the Automatic Dependent
Surveillance-Broadcast (ADS-B). ADS-B provides information on aircraft position,
speed, and vertical rate. The speed contained in ADS-B refers to the ground speed
rather than the airspeed, unless in (rare) cases when the location cannot be de-
termined from the Global Navigation Satellite Systems. The advantage of ADS-B
is that the signals can be openly intercepted and decoded using a simple ground
receiver set-up.

When airspeed is not available, there are two ways to adopt the ground speed
for performance analysis. The first simple approach is to assume the ground speed
as airspeed by ignoring the wind. This may cause errors in performance calcula-
tions when a strong wind is present. The second approach is to integrate the wind
from numerical forecast models. However, wind data from these models often
cannot accurately reflect local wind variations.

At the same time, air traffic controllers are also interested in these performance
parameters, which are constantly interrogated by surveillance radars under the En-
hanced Mode-S Surveillance (EHS) technology. Corresponding messages are down-
linked using the Comm-B protocol. Air traffic controllers make use of this data
to better monitor and predict flights and to make better traffic control decisions.
Within these downlinked messages, information such as true airspeed, indicated
airspeed, Mach number, and true heading of the aircraft are transmitted.

The main difference between the two signals is that ADS-B is automatically
broadcast by the aircraft, while Comm-B is transmitted upon interrogation. If
available, direct access to air traffic control data would provide the most accurate
information. However, due to licenses and data agreement processes, obtaining
this data can be challenging for third-party researchers. Even when the access is
granted, the information is often extracted from historical data archives, which
makes it difficult to perform real-time performance analysis.

Nevertheless, it is possible to obtain the downlinked Comm-B data with the
same ground receiver used for ADS-B data. However, many difficulties arise when
trying to decode these reply messages. The biggest barriers for decoding are the
unknown aircraft source represented by the ICAO transponder address and the
interrogation type represented by the Comm-B Data Selector (BDS) code. Even
though the structure of messages follows open standards [66, 67], without know-
ing the ICAO code and BDS type, useful information from these messages cannot
be extracted.

The goal of this study is to enable open and real-time access to these Mode-S
messages. The main research questions of this study are defined as:
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1. How to determine the source aircraft of a Comm-B message?

2. How to identify the BDS type and decode a Comm-B message without know-
ing the original interrogation?

3. How to detect errors in Comm-B messages when information is incomplete?

To illustrate these inference efforts, Figure 2.1 shows the process related to the
methods proposed in this study. In this figure, the downlink surveillance signal
(containing ADS-B and Comm-B) from aircraft is received by a software-defined
radio (SDR) receiver first. The signal is converted to a raw binary data stream,
which is then further decomposed into a sequence of message frames. For ADS-
B messages, information can be decoded directly. For Comm-B replies, we first
use the inference methods proposed in this study to determine the BDS code,
source aircraft, and errors. Finally, the information contained in these messages is
decoded.

SDR receiverSSR

Binary  
data stream

CommB replies (DF=20/21)

Data frame

ADSB decoder BDS inference

ADSB message (DF=17)

Altitude  
Ground speed 
Track angle

BDS codeCommB decoder

Figure 2.1: The Mode-S inference and decoding pipeline

In the remaining sections of this chapter, we first provide the background infor-
mation on ADS-B and EHS. Next, we discuss the identification processes and error
detection in detail. Several tests are proposed in this chapter, and methods are
validated with a reference dataset provided by Air Traffic Control the Netherlands
(LVNL). Finally, we discuss the use cases, implementation, and recommendations,
as well as the conclusion at the end of the chapter.
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2.2. Background
2.2.1. Fundamentals of Mode-S, ADS-B, and Comm-B
As the demand for air transportation increases, the airspace over the world is
becoming more crowded. To efficiently make use of the airspace and increase
the traffic capacity, air traffic controllers need to rely on accurate flight trajec-
tory predictions. Communications between ground and aircraft are becoming
more frequent in order to obtain accurate updates regarding aircraft states beyond
the basic position provided by the primary radar. Since the beginning of aircraft
surveillance, different methods and standards have been developed for downlink-
ing aircraft data. The two most common methods are based on interrogation and
broadcast.

Traditionally, when an air traffic controller requires information in addition
to the aircraft position, the Mode-S selective interrogation [139] is used. This is
performed by the secondary surveillance radar (SSR). Numerous aircraft states can
be interrogated by the SSR. The most common downlinked messages are Comm-B
replies. The content of the interrogation is identified by the BDS code, which is
a two-digit hexadecimal code (8 bits) that indicates the information desired by
the air traffic controller. In total, 255 BDS codes can be defined. The reply data
is encoded in a 112-bit Comm-B downlink message. Among all these BDS codes,
several BDS codes are grouped and identified as Mode-S enhanced surveillance
(EHS), which consists of the selected intention report (BDS 40), track and turn
report (BDS 50), and heading and speed report (BDS 60).

The simpler ADS-B is an implementation of the Mode-S extended squitter. It
is a newer technology compared to the interrogation-based Mode-S. It allows the
automatic broadcast of the aircraft state information at a constant rate. In many
regions, aircraft are required to be equipped with Mode-S transponders that are
compatible with ADS-B. When it is enabled, ADS-B allows aircraft to automatically
report the identification, location, speed, and operational status. The common
update interval of critical states (such as position and speed) is designed to be
around 0.5 seconds.

Both ADS-B messages and Comm-B replies are transmitted using the 1090 MHz
transponder. Downlinked signals can be intercepted freely using low-cost commer-
cial off-the-shelf ground receivers. Several crowd-sourced initiatives have been
constructing global networks of ground receivers, for example, ADS-B Exchange,
FlightRadar24, FlightAware, and OpenSky-network. The quantity of data gathered
by these networks is enormous, which leads to great potential in air transporta-
tion researches. For example, in recent research, this data has been used for op-
erational performance studies [77] and trajectory prediction [140]. The ground
receiver networks also enable the possibility to determine aircraft location by using
multilateration [76].

ADS-B is designed as an independent communication protocol, where the mes-
sage itself contains all information needed for decoding, while Comm-B commu-
nication is designed as a dependent protocol. Only the air traffic controller who
initiated the interrogation can identify the source aircraft and decode the con-
tent of the replies. To this extent, third-party observers have no information on
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the interrogated aircraft or corresponding BDS code. However, earlier research
has been shown that some information can be extracted, for example, to provide
meteorological observations [50].

2.2.2. Regulation and availability
Several Mode-S capabilities are mandatory for aircraft flying in European airspace
since 2009. Two different categories of Mode-S surveillance are defined, which are
elementary surveillance (ELS) and enhanced surveillance (EHS) [46]. According
to European regulation, all aircraft that fly Instrument Flight Rules (IFR) in general
air traffic (GAT) must be ELS compliant. In addition, all fixed-wing aircraft flying
IFR in GAT with a maximum takeoff mass greater than 5.7 ton or a maximum
cruising true airspeed greater than 250 knots must be EHS compliant. ADS-B is a
newer surveillance technology and has also been adopted broadly. Regulators in
both Europe and the United States have set the agenda for obligatory compliance.

Since ADS-B does not require active interrogations from surveillance radar, the
messages are broadcast and available at all times everywhere. These messages can
be received by ground receivers or satellites [101].

In Mode-S ELS, only a limited number of parameters are reported, includ-
ing aircraft identity, altitude, flight status, and related supporting parameters. In
Mode-S EHS, more aircraft states are interrogated, such as indicated airspeed,
Mach number, vertical rate, magnetic heading, track angle, roll angle, selected
altitude, and ground speed.

Depending on the location of the (third-party) ground receiver, the number of
received replies varies. The availability and quantity of Comm-B messages also
depends on air traffic density and the number of secondary surveillance radars in
the area, as well as the rate of interrogation.

2.2.3. Data structure
In this chapter, we focus on two types of messages, which are ADS-B messages
and EHS Comm-B messages. The structures of ADS-B and Comm-B messages are
defined in ICAO Annex 10 [64]. ADS-B and Mode-S data are constructed using
the data frame shown in Figure 2.2, with a total message length of 112 bits. The
number of bits of each segment is indicated with parentheses in this figure. Each
message starts with the downlink format (DF), followed by a 27-bit header with
different components. Then, the crucial 56-bit data is appended with the downlink
information encoded. Lastly, 24 bits are dedicated to the parity checksum.

ADS-B messages are identified by a DF number of 17 (10001 in binary format).
In the header of an ADS-B message, the address of the aircraft transponder is
indicated. This is a 24-bit address assigned by ICAO and categorized according
to geographic region and country. The leading 3 bits are sub-type or category in
different types of ADS-B messages. The Type Code (TC) is set using the first 5 bits
of the 56-bit data segment. It defines the general type of message, for example,
airborne position, airborne velocity, surface position, identification, etc.

In a Comm-B reply message, the DF number can be either 20 or 21 (10100
or 10101 in binary format). In the case of DF=20, the last 15 bits of the header
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DF (5) Header (27) Data (56) Parity (24)

** (3) ICAO Addr. (24) ADS-B

FS (3) DR (5) UM (6) AC / ID (13) Comm-B

Figure 2.2: The structures of ADS-B and Mode-S Comm-B messages

indicates the Altitude Code (AC). When DF=21, the last 15 bits represent the Iden-
tification Code (ID) (a.k.a: the squawk code). The leading three segments in the
header are Flight Status (FS), Downlink Request (DR), and Utility Message (UM).
Unlike ADS-B, there is no indication of ICAO transponder address nor the BDS
code in a message, except for a few cases. 1
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Figure 2.3: Number of ADS-B message and Mode-S Comm-B replies received in 24 hours at TU Delft,
on May 30, 2018

Figure 2.3 illustrates the distribution of ADS-B and Comm-B replies, together
with their distinct types, for a 24-hour period of data from a ground receiver
situated in Delft, the Netherlands. We can see there are more Comm-B messages
than ADS-B messages. About 35 out of 38 million EHS messages are not directly
identifiable. Unlike ADS-B, none of the Comm-B messages can be checked for
corruption due to the incomplete information on aircraft source and BDS code.

It is worth pointing out that more than half of the ADS-B messages (16 out of
28 million messages) are corrupted. The corruption of messages is also analyzed
in the later sections of this chapter.

1The exception cases are BDS 10, 20, and 30 messages. The BDS code is indicated in these messages.
However, together, they only represent a very small percentage of all messages.
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2.3. Basic decoding of ADS-B data
As mentioned earlier, the content of an ADS-B message is directly identified by its
Type Code. The primary parameters downlinked by each type are listed in Table
2.1.

Table 2.1: Basic ADS-B message types (version 0, 1, 2)

TC Content Primary parameters
1 - 4 Aircraft identification Call sign
5 - 8 Surface position Latitude

Longitude
Speed
Track angle

9 - 18 Airborne position Latitude
20 - 22 Longitude

Altitude
19 Airborne velocity East-west component

North-south component
Vertical rate

Within the same group, Type Code values also have their own indications. For
example, in the identification group, a TC of 1 to 4 indicates different aircraft
categories defined by the Mode-S standard according to [66]. In position groups,
TC defines the level of accuracy and uncertainty.

Since ADS-B was first introduced to the present, there have been different
versions of implementation: version 0, version 1, and version 2. In version 1 and
2, the accuracy and uncertainty are re-classified using two additional supplement
bits. They offer more levels of Navigation integrity category (NIC). In addition,
from ADS-B version 1 onward, three more types are introduced, as shown in Table
2.2.

Table 2.2: Additional ADS-B message types (version 1, 2)

TC Content Primary parameters
28 Emergency/priority status Status value

ACAS RA Broadcast Resolution advisories
Threat identity

29 Target state and status Target altitude
Target heading / track
Navigation accuracy category
Surveillance integrity level

31 Operational status Airborne capacity class
Surface capacity class
ADS-B version number
NIC supplement
Navigation accuracy category
Surveillance integrity level

The version number 1 or 2 can be retrieved in TC=31 messages. However, for
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version 0 transponder, no information regarding the version number is transmit-
ted. In order to identify the exact version of the ADS-B transponder, we have to
first check whether the aircraft is broadcasting any message with a TC of 28, 29
or 31. If not, then the ADS-B version is assumed to be version 0. When a TC 31
message is received, the ADS-B version (1 or 2) can be found at the 73th to 75th

bit of the message.
Knowing the Type Code, in combination with the ADS-B version, it is possible

to identify the uncertainties in broadcast aircraft states. At the same time, payload
information can be decoded according to the Technical Provisions for Mode Service
and Extended Squitter, which is published by ICAO [66, 67]. Some of the ADS-B
states, such as ICAO address and speed, are used for the Comm-B BDS inference.

2.4. Interference of the Comm-B downlink parameters
Without knowledge of the original interrogation request, most of the Comm-B
replies cannot be identified directly due to the lack of BDS information. It is also
not possible to know whether a message is corrupted because the source aircraft
ID (ICAO address) is unknown. This is because the checksum in Comm-B reply is
overlaid with the 24-bit ICAO address. In some cases, it is overlaid again with the
BDS code.

The two-digit hexadecimal BDS code can support up to 255 different types of
messages. In practice, only a small portion of these types are interrogated. Ac-
cording to the European ELS and EHS mandate, the most commonly interrogated
BDS codes are 10, 17, 20, 30, 40, 50, and 60. In Table 2.3, parameters contained
in these reply messages are listed.

Table 2.3: Common Mode-S Comm-B BDS code and content

Type BDS Content Parameters

ELS

10 Data link capability Transponder capabilities
17 GICB capability Mode-S data capabilities
20 Aircraft identification Call sign
30 ACAS resolution Resolution advisories

Threat identity

EHS

40 Vertical intention Select altitude
Barometric pressure setting

50 Track and turn Roll angle
Track angle
Ground speed
Track angle rate
True airspeed

60 Heading and speed Magnetic heading
Indicated airspeed
Mach number
Vertical velocity

In order to decode these messages, we first need to recover the ICAO address
of the source aircraft and examine whether the messages are corrupted without
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full knowledge of parity. In parallel, we also implement the process of identifying
the BDS codes, which is used for further error detection. As a result, the decoding
of a message can be accomplished.

2.4.1. Source aircraft identification and error detection
Thanks to a process called Address Parity [44], we can recover the ICAO addresses
for most of the Comm-B messages. In the last 24 bits of the message, a parity
checksum is inserted. The checksum is computed using a cyclic redundancy check
(CRC) algorithm [121], which is a common error-detecting scheme in telecommu-
nications.

The generator code used for Mode-S CRC encoding is specifically designed in
the following binary format:

G = 1111111111111010000001001 (2.1)

which is used to compute the checksum by the encoder and to validate the message
by the decoder. In the polynomial form, the generator is expressed as:

G(x) = x24 + x23 + x22 + x21 + x20 + x19

+ x18 + x17 + x16 + x15 + x14

+ x13 + x12 + x10 + x3 + 1
(2.2)

Similarly, the binary format of the first 88 bits of the message can also be
written in the polynomial format with the highest order of 87 (x87). The message
polynomial is denoted as M(x). The checksum is computed using polynomial
division between the message and generator. By combining the checksum with
parity P (x), we can compute the (possible) ICAO address:

M(x) =
87∑
i=0

aix
i, ai ∈ {0, 1}

R(x) = M(x) % G(x)
A(x) = R(x) + P (x)

(2.3)

where R(x) is the remainder (checksum) of the division M(x) by G(x). In Figure
2.4, we illustrate this ICAO address reversal process with an example message.

After the reversal process, the resulting 24 bits would be one of the following
possibilities:

• Candidate ICAO address (CA): The correct ICAO address of an aircraft.

• Modified ICAO address (MA): The ICAO address with the first 8 bits overlaid
with the BDS code.2 The parity under this condition is identified as Data

2Only a small percentage of current aircraft to date are equipped with this capability.
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Message without parity, M(x)

A0000B378DB00030A40000

Parity, P(x)

D0A9B9

CRC, M(x)/G(x) +

Checksum, R(x)

98F94F

ICAO, A(x)

4850F6

Figure 2.4: The ICAO address recovery logic

Parity.

• Impossible ICAO address (IA): An ICAO address that is not assigned. This
indicates an error in the message.

If a corruption occurs in a reply, the reversal process will generate an incorrect
ICAO address. This address can still be either CA, MA, or IA. Since we do not
know the actual aircraft that has been interrogated, it is not possible to detect the
error just using the parity. Instead, we have to identify new methods to identify
corrupted messages.

Our proposed error detection mechanism consists of three checks. The first
check is to identify impossible ICAO addresses. The unassigned blocks of addresses
are listed in Table 2.4. If the resulting ICAO belongs to one of these blocks, it is
likely that the message is corrupted. However, the possibility of Data Parity cannot
be ruled out in this case.

Table 2.4: Un-assigned ICAO address block

Starting bits Address block Geographic region
00100 200000 - 27FFFF Africa-Indian Ocean
00101 280000 - 28FFFF South America
0101 500000 - 5FFFFF Europe and North Atlantic
01100 600000 - 67FFFF Middle East
01101 680000 - 6F0000 Asia
1001 900000 - 9FFFFF North America and Pacific
111011 B00000 - BFFFFF Caribbean
1101 D00000 - DFFFFF Reserved
1111 F00000 - FFFFFF Reserved

Next, the address is cross-validated with the ICAO addresses included in all
ADS-B messages from the same time period. Since ADS-B messages can be prop-
erly error checked with the CRC process, we are confident about the obtained
addresses. After this step, the correct messages are identified. An unidentified
ICAO address indicates either corruption in a message or that the aircraft is not
equipped with ADS-B capability.
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The third error check is the ICAO-to-Squawk comparison. For a Comm-B reply
message with DF=21 (identity reply), the squawk code of the transponder can be
obtained. By comparing the squawk code and the ICAO address, we can identify
error messages, such as the ones associated with low ICAO-to-Squawk combina-
tion frequency. Since it is still possible that the message is overlaid with a BDS
code, we also use the inferred BDS code to compare the overlaid ICAO address
and squawk code.

Summarizing all previous steps, we can construct an error detection model, as
illustrated in Figure 2.5.
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Figure 2.5: EHS message error identification process

In this model, we first compute three binary scores based on the following
conditions:

1. The ICAO address is assigned.

2. The ICAO address appears in the pool of ADS-B addresses.

3. The ICAO address has the ICAO-to-Squawk frequency for more than a certain
number times per minute (six).

The resulting scores are denoted as s1, s2, and s3 respectively. Then, the in-
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ferred BDS code 3 is overlaid with the ICAO address to examine the possibility of
a Modified ICAO Address. If the MA is applied, the resulting ICAO address with
an over lapping BDS code (ICAO/OV) satisfies some of these conditions. Similarly,
three more scores are computed, denoted as s′1, s′2, and s′3 respectively. The total
correctness score of S is computed as follows:

S =
[
(s1 ∨ s′1) ∨ (s2 ∨ s′2)

]
∧ (s3 ∨ s′3) (2.4)

where ∨ is the logic OR operation and ∧ is the logic AND operation. The error
messages are identified with S = 0, while correct messages are identified with
S = 1. It is important to point out that the error model takes into consideration
the situations of 1) aircraft not being equipped with an ADS-B transponder and 2)
the Modified ICAO Address being used in a parity checksum.
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Figure 2.6: Error identification statistics, based on Comm-B replies received at TU Delft from 12:00 to
13:00 UTC, September 7, 2017. A similar level of corrupted messages can also be seen in Figure 2.10.

Figure 2.6 shows the resulting decoding statistics based on applying the error
detection model to the same one-hour dataset as before. In total, 60% of the
messages are identified as correct messages. The remaining 40% are corrupted.
We can also see that there are only a few messages that satisfy the condition s′2 = 1,
which implies that the BDS overlay is infrequently requested at the present time
by ATC in the European airspace. In addition, only aircraft with overlay capability
are able to support this feature. Such information can be found in the BDS 17
(GICB capability) messages of the aircraft.

2.4.2. BDS inference using the Heuristic-Probabilistic method
Not all aircraft have the same BDS capabilities enabled. To determine which BDS
capabilities are available for an aircraft, the SSR would first initiate a Common

3The BDS code is inferred in parallel using the methods described in the following section. This is
possible because the deterministic BDS identification can be performed independently.
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usage GCIB capability interrogation (BDS 17). There are 24 common BDS capa-
bilities that are reported in the BDS 17 message. SSR will only interrogate the
ones that are enabled for this aircraft.

To infer the BDS code request by ATC, a two-step inference process is designed.
It consists of a heuristic step and a probabilistic step. The heuristic logic is inspired
and developed based upon the method proposed by [50], which gives the first
estimation of possible BDS codes. The probabilistic identification is introduced to
identify messages with both BDS 50 and 60 codes from the previous step. Together,
the Heuristic-Probabilistic (HP) process is able to deal with all common ELS and
EHS replies.

Heuristic logic
All Comm-B payloads consist of multiple data blocks. Many of these blocks are
combined with respective status bits. A status bit must be set to zero when no
information is present in the data block. While evaluating the possibility of a
specific BDS code, if any of the data blocks violate this rule, this BDS code is
discarded.

In the structures of some Comm-B types, some bits can be reserved (or not
used). These bits are required to be zeros at all times. If any of these predefined
zero bits are set to one, the corresponding BDS code is also discarded.

The heuristic logic also checks parameter values that are decoded for different
assumed BDS codes in a parallel fashion. These values need to be within their
physical boundaries. For example, in BDS 60, the Mach number cannot be higher
than one (for commercial aircraft). If a decoded Mach number is larger than one,
BDS 60 is rejected as a BDS code. All evaluations are performed for each BDS code.
Deterministic conditions for each parameter in all seven common BDS codes are
listed in Table 2.5.

Probabilistic identification
Of all available surveillance messages, BDS 50 (track and turn report) and BDS 60
(heading and speed report) messages are most frequently interrogated. However,
they have very similar structures, as shown in Table 2.5. Due to this similarity,
some messages can be considered as both BDS 50 and 60 after the heuristic logic.
In order to differentiate these two codes, the probabilistic step is designed.

The principle is to construct a probability density function (PDF) using current
aircraft states that are observed from ADS-B data. The probabilities of BDS 50
and 60 are computed with this function. The BDS code that results in a higher
probability is considered to be the correct one.

From ADS-B, we use aircraft ground speed (vg) and track angle (χ) to construct
the x and y components of the velocity. They are treated as the means for the joint
probability density function. These two components, denoted as vgx and vgy, are
calculated as:

vgx = vg · sinχ
vgy = vg · cosχ

(2.5)
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Then, we construct a bi-variate normal probability density function considering
these values as mean values. To simplify the problem, we assume there is no
correlation between the x and y speed components, the function of the probability
(the Gaussian PDF without normalization) can be expressed as follows:

p(vax, vay) = exp
{
− 1

2

[ (vax − (vgx − vwx))2

σ2
vx

+ (vay − (vgy − vwy))2

σ2
vy

]}
(2.6)

where vax and vay are the x and y components of airspeed. vwx and vwy are wind
speed components. σ2

vx and σ2
vy are the variances. Accurate wind speed is not

required for the purpose of BDS identification. For example, it can be obtained
using weather forecast data. In case the wind information is not available or at
calm wind conditions, these terms may be set to zero. However, this assumption
may affect the accuracy of the identification.

For the variances, both are empirically set to be 20 knots in our experiments.
This choice is based on the common magnitude of accuracy in speed that is in-
cluded in ADS-B data [111]. Using Equation 2.6, the probabilities of BDS 50
and BDS 60 are compared. Finally, the corresponding BDS code to the higher
p(vax, vay) value is accepted. Figure 2.7 shows an example of the identification
based on the possible speeds decoded as BDS 50 and BDS 60.
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Figure 2.7: Example of BDS 50/60 identification

2.5. Experiment and validation
In this section, we use three different datasets to verify, validate, and analyze the
Mode-S Comm-B replies. The first two datasets are from the same hour, with
one collected by our receiver (located at the TU Delft) and the other provided by
the Air Traffic Control the Netherlands (LVNL). The last one is a global dataset
provided by the ADS-B Exchange receiver network.
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2.5.1. Experiment I: Examining the heuristic logic
This experiment focuses on examining the effectiveness of the HP process of the
BDS identification presented in this chapter. A one-hour dataset collected by our
receiver is used as a test set (from 12:00 to 13:00 UTC, September 7, 2017). The
result of the heuristic logic is shown in Figure 2.8. In total, 1.5 million Comm-
B replies are received during this one-hour period. The most common three BDS
codes are 40, 50, and 60. In each bar plot of Figure 2.8, the hatch pattern indicates
the corrupted messages.
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Figure 2.8: Heuristic BDS detection, based on Comm-B replies received from 12:00 to 13:00 UTC,
September 7, 2017, Delft, the Netherlands

In this figure, we can see that around 20% of the messages are not identified
(with unknown status). It is also noticeable that around 90% of these unidentified
messages are corrupted.

For all other messages with a BDS code identified, BDS 10, 17, and 20 com-
bined represent around 5% of the total number of messages. BDS 40 and 60
account for about 27% each and BDS 50 around 16%. Due to the similar message
structures, around 4% of the messages identify as both BDS 50 and 60 codes. Less
than 0.1% of messages are BDS 30. Since BDS 30 encodes emergency status and
ACAS resolutions, it is expected that this category is less frequently interrogated
during normal operations.

2.5.2. Experiment II: Examining the identification accuracy
To examine the accuracy of the HP process for BDS identification, we obtain a true
reference dataset of the Dutch airspace from the Air Traffic Control the Nether-
lands (LVNL). This data is collected in the same hour as the previous test dataset.
The original data is presented in ASTERIX format, from which we extract the raw
messages. As such, raw messages only contain messages that are of BDS 40, 50
and 60 (Enhanced Mode-S only). Raw messages for other BDS types are not in-
cluded in this ASTERIX dataset.
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After applying both heuristic and probabilistic steps, we compute the accuracy
at each stage. The results are shown in Table 2.6.

Table 2.6: Validation statistics of Mode-S BDS code identification using proposed HP process for a total
of 253,059 messages. Unidentifiable messages refer to the ones with multiple BDS codes.

Result Heuristic logic Probabilistic id
Correct 235,772 (93.169%) 247,192 (97.682%)
Unidentifiable 17,281 (6.829%) 5847 (2.311%)
Incorrect 6 (0.002%) 20 (0.008%)

Using only heuristic logic, we achieve a correctness rate of 93.2% for a total
of 250 thousand messages. 6.8% of the messages have been identified with more
than one BDS code. Using additional probabilistic identification, we can further
reduce the rate of uncertain messages to 2.3% and increase the success rate to
97.7%.

In each step, the number of incorrectly decoded messages is almost negligible.
We have counted that only 6 (heuristic step) and 20 (probabilistic step) out of
253,059 messages were incorrectly identified. Regarding the significance of the
probabilistic step, we found that among all 11,434 identifiable messages (with
BDS 50 and BDS 60 combination) only 14 errors occurred. Upon further investi-
gation, we notice that errors happen often when part of the flight information is
missing from the message.

2.5.3. Experiment III: Analyzing the global data
Using multiple receivers provided by the ADS-B Exchange receiver network, we
are able to examine the decoding performance of Mode-S Comm-B data across
different regions of the world. A set of data consisting of one hour (local time
10:00 AM to 11:00 AM, on 24 or 25 August of 2018) is collected at eight different
locations around the world. Using the method proposed in this chapter, we decode
the messages and show the composition of Mode-S responses for these different
regions. In Figure 2.9, the percentages of BDS codes are illustrated.

Mode-S data transmitted to ADS-B Exchange network is filtered by default.
Only messages with s2 state in Figure 2.5 are kept. These are Comm-B mes-
sages with ICAO addresses that appear in ADS-B data. In Table 2.7, the exact
percentages of BDS codes in Comm-B responses are listed. In all eight regions,
the unidentifiable messages account for between 1% to 6% of received messages.
This result is in line with the test performed using our own receiver after corrupted
messages are discarded (as shown in Figure 2.8). In most of these regions, com-
mon interrogated BDS codes are BDS40, BDS50, and BDS60, with the exception of
Dallas, USA and Tel Aviv, Israel. The diversity of interrogations is one of the most
challenging elements in the inference process. However, the proposed methods
in this chapter are able to cope with interrogation variations and produce a large
percentage of identifiable messages.
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Figure 2.9: Statistics of BDS codes in Comm-B replies at different geographic regions

2.6. Discussion
This study aims at efficiently and accurately making use of open aircraft surveil-
lance data. The focus has been on designing a path to deciphering Comm-B replies
that are part of the Mode-S enhanced surveillance and cannot be decoded directly.
The experiments and validations demonstrate that the identification process and
error detection strategy that are proposed in this chapter are highly accurate.
These refined identification methods provide the possibility to conduct aircraft
performance studies with better accuracy when using open aircraft surveillance
data.

Accurate identification of BDS 50 and 60 enables precise airspeed observations
from Comm-B data. One possible extension of this research is in the area of atmo-
spheric modeling. By combining ADS-B ground speed with Mode-S true airspeed,
wind and temperature can be computed. This idea has been proposed in earlier
research [49], where data are supplied by air traffic controllers. The methods and
tools from this chapter allow anyone to gain such ability. In the Chapter 4 of this
dissertation, different models are constructed based on wind and air temperature
derived from this open data.

Figure 2.3 and 2.6 in earlier sections show the percentage of corrupted mes-
sages found in this study. This strongly suggests a frequency congestion problem
on the 1090 MHz channel. Of all the ADS-B and Comm-B messages that we re-
ceived, more than half are corrupted. Based on the percentage of errors, severe
message corruption during daily operations is shown. In Figure 2.10, the percent-
age of corrupted ADS-B messages and the number of aircraft flying in a 24-hour
period are plotted.

During the night time, when the airspace is less saturated, the percentage
of corrupted messages decreases. However, the decrease in corrupted messages
(∼10%) is not proportional to the decrease in the number of flights (∼65%).
These corrupt messages not only present a challenge for obtaining more accurate
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Figure 2.10: Percentage of corrupted ADS-B messages and number of aircraft per hour on May 30,
2018, in Delft, the Netherlands

data but also indicate constant frequency congestion in busy airspace.
Other than third-party researchers, air traffic controllers may also benefit from

the methods proposed in this chapter. With a high level of frequency congestion
as shown in Figure 2.8, air traffic controllers tend not to over-interrogate. This
creates a dilemma where an ATC has to reduce the number and frequency of inter-
rogations, but at the same time, more information is preferable for making better
traffic control decisions. Using the proposed BDS identification process, one ATC
can intercept replies that originate from interrogations by another ATC center. As
one example, based on the one-hour reference dataset, we found that the replies
from one specific secondary radar from the air traffic control of the Netherlands
account for only around 17% of the total number of interrogation replies. The
proposed identification method can therefore significantly increase the amount of
information available to each ATC directly, even for aircraft that are outside of
their airspace.

Finally, it is worth emphasizing that Mode-S Comm-B messages are passive
replies originating from SSR interrogations. For oceanic and remote areas where
secondary surveillance radars are not present, only ADS-B data is available. In this
chapter, not all BDS codes are addressed. Instead, only the types related to ELS
and EHS are investigated. However, this is the situation for many regions around
the world, as illustrated in Figure 2.9 using the global Mode-S data.

2.7. Conclusion
In this chapter, we proposed a set of inference methods that allow third-party
observers to identify and decode Mode-S Comm-B replies. The inference was
based solely on surveillance replies without any knowledge of Mode-S interro-
gations. This chapter contributed to a missing area of knowledge on handling
interrogation-based surveillance data. It gave researchers broader access to ac-
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curate aircraft state updates that are transmitted through Enhanced Mode-S. The
implementation was based on existing low-cost commercial off-the-shelf ADS-B
receivers, with no additional hardware required. Using a reference dataset, the
proposed process revealed a correctness rate of around 97.7%, with 2.3% uniden-
tifiable and 0.008% error for Enhanced Mode-S messages.

Furthermore, the process proposed in this chapter could also be beneficial for
air traffic controllers, since it would enable them to collect data for aircraft that
are out of their controlled airspace, without the need for increasing interrogation
frequency. Finally, we have made the decoding process into an open-source pro-
gramming library, pyModeS, which includes the decoding and inferences discussed
in this chapter. We hope this will also enable other researchers to make use of this
valuable aircraft surveillance data source.
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Flight trajectory processing

The previous chapter investigated the availability of surveillance data. We have
decoded information from both ADS-B and Comm-B messages. With these large
amounts of flight data gathered daily, we can apply them to a wide range of op-
erational and aircraft modeling studies. Many of the studies in this dissertation rely
on flight data from specific flight phases. This, therefore, requires methods to detect
individual flight trajectories in the large amounts of recorded ADS-B data and divide
them into data segments representing separate flight phases. The aim of this chapter
is to derive a set of data mining methods for handling the large quantity of air traffic
surveillance data. We first introduce an unsupervised machine learning algorithm
that allows us to extract continuous flights from the scattered data points. Then, a
fuzzy logic method is proposed to segment the flight into different flight phases. At
the end of the chapter, a verification method is developed to examine the results of the
flight phase identification process.

This chapter is based on the following publications:
1) Sun, J., Ellerbroek, J. and Hoekstra, J.M., 2016, June. Large-Scale Flight Phase Identification from
ADS-B Data Using Machine Learning Methods. In 7th International Conference on Research in Air
Transportation [127].
2) Sun, J., Ellerbroek, J. and Hoekstra, J.M., 2017. Flight Extraction and Phase Identification for Large
Automatic Dependent Surveillance-Broadcast Datasets. Journal of Aerospace Information Systems,
pp.566-572 [126].
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3.1. Introduction
Automatic Dependent Surveillance-Broadcast (ADS-B) has been widely adopted in
modern commercial aircraft. Flight state information such as the position, velocity,
and vertical rate are broadcast by tens of thousands of aircraft around the world
constantly. Identified by a 24-bit transponder address assigned by the ICAO, ADS-
B data can be received and decoded with simple ground station set-ups. This large
amount of open data enables many interesting topics in ATM research.

Many studies that rely on aircraft flight data require the knowledge of a con-
tinuous flight trajectory. Numerous cases focus on a specific segment of the flight,
for example, during the climb, cruise, or descent. In this dissertation, most of
the studies fall into this category, and therefore, an efficient method for extracting
flights from ADS-B data, as well as segmenting these flights accordingly is neces-
sary.

When dealing with a large flight dataset that can contain tens of thousands
of flights, deterministic methods, such as identification of flight phases by fixed
altitude or speed indicators, are often overgeneralized. Due to the large variety
of aircraft types, exceptions to deterministic rules are common. At the same time,
large fluctuations exist in climb rate, altitude, velocity, or a combination of these.
This factor also needs to be handled properly.

In this chapter, instead of using deterministic logic to process and extract flight
data, a set of more robust and versatile identification algorithms are proposed. A
two-step method is designed and tested. Firstly, to extract individual flights from
the loosely structured ADS-B data, a clustering algorithm is introduced, which is
able to handle a large volume of data. Secondly, to segment these flights according
to the flight phase, a fuzzy logic identification step is designed. It can be used to
handle flight data generated by different aircraft types and flight procedures.

The structure of the chapter is designed as follows. Section two focus on flight
extraction using the clustering algorithm. Section three describes the flight phase
identification based on fuzzy logic. Section four uses a reference dataset and a
heuristic method to verify the clustering and identification process respectively.
Finally, discussion and conclusion are given in section five and six.

3.2. Flight extraction from large ADS-B datasets
3.2.1. Data fields
ADS-B information collected from aircraft is usually stored as loosely structured
data points, which represent the states of aircraft at different times. Regardless of
the data storage method, the data structure usually consists of the elements listed
in Table 3.1.

For this study, we use a non-relational database, MongoDB, to store the ADS-
B and flight data. It is an open-source data architecture frequently used for
document-based big data processing [53].

When extracting continuous flights from a scattered ADS-B dataset, using the
features in Table 3.1, two variables play a major role. These are the aircraft identi-
fication (ICAO address) and the timestamp. This is because a single flight can only
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Table 3.1: Features of ADS-B flight data

Field Type Value range Unit
ICAO address string - -

Callsign string - -
Timestamp numeric - s

Latitude numeric [-180, 180] deg
Longitude numeric [-90, 90] deg

Altitude numeric [0, 40000] ft
Speed numeric [0, 500] kts

Heading numeric [0, 360] deg

be carried out by a single aircraft. Each aircraft often carries out multiple flights
during the cycle of a dataset, which is 24 hours in our study.

3.2.2. Simple flight extraction
Based on these characteristics, a straightforward ad hoc approach is developed.
The method consists of following steps:

1. Filter and group data per aircraft by the unique ICAO address

2. Sort data of each group by timestamp

3. Examine time gaps between data points

4. Identify a general time gap which split flights carried by the same aircraft

5. Extract flights in each aircraft group

This method is simple to implement. However, since the data needs to be
sorted and processed sequentially, the efficiency can decrease when dealing with
very large datasets using this ad hoc method. In addition to this simple approach,
a machine learning based clustering approach is designed.

3.2.3. Machine learning flight extraction
Using unsupervised machine learning, also known as clustering, on a large ADS-B
dataset can have two significant benefits. Firstly, it can increase efficiency when
dealing with many aircraft simultaneously. Secondly, it can handle outliers caused
by irregularities in the flight data.

Pre-processing
Pre-processing steps are often required before applying any machine learning al-
gorithm. First of all, any non-numerical data needs to be converted into numerical
values. In addition, different features need to be scaled to a reasonable range and
missing values need to be computed to complete the dataset.

Most clustering algorithms compute the Euclidean distances [94] between data
points. A large range of values in the input features can cause the poor clus-
tering performance. A simple method to mitigate this is to scale each feature
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X = {x0, x1, · · · , xn} into a common range [0, 1], where all values can be con-
verted to X ′ = {x′0, x′1, · · · , x′n} as:

x′i = xi −min(X)
max(X)−min(X) (3.1)

A numerical label encoder is used for text features such as ICAO addresses.
However, converting these text features into numerical features implies a finite
distance between any two different labels, which can affect clustering. In this
study, to distinguish data from different aircraft, the numerical representation of
the ICAO address is scaled to a different range [0, N ] where N is greater than 1.

Clustering
Unsupervised clustering algorithms group data into subsets (or clusters) based on
the feature differences among data points. Many well-known algorithms, such as
K-Means, DBSCAN, BIRCH, and Mean-Shift, have been developed in the computer
science domain. Each of these algorithms has its own advantages for solving data
particular feature sizes and geometries.

In this study, DBSCAN (density-based spatial clustering of applications with
noise) [36] was selected due to its ability to handle an unknown number of clus-
ters. It is also found to be efficient in handling outliers in the dataset. DBSCAN
is a density-based clustering method, which separates data into areas of high and
low density.

Two fundamental parameters are used in DBSCAN, which are EPS and MinPTS.
The algorithm makes distinctions among three types of data points. These types
are core points, reachable points, and outliers. EPS defines the maximum distance
between two data samples for them to be considered in the same neighborhood.
MinPTS is the number of data samples in the neighborhood of a core point. Clus-
ters are formed as follows:

1. If more than MinPTS points are within a distance of EPS to p, then p is
considered as a core point. These points are all defined as directly density-
reachable from p.

2. A point q is reachable from p if a directly density-reachable path d1, d2, · · · , dn
exists, where d1 and dn are p and q.

3. From all above points, a cluster is formed.

Although it is not explicitly expressed in the original DBSCAN study [36], data
points that are not density-reachable can be considered as outliers in our case.
The ability to identify outliers offers a considerable advantage in processing ADS-
B data, insomuch as it is preferable to exclude trajectories with low data quality
systematically. This a key advantage over other types of clustering methods.

Figure 3.1 shows an example of the results of the DBSCAN method imple-
mented on a small test dataset. From the first to last plot, the increasing EPS leads
to increasing average cluster size. The increasing MinPTS eliminates clusters with
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a few samples. The clustering process can be optimized by tuning the combina-
tion of these two variables. Performance benchmarking and parameter tuning is
discussed in section 3.4.1.

EPS(100), MinPts(10) EPS(500), MinPts(10) EPS(500), MinPts(100)

Figure 3.1: Clustering with DBSCAN. In each plot, the altitude profile of 9 random trajectories from all
resulting trajectories are shown. They represent how the DBSCAN algorithm considers a set of data as
a continuous trajectory with different parameter settings.

3.3. Flight phase identification
The outcome of the clustering process provides a set of continuous flights, repre-
senting either full or partial trajectories depending on the coverage of the ADS-B
receiver. To segment a flight into different phases, previous clustering methods
may still be used to create sub-clusters based on the characteristics of time-series
data [41]. However, two problems arise when using the clustering method to
group data by flight phases.

1) Each data point is relatively close to its neighbors in terms of the Euclidean
distance that computed from timestamps, altitudes, velocities, and positions. A
classic clustering method cannot produce sub-clusters with a sufficient level of
consistency.

2) Due to differences between aircraft types and their divergent flight proce-
dures, flight behavior may vary. This can result in, for example, aircraft climbing at
different rates, flying at different cruise altitudes, and traveling at different speeds,
even within the same flight phase.

In this study, these two problems are solved by a fuzzy logic identification
method. Fuzzy logic, also known as fuzzy sets theory [146], has been introduced
to express real-world objects or concepts where no precise definition of criteria
exists. It uses membership functions to define the degree of truth for different fea-
tures. Logic operators AND, OR, and NOT are defined as the minimum, maximum,
and complement operators. Different output states are activated by user-defined
logic.

3.3.1. Flight phase identification process
The entire segmentation process is presented in Figure 3.2. Continuous flight data
is used as the input to the process. Then, it is sliced according to a small time
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window (one minute in this study). The flight phase of each time window is
identified by the fuzzy logic. Finally, the output that consists of a series of flight
phase labels is produced sequentially or in parallel.

Input, trajectory data Slicing

Process next
time window

Completed?

Output, flight phase labels

Mean h,
V , and VS

Membership
degree of truth

Aggregate valuesDefuzzification

Flight phase state

(fuzzy logic)

no

yes

Figure 3.2: Flight segmentation with fuzzy logic

In this process, we can see that the trajectory data is first sliced into multiple
time windows. The mean values of the altitude, speed, and vertical rate are used
for the data points that belong to the same time window. There are two advan-
tages of this simple slicing strategy. Firstly, it reduces the fluctuations in data be
averaging. Secondly, it reduces the number of iterations for the entire trajectory
and improves the speed of computation.

3.3.2. Membership functions
In this study, three inputs are used (i.e., altitude, speed, and vertical rate) to
determine the flight phases. The membership functions for these input parameters
and output flight phase is illustrated in Figure 3.3

Most of the membership functions are defined as Gaussian functions (denoted
as G), where the mean µ and standard deviation σ reflect the reasonable value
and range of uncertainty:

G(x;µ, σ) = exp
(
−(x− µ)2

2σ2

)
(3.2)

Other membership functions used are Z-shaped membership functions (denoted
as Z) and S-shaped membership functions (denoted as S), and are defined as
follows:
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Figure 3.3: Fuzzy logic membership functions

Z(x; a, b) =



1, x ≤ a

1− 2
(
x−a
b−a

)2
, a ≤ x ≤ a+b

2

2
(
x−b
b−a

)2
, a+b

2 ≤ x ≤ b
0, x ≥ b

(3.3)

S(x; a, b) =
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2
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)2
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2
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(
x−b
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)2
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2 ≤ x ≤ b
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(3.4)

Here, a and b (or b and a) are the high and low extremes of the sloped part of
the function curve. Each membership function from Figure 3.3 is constructed with
appropriate parameters as follows:
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Hgnd(x) = Z(x, 0, 200) (3.5a)
Hlo(x) = G(x, 10000, 10000) (3.5b)
Hhi(x) = G(x, 35000, 20000) (3.5c)
VS0(x) = G(x, 0, 100) (3.5d)
VS+(x) = S(x, 10, 1000) (3.5e)
VS−(x) = Z(x,−1000,−10) (3.5f)
Vlo(x) = G(x, 0, 50) (3.5g)

Vmid(x) = G(x, 300, 100) (3.5h)
Vhi(x) = G(x, 600, 100) (3.5i)

Pgnd(x) = G(x, 1, 0.2) (3.5j)
Pclb(x) = G(x, 2, 0.2) (3.5k)
Pcru(x) = G(x, 3, 0.2) (3.5l)
Pdes(x) = G(x, 4, 0.2) (3.5m)
Plvl(x) = G(x, 5, 0.2) (3.5n)

where Hgnd, Hlo, and Hhi represent the membership functions for ground, low
altitude, and high altitude. VS0, VS+, and VS− represent the membership func-
tions for zero, positive, and negative vertical rates. Vlo, Vmid, and Vhi represent
the membership functions for low, medium, and high speeds. Finally, Pgnd, Pclb,
Pcru, Pdes, and Plvl represent the flight phases of ground, climb, cruise, descent,
and level flight.

