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1.  Introduction
Intercomparison studies of existing atmospheric General Circulation Models (GCMs) exhibit a large spread 
in their predictions of atmospheric 2COE  concentration at which a 2 K temperature rise with respect to pre-
industrial times is reached (Boucher et al., 2013). This uncertainty imposes a considerable cost on society 
(Hope, 2015).

The largest contributor to this uncertainty concerns the response of low clouds to warming (Dufresne & 
Bony, 2008), as their impact is large (Boucher et al., 2013), but the turbulent phenomena that drive much 
of their evolution lie far below the resolutions that computational limits will allow GCMs to resolve in the 
coming decades (Schneider, Teixeira, et al., 2017). Such clouds are currently approximated by phenome-
nological unresolved scales models, “parameterizations”, of considerably lower fidelity than the resolved 
simulation.

Abstract  Data-driven parameterizations offer considerable potential for improving the fidelity 
of General Circulation Models. However, ensuring that these remain consistent with the governing 
equations while still producing stable simulations remains a challenge. In this paper, we propose a 
combined Variational-Multiscale (VMS) Artificial Neural Network (ANN) discretization which makes 
no a priori assumptions on the model form, and is only restricted in its accuracy by the precision of the 
ANN. Using a simplified problem, we demonstrate that good predictions of the required closure terms 
can be obtained with relatively compact ANN architectures. We then turn our attention to the stability of 
the VMS-ANN discretization in the context of a single implicit time step. It is demonstrated that the ANN 
parameterization introduces nonphysical solutions to the governing equations that can significantly affect 
or prevent convergence. We show that enriching the training data with nonphysical states from intra-time 
step iterations is an effective remedy. This indicates that the lack of representative ANN-induced errors in 
our original, exact training inputs underpin the observed instabilities. In turn, this suggests that data set 
enrichment might aid in resolving instabilities that develop over several time steps.

Plain Language Summary  Computer models of weather and climate have coarse 
resolutions, which prevent them from accurately predicting the effect of small atmospheric motions, for 
instance in low-lying clouds, on the global climate. Recent studies indicate that improvements might 
be had by using models for the small motions that are informed purely by data, for example Artificial 
Neural Network (ANN) models. However, capitalizing on this potential is challenging in practice, since 
ANNs can introduce instabilities to the numerical model for larger-scale motions. In this study, we zero 
in on these instabilities by introducing a model framework in which prediction accuracy is only limited 
by an ANN's ability to predict the net influence of small atmospheric motions. We contextualize this 
framework by contrasting it to more commonly used approaches. Using a simple test case based on the 
motions underpinning the development of low clouds, we illustrate that standard training procedures 
do not prepare ANN models for their interaction with the rest of the numerical model, and that this can 
contribute to numerical instability. We demonstrate an effective remedy for a specific type of instability, 
and suggest how this technique might also be used to treat other types of instabilities prompted by ANN 
models.
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It has been proposed that improvements might be had by considering data-driven parameterizations (Sch-
neider, Lan, et al., 2017). Over the past few years, several promising flavors of such models have been devel-
oped (Duraisamy et al., 2019; Kochkov et al., 2021; Maulik & San, 2017; Yuval & O’Gorman, 2020). Among 
these flavors, replacing the original parameterization by Artificial Neural Networks (ANNs) appears par-
ticularly encouraging for improving the accuracy of both idealized fluid flow calculations (Beck et al., 2019; 
Guan et al., 2021; Park & Choi, 2021; Stoffer et al.,  2020) and global atmospheric models (Brenowitz & 
Bretherton, 2018; Krasnopolsky et al., 2013; Rasp et al., 2018; Yuval et al., 2021). However, ensuring that an 
ANN adheres to the laws of physics and returns stable, generalizable simulations remains an appreciable 
challenge (Gentine et al., 2018). Additionally, embedding machine learning frameworks in GCMs does not 
resolve the conceptual inconsistencies of model formulations that prevent the correct interaction between 
the smaller scales of clouds and the larger scales of climate (e.g., Majda & Grooms, 2014). The effort of 
discovering and treating the drawbacks that currently prevent data-driven models from competing with the 
state of the art is just beginning.

We contribute to this effort by considering ANN approximations for the exact closure terms that couple 
the resolved and unresolved scales of a discretized mathematical atmospheric model. These terms arise 
naturally as projections of unresolved processes onto a discrete basis when analyzed through the lens of a 
Variational Multiscale (VMS) framework (Hughes et al., 2018). In contrast to previous work, a numerical 
VMS model with an ANN representing its closure terms makes no a priori assumptions on the parameter-
ization's modeling form and is only restricted in its accuracy of reconstructing the resolved scales by the 
ability of an ANN to approximate the closure terms. It is therefore a rather general and clear platform to 
assess the ultimate potential of ANN parameterization, and to search for sources of the instabilities that it 
instils in numerical simulations.

In this paper, we therefore introduce a combined VMS-ANN modeling framework, where the resolved 
scales of the VMS model drive ANN approximations of exactly measured closure terms at each time step of 
the numerical model. In the context of dry, statistically stationary convective boundary layer turbulence, we 
train and test relatively simple ANN structures outside a time stepping loop (offline), where they promise 
excellent potential. However, even for such a simple flow, our VMS-ANN encounters a loss of energy con-
servation over several time steps in forward simulations of the model problem (an “online” model evalua-
tion setting), similar to that found in studies of similarly simple (e.g., Beck et al., 2019; Stoffer et al., 2020) 
and more complex (e.g., Brenowitz & Bretherton, 2018; Krasnopolsky et al., 2013) situations. In contrast to 
those studies, which employed explicit time marches, we investigate the use of an implicit method. For the 
numerical model, this consistently allows the ANN to account for the time-propagation of discretization 
error, and could unlock the use of longer, stable time steps. However, this choice will lead to a second, previ-
ously undescribed mode of instability. By exposing the reasons underpinning this instability and indicating 
a direction for improving it, we will suggest a broader strategy for making data-driven parameterizations 
viable for online use.

In all, this paper has three objectives. First, Section 2 very generally outlines a coupled VMS-ANN model 
and discusses its relation to several other modeling approaches. Second, we define our minimal test case 
for the model in Section 3, and use it to illustrate the approach's potential to outperform state-of-the-art 
VMS model closures in an offline setting in Section 4. Finally, we expose and amend instabilities within an 
implicit time step in Section 5, and discuss how lessons from this example may pave the way for efficient, 
stable online running with data-driven parameterizations in Section 6.

2.  Variational Multiscale-Artificial Neural Network Model
2.1.  Variational Multiscale Model

The framework of VMS modeling offers a perspective on how to develop stabilized spectral and finite element 
methods for problems with a large range of impactful scales, such as atmospheric dynamics (Hughes, 1995; 
Hughes et al.,  1998). It has been successfully applied to various aerodynamic (Hughes et al.,  2000) and 
atmospheric (Marras et al., 2013a, 2013b) problems. We employ the framework here, as it allows for a par-
ticularly clear exposition of what is required from an unresolved scales model.
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High-resolution GCMs require a mathematical model appropriate to phenomena of global scale (e.g., 
Klein, 2010). Initial studies aimed at showing the potential of ANN parameterizations (e.g., Krasnopolsky 
et al., 2013; Rasp et al., 2018) and more recent work aimed at uncovering their effects on large-scale pro-
cesses (Brenowitz et al., 2020) therefore concentrated on global, fully process-equipped models. While these 
studies successfully accomplished their objective, their highly complex models are not ideal to advance our 
understanding of how ANN parameterizations fundamentally interact with numerical models. Therefore, 
we propose to start at the other end, by focusing on the free turbulence in the atmospheric boundary layer 
that underpins the development of low clouds. While ignoring many processes and scales, this is arguably 
the simplest imaginable setting relevant for studying cloud parameterization for GCMs. Therefore, we con-
sider it a suitable testbed to begin building an understanding of an ANN parameterization's basic behavior.

More precisely, we consider a fluid governed by the Boussinesq equations without moisture, Coriolis forces 
or molecular diffusion in three spatial dimensions, on a horizontally homogeneous domain ΩE  :



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Where iE u  are the three components of velocity, E  is (dry) potential temperature, 0E  is a reference temperature, 
E  are pressure fluctuations normalised by a reference density 0E  , E g is acceleration due to gravity and E S  is a 
(radiative) source. The conditions imposed on the spatial boundary of ΩE  , ΓE  , and on the initial time bound-
ary, are discussed in Section 3.

One can derive a variational multiscale model for solving equations such as these by following e.g., Hughes 
et al. (2000). Here, we will only give a minimal sketch of this derivation, and refer the interested reader to for 
example, (Codina et al., 2018; Hughes et al., 2018) for more detailed overviews. We begin by decomposing 
the solution     , ,iE uu  into a sum of known basis functions       , ,uiE ψ  with unknown amplitudes 

E ia  :
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


i i
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m
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� (4)

Here, E m defines the potentially infinite number of solution components needed to represent the solution 
exactly. To solve for the unknown E ia  , we pose E m “weak” equations, constructed by inserting Equation 4 into 
Equations 1–3, multiplying the equation set with E m weighting functions of choice, and integrating each re-
sulting equation over ΩE  (Equations 1–3 themselves are commonly referred to as “strong” equations). Each 
term in a weak equation is thus an inner product, denoted here as    Ω,E  .

To obtain a square system, we choose the set of weighting functions to be equal to the set of solution basis 
functions, E ψ . Hence, both the weighting functions and solution components exist in the function space 
E ψ  , which is defined such that the functions in this space can be integrated and differentiated twice, 

while always returning finite values. With these definitions in place, we can pose Equations 1–3 as the fol-
lowing semi-discrete, variational problem:

Find E u  such that  E ψ  :

  , 0A ψ u� (5)

    1 2, , , 0B Bψ u ψ u u� (6)

    1 2, , , 0C Cψ u ψ u u� (7)

Where:
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In the above, we have integrated several terms by parts, introduced integration over the sub-domain ΩiE  on 
which iE ψ  is non-zero, and it is assumed that E ψ satisfies the boundary conditions to be imposed. Note that 
we elect to express Equations 5–7 in terms of “bilinear” forms which depend linearly on E u (e.g., ( , )E A ψ u  ), 
and “trilinear” forms, which depend on non-linear products of the solution vector (e.g., 2( , , )E B ψ u u  ). While 
hiding several details of the equations themselves, this notation emphasizes the scale interactions in E ψ and 

E u that we wish to focus on, and keeps the equations compact throughout the paper.

Attaining exact solutions for E u requires solving Equations  5–7 for an infinite number of trial solutions 
weighting an infinite number of basis functions, i.e.,  E m  . To make the problem tractable, we will only 
solve for a finite number, elE n  , of solution components. We will contain these finite degrees of freedom in the 
space E   , which satisfies the direct sum decomposition E  of E  :

    � (8)

In this context, E   is the space of resolved, “large” scales, while E   contains unresolved, “small” scales. This 
scale separation identifies the resolved solution E u , its degrees of freedom a

i
 and its basis E ψ :

u a



i i

i

nel

0

� (9)

For a given one-dimensional state E u , this definition of E u  directly identifies E u  . This is illustrated in Figure 1, 
where E u  is constructed using piecewise linear E  . It is important to note that when computing coarse-mesh 
solutions, the objective is to compute E u , the desired projection of E u onto the discrete space, rather than E u 
itself. For the current work, the desired E u was chosen as the nodally exact projection of E u , although other 
projections could be used.