3.3.3. Identification logic
With the membership functions for altitude, speed, and vertical rate defined, the
following relationships can be used to map the flight phases:

Hgnd and Vlo and VS0 ⇒ Ground (3.6a)
Hlo and Vmid and VS+ ⇒ Climb (3.6b)
Hhi and Vhi and VS0 ⇒ Cruise (3.6c)

Hlo and Vmid and VS− ⇒ Descent (3.6d)
Hlo and Vmid and VS0 ⇒ Level flight (3.6e)

Fuzzy logic takes such relationships between inputs and output to identify the
five different flight phases (ground, climb, cruise, descent, and level flight during
climb and descent), for a given data point, denoted as (hi, vi, vsi), and all possible
discrete flight phase states P (0 < Pi < 6), as shown in the last plot of Figure
3.3. Each fuzzy value (the numerical representation of phase) can be calculated



3.3. Flight phase identification

3

43

as follows:

Sgnd(P ) = min
{

min
[
Hgnd(hi), Vlo(vi),VS0(vsi)

]
, Pgnd(P )

}
(3.7a)

Sclb(P ) = min
{

min
[
Hlo(hi), Vmid(vi),VS+(vsi)

]
, Pclb(P )

}
(3.7b)

Scru(P ) = min
{

min
[
Hhi(hi), Vhi(vi),VS0(vsi)

]
, Pcru(P )

}
(3.7c)

Sdes(P ) = min
{

min
[
Hlo(hi), Vmid(vi),VS−(vsi)

]
, Pdes(P )

}
(3.7d)

Slvl(P ) = min
{

min
[
Hlo(hi), Vmid(vi),VS0(vsi)

]
, Pgnd(P )

}
(3.7e)

S(P ) = max
[
Sgnd(P ), Sclb(P ), Scru(P ), Sdes(P ), Slvl(P )

]
(3.7f)

where S(P ) is the combined fuzzy value computed according to the membership
logic.

The last step is known as defuzzification, where the most likely flight phase
state P̂ can be found at:

P̂ = round
[
arg max

P
S(P )

]
(3.8)

where P̂ represents the final output where the highest combined fuzzy value oc-
curs. Finally, the numerical flight phase representation can be converted to human
readable flight phase text.

To visualize the outcome, an example flight trajectory is applied with this flight
phase identification process. By inspecting the results shown in Figure 3.4, we can
confirm the correctness of the phase identification.
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Figure 3.4: Example of the fuzzy logic flight phase identification
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3.4. Verification of the algorithms
3.4.1. Benchmarking of the clustering methods
The quality of a clustering outcome not only depends on choosing the right ma-
chine learning method but also on setting the proper parameters. To evaluate the
algorithm thoroughly, a grid of parameters is used to benchmark the outcome of
DBSCAN clustering algorithms. A test dataset is constructed using an aggregated
dataset that consists of 518 flights extracted from FlightRadar24. By searching the
parameter grid, it is possible to locate the best pair of EPS and MinPTS of DBSCAN
that produces the corresponding result.

Figure 3.5 shows the benchmark results. The two axes of the figure represent
the parameters that are to be tuned. The circular areas represent the number of
clusters found by using different parameter pairs.
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Figure 3.5: DBSCAN benchmark. The best parameter EPS/minPts pair (500/40) is identified after
comparing the resulting number of flights with the ground truth.

In this figure, the parameter pair yielding the best performance can be eas-
ily identified. By comparing the outcomes with this small ground truth dataset,
identified parameters can be applied on other large datasets.

3.4.2. Examination of flight phases
To validate the quality of the flight-phase identification process, a heuristic method
is processed. Two proposed indicators are:

1) The number of phase transitions (NTrans): This indicator is calculated by
comparing the phase of two adjacent data points and summing the number of
differences. Statistics of such a parameter on a large number of trajectories are
used as a first evaluation.

2) The number of invalid transitions (ETrans): A transition can only occur
between certain phase states. The state diagram in Figure 3.6 shows the possible
transitions. Transitions that are not connected by arrows are considered as invalid
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transitions. GND, CL, DE, CR, and LVL represent the flight phase of ground, climb,
descent, cruise, and level flight respectively.

GND

CL

DE

CR

LVL

Figure 3.6: Flight phase state diagram

A second test dataset of 500 complete end-to-end flights is drawn from the
database. NTrans and ETrans are calculated for all segmentation labels, shown in
Figure 3.7. The majority of flights contain less than 10 transitions.
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Figure 3.7: Evaluation of flight phase identification for 500 flights. Normalized density is shown in
each plot. The values indicate the number of phase transitions of each flight in the dataset.

By analyzing the results, we find that most of the flights have zero invalid
phase transitions, accounting for more than 95% of all flights. The total number
of ETrans is as low as 0.007%, which represents around 40 out of nearly 600,000
data points.
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3.5. Discussion
3.5.1. Data storage
An operational system relies on a reliable data storage infrastructure. The best
choice to store flight trajectories is up for debate. Options range from the simple
comma separated plain text file to distributed data system (for example, Apache
Hadoop [120]) with integrated data mining and machine learning plug-ins. The
final choice, in the end, depends on the scope of the study or application, as well
as the amount of data processing tasks.

In this dissertation, the plain text files are used to store raw and decoded ADS-
B data, while MongoDB is used to store the trajectories. This choice is a tradeoff
between portability and computational efficiency.

3.5.2. Tuning of clustering algorithms
Unsupervised machine learning algorithms like clustering methods require no train-
ing. However, their performance can vary not only depending on the actual clus-
tering method but also depending on their respective tuning parameters.

In DBSCAN, the EPS parameter indicates the maximum distance between two
samples for them to be considered in the same neighborhood. A larger EPS, in
general, produces fewer clusters. MinPTS defines the number of samples in the
neighborhood of a data point to be considered as the core point, making it a good
parameter to eliminate the noise in a dataset.

Very often, empirical knowledge is used to determine values for these param-
eters. Applying a parameter grid search on a reference dataset can be a good
approach to find out the best parameter values.

3.5.3. Flight phase identification limitations
One limitation of the segmentation process is that the system cannot currently
separate flight data into further detailed flight phases, such as taxiing, takeoff,
landing, initial climb, and final approach. This is because of the short time du-
ration for these flight phases. In the rest of the dissertation, more deterministic
approaches are applied to further extract data from these segments.

The fuzzy logic method that is introduced in this chapter relies on a small time
window of data to average out the noise. In situations with low data frequency or
higher noise levels, the performance may decrease.

3.6. Conclusion
In this chapter, we presented a two-step machine learning approach for processing
ADS-B flight data. A clustering method and a fuzzy logic method were proposed
to extract flights and segment them in individual flight phases respectively. The
proposed methods were robust in handling different aircraft types and flight pat-
terns. We verified this two-step approach using a reference dataset and a heuristic
method to ensure a reasonable and expected result.

It is worth noting that takeoff and landing were both identified as the ground
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phase in this chapter. However, considering the change in speed, one could easily
further identify the takeoff and landing phase.

One issue that could influence the performance of the segmentation is noise in
the measurement data. Features such as speed and vertical speed can show large
fluctuations. A median filtering [72], Savitzky–Golay filter [115], or piece-wise
polynomial splines could be used to smooth the data before applying the flight
phase identification.

To reduce the fluctuations of variables and to shorten the computation time,
we introduced the trajectory slicing with a short fixed time window. It was found
to be an effective technique to improve the efficiency and accuracy of the fuzzy
logic identification process.

Based on the results, we can conclude that the two-step machine learning ap-
proach proposed in this chapter is able to conveniently handle large amounts of
ADS-B flight data. In addition to the method depicted in this chapter, we also pub-
lished an open-source toolkit 1 for the convenience of those undertaking future
studies.

1Avaiable at: https://github.com/junzis/flight-data-processor
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4
Meteorological model

Wind and temperature data are important parameters in aircraft performance stud-
ies. The lack of accurate measurements of these parameters forces researchers to rely
on numerical weather prediction models, which are often filtered for a larger area
and thus offer decreased local accuracy. Aircraft, however, also transmit information
related to weather conditions, in response to interrogation by air traffic controller
surveillance radars. Although not intended for this purpose, aircraft surveillance data
contains information that can be used for weather models. This chapter presents a
method to reconstruct a weather field from surveillance data. Throughout the chapter,
we answer two main research questions: how to accurately infer wind and temper-
ature from aircraft surveillance data, and how to reconstruct a real-time weather
grid efficiently. We consider aircraft as moving sensors that measure wind and tem-
perature conditions indirectly at different locations and flight levels. To address the
first question, aircraft barometric altitude, ground velocity, and airspeed are decoded
from downlinked surveillance data. Then, temperature and wind observations are
computed based on aeronautical speed conversion equations. To address the second
question, we propose a novel Meteo-Particle (MP) model for constructing the wind
and temperature fields.

This chapter is based on the following publications:
1) Sun, J., Vû, H., Ellerbroek, J. and Hoekstra, J.M., 2017. Ground-based Wind Field Construction
from Mode-S and ADS-B Data with a Novel Gas Particle Model. Proceedings of the Seventh SESAR
Innovation Days, 28, p.30th [132].
2) Sun, J., Vû, H., Ellerbroek, J. and Hoekstra, J.M., 2018. Weather field reconstruction using aircraft
surveillance data and a novel meteo-particle model. PLoS One, 13(10), p.e0205029 [134].
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4.1. Introduction
Using aircraft as weather sensors is a recent development in air traffic manage-
ment and meteorological research. Traditionally, aircraft obtain weather updates
from Air Traffic Services, which they use to optimize their trajectory and speed, to
best adapt to wind conditions, and to avoid areas of extreme conditions. These me-
teorological updates come mostly from ground-based observations, such as radar
surveillance, weather observation stations, or forecast systems [113] [74]. In ad-
dition to this, local meteorological conditions are also computed by the aircraft,
using observations from onboard air data sensors. Existing technologies such as
Aircraft Meteorological Data Relay (AMDAR) [96] and Meteorological Routine
Air Report (MRAR) allow aircraft to downlink these meteorological data either
through the Aircraft Communications Addressing and Reporting System (ACARS)
or using a technology called Selective Interrogation (Mode-S).

Both AMDAR and MRAR are unencrypted broadcast data, which means that
anyone can set up receivers to intercept these data. However, as part of ACARS,
the legality of intercepting AMDAR is questionable in certain countries. As for
MRAR, the number of aircraft that broadcast this information is limited, since most
aircraft choose not to enable the MRAR capability. Furthermore, this information
is not always interrogated by surveillance radars.

In addition to the explicitly transmitted meteorological data, aircraft state in-
formation can also be used to infer local meteorological conditions. The state
information is traditionally acquired using the primary surveillance radar for air-
craft position, complemented by the secondary radar, which interrogates aircraft
to obtain onboard data. Several studies have proposed to use such flight data to
estimate wind conditions at the location of an aircraft. We can categorize these
studies into three categories:

1) Estimation of wind from ground-based trajectory observations: This
concept assumes a quasi-constant wind velocity and aircraft airspeed during turn-
ing maneuvers. Under these assumptions, the wind velocity vector can be esti-
mated dynamically using observations of aircraft ground speed in combination
with Bayesian filtering. A method using radar track data, based on this concept,
was first proposed in 1989 [58]. Later on, variations and extensions of the method
were implemented [29] [31] [30]. Recently, the use of ADS-B data for weather
determination is being explored [81] [71].

2) Estimation of aircraft local weather conditions from interrogated air-
craft data: To provide more aircraft state information to air traffic controllers,
Mode-S secondary radar surveillance was developed as a complementary source
of information to radar. Mode-S is designed to interrogate specific aircraft states
individually, such as airspeed, intentions, and turn performance. A series of studies
conducted by the Dutch Meteorological Institute presented wind data constructed
from Mode-S and MRAR [49] [48]. Other research combined MRAR data and
Kalman filtering to construct weather conditions [61]. In addition to the direct
wind information in MRAR (which is rarely requested), the airspeed of aircraft
is downlinked upon interrogation using Mode-S. This information can be used to
compute wind as the difference between aircraft airspeed and ground speed [50].
Temperature, on the other hand, can be derived from ADS-B data alone, based
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on the difference between Global Navigation Satellite System (GNSS) height and
barometric altitude, which are both broadcasted with ADS-B [122].

3) Estimation of wind field based on multiple wind measurements: While
most of the above studies focused on deriving the local meteorological conditions
of an aircraft, other studies tried to extend such methods to wind field or multi-
ple aircraft scenarios. For example, a Hidden Markov model was used to update
a wind grid, based on measurements from multiple aircraft by [58]. [31] and
[81] used non-linear Kalman filters on radar and ADS-B data respectively. The
least-squares method was also employed to construct wind fields from multiple
aircraft measurements by [62]. Finally, a concept using machine learning based
on Gaussian Process was also proposed in [75].

The methods described above reveal the potential for using aircraft surveil-
lance data, but they are not without limitations. For example, some studies con-
sidered only the wind, while other studies were based on data from air traffic con-
trollers. Rarely has the potential of large quantities of streaming aircraft surveil-
lance data been exploited to its full potential. Moreover, it is hard to identify a
method that is fast to compute and easily reproducible.

In this chapter, we focus on two main research questions: 1) how to accurately
infer both wind and temperature measurements from Mode-S and ADS-B data; 2)
how to reconstruct the real-time weather grid efficiently. In addition to answering
these two main questions, we also construct an open-source model that can be
re-used for future research.

Weather data assimilation is a well-established area of research. Existing meth-
ods include Kalman filtering [59] and 3D/4D variational assimilation [7] [110].
Unlike traditional weather observations such as those from ground stations and
weather balloons, there is an abundant amount of observation data being gener-
ated from flights. In our proposed model, temperature and wind are first com-
puted based on the ADS-B and Mode-S downlink messages. Within the 400 kilo-
meters radius of a typical ground receiver setup, it is common to obtain more than
50 weather observations per second with normal operational air traffic density.
The characteristics of weather observations from aircraft are:

1. Aircraft are moving objects. The measurements derived from air traffic data
vary both in time and position.

2. Aircraft often fly along predefined routes. As such, measurements are con-
centrated along a limited number of flight paths. This creates a highly un-
even distribution of measurements in space.

3. The interval between successive measurements is small, which can be in the
order of a single second.

4. Different sources, such as measurement error (aircraft), transmission error
(data link), and identification error (decoder), cause errors in individual
wind calculations.

Considering these characteristics of the data source, in this chapter, we propose
a new mode: the Meteo-Particle (MP) model, which is able to construct accurate
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local wind and temperature fields. The model is aimed at providing estimation
within aviation airspace with a confidence indicator using only aircraft surveil-
lance data. The fundamental idea of the model is to use a stochastic process to
extend weather information (modeled as particles) from high-density flight paths
to areas without aircraft observations. The system works on a short timescale,
which can be from several minutes to an hour. It is constructed and maintained
with a probabilistic nature incorporating both historical and recent weather infor-
mation. The model is first validated with weather data from numerical forecast
models. The variance and stability of the MP model are tested, and the error
tolerance is also examined.

Before introducing the details of the MP model, two existing concepts using
similar terminology need to be distinguished. These concepts are particle filtering
[97] and Lagrangian transportation modeling [82]. The particle filter, also called
Sequential Monte Carlo, is a system state estimator, and particles are numeri-
cal approximations of probability density functions of the states. The Lagrangian
transportation model is commonly used to simulate atmospheric chemistry, where
the particles’ propagation follows atmospheric dynamics, such as fluid and heat.
In the proposed MP model, the particles can be considered as the information
medium, which propagates the wind and temperature measurements to surround-
ing areas. The propagation of MP particles is a stochastic random walk process.

The remainder of the chapter is structured as follows. Section two describes
the process of obtaining wind observations. Section three focuses on the Meteo-
Particle model with examples. Section four discusses the ability to make short-
term predictions based on the model. Section five and six detail experiments
and validations and provides an analysis of the MP model. The discussion and
conclusions are presented in sections seven and eight.

4.2. Meteorological observations from Mode-S data
The Automatic Dependent Surveillance-Broadcast (ADS-B) is an aircraft surveil-
lance technology that enables aircraft to automatically broadcast flight states such
as location, altitude, and ground speed. In contrast to conventional surveillance
technologies, ADS-B enables information exchange without the need for interroga-
tion from air traffic controllers. Information is broadcast approximately every half
of a second, providing a fast update rate of the aircraft states. A downside from
the perspective of weather estimation, however, is that within ADS-B messages,
only ground speed is transmitted. For the computation of wind, we also need to
obtain the airspeed of the aircraft. Here, ground speed refers to the relative speed
between the aircraft and the earth, while the airspeed refers to the relative speed
between the aircraft and the air. Without wind these two speeds are equal. When
the wind is present, it can be calculated as the difference between ground speed
and airspeed.

The airspeed can be acquired from the Comm-B response messages that are
generated by selective interrogations (Mode-S) from the secondary surveillance
radar. However, unlike ADS-B, Mode-S Comm-B replies do not contain any in-
formation on their message types. This is because only the interrogating radar
knows the target aircraft and what to expect in the downlinked messages. This
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lack of transparency in the Mode-S design poses the biggest challenge in making
use of this type of open data. In Chapter 2, methods were developed to extract
information from Comm-B messages.

4.2.1. Accurate models of temperature and wind speed
With ADS-B messages and Mode-S Comm-B replies, one can derive multiple fea-
tures of any aircraft state. This information can be used to compute the meteoro-
logical conditions (temperature and wind) indirectly but accurately. The necessary
aircraft states are:

1. Aircraft barometric altitude (Hp): broadcast through ADS-B (Type code: 9
to 18), high update rate, high certainty.

2. Aircraft ground speed (Vgs): broadcast through ADS-B (Type code: 19),
high update rate, high certainty.

3. Aircraft true airspeed (Vtas): transmitted in Mode-S Comm-B BDS 50 mes-
sage, low update rate, lower certainty than Vgs.

4. Aircraft indicated airspeed (Vias): transmitted in Mode-S Comm-B BDS 60
message, medium update rate, lower certainty than Vgs.

5. Aircraft Mach number (M): transmitted in Mode-S Comm-B BDS 60 mes-
sage, medium update rate, lower certainty than Vgs.

Denoting the p, ρ, T , and Vw as the atmospheric pressure, air density, air tem-
perature, and wind speed, the inference procedure is shown in the flow diagram
of Figure 4.1.

Hp p Vtas,50

 / Vias Ma

τ Vtas

Vgs

VW

ρ

Figure 4.1: Relationships among different aircraft performance parameters, wind, and temperature

The light gray blocks represent the observable aircraft states, and the white
blocks are intermediate atmospheric or aircraft states. Since the update rate of
true airspeed from BDS 50 messages is low, true airspeed converted from indicated
airspeed in BDS 60 messages is also used. However, such a conversion requires
knowledge of the air temperature, which can be computed using true airspeed
from BDS 50 messages in combination with the air pressure. The air pressure can
be derived using the barometric altitude from ADS-B using the following equation:
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p =


pb

[
τb + λ(h− hb)

τb

]−g
λR

λ , 0

pb exp
[
− g

Rτb
(h− hb)

]
λ = 0

(4.1)

where h is the pressure altitude of the aircraft. λ is the lapse rate representing
the ISA temperature gradient (-6.5 K/km for troposphere). hb is the base altitude,
which is 0 km or 11 km for troposphere and stratosphere respectively. pb is the
base pressure, which is 101,325 Pa or 22,632 Pa for troposphere and stratosphere
respectively. Tb is the base temperature, which is 288.15 K or 216.65 K for tropo-
sphere and stratosphere respectively.

The temperature can then be computed based on the speed conversion models
among equivalent airspeed 1, Mach number and true airspeed:

T =


V 2

tas,50 · p
V 2

ias · ρ0 ·R
M < 0.3

V 2
tas,50 · T0

M2 · a2
0

M > 0.3
(4.2)

where Vtas,50 is the true airspeed from the BDS 50 message. Note that the indi-
cated airspeed from BDS50 is used for low-speed flights, while the Mach number
is used for high-speed flights. Once the temperature has been derived, the true
airspeed can be computed similarly:

ρ = p

R T

Vtas = Vias

√
ρ0

ρ
M < 0.3

Vtas = Ma0

√
T

T0
M > 0.3

(4.3)

In summary, the above process first combines the data from BDS 50 (less fre-
quent) and BDS 60 (more frequent) to derive the temperature of the air outside
aircraft, which is a relatively constant value for a for the same flight level with a
short range. Knowing the temperature and barometric altitude, we can compute
more true airspeed samples using the more frequent BDS 60 messages.

After the true airspeed is obtained, together with the heading, ground speed,
and track angle, the wind vector is derived. Denote χg, χa, and χw are the track
angle, aircraft heading, and wind direction with respect to the true north. The
ground speed vector is then computed as:

1Mach number 0.3 is chosen considering the comprehensibility of the air. This is the condition where
it is safer to assume indicated airspeed is equal to equivalent airspeed.
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−→
V w = −→V gs −

−→
V tas (4.4)

where the wind vector is the subtraction of true airspeed from ground speed.
Figure 4.2 shows the relationship between true airspeed, ground speed, and wind.

χw

χa
χg

Vgs

Vw

Vtas

Figure 4.2: Relationship between true airspeed, ground speed, and wind vector

4.3. The Meteo-Particle model
In the proposed Meteo-Particle (MP) model, the particles are modeled to represent
the states of wind and temperature measurement. Particles are first generated
when a new observation of wind and temperature is obtained. They propagate
and decay over time according to separate models. Wind fields are constructed
by combining the weighted states of all neighboring particles. The propagation
of particles allows for wind to be computed at areas with low measurement den-
sity. The following section will be dedicated to a more detailed explanation of
the model, methods, and exponential functions used to compute wind field and
confidences levels. In Figure 4.3, the general steps are illustrated.

 
 
 
 

Meteo-Particles

Wind and
temperature
observation

Probabilistic
rejection

Meteo-Particle
generation

Propagation
model

Construction
model

Confidence
model

Figure 4.3: Steps and components of the MP model

4.3.1. Assumptions
The proposed Meteo-Particle model is developed based on the following assump-
tions:
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1. The true states of wind and temperature are generally stable in a local area (on
the level of a few kilometers). This assumption allows us to estimated weather
conditions based on observations made in adjacent areas, with the exception
of extreme phenomenon such as turbulence, which cannot be represented
accurately in the model.

2. The true states of wind and temperature of a given location are stable at the
level of minutes. This assumption ensures that the dynamics of field states do
not change too rapidly. This is usually true because aircraft avoid extreme
atmospheric conditions as much as possible. Nevertheless, the MP model is
able to track rapid local changes by reducing the aging parameter, but at the
cost of stability for the larger airspace.

3. The burst error rate of observations from a single aircraft is reasonably not too
high. The burst error is a continuous sequence of wrong measurements from
incorrect aircraft states. This error is hard to eliminate due to the uncer-
tainty in Mode-S Comm-B reply decoding. However, with the probabilistic
measurement rejection of the MP model, we can reduce the effect of burst
errors.

4.3.2. Measurements and probabilistic rejection
Measurements are done at aircraft position (x, y, z), which is converted from the
longitude, latitude, and altitude reported by the aircraft. Wind measurement is a
vector represented by a west-east component (u) and a south-north component (v)
at a specific location. The temperature is a scalar denoted as τ . The measurement
array consists of all wind measurements from different aircraft at the time interval
of one second in the observed airspace. It is denoted as [x,y, z,u,v, τ ].

When wind and temperature samples are derived using ADS-B and Mode-S
Comm-B messages, there is a chance that the wind measurements are incorrect.
This often occurs due to incorrect decoding. Although the chance of incorrect data
is low, such wrong information can cause sudden variations in instantaneous wind
fields. To solve this problem, a probabilistic rejection mechanism is applied.

For each new measurement x : (u, v, τ), a probability function is constructed
based on the current field. First, the mean and variance of wind and temperature
states from existing particles from the same vertical level (+/- 500 meters) are
computed. These are denoted as (µu, σ2

u) for the u component of the wind, (µv, σ2
v)

for the v component of the wind, and (µτ , σ2
τ ) for the temperature. The probability

function is expressed as:

p = exp
[
−1

2(x− µ)T (k1Σ)−1(x− µ)
]

µ = (µu, µv, µτ )

Σ =

σ2
u, 0, 0

0, σ2
v , 0

0, 0, σ2
τ


(4.5)
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Hence, any new sample will be accepted with a probability of p. This extra step
ensures a low probability of acceptance for extreme wind samples. On the other
hand, due to its probabilistic nature, it will also decrease the number of correct
samples that are accepted. As a trade-off, one can increase the parameter k1 for a
higher tolerance. We propose to choose k1 as a value between 2 to 4.

4.3.3. Particles
A particle is defined as a point object that carries the state of the wind and temper-
ature. Particle states consist of position (xp, yp, zp), origin (x0, y0, z0), horizontal
wind components (up, vp), temperature, τp, and age (α).

Particles are generated when new wind measurements are observed (com-
puted). For each new measurement [x, y, z, u, v, τ ], N number of particles are
created at the location of the aircraft:xp,iyp,i

zp,i

 =

xy
z

 , i = 1, 2, · · · , N (4.6)

The age of all particles is set to zero during the initialization. The carried states
of the particles are assigned a small variance that represents the uncertainty of the
wind measurement and temperature:up,ivp,i

τp,i

 ∼ N
uv

τ

 ,
σ2

u0 0 0
0 σ2

v0 0
0 0 σ2

τ0

 i = 1, 2, · · · , N (4.7)

As an example, Figure 4.4 displays the wind vectors in solid arrows, as well
as the generated particles in thin vectors (after the first propagation step). The
plot shows the 2D projection of the X-Y plane, and only a small percentage of
all particles are illustrated. The dashed circles indicate the variance of particle
positions in relation to the measurement location.

4.3.4. Particle propagation
Particle motion follows a Gaussian random walk model. At each update step, the
particle age (α) increases. The following equation describes the motion model of
a particle:

xp,i,t+1
yp,i,t+1
zp,i,t+1

 =

xp,i,typ,i,t
zp,i,t

+ ∆Pt dt i = 1, 2, · · · , N

∆Pt ∼ N

k2up
k2vp

0

 ,
 σ2

px σpxy 0
σpxy σ2

py 0
0 0 σ2

pz

 (4.8)

The step factor ∆P is different in horizontal and vertical direction. Horizon-
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X

Y

Figure 4.4: Wind measurements and particle initialization

tally, the terms k2up and k2vp allow the random walk to be executed with a small
bias along the direction of the wind, with a scaling factor k2. Choosing a larger
k2 allows the propagation to become more biased toward the wind direction. Ver-
tically, the propagation follows a zero-mean Gaussian walk. The particle motion
model is illustrated in Figure 4.5, where two projections (X-Y and X-Z) of a pos-
sible particle update are shown. The dot represents the position (xp,t, yp,t, yp,t),
while the probability of the next position (xp,t+1, yp,t+1, yp,t+1) is shown by the
contour plot. The vector equals to E[∆Pt].

X

Y

(kwpx, kwpy)
X

Z

(kwpx, 0)

Figure 4.5: Random update of a particle position in a simulated scenario

The updates of particles follow the Gaussian random walk as shown in Fig-
ure 4.6, where several possible 100-step random walks of a particle (with origin
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[0, 0, 0]) are illustrated. Different trajectories are distinguished by different shades
of gray.
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Figure 4.6: Particle random walks in 3D

4.3.5. Probabilistic re-sampling
At the end of each update, the particles are re-sampled. First, all particles that
have propagated outside of the horizontal and vertical boundaries are removed.
Then, all particles are sampled by age according to the probability computed in
Equation 4.9:

p(α) = exp
(
− α2

2σ2
α

)
(4.9)

where α represents the age of the particles, and σα is the control parameter. This
re-sampling maintains the number of particles in the system according to age.
There are always more new particles than older particles in the entire system.

4.3.6. Information reconstruction
At any location, the wind and temperature information can be reconstructed using
surrounding particles. Since wind and temperature are distributed differently,
different formulas are used to compute their values. Let position (x, y, z) be the
location where wind and temperature are to be computed. The wind is constructed
using the weighted wind state values from the neighboring particles, denoted as
P . A particle p with location (xp, yp, zp) is considered in the set P if it is within
the boundary of:
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x− xb 6 xp 6 x+ xb

y − yb 6 yp 6 y + yb

z − zb 6 zp 6 z + zb

(4.10)

Subsequently, the wind at location (x, y, z) is computed as the weighted sum
of the wind state information carried by the considered particles:[

u
v

]
= 1∑

p∈P Wp
·
∑
p∈P

(
Wp ·

[
up
vp

])
(4.11)

For temperature, we introduce an additional condition to the particle selection,
in addition to Equation 4.10, to ensure that the origin of the particles is also at a
similar altitude:

z − zb 6 zp0 6 z + zb (4.12)

After obtaining the reduced set of particles P ∗, the computation of the temper-
ature at location (x, y, z) also becomes a weighted sum of the temperatures from
the considered particles:

τ = 1∑
p∈P∗ Wp

·
∑
p∈P∗

(Wp · τp) (4.13)

In Equation 4.11 and 4.13, Wp is the weight of each particle that is computed
based on the product of two exponential functions. Function fd(·) expresses an
exponential relationship the weight with the distance between the particle and
the coordinate where wind and temperature need to be calculated. Function f0(·)
defines the weight with the distance of the particles from their origins:

Wp = fd(d) · f0(d0) (4.14)

fd(d) = exp
(
− d2

2C2
d

)
(4.15)

f0(d0) = exp
(
− d2

0
2C2

0

)
(4.16)

Here, d represents the spatial distance between a particle and the location of
interest. Cd and C0 are control parameters for the functions fd(·) and f0(·).

Figure 4.7 displays a re-constructed wind field from previously generated par-
ticles, at time-step zero. At each grid point, the wind vector is shown in solid
arrows. Grid points with no information yet are presented in scattered circles.

It is worth pointing out that the MP model does not use a pre-defined grid. Par-
ticles are generated as weather measurements and are propagated independently.
Values can be computed at any point or any set of points at the current time using
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Figure 4.7: Wind field constructed from particles in a simulated scenario

Equation 4.11, as long as a sufficient number of particles exist in the neighborhood
of these locations. In later experiments of this chapter, we chose a minimum of 10
particles.

4.3.7. Representation of confidence level
Once wind and temperature are reconstructed, it is also important to evaluate the
confidence level of the estimates. The confidence level is computed as the com-
bination of confidence functions that are based on several independent factors.
These factors are:

1. The number of particles in the vicinity of the location of interest (N).

2. The mean distances between particles and the location of interest (D).

3. The homogeneity of states carried by particles (H).

4. The strength of the particles due to aging function (S).

Particle numbers and distances
The number of particles N represents the number of particles that are present
within the calculation area. The mean distance to the point of interest is denoted
as D. Higher confidence values are assigned to locations where more particles
are present nearby. Areas that are far from flight trajectories tend to have fewer
reachable particles and should yield lower confidence values.
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Homogeneity of carried states
The level of homogeneity refers to the similarity between particle states. It essen-
tially indicates whether different measurements propagated from a nearby area
indicate similar evidence of wind vectors. The homogeneity of wind (Hw) is com-
puted as the spectral norm of the covariance matrix of the wind vector components
of the particles. For the temperature state, the homogeneity Hτ is simply repre-
sented by the variance of the temperature of the particles:

Σ = Cov(up,vp)

Hw = ‖Σ‖2 =
√
λmax(ΣTΣ)

Hτ = Var(τp)

(4.17)

Here, λmax represents the largest eigenvalue of a matrix, and up, vp, and τp are
wind and temperature states of the particles within the computing bound.

Particle strength
From the creation of a particle, its age (α) increases at each step of propagation.
Since the particles are sampled at each update according to age, the strength
parameter can simply be calculated as the fraction of the mean particle ages:

S = 1
ᾱp

(4.18)

Normalized and combined confidence
Values from all four confidence factors have a distinct range. It is important to
normalize these factors into the same range. Linear scaling is applied to convert
all values of each factor into the (0, 1) range:

s(x) = x−min(X)
max(X)−min(X) (4.19)

At any given time, the confidence vectors that represent all wind grid points
are N , D, H, and S. Then, the combined confidence is expressed as:

Cw = mean
{
s(N), s(D), s(Hw), s(S)

}
Cτ = mean

{
s(N), s(D), s(Hτ ), s(S)

} (4.20)

Figure 4.8 illustrates the confidence contour plot based on previously defined
calculations. Areas in the plot in darker grays represent higher levels of confi-
dence.

The confidence indicator is a relative value that can be compared within the
field at any time instance, but it is not comparable between different time steps
due to the normalization undertaken during its calculation.
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Figure 4.8: Wind field construction in a simulated scenario. Higher confidence is represented in darker
gray.

4.4. Short-term prediction with the Meteo-Particle model
The previously MP model can rapidly construct the wind and temperature fields.
However, the model alone is not able to make predictions of wind and temper-
ature. In this section, we construct an additional predictor layer for wind (u, v
component) or temperature as a univariate regression function that is based on
particles in the MP model. The regression predictor requires the construction of a
statistical model that is a function of time. For each location, surrounding parti-
cles are grouped by age, and the means are computed for each existing time step.
Thus, we have the input data t and yt.

In previous research, the Gaussian process regression (GPR) has been used in
a similar fashion for the interpolation of wind conditions [75, 26]. A similar ap-
proach can be applied in the proposed MP model for short-term predictions. From
a Bayesian perspective, the Gaussian process regression (also know as kriging in
geostatistics) is an interpolation method. It can be considered as a form of Gaus-
sian process prediction, which is based on a prior over functions and fitted over
the observed data [144].

One way to understand the Gaussian process regression is to view functions
as infinite-length vectors. The Gaussian process describes joint distributions over
these infinite dimension vectors. The Gaussian process regression considers func-
tions to be drawn from a prior that is defined by a mean function and a kernel
(covariance) function. The prior can be formulated as follows:

f(t) = N{µ(t),K(t, t′)} (4.21)



4

66 4. Meteorological model

where t and t′ are two time instances. µ(t) and K(t, t′) are the mean and ker-
nel functions respectively. Commonly, the mean function is assumed to be zero
(µ(t) = 0). The kernel function can be chosen from a wide range of options
[109]. The kernel function defines the underlying property of the function f(t).
For example, it can act as a constant component or represent the smoothness and
periodic properties. Different types of kernels can be combined as summation or
multiplication. In this chapter, we use a summation of three kernels to describe the
covariance function. Denoting KC, KSE, and KWN as a constant kernel, squared
exponential kernel, and white noise kernel, the combined kernel is defined as:

K(t, t′) = KSE(t, t′) +KC(t, t′) +KGN(t, t′)

KSE(t, t′) = σ2
se exp

{
− 1

2`2 (t− t′)2
}

KC(t, t′) = C

KWN(t, t′) = σ2
wnδ(t− t′)

(4.22)

where σse, `, C, and σse are hyper-parameters for the kernel function. Denoting
Θ = {σse, `, C, σse} as the vector of hyper-parameters, we can compute the optimal
Θ by maximizing the log marginal likelihood function:

log p(yt|t,Θ) = 1
2y

T
t K(t, t)−1yt −

1
2 log |K(t, t)| − n

2 log 2π

Θ̂ = argmin
Θ

{
log(yt|t,Θ)

} (4.23)

Once an optimal set of hyper-parameters is obtained, the probabilistic prediction
of future states can be computed as follows:

p(f(t∗)|t∗, yt, t) = N{A,B}
A = K(t∗, t)K(t, t′)−1yt

B = K(t∗, t)−K(t∗, t)K(t, t′)−1K(t∗, t)T
(4.24)

where t∗ is an unseen or future time instance. The training and prediction re-
quire the computational expensive inversion of K(t, t′), which can be calculated
using Cholesky factorization [109, Chapter 2]. The computational complexity of
Gaussian regression is O(n3). In Figure 4.9, using the GPR predictor, a 30-minute
prediction based on a 30-minute observation of one location is illustrated.

In this figure, solid dots represent values computed by the MP model for the
first 30 minutes. The black line is the mean prediction of the GPR model for the
entire hour. From darker to lighter gray areas are σ, 2σ, and 3σ of prediction
coverage respectively. The circles are values computed by the MP model for the
second 30 minutes, which are not used for constructing the GPR predictor. In this
specific example, we can see that the majority of the estimates in the second 30
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Figure 4.9: Gaussian process regression predictor example, based on wind and temperature computed
at an example location from an Eulerian point of view.

minutes are within one σ of the prediction interval.
The GPR predictor can be constructed at any position of interest to provide

short-term predictions. However, a short history of estimated states from the MP
model needs to be recorded for the predictions.

4.5. Experiments and validations
An ADS-B/Mode-S receiver is installed at the faculty of Aerospace Engineering at
the TU Delft. This device provides a constant stream of signals obtained from air-
craft that are within line of sight of this receiver. Using the open-source decoding
library pyModeS, ADS-B and Mode-S Comm-B replies can be used to derive wind
observations for the MP model. The area of the experiment is between 300 to 400
kilometers in radius, centered around Delft, the Netherlands.

At first, to demonstrate the Meteo-Particle model, a small dataset (with 30
minutes data) from ADS-B and Mode-S is used to compute the wind observations.
The observations are used to construct the wind and temperature fields. The re-
sults of the wind and temperature fields are illustrated. Later on, to validate the
MP model, we compare the results with two public numerical weather predic-
tion datasets, which are the Global Forecast System (GFS) reanalysis data and the
European Centre for Medium-Range Weather Forecast (ECMWF) ERA5 reanalysis
data.

4.5.1. Construction of sample wind and temperature fields
As a first experiment, we want to reconstruct the real wind and temperature grid,
based on a small set of aircraft surveillance data. The dataset consists of 30 min-
utes of obtained wind data, from 9:00 to 9:30 UTC on January 01, 2018. In total,
around 90,000 wind measurements were generated during this time period. In
Figure 4.10, the distributions of wind observations are displayed both horizontally
and vertically. The plot on the left-hand side illustrates the ground projection of
all observations. On the right-hand side, the plot shows a histogram with the num-
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ber of observations per 1 km altitude. Horizontally, the measurements are highly
concentrated along flight routes. Vertically, the majority of the observations are at
cruise altitudes and lower approaching altitudes. The statistic of wind at different
altitudes in this dataset is computed. The distributions grouped by altitude are
shown in Figure 4.11.
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Figure 4.10: Wind data ground projections and vertical distributions
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Figure 4.11: Wind speed and direction distributions grouped by altitude

During this time period, wind generally comes from a westerly or south-westerly
direction. The spatiotemporally varying wind also leads to variability in both wind
velocity and direction, even within this short period of time. Figures 4.10 and 4.11
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reflect the two challenges proposed earlier in this chapter. They are 1) highly non-
uniformly distributed and varying observation data, and 2) the observation errors
(shown as outliers).

To simulate a real-time run of the model, these recorded wind data are streamed
to the MP model using the original sequence based on the data time-stamp. A
snapshot of the wind grid at 09:00 UTC is shown in Figure 4.12, while the tem-
perature grid is shown in Figure 4.13. In these two figures, the entire airspace is
represented by a field consisting of 10 x 10 x 12 grid-points. It is centered around
the location of the receiver (latitude: 51.99◦N, longitude: 4.37◦E). The horizontal
grid spacing is approximately 60 km. Vertical grid spacing is 1 km. We can ob-
serve visually that both wind and temperature are consistent with the observation
distributions from Figure 4.11. The average wind speed is around 20 to 40 m/s
at different vertical levels, while the average wind direction is around 90 degrees
(West-East wind). At the same time, the average temperatures at different vertical
levels are also aligned in these figures.

H: 1 km | vw: 18 m/s H: 2 km | vw: 18 m/s H: 3 km | vw: 18 m/s H: 4 km | vw: 18 m/s

H: 5 km | vw: 20 m/s H: 6 km | vw: 24 m/s H: 7 km | vw: 32 m/s H: 8 km | vw: 36 m/s

H: 9 km | vw: 32 m/s H: 10 km | vw: 27 m/s H: 11 km | vw: 25 m/s H: 12 km | vw: 24 m/s

Figure 4.12: Wind grid at 12 different altitude levels

4.5.2. Validation of MP model with NWP data
In this section, we focus on validating the correctness of the MP model output.
The level of correctness can be examined against data from existing meteorolog-
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H: 1 km | T: -1 C H: 2 km | T: -6 C H: 3 km | T: -13 C H: 4 km | T: -18 C

H: 5 km | T: -25 C H: 6 km | T: -33 C H: 7 km | T: -43 C H: 8 km | T: -48 C

H: 9 km | T: -51 C H: 10 km | T: -49 C H: 11 km | T: -45 C H: 12 km | T: -45 C

Figure 4.13: Temperature grid at 12 different altitude levels

ical models. GFS reanalysis data and ECMWF ERA5 reanalysis data are used to
examine the MP model result. A period of 10 days (from the 1st to the 10th of
January 2018) is used in this experiment.

GFS reanalysis data provide a global atmospheric reanalysis of all altitudes at
the highest available resolution of 0.5 degrees in latitude and longitude. Mete-
orological conditions (including wind and temperature) are computed at 00:00,
06:00, 12:00, and 18:00 hour each day. The ECMWF ERA5 can provide higher
resolution reanalysis data. We use the 0.25-degree resolution data as the point of
comparison.

The wind and temperature observations are computed based on aircraft surveil-
lance data, which contains 10 days of one-hour data around the four hours indi-
cated in GFS reanalysis grid data.

At each GFS hour (00:00, 06:00, 12:00, or 18:00), spot values and average
values are computed. The spot value is the wind grid computed from the MP
model at the exact GFS hour. The average values are computed as the mean of
the hour around GFS hour (per minute, +/- 30 minute of wind grids). Spatially,
we extract wind/temperature fields at the grid indicated in the GFS and ECMWF
ERA5 data, with the resolution of 0.5 and 0.25 degrees respectively.

In order to compare the difference in wind vectors between MP model and
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NWP data, two distance matrices are used, which are angular difference and mag-
nitude difference. The angular difference is computed as follows:

∆θ = arccos
(

Vpm · Vgfs

‖Vpm‖ · ‖Vgfs‖

)
(4.25)

where Vpm and Vgfs are the two wind vectors computed by the MP model and
extracted from GFS respectively. ∆θ is the angle in degrees between two wind
vectors with a range of [0, 180]. The smaller the ∆θ, the smaller the angular dif-
ference between the two wind vectors. The magnitude difference is computed as
the absolute difference of wind vectors:

∆V = abs(‖Vpm‖ − ‖Vgfs‖) (4.26)

Similarly, the temperature difference is computed as:

∆T = abs(Tpm − Tgfs) (4.27)

The spot value and average value are first computed using the MP model. The
difference with the GFS data is illustrated in Figure 4.14, showing the results
of a total of around 62,000 point comparisons during the 10-day period. The
difference between the MP result and the ECMWF data is illustrated in Figure
4.15. The statistics are computed based on around 300,000 data points due to the
higher grid resolution. In each figure, the three plots represent the differences in
wind magnitude, wind direction, and temperature respectively.
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Figure 4.14: Mean wind and temperature differences between MP model and GFS reanalysis data,
with 0.5 degree resolution. Spot values are values computed at the exact GFS hour. Average values are
computed using vales within 30 minutes before and after the GFS hour. The outliers are not shown in
the boxplots.

We can see that the result of the MP model is closer to the higher resolution
ECMWF ERA5 data. The exact differences are summarized in Table 4.1. It can also
be observed that when using a one-hour average (mean of 60 snapshots on each
minute), the differences become smaller. This could reflect the averaging effects
of NWP models. It could also be caused by the lack of interpolation accuracy due
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Figure 4.15: Mean wind and temperature differences between MP model and ECMWF ERA5 reanalysis
data, with 0.5 degree resolution.

to the gaps in source data of these NWP models.

Table 4.1: Comparing MP with NWP models (mean absolute errors)

∆Vspot ∆Vavg ∆θspot ∆θavg ∆Tspot ∆Tavg

GFS (0.5◦) 3.35 m/s 2.74 m/s 10.09 ◦ 6.84 ◦ 1.14 K 0.64 K
ECWMF (0.25◦) 2.78 m/s 1.99 m/s 8.05 ◦ 5.37 ◦ 1.18 K 0.74 K

4.5.3. MP model estimation accuracy
Accuracy poses one of the common drawbacks of using a NWP model (such as the
previously used GFS) for aircraft performance studies. Due to the fixed grid and
the large update time interval, interpolation models generated based on an NWP
analysis dataset are often over-smoothed. In the low-resolution meteorological
dataset, local variations are often absent. When studying aircraft performance,
accurate information on the local wind conditions is important and sometimes
critical. In this experiment, our goal is to study the accuracy of the proposed MP
model compared to the interpolated model from NWP analysis data. The same
NWP data source, the Global Forecast System reanalysis data (0.5◦ resolution), is
used for this purpose.

To compare the accuracy of the two models, we use the same set of the 30-
minute wind data as shown in the earlier section. The approximately 90,000 data
points are split into the training (60%) and testing (40%) datasets randomly.

To examine the accuracy of the MP model estimation, we use the training
dataset to construct the wind and temperature fields using the MP model. Then,
we estimate the wind and temperature for all points (4D) that appear in the test
set. The estimations and actual values are compared to calculate the accuracy
metrics. To calculate the accuracy metrics based on NWP data, a linear interpola-
tion model is generated using two GFS analysis datasets (06:00 and 12:00 UTC).
In this way, we can compute the wind and temperature of each point that appears
in the test dataset.
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Results from the two estimation models are compared with the true value in
the test dataset. They are illustrated in Figures 4.16 (wind speed) and 4.17 (tem-
perature).
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Figure 4.16: Comparision of MP and GFS model for local wind estimation
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Figure 4.17: Comparision of MP and GFS model for local temperature estimation

We can see that the MP model displays a significantly higher accuracy than
the GFS interpolation model when inferring the wind. In terms of temperature,
the MP model also shows better accuracy. To quantify the differences, different
training/testing splits are chosen for the prediction. Quantitative metrics Mean
Squared Error (MSE) and Mean Absolute Error (MAE) are computed for wind and
temperature under each configuration. The results are shown in Table 4.2 (wind
speed) and Table 4.3 (temperature).
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Table 4.2: Estimation errors in wind calculation (unit: m/s)

Train-Test split MSE(GFS) MAE(GFS) MSE(MP) MAE(MP)
60%-40% 27.64 3.92 3.69 1.30
70%-30% 27.60 3.92 3.71 1.30
80%-20% 28.46 3.98 3.63 1.29
90%-10% 29.05 4.03 3.26 1.26

Table 4.3: Estimation errors in temperature calculation (unit: K)

Train-Test split MSE(GFS) MAE(GFS) MSE(MP) MAE(MP)
60%-40% 4.81 1.63 3.11 1.20
70%-30% 4.82 1.63 3.00 1.18
80%-20% 4.76 1.62 2.93 1.17
90%-10% 4.75 1.61 2.87 1.14

From the above results, when comparing the absolute error, we can conclude
that the wind error decreases around 67%, from around 4 m/s in the GFS model
to around 1.3 m/s in the MP model. This represents a threefold increase in wind
accuracy. At the same time, the temperature error also decreases around 26%,
from 1.6K in the GFS model to around 1.2K in the MP model. This represents a
1.3 fold increase in temperature accuracy.

4.5.4. Short-term prediction accuracy
A short-term prediction (up to 30 minutes) is constructed based on the Gaussian
process regression predictor defined in Section 4.4. The experiment is carried
out using the well-established open-source machine learning library Scikit-Learn
[106]. It includes the implementation of the proposed Gaussian Process Regres-
sion models. The validation experiment is based on the 10x10x12 grid (as show
in Figures 4.12 and 4.13).

A new dataset consisting of 30 minutes from 9:30 to 10:00 UTC on January 01,
2018, is used for testing these predictions. The reference wind and temperature
values are computed based on this dataset using the MP model. The prediction of
9:31 to 10:00 is performed at 9:30 based on the wind and temperature fields that
have been constructed using the MP model.

At each minute from 9:31 to 10:00, the differences between the prediction and
the true value of all points are plotted in Figure 4.18.

In this figure, we can see that the differences between reference wind and
predicted wind are within 10 m/s, whereas the differences of temperatures are
within 5 K. The exact error metrics are listed in Table 4.4.

Table 4.4: Error metrics for the prediction of 30 minutes

ME MAE RMSE
Wind speed (m/s) 0.37 3.71 24.71
Temperature (K) 0.02 1.23 2.80
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Figure 4.18: Prediction error of wind and temperature in 30 minutes

4.6. Uncertainty analysis
The variability of the system depends on the uncertainty in the MP model and
observation data. The uncertainty of the MP model is caused by the stochastic
process involved, such as the probabilistic observation rejection and the particle
position update. On the other hand, the uncertainties of wind and temperature
observations are caused by inaccurate information downlinked from aircraft or
due to decoding errors.

In this section, we focus on the study of variation caused by the randomness
in the stochastic process and data, as well as the error tolerance of the MP model.
All analyses are based on the same dataset used in the earlier experiments, from
9:30 to 10:00 UTC on January 01, 2018, collected by our ADS-B receiver located
at Delft, the Netherlands.

4.6.1. Model uncertainty
Randomness exists in the MP model due to the stochastic processes, probabilistic
rejection, and sampling. To study whether the combined randomness could affect
the wind and temperature field results, as well as the level of the influence, we
conduct multiple (100) runs of the model based on the same input data. The
wind field at 09:00 (as shown in Figure 4.12) is measured at the end of each
run. Combining all 100 results, we can understand the variation caused by the
stochastic elements in the MP model.

In Figure 4.19, the distribution of standard deviations of wind-grid speed and
heading among 100 runs is displayed. Among these runs, the difference is almost
negligible: less than 2 m/s for wind speed and 1.5 Kelvin for the temperature.

Examining the resulting fields, the outliers are found to be the points that are
far away from the flight paths, where fewer particles could reach. Based on the
variations shown in Figure 4.19, we can conclude that despite the randomness in
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Figure 4.19: Standard deviation of wind speed and temperature of 100 runs

the model, the MP model always converges to a result with small uncertainties.
The results here can be considered as the baseline model for comparison with
other studies later in this chapter.

4.6.2. Data uncertainty
Another important validation is to determine how the quality of observation data
affects the wind field estimation. More precisely, it is necessary to ascertain
whether the wind grid could be different if some percentage of the observed data
is not available. To study this effect, the previous dataset is randomly sampled
into several new datasets that contain 80%, 40%, 20%, 10%, and 50% of the total
wind observations. Then, the same processes are run to create five different wind
fields at 12:00 hours.

Figure 4.20 illustrates the wind and temperature grids, estimated at an altitude
of 8 km when different percentages of sampled data are used. From the first plot
to the last, it is obvious that with increasing observation data samples, the size of
the estimated field is increased. At the same time, with increasing sample size, the
difference between wind fields is smaller.

In order to quantify the differences, the absolute mean differences between
wind and temperature are calculated. In Figure 4.21, the distribution of the entire
grid (including all altitude levels) of all wind vectors are compared with the results
from the complete data.

Compared to the baseline variance of the model as shown in Figure 4.19, we
can infer that with a loss of up to 90% of the total data (10% sample), the dif-
ferences are still small. This test indicates that there is an abundant number of
observations from aircraft to sustain a stable meteorological field reconstruction.
At the same time, even with a large amount of data loss, the MP model can still
obtain stable and correct results. By examining the differences of wind and tem-
perature under different sample rates, we can observe that the results of MP model
are consistent with the results using the full dataset, even though the size of the
fields may be reduced.
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Figure 4.20: Wind and temperature field at a 8 km altitude under different samples
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Figure 4.21: Grid magnitude and heading difference due to sampling

4.6.3. Error tolerance
Measurement errors in raw data affect the stability and correctness of the MP
model results. We want to quantify the percentage of the errors in data that would
produce significant divergence in the results. In this experiment, a percentage of
the dataset is replaced with random wind vectors that are uniformly distributed
between the minimum and maximum wind speeds with headings between 0 and
360 degrees. Temperatures are altered randomly within +/- 20 Kelvin of the
originally computed temperature.
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In Figure 4.22, wind grid differences between no assumed error and data error
rates of 2%, 4%, 6%, 8%, 10%, and 15% are shown.
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Figure 4.22: Grid magnitude and heading difference due to error

With such an aggressive error model, the MP model can maintain a reasonably
correct wind field with an error rate of up to approximately 15% (in comparison
to the baseline). As a visualization reference, wind and temperature field (8 km
altitude) under different error rates are shown in Figure 4.23.
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Figure 4.23: Wind and temperature field at a 8 km altitude under different error rates
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4.7. Discussion
Throughout the chapter, we describe the Meteo-Particle model and related meth-
ods to construct a wind and temperature field from aircraft position and speed
broadcasts. We also propose a Gaussian regression predictor for short-term wind
and temperature prediction.

The first contribution of this chapter is the method to compute weather infor-
mation using the aircraft broadcast data. The challenge is not only the decoding
of BDS 50 and 60 messages but rather the complete identification process for the
entire Mode-S family of messages. As a third-party observer without the knowl-
edge of Mode-S interrogations, this decoding process can be complex. In Chapter
2, we developed the pyModeS decoder to solve this problem, which is used in this
chapter to obtain accurate airspeed and temperature measurements.

The core of this chapter focuses on constructing a model that is able to cope
with the chaotic nature of wind, moving aircraft, and non-uniformly distributed
observations. The MP model proposed in this chapter addresses the stochastic
characteristic of wind through particles while maintaining stability through the
use of a large number of particles. The MP model uses a stochastic update to
propagate wind information to surrounding areas using imaginary particles. With
these propagated particles, wind and temperature fields can be estimated in areas
where fewer or no measurements are available. Parameters on particle propa-
gation and decay can be tuned in order to control performance. Recommended
parameters used in this chapter are given in Table 4.5. They are based on empirical
knowledge but not necessarily optimized for all receiver setups.

Table 4.5: Meteo-Particle model parameters used in this chapter

Notation Parameter Value Unit
σu0 Particle initialization wind variation (u component) 0.2 m/s
σv0 Particle initialization wind variation (v component) 0.2 m/s
στ0 Particle initialization temperature variation 0.1 K
σpx Particle random walk (x direction) 5 km
σpy Particle random walk (y direction) 5 km
σpz Particle random walk (z direction) 0.1 km
xb Selection boundary (x direction) 20 km
yb Selection boundary (y direction) 20 km
zb Selection boundary (z direction) 500 m
k1 Measurement acceptance probability factor 3 -
k2 Particle random walk factor 10 -
σα Particle aging parameter 180 s
σd Weighting parameter (distance to point of interest) 30 km
σd Weighting parameter (distance to origin) 30 km

When reviewing the objectives of the Meteo-Particle model, it can be viewed
as a type of data assimilation method. In the introduction of this chapter, we
mentioned a few existing variational assimilation methods in NWP models, for
example, 3DVAR [7] and 4DVAR [110] used by ECMWF. These methods are bet-
ter suited for large spatiotemporal modeling with data from different observation
sources. The MP model focuses on a rapid local real-time weather reconstruc-
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tion, based specifically on aircraft measurements. Without minimizing the cost
function as in variational methods, the meteorological grid constructed based on
the MP model displays less smoothness than NWP model. For supporting general
air traffic studies, this lower level of continuity is not a concern. Sometimes this
is not even necessary when only weather along a specific trajectory needs to be
constructed.

When comparing the Monte-Carlo based particle approach in the MP model
to the Gaussian weighted interpolation, there are several advantages. The MP
model always includes past observation information without the need for storing
historical measurement. When constructing wind and temperature at a location,
we only need to consider a small number of the particles in adjacent areas, which
is faster to compute. Most importantly, the probabilistic observation acceptance
mechanism introduced in the MP model ensures that erroneous observations are
not used in the system. Thus, they have little influence on the current and future
estimations.

In this chapter, three assumptions were made before constructing the MP model.
The first two assumptions stated that the variation of wind and temperature are
small temporally (at the level of hours) and locally (at the level of kilometers).
Only under these two conditions, the aggregated states from propagated particles
can represent the true weather conditions. Later on, from the example dataset and
results produced, we can confirm the validity of these two hypotheses. However,
we have to be cautious when applying the model to near-surface scenarios, such
as constructing very low altitude wind fields using aircraft data from the takeoff
phase. The wind dynamics can be far from locally steady in this situation. In this
chapter, the lowest altitude was set at 1 km to avoid such conditions, regardless of
the actual planetary boundary layer.

The last assumption is that the error rate in original measurement data is not
too large. This is generally guaranteed with the accuracy of the pyModeS de-
coder. Using one-hour ground truth data from local air traffic controllers, we were
able to find out that the error rate of pyModeS on BDS 50 and BDS 60 message
identification is below 0.1%. With this accuracy, only the original aircraft speed
measurement error and data transmission error acted as the causes of inaccuracy.
However, with the probabilistic error rejection, we showed that the model can
handle up to 15% of the artificial error in the data (as shown in Figure 4.22 and
4.23). This is well beyond any normal error rate in aircraft surveillance data.

One of the limitations in analysis of the chapter is the time period of the data
used for validation with GFS data. Ideally, prolonged of periods validation would
give a more confident statement. Nevertheless, as illustrated in Figure 4.16-4.17
and Table 4.2-4.3, the randomly chosen dataset already displays a large improve-
ment in terms of accuracy.

4.8. Conclusion
Based on aircraft surveillance data, in this chapter, we proposed a fast, real-time
model, the Meteo-Particle (MP) model, to construct real-time wind and tempera-
ture fields using aircraft as sensors. Using raw temperature and wind states de-
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coded from ADS-B and Mode-S downlink data, the MP model constructed wind
and temperature fields within the range of the receiver. The range has been
demonstrated to be around 300 to 400 kilometers in radius by our experiment.

The results obtained from the MP model were close to NWP reanalysis data.
For example, when comparing with GFS reanalysis (0.5-degree resolution) data,
the absolute mean difference in wind speed, wind direction, and temperature were
2.74 m/s, 6.94 ◦, and 0.64 K respectively. When compared to ECMWF ERA5
(0.25-degree resolution) data, the differences were 1.99 m/s, 5.37 ◦, and 0.74
K respectively. We also studied the accuracy of inference using the MP and GFS
model. The mean absolute error of wind speed and temperature estimations are
reduced by 67% and 26% when the MP model is applied. This increased accuracy
indicates the potential benefits for air traffic management studies.

The Meteo-Particle model demonstrates the validity of using aircraft as large
sensor networks to construct a global scale real-time meteorological measurement
system for the open research domain. This model and the results proposed in this
chapter are fully open. The implementation of the MP model in Python program-
ming language is shared,2 as is the experiment data.3 Without the need for any
new equipment or communication protocols, the implementation of such a system
can be enacted using existing technology and data sources. Based on the single
receiver demonstrated in this chapter, we believe that future research can offer
a meteorological monitoring capability with a large coverage by using data from
existing crowd-sourced receiver networks.

2Available at: https://github.com/junzis/meteo-particle-model
3Available at: https://doi.org/10.6084/m9.figshare.6970403

https://github.com/junzis/meteo-particle-model
https://doi.org/10.6084/m9.figshare.6970403
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In Chapter 2 and 3, a number of methods are proposed allowing us to efficiently
process aircraft surveillance data. With large quantities of trajectory data collected
from a wide range of different aircraft types, it is possible to extract accurate air-
craft performance parameters. In this chapter, a set of more than thirty parameters
from seven distinct flight phases are extracted for common commercial aircraft types.
We use various data mining and estimation methods to generate parametric models
for these performance parameters. All parametric models combined can be used to
describe a complete flight that includes takeoff, initial climb, climb, cruise, descent, fi-
nal approach, and landing. Both analytical results and summaries are shown. When
available, parameters from these models are also compared with the Base of Aircraft
Data and the Eurocontrol aircraft performance database. In summary, the research
conducted in this chapter presents a comprehensive set of methods for extracting dif-
ferent aircraft performance parameters. It also provides the first open dataset of
kinematic performance models for common aircraft types.

This chapter is based on the following publications:
1) Sun, J., Ellerbroek, J. and Hoekstra, J.M, 2017. Modeling aircraft performance parameters with
open ads-b data. In Twelfth USA/Europe Air Traffic Management Research and Development Seminar
[128].
2) Sun, J., Ellerbroek, J. and Hoekstra, J.M., 2019. WRAP: An open-source kinematic aircraft perfor-
mance model. Transportation Research Part C: Emerging Technologies, 98, pp.118-138 [130].
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5.1. Introduction
Fast-time air traffic simulation requires accurate aircraft performance models (APM).
These performance models play an important role in modeling and optimizing air
traffic flows, especially in managing 4D trajectories. Traditionally, aircraft perfor-
mance models for air traffic management research are built based on manufacturer
performance reports and/or proprietary flight data. These data sources are either
costly or have certain license limitations. For example, the most commonly used
APM, Base of Aircraft Data (BADA), has license limitations [102, 42]. Besides
BADA, aircraft manufacturers also provide performance models. Unfortunately,
very few of these are available as open-access models.

A different approach to model aircraft performance is to use flight data. A
recent study [60] proposes the use of radar data and machine learning meth-
ods to obtain performance parameters and patterns. At the same time, thanks to
the mandates on aircraft Automatic Dependent Surveillance-Broadcast (ADS-B)
transponders from different regulatory agencies around the world, an increasing
number of commercial aircraft are being equipped with this capability. Low-cost
ground receivers are being installed around the world in a crowd-sourced fashion.
With ADS-B, certain surveillance data such as position, altitude, velocity, and ver-
tical speed are broadcast and received constantly around the world by a number
of ground receiver networks.

Several leading crowd-sourced ground networks are providing free access to
aggregated ADS-B data. Commercial networks like FlightRadar24 and FlightAware
have large infrastructure and coverage. Research networks such as ADS-B Ex-
change and the OpenSky Network [116] are also expanding. Each network has
a different policy on data sharing. However, many of these networks grant the
rights of data usage to network contributors. These large amounts of raw flight
data provide a new source for modeling aircraft performance.

How we can use these large quantities of data in order to construct aircraft
performance models is the core research question of this chapter. This chapter
aims to construct an accurate kinematic performance model for common aircraft
types and, then, employ such a model for air traffic simulation and analysis.

There are different categories of performance models. The most detailed six
degree-of-freedom model is commonly used in aircraft control studies, while the
point-mass model is often used in studies concerning air transportation. In the
point-mass model, aircraft roll, pitch, and yaw motions are ignored, leaving only
horizontal and vertical motions. There are two different types of point-mass mod-
els: dynamic and kinematic. The primary difference is that while a dynamic model
focuses on forces and energy, a kinematic model deals only with aircraft motions.

This chapter proposes a kinematic aircraft performance model based entirely
on open data, called the WRAP performance model.1 In addition to common pro-
cedural values, a parametric statistical model of each performance indicator is con-
structed. The use of parametric statistical models enables probabilistic sampling
in simulations and produces realistic scenarios. Thanks to this unique property,

1Speaking of which, WRAP is not meant to be an acronym. If one must put a longer name to it, then it
is short for: WRAP Represents Aircraft Performance.
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the model can cover a wide range of use cases.
The remainder of this chapter is structured as follows. Section two introduces

the model parameters, definitions, and maximum likelihood estimations for three
different distribution functions. Section three explains the data and pre-processing
methods. Section four is focused on methods and algorithms for constructing pa-
rameters of each flight phase. Detailed results on a single aircraft type and sum-
maries of 17 different aircraft types are shown in section five. Finally, discussion
and conclusion are addressed in sections six and seven.

5.2. The WRAP model
In this section, the kinematic aircraft performance parameters of the WRAP model
are first presented. Based on flight data, each parameter is evaluated under
three parametric statistical model assumptions. We then choose the best statis-
tical model according to the Kolmogorov-Smirnov test [89], from which the most
common and limitation values are computed.

5.2.1. Model parameters
This study aims to derive performance parameters for the following flight phases:
takeoff, initial climb, climb, cruise, descent, final approach, and landing, which
closely correspond to the flight phase definitions the ICAO Common Taxonomy
Team [24], with the exception that the definitions of the initial climb and final ap-
proach are slightly different in the WRAP model. This is because the WRAP model
tries to generalize the parameters over different air traffic control procedures.

The significance of each performance indicator differs from one flight phase
to another. For example, vertical speed is only of interest for climb and descent,
while, during takeoff and landing, the runway distance, acceleration, and takeof-
f/touchdown speed are studied. Specifically, during the climb (or descent) phase,
a constant CAS/Mach climbing profile is extracted. The parameters included in
the WRAP model are listed as follows per fight phase:

• Takeoff:
– liftoff speed (Vlof)
– takeoff distance (dtof)
– mean takeoff acceleration (ātof)

• Initial climb:
– calibrated airspeed (Vcas,ic)
– vertical rate (VSic)
– cutoff altitude (hic), fixed at 457m / 1500 ft

• Climb:
– range to the top of climb (Rtop,cl)
– altitude where constant CAS starts (hcas,cl)
– constant CAS (Vcas,cl)
– vertical rate during constant CAS climb (VScas,cl)
– constant Mach climb crossover altitude (hmach,cl)
– constant Mach number (Mcl)
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– vertical rate during constant Mach climb (VSmach,cl)
– vertical rate before constant CAS climb (VSprecas,cl)

• Cruise:
– cruise range (Rcr)
– maximum cruise range (Rmax,cr)
– initial cruise altitude (hinit,cr)
– cruise altitude (hcr)
– maximum cruise altitude (hmax,cr)
– cruise Mach number (Mcr)
– maximum cruise Mach number (Mmax,cr)

• Descent:
– range from the top of descent (Rtop,de)
– constant Mach number (Mde)
– constant Mach descent crossover altitude (hmach,de)
– vertical rate during constant Mach descent (VSmach,de)
– constant CAS (Vcas,de)
– altitude where constant CAS starts (hcas,de)
– vertical rate during constant CAS descent (VScas,de)
– vertical rate after constant CAS descent (VSpostcas,de)

• Final approach:
– calibrated airspeed (Vcas,fa)
– vertical rate (VSfa)
– cutoff altitude (hfa), fixed at 300m / 1000 ft
– path angle (∠fa)

• Landing:
– touchdown speed (Vtcd)
– braking distance (dlnd)
– mean braking deceleration (ālnd)

One of the rationales for the selection of these parameters is to ensure com-
patibility and comparability with existing kinematic performance models, such as
the Aircraft Performance Database of Eurocontrol [37], as well as the kinematic
parameters of BADA [102]. The WRAP model parameters are also designed with
the aim of supporting the open air traffic simulator BlueSky [54]. The parameters
are chosen so that the kinematic flight envelope of different aircraft models can
be constructed according to the flight phases.

5.2.2. Parametric statistical models and selection
Three continuous probability density functions (PDF) are proposed to describe
each of the performance parameters: the Normal, Gamma, and Beta distributions.
Many of the performance parameters, for example, mean speed or mean vertical
rates can be modeled using Normal distribution. Empirical observations with flight
data support this claim, as does the central limit theorem in the probability theory.
The theorem states that when independent random variables are drawn indepen-
dently, the distribution of the averages tends to follow Normal distributions. In
cases where human decisions are involved, however, the normal distribution may
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not be the best choice to describe a parameter. For example, with cruise range or
crossover altitude of constant CAS/Mach climb, the distribution can be skewed.
Therefore, we need to introduce skewed distributions to model these parame-
ters. The Gamma distribution and Beta distribution are used for right-skewed and
left-skewed distributions respectively. Finally, the maximum likelihood estimation
(MLE) [1] is used to estimate the best-unbiased model parameters under each
statistical model assumption.

Normal distribution
For a Normal distribution, the PDF is expressed as:

p(x|µ, σ2) = 1√
2σ2π

e−
(x−µ)2

2σ2 (5.1)

where the parameters µ and, σ2 represent the mean and variance. The MLE esti-
mator of µ̂ and σ̂2 can be computed as the mean and variance of the observations.

Gamma distribution
For a standardized Gamma distribution with support of (0,+∞), the PDF is ex-
pressed as:

p(x|α) = 1
Γ(α)x

α−1e−x (5.2)

where α (α > 0) represents the shape of the distribution. As a general form,
the location (µ) and scale (k) parameters are introduced to allow the support of
(µ,+∞) for the PDF:

p(x|α, µ, k) = 1
k · Γ(α)

(
x− µ
k

)α−1
exp

(
−x− µ

k

)
(5.3)

The MLE estimate (α̂, µ̂, k̂) does not have a closed-form solution, but it can be
solved numerically [21].

Beta distribution
For a standardized Beta distribution with support (0, 1), the PDF is given as:

p(x|α, β) = 1
B(α, β)x

α−1(1− x)β−1

B(α, β) = Γ(α)Γ(β)
Γ(α+ β)

(5.4)

where α and β represent the shape of the distribution. As a general form, the
location (µ) and scale (k) parameters can also be introduced to allow the support
of (µ,+∞) for the PDF:
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p(x|α, β, µ, k) = 1
k ·B(α, β)

(
x− µ
k

)α−1(
1− x− µ

k

)β−1
(5.5)

Similar to the Gamma distribution, the Beta distribution also does not have a
closed-form solution for the MLE estimate (α̂, β̂, µ̂, k̂). Therefore, it also needs to
be solved numerically [45].

Selection of the statistical model
After all possible optimal parametric models are computed based on test data, the
best of all three are identified using the D score from the one-sample Kolmogorov-
Smirnov (KS) Test [89]:

D = max
x
|Fn(x)− F (x)| (5.6)

where F (x) is the cumulative distribution function (CDF) of a statistical model,
and Fn(x) is the the empirical distribution function (EDF) from the data. The D
score is essentially the largest distance between two functions, which is calculated
according to Equation 5.6. A smaller D score reveals a better fit of the statistical
model to the test data.

Of all three KS statistics, DN , DΓ, and DB , the probability density that yields
the minimum D will be selected. The KS-test is performed on a different dataset
that was used for the parameter estimation. In this chapter, the experiment data
is split into two equal parts (one for fitting and one for testing) to construct and
validate the best parametric statistical model.

An example dataset of one parameter is shown in Figure 5.1, where the CDF of
all three models obtained from MLE is displayed against the EDF computed from
the data. The best model (beta) is obtained, as it yields the lowest D score in this
example.
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Figure 5.1: Cumulative distributions and probability distributions of fitted model with data. The ex-
ample parameter is the mean cruise Mach number of A320. The best model describing the data is the
Beta distribution that yields the minimum D value of 0.08.
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5.2.3. Interpretation of the model
In the resulting WRAP model, each parameter is described with three parts using
the following convention: {

ψ̂ | ψmin, ψmax | *pdf
}

(5.7)

The first part, ψ̂ is the most common operational value. This value is computed
as the mode of the probability distribution function that corresponds to the most
frequent value in reality.

The second part, ψmin and ψmax, are minimum and maximum values obtained
from different confidence intervals (CI). The CI is defined based on the parameter
type:

• CI=0.85: Parameters associated with speed during takeoff, initial climb, fi-
nal approach, and landing.

• CI=0.99: Parameters associated with ranges.

• CI=0.9: Default value of other parameters.

Here, the choice of a low confidence interval for velocity is made to reduce the
impact of wind uncertainties in flight phases that are close to the ground. Even
though the wind data has already been integrated, wind information is less certain
for near-surface conditions. Thus, the low CI is chosen. The choice of a higher CI
for flight ranges is made to take into account flights with a range as close to their
maximum operational range as possible. The hypothesis is that extreme values are
likely not outliers when dealing with flight range.

The third part in Equation 5.7 is the optimal statistical model that is obtained
from the KS test. It is defined as:

∗pdf =


[′norm′, µ, σ] for x ∼ N
[′gamma′, α, µ, k] for x ∼ Γ
[′beta′, α, β, µ, k] for x ∼ B

(5.8)

Three types of values defined by the WRAP model provide different use cases.
For example, in the case of conducting air traffic simulations [54]:

1. The most common value can be used for air traffic simulations with a fixed
performance profile. It can be considered as a standard airline procedure
profile, which is equivalent to the APF in BADA model.

2. The minimum and maximum values define the limits of the kinematic model,
which implements the flight envelopes.

3. The PDF provides the possibility of constructing Monte-Carlo simulation or
study where parameters need to be sampled according to a realistic proba-
bility distribution.
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5.3. The data
When dealing with aggregated ADS-B flight data, errors often occur. Trajectory
data need to be pre-processed and segmented by flight phase accordingly. At the
same time, not all parameters can be directly observed. To infer hidden param-
eters, certain models and methods need to be designed. In the following two
sections, we discuss the methods used for data processing and performance mod-
eling.

5.3.1. Data source
For this research, the input data are primarily based on ADS-B messages that are
broadcast by aircraft through Mode-S transponders. However, even with good
installation and placement, a single ground-based receiver only has a maximum
reception range of around 250 nm (∼ 500 km). Considering Mode-S line-of-sight
availability, it is not possible to capture large quantities of completed flight data
with a single ground station. This is especially challenging when dealing with
long-range flights. Thanks to networks of ADS-B ground receivers, such as Fligh-
tRadar24 [39], it is possible to gain access to a much larger collection of flight
data obtained from ground stations from contributors around the world.

It is also worth noting that in addition to ADS-B data, using the same re-
ceiver setup, aircraft positions, and velocities can be also obtained from multiple
ground stations using Mode-S multilateration. This technology is employed by
some ground receivers within the FlightRadar24 network. It is useful for those
aircraft that are not yet equipped with ADS-B compatible transponders. However,
the availability is limited to areas where air traffic controllers are present and not
usable when aircraft are close to the ground.

5.3.2. Trajectory processing
Data collected from ADS-B are usually scattered. The methods proposed in Chap-
ter 3 have made it possible to extract flight trajectories easily. This method can
only segment flights into five different phases: on-ground, climb, cruise, descent,
and level flights.

The study in this chapter requires further processing of those segments. To this
end, an altitude threshold is applied to the climb and descent trajectory to extract
the initial climb and final approach. We consider the climbing section up to 1500 ft
to be the initial climb. The final approach starts from 1000 ft toward the end of the
descent. An evaluation process is used to examine the data of all flight segments,
ensuring a certain level of completeness and continuity in the given time series
data.

5.3.3. Atmospheric conditions and speed conversions
The velocity provided in an ADS-B message gives the ground speed of an aircraft.
However, the accuracy of the model may be compromised as wind is not consid-
ered. For example, the seasonal wind and jet streams cause a great bias when
modeling the cruise speed, if only the ground speed is considered. In this chapter,
wind speeds are computed using an interpolation model from the Global Forecast
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System (GFS) Reanalysis data [113].
The GFS Analysis model cycles every six hours, producing atmospheric grids

using global data assimilation. The grid data are stored at two resolutions (0.5
and 1 degree). Vertically, isobaric levels from 1000hPa to 10hPa are provided and
divided into 26 layers. In this chapter, the U component (west-east direction)
and V component (south-north direction) of wind, as well as the temperature of
all grid points, are extracted from the datasets. Then, 4-D (latitude, longitude,
altitude, and time) grids for wind and temperature are constructed. Figure 5.2
shows an example of the wind grid snapshot.

Figure 5.2: Example of wind over Europe at 400hPa pressure level of GFS model (23.5k ft, ISA+0◦C)

After that, an N-dimensional multi-linear interpolation [141] is used to con-
struct a linear 4-D interpolated model. As such, wind and temperature can be
produced at any position and time. ADS-B positions of all aircraft are mapped
with wind vectors from the model to produce the corresponding airspeeds. Figure
5.3 illustrates an example of the airspeed versus ground speed of aircraft over the
Iberian Peninsula, where the difference is large.

The WRAP model uses Mach number (M) and calibrated airspeed (Vcas) when
appropriate. Mach number can be computed using the following equation:

M = Vtas

a
= Vtas

a0

√
T
T0

(5.9)

where T0 and a0 are temperature and speed of sound at ISA sea level. T and a
are the air temperature and speed of sound at the location of the aircraft. The
air pressure can be derived from the barometric altitude obtained using ADS-B ac-
cording to Equation 4.1 from Chapter 4. Knowing the pressure and Mach number,
we can compute the calibrated airspeed as follows [145]:
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ground speed
airspeed

Figure 5.3: Example aircraft ground speed and airspeed difference (cruising aircraft above 20k ft)

Vcas = a0

√√√√5
{[

p

p0

{
(1 + 0.2M2)3.5 − 1

}
+ 1
] 1

3.5

− 1
}

(5.10)

5.4. Construction of WRAP parameters
After the flight trajectories are sorted and segmented to proper flight phases, they
can be used to construct the desired model parameters. For each aircraft type, at
least five thousand trajectories are used to give a good level of confidence in the
model. This section discusses the methods for extracting these parameters from
the trajectory data.

5.4.1. Takeoff
During the takeoff phase, the parameters of most interest are takeoff distance
(Dtof), mean acceleration (ātof), and lift-off speed (Vlof). To overcome the large
noise in the velocity measurements during takeoff, a second-degree spline is ap-
plied to obtain a smoothed velocity sample set. The distance parameters can be
derived from aircraft surface position at the starting and ending positions of the
takeoff, using the spherical law of cosines, based on the dot product of the vectors
from the center of the earth to the positions:

Dtof = R · arccos[sinφ1 · sinφN + cosφ1 · cosφN · cos(λN − λ1)] (5.11)

where φ and λ represent the latitude and longitude in radians. 1 and N represent
the first and last recorded position during takeoff. The average acceleration ātof
is obtained from a second-order polynomial fitting, based on the time and speed
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measurements during the takeoff.
Compared to takeoff distance and average acceleration, the lift-off speed is

more complicated to estimate, due to the low data update rate in an aggregated
ADS-B dataset. There is usually a gap of a few seconds between the last on-ground
data sample and the first in-air observation.

t0 tlof t1

{V0, alof}

{h1, Vh1}

Figure 5.4: Approximation of the moment of lift off

To estimate the exact moment of lift-off, as shown in Figure 5.4, an interpola-
tion model is used. Firstly, the vertical rate VS and time stamp at the first in-air
observation are used to estimate the time of lift-off tlof . Combining this result with
previously calculated ātof , the lift-off speed can be obtained as follows:

tlof = t1 −
h1

VS1
(5.12)

Vlof = V0 + ātof · (tlof − t0) (5.13)

5.4.2. Initial climb
The initial climb phase is defined as the segment from 35 ft until the aircraft
reaches around 1500 ft. There are several major configuration changes (retraction
of landing gear and flaps) during this short period of time that can affect the
performance of the aircraft. However, because the initial climb segment lasts for
only a short time, it suffers from having relatively few data samples, compared to
the takeoff phase. The parameters to be studied are aircraft calibrated airspeed
(Vcas,ic) and vertical rate (VSic). Both parameters can be computed directly from
ADS-B data.

5.4.3. Climb
The climb segment starts when the aircraft reaches a clean configuration and lasts
until the moment when it reaches cruise altitude. As a common practice, aircraft
first accelerate to a target CAS and then fly according to this constant CAS. Mach
number increases with the increasing true airspeed, as well as the effect of the
decreasing speed of sound. When a certain Mach number is reached, an aircraft
will fly according to this constant Mach number until its cruising altitude. During
the Mach climb segment, a decreasing CAS will be observed due to the decreasing
pressure and temperature.

The challenge is to identify the crossover between the constant CAS and con-
stant Mach climb. Knowing the general profile of CAS and Mach number during
the climb, it is possible to design a two-step and two-piecewise estimator for ex-
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tracting this feature from CAS and Mach number profiles.
The crossover estimator consists of two parts: an increasing (quadratic or lin-

ear) segment and a constant segment. The quadratically increasing part is de-
signed so that it resembles the general observation that velocity increases with
a decreasing acceleration. The constant segment approximates constant CAS or
Mach values. The estimator is expressed as follows:

fmach(t) =
{
k1 · (t− tmach) + ymach t ≤ tmach

ymach t ≥ tmach
(5.14)

fcas(t) =
{
−k2 · (t− tcas)2 + ycas t ≤ tcas

ycas tcas ≤ t ≤ tmach
(5.15)

To illustrate the modeling process, we use a two-step piecewise least-squares
fitting as illustrated in Figure 5.5.

M

VCAS

VGS

VW

T

Fit:    (t)fmach

Fit:    (t)fcas

tmach

tcas

ymach

ycas

Validation CAS/Mach

Figure 5.5: Constant CAS/Mach climb identification process

The entire climbing phase in terms of Mach number can be divided into two
parts (increasing and constant). The first estimator applies on the entire climb
data and uses a least-squares fitting to extract the best CAS/Mach crossover time
tmach and constant Mach climb number ymach.

The second estimator uses tmach as cutoff time, fitting the start of the time
series until tmach. This estimator is designed to obtain the constant CAS speed
ycas and its starting time tcas. The crossover altitude is identified by extracting the
actual altitude of the aircraft at time tmach. We can also compute the theoretical
crossover altitude (h̃mach) from the ymach and ycas [145, section 17.2.2]:

h̃mach = T0

L

(
δ

−RL
g0 − 1

)

δ =

[
0.2
(
ycas
a0

)2
+ 1
]3.5
− 1

(0.2y2
mach + 1)3.5 − 1

(5.16)
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where T0 and a0 are temperature and speed of sound at sea level. R and L are spe-
cific gas constant and lapse rate. In this chapter, we use this theoretical model to
validate the obtained result. The complete validation model is defined as follows:

k1 > 0
k2 > 0

tcl,end − tmach > 0.05 (tcl,end − tcl,start)
tmach − tcas > 0.05 (tcl,end − tcl,start)
VAR[Vmach] < 0.022

VAR[Vcas] < 102

|hmach − h̃mach|
h̃mach

< 0.05

(5.17)

where tcl,start and tcl,end are the timestamps of start and end of the climb, and
VAR represents the variance of the parameter based all the data points in a con-
stant segment. The first two equations ensure the correct model parameters k1
and k2 are identified. The second two equations ensure the constant segments
last for more than 5% (an empirical value) of the climb duration. The last two
conditions examine the variance of all Vcas or Vmach during the constant segment.
They ensure the variations of data values remain below certain thresholds.

To illustrate the entire process, this method is applied on one flight and shown
in Figure 5.6. The Mach and CAS profile are shown during the climb, both with a
constant segment that has been identified by the model.
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Figure 5.6: Constant CAS/Mach climb identification example
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After tcas and tmach are determined, crossover altitudes hcas,cl, hmach,cl, at
which the constant CAS and constant Mach climbing commence, can be obtained.
Vertical rates VSprecas,cl, VScas,cl, and VSmach,cl that correspond to these three seg-
ments can also be computed. In addition, range from takeoff to the top of climb
Rtop,cl is calculated.

5.4.4. Cruise
Aircraft generally cruise at selected optimal flight levels that are often the most
fuel efficient. Optimal cruise altitude changes as aircraft weight decreases and at-
mospheric conditions alter. The calculation of the optimal cruise altitude requires
the knowledge of thrust and drag forces, atmospheric conditions, as well as the
mass of the aircraft. Since the WRAP model deals with the kinematic parameters
of the flight, we have to limit the scope of our model. The model focuses on de-
scribing the common and maximum values of altitude, speed, and range based on
our data.

The common parameters to be modeled are the cruise altitude hcr and cruise
Mach number Mcr. These two parameters are computed as the mean values re-
spectively during the flight. The initial cruise altitude hinit,cr is also an interesting
parameter that defines the top of the climb. It is computed as the average altitude
during the first minute of the cruise.

Aircraft operational boundary conditions such as their maximum cruise alti-
tude hmax,cr and maximum cruise Mach number Mmax,cr are first computed as
the maximum altitude and Mach number per flight. Then, the maximum values
of the flights from the same aircraft type are used to model the final boundary
conditions in the WRAP model. It is worth noting that the obtained parameters
representing operational boundary conditions are the maximum values occurring
during the operation. They are often within the performance limitations provided
by the aircraft manufacturer.

In addition, the cruise range Rcr is extracted as an operational reference pa-
rameter. Since aircraft rarely fly a direct route between the origin and destination
airport, the flight range cannot be calculated as the great circle distance between
origin and destination. Due to the noise inherited from onboard GPS receivers,
position reports in ADS-B can contain errors [95]. When integrating positions
along the trajectory, the accumulated error may grow larger. Hence, a spline filter
can be used in cases where large position errors exist. Then, the trajectory can be
re-sampled and integrated to calculate the cruise range. This process is illustrated
in Figure 5.7.

5.4.5. Descent
The descent phase of the aircraft is comparable to the climb phase. From the
top of descent, the aircraft undergoes a constant Mach and constant CAS descent
segment before reaching the approach altitude.

The essential parameters to be modeled are: range from top of descent to
destination Rtod,de, Mach number during constant Mach descent vmach,de, CAS
during constant CAS descent vcas,de, crossover altitudes hmach,de and hcas,de, and
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Figure 5.7: Cruise range spline filtering

vertical rates VSmach,de, VScas,de, and VSpostcas,de.
Similar to climb, the constant Mach/CAS descent performance can be modeled

by piecewise estimators. It is possible to use the same process as described in
Figure 5.5. The Mach profile is described using two linear pieces. The CAS profile
consists of a linear and quadratic piece due to the high non-linearity in speed for
the final approach segment. The model can be described as follows:

fmach(t) =
{
ymach t ≤ tmach

−k1 · (t− tmach) + ymach t ≥ tmach
(5.18)

fcas(t) =
{
ycas tmach ≤ t ≤ tcas

−k2 · (t− tcas)2 + ycas t ≥ tcas
(5.19)

Similarly, the results of such a model as applied on one flight is shown in Figure
5.8.

At lower traffic densities, it can occur that aircraft follow a so-called Contin-
uous Descent Approach (CDA), which eliminates level-flight segments to reduce
fuel consumption and engine noise. Such an approach affects the result of the
aircraft performance in descent. This effect is discussed in section 5.7.5 in this
chapter.

5.4.6. Final Approach
Due to different control procedures at each airport, it is not easy to generalize the
entire approach segment solely based on flight data. However, the final approach



5

98 5. Kinematic performance model

0.00

0.25

0.50

0.75

1.00

M
ac

h

0

100

200

300

400

C
AS

 (k
t)

0 250 500 750 1000 1250 1500 1750
Time (s)

0

10k

20k

30k

40k

Al
tit

ud
e 

(f
t)

Figure 5.8: Constant CAS/Mach descent identification example

segment is considered to start from around 1,000 ft until landing.
The segment of the final approach represents the end of a descent, where air-

craft operate at a nearly constant airspeed and rate of descent. The approach
speed Vcas,fa and rate of descent VSfa are modeled. In addition, the final approach
path angle ∠fa is calculated.

5.4.7. Landing
The landing model is comparable with the takeoff model. Parameters such as
touchdown speed Vtcd, braking distance dlnd, and average braking deceleration
alnd of the aircraft are modeled similarly to the takeoff phase. Approach speed
Vtcd can be observed from the last in-air velocity. The braking distance can be cal-
culated using Equation 5.11, and average deceleration can be calculated similarly
to takeoff acceleration.

5.5. Results
For this chapter, the proposed methods have been applied to 17 common aircraft
types. Sufficient data were collected for all aircraft types, approximately 5000
sets of data per flight phase. In order to better illustrate the modeling of each
individual parameter, detailed results from a single aircraft type (Airbus A320)
are described according to the previous model specification. A summary of the
results for other aircraft types is shown in Table 5.1.
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5.5.1. An Airbus A320 example
For each parameter, all three probability density functions (Normal, Gamma, and
Beta) are applied using MLE. The best model is chosen and represented by dif-
ferent line styles in all figures, shown in solid, dashed, and dotted-dashed line
respectively. ψ̂, ψmin, and ψmax are also marked in each of the plots accordingly.

Takeoff
Three performance parameters Dtof , Vlof , and ātof are shown in Figure 5.9, where
the most common values of these parameters are 1.65 km, 165 kt, and 1.93 m/s2

respectively.

1.06 1.65 2.24

dtof

Takeoff dist. (km)

144 165 186

Vlof

Liftoff speed (kt)

1.50 1.93 2.37

atof

Mean accelaration (m/s2)

Figure 5.9: Takeoff parameters

Initial climb
Two performance parameters Vcas,ic and VSic of the initial climb, up to the altitude
of 1500 ft, are shown in the first two plots of Figure 5.10, where the most common
values are 161 kt and 2477 ft/min.

148 161 174

VSic

Mean airspeed (kt)

1801 2477 3156

Vcas, ic

Mean vertical rate (ft/min)

0.59 9.14

1.05
VSstd, ic

Std. of airspeed (kt)

82.05 1065.58

298.60 Vcas, std, ic

Std. of vertical rate  (ft/min)

Figure 5.10: Initial climb parameters

The evidence for quasi-constant airspeed and vertical rate assumption can be
seen from the standard deviations per trajectory, shown in the last two plots. In
general, the vertical rate has larger variances due to the fact that data sources for
vertical rate commonly contain a certain degree of uncertainty [51].

Climb
Within the climb phase, the objective is to model the constant CAS/Mach climb
profile, as well as the vertical rates in each of the segments of the profile. All
parameters are shown in Figure 5.11. Most commonly, before the aircraft accel-
erates to a constant calibrated airspeed of 293 kt, it has a mean climbing rate
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of 2016 ft/min. Once reaching the altitude of approximately 12k ft, the aircraft
then climbs at 1600 ft/min until reaching a constant Mach number of 0.78 at the
crossover altitude of 28.9k ft. After that, the aircraft climbs at 1039 ft/min until
reaching the cruise altitude. The flight range of the climb phase is also shown in
the last plot, which is typically around 257 km.