By also projecting Equations 5–7 onto E   and E   , we arrive at a finite-dimensional set of resolved scales 
equations for E u (Equations  10–12) and an infinite-dimensional set of unresolved scales equations for E u  
(Equations 13–15). Our numerical model's objective will then be reduced to:

Find E u   such that  E ψ   :

Figure 1.  Simplified representation of a one-dimensional solution ( )E u x  and its lower dimensional representation E u  , 
constructed by projecting E u onto piecewise linear bases  iE  over finite elements with domain ΩiE  and boundary ΓiE  , such 
that (Γ ) (Γ )i iE u u  and the projection is nodally exact. This projection defines E u  as illustrated.
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Three types of terms appear in Equations 10–12: (i) interactions between resolved scales, (ii) direct interac-
tions between resolved and unresolved scales, projected on the resolved basis E ψ and (iii) projections of pure 
unresolved scale interactions on the resolved scales. In the language of the Large Eddy Simulation com-
munity, terms (ii) and (iii) can be interpreted as analogs of the Cross and Reynolds stresses of the filtered 
momentum equations. Note that if one could reproduce these terms exactly, one could reproduce E u exactly. 
Hence, in spite of having discretized the equations, we have yet to introduce any approximation. In practice, 
this will of course be necessary, as terms (ii) and (iii) can only be identified once the infinite dimensional 
system Equations 13–15 is solved for E u  :
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In a variational multiscale framework, it is common to approximate the unresolved scales equations using 
evolution equations for E u  (Codina et al., 2018). When most of the energy in the flow resides in the resolved 
scales, one may expect E u  to be small and local enough to justify its approximation using element Green's 
functions (Hughes et al., 2018). Further assuming that the unresolved scales react instantaneously to their 
resolved counterparts results in algebraic approximations of the form:

  u τ� (16)

Where E τ is a matrix of approximate element Green's functions and    , , , ,( ), ( ), ( )s c s m i s hE    u u u  are the 
residuals of the strong form of the continuity, momentum and energy equations, evaluated using the re-
solved portion of the solution, E u . However, the best possible E u does not require the best possible model for 
E u  , but only for the closure terms (ii) and (iii) in Equations 10–12; we call these closure terms E  from here on:
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Since the terms in E  are integrated over a volume associated with the typical grid spacing, they are likely to 
be less locally variable than E u  itself, and the prospect of predicting them is somewhat less daunting. There-
fore, we will attempt to pose models for E  directly, given insights from the structure of Equations 13–15.

2.2.  Contrast to LES and Superparameterization

In contrast to other modeling frameworks, the VMS formulation subsumes both discretization errors and 
modeling errors in its unresolved scales equations. Therefore, the resolved scales equations remain exact 
equations for E u . As a result, it is not necessary to consider the numerical structure of flux operators in finite 
volume codes to construct exact models for E  .

However, the VMS model form is closely related to more familiar atmospheric modeling frameworks that 
have been coupled to early ANN parameterizations. By replacing terms (ii) and (iii) in Equations 10–12 
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with a diffusive term scaled by an eddy-viscosity, classical LES models are attained (Hughes et al., 2000), 
albeit in weak form. Closing such models with ANNs was considered in a finite volume setting by e.g., Beck 
et al. (2019).

Conversely, Rasp et al. (2018) replaced the Cloud Resolving Models (CRMs) that close superparameteriza-
tion formulations of GCMs with ANNs. The general structure of SP models can also easily be attained from 
the VMS framework by considering a three-scale decomposition of the trial solution and weighting function 
spaces:

      � (18)

where E   would be the “large” scales space of the GCM, E  the “small” scales space of an individual CRM and 
E   the still infinite-dimensional unresolved scales space. The three sets of governing equations that emerge 

from this decomposition and the range of scale interaction terms therein are included in Appendix A for 
the interested reader.

For SP, it is common to introduce further assumptions based on scale separation arguments in these equations 
(the validity of such assumptions will not be discussed here). For instance, in the context of Equations 10–
12, it is often assumed that terms (ii) are 0, such that the equations on the large and small resolved scales can 
be separately stepped in time and adjusted to each other in each large-scale time step (Grabowski, 2001). 
The locality of the small resolved scales can be controlled by the locality of its basis and can (but does not 
need to be) grid-column contained, as is commonly assumed for SP (Grabowski, 2001, 2016; Grabowski & 
Smolarkiewicz, 1999). Hence, if it is too computationally expensive to generate training data for a global 
model's ANN parameterization with a model that resolves the entire range of scales of interest, the VMS 
model form can easily be cast in the form of SP, rather than the more general, “full” coupling presented in 
Equations 10–12 and considered in the rest of this work.

In summary, the VMS model form is general, flexible and can be adapted as one would like to couple large 
and small-scale models, in cases where an explicit scale separation assumption must be made. It can thus be 
used as proposed by Rasp et al. (2018) on the global scales, or on much smaller scales. This provides ample 
playing room for the ANN parameterization defined next.

2.3.  Artificial Neural Networks

Machine learning techniques in general and ANNs in particular are set to become an increasingly attrac-
tive alternative to human reasoning for formulating models for unresolved processes in fluid flow prob-
lems (Gentine et al., 2018; Kutz, 2017). ANNs form a class of supervised machine learning techniques that 
consist of sequential layers of non-linear functions, connected by weights and additive constants that are 
adjusted during a “training” phase to stochastically minimize a “loss” function based on provided examples 
(LeCun et al., 2015). This architecture endows them with exceptional skill at inferring complex, non-linear 
relationships in the presence of large data sets (Krizhevsky et al., 2012), at potentially lower computational 
cost than directly resolving all such phenomena. In particular, ANNs have recently shown potential to 
improve the modeling of 3D homogeneous isotropic turbulence (Beck et al., 2019), simple boundary flow 
emulations (Srinivasan et al., 2019), and atmospheric convection (e.g., Brenowitz & Bretherton, 2018, 2019; 
Krasnopolsky et al., 2013; Rasp et al., 2018).