273 293 313

Vcas, cl

Constant CAS (kt)

0.73 0.780.80

Mcl

Constant Mach (-)

6.2 12.0 17.8

hcas, cl

Constant CAS alt (kft)

25.8 28.9 32.0

hmach, cl

Constant Mach alt (kft)

1502 2016 2533

VSprecas, cl

Mean RoC, pre-CAS (ft/min)

1235 1660 2086

VScas, cl

Mean RoC, cst.-CAS (ft/min)

707 1039 1373

VSmach, cl

Mean RoC, cst.-Mach (ft/min)

141 257 374

Rtop, cl

Climb range (km)

Figure 5.11: Climb parameters

Cruise
During the cruise phase, cruise Mach number Mcr, altitude hcr, and cruise range
Rcr are shown in Figure 5.12 respectively. Maximum cruise Mach number Mmax,cr
and maximum cruise altitude hmax,cr can be obtained as the maximum value of
Mcr and hcr.
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Figure 5.12: Cruise parameters

Unlike other performance parameters, the cruise range Rcr is spread very
widely, where 99% of flights globally range from 487 km to 4352 km. This re-
flects the broad usage of the A320. However, most common flights for this aircraft
type cruise with a range of less than 1000 km in our global dataset.
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Descent
Similar to climb, the descent phase can also be modeled as a constant Mach de-
scent segment and a constant CAS descent segment. The parameters are shown
in Figure 5.13. Most commonly, the aircraft starts its initial descent at a constant
Mach number of 0.77 and a vertical rate of -1128 ft/min, until reaching an alti-
tude of 31.6k ft. It then starts a constant CAS descent of 281 kt and vertical rate
of -1974 ft/min until reaching the altitude 18.9k ft. Then, the aircraft descends
with a vertical rate of -1196 ft/min until final approach. The last plot shows the
range from top-of-descent to destination, typically around 234 km.
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Figure 5.13: Descent parameters

Final Approach
At final approach, airspeed Vcas,fa and vertical rate VSfa are shown in Figure 5.14,
which are 140 kt and -698 ft/min respectively. The last two plots show the vari-
ance of these two parameters within each trajectory. Similar to the initial climb,
the quasi-constant airspeed, and vertical rate assumption are still valid. The path
angle obtained during the final approach is around 3 degrees.
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Figure 5.14: Final approach parameters
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Landing
For the landing phase, approach speed Vtcd, braking distance dlnd, and mean de-
celeration ālnd are shown in Figure 5.15, with values of around 134 kt, 1.08 km,
and -1.22 m/s2. Braking distance shows a large variance, ranging from around
600 meters to more than 3 km. Different factors such as aircraft weight, wind
direction, and runway conditions would all cause such large deviations.
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Braking distance (km)
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Figure 5.15: Landing parameters

5.5.2. Correlations among parameters
There is usually an interdependence between parameters within each phase. For
instance, with higher acceleration, the takeoff distance would be reduced. In order
to reveal these relationships, a correlation matrix is computed for each combina-
tion of parameters and illustrated using a correlation plot.

In the following graphs, correlations are computed and visualized. The Pearson
correlation coefficient (denoted as r) of two variables x and y is computed as:

r =
∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
(5.20)

where x̄ and ȳ are the means of two vectors. When r is close to 1, the variables
are positively correlated. When r is close to −1, variables are negatively corre-
lated. When r is close to 0, there is no correlation between the two variables. In
all the following correlation plots, other than displaying computed Pearson corre-
lation coefficient values, the direction of the ellipse shows the negative or positive
correlation. The darkness of the ellipse shows the level of correlation.

In Figure 5.16, acceleration is highly correlated with the distance and veloc-
ity parameters. This is to be expected as they are always closely related during
takeoff.
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Figure 5.16: Correlations among parameters of takeoff and landing
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While in Figure 5.17, during the cruise, for instance, it is possible to see a
negative correlation between cruise altitude and cruise range.
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Figure 5.17: Correlations among parameters of cruise

From Figure 5.18, it possible to conclude that during the initial climb, the two
parameters that are of interest (horizontal and vertical speed) are not significantly
correlated. During the final approach, however, they show a strong negative cor-
relation, which indicates a shallow angle for higher speed approaches.
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Figure 5.18: Correlations among parameters of initial climb and final approach parameter

During the climb phase, as shown in Figure 5.19, strong positive correlations
appear between constant CAS and Mach crossover altitudes, vertical speeds, and
velocities and range. Strong negative correlations appear between vertical speeds,
range, and velocities, which firmly indicates the law of energy rates during the
climbing performance.
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Figure 5.19: Correlations among parameters of climb

In Figure 5.19, regarding the descent performance parameters, we can also
see similar correlations as described in the climb phase, with the exception that
the crossover altitude of constant CAS descent to deceasing CAS demonstrates
low correlations with all other parameters. This is possibly due to variation in
approach procedures among airports around the world.
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Figure 5.20: Correlations among parameters of descent
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5.5.3. Summary based on common aircraft types
The same methods and analysis are applied on a much larger dataset that con-
tains multiple aircraft types. Due to the complexity of displaying all distribution
and models for all parameters and aircraft types, the most common parameter val-
ues of 17 aircraft types are shown in Table 5.1. In this summary table, we follow
the International System of units instead of aeronautical units, so they are con-
sistent with the ones in WRAP dataset. Corresponding aircraft types of the ICAO
designators can be found in [65].

5.6. Comparison with existing models
The performance parameters in the WRAP model are all derived from a large
amount of flight data, resembling the best estimates of how aircraft truly perform.
There are a few existing performance models that can be used as references to
examine the validity of the estimated parameters. BADA (version 3.12) [103] and
Eurocontrol Aircraft Performance Database [37] are used for comparison. How-
ever, not all parameters present in the WRAP model are available in these two
existing models. Therefore, only the commons parameters are compared.

Within the BADA (version 3.12), similar performance parameters are contained
in the OPF (Operational Performance File) and APF (Airline Procedure File). The
differences between BADA and WRAP on ten performance parameters (from 14
aircraft types) are shown in Figure 5.21.
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Figure 5.21: Comparison with BADA

Most parameters from different aircraft types are very close to what is pre-
sented in BADA, with the exception that takeoff distance (dtof) at around 20%
lower than for BADA. This is likely due to the maximum takeoff weight assumed
in the BADA model. The same applies to the landing distance. In BADA, the land-
ing distance is also based on the maximum landing weight, for dry, hard, sea level
runways under ISA conditions with no wind.

In a similar fashion, the Eurocontrol Aircraft Performance Database can also
be used as a source for comparison. It provides more performance parameters,
which are used primarily for training purposes on a wide range of commercial
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and military aircraft. A total of 17 parameters from 14 aircraft that exist in both
models are compared. The result is shown in Figure 5.22.
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Figure 5.22: Comparison with Eurocontrol Aircraft Performance Database

The parameters that show large differences are the vertical rates during the
descent phase. In the Eurocontrol database, it is common that the second descent
segment has a much higher vertical rate. However, this trend is not significant in
the flight data as observed. It may also be the case that the crossover altitudes
obtained from data in the WRAP model are different from the fixed crossover
altitude from the Eurocontrol database.

Furthermore, compared to both BADA and the Eurocontrol database, the WRAP
model also includes the minimum value, maximum value, and a parametric model
for each parameter.

5.7. Discussion
5.7.1. Geo-correlation
The flights used for this chapter are distributed all over the world, which means
the obtained distributions of parameters reflect combinations of the performance
of all airspaces that are present in the dataset. The advantage of such a dataset is
that it gives a complete view of performance from different areas globally. On the
other hand, some of these distributions may not be able to reflect certain airspaces,
countries, or airports accurately due to factors such as controller procedures or
airport limitations. These geographically different situations may especially affect
data from the departure and arrival segments of flights. The correlation between
performance indicators and locations are not studied in this chapter. Hence, no
conclusion can be drawn as to whether the distributions would be significantly
different between different locations. This could, however, be an interesting topic
for future research.

5.7.2. Point of lift-off and touch-down
During the takeoff and landing phases, because of the low data update rate, the
estimation method illustrated in Figure 5.4 is used to locate the most likely lift-off
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or touch-down moment, from which related parameters are interpolated.
Statistically, there are relatively large gaps between the last on-ground data

point and the first in-air data point. Figure 5.23 shows the time gaps (∆t) observed
in the dataset from this study (takeoffs and landings of around 7000 flights).
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Figure 5.23: Time gap between two data points at takeoff and landing

Most commonly, the ∆t is about three to nine seconds during which the aircraft
would have flown, climbed, or descended for a fairly large distance. Thus, when
dealing with such data, using the above method improves the accuracy of param-
eter estimations during the phases where fewer samples are available. However,
the extrapolated liftoff time and speed would diverge from actual values.

It is also interesting to note that there is a three-second time gap in both figures
for takeoff and landing. This is likely due to the update rate of aggregated ADS-
B data used in this chapter. When considering raw ADS-B data, this gap can be
reduced to a half second if receivers are in a good line-of-sight range of the taking
off or landing aircraft.

5.7.3. Speed restrictions
It is not uncommon that speed restrictions are imposed by air traffic control for
aircraft below a certain altitude. In many airspaces, this restriction is set to be
250 kt below 10,000 ft. In the WRAP model, such a restriction is left out due to
the fact that it is hard to generalize this rule for all aircraft models and different
airspaces. In Figure 5.24, the calibrated airspeed of Airbus aircraft are shown. We
can see that for a majority of the flight, such speed restrictions exist, especially for
smaller aircraft types. However, for heavier aircraft types like A380 or A340, the
speed restriction cannot always be maintained.

This procedure limitation does influence parameter modeling. In this chapter,
we used a piece-wise model (as shown in Equation 5.14) to extract the climb
profiles. The quadratic function allows us to handle data under different operating
procedures.

Even though the WRAP model does not define these speed restrictions, it is not
difficult for future users to implement similar control logic in their own scenarios.
Then, from 10,000 ft above, the WRAP model parameter can be used.
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Figure 5.24: Calibrated airspeed at 10k ft per aircraft type

5.7.4. Cruise altitude
It is apparent from Figure 5.12, that the cruise altitude cannot be well described
by a continuous distribution. A discrete distribution would be better placed to
capture the selection of discrete cruise flight levels. However, for the uniformity of
the model parameters, the continuous density is assumed. Nevertheless, the mean
and maximum values found from the Normal distribution can still be used in most
scenarios.

Another common procedure that is not described in this chapter is the step
climbs for long-haul flights. With the decreasing aircraft mass due to fuel con-
sumption, the optimal cruise altitude increases. Airliners often perform step climbs
to avoid continuous changes in aircraft altitude, though it is less efficient as pointed
out by [27]. It is difficult to model the step climb when compared to other param-
eters in the WRAP model. Step climbing is a discrete process and happens only for
long-haul flights. For long-haul flights, there are often large missing segments in
the cruise phase due to limitations in ADS-B receiver coverage. As a result, impor-
tant climbing data may be omitted/missing. Given these complexities, we have left
step climbs out of this chapter. However, by using the existing parameters hinit,cr,
hcr, and hmax,cr, a continuous cruise climbing profile from initial cruise altitude to
the top of descent can be constructed.

5.7.5. Continuous descents
To maximize fuel efficiency and when it is allowed by air traffic controllers, aircraft
often perform continuous descent approaches (CDA) in order to save fuel and
reduce noise. However, when modeling the aircraft performance, CDA has an
impact on some parameters during the entire descent phase. To study the influence
of this factor, a similar number of CDA and non-CDA flights (around 3000 flights
each) are used. All parameters related to descent are computed and compared in
parallel. There are different ways of defining CDA. In this chapter, we considered
CDA for flights that do not contain any level-off during the descent.

As shown in Figure 5.25, eight parameters in CDA and non-CDA flights are
shown. Crossover altitudes and velocities of constant Mach/CAS descent do not
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change between these two approaches, but other parameters show large differ-
ences. In the first sub-figure, it is clear that performing a CDA decreases the range
of top-of-descent drastically. From sub-figures six to eight, it is also apparent that
the descent rates are all increased under CDA. All of these differences are indeed
aligned with the definition of CDA. However, other than the range of descent,
by separating the cases of CDA and non-CDA, the accuracy for other parameter
models do not show significant increases. As a result, the generic models are still
proposed for the descents phase. Nevertheless, as an additional precaution, such
operational influences should not be neglected when it comes to flight data mining
and analytics.
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Figure 5.25: Comparision of descent parameters between CDA and Non-CDA

5.7.6. Data and model use cases
ADS-B data are not distributed equally per aircraft type. The same amount of
data from most common aircraft types such as Airbus-320 and Boeing-737 can be
collected within a week, while for other less common aircraft types such as Airbus-
380 and Boeing-777, this process may take several months. While completing this
research, a total of 1.6 million flights have been captured during a period of five
months for around 30 commercial aircraft types. However, with the constant flow
of new ADS-B data, the models can be continuously improved and extended.

The current WRAP model and future updates are published under the GNU
open source license. Parameters from the model have been adopted in the BlueSky
Open Air Traffic Simulator [54], as one of the core performance models of flight
envelopes. At a broader scale, both methods and models addressed in this chapter
can be beneficial for other use cases, for example, probability density function
based Monte-Carlo simulations and aircraft performance comparison studies.
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5.8. Conclusion
In this chapter, we primarily discussed the process of utilizing Automatic Depen-
dent Surveillance-Broadcast (ADS-B) data collected by large crowd-sourced net-
works to construct aircraft kinematic performance models. The entire process
consisted of flight data processing, aggregating atmospheric data using external
sources, developing methods that extract performance parameters, and designing
parametric statistical models, as well as examining the final WRAP model. As a
result, a total of 32 parameters per aircraft type were presented in the current
version of the WRAP model, covering the 17 most common aircraft types. The
models for the 17 aircraft types were summarized in this chapter and shared un-
der an open-source license.2 Comparison studies were performed against existing
models such as Eurocontrol Base of Aircraft Data (BADA) and Eurocontrol Aircraft
Performance Database.

The WRAP aircraft performance model was constructed based on global flight
data observed over an extended period of time. It was not designed to reflect dif-
ferent local variations in the air traffic management sectors. Short-term variations
were also not considered in this chapter, which could pose a limitation for the re-
sulting model. However, the set of methods proposed in the study could allow the
creation of similar models using user-defined spatial and temporal filtering.

Like other kinematic models, WRAP is not designed for the purpose of single
trajectory prediction or optimization. This is the main limitation of the WRAP
model. It aims to serve as a realistic model for applications where only kinematic
performance models are needed.

It is worth emphasizing that the WRAP model not only defines procedural pa-
rameters but also proposes parametric statistical models for these parameters.
These statistical models can be used conveniently to conduct Monte-Carlo sim-
ulations. The maximum and minimum parameter values in WRAP can be used
as performance limitations in simulations. This property enables extended capa-
bilities for aircraft performance based studies, such as large-scale 4D trajectory
simulations and air traffic optimizations. With the increase in data gathered by
ADS-B receiver networks, the accuracy and aircraft type varieties of the model can
be gradually improved.

5.9. Acknowledgment
We would like to thank FlightRadar24 and its network contributors for the global
ADS-B dataset used in this Chapter.

2The WRAP model is available at: https://github.com/junzis/wrap.





6
Thrust and fuel flow model

The previous chapter discusses the kinematic performance of the aircraft. From this
chapter onward, we start to dive into the more complicated dynamic performance
models. Thrust and fuel flow are the first two important components that need to
be addressed, as many air traffic management studies are dependent on thrust and
fuel consumption models. The commonly used BADA model provides the capability to
compute maximum thrust and thrust specific fuel consumption. However, its usage is
limited by its closed-source license restrictions. As a contribution to the open aircraft
performance model, this chapter describes an open approach to compute maximum
thrust and fuel flow for aircraft equipped with turbofan engines. First, a thrust model
is constructed. It is based on a simplified thrust model proposed by Bartel and Young
and a data-driven empirical model proposed by Svoboda. Next, the fuel flow is han-
dled by a new model using the engine test data from the ICAO emission data bank.
All data required for the model are open and publicly available. Coefficients required
to compute the fuel flow are derived and listed in Appendix C of this dissertation. At
the end of the chapter, a verification of the open modeling approach is made with
flight management system data from the TU Delft Cessna Citation II aircraft.

Part of this chapter is published in:
Sun, J., Ellerbroek, J. and Hoekstra, J.M., 2018. Aircraft initial mass estimation using Bayesian infer-
ence method. Transportation Research Part C: Emerging Technologies, 90, pp.59-73 [123].
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6.1. Introduction
Any air transportation studies which make use of dynamic performance models
require a model that describes engine thrust. Unlike other parameters addressed
in this dissertation (drag polar or mass), thrust and fuel consumption are two
parameters that are difficult to estimate based on aircraft surveillance data alone.

Aircraft thrust and aircraft mass are two hidden parameters that influence the
flight performance significantly. This can also be seen in the total energy equation:

(T −D)V = mV
dV

dt
+mg

dh

dt
(6.1)

We can re-arrange the equation so that the dynamic and kinematic components
are on different sides of the equation, which is expressed as:

T −D
m

= dV

dt
+ g

V

dh

dt
(6.2)

From Equation 6.2, we can infer that the same trajectory (represented by horizon-
tal and vertical speeds) can be constructed with different combinations of thrust
and mass. In the later chapters of the dissertation, we will focus on using this basic
concept to estimate aircraft mass. In order to derive the thrust of the aircraft, a
different modeling approach has to be adopted.

Nowadays, most airliners are equipped with turbofan engines. As such, turbo-
fan engines are considered in most air transportation studies. The net thrust of
the aircraft is dependent on the drag. However, the maximum available thrust,
defined by the engine performance, is dependent on the airspeed and altitude of
the aircraft. For example, in [5], the relationship between the maximum thrust,
airspeed, and altitude are discussed. The maximum takeoff thrust at sea level is
modeled as:

T

T0
= 1−K1V +K2V

2 (6.3)

where T0 is the maximum thrust at zero speed at sea level. K1 and K2 are engine
specific coefficients.

During the climbing, the maximum thrust decreases with increasing airspeed.
It can be considered as a function of the Mach number:

T

T0
= AM−n (6.4)

where A and n are functions of altitude.
When aircraft is cruising with high airspeed, the maximum thrust can be seen

as constant with regards to the speed. In this condition, the relationship between
the maximum thrust (T ) and maximum static thrust at sea level (T0) can be sim-
plified as:
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T

T0
=
(
ρ

ρ0

)m
(6.5)

where ρ and ρ0 are air density at the altitude of aircraft and sea level, and m is an
engine dependent parameter.

The models that describe the thrust profile are straightforward. However, most
of the coefficients are engine dependent. Without data from engine manufactur-
ers, it is hard to obtain specific model coefficients for each aircraft type. In this
chapter, we rely on previous literature that studied these coefficients.

A number of turbofan engines are studied by [8] in 2008. The study has led
to an open model that describes the coefficients in the thrust equations mentioned
earlier. In the second section of the chapter, we focus on explaining the details of
this model.

In order to complete the thrust model proposed by [8], one crucial piece of
information is required, which is the engine thrust at cruise altitude. In [8], such
information is assumed to be known. However, not all engines have their cruise
thrust published. In combination with another study proposed by [136], we are
able to use an empirical equation to approximate the cruise thrust, when the data
is not available.

Knowing the thrust is the first step in computing fuel consumption. The fuel to
energy conversion is commonly given as thrust specific fuel consumption (TSFC),
which specifies the amount of fuel burnt per unit of time and per unit of force.
Engine manufacturers in some cases publish TSFC values of the engines at cruise
conditions. This can be used as an indicator to evaluate engine performance dur-
ing the cruise. However, computing fuel flow in all flight conditions requires a
more sophisticated model.

There are generally two ways to compute fuel consumption in the literature.
The first and most common approach is to first estimate the net thrust of the
aircraft based on the trajectory data (assuming certain mass). The fuel flow can
then be computed based on the TSFC model given by the BADA. This method can
be seen in [20], [34], and [28]. The second approach is to skip the physical model
of flight dynamics and BADA and to instead use a supervised machine learning
model constructed from flight data recorder information. These machine learning
based methods using Gaussian process regression can be seen in [18] and [16].

Both approaches, however, present drawbacks. As mentioned earlier, the re-
stricted license is the limitation of the BADA. On the other hand, the black-box
machine learning model does not easily express the fundamental relationships be-
tween aircraft states and fuel consumption. The construction of the black-box
model also requires proprietary and often closed-source data from aircraft flight
management systems.

In the third part of this chapter, we focus on explaining the open fuel flow
model constructed based on the ICAO emission data bank. In section four, both
thrust model and fuel flow model are verified with flight recorder data from TU
Delft’s Cessna Citation II aircraft.
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6.2. Model thrust of turbofan engines
In [8], three simplified thrust models for turbofan engines are proposed. The first
one is used for calculating the maximum takeoff thrust at sea level. The second
model takes the first model as a basis and also considers the altitude, so that
maximum takeoff thrust can be computed at non-sea-level conditions. The third
model calculates the maximum thrust for en-route conditions.

All proposed models contain empirical coefficients that are obtained using ex-
isting engine data. Though the original data were not published, most of the model
coefficients are given. In this section of the chapter, we reproduce the equations
that were proposed by [8], with some alterations to improve the computational
efficiency.

In the proposed simplified thrust model, many numerical coefficients exist in
the equations that are listed in the rest of this section. According to [8], these
values are obtained from the model fitting using available engine data.

6.2.1. Takeoff thrust at sea level
According to Equation 6.3, the takeoff thrust can be considered as a (second-
degree polynomial) function of the speed. The coefficients of the polynomial func-
tion are engine specific. In [8], the coefficients are further modeled as functions
of the bypass ratio. Thus, the relationship between the maximum takeoff thrust
and the maximum static thrust can be described as:

T

T0
= 1− 0.377(1 + λ)√

(1 + 0.82λ)G0
M + (0.23 + 0.19

√
λ)M2 (6.6)

where λ is the bypass ratio of the engine. Coefficient G0 is also a function of the
bypass ratio:

G0 = 0.0606λ+ 0.6337 (6.7)

According to the validation based on different engine performance data used
in [8], the error of thrust produced by Equation 6.6 is within ±1% regarding the
true thrust, with the speed up to Mach 0.4 during the takeoff.

6.2.2. Takeoff thrust with the influence of altitude
The previous model assumes the condition of being at sea-level. However, not all
runways are at sea-level. Taking into consideration the altitude of the airport, the
maximum takeoff thrust can be modeled similarly:

T

T0
= A− 0.377(1 + λ)√

(1 + 0.82λ)G0
ZM + (0.23 + 0.19

√
λ)XM2 (6.8)

where A, Z, and X are newly introduced coefficients that are related to the pres-
sure ratio of δ. Let δ be:
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δ = p

p0
(6.9)

Coefficients A, Z, and X in Equation 6.8 can be computed as:

A = −0.4327δ2 + 1.3855δ + 0.0472
Z = 0.9106δ3 − 1.7736δ2 + 1.8697δ
X = 0.1377δ3 − 0.4374δ2 + 1.3003δ

(6.10)

6.2.3. Maximum thrust for en-route flights
To compute the thrust, the climbing phase is divided into three segments: 0-10k ft,
10k-30k ft, and 30k-40k ft. In each of these segments, the thrust is computed by
different equations. Instead of computing the thrust ratio of the net static thrust
at sea level, the thrust is modeled in relation to the net thrust at cruising altitude
(of 30k ft), denoted as Tcr. In addition, the calculation of thrust also depends
on a reference Mach number, Mcr, and calibrated airspeed, Vcas,cr, at the cruising
altitude. The thrust is computed in three steps:

1) For the en-route segment from 30k ft to 40k ft, the thrust ratio is modeled as
follows:

T

Tcr
= c1 ln

(
p

pcr

)
+ c2 (6.11)

where c1 and c2 are calculated as:

c1 = −0.4204
(
M

Mcr

)
+ 1.0824

c2 =
(
M

Mcr

)−0.11 (6.12)

2) For the segment from 10k ft to 30k ft, the thrust can be similarly computed.
Instead of using the reference Mach number, the reference calibrated airspeed is
used. The thrust in this segment is calculated as:

T

Tcr
= c3

(
p

pcr

)c4

(6.13)

where c3 and c4 are calculated as follows:
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c3 =
(

Vcas

Vcas,cr

)−0.1

c4 = −0.335
(

Vcas

Vcas,cr

)
+ c5

(6.14)

In order to find the value of c5, a look up table is used in [8]. To simplify the
computation, a linear approximation for c5 is adopted in this dissertation, which
is expressed as follows:

c5 = 2.667 · 10−5 VS + 0.8633 (6.15)

where the unit of vertical speed (VS) is feet/minute.

3) For the first climbing segment up to 10k ft, a linear model is used to approxi-
mate the thrust ratio, with respect to the thrust ratio at 30k ft. The relationship is
as follows:

T

Tcr
= c6

(
p

pcr

)
+
[
T10

Tcr
− c6

(
p10

pcr

)]
(6.16)

where T10 is the thrust at 10k ft. It is first computed using the Equation 6.13.
Coefficient c6 is introduced to incorporate the variations of speeds and vertical
rates. In [8], a look up table is used to find the value of c6. However, to increase
the computation efficiency, a function is constructed to approximate m lookup
values from Table 4 in [8]:

c6 = −1.2043 · 10−1
(

Vcas

Vcas,cr

)
− 8.8889 · 10−9VS2 + 2.4444 · 10−5VS + 4.7379 · 10−1

(6.17)
where c6 can be considered as a bi-variate polynomial function that is dependent
on the Mach number and the vertical rate.

6.2.4. Reference cruise thrust
One of the parameters used in this empirical two-shaft turbofan engine thrust
model is the reference thrust at 30k ft altitude, denoted as Tcr. However, this
information is not always published by aircraft or engine manufacturers. In Ap-
pendix C, a know list of cruise thrust for different aircraft and engine types is
summarized based on available information.

When Tcr is not available for a specific engine, we rely on the empirical model
proposed in [136], where the cruise thrust model is constructed with respect to
the maximum static thrust as:

Tcr = 0.2T0 + 890 (6.18)
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6.2.5. Summary
Combining all previous equations, it is possible to see that the model of net thrust
involves multiple parameters of the flight. The details of the model are also dif-
ferent in each flight phase. To generalize the model, in the remaining chapters,
the following equation is used to represent the model to calculate the maximum
thrust:

T = fthr(h, V,VS) (6.19)

6.3. Model engine fuel flow
One of the most comprehensive public data sources on aircraft engines is the ICAO
aircraft engine emission data-bank [63]. The database is designed to provide emis-
sion information of aircraft engines concerning their environmental impact. In
addition to its quantification of greenhouse gas emissions, the database also pro-
vides several fuel flow indicators for each engine.

The ICAO engine emission data-bank defines fuel flow under four different
modes, which are takeoff, climb-out, approach, and idle. The power settings of
the engine are defined at 100%, 85%, 30%, and 7% of engine maximum power
respectively. Under the static testing condition, these engine fuel flow data are
obtained and published.

In order to create a model that can compute actual fuel consumption under
different thrust settings, we construct a continuous fuel flow profile based on the
four points from the ICAO engine emission data-bank. These four data points are
fitted with a 3rd-degree polynomial model. The coefficients for the polynomial
function are denoted as Cff3, Cff2, and Cff1. In Figure 6.1, the results for some
example aircraft types and engines are illustrated.
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Figure 6.1: Interpolation of fuel flow based on ICAO emission data

The fuel flow profile defines the relationship between fuel flow and the percent-
age of the maximum static thrust. Denoting ffuel,SL as the function representing
fuel flow (kg/s) at the sea level, the dynamic fuel flow model can be computed
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knowing the net thrust:

ffuel,SL(T ) = Cff3

(
T

T0

)3
+ Cff2

(
T

T0

)2
+ Cff1

T

T0
(6.20)

With the increasing altitude, the amount of fuel flow is increased in order to
produce the same amount of the thrust. This difference can be seen by the thrust
specific fuel consumption (SFC) at sea-level and cruise conditions. In Figure 6.2,
the difference of SFC between sea level and cruise altitude for multiple engines
are shown.
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Figure 6.2: Difference in specific fuel consumption at sea level and cruise altitude

Based on the SFC at sea level and cruise altitude, we propose a linear correc-
tion factor (Cff,ch) that takes into consideration the altitude effect. When SFC is
available at the cruise altitude, the correction factor is calculated as:

Cff,ch = SFCCR − SFCSL

hCR

= SFCCR − ffuel,SL(T0)/T0

hCR

(
unit:

kg

s · kN ·m

) (6.21)

where the hCR is the cruise altitude for the corresponding SFC. Figure 6.3 illus-
trates the coefficient for engines with available SFCCR. The mean value is found
to be around 6.7 · 10−7, which is used as a default value for engines where SFCCR
is not available.

Combining the fuel flow at sea level condition and the fuel flow altitude cor-
rection, the dynamic fuel flow can be computed. The final fuel flow model is
expressed as:
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Figure 6.3: Difference of specific fuel consumption between sea level condition and cruise condition

ffuel(T, h) = ffuel,SL(T ) + Cff,ch · T · h

= Cff3

(
T

T0

)3
+ Cff2

(
T

T0

)2
+ Cff1

T

T0
+ Cff,ch · T · h

(6.22)

6.4. Discussion
In this section, we first evaluate the approximation made to two parameters from
the two-shaft turbofan thrust model proposed in [8]. Next, based on the ICAO
engine emission data, we compute and provide the fuel flow coefficient of the
most common aircraft types (with available engine configurations). Last, based
on flight management system data, we verify the proposed thrust and fuel flow
models. In addition, the differences between the proposed models and BADA
model are also measured.

6.4.1. Evaluation of thrust model coefficients
In [8], the parameters c1, c5, and c6 are given by a lookup table. The disadvantage
of the lookup table is that it provides discrete parameter values, which are not effi-
cient for computation. It also does not efficiently handle values that are not in the
table. In this chapter, two function based models are constructed to approximate
these parameters (Equation 6.12, 6.15, and 6.17). An easy way to verify these
low dimension functions is through visualization, where we can inspect values
from the lookup table with the function based models.

In Figures 6.4, 6.5, and 6.6, values from the lookup table and the approxi-
mation for c1, c5, and c6 are shown. From all these figures, we can see that the
equations 6.12, 6.15, and 6.17 are able to accurately approximate the c1, c5, and
c6. The non-linear relationships in Figure 6.6 is also shown. Using these functions,
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we can further interpolate c1, c5, and c6 at input values that are not described in
the lookup table.
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Figure 6.4: Comparison of the linear approximation with the lookup table data (c5)
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Figure 6.5: Comparison of the linear approximation with the lookup table data (c5)

6.4.2. Coefficients of engine performance
In order to simplify the process for future studies, we pre-computed the coeffi-
cients from Equation 6.22 using the data from the ICAO engine emission data-
bank. In Appendix C, the coefficients for common aircraft are listed. Since most
aircraft can have multiple engine options, the fuel flow model can vary among
aircraft within a fixed aircraft type. In this table, different engine options for the
same aircraft type are available.

6.4.3. Comparison of OpenAP and BADA
To demonstrate the difference between the open models and BADA, we computed
the maximum thrust of an aircraft (Airbus A320 with V2500-A1 engines) under
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Figure 6.6: Comparison of the bi-variate approximation with the lookup table data (c6)

different flight conditions. The result is shown in Figure 6.7. The maximum thrust
is computed using different combinations of altitude and speed.
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Figure 6.7: A320 maximum thrust (V2500-A1 engine)

A large difference is visible for the aircraft at low altitude. The difference
between open models and BADA becomes smaller when the aircraft is at a higher
altitude. One of the major reasons for the difference is that BADA 3 does not model
thrust dynamic due to the change in airspeed. In contrast, the open models show
a clear nonlinear relationship between aircraft speed and thrust. The performance
is more realistic for a lower altitude at a lower speed.

We can also compare the results of fuel flow models. BADA’s fuel flow model is
dependent on the thrust and the speed, while the OpenAP fuel flow model depends
on the thrust and the altitude. In Figure 6.8, the difference between the two fuel
flow models is shown.

The performances of both fuel flow models are similar at a lower speed. How-
ever, while the aircraft is flying at a higher speed, the OpenAP fuel flow model
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Figure 6.8: A320 fuel flow (V2500-A1 engine)

depends more on the altitude of the aircraft.

6.4.4. Comparison of OpenAP, BADA, and flight data
In this section, we compare the thrust and fuel flow model with data obtained
from the flight management system of a Cessna Citation II flight. The flight was
conducted for a student practice course at the TU Delft, on March 20, 2017. In
Figure 6.9, the trajectory profile is shown.
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Figure 6.9: Trajectory profile of the flight

The first four plots show the altitude (h), vertical speed (VS), true airspeed
(V ), and acceleration (a) respectively. The last two plots illustrate the N1 profiles



6.4. Discussion

6

125

for the left and right engines. N1 represents the rotational speed of the low-
pressure spool of the turbofan engine, with 100% being the highest engine rotation
speed. It is a parameter that is directly related to the power setting of the engine.

The distinct characteristics of the this practice flight profile should be noted.
First, the aircraft is cruising at a lower altitude (around 10,000 ft) instead of the
optimal altitude (over 30,000 ft). Secondly, the flight procedure is designed to
test the envelope of the flight performance. Thus, drastic changes in speed and
altitude occur during the flight.

With the known aircraft mass, we can compute the true thrust of the aircraft
based on these data. In Figure 6.10, the true thrust is compared with an esti-
mated maximum and net thrust using the thrust model explained earlier. We also
compute the maximum and net thrust using the BADA model in the same figure.
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Figure 6.10: Thrust estimation comparison using two-shaft turbofan model, BADA, and FMS data

The flight is divided into three segments, which are the climb, cruise, and de-
scent. In the upper plot, the solid and dashed black lines represent the estimated
maximum thrust and BADA maximum thrust respectively. The gray solid line rep-
resents the true net thrust. Similarly, the lower plot illustrates the estimated net
thrust based on the open model and BADA. The net thrust is computed as the prod-
uct of the maximum thrust and percentage of the total power. The percentage of
total power is computed as the averaged N1 values for left and right engines.

Looking at the comparison of the net thrusts in the lower plot, we can see that
the open two-shaft turbofan thrust model is able to approximate the thrust to some
degree of accuracy. For this particular flight carried out by our Cessna Citation
II aircraft, the proposed open model yields a better approximation compared to
BADA 3 model. When examining the top plot, we can see that the highest true net
thrust corresponds to the maximum thrust during the period when N1 is close to
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100%. This occurs at the start of the climb and around 2000 seconds during the
cruise.

It is important to pay attention to the difference between the estimated thrust
and true thrust computed using onboard data. This difference could be due to the
nonlinear relationship between the fan rotation speed (N1) and the actual throttle
setting.

Next, based on the net thrust (estimated and true), we can compute the fuel
consumption using our fuel flow model. In Figure 6.11, the estimated fuel flow
profiles are illustrated. The true fuel flow recorded in the flight management
system is also shown in this figure. In the upper plot of the Figure 6.11, the
estimated net thrust is used in the fuel flow model. In the lower plot of the figure,
the true thrust is used in the fuel flow model. Estimations are drawn in solid black,
while the true flue flow is drawn in gray.
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Figure 6.11: Fuel flow estimation comparison using two-shaft turbofan model, BADA, and FMS data

By comparing the difference between true and estimated fuel flow, we can
compute the error metric for the open model and the BADA model. The results
are shown in Table 6.1. We can see that when using our open model, with the
estimated net thrust, the mean absolute error is reduced in respect to the BADA 3
model. When true net thrust is used, the open model still shows less error than
the BADA model.

6.5. Conclusion
In this chapter, we described two important open models (thrust and fuel con-
sumption) related to aircraft performance. The thrust model was created by com-
binating two open models proposed in the literature. The fuel flow model was
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Table 6.1: Fuel flow error metric

Thrust Model Mean absolute error In percentage
Estimated thrust Open model vs true 0.0400 kg/s 35.61

BADA 3 vs true 0.0524 kg/s 46.56
True thrust Open model vs true 0.0326 kg/s 25.66

BADA 3 vs true 0.0381 kg/s 31.36

constructed based on the open data available in the ICAO engine emission data-
bank. In addition to the equations that calculate the thrust and fuel flow model,
related engine parameters are also listed in the Appendix C of this dissertation.

By using the recorded fuel consumption data from a Cessna Citation flight, we
verified the fuel flow computed using the open model and BADA 3 model against
the true values. The fuel flow estimated using our open models was found to be
closer to true values than that of estimations made with BADA 3.1

It is important to note that using one flight alone could not sufficiently validate
the models. However, this could be considered as a quick verification for both
thrust and fuel flow models. In order to fully test the models, ideally, multiple
flights from different aircraft types shall be tested in the future.

1Compared to BADA 3, the newer BADA 4 provides a more accurate fuel flow model. However, we
lack a license to make any comparison in this dissertation.





7
Drag polar model

In the last chapter, a thrust and fuel model are proposed. In this chapter, another
crucial element of the performance model, the aerodynamic model, is studied. In air
traffic management research, the aerodynamic properties of an aircraft determine
a crucial aspect of the aircraft performance model. Deriving accurate aerodynamic
coefficients requires detailed knowledge of an aircraft’s design. These designs and
parameters are often protected by aircraft manufacturers and can rarely be used
in public research. On the other hand, very detailed aerodynamic models are not
always necessary in air traffic management studies, as a simplified point-mass aircraft
performance model can be used. In these studies, a quadratic relation is assumed to
compute the drag of an aircraft based on the required lift. This so-called drag polar
describes an approximation of the drag coefficient based on the total lift coefficient. In
this chapter, using surveillance data, we estimate the drag polar coefficients based on
a novel stochastic total energy model using Bayesian computing. The method is based
on a stochastic hierarchical modeling approach and is made possible given accurate
open aircraft surveillance data and additional analytical models from the literature.
The resulting drag polar model can be used to compute aircraft total drag under clean
configuration, as well as when flaps and landing gear are deployed. In addition, the
wave drag due to compressibility at high Mach number is also modeled.

This chapter is based on the following publication:
Sun, J., Hoekstra, J.M. and Ellerbroek, J.M., 2018. Aircraft Drag Polar Estimation Based on a Stochastic
Hierarchical Model. Proceedings of the 8th SESAR Innovation Days [131].
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7.1. Introduction
Since the invention of aircraft, researchers have been studying the aerodynamic
properties of airfoils and aircraft. Examples of fundamental studies on aerody-
namic drag are given by [55, 56]. From the start, the main goal has been to
optimize the lift over drag ratio for the cruise flight. Much effort has been ded-
icated to creating designs that would reduce drag and thus increase the lift effi-
ciency of aircraft. While the zero drag coefficient contains the parasitic drag of the
whole aircraft, the wing is mainly responsible for the lift-induced drag. Besides
the choice of the airfoil, the aspect ratio of the wing plays an important role. The
wing can be seen as a drag to lift converter, of which the already high efficiency
can be increased further. Current research on such topics as boundary layer suc-
tion, morphing wings, plasma control, and blended wing-body aircraft shapes all
contribute to this effort.

Lift and drag are considered as functions of the wing area, dynamic airspeed,
and air density, and the remaining effects of the flow for both the lift and drag
are described with coefficients for both forces. The most challenging aspect is
to accurately calculate the lift and drag coefficients. They are dependent on the
Mach number, the angle of attack, the boundary layer, and, ultimately, the aircraft
aerodynamic shape. For fixed-wing aircraft, these coefficients are often modeled
as functions of the angle of attack, which is the angle between the aircraft body
axis and the airspeed vector. In air traffic management research, however, the
simplified point-mass aircraft performance model is mostly used. This model con-
siders an aircraft as a dimensionless point, where the angle of attack, as well as
the side-slip angle and the effect of the angular rates, are not explicitly considered.
Instead, the drag polar is used. Drag polar expresses the relationship between the
drag coefficient and lift coefficient, which is one of the main factors determining
the performance of an aircraft. Knowledge of the drag polar is, therefore, essen-
tial for most ATM research such as trajectory prediction, fuel optimization, and
parameter estimation.

Many methods exist to explore the aircraft performance during the preliminary
design phase, often with a focus on modeling of the aerodynamics. Hence, one
source of open information regarding drag polar models comes from textbooks
[5, 112, 104, 138]. However, only older aircraft models and extrapolations of
similar designs are available in the literature. In [35], an empirical model for
estimating zero-lift drag coefficients was proposed using existing literature data
based on several aircraft models. In general, open data on drag polar model is
rare, especially for modern commercial aircraft.

The aircraft manufacturers do have accurate aerodynamic data that can be
used to construct the drag polar model. However, these data are generally not
publicly available due to commercial considerations. Currently, the most com-
prehensive collection of drag polar data is the Base of Aircraft Data (BADA). It
contains the drag polar models for most aircraft types. BADA is the default “go-to”
aircraft performance model for current ATM studies. However, the strict license
makes it impossible to share and redistribute the BADA model data. Therefore,
there is a need for a set of drag polar models that can be shared openly.

The goal of this chapter is to propose an alternative path for estimating the



7.2. Theory of point-mass aerodynamic model

7

131

drag polar models of modern commercial aircraft without relying on proprietary
manufacturer data. We approach this estimation problem using a novel stochastic
total energy (STE) model. The STE approach treats the parameters of the stan-
dard total energy model as random variables. Then, we try to solve the parame-
ter estimation as a minimization problem using Bayesian computing, specifically,
the Markov Chain Monte Carlo (MCMC) approximations. The application of this
Bayesian data approach is slowly being brought to the engineering domain. In
[99], we can see the application of the Bayesian hierarchical model and the use of
the MCMC method for inverse problems in the aerospace domain. The STE model
and solutions proposed in this chapter are closely related to this line of research.
Finally, using this method, a database of drag polar models for common airliners
are produced and made publicly available.

The structure of this chapter is as follows. In section two, the fundamentals
of the point-mass drag polar model are introduced. In section three, we focus
on the hierarchical stochastic model approach and the solution using MCMC. In
section four, experiments are conducted to examine and obtain drag polar data of
multiple aircraft types. Section five lists the results of drag polar parameters for
all available aircraft. Finally, section six and seven are dedicated to the discussions
and conclusions of this research.

7.2. Theory of point-mass aerodynamic model
7.2.1. Drag polar in point-mass models
When an aircraft flies, resulting aerodynamic force can be presented as two or-
thogonal components, which are lift and drag. The drag is produced by the air-
flow interacting with the aircraft body. The lift is produced due to the pressure
difference between the upper and lower surface of the lifting devices (wings).
With the same airspeed and altitude conditions, control of lift is performed by
re-configuring the aircraft angle of attack and/or modifying the surface shape of
lifting devices. By changing the elevator settings, the pitch angle and the angle of
attack can be controlled. On the other hand, a change of the lifting device surface
is primarily performed by re-configuring flaps.

In general, the lift and drag forces of an aircraft that is traveling in the free
stream can be computed as:

L = CL qS

D = CD qS

q = 1
2ρV

2
(7.1)

where CL and CD are lift and drag coefficients respectively. q is the dynamic
pressure. ρ, V , and S are air density, true airspeed, and the lifting surface area of
the aircraft. In practice, CL and CD can be modeled as functions of the angle of
attack (α), Mach number(M), and flap deflection(δf ):
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CL = fcl(α,M, δf )
CD = fcd(α,M, δf )

(7.2)

In aerodynamic models, multi-dimensional table interpolation or higher order
polynomials are often used to express these functions. However, in many ATM
studies, a point-mass model is only required, where the angle of attack is not
modeled.

In the point-mass performance model, the relation between the aerodynamic
coefficients CD and CL is simplified to the drag polar. It is commonly represented
using a quadratic function as:

CD = CD0 + kC2
L (7.3)

where CD0 is the zero-lift drag coefficient and k is the lift-induced drag coefficient
factor. In the following sections, our efforts are focused on modeling and estimat-
ing these two parameters.

7.2.2. Analytical model for lift dependent drag coefficient
Studies [104] and [100] describe the effects of increasing vortex drag and skin
friction. It is also common to describe the lift-induced coefficient k using the
Oswald efficiency factor e (e ≤ 1). It is a correction factor reflects the deviation
from an ideal elliptical lift distribution (e = 1). The relationship between k and e
is:

k = 1
πAe

(7.4)

where A is the aspect ratio of the wing. e is the Oswald factor that can be model
theoretically as follows:

e = 1
Q+ PπA

(7.5)

where Q and P represent the inviscid and viscous part of the induced drag coeffi-
cient. There are many ways to approximate the P and Q, which are summarized
by [100].

In this chapter, we have adopted the model proposed by [78] to calculate the
Oswald efficiency factor (e). In this model, Q is approximated as follows:

Q = 1
0.99

[
1− 2 (dF /b)2

] (7.6)

where dF /b is the fuselage diameter to wingspan ratio. P is considered to be
dependent on the zero-lift drag coefficient as:
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P = 0.38CD0 (7.7)

where the coefficient 0.38 is obtained empirically based on several existing aircraft
types. Combining previous equations, we can produce the closed-form model for
lift-induced drag coefficient:

k = 1
0.99

[
1− 2 (dF /b)2

]
πA

+ 0.38CD0 (7.8)

and the Oswald efficiency factor:

e =

 1
0.99

[
1− 2 (dF /b)2

] + 0.38CD0πA

−1

(7.9)

7.2.3. Different aircraft aerodynamic configurations
In addition to the angle of attack, which affects the values of the lift and drag
coefficients, the change in the shape of the aircraft can alter these values. The
most notable change in aircraft involves flaps (and slats), speed brakes (or lift
dumpers), and landing gear. Each structural setting also has its own corresponding
drag polar model. In this chapter, we focus on the additional drag caused by flaps
and landing gear.

Flaps
Flaps are common aircraft surfaces deployed in order to provide an increase in
the maximum lift coefficient. They are deployed to allow aircraft to fly at lower
speeds with a higher lift, typically at low altitudes (for example, during takeoff,
initial climb, and approach). Different aircraft types have different configurations
of flaps and flap settings. In general, an increase in flap angle leads to an increase
in the lift coefficient under the same angle of attack, at the expense of higher
drag. Slats are similar to flaps but located on the leading edge of the wing. They
increase the maximum lift coefficient by increasing the stall angle of attack. Slats
are automatically extended when selecting a flap setting and are considered as
part of this configuration. Different flap designs have been adopted by aircraft
manufacturers. In Table 7.1, a list of common flap options on airfoils and their
approximated maximum lift coefficients are listed. These values are produced by
[84]. It is worth noting that the CL,max values of an airfoil are larger than the
values of the aircraft with the same shaped wing, especially for swept wings [5,
p.263].

Based on the data from the literature [138, p.253], the increase in lift coef-
ficient due to flap deflection can be calculated empirically. This accounts for the
effect of the change in wing area, as well as the changes in shape and camber. The
deflection angle of flaps (δ) and increased maximum lift coefficient CL,max are
shown in Table 7.2, where IC and FA represent the initial climb and final approach
configuration respectively.
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Table 7.1: Example flap settings in airfoils [84, p.107]

Flap types CL,max Illustration

airfoil only 1.4

leading-edge slat 2.4

plain flap 2.5

split flap 2.6

Fowler single-slotted flap 2.9

Fowler multi-slotted flap 3.0

with leading-edge slat 3.3

with boundary layer suction 3.9

Table 7.2: Increase of lift coefficient due to flaps with typical flap deflection angles

Trailing Leading δIC δFA CL,max,IC CL,max,FA
plain flap 20◦ 60◦ 1.60 2.00
split flap 20◦ 40◦ 1.70 2.20
single-slotted flap 15◦ 40◦ 2.20 2.90
double-slotted flap 20◦ 50◦ 1.95 2.70
double-slotted flap w/ slat 20◦ 50◦ 2.60 3.20
triple-slotted flap w/ slat 20◦ 40◦ 2.70 3.50

With flaps deflected, the drag of the wing also increases. Using an empirical
model [90, p.109], this increase in drag coefficient due to flaps deflection can be
computed as:

∆CD,f = λf

(cf
c

)1.38
(
Sf
S

)
sin2 δf (7.10)

where cf/c and Sf/S are flap to wing chord ratio and flap to wing surface ratio
respectively. δf is the flap deflection angle. When exact cf/c and Sf/S are not
available, they are both assumed to be 0.15, which is an empirical approximation
based on existing aircraft data. λf is dependent on the type of flaps. According to
[90], λf is set to be 1.7 for plain and split flaps, and 0.9 for slotted flaps.

The deflection of flaps also affects the Oswald efficiency factor (e). Based on
data from several existing aircraft, a linear relationship is found by [104]. The
model to calculate such increase in e is:

∆ef = 0.0046 δf (rear-mounted engines)
∆ef = 0.0026 δf (wing-mounted engines)

(7.11)
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Landing gears
The landing gear adds a significant amount of drag to the aircraft when it is ex-
tended. Hence, the landing gear is retracted as soon as the aircraft becomes air-
borne and only extended shortly before landing. There are limited studies that
quantify the drag coefficient of aircraft landing gears. In this chapter, we adopted
the model proposed by [86] to calculate the increased drag coefficient by landing
gears:

∆CD,g = W

S
Kuc m

−0.215
max (7.12)

where W/S is the wing loading, mmax refers to the maximum mass of an airplane,
and Kuc is a factor that relates to the flap deflection angle. In principle, the
value of Kuc is lower when more flap deflection is applied. This is because the
flow velocity along the bottom of the wing decreases when flaps are deployed,
which leads to a lower drag on the landing gear. For simplification, it is taken as
3.16× 10−5 in this chapter based on data from [86].

7.2.4. Wave drag at high Mach numbers
When aircraft fly at a high Mach number, the compressibility of the air flow also
needs to be considered. Under such conditions, the drag can increase drastically
due to local supersonic flows and the shock wave. Modern airliners often cruise
at transonic speeds, where the additional wave drag should not be ignored when
calculating the total drag.

In order to model the wave drag, we first need to estimate the critical Mach
number (Mcrit), which is defined as the lowest Mach number at which the airflow
over any part of the aircraft reaches the speed of sound. The critical Mach number
can often be related to the drag divergence Mach number, which is the Mach
number where the drag starts to increase rapidly with increased aircraft speed.

According to [88], the drag divergence Mach number can be approximated as:

Mdd = κA
cos Λ −

t/c

cos2 Λ −
CL

10 cos3 Λ (7.13)

where Λ is the mid-chord sweep angle. t/c is the thickness ratio. κA is the Korn
factor, which is set to be 0.95 for supercritical wing profiles and 0.87 for conven-
tional wing profiles. CL is the maximum lift coefficient available, which is chosen
empirically to be around 1.3 in our chapter. When t/c of an aircraft type is not
available, a default common value of 0.11 is used, according to the empirical data
from [104].

Knowing the drag divergence Mach number, the critical Mach number can be
calculated as follows, according to [47]:

Mcrit = Mdd −
3

√
0.1
80 (7.14)

The previous equation indicates that the critical Mach number is always lower
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than the drag divergence Mach number by a constant of approximately 3
√

0.1/80
(approximately 0.1077). Then, combining Equation 7.14 and Equation 7.13, the
final close-form critical Mach number model is found:

Mcrit = κA
cos Λ −

t/c

cos2 Λ −
CL

10 cos3 Λ −
3

√
0.1
80 (7.15)

Finally, according to [68] and [47], the rise of the drag coefficient due to the wave
drag is calculated as:

∆CD,w =
{

0 M ≤Mcrit

20 (M −Mcrit)4 M > Mcrit
(7.16)

7.2.5. Summary
Considering different structural variations such as the flap deflection and the land-
ing gear, as well as the effect of the wave drag beyond critical Mach number, the
dynamic zero-lift drag coefficient C∗D0 is modeled as:

CD0,total = CD0 + ∆CD,f + ∆CD,g + ∆CD,w (7.17)

Similarly, the dynamic Oswald factor considering the flap deflections is modeled
as:

etotal = e+ ∆ef (7.18)

while the lift-induced drag coefficient becomes:

ktotal = 1
1/k + πA∆ef

(7.19)

We can see that ∆CD,f , ∆CD,g, ∆CD,w, and ∆ef can all be related to the aircraft
design, mostly the parameters of wings. The remaining challenge is to estimate
CD0, e, and k under the clean configuration at low Mach number flight condition.

7.3. Estimation of drag polar under clean configuration
In this section, we first explore a novel hierarchical model that describes the total
energy model in a stochastic fashion, where the model parameters are considered
as random variables. Using Bayesian computing, we then try to infer the drag
polar based on open flight data from ADS-B and Enhanced Mode-S surveillance
communications. The clearest benefit of this stochastic total energy (STE) model
is that the process can be applied to any aircraft, as long as accurate flight data
and the basic performance parameters of the aircraft are known. The following
section describes the process in detail.
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7.3.1. The hierarchical stochastic model
Commonly, in the total energy model, the change of energy is described by multi-
plying each force with speeds in the same direction. This results in the following
equation:

(Tt −Dt) Vt = mtatVt +mtgVSt (7.20)

where T and D are the thrust and drag of the aircraft and m is the aircraft mass.
Parameters a, V , and VS are the acceleration, airspeed, and vertical speed re-
spectively. These three variables can be derived from aircraft surveillance data.
Subscript t indicates the data is a time series. In general, thrust can be modeled
as a function of velocity and altitude. In this research, we use the model proposed
by [8] and explained in Chapter 7. Let fthr represent the function that gives the
maximum thrust, and the net thrust of the engines can be expressed as:

Tt = δT fthr(Vt, ht, VSt) (7.21)

where fthr is the maximum thrust profile and δT represent the thrust setting.
Combining the previous two equations, the drag coefficient is calculated as:

CD,t = Dt

qtS
(7.22)

= δT fthr(Vt, ht, VSt)−mtat −mtgVSt/Vt
qS

(7.23)

On the other hand, it is also possible to derive the drag coefficient using the
drag polar equation. First, from the equilibrium of forces in the direction perpen-
dicular to the airspeed, assuming no banking angle and a small flight path angle,
we find the relation between the lift coefficient and the mass to be:

CL,t = Lt
qtS

= mtg

qtS
(7.24)

Then, combining Equation 7.8, where the lift-induced coefficient k is defined as a
function of aspect ratio (A), fuselage diameter to wing span ratio (dF /b), and the
zero-lift drag coefficient (CD0), the drag coefficient becomes:

C∗D,t = CD0 + kC2
L,t

= CD0 + k

(
mtg

qtS

)2

= CD0 +

 1
0.99

[
1− 2 (dF /b)2

]
πA

+ 0.38CD0

(mtg

qtS

)2
(7.25)
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Assuming a perfect system and perfect observations, the two drag coefficients
(CD and C∗D), obtained in two different ways should be the same at each time
step, with the following relationship:

∆CD,t = CD,t − C∗D,t = 0 (7.26)

Although noise is inevitably present, Equation 7.26 could be the general as-
sumption of the estimator. In other words, we would consider minimizing |∆CD,t|
in order to estimate the unknown parameters.

At this point, there are three sets of unknown parameters, which are CD0, mt,
and δT,t. In order to have an accurate estimation of CD0, we need to know more
about mt and δT,t. Unfortunately, this information is not available directly from
the surveillance data. Even though we do not know the exact mass and thrust
setting of each flight, there are some hypotheses that can be assumed:

1. CD0 and k are constant and the same for all flights of the same aircraft
model, under clean configuration, in low-speed incompressible airflow.

2. Based on aerodynamic theory, it is possible to know the ranges of CD0 and k
values.

3. The range of aircraft mass and thrust setting values can be found empirically.

4. Accurate surveillance data for a sufficient number of flights can be obtained,
including trajectories, velocity, temperature, and wind conditions.

In the proposed STE model, we consider all parameters as random variables.
The observable parameters are defined as follows:

Vt ∼ N (Ṽt, σ2
v)

at ∼ N (ãt, σ2
a)

VSt ∼ N (ṼSt, σ2
vs)

ht ∼ N (h̃t, σ2
h)

(7.27)

where each parameter is assumed to be drawn from a normal distribution. Ṽt, ãt,
ṼSt, and h̃t are the observed values at each time step respectively. σ2

v , σ2
a, σ2

vs, and
σ2
h are the variances for each variable. The models for the three sets of unknown

system parameters can be constructed similarly:

δT,t ∼ U(δTmin , δTmax)
mt ∼ U(mmin, mmax)
CD0 ∼ U(CD0min , CD0max)

(7.28)
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where δT,t, mt, and CD0 are defined with uniform probability density functions.
Random variables δT,t and mt are defined as thrust setting and mass at time t,
where different random variables are used at different time step. Finally, ∆CD
from Equation 7.26, can be expressed as:

∆CD ∼ N (0, σ2
∆) (7.29)

With these variables defined, we have converted the deterministic total energy
model into a hierarchical stochastic model. This STE model considers each pa-
rameter as a random variable and preserves the underlying structure among the
observable parameters (a, V, VS, τ, h), forces (T and D), and system parameters
(m, CD0, and k), as defined in total energy model. In Figure 7.1, the dependencies
among all those parameters are visualized. This hierarchical model includes ten
random variables, which are indicated in gray.

U(δTmin , δTmax )

N (ãt, σ2
a)

N (ṼSt, σ2
vs)

N (h̃t, σ2
h)

N (Ṽt, σ2
V )

U(mmin,mmax)

U(CD0min , CD0max )

δT,t

at

VSt

ht

Vt

mt

CD0 k

ρt

CD,t

C∗D,t

∆CD,t N (0, σ2
∆)

Figure 7.1: Hierarchical relationships of model parameters

Parameter values of the prior distributions defined in Equation 7.27 and 7.28
(also in Figure 7.1) are listed in Table 7.3. Variance for speed, vertical rate, and
altitude are selected based on uncertainties defined by the ADS-B navigation ac-
curacy category [111]. Mass is chosen to be uniformly distributed between the
minimum operational weight and maximum takeoff weight. Other prior parame-
ters are chosen empirically.

Table 7.3: STE model hierarchical parameters

Parameter σv σa σvs σh δTmin δTmax mmin mmax CD0min CD0max
Value 5 0.2 7.62 22.5 0.85 0.15 mOEW mMTOW 0 0.05
Unit m/s m/s2 m/s m - - kg kg - -
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7.3.2. Bayesian computing - Markov Chain Monte Carlo
Instead of estimating the drag polar (CD0 and k) directly, we have converted the
original estimation to a Bayesian optimization problem. Based on the prior prob-
ability of all model parameters, this approach allows us to compute the posterior
probabilities based on the constraints in Equation 7.26. To simplify the expression,
let us define θ and y as follows:

θ =
{
CD0, k, [δT,t], [mt], [Vt], [at], [VSt], [ht]

}
y =

{
[∆CD,t]

} (7.30)

where parameters in brackets are with multiple dimensions. The goal of the esti-
mation is to compute the joint posterior probability p(θ|y), which is difficult (and
impractical) to obtain analytically due to the number of state variables. Instead,
we use a Markov Chain Monte Carlo (MCMC) simulation to approach this numer-
ically.

The MCMC method uses sequential sampling, drawing a large number of val-
ues of θ from approximate distributions and then correcting these draws based on
the distribution constructed from previous values drawn. The final estimates can
be obtained once the Markov chain converges to a unique stationary distribution.

The simplest form of the MCMC sampling method is the Metropolis algorithm
[92], which can be applied to almost any Bayesian computation problem. The
algorithm can be explained in simple steps, which also demonstrate the principles
of MCMC sampling. These steps are as follows:

1. Choose a initial set of θ as θ0.

2. For iteration i = 1, 2, · · · , N :

(a) Sample a proposal θ∗ from a jumping distribution J(θ∗|θt−1), which is
a conditional probability dependent on the current set of values. The
jumping distribution is usually chosen as a normal distribution with
θt−1 as the mean.

(b) Calculate the ratio using the Bayes’ rule:

r = P (θ∗|y)
P (θi−1|y) = P (θ∗)P (y|θ∗)

P (θi−1)P (y|θi−1) (7.31)

where P (θ∗) is defined by the prior distributions, and the likelihood
P (θi−1|y) is computed based on the hierarchical model.

(c) set θi as θ∗ with a probability of min(r, 1), otherwise keep as θi−1.

When the MCMC chain reaches the desired number of iterations, the sampling
process can be stopped. The values from each iteration stored in the Markov Chain
are used to construct the posterior distributions of the model parameters.
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The Metropolis sampler is simple to implement and can be applied to both
continuous and discrete probability distributions. The drawback is that it can lead
to a very long convergence runtime. This is due to the random-walk behavior. In
this chapter, a new sampler called No-U-Turn Sampler (NUTS) [57] is used. The
NUTS sampler is an improved Hamiltonian Monte Carlo which avoids the random
walk behavior. It can automatically determine some of the hyper-parameters in
the Hamiltonian Monte Carlo sampling and allows the chains to converge quickly
with fewer sampling iterations.

7.3.3. The posterior estimates
Using NUTS sampler, the convergence of the Markov chains can usually be achieved
within 1000 iterations. In our experiments, we have increased the number of it-
erations to 3000 to have a larger number of stable samples. Once the sufficient
number of sampling iterations has been reached, it is possible to compute the pos-
terior probability density function using the numerical approximation based on
these samples. An example can be seen in Figure 7.4 from the later experiment
section.

The mean of the samples representing CD0 and k are considered as the final
estimates for drag polar parameters. The standard deviation for samples repre-
senting CD0 is also calculated to determine whether the chain has converged at
the boundary conditions:

ĈD0 − 2σ̂CD0 > CD0min (7.32)

ĈD0 + 2σ̂CD0 < CD0max (7.33)

where ĈD0 and σ̂CD0 are mean and standard deviation from the posterior distribu-
tion. Since there are a large number of trajectories for estimating the drag polar,
estimations from trajectories that do not satisfy these conditions are considered as
invalid.

7.4. Experiment
The experiment consists of several parts. We start with an example of drag polar
estimation based on a single trajectory. Then, the results from multiple trajectories
and aircraft types are summarized. We also include comparison analysis between
our result and drag polar obtained from CFD simulations.

A dataset consisting of around 100 climbing flights per aircraft type is gath-
ered. All data are collected using the Mode-S receiver at the TU Delft. The flights
observed were taking off from Amsterdam Schiphol airport during March, 2018.
In Figure 7.2, the ground tracks and vertical profiles of a selected subset of flights
are shown.

In addition to the ground speed obtained from ADS-B, real-time wind data are
computed using the Meteo-Particle model proposed by [134]. Combining ground
speed and accurate wind information, the airspeed of the aircraft is computed. The
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Figure 7.2: The trajectories of the Boeing 747-400 flights (during March, 2018, departing from
Schiphol airport)

use of true airspeed instead of ground speed allows us to describe the performance
more accurately.

For each flight, we apply MCMC sampling with the STE model to obtain the
posterior probability distribution of the parameters CD0 and k. Using the NUTS
MCMC implemented in the PyMC3 library [114], we can conveniently perform the
sampling of our model with predefined prior distributions. To ensure consistent
convergence, we utilize four independent chains, which are sampled in parallel.

7.4.1. Estimation of the drag polar using STE model
First, the results of one example flight are shown. In Figure 7.3, the trace of four
chains (on the right-hand side) and the estimated posterior density (on the left-
hand side) are shown. Each chain is marked with a different shade of gray. The
stable convergence can be observed by comparing the posterior density of all four
chains, which is shown in Figure 7.4. Combining all chains, we can obtain the
mean value CD0 and k from the posterior distribution.

7.4.2. Multiple aircraft types
Next, we extend the experiment from one flight example to all flights gathered
in our dataset mentioned earlier, which contains flights for 20 common aircraft
types. Based on these flight, we are able to obtain CD0 and k for each aircraft type
by combining the results of all flights. In Figure 7.5, the distributions of CD0 and
k are shown.

Most of the CD0 values are between 0.02 and 0.04, while the values for k fall
mostly between 0.035 and 0.055. In the later result section, all these values are
listed in detail.
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Figure 7.3: MCMC sampling of a Boeing 747-400 flight
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Figure 7.4: Posterior distribution of CD0 and k from MCMC sampling

7.4.3. A drag polar using CFD simulation
In this experiment, we conduct some basic CFD calculations in order to study the
drag polar results derived from the proposed MCMC methods. The details of the
CFD simulation can be found in Appendix B. Three modified aircraft 3D models
are constructed. They are 1) bare configuration without engines, 2) configuration
with engines, but without fans, and 3) configuration with full engines. In Fig-
ure 7.6, these three different configurations are shown. Shades of gray indicate
different levels of air pressure in CFD simulation.

With these engine configurations, CFD calculations are run under the different
angle of attack, ranging from -5 degree to 30 degrees, with speed at approximately
0.3 Mach. For each scenario, obtained drag and lift coefficients (CD and CL) are
computed. In Figure 7.7, results from all rounds of the simulations are shown.

If we correlate them via the angle of attack, we are able to plot the relation-
ship between the drag and lift coefficient, which is shown in Figure 7.8. On the
left-hand side, high order splines are used to fit the data points. We can see that
the effect of additional drag caused by engines is significant. This is because the
engines are considered as a block object in these CFD simulations. The drag pro-
duced by the engine is significantly larger than in actual operating situations.

On the right-hand side of Figure 7.8, quadratic drag polars are fitted to these
data points with the angle of attack at less than 15 degrees. The drag polar ob-
tained from the previous STE-MCMC approach is also shown in solid black lines.
We can see that the actual drag polar computed based on flight data lies between
the results of the full engine scenario and the fans-off scenario in the CFD the sim-
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Figure 7.5: Drag polar of common aircraft models based on multiple flights

Figure 7.6: Three engine configurations in CFD calculations

ulations, which is a good confirmation for results obtained based on STE model.

7.4.4. Compressibility effect on drag polar
When an aircraft is flying at a high speed where the Mach number is higher than
the estimated critical Mach number, the compressibility effect should be taken into
account. According to the empirical models given by Equation 7.14, the increase
of wave drag can be computed, which is dependent on the actual Mach number
during the flight. In Figure 7.9, drag polar models of Boeing 747-400 aircraft
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Figure 7.8: Drag polars under different conditions

under different Mach numbers are shown as an example.

7.5. Summary and discussion
7.5.1. Drag polar for different aircraft types
In Table 7.4, the drag polar of the 20 most common airliners are listed. In this
table, the zero-lift drag coefficient (CD0), lift-induced drag coefficient factor (k),
and Oswald efficiency factor (e) are all estimated using the MCMC and STE model.
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Table 7.4: Drag polar and related coefficients

Aircraft CD0 k e Mcrit λf cf/c Sf/S ∆CD,g
A319 0.019 0.039 0.793 0.63 0.90 0.18 0.17 0.017
A320 0.018 0.039 0.798 0.63 0.90 0.18 0.17 0.017
A321 0.026 0.043 0.746 0.63 0.90 0.18 0.16 0.019
A332 0.029 0.044 0.728 0.64 0.90 0.15 0.15 0.014
A333 0.030 0.044 0.719 0.64 0.90 0.15 0.15 0.014
A359 0.031 0.046 0.725 0.65 0.90 0.15 0.15 0.013
A388 0.028 0.054 0.781 0.69 0.90 0.15 0.15 0.012
B734 0.034 0.049 0.705 0.61 0.90 0.15 0.15 0.021
B737 0.029 0.046 0.736 0.63 0.90 0.15 0.15 0.016
B738 0.023 0.044 0.775 0.63 0.90 0.15 0.15 0.017
B739 0.024 0.044 0.769 0.63 0.90 0.15 0.15 0.018
B744 0.028 0.052 0.774 0.68 0.90 0.20 0.15 0.015
B748 0.027 0.049 0.771 0.68 0.90 0.19 0.14 0.015
B772 0.034 0.051 0.723 0.65 0.90 0.17 0.16 0.014
B77W 0.037 0.048 0.687 0.65 0.90 0.16 0.15 0.016
B788 0.027 0.045 0.748 0.67 0.90 0.15 0.15 0.013
B789 0.029 0.045 0.737 0.67 0.90 0.15 0.15 0.014
E75L 0.019 0.043 0.803 0.63 0.90 0.15 0.15 0.017
E190 0.019 0.044 0.813 0.63 0.90 0.15 0.15 0.016
E195 0.028 0.048 0.752 0.63 0.90 0.15 0.15 0.017

For non-clean configuration situations, we can use previously introduced em-
pirical models to incorporate changes of drag polar coefficients due to flaps or
landing gears. Combining the coefficients from Table 7.4 and Equation 7.10, the
increased drag coefficient at different flap deflection angles can be calculated.
Similarly, the change in the Oswald factor can be calculated according to Equation
7.11. The increased values of drag coefficient due to landing gears are also listed
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in this table. In addition, the approximated critical Mach number is given in Table
7.4 as well.

To facilitate future calculations, a pre-computed table with a set of drag polars
under non-clean configuration with fixed flap deflection angles at the initial climb
and landing phases are computed and listed in Table 7.5.

Table 7.5: Drag polar coefficients in non-clean configurations with default flap deflection angles

Aircraft δf,IC CD0,IC kIC eIC δf,FA CD0,FA kFA eFA
A319 20◦ 0.021 0.037 0.845 40◦ 0.025 0.035 0.897
A320 20◦ 0.020 0.036 0.850 40◦ 0.024 0.034 0.902
A321 20◦ 0.028 0.040 0.798 50◦ 0.034 0.036 0.876
A332 20◦ 0.030 0.041 0.780 50◦ 0.035 0.037 0.858
A333 20◦ 0.032 0.041 0.771 50◦ 0.036 0.037 0.849
A359 20◦ 0.032 0.043 0.777 50◦ 0.037 0.039 0.855
A388 20◦ 0.030 0.051 0.833 40◦ 0.033 0.048 0.885
B734 20◦ 0.036 0.046 0.757 40◦ 0.038 0.043 0.809
B737 20◦ 0.030 0.043 0.788 50◦ 0.035 0.039 0.866
B738 20◦ 0.024 0.041 0.827 50◦ 0.029 0.037 0.905
B739 20◦ 0.025 0.041 0.821 50◦ 0.030 0.038 0.899
B744 20◦ 0.030 0.049 0.826 40◦ 0.034 0.046 0.878
B748 20◦ 0.029 0.046 0.823 40◦ 0.032 0.043 0.875
B772 20◦ 0.036 0.047 0.775 50◦ 0.041 0.043 0.853
B77W 20◦ 0.039 0.045 0.739 50◦ 0.044 0.041 0.817
B788 20◦ 0.029 0.042 0.800 40◦ 0.031 0.039 0.852
B789 20◦ 0.030 0.042 0.789 40◦ 0.033 0.040 0.841
E75L 20◦ 0.020 0.040 0.855 50◦ 0.025 0.037 0.933
E190 20◦ 0.020 0.041 0.865 50◦ 0.025 0.038 0.943
E195 20◦ 0.029 0.045 0.804 50◦ 0.034 0.041 0.882

7.5.2. Uncertainties
It is important to understand that, in the proposed hierarchical model, all pa-
rameters are considered as random variables (described by probability density
functions) instead of scalar values. Most parameters (except CD0 and k) are also
expressed as time-varying random variables. The time series variables are con-
structed as multi-dimensional probability density functions. The solution of this
hierarchical stochastic model is only possible thanks to numerical approximation
using the Markov Chain Monte Carlo (MCMC) techniques.

In the proposed STE aircraft performance model, two major sources of uncer-
tainty exist, which are the aircraft mass and the thrust. We consider the mass as
a uniformly distributed random variable at each time step, which takes into ac-
count all possible masses. It is sampled together with all other parameters. When
evaluating the sampling results, we are able to illustrate the posterior distribution
of mass at different time steps, as shown in Figure 7.10. The goal is to estimate
the drag polar coefficients CD0 and k, not the mass of an aircraft. The posterior
distributions can be thought of as the results that optimize all different parameters
at all time steps.

The aircraft thrust model is the factor that influences the results the most while
using the STE model, as the thrust is strongly correlated to the drag of the aircraft.
The uncertainty in thrust can be categorized in two ways. First, aircraft may be
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Figure 7.10: The distributions of mass at different flight time steps

equipped with different engine options within the same aircraft type family. This
chapter uses a default engine per aircraft type, which can cause a small level of
uncertainty. The second cause of uncertainty is related to the thrust model used in
this chapter. We implement the thrust model based on two-shaft turbofan engines
[8]. According to the analysis of [8], the model has an uncertainty of 4.5% of
maximum thrust when compared to engine performance data. This uncertainty
in thrust model would undoubtedly affect the final uncertainty of the drag polar
estimates. That’s the reason why a uniform probability density function with rel-
ative large bounds are considered for the thrust setting (δT ) in this chapter. In
addition, the possible variations in thrust setting due to different procedures are
also handled by this parameter.

7.5.3. Comparison with BADA drag polar
Due to the restriction of the BADA license, exposure of specific BADA coefficients
is not permitted. Instead of showing the exact difference between BADA and
our model for each aircraft type, the overall statistics for all available aircraft are
shown in Figure 7.11. The mean absolute difference for CD0 and k are both found
to be around 0.007.

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016

CD0

k

Figure 7.11: Absolute difference of drag polar between BADA (version 3.12) and the model derived in
this chapter under clean configuration.

This gives a good indication of what the level of difference in the outcome
of this study is, compared to well-established performance models. However, we
should be cautious when interpreting this difference as the estimation accuracy.
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Since neither the method nor the data used for constructing BADA drag polar
are published, it is hard to identify the uncertainties in BADA model. Thus, the
difference between the two models should not be directly used to quantify the
accuracy of our model.

7.6. Conclusion
In this chapter, we proposed a method for deriving the aircraft drag polar based
on the point-mass performance model. A novel stochastic total energy model was
developed for estimating drag polar coefficients using open ADS-B and Mode-S
surveillance data. Using these methods, the drag polar for aircraft with turbofan
engines could be estimated under clean aerodynamic configuration.

By considering the states in the total energy model as random variables, we
transformed the estimation to Bayesian domain, where the solution of such a min-
imization problem can be solved using the Markov Chain Monte Carlo method.
Compared to other deterministic minimization methods, our approach not only
provided the estimations but also the posterior probability densities for the states
to be estimated. Due to the stochastic nature of the approach, the estimates were
also less likely to result in local minima.

Based on studies from the literature, we included the models that can be used
to compute additional drag caused by flaps, landing gear, and shock wave. Com-
bining all knowledge together, the drag polar model proposed in this chapter de-
scribed the complete phases of flight from takeoff to landing.

A comprehensive list of drag polar models was produced for the 20 most com-
mon airliners. To the best of our knowledge, this was the first time such models
have been derived and shared publicly with the research community. The re-
sulting drag polars proposed in this chapter have been implemented in the Open
Aircraft Performance Model - OpenAP (see Appendix A), which is also used to
power the open-source air traffic simulator BlueSky [54]. With the open-source
license, we believe the drag polar coefficients produced by this chapter could con-
tribute to improved transparency, accessibility, and repeatability among future air
transportation studies.
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8
Turn performance estimation

From this chapter onward, the dissertation is focused on the estimation of perfor-
mance parameters of individual flights. In this chapter, we will first take a look at
the aircraft turn performance. The turning segments of a flight are often overlooked
in studies related to air traffic management. Air traffic controllers often rely on track
and turn reports from aircraft Mode-S secondary surveillance data to gather perfor-
mance indicators such as roll angle and track rate. However, this data has a low
update rate and is not always available. In this chapter, we construct methods that
allow us to extract and analyze aircraft turn performance from ADS-B data. The
chapter first discusses the fundamentals of the dynamics of turning aircraft. Based on
ADS-B trajectory data, we are able to estimate the radius of the arc trajectory using
the least-squares regression. Knowing the estimated radius of the turn and aircraft
speed, we can then derive the bank angle and turn rate of the aircraft. The estima-
tion results are validated with the aircraft track and turn reports whenever they are
available. The median errors for bank angle and turn rate are found to be less than
2 degrees and 0.1 degrees/s respectively.
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8.1. Introduction
Between two straight flight paths with different track angles, an aircraft needs to
make a turning maneuver in order to change its heading. Earlier studies related
to turning performance often focused on optimal control [23] or on the optimiza-
tion of turns [11]. Unlike other segments of accelerated flight (e.g. takeoff and
landing), turn performance is often overlooked in air transportation studies.

Aside from the short temporal scale of the turns, the simplified point-mass per-
formance model used in most air transportation studies also accounts for the lack
of research on this topic. The point-mass aircraft model often ignores the rotations
of the aircraft along different axes (i.e. pitch, roll, and yaw). Without the roll an-
gle, a minimum turn performance model cannot be established accurately. At the
same time, knowledge of the roll (or bank) angle is important when analyzing the
performance during turns. For instance, to maintain a steady flight, the total lift
of the aircraft needs to be increased due to the rolling of the aircraft. The increase
of lift will also lead to an increase in the drag of the aircraft and, subsequently, the
thrust as well.

From an air traffic controller point of view, knowing the bank angle, in addition
to the turn rate and airspeed, would provide better predictability of the trajectory.
This is the reason why some of the secondary surveillance radar interrogations in
Mode-S communications are designed to obtain such information. When aircraft
fly in controlled airspace, the track and turn reports are selectively interrogated
by the secondary surveillance radars. Messages of the track and turn report are
identified with Comm-B data selector 50 (BDS 50) [66]. In our earlier research, we
develop the method to identify and decode these messages. With the open-source
pyModeS tool (from Chapter 2), these messages can be easily decoded. There are,
however, significant drawbacks to using the track and turn reports. First of all,
they have a much lower update rate than ADS-B messages. In addition, the data
is not always available publicly.

In this chapter, our main goal is to estimate performance parameters related
to individual turns using ADS-B data. These parameters include turn radius, roll
angle, load factor, and turn rate. When it is available, the BDS 50 data of the
aircraft is collected and decoded to validate the results.

The remainder of the chapter is designed as follows. In section two, we first
address the fundamental principles of aircraft turns. In section three, the method
used to extract turns from ADS-B flight trajectories is derived. In section four,
processes for estimating different turn performance parameters are given. Then,
in section five, we show the results of our method based on a large number of
flights from different aircraft types. Finally, in section six and seven, discussions
and conclusions are provided.

8.2. Coordinated turns
A turning flight is defined as a continuous change of path direction. Commonly,
coordinated turns are performed to maintain passenger comfort and the safety of
the flight. The maneuver requires the coordination of different control surfaces
and thrust. When an aircraft turns, the ailerons are deflected to provide a desired
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roll angle of the aircraft. The rudder of the aircraft also needs to be deflected
to provide the corresponding yaw of the aircraft The roll maneuver changes the
direction of lift and leads to a decrease in the vertical lift component. Thus, the
aircraft needs to increase its pitch angle (by deflecting the elevator) to increase
the total lift. The increased lift causes an increase in total drag. Hence, the thrust
also needs to be adjusted correspondingly to maintain the same speed.

During a coordinated turn, the aircraft flies at a certain bank angle φ and turn
rate ω, depending on the velocity and combination of forces (lift L, weight W ,
and centrifugal force Fc). The kinematic and kinetic components are illustrated in
Figure 8.1.

Rt

V

Δψ = ω • Δt Rt

L

Fc

W

ϕ

Figure 8.1: Aircraft banked turn

For a coordinated turn where the airspeed and altitude are constant, the rela-
tionship of different performance parameters can be described as follows:

Fc = L sinφ = W

g

V 2

Rt
(8.1)

W = L cosφ cos γ (8.2)

where the V is the airspeed, Rt is the radius of the turn, and γ is the flight path
angle. The load factor (denoted as n) is defined as the ratio of lift to the aircraft
weight:

n = L

W
(8.3)

It can be calculated separately from Equations 8.1 and 8.2 as:

n = V 2

gRt sinφ (8.4)

n = 1
cosφ cos γ (8.5)
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By combining these two equations, the bank angle can be calculated from the
aircraft turn radius, airspeed, and flight path angle (during climb or descent) as
follows:

φ = arctan
(
V 2 cos γ
g Rt

)
(8.6)

8.3. Turn trajectory extraction
The first challenge we are facing is to extract the turning segments of the flight
from the ADS-B trajectory data. To identify the turns, aircraft headings are used
as an indicator. An example of a heading profile from one trajectory is illustrated
in Figure 8.2. In this example, we can see several heading changes occur during a
period of 500 seconds.
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Figure 8.2: An example trajectory with turns (headings and ground track)

Aircraft track angle (χ) can be calculated from the ADS-B velocity reports using
the south-north and west-east components of the ground velocity. Assuming zero
(or calm) wind, the track angle is approximately the same as the heading (ψ):

ψ ≈ χ (8.7)

The value of heading (or track) angle ranges from 0◦ to 360◦ in relation to the
direction of true north. In order to represent the continuity of the heading (avoid-
ing a jump between 0◦ and 360◦), the sine function, sin(ψ), is used to represent
the heading profile. To identify the start and end of a turn, the derivative of the
function sin(ψ) is computed, denoted as f ′(ψ):

f ′(ψ) = d sin(ψ)
dt

(8.8)
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A threshold is applied to filter out the segments where the changes in the head-
ing are small. Then, the time windows of the turns can be identified individually.
This identification process is illustrated in Figure 8.3. The plot on the left shows
the f ′(ψ) and time windows in which turns occurred, whereas the plot on the right
shows the ground projections of the turns.
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Figure 8.3: Extraction of turns from trajectory data

8.4. Turn performance estimation
Once the turns from the trajectories are extracted, performance parameters such
as turning radius, bank angle, and load factors can be estimated individually.

The first step is to calculate the turning radius from the trajectory data. Tra-
jectories consist of latitudes, longitudes, and altitudes. To simplify the calculation,
we first convert the trajectories to three-dimensional Cartesian coordinates with
the references to the center of the Earth using the spherical Earth model:

x = (Re + h) cos(lat) cos(lon)
y = (Re + h) cos(lat) sin(lon)
z = (Re + h) sin(lat)

(8.9)

where the Re, h, lat, and lon are the radius of the Earth, altitudes, latitudes, and
longitudes of the aircraft respectively.

Based on these coordinates, one can find a circle that best describes the trajec-
tory using the least-squares regression. The radius of this circle should correspond
to the aircraft turn radius. However, the variance of the least-squares fit of a circle
to the three-dimensional points can be large. This sometimes prevents the best cir-
cle from being found. We first need to reduce the least-squares problem from three
dimensions to two dimensions to help decrease the uncertainties in the regression
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method.
In order to reduce the dimension of the positions, a two-dimensional plane in

the three-dimensional space first needs to be found, where the squared-sum of the
distances from all points is minimized (i.e., the plane that aligns best with the set
of positions or the turn). After that, we can use the projection of the points on the
plane to find the ideal circle.

We define the plane using any point #»p0 within the plane and a normal vector
#»n to the plane (see Figure 8.4):

#»p0 = [x0, y0, z0]ᵀ (8.10)
#»n = [1, αp, αa]ᵀ Spherical (8.11)

= [sinαp cosαa, sinαp sinαa, cosαp]ᵀ Cartesian (8.12)

where αp is the polar angle and αa is the azimuth angle. The first equation of #»n is
the spherical representation, while the second equation is the Cartesian represen-
tation. For all positions p, the distances to the plane can be computed as the dot
product of the distance between each position to #»p0 and the normal vector:

d = #»n · (p− #»p0) (8.13)

The best plane can be found when the squared-sum of all distances to the plane is
minimized:

#»p0,
#»n = argmin

#»p0,
#»n

n∑
i=1

d2
i (8.14)

Next, we transform the fitted plane to the reference x,y-plane. This step will
transform the radius calculation from a 3D problem to a 2D problem. In order to
do so, a transformation matrix needs to be found. The transformation matrix can
be calculated using three points from the previously found plane (p0, u0, and v0)
and x,y-plane (p1, u1, and v1), which satisfies the following relation:

# »u0 =
#»m× #»n

|| #»m× #»n ||
(8.15)

#»v0 = # »u0 × #»n (8.16)
#»p1 = [0, 0, 0]ᵀ (8.17)
# »u1 = [1, 0, 0]ᵀ (8.18)
#»v1 = [0, 1, 0]ᵀ (8.19)

(8.20)

where #»m can be any vector that is not parallel to #»n . Then, the transformation (A)
can be computed as:
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A =
[

#»p1,
# »u1,

#»v1

][
#»p0,

#»p0 + # »u0,
#»p0 + #»v0

]−1
(8.21)

To convert all positions p to x,y-plane points pxy, the following equations are
applied:

pxy = Ap (8.22)

In Figure 8.4, such a transformation is illustrated.
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Figure 8.4: The rotation of the trajectory plane from 3D to 2D

It is worth noting that after the transformation, the points pxy maintain the
same geometrical distances as the original three-dimensional point, except the
small distances from the original points to the fitted two-dimensional plane are
ignored. As an illustration, one of the trajectory transformations is shown in Figure
8.5.
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Figure 8.5: Transformation of 3D positions to 2D positions

Once positions are projected to the reference x,y-plane, it becomes simpler to
calculate the turn radius. This can be achieved by using the least-squares regres-
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sion to find the best circle to describe the trajectory.
First, define the circle as:

(x− x0)2 + (y − y0)2 = R2
t (8.23)

For all positions (xi, yi) in pxy, the center of the turn (x0, y0) and the turn
radius Rt can be found when the following condition is satisfied:

x0, y0, Rt = argmin
x0,y0,Rt

n∑
i=1

[
(xi − x0)2 + (yi − y0)2 −R2

t

]2
(8.24)

When turning radius and aircraft speed are known, bank angle (φ), load factor
(n), and turn rate (ω) can be computed conveniently:

φ = arctan
(
V 2 cos γ
g Rt

)
(8.25)

n = 1
cosφ cos γ (8.26)

ω = dψ

dt
= V

Rt
(8.27)

Using these calculations, the example trajectory from Figure 8.3 yields a turn
radius and turn rate, as shown in Figure 8.6.
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Figure 8.6: Computation of turn radius and turn rate for an example trajectory
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8.5. Experiments and results
8.5.1. Experiment and validation data
We make use of a one-month long Mode-S dataset to evaluate the method pro-
posed in this chapter. In this dataset, both ADS-B and Comm-B messages are
recorded by a receiver set up at the Aerospace Engineering faculty of the TU Delft,
during April, 2018.

The turning trajectories of aircraft are extracted from the dataset. When BDS
50 messages are available, we decode and save the roll and track rate information
related to the respective turn. This allows us to have validation data alongside the
trajectories that are to be used for performance analysis.

In total, 17 common aircraft types are considered in the experiment, where
around 800 turns are extracted for each aircraft type. Because some aircraft types
are more common than others, the final number of turns per aircraft type differs.
For example, the data shows a higher number of Airbus A320 and Boeing 737
aircraft, and a lower number of Airbus A380 or Boeing 787 aircraft. The number
of extracted turns per aircraft type is summarized in Table 8.1.

Table 8.1: Statistics of the turn trajectory dataset

Aircraft Number of turns
Number of validations
Bank angle Turn rate

A319 992 814 814
A320 999 805 805
A321 994 830 829
A332 998 798 799
A333 998 853 851
A343 82 70 70
A388 159 107 106
B737 998 753 753
B738 996 820 819
B739 1001 823 823
B744 1000 850 849
B752 721 596 596
B763 990 842 842
B77W 999 789 13
B788 577 465 465
B789 999 837 837
E190 974 728 728

8.5.2. Estimation results
For each turn trajectory extracted from the flights, we are able to estimate the
bank angle, turn rate, and the load factor. The results are shown in Figures 8.7,
8.9, and 8.10 respectively.

In Figure 8.7, the common bank angle is shown to be around 20 degrees. Dur-
ing actual flight operations, the majority of bank angles range from approximately
12 degrees to 22 degrees.
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Figure 8.7: Distribution of estimated bank angles per aircraft type

In Figure 8.8, the corresponding flight path angles during the turns are shown.
The majority of the flight path angles during the turns are below 6 degrees for all
aircraft types.
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Figure 8.8: Distribution of flight path angles during the turns per aircraft type

In Figure 8.9, the common turn rates are shown to be around 1.5 degree/s.
This result corresponds well to the standard rate half turn, which completes a
360◦ turn in four minutes.
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Figure 8.9: Distribution of estimated turn rate per aircraft type

In Figure 8.10, the common corresponding load factor for airliners is found to
be around 1.05. For airliners, turning with low load factor is also a key factor to
ensure the comfort of the passengers.
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Figure 8.10: Distribution of estimated load factor per aircraft type

8.5.3. Estimation errors
Comparing the estimated bank angle and turn rate with the values obtained for
Mode-S BDS 50 messages, it is also possible to examine the estimation error. The
error is calculated as the difference between the median bank angle obtained from
track and turn report and our estimation. The statistics of estimation errors are
shown in Figures 8.11 and 8.12 for bank angle and turn rate respectively.
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Figure 8.11: Distribution of bank angle estimation error per aircraft type
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Figure 8.12: Distribution of turn rate estimation error per aircraft type

Based on these statistics, the median of bank angle error is calculated as less
than 2 degrees among all available aircraft types. The median of turn rate error
is less than 0.1 degrees/s among all available aircraft types. The overall positive
median difference indicates a small but not significant under-estimation with the
proposed method.
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8.5.4. Correlation between speed and bank angle
Using the previous experiment data, we can study the correlation between the
bank angle and speed. In Figure 8.13, the Pearson correlation coefficients are
computed for each aircraft type. Based on the results of this figure, weak correla-
tions are found for most of the aircraft types.
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Figure 8.13: Correlation between speeds and bank angles

Aircraft maximum bank angle and speed are designed to be closely related
to ensure the level of safety. Based on the weak correlation from this figure, it
is possible to infer that large margins exit between the maximum allowed bank
angle and the bank angle during flight.

8.6. Discussion
8.6.1. Mode-S track and turn report
In this study, one of the data sources for measuring turn performance is the track
and turn report from the Mode-S secondary surveillance communications. The
roll angle and track rate from the track and turn report are used to validate the
estimated values of bank angle and turn rate.