We use the VMS model defined by Equations 10–12 to investigate the ANNs' ability to infer and predict E  , 
based on a set of resolved-flow quantities. This can be interpreted as a generalization of the studies quoted 
above that removes all heuristic modeling and defers the evaluation of consistent interaction between the 
resolved and unresolved scales spaces of a discretized fluid flow problem to ANNs. The errors in our sim-
ulations' resolved scales are thus solely tied to how well an ANN can infer E  , assuming they are trained on 
“true” data. This increases the potential accuracy of the method to the maximum achievable accuracy of 
an ANN. More importantly, it cleanly allows us to assess the impact of an ANN on a running simulation.

It is important to note that in this setup, the ANN model for E  is allowed to act both as a source and sink in 
Equations 10–12. While this allows the ANN to backscatter energy to the resolved simulation where neces-
sary, there is no enforced control mechanism to maintain the energy in the domain. In other frameworks, 
similar approaches have resulted in numerical instabilities (Beck et al., 2019; Brenowitz & Bretherton, 2018; 
Stoffer et al., 2020).
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2.4.  Model Framework

The general structure of the VMS-ANN framework we propose consists 
of four steps. First, we run an expensive, high-resolution simulation that 
explicitly resolves phenomena over a large range of scales for a particular 
problem. Second, we project the high-dimensional solution field onto a 
basis E ψ that contains significantly fewer degrees of freedom, but remains 
exactly equal to the high-resolution solution at predefined nodes. This de-
fines the scale separation Equation 8 from which E u , E u  and E  directly follow. 
At this stage, flow features E F that are used to train ANNs are also con-

structed from E u and 


E
t
u  . Third, we train ANNs to represent the unknown 

relation that maps E F to E  (Note that this relation is not guaranteed to exist). 
We do this outside the time stepping loop of dynamic simulations (offline). 
This allows us to conduct rapid training in an existing software environ-
ment (Chollet et  al.,  2015) after running our high-dimensional ground-
truth runs. However, offline training on features constructed from a nodal-
ly exact solution do not inform an ANN of how errors that it will inevitably 

introduce to a simulation will feed back in subsequent steps of a time march, as noted i.a. by Rasp (2020). The 
fourth and final step of the framework, running numerical simulations with a trained ANN embedded as the 
unresolved scales model, aims to assess the impact of such concerns.

In summary, VMS-ANN models constitute a general, clear framework for data-driven unresolved scales 
modeling. However, they share many of the features that challenged the robustness of other initial ANN 
unresolved scales models in fluid flow problems: A lack of control over the evolution of energy in the re-
solved simulation and the reliance on ANNs trained outside a time march on exact data. In this light, the 
following sections discuss a numerical experiment in the framework that highlights these issues and offers 
perspectives on how one might improve on them.

3.  A Numerical Experiment
3.1.  Model Problem

The VMS-ANN model that emerges from the previous section is studied in the context of a highly simplified 
model problem, as a minimal model for the small-scale boundary layer turbulence that underpins the devel-
opment of shallow clouds. The case we consider is a dry convective boundary layer as described in van Driel 
and Jonker (2010). This case considers a well-mixed layer of E  with an inversion height and strength that 
are all constant in time. Such a layer is developed from the balance of a constant heat flux imposed on the 
lower domain boundary and a radiative sink that one may interpret as a scaled subsidence. Hence, statistics 
of the solution in the vertical dimension are stationary in time. This reduces the amount of data needed to 
train ANNs relative to non-equilibrium cases, rendering this case appropriate as a first test.

3.2.  High-Resolution Simulations

The turbulence that drives this case is simulated with the Dutch Atmospheric Large Eddy Simulation 
(DALES) model (Heus et al., 2010). DALES solves filtered versions of Equations 1–3 in finite volumes that 
fill a 3D domain with homogeneous, horizontal dimension, periodic boundary conditions imposed on the 
domain sides and standard boundary conditions on the top and bottom. A set of 10 DALES simulations are 
run with the parameters quoted in Table 1, but with different initial fields. Hence, after a 1 h spinup, this 
gives a rich set of different realizations of the same statistical turbulence across horizontal coordinate, time 
and simulation. This forms the data set that our ANNs will be trained upon.

The DALES simulations do not resolve the full range of turbulent scales and are therefore subject to the 
errors of any LES. Nevertheless, the LES results will be considered here as the ground truth data that our 
ANNs will be trained on and compared against. This is justified by training and evaluating the ANNs in 

Parameter Value

Domain size [   x y zE N N N  ]  128 128 96E
Grid cell size [   x y zE h h h  ]  40m 40m 20mE
Simulation time [hr] 6

Spin-up time [hr] 1

Average time step [s] 10

Radiative sink E S  [  1KsE  ] −0.075

Surface heat flux     sE w  [  1KmsE  ] 0.06

Average inversion height 0iE z  [m] 1,000

Table 1 
DALES Settings and Characteristics for the Convective Boundary Layer 
Model



Journal of Advances in Modeling Earth Systems

JANSSENS AND HULSHOFF

10.1029/2021MS002490

8 of 18

VMS runs at resolutions that are significantly coarser than these DALES simulations, such that our ANNs 
must capture the effects of an appreciable range of energetic scales from the original LES.