Although it offers a direct method to obtain turn performance, the track and
turn report has a much lower level of availability. These reports are selectively
interrogated at a lower frequency than the ADS-B broadcast rate. For some tra-
jectories, no track and turn report has been intercepted during the turns. The
difference in the number of turns and the number of validations, as shown in
Table 8.1, reflects this fact. Even when this information is interrogated, not all
parameters are available in some cases. For example, most of the track rates are
not included in Boeing 777-300ER (B77W) track and turn reports.

Other than the lower availability compared to ADS-B messages, the data in the
track and turn reports are prone to large variations based on observations. Hence,
based on the ADS-B data, we are able to provide a better source of measurement
for air turn performance.

8.6.2. Least-square regression
In order to find the turn radius, the least-squares regression of a circle is applied
to the 2D projections of the 3D positions on a best plane. This plane is also found
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using the least-squares method in the first place, with which the distance from all
positions are minimized.

Using such a two-step regression is intentional. Firstly, introducing such a
plane allows us to reduce the variations in position, as well as to consider the
turns with changing of altitude. Secondly, by reducing the dimension of the circle
from 3D to 2D, the uncertainty of the estimation is decreased. This leads to a more
accurate arc representing the turning trajectory.

8.6.3. Turn under heavy wind conditions
During the turn, aircraft commonly maintain a constant airspeed. Thus, wind can
have a strong influence on the trajectory of an aircraft during a turn. This influence
can be observed from the ground tracks as well. Strong wind can produce a non-
circular ground track, as illustrated in Figure 8.14.

Wind
Wind

Figure 8.14: aircraft turn track under wind (not to scale)

In real flights, wind can be taken into consideration when planning an optimal
turn [91]. Previous research has also used aircraft airspeed and ground speed
during turns to estimate wind information [29, 30, 71, 81].

The non-symmetric ground track will affect the estimation of performance pa-
rameters using the regression method proposed in this chapter. Using these tracks
could result in unrealistic turn radius estimations. For the experiments in the
earlier section, we want to minimize the effect of wind. Thus, turns with large
regression errors are filtered out.

8.6.4. Aircraft mass and turn performance
When an aircraft is turning at low speed, the bank angle needs to be smaller than
the maximum allowed bank angle. This limitation leaves a safety margin ensuring
that an aircraft does not enter stall condition. The maximum physical limitation of
the bank angle is constrained by the maximum lift available and the weight of the
aircraft. Knowing an aircraft’s aerodynamic characteristic and airspeed, the mass
boundary can be calculated.

Since the load factor of the aircraft can be computed based on the estimated
bank angle, the maximum mass of the aircraft during the turn can be computed
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as:

m̃max = Wmax

g

= Lmax
ng

= CL,max
ng

1
2ρV

2S

(8.28)

where the CL,max is the maximum lift coefficient and S is the wing area. Given
the maximum takeoff weight and the operational empty weight of an aircraft, we
can reconstruct the mass boundary as:

moew < m < mmax (8.29)

where mmax is the smaller value between mmtow and m̃max:

mmax = min
(
mmtow,

CL,max
ng

1
2ρV

2S

)
(8.30)

Using the same dataset from the experiment section, we can compute the max-
imum possible weight of the aircraft at each turn. In Figure 8.15, the distributions
of the possible maximum mass are illustrated as the percentage of the maximum
takeoff mass. Note that only turns with maximum masses lower than maximum
takeoff mass are included. The number of trajectories compared to all trajectories
are indicated in the lower left corner of each plot.

In this test, we set the maximum lift coefficient as a fixed value of 1.4 for all
aircraft. In reality, the maximum lift coefficient differs according to the aircraft
type and aerodynamic configurations. Regardless of the choice of maximum lift
coefficient, this figure demonstrates the additional information on weight obtained
by observing the turn.

8.7. Conclusion
In this chapter, we addressed the challenge of estimating aircraft performance
parameters during the turning segments of flights. The method relied solely on
open ADS-B data, without additional information necessary. It can also be used
on radar data due to the similar nature of their properties.

At first, we developed a simple data mining algorithm that made it easy to
identify the turn segments in the flight. Once an individual turn was extracted
from the flight, we transformed the three-dimensional turning trajectory onto a
two-dimensional plane, where the radius of the turn could be computed using
least-squares regression.

In this study, we only considered the coordinated turns under light wind con-
ditions. The coordinated turn was a safe assumption for most airliners. However,
when heavy wind condition occurs, it is possible that our method produces an esti-
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Figure 8.15: Distribution of maximum flight mass per aircraft type (only m < mmtow are considered,
CL,max = 1.4)

mate with a larger error. Knowing the wind information in addition to the ADS-B
data would improve the calculation. It is worth noting that flight management
systems from different manufacturers may perform the same turn procedures dif-
ferently. For example, in research [52], fixed radius-to-fix experiments were car-
ried out to test these flight management systems. Results showed differences in
these test flights, with of the most noticeable ones been how the wind, as well as
the climb gradient, were handled during the turns.

Combining the turn radius and the speed of the aircraft, we were able to com-
pute the bank angle and load factor, as well as the turn rate of the aircraft during
the turn. Using the data from secondary Mode-S communications (track and turn
report), we were able to validate the estimations derived from ADS-B data. The
median of the errors for bank angle and turn rate were around 2 degrees and 0.05
degree/s respectively.

Knowing the bank angle and turn rate would bring more accurate information
for future ADS-B based aircraft performance studies. For instance, we demon-
strated that knowing the actual load factor, we were able to increase our knowl-
edge of the aircraft mass. This, in turn, would help to improve other performance
parameter estimations.
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Mass estimation using

Bayesian inference
Aircraft mass is a crucial piece of information for studies on aircraft performance,
trajectory prediction, and many other areas for research in aircraft traffic manage-
ment. However, accessing this proprietary information is challenging for researchers
and air traffic controllers. Previously, several studies have proposed methods to esti-
mate aircraft weight based on specific segments of the flight. Due to inaccurate input
data or biased assumptions, this often leads to less confident or inaccurate estima-
tions. In this chapter, several aircraft masses are computed independently using the
total energy model and reference model at different flight phases. We then adopt the
Bayesian inference that uses a prior probability of aircraft mass based on empirical
knowledge and computed aircraft initial masses to produce the maximum a posteriori
estimation. Variations in results caused by prior assumptions, thrust, and wind are
studied. The method is tested using 50 test flights of a Cessna Citation II aircraft, for
which measurements of the true mass were available.

This chapter is based on the following publications:
1) Sun, J., Ellerbroek, J. and Hoekstra, J.M., 2017. Bayesian inference of aircraft initial mass. Pro-
ceedings of the 12th USA/Europe Air Traffic Management Research and Development Seminar [125].
2) Sun, J., Ellerbroek, J. and Hoekstra, J.M., 2018. Aircraft initial mass estimation using Bayesian
inference method. Transportation Research Part C: Emerging Technologies, 90, pp.59-73 [123].
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9.1. Introduction
Aircraft mass is a fundamental parameter for studies on aircraft performance and
trajectory prediction. However, data concerning the mass of almost all modern
commercial flights are treated as confidential information by airline operators,
which poses a challenge for the research community. Studies [69] and [25] have
shown that inaccurate aircraft mass estimations introduce a significant source of
error and affect ground-based trajectory predictions. [137] implemented an adap-
tive aircraft weight algorithm to improve the accuracy of climbing predictions,
while [40] illustrated the significant influence of aircraft mass on fuel burn during
continuous descent operations.

Within the air traffic management research community, several methods have
been developed to estimate aircraft mass based on flight data, either from radar
data or more recently from ADS-B data. In two separate studies [2] and [4],
a least-squares method and a machine-learning method were developed, which
focused on the climb phase of aircraft. In a similar approach considering climbing
aircraft [118], an adaptive estimation method is implemented for mass and thrust
approximation. More recently, ADS-B data from takeoff is used to estimate the
initial mass of an aircraft with two different analytical methods [129]. On the
operational side, a different approach has been proposed by [80], which tries to
calculate the weight of an aircraft based on an approximation of each individual
weight component, i.e. aircraft empty weight, fuel weight, and payload weight.
For most of these studies, the focus was on a specific part of the flight (takeoff or
climb).

In this chapter, the use of multiple masses calculated during the different flight
stages is identified as a potential improvement for mass estimation. We study
not just one specific flight phase, but a combination of all phases. More infor-
mation on aircraft mass can, thus, be included. When mass from different flight
phases are computed, the final estimation problem is considered as a single param-
eter Bayesian inference problem [43, p.29]. Thoughout the chapter, we consider
masses computed along with the entire flight as observations.

Prior knowledge of weight can be used to improve the estimation. For instance,
aircraft will never operate above their maximum takeoff weight or below their
minimum operational weight. In practice, given an approximation of the num-
ber of passengers, one can even further constrain the weight estimation range by
making an estimate of the aircraft payload. These kinds of prior knowledge can
be very valuable for estimating the actual aircraft mass when applying Bayesian
inference.

The remainder of this chapter is structured as follows: first, this chapter presents
several existing methods to calculate aircraft mass independently in each flight
phase. Then, in section three, a Bayesian inference approach is established to use
these calculations as independent measurements, combining a priori knowledge
of initial aircraft mass probability distribution to produce a maximum a posteriori
estimation. Figure 9.1 offers an illustration of the entire estimation process.
Section four discusses the results for several aircraft types and parameter sensitiv-
ities. Section five uses a real flight dataset to test the Bayesian inference method.
Finally, discussion and conclusions are presented in sections six and seven.
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Figure 9.1: Flow chart of the estimation structure

9.2. Calculation of mass at different flight phases
This section describes five methods that can be used independently to compute
aircraft mass at different flight phases. The total energy model (TEM) is used
when the dynamic of the aircraft model is required. The model is described as:

(T −D)V = maV +mgVS (9.1)

D = CD
1
2ρV

2S

L = CL
1
2ρV

2S

CD = CD0 + kC2
L

Here, T and D are the thrust and drag of the aircraft. V , a, and VS are the
airspeed, acceleration, and vertical rate respectively. CD, CL, CD0, and k are
coefficients for drag, lift, zero lift drag, and lift-induced drag. ρ and S are the air
density and the aircraft reference wing surface.

With the complete flight trajectory based on the total energy model, mass can
be computed at different phases as illustrated in Figure 9.2, where the subscripts
TO, LOF, CL, DE, and APP represent takeoff, liftoff moment, climb, descent, and
final approach respectively. A fuel flow model is used together with these estimates
to generate multiple initial takeoff mass calculations, which is used for the final
inference.

In this chapter, the term mass observation is used for initial masses that are
computed at different stages of the flight in combination with the fuel flow, as
illustrated in Figure 9.1. It is worth noting that these mass observations are not di-
rectly observed but calculated using the deterministic total energy equations. The
remainder of this section discusses how initial masses are computed deterministi-
cally.
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Figure 9.2: Bayesian inference using multiple mass observations

9.2.1. Computing mass at takeoff
While an aircraft is on the runway before liftoff, it only accelerates horizontally.
Because it is still on the ground, ground friction needs to be considered in addition
to the aerodynamic drag. This ground friction is proportional to the normal force
on the ground, with a friction coefficient denoted by µ1. A common value is
around 0.02 for concrete runways [143]. Equation 9.1 then can be re-written as
follows:

T −D −Dg = ma (9.2)
Dg = µ1(W − L) (9.3)

Since BADA 3 does not have an accurate model for aircraft thrust during the
takeoff, the empirical model form [8] is used. The detail for this thrust model is
discussed in Chapter 6 of this dissertation. This thrust model can also be used for
other phases during the flight. During the takeoff, the maximum takeoff thrust is
expressed as a function of velocity:

Tmax = f(V ) = T0(1− c1V + c2V
2) (9.4)

where T0 is the maximum static thrust at sea level. Parameter c1 and c2 are coeffi-
cients that are dependent on the engine bypass ratio. During takeoff, the optimal
lift coefficient can be derived. Equation 9.2 is rewritten as follows:

T = D +Dg +ma

= 1
2ρV

2S(CD0 + kC2
L) + µ1(mg − 1

2ρV
2SCL) +ma

= 1
2ρV

2S(CD0 + kC2
L − µ1CL) + µ1mg +ma

(9.5)

For a given velocity V , T is minimum when CL satisfies the following equation
[87]:
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CL = µ1

2K ( dT
dCL

= 0) (9.6)

When the requirement of minimum excess thrust is satisfied, aircraft can take
off with reduced thrust. This has become common practice for airliners to extend
engine life and reduce costs. To accommodate this possibility in the model, a
thrust coefficient δT is introduced that satisfies δT ≤ 1. Combined with Equation
9.6, Equation 9.5 becomes:

δTTmax − (µ1g + a)m− 1
2ρV

2S(CD0,to −
µ2

1
4Kto

) = 0 (9.7)

Let the left part of the equation be f1(m, δT ). The optimal m̂ and δ̂T that
minimize the squared sum of f1 of all takeoff data samples can be found as follows:

m̂, δ̂T = arg min
m,δT

N∑
i=1

f2
1 (m, δT ) (9.8)

m ∈ (0, cm)
δT ∈ (cδT , 1)

where the δT constraint represents the possible reduction of thrust during the
takeoff, and the range of m represents a very large mass range. The coefficients
cm and cδT are user-defined boundary conditions. The quality of the optimization
solution depends on the accuracy of the velocity measurements and the number
of data samples. It is possible that an optimal mass solution may not be found
and that the optimization, instead, converges to the condition boundaries. In
this chapter, a mass observation at the boundary conditions (zero or 2mmtw) is
considered as an impossible observation, which is discarded for the final inference.

9.2.2. Computing mass at liftoff and final approach
At each liftoff and final approach, optimal speeds are usually selected, which are
correlated to the stall speed. Even though it is a relatively weaker correlation at
takeoff, both speeds can be used as indicators to infer aircraft mass.

This method first observes the aircraft liftoff speed (airspeed at which the air-
craft first becomes airborne) and the speed of the final approach. Then, it infers
the mass taking into account the relationship between the reference stall speed
and the maximum takeoff (or landing) weight. This data can be obtained from
the flight manual or BADA reference data.

At takeoff, the speed of an aircraft is often related with the mass of the aircraft.
For example, according to FAA regulation, the takeoff speed has to be at least 20%
over the stall speed. Assuming lift and weight are the same at liftoff, the following
relation can be derived under certain assumptions:
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Wto = Lto ⇒ mtog = 1
2ρSCLV

2
lof

⇒ mto ∝ V 2
lof

(9.9)

where the takeoff mass is proportional to the liftoff speed squared, under the as-
sumptions of the same aircraft model and lift configurations. Knowing reference
weight and corresponding stall speed (VS), it is possible to calculate such a con-
stant coefficient:

C = mto

V 2
lof

(9.10)

= mref,lof

V 2
ref,lof

≤ mref,lof

1.22 · V 2
S,ref,lof

(9.11)

Then, at any given observed takeoff, the initial mass can be approximated using
the following equation:

mto ≈

(
mref,lof

1.22 · V 2
S,ref,lof

)
V 2

lof (9.12)

A similar relationship can be obtained at landing. The approach speed em-
pirically is around 30% above the stall speed. The landing mass, then, can be
approximated as follows:

mld ≈

(
mref,app

1.32 · V 2
S,ref,app

)
V 2

app (9.13)

Such approaches are also addressed in the previously mentioned research by
[40]. When using ADS-B data, it is common that there is a certain gap between the
on-ground data and in-air data. Hence, the liftoff speed and approach speed can
be obtained using an interpolation method based on data points during takeoff or
landing, as shown in Chapter 5.

9.2.3. Computing mass at climb and descent
During the climb and descent phases, horizontal speed and climb/descent rate
observations can be employed to estimate aircraft mass. Assuming standard at-
mospheric conditions, the total energy model in Equation 9.1 can be expanded at
each time step as follows:

(Tt −Dt) Vt = mtatVt +mtgVSt (9.14)
mt = m0 −mfuel,t (9.15)
Tt = δTTmax,t = δT f(ht, Vt) (9.16)
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Dt = CD
1
2ρtV

2
t S (9.17)

Lt = mtg cos(γt) = CL,t
1
2ρtV

2
t S (9.18)

CD = CD0 + kC2
L,t (9.19)

Here, γ represents the flight-path angle. Maximum thrust profile Tmax is a function
of pressure altitude and airspeed, and δT is an assumed thrust coefficient for the
entire climb or descent, describing the actual thrust setting as a percentage of
maximum thrust. Given all observed and known variables, the above equations
can be rewritten into the following equation:

2kg2 cos2(γt)
ρtV 2

t S
·m2

t +
(
at + g

VSt
Vt

)
·mt

+CD0
1
2ρtV

2
t S − δT · Tmax,t = 0 (9.20)

Fuel consumption can be estimated according to the fuel model defined in
Chapter 6. The two remaining unknown variables m0 and δT remain to be found.
This process is similar to the takeoff method but includes more parameters in
the equation. Let the left side of Equation 9.20 be f2(m0, δT , θt), where θt =
(mfuel,t, Vt,VSt, ρt, γt). The task is to find the optimal m̂ and δ̂T that minimize
the squared sum of f2 of all N data samples. The mass is constrained by the
aircraft Operational Empty Weight and the Maximum Takeoff Weight, and thrust
reduction is no larger than 20% of the maximum thrust profile. The solution can
be found as follows for climbing flights:

m̂0, δ̂T = arg min
m0,δT

N∑
t=1

f2
2 (m0, δT , θt) (9.21)

m ∈ (0, cm)
δT ∈ (cδT , 1)

Although the total energy equation is the same for descent flights, their thrust
profiles are different. In the above equations, δTTmax,t needs to be replaced with
an idle thrust or appropriated thrust setting in the case of a powered descent. In
this study, idle thrust is assumed during descent.

Compared to the takeoff phase, climb and descent usually last for a signifi-
cantly longer time, where a large number of data samples can be gathered. Rather
than using all data from the entire climb or descent for the calculation, these data
can be split into smaller segments which produce multiple mass observations.
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9.2.4. Computing fuel consumption
With the polynomial fuel flow model based on ICAO data-bank proposed in Chap-
ter 7, the fuel consumption is now approximated as a continuous function in rela-
tion to the dynamic thrust of the engine. The initial mass can be calculated with
the total fuel burn:

m0 = mt +mfuel = mt +
t∑
i=1

ffuel(Vi, hi,VSi)∆t (9.22)

9.3. Bayesian Inference
As shown in the last component of the estimation flowchart (Figure 9.1), the final
estimate is computed using the Bayesian inference. The Bayesian inference uses
Bayes’ theorem [9] to update a hypothesis probability based on evidence (or ob-
servation). In the case of estimating aircraft mass, it uses computed mass at each
flight phase to update an initial belief. This belief is called prior in Bayesian terms.
The prior essentially describes the probability density function of a parameter be-
fore any observation is made.

To understand the process, first, let us assume n possible mass observations are
obtained from different flight phases:

m = m1,m2, · · · ,mn (9.23)

These observations are possible values of initial aircraft mass. However, due
to errors in aircraft flight data and estimations, those values can be very different
from reality or even out of the physical boundaries. If, for simplicity, one assumes
the observed aircraft mass follows a normal distribution:

m ∼ N (µ, σ2) (9.24)

where the µ parameter refers to the underlying real aircraft mass and σ2 is the
variance of the observations.

The Bayesian inference method introduces a prior probability function for the
parameters µ and σ2. The posterior probability function p(µ, σ2|m) is computed
as the probability of µ based on observed measurements. The most likely value
in the posterior distribution function (the mode) is denoted as the Maximum a
Posteriori Probability Estimate (MAP).

To deduce the simplest closed form of the posterior function, the fixed variance
(a chosen σ2) assumption is used. Let the prior probability function for µ be
defined as follows:

µ ∼ N (µ0, σ
2
0) (9.25)

The posterior probability distribution of µ satisfies the following normal distri-
bution:
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µ|m ∼ N

(
nσ2

0m̄+ σ2µ0

nσ2
0 + σ2 ,

(
1
σ2

0
+ n

σ2

)−1
)

m̄ = 1
n

n∑
1
mi

(9.26)

where n is the number of the measurements and m̄ is the mean of all measure-
ments.

9.4. Experiments and results
To examine and test the Bayesian estimation approach, data from a large number
of flights are gathered for two common aircraft types (A320 and B738), which are
based on ADS-B data from the FlightRadar24 network. These flights were carried
out between the 10th and the 16th of October, 2016. The first 1500 complete
trajectories for the experiment were selected. As an illustration, the great circle
paths between the origins and destinations of all flights are drawn in Figure 9.3.

Figure 9.3: All flights in the dataset

For each flight, multiple initial mass observations are computed at different
flight phases. After that, the Bayesian mass inference is applied. In this experiment
section, three experiments are carried out: mass estimation for a single flight,
distributions for mass estimated for all flights, and sensitivity studies. For the
Bayesian inference, by default, the following values are used:
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µ0 = 65000 kg
σ0 = 10000 kg
σ = 10000 kg

(9.27)

9.4.1. Single flight demonstrations
The Bayesian inference of two flights is illustrated in Figure 9.4. In the first plot,
mass observations are computed at different flight phases. These numbers corre-
spond to the solid probability density function in the second plot. The prior prob-
ability is illustrated as the dotted function. The posterior probability is computed
and illustrated by the dashed function.
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Figure 9.4: Example of Bayesian inference. Mass computed at different phase in the first plot corre-
sponding to the vertical lines in the second plot. The final MAP estimate yields approximately 73 tons
of initial mass.

9.4.2. Distributions for A320 and B737-800
Figure 9.5 shows the results of the inference method applied to all A320 and
B738 flights in the dataset. The first five sub-plots illustrate the distribution of
individual measurement results from methods that are applied at different flight
phases, which are takeoff, liftoff, climb, descent, and final approach. The last plot
shows the final estimated initial masses using Bayesian inference.

By studying the results for these two different aircraft types, it is possible to
conclude that at different flight phases, the initial mass computed using deter-
ministic methods contains large variances. Some of the results are outside of the
boundaries of moew and mmtw. The main causes are data inaccuracy, uncertainty
in the thrust, and uncertainty in the airspeed. For liftoff and final approach es-
timates, the margin of stall speed between the model and the actual setting may
cause large inaccuracies (in the case of B737-800). A more detailed discussion for
these biases is addressed in section 9.6.3.

When looking at five distributions of the measurements and the final MAP
estimates, it is evident that the MAP estimates have a smaller variance than the
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Figure 9.5: Comparison of estimations at different flight phases. Solid vertical lines refer to the opera-
tional empty mass and maximum takeoff mass.

individual estimates, and most of the initial estimates are within the boundaries
of moew and mmtw.

9.4.3. Sensitivity analysis
In this section, the goal is to study how variations of different factors lead to
changes in the estimation results, as well as the degree of these differences. Follow-
on experiments are performed on the A320 dataset that was previously used.

Prior
When applying Bayesian inference, the prior stands as an important factor when
observations are few. A stronger belief in the prior knowledge will increase the
confidence of the final estimation. However, these estimates can be biased towards
the prior belief. To study this influence, the same A320 dataset is treated with a
set of different priors to produce different distributions of estimates. In Figure
9.6, six combinations of (µ0, σ0) are chosen to study this effect. The probability
distribution functions that are biased towards the low, medium, and high mass are
shown in different shards of gray. Priors with high and low confidence are shown
in solid and dashed lines, respectively.

In Figure 9.7, six different results from the same estimation configuration are
displayed. Results are grouped by µ0, corresponding to the bias of the prior. On
the left-hand side, the groups are distributions from low confidence priors (higher
σ0), On the right-hand side, the groups are distributions from high confidence
priors (lower σ0).

From these plots, it is possible to see that with a weak prior, the estimates are
less biased. They depend more on the observations (i.e.: different initial masses
calculated based on data from different flight phases). They also, in turn, produce
less confident results. For instance, all three experiments end up with distribu-
tions with larger spreads. A good choice of a prior often requires some empirical
knowledge with regard to the flights.
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Figure 9.6: Different initial mass prior probability density functions (for A320). Vertical lines indicate
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Figure 9.7: Variation in distributions of estimates due to different priors (A320 dataset)

Thrust
The level of correctness of aircraft mass estimations based on observed perfor-
mance parameters is essentially dependent on knowledge of thrust settings. As
shown in section 9.2, most of the mass computation methods along the flight path
need to take into account the thrust profile while estimating aircraft mass. In these
methods, an optimization using the least squares method is implemented to find
the best thrust setting and aircraft mass, which provides a minimal squared error.
This approach has also been proposed previously [2].

In order to study the influence of different thrust settings, based on the same
dataset, two sets of fixed minimum and maximum thrust profiles are used to pro-
duce two different sets of mass estimates. For takeoff and climb, maximum thrust
and a 30% reduced thrust profile are used. While, for the descent, two thrust set-
tings at 8% and 20% of maximum climbing thrust setting are used. In Figure 9.8,
results from different settings are shown, where the distributions from all flights
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Table 9.1: Median of estimated mass (×103 kg) under two thrust settings

Phase Tmin Tmax ∆m
TO 60.7 83.9 23.2
LOF 56.1 56.1 –
CL 42.1 64.4 22.3
DE 56.4 45.0 -11.4
FA 68.7 68.7 –
MAP 58.1 63.7 14.6

at different flight phases are compared.
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Figure 9.8: Variation in distributions of estimates due to thrust settings (A320 dataset)

During the takeoff (TO) and climb (CL), higher thrust settings lead to higher
estimations of initial masses, with the difference being quite significant. During
the descent (DE) phase, such a tendency is not visible. However, the uncertainty
of mass estimated under high powered descent is much larger. Due to the fact that
thrust is not involved for estimates from liftoff (LOF) and final approach (FA),
these results remain the same. When comparing these two sets of distributions,
the final MAP distributions display considerable differences.

It is worth emphasizing that the mass observations obtained in these experi-
ments are not the optimal solution in comparison with the results from Figure 9.5.
All values are computed under a fixed thrust setting. For the latter case, mass from
the best mass/thrust pair was selected. From this test, it is possible to conclude
that thrust setting is a major factor that affects the mass estimation. The link be-
tween mass and thrust should, therefore, not be neglected. Numerical differences
(median of the distributions) are shown in Table 9.1.

A comparison of the distributions under two thrust settings shows that the dif-
ference in MAP is smaller than the ones seen in the previous mass observation
methods. This is because, under the prior assumption, measurements that are far
away from a believable value are considered with lower probability. The large
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fluctuation caused by distinct thrust settings is reduced. Therefore, more convinc-
ing distributions are produced. It is positive to see that the bias still persists in the
MAP results, which confirms that the final result maintains the knowledge about
thrust settings.

As it is common practice nowadays to apply de-rated thrust takeoff/climb to
reduce engine wear, as well as minimum thrust descent to save fuel, the minimum
thrust profile used in this experiment is closer to reality. This can be reflected
in the resulting distributions, where maximum thrust profile produced much less
realistic results.

Airspeed
All estimation methods introduced in section 9.2 require correct measurements of
aircraft airspeed. However, data collected from ground measurements (ADS-B or
radar) only reveal the ground speed. Estimations can either assume the ground
speed as airspeed or integrate wind data to approximate the airspeed. Intuitively,
this uncertainty in wind can affect the estimation results.

In the experiment dataset, meteorological data are integrated with ground
speed to approximate the true airspeed of aircraft. The Global Forecast System
(GFS) re-analysis dataset is used to construct the wind field globally. Airspeeds
of all trajectories are computed as the difference between the ground speed and
wind speed.

For each flight, two sets of initial masses are computed with ground speed con-
dition and airspeed condition. Finally, the difference in estimated mass is found
and illustrated in Figure 9.9. It can be seen that the estimation can vary up to five
metric tons of difference for the Airbus A320, which is around 6% of the maximum
takeoff mass.
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Figure 9.9: Difference in estimation caused by wind
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9.5. Demonstration with Cessna Citation flight data
We use data from a set of student demonstration flights with a Cessna Citation II
laboratory aircraft to test the proposed method. A total of 50 flights were carried
out in a period of three weeks in March 2017. For each flight, the initial mass
is computed as the sum of measured passenger weight, fuel weight, and aircraft
basic empty weight. During the flight, a large number of flight parameters (such
as fuel flow) are recorded. The average duration of the flights is approximately 80
minutes.

Figure 9.10 shows how the initial mass varied from flight to flight. As the
number of passengers is almost always the same, most of this initial mass variation
is caused by the refueling schedule. Figure 9.10 also shows that all flights are
taking off at a weight close to the maximum takeoff weight (indicated by the top
solid line). It should be noted that for some of the flights (numbers 2, 6, 14, 27,
37, and 49), the initial fuel mass was not recorded in the flight data sheet. The
amount of fuel on these flights is interpolated for these flights. These data points
are marked distinctly in the figure.
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Figure 9.10: Aircraft initial mass for all flights

Figure 9.11 illustrates the result of Bayesian estimation applied on all flights.
The difference between true mass and estimated mass is shown for each individ-
ual flight. The mean absolute error (MAE) is 4.3% of the total true mass, while
all estimates are within 12% of MAE, with prior parameters of µ0=6000 kg and
σ0=500 kg.

To assess the effect of the choice of prior, six different priors are tested with the
same data, as shown in Figure 9.12. Here, the plots on the right-hand side repre-
sent the distribution from different priors. Within the distribution, the scattered
points are all estimated mass values. It can be seen that as expected, with the
true mass as a comparison, the prior that yields the best result is the one biased
towards the true mass and with a high level of belief. The prior yielding the worst
result is the one with a high level of belief but biased towards the wrong values.
On the other hand, selecting a weak prior (larger σ0, lower level of belief), reduces
the influence of bias but increases the estimation uncertainty.
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Figure 9.11: Bayesian estimation for all flights (prior parameters: µ0=6000 kg, σ0=500 kg)
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Figure 9.12: Prior test in relation to the true mass data. Horizontal lines refer to moew and mmtow.

9.6. Discussion
This chapter presents a set of principles, methods, and validations for Bayesian
inference of aircraft mass. From the Bayesian inference point of view, the choice
of prior distribution is very important. On the other hand, related factors such as
wind and thrust can influence the accuracy of mass observations, which can prop-
agate to the final estimations. These factors and their limitations are addressed in
this section.
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9.6.1. Priors in Bayesian inference
The Bayesian inference approach is based on the conditional probability theory
where a certain prior (or “belief”) of the parameter is known. This leads the
estimate to be biased to what the “belief” is. There are two ways to improve the
final estimate: more measurements or, when fewer measurements are available, a
better prior.

Because the number of mass observations is low, constructing a better prior is
important. In practice, other than the minimum and maximum allowed weight,
one can construct the prior based on direct or indirect indicators such as historical
data, occupancy, and fuel reserves. For example, for short-haul flights from low-
cost airlines, a highly-biased prior towards the maximum takeoff mass can be used.
One can also look at traveler statistics to construct the priors according to seasons.
In the cases where the types of flight are uncertain, based on our experiments, we
select a µ0 around 80% of the maximum takeoff mass, and a σ0 that is around
25% of the mass difference between the maximum and empty mass.

Normally distributed priors are assumed in this chapter. The Normal distri-
bution assumption is based on the results of [2, 3]. Furthermore, it serves the
purpose of simplifying the computation. Nonetheless, a more informative prior
with a skewed distribution can be used, depending on the level of confidence. The
fixed variance reduces the computation and simplifies the closed-form solution.
However, this is also a minor limitation that future studies would overcome. In
other cases of the uncommon prior distribution, the posterior can stillbe computed
using numerical methods.

9.6.2. The mass observations
For Bayesian inference, the more mass observations available, the better the quality
of the result. In order to obtain more observations, the long duration of climb and
descent can be better utilized. Most previous studies tend to consider the climb
phase as an entire section for their estimation process. However, the climb and
descent phases can be segmented further to create multiple measurements at dif-
ferent flight levels or at several continuous climb/descent segments. The method
used in Equation 9.21 can be applied to obtain more observations to include in
the Bayesian inference process.

It is worth noting that each flight in the dataset of this chapter contains the
complete flight trajectory data that starts before takeoff and lasts until landing
is completed. It may include some missed segments during trans-oceanic cruise
where no data is available. The completeness of trajectory data is required to be
able to use all different mass calculation methods at each flight phase. However,
such a condition is not required in order to arrive at a set of estimates. A partial
trajectory can be used in the same way, where the number of measurements is
simply reduced.

9.6.3. Uncertainties
Since the mass is tightly linked to the thrust in the total energy model, the uncer-
tainty in thrust always exists. This can result in a difference between the actual
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mass and mass computed under maximum thrust profile assumption. On the other
hand, using the total energy model, with observed aircraft kinematic states and
calculated drag, there are multiple possible thrust and mass combinations. That
is, both higher and lower thrust-mass combinations may satisfy the equation at
the same time (with different levels of error).

It is common that an aircraft does not climb at the maximum thrust setting.
The computation of several observations in this chapter requires knowledge of the
reduced thrust ratio. This approach is similar to the study from [2]. The effect of
thrust settings was studied in this chapter where the difference in mass estimation
is found under fixed maximum and minimum thrust profile.

Compared to takeoff and climb, the descent situation is more complicated.
Aircraft trajectories are subject to more procedures from air traffic controllers.
Additionally, different types of continuous descent approaches may be used. Thus,
the thrust settings can vary substantially among flights. Optimization according to
Equation 9.21 may not yield the best thrust-mass setting to resemble reality. This
effect can be seen in Figure 9.8 in the descent phase.

9.7. Conclusion
In this chapter, a Bayesian inference process for estimating aircraft initial mass was
proposed. The maximum a posteriori probability (MAP) estimation was derived by
combining mass calculations using data from different flight phases, in addition
to the prior that is based on the empirical knowledge of the aircraft mass. The
calculation of multiple initial masses was another major focus of this chapter. We
tested different hypotheses of prior selections and their influence on the estimation
results. It was also found that thrust setting and wind can act as important factors
that influence mass estimation.

In this chapter, the Bayesian inference was applied to the multiple masses com-
puted using the entire trajectory. It requires long observation of the flight trajec-
tory and is best suited for the post-processing of the flight data. However, the
requirement of extended observation of flight trajectory also poses the major lim-
itation for this method being used in real-time cases.

To overcome this limitation, an improvement would be integrating the Bayesian
estimation at flight dynamics level. This challenge will be addressed in the next
chapter.
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Bayesian particle filtering
In the last chapter, we relied on Bayesian statistics to combine empirical and profes-
sional knowledge of mass computed at difference flight phases to derive initial takeoff
mass. However, Bayesian estimator become more powerful when applied to system
dynamics. This chapter focuses on estimating aircraft mass and thrust settings using
a recursive Bayesian method called particle filtering. The method is based on a non-
linear state-space system derived from aircraft point-mass performance models. Using
only aircraft surveillance data, flight states such as position, velocity, wind speed, and
air temperature are collected and used for the estimation. Using the regularized Sam-
ple Importance Re-sampling particle filter, we are able to estimate the aircraft mass
within 30 seconds once an aircraft is airborne. Using this short flight segment allows
the assumption of constant mass and thrust settings in estimation. The segment at the
start of the climb also represents the time when maximum thrust setting is most likely
to occur. This study emphasizes an important aspect of the estimation problem, the
observation noise modeling. Four observation noise models are proposed, which are
all based on the native navigation accuracy parameters that have been obtained auto-
matically from the surveillance data. Simulations and experiments are conducted to
test the theoretical model. The results show that the particle filter is able to quantify
uncertainties, as well as determine the noise limit for an accurate estimation.

This chapter is based on the following publications:
1) Sun, J., Blom, H.A., Ellerbroek, J. and Hoekstra, J.M., 2018. Aircraft Mass and Thrust Estimation
Using Recursive Bayesian Method. 8th International Conference on Research in Air Transportation
[124].
2) Sun, J., Blom, H.A., Ellerbroek, J. and Hoekstra, J.M., 2018. Particle filter for aircraft mass es-
timation and uncertainty modeling. Transportation Research Part C: Emerging Technologies (Under
review).
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10.1. Introduction
Estimating aircraft mass using flight trajectory data has long been a topic of inter-
est in ATM research. Aircraft mass is not only an important parameter for aircraft
performance-related studies but is also a desired piece of knowledge for air traf-
fic controllers in practice. Airlines, however, treat this data as confidential, and
access is rarely granted to either researchers or air traffic controllers. In practice,
mass information is, thus, not accessible nor actively used by the research commu-
nity. Having an accurate estimate of aircraft mass at takeoff (or during the initial
climb) can, for example, be beneficial for obtaining accurate trajectory and fuel
consumption predictions during the flight.

Earlier studies that addressed this problem commonly involved deterministic
methods based on the aircraft total energy model. A least-squares solution to this
problem is proposed in [2], and an adaptive estimation method is presented in
[118]. Using radar track data, these two approaches are compared in [3]. All
these methods employ active radar data for estimation. With advancements in
machine learning studies, supervised machine learning methods that require a
well-established training set were also introduced to address the estimation prob-
lem in [4] and [19, 17]. With the growing adoption of Automatic Dependent
Surveillance-Broadcast (ADS-B), estimation studies have been conducted around
this open data source, such as [129].

The approaches by [2] and [17] have in common that they make use of re-
gression analysis. [17] focuses on estimating aircraft mass during the takeoff roll,
whereas [2] focuses on the climb phase. The advantage of regression analysis is
that it avoids the need for an accurate model of the various noise levels. However,
regression analysis requires the exploitation of model linearity. In Chapter 9, we
have shown that ADS-B data availability makes it worthwhile to use Bayesian in-
ference methods for the estimation of aircraft mass. The goal of this study is to
extend this Bayesian inference approach such that it can incorporate non-linear
aircraft evolution equations for the nonlinear Bayesian filtering of aircraft mass,
based on ADS-B and Enhanced Mode-S surveillance data.

From most of the aforementioned studies, a strong link between aircraft mass
and thrust setting is evident, and it is not possible to estimate one of the two
parameters without some knowledge of the other. Several of these studies es-
sentially addressed the estimation process as a minimization problem. Solutions
were obtained using a form of least-squares fitting. Aircraft mass estimated under
these conditions could be unrealistic and even outside plausible physical bound-
aries. Often, the main cause is related to uncertainty in the trajectory data, as
well as uncertainty and non-linearity in the system model. Although the effect
of noise is an important aspect in all inference processes, previous studies have
not yet comprehensively studied its relation to mass estimation. Therefore, along-
side estimating aircraft mass, observation noise modeling for the nonlinear aircraft
equations is one of the main focuses of this study.

The problem of mass estimation by a (ground-based) observer can be con-
sidered as having to solve an inverse non-linear multi-state system using noisy
observation data. To approach this complex system, in this study, we construct
a detailed point-mass flight performance model with 11 system states and 8 ob-
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servable states. A regularized Sample Importance Re-sampling (SIR) particle filter
is introduced to estimate the aircraft states from noisy observations. In addition,
four models of different levels of observation noise are constructed, which are
based on ADS-B navigation accuracy standards. These models are used in particle
filtering.

The remainder of this chapter is structured as follows. Section two describes
the nonlinear point-mass flight dynamic system equations. Section three explains
the theory of recursive Bayesian estimation and particle filtering. Section four de-
velops models for the process and observation noise. Section five specifies the par-
ticle filter for aircraft mass estimation during initial takeoff. Section six presents
the experiments conducted with simulated and real flight trajectories. Discussion
and conclusion are presented in sections seven and eight.

10.2. The point-mass aircraft dynamic model
10.2.1. Aircraft state
This section describes the system equations for aircraft locomotion, implemented
as a point-mass model. To illustrate, Figure 10.1 shows the observable states of an
aircraft, primarily based on aircraft ADS-B broadcasts. The wind can be obtained
from a weather prediction model or estimated based on Enhanced Mode-S data,
which is described in Chapter 4. The left figure shows a horizontal projection
of a trajectory, and the right figure a vertical projection. The heading and track
are relative to the true north. For ease of computation, latitudes, longitudes, and
altitudes are converted to a Cartesian coordinate system, with its origin at the first
observed position. The point-mass model used in this study ignores the angle of
attack and assumes no vertical wind.

ω
ψ

χ vg

vw
va

Y

Xx

y γ

vz

vg

Z

Xx

z

Figure 10.1: Observed states in the flight dynamic system

Denoting aircraft mass as m, thrust setting coefficient as δT , distance flown as
~s, altitude as z, ground speed as ~vg, true airspeed as ~va (in horizontal projection),
vertical rate as vz, wind speed as ~vw, and air temperature as τ , the system state x
vector can be written as:

x = (m, δT , ~s, z, ~va, vz, ~vw, τ) (10.1)
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The vector variables corresponding to the x and y axes are:

~s = (x, y)
~va = (vax, vay)
~vw = (vwx, vwy)

(10.2)

Additional angular parameters in Figure 10.1 are flight path angle γ, ground track
χ, aircraft heading ψ, and wind direction φ. In addition, the measurement vector
y is represented as:

y = (~̃s, z̃, ~̃vg, ṽz, ~̃vw, τ̃) (10.3)

where ~̃s, z̃, ~̃vg, and ṽz are computed from ADS-B data. Wind ~̃vw and temperature
τ̃ are obtained using Enhanced Mode-S data, which is described in Chapter 4.

10.2.2. State evolution
We want to model the system accurately in this point-mass performance model.
The process noise is considered to be zero for states where exact process equations
are known. These states are mt, δT,t, ~st, zt, and ~va,t. For states in which a per-
fect process equation cannot be established accurately or are unknown, we use an
auto-regressive model to describe their state evolution. These states are the ver-
tical rate vz, wind ~vw, and temperature τ . The complete state process equations
can be described as follows:

mt = mt−1 (10.4)
δT,t = δT,t−1 (10.5)
~st = ~st−1 + (~va,t−1 + ~vw,t−1) dt (10.6)
zt = zt−1 + vz,t−1 dt (10.7)

~va,t = ~va,t−1 + ~at−1 dt (10.8)
vz,t = αvzvz,t−1 + εvz (10.9)
~vw,t = ~αw~vw,t−1 + ~εw (10.10)
τt = αττt−1 + ετ (10.11)

where ~a is the horizontal acceleration. State updates for vz, ~vw, and τ are ex-
pressed using autoregressive (AR) models with lag p = 1. The coefficients of the
AR models are constructed using historical data, which is described in Section
10.4.2. It is worth noting that since we are working with a short segment of the
flight (within 30 seconds), constant mass (m) and thrust setting (δT ) are assumed.
Obviously, such an assumption cannot be applied to a longer period of the flight.

To compute the acceleration (~a), we need to consider the forces acting on the
aircraft, which are thrust, drag, lift, and gravity. The equations used at each time
step to compute the acceleration are listed as follows:
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~at = (at, ψt) (10.12)
ψt = arctan2(vax,t, vay,t) (10.13)

at = 1
m

(δT,tTt −Dt)− g
vz,t
va,t

(10.14)

Tt = fthr(zt, va,t, vz,t) (10.15)
Dt = fdrag(mt, vt, zt, CD0, k, S) (10.16)

where T and D are maximum thrust and drag forces expressed as functions of
other state parameters. S is the aircraft wing surface. The thrust is calculated
based on the empirical model proposed by [8]. The drag is calculated based on
the drag polar of the aircraft modeled in Chapter 7.

In general, only the maximum thrust provided by the engines can be calculated
from aircraft speed and altitude. During operation, aircraft engines only stay close
to the maximum thrust for a short period of time at takeoff and at the start of the
climb. Sometimes, a reduced thrust is applied, where the reduction of thrust is
constrained by the actual aircraft mass.

In the particle filter, such a constraint is reflected at the initialization of the
particles. The relation of mass and thrust setting is expressed using the following
equation adapted from the Base of Aircraft Data (BADA) reduced climb power
model from [103] 1:

δTmin = 1−∆δT
mmax −m

mmax −mmin
(10.17)

0 ≤ ∆δT ≤ 0.2 (10.18)

Here, ∆δT is the minimum derated thrust ratio, which is aircraft type specific and
commonly small. mmax and mmin are considered as the maximum takeoff mass
and minimum operational mass respectively.

Equation 10.17 shows the relationship between mass and the possibly reduced
thrust ratio. It indicates that the higher the aircraft mass, the smaller the range
in which the thrust can be reduced. Aircraft mass is assumed to be uniformly dis-
tributed between the operational empty mass and maximum takeoff mass. The
thrust setting is assumed to be uniformly distributed between this minimum pos-
sible derated thrust ratio and one:

m ∼ U
[
moew,mmtow

]
(10.19)

δT ∼ U
[
δTmin, 1

]
(10.20)

1Note that a similar equation in BADA is used to determine power setting. In this study, the form of
the equation is adopted for the thrust reduction ratio.
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10.3. Recursive Bayesian estimation
In recursive Bayesian estimation, an estimate of the system state is obtained using
all previous observations. To this end, a recursive system with additive noise can
be generalized by a discrete-time state model and observation model:

xt = f(xt−1) + νt−1

yt = h(xt) + nt
(10.21)

where xt represents the set of system states and yt the set of observations at time t
( t ∈N ), f and h represent the state transition function and observation function,
νt is the process noise, and nt is the observation noise. νt and nt are assumed to
be mutually independent sequences of independently and identically distributed
variables. In the particular case of this study, we assume an additive Gaussian
model for both process noise and observation noise as a common practice.