To further promote insight into the mechanics of ANN unresolved scales models, we only consider a forced, 
1D inviscid Burgers equation for our experiments. This can be derived from Equation 3 as Equations 19 
and 20:

  
 

 
w ww f
t z� (19)

       


  
     

   0
0

gf uw vw
x y z� (20)

Where E f  can be identified from DALES simulations a posteriori in an individual grid column. This reduces 
the resolved-scales Equations 10–12 to:

Find ( , )E w z t  such that  E   :

 2 2
Ω

Ω Ω Ω Ω Ω
Forcing

Galerkin terms projection Cross term Reynolds term

, , , ,2 , ,

wt

w ww ww w f
t z t z z

    



             
                


        


   






� (21)

Where the large underbraces gather the resolved contributions to the resolved solution that result directly 
from a Galerkin projection, the forcing and the three closure terms that comprise E  : The projections of the 
tendency of unresolved scales, the Cross term and the Reynolds term. The latter three will be estimated by 
the ANN. Letting E  denote a time average, this problem retains the vertical profile of the time-averaged 
vertical velocity flux  2 ( )E w z  of the original convective boundary layer problem; the goal of a VMS-ANN 
model for this problem would be to reproduce such statistics. The exact ( , )E w z t  , E F and E  required for ANN 
training of this problem are constructed by sampling individual columns of DALES simulations and pro-
jecting the resulting ( , )E w z t  onto a nodally exact, piecewise linear basis with a constant element length that 
is up to 6 times coarser than the original DALES simulation's grid spacing (see Text S1 for pseudocode of 
this procedure).

3.3.  ANN Training

We train ANNs to predict ( , )E z t  based on three types of inputs: (i) ( , )s sE w x t  , (ii) 


( )s
wE x
t

 and (iii) ( )I sE x  ; this 
input stencil is illustrated in Figure 2. sE x  contains the node at which the weighting function is one, and its 
left and right neighbors, while sE t  samples at the current and previous two time steps of a simulation. ( )I sE x  
is the quantity defined in Equations 13–15, integrated over the elements that span sE x  :

   
     
 2( )s xs

wx f w dz
t z� (22)

Input (i) contains the local scales of the problem's solution in space and time, input ii) is observed to im-
prove the prediction and input iii) represents the forcing of the resolved scales on the unresolved scales in 
Equations 13–15.

Using the Keras API to TensorFlow (Abadi et al., 2016; Chollet et al., 2015), we then search for an ANN that 
minimizes the mean 2E L  norm of the difference between the predicted and exact E  . Note that this is equivalent 
to exactly satisfying the weak equations in the 2E L  norm when all resolved contributions are exactly represented, 
and therefore indirectly equivalent to driving the ANNs toward closing the exact, discrete problem in that norm.

The ANN input features, architecture and optimizer are selected through hyperparameter optimisation (see 
Tables S1‒S4 for details). In this procedure, we gauge an ANN configuration by its ability to minimize our 
loss function over a data set that consists of columns of the DALES simulations that lie outside the hori-
zontal correlation length of E w from any column that has been used in the training of an ANN (“validation” 
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data set). In practice, this requires subsampling DALES columns with an interval of 4. The hyperparameter 
optimisation results in a densely connected network with two hidden layers of 512 neurons.

Finally, a “test” data set that is decorrelated from the validation examples is kept hidden during the tuning 
of ANN hyperparameters, but is used for our assessment of the ANN's offline performance (see Section 4). 
Note that our evaluation strategy gauges the ANN's ability to handle different realizations of the same statis-
tical turbulence. Investigating how this ability would translate to statistically different turbulence is crucial 
for establishing the method's practical viability in the future, but is not part of our work.

3.4.  Online Simulations

To test the ANN models in online simulations, they are directly substituted for E  in the semi-discrete Equa-
tion 21. The time dimension of this equation is discretized with the following second-order scheme:

    




1 1 13 4
2Δ

n n n nw w w w
t t

� (23)

Where ΔE t is the time step and superscript  1E n  denotes the discrete time level at which the solution is un-
known; E n and  1E n  are the previous two time levels.

Our implicit time march is hardly the standard in operational atmospheric models. However, in contrast 
to multi-step explicit or hybrid time marches, implicit schemes express the problem solution's tendency at 

the next time level 




1nwE
t

 clearly and consistently in terms of the solution at the next time level 1nE w  . This is 

useful, because if one can exactly predict 1nE   , it remains possible to retain an exact prediction of 1nE w  . This 

is not possible if one uses an explicit scheme, where 




1nwE
t

 is a function of nE   . Since our objective is precise-
ly to defer all modeling error to the ANN's ability to model E  , this time march is a particularly convenient 
choice for our VMM-ANN.

Figure 2.  The ith weak equation, solved for  iE  ’s unknown amplitude at time level  1E n  (  1nE t  ), is closed by iE   , which is 
defined by an ANN taking the inputs E w , 


wE
t

 and IE   , defined on a spatial stencil sE x  and temporal stencil sE t  .  I xs
E dz   , 

where E  is the residual of the resolved portion of Equation 19.
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Since the formulation is implicit, it results in a non-linear system of coupled, algebraic equations at 1nE t  . 
We solve the system by driving the 2E L  norm of the residual of Equation 21 to zero with a predictor-correc-
tor scheme, where the corrector passes are Newton-Raphson iterations. This implies that the ANN will be 
called to predict E  at each corrector pass, and that it must remain stable both within a time step and over 
many time steps.

4.  Offline Results
Figure 3 shows the results of the training of our best ANN, for a case where E w is defined on a basis with an 
element length that is 6 times as coarse as that of the DALES simulation and Δ 2Δ DALESE t t  . The training 
is conducted on  614.4 10E  individual examples and run over 638 epochs during which the loss E J is consist-
ently reduced. The upper row displays the ANN's predictions of the three components of E  on a held-out 
set of  61.07 10E  randomly sampled validation examples used during all training runs to prevent the model 
from overfitting its training data. This data set has also been used to tune the model's hyperparameters. The 
bottom row displays results on the previously hidden  61.07 10E  test examples. Finally, the plots show the co-
efficients of determination 2E R  of the linear fit of the ANN prediction relative to the exact E  for both data sets. 
This measure varies at most by 0.01 between the validation and test data sets, indicating that the ANN is able 
to generalize its predictions of E  very well to previously unseen realizations of the same statistical turbulence.

The figure also exemplifies a pattern that broadly transfers to all ANNs we trained: The cross term, which 
is linear in E w  , is the easiest to learn, the non-linear Reynolds term is more challenging and the unresolved 
scales' time derivative projection is in most settings the most difficult term to learn.

To contextualize this performance, we compare the ANN's predictions of vertical profiles of   2  to (a) 
their exact counterparts and (b) those resulting from a standard, algebraic VMS scheme for E u  in Burgers' 
problems of the form of Equation 16 (Shakib et al., 1991). Similar models tend to perform at least as pro-
ficiently as modern LES closures in full turbulence simulations (Bazilevs et al., 2007), and are thus a good 
representation of the state-of-the-art. These profiles are shown for the test data set in Figure 4.

The algebraic model reproduces the vertical profile of  2E w  well in online simulations of this problem, even 

at h h
DALES

/  6 (not shown). However, it does not account for 
 



 Ω

, wE
t

 and is unable to reproduce the 

statistics of the non-linear Reynolds term; its approximations only allow for decent predictions of the cross 

Figure 3.  Training history on training and validation data and 2E R  correlation on validation data (upper row) and test data (lower row) of each of the three 
closure terms for the best set of hyperparameters and input features.
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term. The ANN dramatically improves the representation of all three terms, even with a relatively simple 
architecture and local input stencil, offering remarkable potential to improve the accuracy of traditional 
unresolved-scales models for this particular case.

5.  Toward Online Applicability
Our offline results do not indicate to which extent our ANNs can generalize their performance to different 
flows or discretization levels. Similarly, these results do not guarantee that an ANN's performance will 
generalize to an implicit time march where the ANN is subjected to input from (a) an iterative solution pro-
cedure and (b) a time history and state that contain accumulated model errors, neither of which were seen 
during training. We do not reject the importance of verifying that the ANN models for E  generalize to differ-
ent flows and discretizations. However, we find our framework to give rise to instabilities in online simula-
tions of our model problem. Therefore, we choose to first focus on generalization to the online dimension 
in this work. Specifically, we concentrate on understanding the mechanisms behind these instabilities, and 
thus will not assess the framework's ability to reproduce accurate statistics of  2E w  .

We find two distinct modes of instability, which correspond to the two dimensions of the time march of 
which our ANNs were unaware during training. First, we observe energy accumulation in the simulation's 
smallest, resolved scales over several time steps, in similar fashion to what is reported by Beck et al. (2019); 
Brenowitz and Bretherton (2018); Stoffer et al. (2020). However, we also see instabilities arise within a time 
step during corrector passes of the implicit time march. This second instability mode is both novel and in-
structive for informing a broader approach to treat ANN-induced instabilities. Therefore, we will elaborate 
on it here.

Instabilities within our implicit time march arise from the same aspect of the ANNs that makes them at-
tractive: Their non-linear character. This can be illustrated by considering the 2E L  norm of the weak residual 
across the domain, wE   :

 
w

w

t z
w f












 












    


, , ,

 


2

2

� (24)

During each time step, it is the objective of our Newton-Raphson scheme to drive wE   to 0. The Galerkin 
terms in this equation are quadratic functions of the problem's degrees of freedom iE a  defined in Equation 9. 
Hence, if the model for the closure terms is also not more than a second-degree polynomial in the degrees 
of freedom, wE   will at most be a coupled quadratic in iE a  with a maximum number of roots governed by 

Figure 4.  Comparison of time-averaged spatial distributions of the 2E L  norms of the closure terms, as predicted by 
exact, ANN and algebraic models, at h h

DALES
/  6 and  t t

DALES
/  2 , over 16 columns from a different DALES 

simulation than was trained on.
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Bézout's theorem (Séroul, 2000). However, the ANN models of the closure terms are highly non-linear in iE a  , 
since they themselves are a function of E w and iE a  . Hence, large departures from a quadratic-shaped space for 

wE   can be expected for such models.

The implications of this can already be visualized in simulations that discretize the entire 1D domain using 
two degrees of freedom, 1E a  and 2E a  . Figure 5 displays contours of 1 2( , )wE a a  in a given time step for such a 
model when (a) the exact E  are inserted and (b) an ANN is employed. wE   has the expected, quadratic func-
tional dependence on 1E a  and 2E a  when E  is not a function of 1E a  and 2E a  and displays only a single root in this 
space. Moreover, only a few iterations are required to converge to this root during the displayed time step 
(left subfigure). In contrast, when our ANN predicts E  , wE   takes on a highly distorted, non-linear character 
(right subfigure). Despite accurately predicting the combination of 1E a  and 2E a  that correctly satisfies the weak 
form, the model contains a second, spurious root, surrounded by a second basin of attraction. This would 
be of little practical concern if the second attractor would be far removed from its physical counterpart. 
However, during the plotted time step, the model almost spills into the spurious attractor, which would 
immediately destabilize the simulation. Additionally, a large number of corrector passes are required to 
converge this model through a landscape of non-smooth gradients. Attractor switches, convergence to spu-
rious solutions and stagnating convergence of the Newton-Raphson scheme are frequently observed for this 
model. Conventional measures such as underrelaxation or more accurate Jacobians do not improve matters: 
It is the highly non-linear character of wE   , brought about by the ANN, that underpins this instability. In 
all, we conclude that inserting ANNs directly into an implicit time march can make the numerical scheme 
non-unique and ill-posed, resulting in instability.