The goal of filtering is to compute the probability of the system state at a given
time t, based on the observations from time 1 to time t, denoted as p(xt|y1:t):

p(xt|y1:t) = p(yt|xt)p(xt|y1:t−1)
p(yt|y1:t−1) (10.22)

where the first part of the numerator, p(yt|xt), is the observation probability that
follows the observation function and observation noise n from Equation 10.21:

p(yt|xt) = N
{

yt; h(xt),Σn

}
(10.23)

where Σn is the covariance of the observation noise. Because the system described
in Equation 10.21 is a first-order Markov process, the second part p(xt|y1:t−1)
becomes:

p(xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1) dxt−1 (10.24)

where the first term p(xt|xt−1) on the right-hand side of the equation is the state
transition probability. It follows the state transition function and the process noise
model ν in Equation 10.21:

p(xt|xt−1) = N
{

xt; f(xt−1),Σv

}
(10.25)

where Σv is the covariance of the process noise. Combining Equation 10.22 and
Equation 10.24, the recursive form becomes:

p(xt|y1:t) =
∫
p(yt|xt)p(xt|xt−1)

p(yt|y1:t−1) p(xt−1|y1:t−1) dxt−1 (10.26)

where the denominator of the fraction is a normalizing factor which does not
need to be computed explicitly. The challenge is to resolve Equation 10.26 in a
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recursive way using input data y1:t. This is where Sequential Monte Carlo (SMC)
simulation-based particle filtering can be used.

10.3.1. Particle filtering
The specific Sequential Monte Carlo simulation method considered in this study is
known as particle filtering [33]. A particle filter is a recursive Bayesian estimator
based on importance sampling that computes the posterior density in a Monte
Carlo fashion. It approximates the target distribution (denoted as p(x)) using a
large number of samples (particles), drawn from a proposal distribution (denoted
as q(x)) that updates it recursively.

To describe the SMC process, at time t, let {xit,wit}Ni=i be a set of particles that
can represent the posterior density p(xt|y1:t), where xit is the ith possible state with
weight wit. Henceforth, the posterior density is approximated with the empirical
probability density:

p(xt|y1:t) ≈
N∑
i=1

witδ(xit) (10.27)

where δ(·) is a Dirac delta function centered at xit and wi is the normalized weight
of a particle which satisfies wi = p(xi)/q(xi). The most important part of particle
filtering is the weight updating. Sequentially, the particle weight wit is updated in
a recursive form. The solution is presented in Equation 10.28, as derived by [6] :

xit ∼ q(xit|xit−1,y1:t)

w̃it ∝ wit−1
p(yt|xit)p(xit|xit−1)
q(xit|xit−1,y1:t)

wit = w̃it∑N
i=1 w̃it

(10.28)

At each iteration, the sum of all weights is normalized to one, as shown in the
last part of equation 10.28. The posterior filtered density is approximated using
Equation 10.27. We can compute the expected state values at each time step using
the obtained particle weights:

E[xt] =
N∑
i=1

xitwit (10.29)

There are different ways to choose the proposal distribution q(x). A specific
particle filter - Sample Importance Re-sampling (SIR) - is used for solving the
problem of this study. The SIR particle filter uses the state transition distribu-
tion p(xt|xit−1) as the proposal distribution q(xt|xit−1,yk). Therefore, the particle
update equations in Equation 10.28 can be simplified to:
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xit ∼ p(xit|xit−1)
wit ∝ wit−1p(yt|xit)

(10.30)

For a SIR particle filter, an optional additional re-sampling process at each it-
eration is included. The re-sampling is useful for systems which involve a large
number of states (commonly more than 3) and prevents the impoverishment of
particles. The re-sampling step generates a new set of particles based on the ap-
proximated p(xit|xit−1). Once particles are re-sampled, all weights are assigned to
1/N .

The re-sampling step is essentially a redistribution of particles, which replaces
low-weight particles with high-weight particles. The standard re-sampling algo-
rithm is called residual re-sampling, which was proposed by [83]. Other forms of
re-sampling such as systematic re-sampling and stratified re-sampling were summa-
rized by [32]. In this study, the commonly used residual re-sampling is applied.

In summary, the process of flight state estimation using the particle filter is
illustrated in Figure 10.2. In this figure, we can see that ADS-B and Enhanced
Mode-S data are decoded and used as state observations that support the update
of the particle filter. The system dynamic equations define the particle state evolu-
tion. In section 10.5, different elements of the SIR particle filtering algorithm are
detailed. Before this can be implemented, we first need to introduce the system
equations for describing the aircraft performance model.

Partical filter  

Observations  

ADSB data 

Wind and
temeprature 

Positon, speed,  
and vertical rate 

Obsevation 
noise 

ModeS  
CommB data 

Dynamic 
eqautions 

Particle
initialization  SIR update State 

 evolution 
Stochastic
kernel 

Resampling 
(optional) 

Figure 10.2: Estimation diagram including the source of observations and process of SIR particle filter.
Further details are given in section 10.5.
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10.3.2. Application for the aircraft mass and thrust estimation
The observable states are distance flown and ground speed in the horizontal and
vertical direction, as well as the atmospheric conditions. The measurement vector
is denoted as y. Recall the measurement function from Equation 10.21:

yt = h(xt) + nt; nt ∼ N (0,Σn) (10.31)

where the state and measurement vectors at time t are:

xt = [mt, δT,t, ~st, zt, ~va,t, vz,t, ~vw,t, τt]
= [mt, δT,t, (xt, yt), zt, (vax,t, vay,t), vz,t, (vwx,t, vwy,t), τt]

yt = [~̃st, z̃t, ~̃vg,t, ṽz,t, ~̃vw,t, τ̃t]
= [(x̃t, ỹt), z̃t, (ṽgx,t, ṽgy,t), ṽz,t, (ṽwx,t, ṽwy,t), τ̃t]

(10.32)

The observation functions for all states can be written in detail as follows:

~̃st = ~st + ~ns,t (10.33)
z̃t = zt + nz,t (10.34)

~̃vg,t = ~va,t + ~vw,t + ~nvg,t (10.35)
ṽz,t = vz,t + nvz,t (10.36)

~̃vw,t = ~vw,t + ~nvw,t (10.37)
τ̃t = τt + nτ,t (10.38)

As previously mentioned, the observation noise is assumed to be uncorrelated
additive Gaussian noise. The noise n from Equation 10.21 can then be considered
as a multi-variate Gaussian distribution. The diagonal covariance matrix Σn for
these noise models is expressed as:

Σn = diag(σ2
x, σ

2
y, σ

2
z , σ

2
vg, σ

2
vg, σ

2
vz, σ

2
vw, σ

2
vw, σ

2
τ ) (10.39)

where σ2
vg and σ2

vw apply to both x and y directions. Since the noise follows a
multivariate normal distribution, the associated weight of the particles, p(yt|xit),
can be conveniently computed as follows:

wit ∝ wit−1 p(yt|xit)

∝ wit−1 exp
(
−1

2
[
yt − h(xit)

]T
Σ−1 [yt − h(xit)

]) (10.40)

In this study, the particles are re-sampled at each time step and normalized to
1/N . Hence, the weight calculation is simplified to:
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wit ∝ exp
(
−1

2
[
yt − h(xit)

]T
Σ−1 [yt − h(xit)

])
(10.41)

10.4. Observation and process noise models
10.4.1. The observation noise models
Observation noise is closely related to sensor errors. For example, GPS errors affect
position measurements (related to the state x̃) and altimeter errors affect altitude
measurements (z̃). ADS-B transponders operate under regulations that define the
minimum accuracy of sensors [111]. Different categories of uncertainty indicators
are transmitted through ADS-B. In this study, these Navigation Accuracy Categories
(NAC) are considered for the construction of observation noise models.

Table 10.1 illustrates the Navigation Accuracy Category - velocity (NACv), which
defines the level of accuracy in terms of horizontal and vertical speed. The NACv
indicator is broadcast along with the airborne velocity (message Type Code 18).
HFOM and VFOM, short for the horizontal and vertical figure of merit, indicate
the 95% confidence interval which corresponds to twice the standard deviation
in the observation noise model. The HFOM and VFOM can therefore be used to
obtain values for σ2

vg, σ2
va, and σ2

vz.

Table 10.1: Navigation Accuracy Category - velocity (NACv)

NACv HFOM VFOM
4 <0.3 m/s <0.46 m/s
3 <1 m/s <1.52 m/s
2 <3 m/s <4.57 m/s
1 <10 m/s <15.24 m/s
0 >10 m/s or unkown >15.24 m/s or unkown

Similarly, Table 10.2 shows the Navigation Accuracy Category - position (NACp),
which defines the level of accuracy in terms of horizontal and vertical position. For
each NACp level, an Estimated Position Error (EPU) and a Vertical Estimated Posi-
tion Error (VEPU) are defined. Similarly, they indicate a 95% confidence interval
for the horizontal and vertical bounds. From these values, we can obtain σ2

x, σ2
y,

and σ2
z for the observation noise model.

Table 10.2: Navigation Integrity Category - position (NACp)

NACp EPU VEPU
11 <3 m <4 m
10 <10 m <15 m
9 <30 m <45 m
8 <0.05 NM n/a

7 - 0 not used in this study

Four sets of observation noise models are proposed based on the ADS-B speci-
fications, each corresponding to a different combination of NACp and NACv (see



10.4. Observation and process noise models

10

197

Table 10.3). These four models are also the foundation for the experiments carried
out later in this study.

Table 10.3: Noise models

Noise model NACp NACv
Σn1 11 4
Σn2 10 3
Σn3 9 2
Σn4 8 1

The uncertainties in the wind and temperature measurements depend on the
Enhanced Mode-S data that was used to generate weather information. The vari-
ances for wind and temperature are set to be 2.52 and 12 for the noise model Σn3.
These two values are based on the variance of the model results obtained in Chap-
ter 4. For other noise models, they are adjusted with respect to the scale of the
velocity uncertainty. The exact values of all four noise models for Equation 10.39
used in the experiments are listed as follows:

Σn1 = diag(1.52, 1.52, 22, 0.152, 0.152, 0.232, 0.22, 0.22, 0.12)
Σn2 = diag(52, 52, 7.52, 0.52, 0.52, 0.762, 0.82, 0.82, 0.32)
Σn3 = diag(152, 152, 22.52, 1.52, 1.52, 2.282, 2.52, 2.52, 12)
Σn4 = diag(482, 482, 682, 52, 52, 7.622, 7.52, 7.52, 32)

(10.42)

10.4.2. Process equations for vertical rate, wind, and temperature
As described in Equations 10.9 and 10.10, vertical rate, wind, and temperature
along the climb path are modeled as autoregressive (AR) models. This is because
the underlying process model is unknown, and these time series exhibit a strong
correlation between consecutive data points. For simplification, we will use a first-
order AR model (AR1) to describe state evolution. In general, the AR1 model
(without the bias term) can be expressed in the following form:

xt = αxt−1 + ε

ε ∼ N (0, σ2)
(10.43)

where α is the model parameter and ε is the white noise with variance of σ2. Using
real flight data, these parameters can be estimated. For a given flight, α and σ can
be estimated in Equation 10.44 using the least-squares regression :

α =
∑n
t=1 x̃t−1x̃t∑n
t=1 x̃

2
t−1

σ2 = Var(xt − αx̃t−1)
(10.44)
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where x̃ represent the wind, temperature, or vertical rate data extracted from real
flights. This real flight data source should be different from the data source y1:t
that is used for mass estimation by the particle filter.

The reason that wind and temperature can be modeled in this way is that
locally they tend to be homogeneously distributed with some degree of variability.
There is often a gradual increase in wind magnitude and a lapse of temperature
with increasing altitude. On the other hand, the vertical rate is often a controlled
variable in point mass flight models. Without more information from the aircraft,
an AR model can capture the change in vertical rate from the observer’s point of
view.

To determine representative values for α and σ2, ADS-B and Enhanced Mode-S
data was collected for climbing flights in a period of one month (around 10,000
flights) using our receiver. α and σ2 were computed for each state parameter (see
Figure 10.3).
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Figure 10.3: First order AR model parameters for vz , vwx, and vwy

The mean value of each parameter is then used for the AR models. Table 10.4
summarizes the obtained parameters for vz, ~vw, and τ (used in Equation 10.9 to
10.11).
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Table 10.4: Parameter summary for the first order AR models

α σ

vz 0.9997 0.1423
vwx 1.0003 0.0733
vwy 1.0003 0.0842
τ 1.0000 0.1223

10.5. The algorithm
The detailed algorithm is specified in Algorithm 1, which is adapted from [12].
The most essential part of the algorithm is the SIR update, where the weights of
the particles are updated based on the observations. This step reflects Equation
10.40 that is described in the previous section. In addition, the state evolution is
defined by the aircraft performance that is described by Equations 10.4 to 10.11.

Algorithm 1 The SIR particle filter: p(xt−1|y1:t−1)→ p(xt|y1:t)
1: for i=1 to N do . initialize particles
2: draw mi0 ∼ U(moew,mmtow)

3: draw δT
i
0 ∼ U

(
1− δTmin(mmtow −mi0)/(mmtow −moew), 1

)
4: draw (~s, zi0, ~via0, v

i
z0, ~v

i
w0, τ

i
0) ∼ N (x̃0,Σn)

5: xi0 := (mi0, δT
i
0, ~s

i
0, z

i
0, ~v

i
a0, v

i
z0, ~v

i
w0, τ

i
0)

6: wi0 := 1/N
7: let x̃0 := h−1(y0)
8: let Σn be observation noise covariance
9:

10: for t=t0 to tN do
11: for i=1 to N do . SIR update
12: wit := wit−1p(yt|xit)
13: w̄it := wit/

∑N

i=1 wit
14: for i=1 to N do . re-sampling
15: draw x̄it ∼

∑N

i=1 w̄itδ(x− xit)
16: wit := 1/N
17: for i=1 to N do . state evolution
18: draw νt ∼ N (0,Σε)
19: xit+1 := f(x̄it) + νt

20: for i=1 to N do . apply kernel
21: draw dmi ∼ N (0, σ2

k,m) as kernel noise for m
22: mit := mit + dmi

23: draw dδT
i ∼ N (0, σ2

k,δT
) as kernel noise for δT

24: δ2
T,t := δ2

T,t + dδT
i

25: draw dψi ∼ N{0, σ2
k,ψ} as kernel noise for heading

26: compute d~via from dψi

27: ~via,t := ~via,t + d~via

In this study, we use the regularized SIR particle filter proposed in [98]. Specif-
ically, a stochastic kernel filter (KF) is used as an effective technique to prevent
degeneration and impoverishment of the set of particles that are maintained by



10

200 10. Mass estimation using particle filtering

the particle filter. The stochastic kernel is applied to the states of interest (m and
δT ), as well as a hidden state, aircraft heading (ψ). It adds a small random Gaus-
sian noise to the state variables of all particles after re-sampling. For m and δT ,
the kernel helps to prevent the degeneration of particles and maintain a local di-
versity of values. In the case of aircraft heading ψ, the kernel is essential for the
functioning of the particle filter to track small changes in heading. These kernels
are defined as:

km ∼ N (0, σ2
k,m)

kδT ∼ N (0, σ2
k,δT )

kψ ∼ N (0, σ2
k,ψ)

(10.45)

In this study, the σk,m is chosen to be 0.5% of the maximum m range , which
is 0.005 × (mmtow −moew). The σk,δT is chosen to the 0.5% of the maximum δT
range, which is less than 0.005× 0.2. The choice of σk,ψ is 2 degrees.

From a nonlinear system point of view, this noise has the same effect as the
process noise, since they both introduce uncertainty to the state evolution (see
Equation 10.21). However, in the context of particle filtering, this approach should
be considered as a form of regularization [98]. This is a simple but effective tech-
nique to prevent the degeneration and impoverishment of particles which would
lead to run-time execution errors in practice. To accomplish this, the kernel pro-
duces only a tiny variation of the states. Overall, it also compensates, to some
extent, the limitation of the constant mass and thrust assumption.

10.6. Experiments
This section describes three different experiments that are designed to test the
proposed method. In the first experiment, a simulated flight is generated with a
known mass and thrust setting. Four rounds of estimations are carried out under
four different noise models. The simulation is undertaken to ensure the validity
of the particle filter based on the proposed system equations. In the second ex-
periment, a real flight is chosen, and the estimation is undertaken with the same
four noise models. This is to ensure that the results from a real flight are in line
with the simulation results. The number of particles is set to one million. This
choice reflects a balance between accuracy and computational speed. The third
experiment is based on a number of flights with a Cessna Citation II laboratory
aircraft with known mass.

10.6.1. Experiment I: The simulation of a Boeing B737 climb
In this experiment, the aircraft takeoff mass m is set to be 60,000 kg, and the
thrust setting δT is set to be 0.96. The actual observation noise for the simulated
trajectory is Σn2. The wind is absent in the simulation, and the 20-second initial
climb is performed with a constant climb rate. Using the simulated trajectory,
particle filters with four distinct noise levels are applied to estimate the mass and
thrust settings.
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In Figure 10.4, the convergence of particles under assumed observation noise
Σn2 (the same as in the simulation) is illustrated. In each convergence plot, the
solid line represents the true state value, the black dots are simulated observa-
tions 2, and the gray area is bounded by the minimum and maximum state values
at each iteration. Under this condition, it can be seen that the mass and thrust
settings nicely converge to their true values. On the other hand, convergence is
less important for other states. The main goal is to be able to track the changes in
these states during the filtering process.
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Figure 10.4: Convergence of the particle filter states (noise level Σn2)

In Figure 10.5, the convergence of m and δT under all four observation noise
levels is shown. In each plot, the left-hand side distribution corresponds to mass,
and the right-hand side distribution represents the thrust setting. It is apparent
that with increasing assumed observation noise, the uncertainty of the final results
increases.

The Figure also shows that the estimates can become trapped in incorrect states
when the assumed noise is lower than actual noise (in the first two plots). When
the assumed noise level is much higher than the actual noise, the uncertainty in
the final estimate becomes large (as demonstrated in the last two plots). These
observations are consistent with the characteristics of a particle filter.

10.6.2. Experiment II: A real Boeing B737 flight
In this second experiment, an actual climb trajectory of a Boeing 737-700 is used to
demonstrate the application of the SIR particle filter to real flights. The trajectory
2Note that the airspeed is calculated as the difference between ground speed and wind speed.
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Figure 10.5: Final distribution of m and δT under different observation noise levels

data is gathered from ADS-B and decoded. The wind data are computed as the
combination of ADS-B and Enhanced Mode-S data.

The trajectory and convergence of the particles under noise level Σn2 are
shown in Figure 10.6. Similar to the previous simulated case, the black dots rep-
resent actual observed data, while the solid lines represent weighted average state
values of particles at each iteration. In these plots, not only the mass and thrust
setting exhibit convergence, but we can also see that the changes in airspeed, ver-
tical rate, wind, and temperature are tracked by the particle filter. The particle
filter can cope with missing data points, as shown in the plots.

Figure 10.7 illustrates the convergence of m and δT under different noise lev-
els, showing uncertainties with similar characteristics to the previous simulated
case.

The use of these simulated and real flights demonstrates the applicability of
the SIR particle filter for mass and thrust setting estimations. However, these
experiments are based on a single sequence of filtering under each noise level. We
can observe that the estimation uncertainty increases with increased observation
noise in both experiments, but this is not yet sufficient to quantify the estimation
uncertainty.

10.6.3. Experiment III: Demonstration with Cessna C550 flights
A set of 50 real flights with known mass is used to test the proposed system model
and the particle filter. These flights were carried out by a Cessna Citation II (C550)
aircraft that is operated by TU Delft for student practicals. The mass of the aircraft
is obtained accurately by weighing all passengers and measuring the exact amount



10.6. Experiments

10

203

40000

60000

m
 (k

g)

0.8

1.0

T 
(-)

0

1000

x 
(m

)

0

1000

y 
(m

)

200

400

z 
(m

)

60

70

v a
x 

(m
/s

)

40

60

v a
y 

(m
/s

)

10

15

v z
 (m

/s
)

0

5

v w
x 

(m
/s

)

5

0

v w
y 

(m
/s

)

0 5 10 15 20
Time (s)

277.5

280.0

 (K
) estimations

observations
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Figure 10.7: Final distribution of m and δT under different observation noise levels

of fuel on board prior to the start of each flight.
Although accurate FMS trajectory data is available, we used the collected
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Mode-S data for the experiment. In this way, the validation is closer to real cases.
In addition, NACp and NACv values are decoded from raw ADS-B data to automat-
ically select the observation noise model. In the validation, the ∆δT is assumed to
be 0.1 for this aircraft.

To obtain a stable estimation, a 20-second straight climb at the start of the
climb is extracted. Based on the same short segment of each trajectory, the particle
filter is executed 30 times independently.3 The averaged final results are shown
in Figure 10.8. Estimated mass (indicated with crosses) is plotted against the
real mass of the aircraft (indicated with circles) in the top plot of the figure. The
estimated thrust setting is plotted in the bottom plot.

3000

4000

5000

6000

7000

m
 (k

g)

Moew

Mmtow

True
Estimated

0 10 20 30 40 50
Flight number

0.9

1.0

T 
(-)

Figure 10.8: Estimated results for all validation flights

The estimation errors are plotted in Figure 10.9. The plots on the left-hand
side show the estimation errors (∆m/mtrue), where the mean and median error
are both around -0.5% of the true mass. There is a very small but not significant
negative bias in the results. On the right hand side, the absolute estimation errors
(|∆m|/mtrue) are computed and shown. As a result, the mean absolute error
(MAE) is found to be 4.3%, while the median of the absolute error is 2.6%.

10.7. Discussion
This section presents sensitivity analyses of the fundamental aspects of aircraft
mass estimation. This yields insight into the recommendations on choosing a noise
model and practical particle filtering.

10.7.1. Estimation uncertainty
A large number of additional simulations are performed to study the uncertainty
of the estimation. 500 rounds of estimations under each defined noise model
3This is similar to using 30 million particles in one round. The implication of this will be discussed
later on.
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Figure 10.9: Distribution of estimation errors. Circles represent the actual mass, while the crosses
represent the estimated mass.

are performed for the simulated flight. The simulated Boeing B737-700 flights
are generated with a mass of 60,000 kg, a thrust setting of 0.96, and a small
simulation noise of Σn1/4.

First, we want to illustrate the estimation accuracy using the particle filter. In
Figure 10.10, the distributions of estimates at the final time step of all rounds are
shown. The results are grouped by observation noise. On the left-hand side of
the figure, the results of m are indicated, with the Y-axis ranging from moew to
mmtow. The horizontal black line indicates the actual mass (60,000 kg) used in
the simulations. On the right-hand side, the thrust settings are plotted in the same
fashion. We can see that the particle filter yields a high level of accuracy with the
simulated trajectory.
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Figure 10.10: The distributions of estimated mass and thrust setting based on 500 rounds of simulated
trajectory under different observation noise models

Next, we want to study the uncertainty of the estimation. By computing the
standard deviations of the mass and thrust values from all particles at the end
of each run, we are able to visualize estimation uncertainty under different noise
models. On the left-hand side of Figure 10.11, distributions of particle mass stan-
dard deviation are shown. It can be observed that with increasing observation
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noise, uncertainty also increases. The right-hand side of the plot indicates the
same trends for the thrust setting.
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Figure 10.11: Standard deviation of particles states on mass and thrust setting among 500 rounds of
simulations under different observation noise models

Figure 10.10 and Figure 10.11 display similarities, but show different aspects
of the estimation result. The earlier figure shows the final estimates by using the
mean state values from particles at last time steps of all runs. In the latter figure,
the spread of particles by the measurement of standard deviation is shown.

To quantify the uncertainty under different noise models, twice the standard
deviation is used as an indicator. This is then translated into the percentage of
the aircraft maximum takeoff mass and thrust settings, which are shown in Table
10.5.

Table 10.5: Uncertainties related to observation noise obtained using 500 round of estimations with
simulated trajectories under different observation noise levels

Noise 2σ̄m̂ % of mmtow 2σ̄δ̂T %
Σn1 2403 kg 3.0% 0.040 4.0%
Σn2 2694 kg 3.4% 0.041 4.1%
Σn3 3307 kg 4.2% 0.035 3.5%
Σn4 6079 kg 7.7% 0.037 3.7%

Similarly, the accuracy of the estimation can also be obtained by comparing the
estimation results with the input mass of these simulated trajectories. The results
are listed in Table 10.6.

Table 10.6: Mean accuracy of the estimation based on 500 round of estimations with simulated trajec-
tories under different observation noise levels

Noise 2σ̄m̂ % of mmtow 2σ̄δ̂T %
Σn1 304 kg 0.4% 0.005 0.5%
Σn2 308 kg 0.4% 0.005 0.5%
Σn3 437 kg 0.6% 0.006 0.6%
Σn4 509 kg 0.6% 0.006 0.6%
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However, we have to be cautious when extrapolating the accuracy listed in Ta-
ble 10.6. It is based on simulated trajectories using the exact model created for
estimation. In practice, the result from Section 10.6.3 better reflects the accuracy
of the estimations. In addition, we also see that the uncertainty results are ob-
tained based on one aircraft type. However, the percentage values from this table
can still be an important indicator to quantify the uncertainties of estimations.
It can be used as an indicator for the missing uncertainty component for other
estimation methods that are based on ADS-B surveillance data.

In order to ensure the functioning of the SIR particle filter, we are required to
have an accurate understanding of the observation noise. If the assumed noise is
much larger than the actual observation noise level, the states of particles would
have large variances. This, in turn, would produce estimations with greater un-
certainties. Examples of this condition can be seen in the last plots of Figure 10.5
and 10.7. On the other hand, if the assumed noise is much smaller than the actual
noise, the particles would converge to a set of incorrect states. With the assumed
noise model, all other possible states have extremely low probabilities. As such,
the convergence to the real states becomes difficult. Under such a noise level as-
sumption, the estimator would result in high confidence (low variance) but with
possibly incorrect (biased) estimates. Examples can be seen in the first plots of
Figure 10.5 and 10.7.

10.7.2. Choice of observation noise model
As a general rule, the observation noise model (the covariance matrix Σn∗) should
reflect the actual noise in the measurement data. As such, the particles would be
able to track the changes in states accurately. However, in real life, actual noise
from the data is not often known directly.

One way to find out the noise level in ADS-B data is to decode the NACp and
NACv values as described in Section 10.4.1, and, then, use the corresponding
noise models proposed in Table 10.3 to identify the proper noise model. This is
only possible, however, when access to raw ADS-B data is available. When using
other data sources, the proper noise model can be construct using the vector auto-
regression (VAR) method [85, p15].

As a rule of thumb, when raw NACp and NACv values are not available, the
noise models of Σn2 or Σn3 are generally good starting points. This conclusion
is based on our observation that the majority of the ADS-B messages meet the
accuracy levels of NACp 9/10 and NACv 3/2.

10.7.3. Influence of variation in mass and thrust setting
Base on previous experiments, the thrust setting (δT ) does not always converge.
The same trend is not encountered with mass estimations unless a larger noise
model has been introduced. To understand the reason for this, the variation of
these two parameters and their influence on the (simulated) flight trajectory is
studied. Two sets of simple simulations are conducted.

In the first set of simulations, the aircraft mass is fixed at (moew + mmtow)/2,
and the thrust setting varies from 0.85 to 1. Results are shown on the left two plots
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of Figure 10.12. In the second set of simulations, the thrust setting is kept at 0.9,
and aircraft mass varies from moew to mmtow. Results are shown on the right-hand
side of Figure 10.12. Here, only the horizontal flight distances and speed profiles
are illustrated.
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Figure 10.12: Varying δT versus varying m

The influence of different thrust settings on the flight trajectory is much smaller
than the influence of differences in mass. This is shown in both distance traveled
and the speed profile. Next, noise is added to the simulation. For simplification,
only the resulting speed profiles are shown in Figure 10.13.
Here, we can see that the trajectories become hard to distinguish for thrust settings
when noise is larger than Σn2. In the case of mass, the trajectories only become
hard to distinguish when noise reaches Σn3. This offers an intuitive demonstration
of the noise effects on trajectories.

From a statistical point of view, we can analyze the relationships between mass
and thrust settings through particle distributions when convergence is reached. In
Figure 10.14, the resulting distributions ofm and their δT are shown. The particles
are grouped by the final mass distribution. Here, m values are separated in small
bins, and corresponding δT values are shown in the right-hand plots. m and δT
from the same groups are plotted with the same shades of gray. The diversity of
the particles disappears with noise level Σn1. With noise level Σn4, a large range
of estimates is considered possible. With noise level Σn2 and Σn3, the true values
of the states are represented. The corresponding mass and thrust setting values
are clear in this visual representation.

The results from Figure 10.5 can be confirmed with the distributions of the
particles. The estimation of mass can only be possible when the noise is smaller
than or equal to Σn3. The equivalent NACp and NACv values are 9 and 2 re-
spectively. With the first two plots of Figure 10.5, we can also observe that when
the assumed observation noise (Σn1) is smaller than the actual observation noise
(Σn2), the estimation results are biased.
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Figure 10.13: Simulated speeds with different noise models

40000 50000 60000 70000

 n1

m

0.85 0.90 0.95 1.00

 n1

T

40000 50000 60000 70000

 n2

m

0.85 0.90 0.95 1.00

 n2

T

40000 50000 60000 70000

 n3

m

0.85 0.90 0.95 1.00

 n3

T

40000 50000 60000 70000

 n4

m

0.85 0.90 0.95 1.00

 n4

T

Figure 10.14: Relationship between deviations in estimated thrust setting and mass



10

210 10. Mass estimation using particle filtering

10.8. Conclusion
In this study, steps were taken to construct a comprehensive model and estimation
method to derive aircraft mass and thrust setting solely using ADS-B and Enhanced
Mode-S observations. The complexity of such a problem was discussed at the start
of this study. In summary, the difficulty of the estimation lied in solving an inverse
non-linear system that consists of eleven states.

In order to address this challenging nonlinear estimation problem, this study
developed a stochastic recursive Bayesian approach using a particle filter. The re-
cursive Bayesian approach not only provided estimates but also allowed for quan-
tifying uncertainties under different noise levels. If realistic observation noise
levels could be identified, the proposed particle filter was able to estimate aircraft
mass and thrust setting when noise constraints were satisfied. Simulated, real,
and validation flights were used to test the method proposed in this study, specif-
ically to test the method, define the uncertainty, and validate the accuracy of the
method. For validated datasets, this approach yielded a mean absolute error of
around 4.3% of the true mass on the validation dataset. Finally, the convergence
speeds were swift. In most cases, estimation could be obtained using around 30
seconds of the flight data at the start of the climb.

In this study, we have selected the flight segment where the thrust setting is
most likely to be at the maximum, which was in the initial climb phase. The
maximum thrust was computed using the model proposed by [8]. Even with the
reduction setting (δT ) modeled, we still could not completely mitigate the uncer-
tainty in the underlying thrust model. However, for the errors of the particle filter,
estimated mass and thrust setting during initial takeoff a strong positive correla-
tion is known, i.e., a too high assumed thrust setting leads to a too high estimated
aircraft mass. When testing the particle filter with reference flights from a Cessna
Citation II, we were able to increase the accuracy of the estimation with better
knowledge of the thrust setting. Changing from 0.85 to 0.95 allowed the particle
filter to converge closer to the real mass. However, this assumption was specific
to our test flight. For common commercial airlines, we still recommend using the
value of 0.85 unless there is evidence indicating otherwise.

By linking the ADS-B native uncertainty reporting system with the observation
noise, we were able to construct realistic observation noise models. At the same
time, we were also able to automatically select the appropriate noise model for
each flight using raw ADS-B data when available. Knowing the effect of these
uncertainties by using a particle filter can be beneficial for future ADS-B-related
studies. Better understanding the noise model in surveillance data is the key to
improving the accuracy of the dynamic model used for estimation. This can be an
interesting area for follow-on studies.

In the current model, the bank angle was left out of the equations, which
was, of course, a simplification. The consequence was that we were only able
to use non-turning flight segments for the estimations. Introducing an additional
parameter for the bank angle could enable the estimation to use data from turning
trajectories. However, this may increase the complexity of the model, as well as
the estimation uncertainty.

A simplified form of the observation noise was assumed in this study, where the
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noise for different observable states was assumed to be uncorrelated. However,
this may not be true in real situations. Auto-correlation of errors may exist as
suggested in [95]. This can be considered in the model to improve the estimation
if such knowledge can be discovered. The noise models that were defined in this
study correspond to Version 1 and Version 2 of the ADS-B implementation. For
older ADS-B Version 0 transponders (equipped on older aircraft types), the noise
should be defined based on its Navigation uncertainty Categories (NUC). The NUC
levels are less refined than NAC in Version 1 and 2. Future implementations of our
method should take this into consideration.

The proposed Bayesian filtering framework has shown its potential for parame-
ter estimation. The designed particle filter can also be a good candidate for aircraft
trajectory state filtering. When mass can be estimated at the start of a flight, other
state parameters along the entire flight can be better estimated or predicted. This
will bring more insight to, for example, the estimate of fuel consumption and tra-
jectory prediction during the rest of the flight. Now that the estimation of mass
using a particle filter has been demonstrated, one of the logical follow-on steps is
to investigate applications of other non-linear estimation approaches.

Finally, to allow open access to the method developed in this study, the source
code of the particle filter is published alongside this study.4

4Available at: https://github.com/junzis/acsmc

https://github.com/junzis/acsmc
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Conclusions and

recommendations
This dissertation started with the discussion of an important missing element in air
transportation studies, namely the lack of an open performance model. Throughout
the dissertation, a research path has been developed in order to use open data to
model and estimate aircraft performance parameters. This last chapter of the dis-
sertation revisits the research questions proposed at the beginning of the dissertation
and the associated conclusions reached based on our studies. Limitations of the over-
all research and recommendations for future studies are also indicated in this chapter.
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11.1. Overview
The first part of the dissertation discussed how to extract useful information for
aircraft performance studies from surveillance data. Next, different components
of the performance model have been studied. These components include aviation
weather, a kinematic model, and a thrust and fuel model, as well as an aerody-
namic model. In the third part of the dissertation, the estimations of performance
parameters of individual flights were addressed. Open data and models proposed
in the earlier chapters were used for these estimations. In general, each chapter
addressed a research question proposed in the introduction chapter.

11.2. Research questions and conclusions
As defined in the introduction, the main goal of this dissertation is to determine:

How can we use aircraft surveillance and other open data to improve aircraft perfor-
mance modeling and parameter estimation?

To better respond to this inquiry, it was useful to break this main question down
into multiple sub-questions. At the beginning of the dissertation, seven research
questions were proposed regarding the open aircraft performance modeling.

Q1. How to extract valuable information from open aircraft surveillance signals?

Chapter 2 addressed this question by introducing two data sources from the
Mode-S surveillance communications: ADS-B and Comm-B. Combined, these two
data sources provided valuable information on aircraft performance, such as posi-
tion, ground speed, vertical rate, and different types of airspeed. The extraction of
information from Comm-B messages was the most challenging part of this phase
of the study because the crucial information required to identify the message types
is missing for third-party observers. A combination of heuristic and probabilistic
approaches were designed to infer Comm-B message types and decode their con-
tent. In addition to the decoding of the Comm-B message types, a procedure to
detect corrupted messages was also presented. A ground truth validation dataset
showed that the model proposed in this chapter yielded a success rate of 97.7%
and a false negative rate of 0.008%.

Conclusion 1

In addition to the large quantities of broadcast surveillance messages, air-
craft responses to secondary radar interrogations can be used to enhance
the accuracy of aircraft performance modeling. Inferring and decoding of
these messages with high accuracy are made possible by a two-fold heuristic
and probabilistic approach.

Q2. How to turn scattered broadcast data into continuous and segmented flights?

This question responded to the challenge that followed the successful decoding
of information from the Mode-S messages. In order to make data beneficial for
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aircraft performance studies, flight trajectories should be constructed based on
these messages. In many studies, flights needed to be segmented according to
flight phases. Since there was little information available regarding flights and
no direct information on flight phases, Chapter 3 proposed a two-step method to
address this challenge. The first step used a clustering algorithm to group data
belonging to the same flight. Once a flight trajectory was extracted, a second
step employed a fuzzy logic based process to identify different flight phases in the
trajectory.

Conclusion 2

Unsupervised machine learning techniques can be used to extract flights
from scattered surveillance data and to identify specific flight phases in
these flights.

Q3. How to use surveillance data to improve aviation weather models?

Weather is one of the external factors that significantly affects flights. Earlier
studies have indicated the influence of wind on the design, optimization, and
prediction of flights. A common approach for air traffic management research
has been to use wind information from the numerical weather forecast dataset.
However, the low temporal-spatial resolution in these datasets often fails to meet
accuracy requirements, especially in performance modeling studies. Chapter 4
of this dissertation proposed a weather model, the Meteo-Particle model, which
made use of aircraft surveillance data to construct real-time wind and temperature
fields. This approach showed that weather accuracy can be increased by using
aircraft surveillance data. The weather models in this dissertation demonstrated a
reduction of wind and temperature errors of 67% and 26%, respectively, compared
to the numerical weather forecast dataset. With accurate wind field information,
aircraft airspeed was accurately computed based on ground speed obtained from
ADS-B.

Conclusion 3

A weather field, including wind and temperature, can be accurately con-
structed in real-time using aircraft surveillance data and the Meteo-Particle
model.

Q4. How to construct the kinematic model using surveillance data?

A kinematic performance model deals with the speed, acceleration, and travel
distance of the flight without considering the forces acting on the aircraft. This
class of models enables a description of a flight without involving, for example,
thrust, drag, or mass of the aircraft. In Chapter 5, kinematic models for common
commercial aircraft types were constructed. Using the flight phase identification
method proposed in Chapter 3, kinematic performances of the aircraft at different
flight phases were studied. The flights of each aircraft type were first segmented
according to flight phase, including takeoff, initial climb, climb, cruise, descent,
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final approach, and landing. Then, kinematic parameters for each flight phase
were computed. Based on these computed values, a parametric statistical model
was constructed that best described each performance parameter. The kinematic
model - WRAP - proposed in this dissertation included the optimal, minimum, and
maximum values of each performance parameter. As a result, a set of more than 30
parameters describing the complete flight profile were constructed. The paramet-
ric statistical model also made it possible to construct distributions of performance
parameters in large flight simulations, which could be used in representative fast-
time airspace simulations, for example.

Conclusion 4

Accurately sorted and labeled surveillance data can be used to effectively
model the kinematic performance of different aircraft types at distinctive
flight phases.

Q5. How to model thrust and fuel flow with open data?

Chapter 6 addressed the dynamic performance of the aircraft and one of the
core elements in the dynamic performance model, thrust. In addition, Chapter 6
discussed the modeling of engine fuel consumption. Aircraft thrust was computed
based on the combination of the simplified two-shaft engine thrust model pro-
posed in [8] and the empirical model proposed in [136]. As a result, with knowl-
edge of altitude, speed, and vertical rate, the maximum thrust of the engines could
be computed. In addition to these dynamic variables, the engine bypass ratio was
considered a key element in determining the parameters for the thrust model. The
use of bypass ratio as the key variable allowed the maximum thrust of different
engine types to be consistently described. Another key parameter used to compute
the thrust was the maximum engine thrust at cruise conditions. When this data
was not available, the empirical model proposed in [136] could be used to derive
an approximation based on the maximum thrust at sea-level.

The second part of Chapter 6 investigated an engine fuel flow model based
on public information from the ICAO engine emission data-bank [63]. In this
database, fuel flow is measured at four different test conditions, namely 100%,
85%, 30%, and 7% of engine maximum power. In order to approximate the fuel
flow at any given power setting for each engine type, Chapter 6 constructed a
polynomial model to best describe these conditions. When applying the model to
actual flights, the fuel flow could be computed based on the ratio of actual thrust
over the maximum thrust of the engine.

Conclusion 5

1) Models from the literature provide new ways to model aircraft thrust
using open data.
2) ICAO engine emission data can be used to provide a satisfactory fuel
consumption model for a wide range of aircraft types.
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Q6. How to use open data to construct aircraft drag polar models?

Modeling the aircraft drag polar was addressed in Chapter 7. The chapter
started by explaining the rationale for using drag polars in a point-mass aircraft
performance model. The drag polar describes the quadratic relationship between
the lift coefficient and the drag coefficient. It differs between aircraft types, as
well as between aerodynamic configurations of an aircraft. The coefficients that
describe a drag polar are the zero-lift drag coefficient and the lift-induced drag
coefficient. In order to estimate these parameters, Chapter 7 introduced a hier-
archical model named the stochastic total energy model. This model considered
the parameters from the total energy model as random variables. Based on the
trajectory data from a climbing flight, this model employed Bayesian computing
to approximate the probability density of these random variables. Using multiple
flights from the same aircraft type, the zero-lift and lift-induced drag coefficients
were derived for different aircraft types.

Thanks to the long duration of aircraft climb, the stochastic model was able
to derive the drag polar under clean configuration. However, for other flap con-
figurations, there existed a lack of data to construct the drag polars. Chapter 7,
therefore, also relied on several empirical models to estimate the increase of drag
due to the deployment of flaps and landing gear. As a result, different drag polar
models were computed corresponding to the taxi, takeoff, initial climb, en-route,
approach, and landing phases of the flight.

Conclusion 6

1) By combining accurate flight data with a hierarchical stochastic total
energy model, the drag polar of an aircraft can be constructed.
2) Uncertainty in the thrust model has a significant influence on the drag
polar estimation.

Q7. How to estimate performance parameters using open surveillance data?

Chapters 8, 9, and 10 constituted the last part of the dissertation. In earlier
chapters, performance models were categorized by aircraft type. The last three
chapters studied the possibility of estimating the performance parameters of indi-
vidual flights. Specifically, the estimation of turn performance and aircraft mass
were studied.

When dealing with turning flights, one important performance parameter is the
bank angle. With a known bank angle, it is possible to infer related parameters
such as load factor, turn rate, lift, and drag, as well as the thrust of the aircraft.
Chapter 8 proposed a solution for estimating bank angles during turns using ADS-
B data. The bank angle was calculated based on the turning speed and the turn
radius. In order to calculate the turn radius, the three-dimensional arc of the turn
was first transformed into a two-dimensional plane. Then, using the least-squares
regression, a circle was found that best fit the positions, where the radius of the
circle was obtained as the turn radius.

Sometimes, the aircraft roll angle is interrogated by the secondary surveillance
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radar. Such data is downlinked using the Mode-S track and turn report. Though
they are not frequently updated, when available, they were used to validate the
estimated values. For each of the 17 aircraft types, around 800 turns were stud-
ied. The median error for the bank angle calculated using the estimation method
proposed in this chapter was found to be around 2 degrees.

Aircraft mass is another crucial parameter in many air transportation studies.
For example, with a known mass, the drag, thrust, and fuel flow during a flight can
be computed accurately. Knowing the mass of aircraft also increases the accuracy
of flight trajectory predictions. However, because aircraft mass is a commercially
sensitive piece of information, it is not shared, and aircraft mass remains a missing
piece of flight information in many studies. It is even an unknown parameter for
air traffic controllers. Chapter 9 and Chapter 10 focused on the estimation of
aircraft mass based on two different approaches.

Chapter 9 proposed the use of Bayesian inference so that empirical and pro-
fessional knowledge of the aircraft in the estimation could be considered. At first,
different masses were calculated at different stages of the flight. Combining fuel
consumption, multiple initial masses were computed. Then, viewing the empirical
information as a prior, a maximum a posteriori estimation was produced.

Unlike the earlier chapter where a complete trajectory was required, Chapter
10 focused on a short segment of the flight at the start of the climb. The chapter
proposed the use of a particle filter as the estimator for multiple aircraft states,
which included the mass of the aircraft. The particle filter, a Bayesian state esti-
mator, can be used to estimate nonlinear system states. The particles representing
the flight states were initiated based on the prior probability distribution functions
of the states and updated at each time step based upon new observations. As a
result, the mass could be estimated within 30 seconds. The uncertainties in the
Mode-S data were studied specifically alongside the estimation. In this manner,
the method also identified the uncertainty conditions where estimations became
impossible.

Conclusion 7

1) Using aircraft surveillance data, it is possible to estimate hidden perfor-
mance parameters of individual flights, such as bank angle and load factor
during the turn, as well as initial mass.
2) Uncertainties in ADS-B data that affect the mass estimation accuracy can
be quantified.