We observe that the onset of instability is closely related to ΔE t , expressed relative to a characteristic velocity 
scale w* (we take w w* max   ) and E h through the Courant number E  :

 
w t

h

*� (25)

This can be seen in Figure 6, which shows 1 2( , )wE a a  for two different E  in the first time step where the solu-
tions' 2E L  error rises above a preset threshold in a sequence of time steps that leads to the model's divergence. 
Note that this onset of instability arises progressively earlier for increasing E  , as the problem becomes in-
creasingly ill-posed.

Figure 5.  Response surfaces and convergence trajectories of wiE   for an implicit time step of a manufactured solution 
problem with two degrees of freedom 1E a  and 2E a  , using the exact E  (left) and an ANN model for E  (right). They derive 
from simulations where Δ 2E t  , 

1
3

E h  and   1.2E  .
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In particular, for increasing E  , the initial prediction of 1E a  and 2E a  will on average be farther from its correct 
solution, requiring the model to traverse progressively long distances through the wE   space to find a root. 
This increases the likelihood of encountering (a) a spurious attractor along the way, or (b) regions where 
deficient gradient predictions prevent convergence. Additionally, the weak residual space itself becomes 
less workable at larger ΔE t : In the right half of Figure 6, multiple, clustered roots appear and the gradient 
predictions become increasingly erratic. Note that also the simulation at   0.6E  is unstable over several 
time steps in the small-scale, energy-accumulating pattern described before.

One may hypothesize that the wE   space is ill-posed because the ANNs are 
trained to represent only the E  that results in  0wE   . As a consequence, 
they have no knowledge of the space in    wE     around this point and are 
unable to make consistent extrapolations to it. To test this hypothesis, 
we incorporate samples from the wE   space in our training data sets, by 
running online simulations with the exact E  embedded in the numerical 
model (such as in the left portion of Figure 5) and, for each time step, 
sampling states of E w that this model visits along convergence paths to 
the point where  0wE   (see Text S2 for pseudocode of the creation of 
this enriched data set). These additional inputs all still point to the same, 
correct E  , to effectively over-constrain our training. Figure 7 shows that 
including these samples significantly improves the model's stability. The 
model now remains highly accurate and stable throughout the numerical 
experiment, evidenced by the reduced non-linear character of wE   and the 
broad physical basin of attraction, even after a much larger number of 
time steps has passed than in the previous experiments. As a result, many 
fewer corrector passes are also required to converge the model each time 
step. In all, this demonstrates that for an offline-trained ANN to be able 
to generalize to the space it is asked to navigate during an implicit time 
march, an exact data set does not suffice. Instead, the ANN's predictions 
in the partially converged time march space must be constrained, for in-
stance by enriching the input data with examples from this space that the 
ANN is likely to traverse in online simulation.

Figure 6.  Response surfaces and convergence trajectories of wE   at the time step when the solution's 2E L  error first exceeds  41 10E  , for increasing E  . 
1
3

E h  , 
Δ [1,3]E t  .

Figure 7.  Response surface and convergence trajectories of wE   for the 
ANN model trained on data sampled from the convergence paths of exact 
models for E  , at  50E t  s for a simulation with Δ 2E t  ,  0.333E h  ,  1.2E C  .
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At this point, it is worth pausing to note that both data set enrichment in particular (Cireşan et al., 2010; 
Simard et al., 2003) and promoting the regularity of an ANN's response to all its possible inputs in general 
(Kingma & Welling, 2013; Miyato et al., 2018) are popular means for enhancing the generalization capabili-
ties of a broad class of ANNs. In fact, adding noise to an ANN's input data acts explicitly as a regularization 
on the network's response to deviations in its input (An, 1996). Such regularization can also be imposed 
directly in the network structure, for instance through spectral normalization (Shi et al., 2019), which might 
also improve the distorted character of the 1 2( , )wE a a  response surface shown in Figure 5. We view the data 
set enrichment employed here as a particularly targeted example of such regularization, as it adds data from 
portions of the input space that the ANN is likely to encounter.

The example of data set enrichment presented here also offers encouragement to resolving instabilities that 
develop over several time steps. As it turned out to be overly optimistic to assume that an ANN trained on 
exact E F and E  combinations could handle erroneous E F in the early stages of a predictor-corrector scheme, it 
may also be too ambitious to expect that it will handle erroneous E F that are caused by ANN prediction errors 
of E  over several time steps. Such inputs may lead an ANN into non-physical regimes it never encountered 
during training, enlarging the prediction error and potentially instigating a positive feedback loop in the 
error. If this is the case, the long-term stability of the algorithm might be improved in a similar manner as 
the intra-time step instability encountered here: By including in the ANN's training the errors it generates 
over time when operating within the numerical model.

Rasp (2020) suggests implementing this idea by training ANN parameterizations online alongside a ground-
truth model, which continually teaches the ANN how to cope with errors it feeds back onto itself. The 
drawback of such online learning is that it is potentially extremely costly, depending on how many ground-
truth runs are necessary to adequately train such models. Fortunately, our results suggest that fully online 
training might not be necessary to account for the online dimension of prognostic problems: By resolving 
the intra-time step instabilities in our implicit time march through data set enrichment, we managed to 
maintain the offline training paradigm, requiring only a single run of our numerical model. This approach 
can be generalised to account for errors that develop over several time steps. By assembling statistics of 
an ANN's prediction errors over time, one can immediately create similar artificially corrupted, over-con-
strained training data sets as successfully employed here. Retraining an ANN on such a data set might strike 
a useful balance between the robustness of online training and the economy of offline training. Similar 
approaches have shown promise for comparable problems (Subel et al., 2021); our preliminary experiments 
using this approach have also been encouraging (Pusuluri, 2020).

6.  Conclusions and Outlook
In this paper we have endeavored to clarify several aspects related to the use of data-driven parameteriza-
tions in global climate models. First, it was demonstrated that a variational-multiscale framework is useful 
in this context, as its basic form ensures the only source of error is due to the deficiencies in the employed 
parameterization, in this study an ANN. It was also demonstrated how traditional Large Eddy Simulation 
and Superparameterization methods can be derived from this framework by introducing additional mode-
ling assumptions. Next, results from a simplified model problem revealed that some of the unresolved-scales 
closure terms are easier to parameterize than others. Specifically, the unresolved time-derivative term was 
found to be the most challenging, although good approximations were still obtained using relatively com-
pact ANN architectures. This bodes well for the potential accuracy of the proposed technique.

The performance of the method was then examined for a single time step of an implicit time march. In con-
trast to the more difficult problem of studying instabilities over a large number of time steps, this approach 
provided a contained setting in which unstable behavior produced by ANN deficiencies could be clearly 
examined. Visualizations of corrector-pass residual response surfaces clearly indicated that nonphysical 
solutions produced by ANN parameterizations can significantly affect or prevent convergence. The severity 
of the problem increases with the size of the time step.

Noting that the residual response surface convergence paths required evaluations with inputs not encoun-
tered in training, it was theorized that the observed lack of convergence was partly due to a lack of gen-
eralization of the considered ANNs to this online setting. It was thus proposed to enrich the training data 
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set with nonphysical corrector pass input/state combinations. This was found to substantially modify the 
residual response surface and proved to be an effective remedy, leading to a robust algorithm for implicit 
time-step evaluations. While enriching the data set with intra-time step examples did not treat instabilities 
which develop over several time steps, such instabilities might be postponed by enriching an ANN's training 
data set with statistics of the solution errors produced by an ANN parameterization over several time steps 
in online simulations, without requiring the training itself to take place online.

More broadly, this leads us to wonder how much data of their interaction with the temporal dimension 
data-driven parameterizations must be exposed to in order to robustly succeed in online calculations. Pre-
sumably, the answer to this question will play a role in determining the practical utility of data-driven 
parameterization, but simultaneously depend on the complexity of the dynamical system under consider-
ation, which timescales of prediction are important and the details of the machine learning. Therefore, we 
recommend investigating this question broadly: Both in clear frameworks and simple situations that facil-
itate improved understanding of the fundamental interactions between the data-driven parameterization 
and numerical model, and in the complex, global models that we eventually wish to improve.

Appendix A:  Three-Scale Decomposition of the Governing Equations
The infinite-dimensional system described by Equations 5–7 can be decomposed into three sets of trial and 
weighting solution function spaces, as suggested in Section 2.2:

      � (A1)

In this relation, E   is the space of large resolved scales, E  is the space of small resolved scales and E   is the 
infinite-dimensional unresolved scales space. For a simulation framework such as Superparameterization 
(SP), E   represents the space in which a GCM would operate, E  a space in which a CRM would operate and 
E   the unresolved scales below the CRM discretization. This scale decomposition gives rise to three sets of 

solutions, defined on each of these three function spaces:
   u u u u� (A2)

Such that the equations of motion at each scale become:

Find E u   such that:
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and find  E u   such that:

A A A             , , ,u u u

i iv vi

 


   
0

� (A7)



Journal of Advances in Modeling Earth Systems

JANSSENS AND HULSHOFF

10.1029/2021MS002490

16 of 18

       

       

       

i ii

iii iv

v vi

, , , , , , ,

, , , , , , ,

, , , , , , , 0

   

     

      

   

   

   

 
 

  
 

 
 

1 2 2 2D ψ u D ψ u u D ψ u u D ψ u u

2 2 1 2

2 2 1 2

D ψ u u D ψ u u D ψ u D ψ u u

D ψ u u D ψ u u D ψ u D ψ u u

� (A8)

To maintain some brevity in these equations, we have subsumed the momentum and energy equations in 
vectors  1 1[ , ]TE B C1D  and  2 2[ , ]TE B C2D  . This should not distract from the main message, which is that 
equations on three sets of scales should contain models of the closure terms of each of those scales on their 
respective bases. This means that in the “GCM space” E   , it becomes necessary to consistently parameterize 
several more sets of terms than in the two-scale decomposition discussed in the main text, as indicated by 
the braces in Equations A3 and A4:

�ii)	� Interactions between large, resolved and small resolved scales projected onto E 
�iii)	� Interactions between large, resolved and unresolved scales projected onto E 
�iv)	� Interactions between small, resolved scales projected onto E 
�v)	� Interactions between small, resolved scales and unresolved scales projected onto E 
�vi)	� Interactions between unresolved scales projected onto E 

Similarly, all terms but those in (iv) represent scale interactions that must be parameterized or imposed onto 
E  in Equations A5 and A6. SP derives its computational efficiency from scale separation assumptions that 

set terms (ii), (iii), (v) and (vi) to zero in Equations 10 and 11 and terms (ii) and (iii) to zero in Equations 13 
and 14. Yet, it is prudent to recognize that these terms do in fact exist and that their magnitude should 
be thoroughly quantified to assess the sacrifice of accuracy that this computational efficiency promotion 
demands.

Data Availability Statement
The data and scripts underlying the figures presented in this paper are available at https://doi.org/10.6084/
m9.figshare.13675816.v2, along with the code required to preprocess data and train ANNs. Researchers that 
are interested in the code behind the numerical model used here are encouraged to contact the authors.
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