11.3. Limitations and recommendations
11.3.1. Mode-S
Studies in this dissertation were supported by open aircraft surveillance data, and
data availability was one of the major prerequisites to enable these studies. ADS-B
data is constantly broadcast by aircraft. However, not all data can be intercepted
given the limitations of receiver coverage. Large crowd-sourced networks such as
FlightRadar24, ADS-B Exchange, and the OpenSky Network rely on the research and



11.3. Limitations and recommendations

11

219

hobby community to share the data collected by individual receivers. There is a
lack of ground-based coverage for aircraft that are flying over oceans and over less
populated areas (for example in Siberia, deserts or mountainous areas).1 On the
other hand, there are multiple receivers providing redundant coverage in regions
like Europe, North America, South-East Asia, and Australia. Recent developments
in space-based solutions have shown the possibility of using satellites to intercept
surveillance signals [101, 13, 142]. The space-based system has the potential to
extend coverage to the entire Earth. However, whether any of the space-based
platforms will provide open access to their collected ADS-B data remains uncer-
tain.

The Comm-B signals used in this dissertation to derive the weather field and
airspeed of aircraft were also limited geographically. They were originated by the
interrogations of secondary surveillance radars, which only exist in the controlled
airspace.

All ADS-B and Comm-B signals are transmitted using the 1090MHz Mode-
S transponder.2 The congestion of this frequency is becoming another serious
constraint for communication as discussed in Chapter 2. The direct impact of
the congestion was found to be the reduced update rate of ADS-B and Comm-B
messages in busy airspace.

Recommendation 1

Using a distributed local network of ground receivers could potentially in-
crease the total number of correct messages received, as compared to the
current situation where messages are potentially dropped due to frequency
congestion.

11.3.2. Citation flights
To validate the mass estimation methods, as well as the thrust and fuel flow
model, some chapters in this dissertation used the onboard data from demon-
stration flights carried out by the TU Delft Cessna Citation II aircraft, which was
fitted with an advanced data gathering system. These flights were different from
common passenger flights. During the cruise, multiple maneuvers were performed
to demonstrate the dynamic behavior of the aircraft. These maneuvers included
excitations of the phugoid, short period, a-periodic roll, and Dutch roll, as well
as parabolic flights. In order to have sufficient excess engine power, the flights
were cruising at low altitude (around 10,000 ft) instead of at optimal cruise al-
titude (above 30,000 ft). However, during the climb, the aircraft still followed a
common flight procedure. Thus, the studies could still use the flights to validate
the results of mass estimations. Nevertheless, a single aircraft type was one of the
limitations in validation experiments.

1In rare cases, regional regulations may actively take down existing ground receiver installations by
ADS-B hobbyists.

2Other Mode-S messages, such as All-call replies, ACAS, and Comm-D, are also sharing the same
frequency.
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Recommendation 2

Thrust and fuel flow model, as well as the mass estimation, should be vali-
dated with more flights from different aircraft types by future studies.

11.3.3. Thrust model
One of the main performance components in the dynamic model is the thrust
model. The uncertainty in thrust affects the estimation of other components of
the performance model. One example of such inherited uncertainty was shown in
Chapter 7, where the drag polar was estimated. Due to the limited information
available on aircraft engine configuration, it was not possible to identify the exact
engine type for each flight. Hence, a default engine type was assumed for each
aircraft type. Related experiments observed that aircraft with more engine options
displayed larger uncertainty in the final drag polar coefficients.

Another example could be seen in Chapter 10, where thrust again acted as a
source of uncertainty in the mass estimation. This chapter studied the influence
of varying thrust settings on the mass estimation. Even though the change in
trajectory due to different thrust settings was smaller than the change in takeoff
mass, such uncertainty could still affect the final estimation of the aircraft mass.
At the start of the climb, a derated maximum thrust profile was assumed. The
ratio of maximum thrust (between 0.8 and 1) was assumed to be constant. This,
however, was not entirely true in reality. For example, when an aircraft leveled
during the climb, the ratio could suddenly decrease and remain at a lower value
during the leveling.

Recommendation 3

When thrust is involved in the estimation, the segment where maximum
thrust profile is most likely to be applied should be chosen.

11.3.4. Non-linear system
The point-mass model has simplified the flight dynamics. However, there is still
a high order non-linearity in the system. For example, since the drag polar is
used, the mass has a quadratic relationship with drag, and velocity has a quartic
relationship with drag. At the same time, thrust also has a piece-wise higher or-
der relationship with velocity and altitude. Thus, state estimations and trajectory
predictions cannot be easily solved with linear filters.

This dissertation introduced a nonlinear particle filter to solve the challenge of
estimating aircraft mass. The particle filter required a very large number of par-
ticles to approximate systems and contained many states variables. A significant
amount of computing resources was required to update these particles. In order
to apply the method to a large number of flights at the same time, a cluster of
computers may be required in the future. The particle filter was designed only for
mass estimation in this dissertation. However, this filter had also demonstrated
the potential for other applications, such as short-term trajectory predictions.
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Recommendation 4

Future studies should explore the possibility of using the particle filter for
short-term trajectory prediction in air traffic management studies. The effi-
ciency of a particle filter can be improved by the implementation of parallel
computing.

11.4. Final conclusions
A large amount of open surveillance data has become accessible for researchers
thanks to the deployment of ADS-B transponders in airliners. This open data of-
fers a new path to study and model aircraft performances in the domain of air
transportation science. The chapters of this dissertation addressed many topics
related to the decoding and processing of this data, using the data to model air-
craft performance, as well as combining the data and model to perform parameter
estimations.

Although designed with the goal of creating an open performance model for
the BlueSky simulator, the models and methods proposed in this dissertation can
also be used for other air transportation studies, such as trajectory prediction and
optimization. In Appendix A, an independent open aircraft performance library,
OpenAP, is described in detail. As a result of this dissertation, the OpenAP model
is currently one of the most complete alternatives to the commonly used closed-
source models. Hopefully, this open data and open model approach will bring
more comparable and reproducible studies for future studies in air transportation
science.
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A
The OpenAP Python Library

Throughout the dissertation, different modules related to aircraft performance are
studied. In this appendix, the corresponding open-source implementation of the per-
formance model, OpenAP, is described. The OpenAP is a code library written in Python
programming language. It allows anyone quick access to all the performance mod-
ules covered in this dissertation. For example, it makes the computation of the thrust,
drag, and fuel flow with a few lines of Python code. This appendix first covers the gen-
eral structure of the OpenAP. Then, each of the components of the library is explained,
and examples are also given.
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A.1. Basics of the OpenAP
The OpenAP 1 library consists of four main components, which are aircraft prop-
erties, kinematic performances, dynamic performances, and utilities. In each main
component, there can be multiple sub-components. Figure A.1 shows the structure
of the OpenAP model as of March 2019.

OpenAP Property

Kinematic

Dynamic

Aircraft

Engines

Aero

Utility

Thrust

Drag

Fuel

Navigation

Flight phase

Figure A.1: The structure of the OpenAP Python library

In OpenAP, multiple file formats exist to store different types of data effectively.
The main file format is the YAML format [10], which is a human friendly data seri-
alization standard. It can be easily interpolated by both human and programming
languages. For example, aircraft properties and drag polar models are presented
using the YAML file format. YAML is effective for storing key-value like data struc-
ture but not efficient for larger tabular data. In these cases, the fixed width text files
are used. They can be processed by computers easily, while still maintaining read-
ability for users. For example, the engine and kinematic performance databases
are stored using fixed width text files.

OpenAP aims to be a practical model with easy applicability. The toolkit inter-
acts with the model data and implements the equations for different calculations.
It gives other high-level applications easy access to the OpenAP model.

A.2. Aircraft properties
The property module includes characteristics and engine configurations for dif-
ferent aircraft types. It also provides performance data for a large number of
engines. Currently, the most common aircraft types are included in this mod-
ule. For each aircraft type, parameters such as dimensions, limits, nominal cruise
condition, and engine options are given. For example, the Airbus A320 aircraft
(/openap/openap/data/aircraft/a320.yml) parameters are shown as follows:

1Available at: https://github.com/junzis/openap

https://github.com/junzis/openap
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aircraft: Airbus A320

fuselage:
length: 37.57
height: 4.14
width: 3.95

wing:
area: 124
span: 35.8
mac: 4.29
sweep: 25
t/c: null

flaps:
type: single-slotted
area: 21.1
bf/b: 0.780

limits:
MTOW: 78000
MLW: 66000
OEW: 42600
MFC: 24210
MMO: 0.82
ceiling: 12500

cruise:
height: 11000
mach: 0.78

engine:
type: turbofan
mount: wing
number: 2
default: CFM56-5A3
options:
A320-111: CFM56-5-A1
A320-211: CFM56-5-A1
A320-212: CFM56-5A3
A320-214: CFM56-5B4
A320-215: CFM56-5B5
A320-216: CFM56-5B6
A320-231: V2500-A1
A320-232: V2527-A5
A320-233: V2527E-A5

The unit for dimension and height in the configuration files is the meter, while
the unit for weight is the kilogram. The aircraft data are gathered based on public
data from aircraft manufacturers, as well as the literature, for example in [70,
105].

Performance data on around 400 different engines are presented in the Ope-
nAP engine databases (/openap/openap/data/engine/engines.txt). Each engine has
11 parameters that are related to its performance. A select list of engines are sup-
plied in Appendix C.

The retrial of any aircraft and engine data can be performed with a few lines
of Python code. For example, using the following commands, the aircraft config-
urations and parameters of a specific engine for the Airbus A320 aircraft can be
obtained:
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from openap import prop

aircraft = prop.aircraft(’A320’)
engine = prop.engine(’CFM56-5B4’)

print(aircraft[’wing’][’span’])
print(engine[’max_thrust’])

A.3. Kinematic performance
The kinematic model studies the motion of the aircraft without considering the
force acting on the aircraft. In OpenAP, the kinematic performance database is
based on the results of a data-driven statistical model (WRAP), which is proposed
in Chapter 5.

By combining all the parameters, the WRAP model (/openap/openap/data/wrap)
is able to describe the trajectory from takeoff until landing for most of the common
aircraft types. Using the OpenAP kinematic model, the trajectory of the aircraft
can be constructed using a set of ordinary differential equations. Assuming the
International Standard Atmosphere (ISA) condition, no wind2, and a small flight
path angle, these equations are expressed as:

dx
dt = V sinψ (A.1)

dy
dt = V cosψ (A.2)

dh
dt = VS (A.3)

dV
dt = a (A.4)

where the true airspeed (V ) can be computed from either calibrated airspeed or
Mach number depending on the flight phase. For example, the true airspeed can
be computed from calibrated airspeed using the following equations:

V =

√√√√7p
ρ

[(
1 + qc

ρ

) 2
7

− 1
]

(A.5)

qc = p0

[(
1 + ρ0

7p0
V 2

cas

) 7
2

− 1
]

(A.6)

In cases where Mach number is given, the true airspeed can be calculated using
temperature (tau) and the speed of sound (a) as:

2For non-standard atmospheric conditions, temperature and wind corrections need to be applied.
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V = a0M

√
τ

τ0
(A.7)

where ρ, p, τ can be obtained from the ISA model based on the altitude of the
aircraft.

Each parameter from the WRAP kinematic model is given with a default value,
minimum value, maximum value, and a parametric statistical model. The min-
imum and maximum values provide the boundaries of the parameter, while the
parametric statistical model can be used to sample values from a given proba-
bility density function (Normal, Gamma, or Beta). With the OpenAP toolkit, all
kinematic performance parameters can be queried using the functions defined as
follows:

from openap import WRAP

wrap = WRAP(ac=’A320’)

param = takeoff_speed()
param = takeoff_distance()
param = takeoff_acceleration()
param = initclimb_vcas()
param = initclimb_vs()
param = climb_range()
param = climb_const_vcas()
param = climb_const_mach()
param = climb_cross_alt_concas()
param = climb_cross_alt_conmach()
param = climb_vs_pre_concas()
param = climb_vs_concas()
param = climb_vs_conmach()
param = cruise_range()
param = cruise_alt()
param = cruise_init_alt()
param = cruise_mach()
param = descent_range()
param = descent_const_mach()
param = descent_const_vcas()
param = descent_cross_alt_conmach()
param = descent_cross_alt_concas()
param = descent_vs_conmach()
param = descent_vs_concas()
param = descent_vs_post_concas()
param = finalapp_vcas()
param = finalapp_vs()
param = landing_speed()
param = landing_distance()
param = landing_acceleration()

Each of the functions returns the optimal, minimum, maximum, and the pa-
rameters to construct the probability density function that reflects the performance
indicator.

A.4. Dynamic performance
Similarly, the dynamic module is included. In addition to speed, vertical rate, and
distance, the dynamic module deals with more performance parameters, specifi-
cally the mass and forces.
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A.4.1. Aircraft dynamic model
The aircraft motion in the OpenAP is defined using a four degree of freedom roll-
point-mass model, which describes the aircraft translations in three perpendicular
axes, as well as the roll rotation. In this roll-point-mass model, the forces are as-
sumed to be applied at the aircraft’s center of gravity. The model can be expressed
with a set of ordinary differential equations similarly. Assuming the ISA and zero
wind, these equations can be written as:

dx
dt = V sinψ cos γ (A.8)

dy
dt = V cosψ cos γ (A.9)

dh
dt = V sin γ (A.10)

dψ
dt = g tanφ

V cos γ (A.11)

dV
dt = T −D

m
− g sin γ (A.12)

dm
dt = ffuel(T ) (A.13)

The dynamic components introduced in these differential equations are mass,
thrust, drag, and fuel flow. The net thrust is expressed as the product throttle
setting (δT ) and the maximum thrust. Based on an empirical model proposed by
[8], the maximum thrust of the aircraft (fthr) is expressed as a function that is
dependent on the aircraft altitude, speed, and vertical rate:

T = δT fthr(h, V,VS) (A.14)

The drag force of the aircraft can be calculated knowing the dynamic pressure
(q), the wing surface (S), and the drag coefficient (CD):

D = CDqS (A.15)

q = 1
2ρV

2 (A.16)

The fuel flow model is a function that is dependent on the net thrust of the air-
craft engines. It is constructed using the fuel flow coefficients proposed in the en-
gine performance database that is shown in Appendix C. The details of the thrust,
drag, and fuel flow models are explained in the rest of this appendix.
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A.4.2. Thrust
The thrust model included in OpenAP is able to calculate maximum takeoff thrust
and maximum thrust during the flight separately. The key parameters that deter-
mine the max thrust of the turbofan engine are the maximum static thrust at the
sea level, the bypass ratio, and the rated engine thrust at cruise. These parameters
are included in the engine database (/openap/openap/data/engine/engines.txt).

The OpenAP library implements the thrust model that is described in Chap-
ter 6. The maximum thrust of the aircraft during the flight can be conveniently
computed as shown in the following examples:

from openap import Thrust

thrust = Thrust(ac=’A320’, eng=’CFM56-5B4’)

T = thrust.takeoff(tas=100, alt=0)
T = thrust.climb(tas=200, alt=20000, roc=1000)
T = thrust.cruise(tas=230, alt=32000)

where the inputs of the function are true airspeed (in knots), altitude (in feet),
and rate of climb (in feet/minute). The outputs are maximum thrust forces (in
Newton).

A.4.3. Drag
In order to compute the drag of an aircraft, the drag coefficient needs to deter-
mined first. The drag coefficient is dependent on the drag polar and the lift. In
Chapter 7, drag polar models are derived from common airliners. In the OpenAP
toolkit, these drag polar models are included. The following is an example drag
polar model for Airbus A320 (/openap/openap/data/dragpolar/a320.yml):

aircraft: Airbus A320

cd0:
clean: 0.018
initclimb: 0.020
finalapp: 0.024

k:
clean: 0.039
initclimb: 0.036
finalapp: 0.034

e:
clean: 0.798
initclimb: 0.850
finalapp: 0.902

gears: 0.017
mach_crit: 0.632

The OpenAP toolkit provides the calculation of drag directly under different
flaps configurations. Given the aircraft mass, airspeed, altitude, and flight path
angle, the drag of the aircraft can be computed using the following examples:
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from openap import Drag

drag = Drag(ac=’A320’)

D = drag.clean(mass=60000, tas=200, alt=20000)

# higher drag due to compressibility
D = drag.clean(mass=60000, tas=250, alt=20000)

# increase of drag due to flaps
D = drag.nonclean(mass=60000, tas=150, alt=1000,
flap_angle=20, path_angle=10, landing_gear=False)

# increase of drag due to landing gear
D = drag.nonclean(mass=60000, tas=150, alt=200,
flap_angle=20, path_angle=10, landing_gear=True)

where the inputs of these functions are mass (in kilogram), true airspeed (in
knots), and altitude (in feet). The outputs are drag force (in Newton).

A.4.4. Fuel flow
The fuel flow model is also discussed in Chapter 7. Using the OpenAP toolkit, the
fuel flow can be calculated conveniently as follows:

from openap import FuelFlow

fuel = FuelFlow(ac=’A320’, eng=’CFM56-5B4’)

FF = fuel.at_thrust(acthr=50000, alt=0)
FF = fuel.at_thrust(acthr=50000, alt=20000)
FF = fuel.enroute(mass=60000, tas=200, alt=20000, path_angle=3)
FF = fuel.enroute(mass=60000, tas=230, alt=32000, path_angle=0)
FF = fuel.takeoff(tas=100, alt=0, throttle=1)

where the inputs of this functions are thrust (in Newton), mass (in kilogram), true
airspeed (in knots), altitude (in feet), flight path angle (in degrees), and throttle
setting (between 0 and 1).

In summary, the fuel flow can be computed under three conditions in OpenAP:
1) with a known net thrust of all engines; 2) during the takeoff with a known
thrust setting and unknown aircraft mass; 3) during the flight, knowing the mass,
speed, altitude, and flight path angle.

A.5. Other databases and utility libraries
In addition to the core components explained in the earlier sections, OpenAP also
provides several utility libraries to facilitate calculations related to aircraft perfor-
mance.

A.5.1. Flight phase
Based on the method proposed in Chapter 3, the flight phase library enables the
easy use of the fuzzy logic flight phase identification algorithm. Providing the
trajectory (with time, altitude, speed, and vertical rate), one can obtain corre-
sponding flight phases for the entire trajectory. The flight data are labeled with
the ground, climb, cruise, descent, and leveling phases.
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Functions in the flight phase library also enable the extraction of a specific
flight segment among all available flight phases, which are takeoff, initial climb,
climb, cruise, descent, final approach, and landing. For example:

from openap import FlightPhase

FP = FlightPhase()
FP.set_trajectory(ts, alt, spd, roc)

# produce the phase label for each data point
labels = FP.phaselabel()

# return the set of indices each phase starts
indices = FP.flight_phase_indices()

In the third code line of the example, the trajectory data is set. The last two
functions produce the flight phase labels and the indices of the data point when a
different flight phase starts.

A.5.2. Aeronautical calculations
Derived from the open-source BlueSky simulator [54], the aeronautical library
provides common calculations related to aircraft performance. For example, this
library provides the functions to compute distance and bearing. The standard
atmospheric conditions at different flight levels can also be calculated. In addition,
speed conversions among CAS, TAS, and Mach number are easily made with this
library. There are many functions included in this model, and the details can be
found in the Python package (/openap/openap/aero.py).

A.5.3. Navigation database
The navigation database provides information on airport, navigation data, and
fixes (/openap/openap/data/nav). The data in the navigation database are based
on the open data published by X-Plane [107]. The navigation library is designed
to give easy access to these datasets. For example, the airport location can be
queried using its ICAO code. This library can also be used to determine the closest
airport or fixes of a specific location. Examples are shown as follows:

from openap import nav

print(nav.airport(’EHAM’))
print(nav.closest_airport(52.011, 4.357))

print(nav.fix(’EH155’))
print(nav.closest_fix(52.011, 4.357))

A.6. Discussion
As mentioned in the earlier sections of this appendix, the thrust model included in
the OpenAP is based on the studies of [8] and [136], where only turbofan engines
are modeled. Hence, the OpenAP does not cover aircraft that are equipped with
different engine types. Currently, only the most common civil aircraft types are
covered in the OpenAP. This is due to the availability of flight data. Though the
lack of more diverse aircraft types may be a limiting factor for some applications,
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the data-driven approach used to construct the OpenAP allows more aircraft to be
included with the growing available volume of flight data in the future.

The OpenAP model data and source code for the toolkit are published under
the GNU GPL v3 license. This allows anyone to freely use (including commercial
and private use), distribute, and change the content.3 The advantage of having
such an open license is to allow easy access and encourage contributions from the
ATM research community. The source is published on GitHub, where anyone can
take part in the future development of the model.

A.7. Conclusion
The details of the open aircraft performance programming library are explained
in this appendix of the dissertation. The OpenAP model is aimed at providing the
ATM research community an open alternative to current closed-source aircraft per-
formance models. Accompanied by an off-the-shelf user library written in Python
programming language, the performance model consists of four major compo-
nents, which are aircraft and engine properties, kinematic performance, dynamic
performance, and utility libraries.

The characteristics of 27 common aircraft and 400 turbofan engines are in-
cluded in the OpenAP library. The aircraft database provides basic information on
aircraft dimensions, limits, and engine configurations. The engine database pro-
vides information such as maximum thrust, bypass ratio, cruise performance, and
fuel flow coefficients for each engine type.

As a final note, the OpenAP model already serves as one of the performance
engines that powers the BlueSky simulator, which is a tool designed for large scale
air traffic simulations. All OpenAP model data and the toolkit source code are
published on GitHub under the GNU GPL license.

3License details at: https://www.gnu.org/licenses/gpl-3.0.en.html

https://www.gnu.org/licenses/gpl-3.0.en.html
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B.1. Introduction
One cost-effective way to study the aerodynamic properties of an aircraft is to
perform numerical simulations. Computational fluid dynamic (CFD) simulations
are often designed to evaluate the new designs of aircraft wings and structures.
On the other hand, we can also use CFD to study existing aircraft aerodynamic
properties. This dissertation also studied the possibility of using open 3D models
and open CFD tools to construct drag polar of the aircraft.

The CFD approach computes the air flow velocity and pressure around a 3D
aircraft model in a steady flow. Then, it can calculate the drag and lift forces along
and perpendicular to the body axis of the aircraft. Knowing the drag and lift, the
drag and lift coefficient can be calculated. We can control the angle of attack for
the 3D model for the simulation. Hence lift and drag coefficient can be estimated
for different configurations of the angle of attack.

For this study, the open-source CFD software OpenFOAM (Open source Field
Operation And Manipulation) is used to construct the simulation. As part of the
OpenFOAM, the SimpleFOAM solver is used to solve the Navier-Stokes equations,
which describe the motion of the fluid. Once the solver converges, the forces
in each axis can be computed based on the pressure difference. Knowing the
reference airflow velocity and aircraft wing surface, the lift and drag coefficients
can be computed.

The open-source community has produced many open 3D models of aircraft,
but the biggest challenge is identifying accurate 3D models. In order to derive a
drag polar that corresponding to the actual aircraft type, the airfoil profiles of the
wing have to be consistent with the actual design. The large variety of 3D model
formats also makes the utilization of these models difficult. This chapter focuses
on these challenges and illustrates a path that combines open tools and open data
to derive drag polar based on CFD simulations.

B.2. 3D model
Accurate 3D models of aircraft are rarely published by aircraft manufacturers.
However, online 3D communities, such as GrabCAD and 3D Warehouse, provide
easy access to several aircraft models that were made by hobbyists. The flight
simulation community, such as FlightGear, also shares their 3D models of aircraft.
However, the quality of these 3D models is not always guaranteed. Some of the
authors try to be as accurate as possible to real aircraft, while others may focus
on the rendering of the 3D models. In Figure B.1, two designs of a same air-
craft model are illustrated. The structural differences and resolutions of these two
designs are clearly visible.

Other than the accuracy of the aircraft shape, the most important factor is the
airfoil profile, which is also one of the least accurate elements of these open 3D
models. 3D wing models constructed by the open source community are often
based on public airfoil data, for example, the open airfoil database [119]. Two
reasons account for this inaccuracy. First, the detail of the airfoil profile is insignif-
icant for general visualization purposes. Second, the inaccuracy in wing design is
also due to the fact that modern aircraft manufacturers rarely disclose the aerody-
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Figure B.1: Different levels of design detail

namic design of wings. A lot of open 3D models use generic NACA profiles, which
significantly affects the results of CFD simulation. According to a study conducted
by [79], for the two major passenger aircraft manufacturers, Boeing and Airbus,
only a few airfoils used on very old aircraft types are available to the public. It
is understandable that aircraft manufacturers desire to treat these data as private
in order to maintain their competing edge. However, this limitation poses a great
challenge to this study.

Research conducted by Kagkaras [73] shows an alternative possibility using
laser scanning to construct 3D models of aircraft. However, such a method requires
the complicated setup of scanners and intensive post-processing to acquire a single
aircraft model. It also requires a certain level of cooperation from aircraft owners.

Even with a 3D model of an aircraft, there are still many detailed processes
to obtain a workable solution. Firstly, there are many varieties of 3D data format
generated by different software. More than 20 different formats are commonly
used. Secondly, not all 3D designs are ready for CFD simulation. After the 3D
file is converted to the desired data format, a series of clean-ups and reparations
are often required before CFD can be applied. In the following diagram (shown
in Figure B.2), a detailed working flow is designed to illustrate the entire process
of the open CFD simulation. In the remainder of this appendix, a Boeing 747-400
aircraft model [108] is used to illustrate the major steps of CFD simulation.

B.3. Pre-processing of 3D models
Since the CFD simulations in this study are completely based on public domain
data, the source of aircraft 3D models come in varying levels of quality and for-
mats. Quite often, these models contain geometric errors. Thus, the pre-process
step covers selecting, evaluating, repairing, and cleaning the 3D aircraft model
prior to CFD simulation.

To evaluate a 3D model, its format needs to be checked first. With the large
variety of 3D model definitions, choosing the right software for pre-processing is
essential. The two most used open-source tools for the preparation of this study
are Blender [14] and FreeCAD [38]. Once the model is rendered, the general
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Select	an	open	3D	aircraft	model

		Passes	quality	check		

		Fails	to	meet	standard		
Evaluation

format,	geometry,	wing	profile,	resolution

Convert	to	supported	format
.stl,	.gts,	.obj,	.off,	.tri,	.ac,	.nas,	.vtk

Repair	3D	model
Software:	Blender	and	MeshLab

Fix:	Scaling,	orientation,	duplicate	vertices,	
non-manifold	faces,	etc.

Clean	workable	3D	model

OpenFOAM	native	mesher
blockMesh,	snappyHexMash

OpenFOAM	Solver
simpleFoam

3D	party	mesher
NetGen

Surface	and	volume	mesh

Aerodynamic	coefficients
(per	angle	of	attack)

Control	angle	of	attack
OpenFOAM	/	rotateMesh

Clear	structures
Landing	gear,	engine

Drag	polar	model

Figure B.2: Flow for open CFD simulation using OpenFOAM

geometry of an aircraft needs to be checked. Airfoil at the cross sections of the
wings needs to be carefully examined. The scaling and swapping angle of the
wings should also be compared with the aircraft design specification. If the model
does not resemble the real structure of the aircraft, it cannot be used for the CFD
simulation. Upon successful initial quality control, using Blender or FreeCAD, most
of the 3D formats can be converted to a common interchange format, for example,
STL (STereoLithography) format. Sometimes, specific plug-ins must be installed
to read corresponding formats. However, in the example of Boeing 747-400 for
this study, OpenVSP is used for the initial conversion from the less common VSP
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(Vehicle Sketch Pad) format to STL format.
The next step is to fix errors in the 3D model, so it can be used for CFD sim-

ulation. With the correct scaling ratio, it is very common that the model may
not come with proper size and unit. The 3D-orientation for the model is not al-
ways fixed. To ease the CFD configuration, a standard scaling and orientation of
the aircraft are set in order to standardize the simulation. Other design problems
need to be fixed at the same time. Extra or duplicated vertices (edges or faces) in
the 3D design are removed, and non-Manifold faces are corrected. Most of these
tasks can be executed automatically with software (such as Blender or MeshLab
[22]). However, some models (especially when no alternatives are available) do
also require an extensive amount of manual 3D design work.

In addition to corrections, there is also a need to remove some of the body
structures (or add them in cases of comparison studies). For example, landing
gears, which produce an enormous amount of the drag, are to be removed when
present. Engine and parts engines are also removed to study their effects on drag
polar models.

Once a clean 3D model is produced and before it is used for CFD, a rotation
procedure is used to control the angle of attack of the aircraft. This is achieved
using the rotationMesh method from the OpenFOAM. Angles of attack are set from
-5 to 15 degrees with a 1-degree increment, as well as from 16 to 30 degrees with
a 2-degree increment. At each pitch angle configuration, this study applies the
meshing and solving steps. In total, around 30 rounds of CFD simulation, with
500 iterations each round, are performed for an aircraft model to construct the
final drag polar.

B.4. Meshing
In Figure B.2, two different meshing tools are proposed. The first one is the native
meshing tool (snappyHexMesh) from OpenFOAM, while the other is a 3D-party
open-source meshing software, NetGen [117]. A variety of other open-source mesh
generation tools also exist. For CFD simulations in openFOAM, the aircraft and
a volume surrounding the aircraft need to first be defined. Then, the general
meshing process consists of three steps, which are described as follows:

1. Creating the surface mesh and extracting feature: A mesh of all the sur-
faces of aircraft is first created. This mainly consists of refining and fixing
faces from the existing 3D model. After that, edges (conjunct faces with an
angle larger than a threshold) of the aircraft are extracted. Later on, the
volume mesh surrounding the edge will be refined to a much more detailed
level.

2. Generating the block mesh: The entire defined volume surrounding the
aircraft is divided into tiny 3D blocks defined by the user. At the same time,
predefined boundaries are also extracted, which consist of an inlet, an outlet,
and walls. In Figure B.3, such background mesh is illustrated with respect
to the aircraft model.

3. Generating the volume mesh: Based on previously generated background
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Figure B.3: Background block meshes

mesh, the snappyHexMesh program will create the 3D meshes of hexahedra
and split-hexahedra from the aircraft model. Iteratively, the mesh conforms
to the aircraft surface. A different level of details may be defined for refine-
ment. In general, the areas around the edges are refined in more details than
a flat surface. This is achieved by splitting cells around the edges that are ex-
tracted in the first step of the meshing. The volume mesh will be snapped to
the surface of the aircraft. Finally, as a common practice, an additional layer
is added to the area where irregular cells exist. All these procedures are
handled by snappyHexMesh automatically. However, setting up the proper
parameters do require some empirical knowledge and many trial-and-error
corrections. As the result of snappyHexMesh, the surface and volume meshes
are illustrated in Figure B.4 respectively.

Figure B.4: Final meshes around the aircraft tail

4. Examining the mesh result: The final mesh should always be examined
to ensure the quality of the mesh. This can be performed with visual in-
spection, such as paraFoam, a wrapper for 3D visualization tool paraView or
CheckMesh tool. Both are part of the OpenFOAM package.
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B.5. Navier-Stoke solver
Once the correct meshes are generated for the CFD simulation, the solution of
Navier-Stoke equations is straightforward using solvers provided by OpenFOAM.
In this experiment, the simpleFoam solver is used. It is a steady-state solver for
incompressible flows with turbulence models. Depending on the scale and resolu-
tion of the mesh, it can take hours to days to complete a simulation run.

Once the simulation is complete, we can obtain the velocity and pressure of
the flow around the aircraft body. In Figure B.5, the air velocity and pressure
surrounding the wing at the end of the simulation are illustrated using streamlined
tubes. The scales of the velocity and pressure are marked in each plot respectively.
In this experiment, the reference free stream velocity is 100m/s. In the pressure
plot, the values are shown as relative values to the static air pressure.

Figure B.5: Visualization of flow velocity and air pressure

At each CFD iteration, the total lift and drag forces are calculated. Knowing
the stream velocity, air density, and reference area, lift and drag coefficient can
then be computed. In Figure B.6, computed lift and drag coefficients are plotted.
The convergences of both coefficients are found at the end of the simulation.
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B.6. Computation of the drag polar
The aircraft is configured with different angles of attack at each simulation. Drag
and lift coefficients for all simulations are gathered to generate the profiles of lift
and drag coefficient. For example, a second degree or third-degree polynomial can
be used to approximate these two coefficients, and they are illustrated in Figure
B.7.
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Figure B.7: Polynomial spline models of lift and drag coefficients (B747-400 simulated, clean configu-
ration)

Knowing the relation of drag and lift coefficients under each condition of the
angle of attack, the drag polar can be computed using the least-squares regres-
sion. Figure B.8 illustrates an example of drag polar by using CFD simulation for
an aircraft with a clean (no flaps or extended landing gear) configuration. It is
constructed based on the previous example of B.7.
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Figure B.8: Drag polar (B747-400 simulated, clean configuration, α < 10◦)
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AC Engine T0 BPR PR Cff3 Cff2 Cff1 hcr Mcr Tcr SFCcr

A319 CFM56-5A4 97.89 6.00 23.80 0.448 -0.591 1.043 35 0.8 22.24
A319 CFM56-5A5 104.53 6.00 25.10 0.451 -0.559 1.083 35 0.8 22.24
A319 V2522-A5 102.50 4.90 25.70 0.638 -0.998 1.336
A319 V2524-A5 108.90 4.80 27.00 0.685 -1.035 1.394
A319 V2527M-A5 111.20 4.82 27.20 0.558 -0.817 1.316
A320 CFM56-5-A1 111.20 6.00 26.60 0.438 -0.502 1.118
A320 CFM56-5-A1 111.20 6.00 26.60 0.438 -0.502 1.118
A320 CFM56-5A3 117.88 6.00 27.90 0.441 -0.468 1.161 35 0.8 22.24 0.0169
A320 CFM56-5B4 117.90 5.90 27.10 0.411 -0.466 1.224 35 0.8 22.24 0.0154
A320 V2500-A1 111.20 5.30 29.80 0.579 -0.816 1.355
A320 V2527-A5 110.30 4.80 27.10 0.705 -1.057 1.406
A320 V2527E-A5 111.20 4.82 27.20 0.558 -0.817 1.316
A321 CFM56-5B1 133.45 5.70 30.20 0.427 -0.397 1.331 35 0.8 25.98 0.0169
A321 CFM56-5B2 137.90 5.60 31.30 0.517 -0.472 1.384 35 0.8 25.98 0.0154
A321 V2530-A5 133.00 4.60 32.00 0.894 -1.184 1.619
A321 CFM56-5B1 133.45 5.70 30.20 0.427 -0.397 1.331 35 0.8 25.98 0.0169
A321 CFM56-5B2 137.90 5.60 31.30 0.517 -0.472 1.384 35 0.8 25.98 0.0154
A321 V2533-A5 140.60 4.50 33.70 1.133 -1.418 1.722
A321 V2530-A5 133.00 4.60 32.00 0.894 -1.184 1.619
A332 CF6-80E1A2 287.04 5.10 33.10 0.977 -0.854 2.650
A332 CF6-80E1A4 297.44 5.10 34.50 1.101 -0.905 2.713
A332 CF6-80E1A3 304.80 5.10 35.70 1.266 -1.043 2.771
A332 PW4168A 302.50 5.10 31.84 1.118 -1.269 3.040
A332 PW4170 311.40 4.86 33.80 1.351 -1.488 3.161
A332 Trent 772 320.30 5.03 36.33 1.396 -1.353 3.103
A333 CF6-80E1A2 287.04 5.10 33.10 0.977 -0.854 2.650
A333 CF6-80E1A4 297.44 5.10 34.50 1.101 -0.905 2.713
A333 CF6-80E1A3 304.80 5.10 35.70 1.266 -1.043 2.771
A333 PW4164 284.68 5.20 30.10 1.013 -1.235 2.896
A333 PW4168 302.50 5.10 31.84 1.118 -1.269 3.040
A333 PW4168A 302.50 5.10 31.84 1.118 -1.269 3.040
A333 Trent 768 304.20 5.15 34.48 1.058 -1.057 2.913
A333 Trent 772 320.30 5.03 36.33 1.396 -1.353 3.103
A333 Trent 772 320.30 5.03 36.33 1.396 -1.353 3.103
A343 CFM56-5C2 138.78 6.80 28.80 0.413 -0.415 1.314 35 0.8 30.76 0.0154
A343 CFM56-5C3 144.57 6.70 29.90 0.374 -0.340 1.343 35 0.8 30.74 0.0154
A343 CFM56-5C4 151.25 6.60 31.15 0.393 -0.323 1.389 35 0.8 31.58 0.0154
A359 Trent XWB-84 379.00 9.01 41.10 1.498 -1.879 3.209
A388 Trent 970-84 338.70 8.45 38.00 0.842 -0.935 2.707
A388 Trent 972-84 345.90 8.41 38.68 0.852 -0.924 2.752
A388 GP7270 332.39 8.71 36.62 0.781 -0.739 2.602 35 0.85 56.19
B734 CFM56-3B-2 98.30 5.10 24.10 0.524 -0.732 1.268
B734 CFM56-3C-1 82.29 5.10 21.30 0.504 -0.775 1.148
B737 CFM56-7B20 91.63 5.40 22.61 0.425 -0.603 1.094 35 0.8 24.24 0.0179

continued on next part
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AC Engine T0 BPR PR Cff3 Cff2 Cff1 hcr Mcr Tcr SFCcr

B737 CFM56-7B22 100.97 5.30 24.41 0.473 -0.624 1.176 35 0.8 24.24
B737 CFM56-7B24 107.65 5.20 25.78 0.471 -0.591 1.226 35 0.8 24.38 0.0178
B737 CFM56-7B26 116.99 5.10 27.61 0.511 -0.578 1.291 35 0.8 24.38
B737 CFM56-7B27 121.44 5.00 28.63 0.579 -0.629 1.337
B738 CFM56-7B24 107.65 5.20 25.78 0.471 -0.591 1.226 35 0.8 24.38 0.0178
B738 CFM56-7B26 116.99 5.10 27.61 0.511 -0.578 1.291 35 0.8 24.38
B738 CFM56-7B27 121.44 5.00 28.63 0.579 -0.629 1.337
B739 CFM56-7B24 107.65 5.20 25.78 0.471 -0.591 1.226 35 0.8 24.38 0.0178
B739 CFM56-7B26 116.99 5.10 27.61 0.511 -0.578 1.291 35 0.8 24.38
B739 CFM56-7B27 121.44 5.00 28.63 0.579 -0.629 1.337
B744 PW4062 275.80 4.60 31.00 2.007 -2.169 2.889
B744 CF6-80C2B1F 254.26 5.10 30.13 0.716 -0.638 2.349 35 0.8 57.03 0.016
B744 RB211-524G 253.00 4.25 32.10 1.881 -2.163 2.910
B748 GEnx-2B67 299.80 8.00 42.40 1.003 -1.208 2.661
B752 PW2037 166.35 5.71 26.70 0.556 -0.723 1.743 35 0.85 28.91 0.0165
B752 RB211-535E4 178.40 4.10 26.00 1.052 -1.279 2.081
B763 PW4056 249.10 4.70 29.30 0.803 -0.909 2.453
B763 CF6-80C2B2 231.08 5.10 27.53 0.595 -0.607 2.141 35 0.8 53.38 0.0163
B772 GE90-94B 430.92 8.33 40.82 1.201 -0.842 3.162
B772 PW4077 343.00 6.70 33.20 1.079 -1.030 2.974
B772 Trent 895 413.05 5.70 41.52 2.412 -2.482 4.107
B773 GE90-110B1 492.60 7.34 39.73 1.772 -1.458 4.018
B773 PW4090 408.30 6.00 38.90 3.639 -3.903 4.198
B773 Trent 892 411.48 5.70 41.38 2.038 -1.909 3.787
B77W GE90-115B 513.90 7.08 42.24 2.790 -2.471 4.381
B788 GEnx-1B70 321.60 8.80 43.50 0.707 -0.542 2.335
B788 GEnx-1B67 308.70 8.90 41.90 0.676 -0.564 2.261
B788 GEnx-1B64 298.00 9.00 40.60 0.645 -0.570 2.197
B788 Trent 1000-E2 268.00 9.62 36.32 0.982 -1.298 2.237
B788 Trent 1000-C2 334.70 9.16 44.10 0.922 -0.938 2.527
B789 Trent 1000-K2 350.90 9.04 46.08 0.996 -0.949 2.624
B789 Trent 1000-J2 350.90 9.04 46.08 0.996 -0.949 2.624
B789 Trent 1000-A2 310.90 9.32 41.30 0.951 -1.097 2.440
C550 JT15D-4 11.12 2.68 10.10 0.154 -0.255 0.271
E145 AE3007A1 34.91 4.77 17.97 0.206 -0.287 0.466
E170 CF34-8E5 59.68 5.13 23.18 0.299 -0.346 0.701
E170 CF34-8E6 59.68 5.13 23.18 0.299 -0.346 0.701
E190 CF34-10E5 77.40 5.09 25.60 0.310 -0.400 0.885
E195 CF34-10E5 77.40 5.09 25.60 0.310 -0.400 0.885
E75L CF34-8E5 59.68 5.13 23.18 0.299 -0.346 0.701
E75L CF34-8E6 59.68 5.13 23.18 0.299 -0.346 0.701

Table C.1: Engine performance for common aircraft types.

Unit for thrust: kN
Unit for SFC: kg/s
Unit for altitude: k ft
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Nomenclature

Symbols
α angle of attack deg

ν process noise

f state transition function

h observation function

n observation noise

χ track angle deg

δ Dirac delta function

δT thrust setting -

γ flight path angle deg

λ bypass ratio -

x state vector

y observation vector

VS vertical speed m/s

φ bank angle deg

ψ heading angle deg

ρ air density kg/m3

ρ0 air density at sea level kg/m3

τ air temperature K

τ0 air temperature at sea level K

A aspect ratio -

a speed of sound m/s

Cff fuel flow coefficient -

CD drag coefficient -

CL lift coefficient -

CD0 zero drag coefficient -

CL,max maximum lift coefficient -
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D total drag N

e Oswald efficiency factor -

Fc centrifugal force N

g gravitational acceleration m/s2

h altitude m

hcr reference cruise altitude alt

k lift induced drag coefficient -

L total lift N

M Mach number -

m aircraft mass kg

Mcr reference cruise Mach number -

n load factor -

p pressure Pa

p0 pressure at sea level Pa

pcr pressure at reference cruise altitude Pa

p10 pressure at altitude of 10,000 feet Pa

q dynamic pressure Pa

R universal gas constant -

S wing area m2

T net thrust N

T0 maximum static thrust, sea level N

Tcr thrust at the top of climb N

T10 thrust at altitude of 10,000 feet N

u U-component of wind m/s

V aircraft speed m/s

v V-component of wind m/s

v aircraft speed m/s

Va aircraft airspeed m/s

va aircraft airspeed m/s

Vg aircraft ground speed m/s

vg aircraft ground speed m/s

Vw wind speed m/s
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vw wind speed m/s

w particle weight

x downrange position m

y cross-range position m

z vertical position m

Abbreviations
ACAS Airborne Collision Avoidance System

ADS-B Automatic Dependent Surveillance-Broadcast

AMDR Aircraft Meteorological Data Relay

ATC Air Traffic Control

ATM Air Traffic Management

BADA Base of Aircraft Data

BDS Comm-B Data Selector

CAS Calibrated Airspeed

CFD Computational Fluid Dynamics

CL Climb

CR Cruise

CRC Cyclic Redundancy Check

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DE Descent

ECMWF European Centre for Medium-Range Weather Forecasts

EHS Enhanced Surveillance

ELS Elementary Surveillance

FA Final Approach

FAA Federal Aviation Administration

FMS Flight Management System

GFS Global Forecast System

GPS Global Positions System

GS Ground Speed

HFOM Horizontal Figure of Merit
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HMC Hamiltonian Monte Carlo

IAS Indicated Airspeed

IC Initial Climb

ICAO International Civil Aviation Organization

LD Landing

LOF Liftoff

MAE Mean Absolute Error

MAP Maximum A Posteriori estimation

MCMC Markov Chain Monte Carlo

MLE Maximum Likelihood Estimation

MLW Maximum Landing Weight

Mode-S Mode Selective

MRAR Meteorological Routine Air Report

MTOW Maximum Takeoff Weight

NAC Navigation Accuracy Category

NIC Navigation Integrity Category

NUTS No-U-Turn Sampler

NWP Numerical Weather Prediction

OEW Operational Empty Weight

RMSE Root Mean Squared Error

SIR Sample Importance Re-sampling

SMC Sequential Monte Carlo

SSR Secondary Surveillance Radar

STE Stochastic Total Energy

TAS True Airspeed

TCAS Traffic Collision Avoidance System

TO Takeoff

TSFC Thrust Specific Fuel Consumption

VFOM Vertical Figure of Merit
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