
International Scholarly Research Network
ISRN Communications and Networking
Volume 2012, Article ID 932456, 19 pages
doi:10.5402/2012/932456

Review Article

An Overview of Algorithms for Network Survivability

F. A. Kuipers

Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031,
2600 GA Delft, The Netherlands

Correspondence should be addressed to F. A. Kuipers, F.A.Kuipers@tudelft.nl

Received 4 September 2012; Accepted 25 September 2012

Academic Editors: H. Kubota and M. Listanti

Copyright © 2012 F. A. Kuipers. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Network survivability—the ability to maintain operation when one or a few network components fail—is indispensable for
present-day networks. In this paper, we characterize three main components in establishing network survivability for an existing
network, namely, (1) determining network connectivity, (2) augmenting the network, and (3) finding disjoint paths. We present a
concise overview of network survivability algorithms, where we focus on presenting a few polynomial-time algorithms that could
be implemented by practitioners and give references to more involved algorithms.

1. Introduction

Given the present-day importance of communications sys-
tems and infrastructures in general, networks should be
designed and operated in such a way that failures can be miti-
gated. Network nodes and/or links might for instance fail due
to malicious attacks, natural disasters, unintentional cable
cuts, planned maintenance, equipment malfunctioning, and
so forth. Resilient, fault tolerant, survivable, reliable, robust,
and dependable, are different terms that have been used by
the networking community to capture the ability of a com-
munications system to maintain operation when confronted
with network failures. Unfortunately, the terminology has
overlapping meanings or contains ambiguities, as pointed
out by Al-Kuwaiti et al. [1]. In this paper, we will use the
term survivable networks to refer to networks that, when a
component fails, may “survive” by finding alternative paths
that circumvent the failed component. Three ingredients are
needed to reach survivability.

(1) Network connectivity, that is, the network should be
well connected (connectivity properties are discussed
in Section 1.1).

(2) Network augmentation, that is, new links may need
to be added to increase the connectivity of a network.

(3) Path protection, that is, a procedure to find alternative
paths in case of failures.

These three ingredients will be explained in the following
sections.

1.1. Network Connectivity. A network is often represented as
a graph G(N , L), where N is the set of N nodes (which for
instance represent routers) and L is the set of L links (which
for instance represent optical fiber lines or radio channels).
Links may be characterized by weights representing for
instance their capacity, delay, length, cost, and/or failure
probability. A graph is said to be connected if there exists a
path between each pair of nodes in the graph, else the graph
is said to be disconnected. In the context of survivability,
the notion of connectivity may be further specified as k-
connectivity, where at least k disjoint paths exist between
each pair of nodes. Depending on whether these paths are
node or link disjoint, we may discriminate between node and
link connectivity. The link connectivity λ(G) of a graph G is
the smallest number of links whose removal disconnects G.
Correspondingly, the node connectivity κ(G) of a graph is
the smallest number of nodes whose removal disconnects G.

In 1927, Menger provided a theorem [2]—in German—
that could be interpreted as follows.

Theorem 1 (Menger’s theorem). The maximum number of
link/node-disjoint paths between A and B is equal to the
minimum number of links/nodes that would separate A and
B.

2 ISRN Communications and Networking

Menger’s theorem clearly relates to the k link/node
connectivity of a graph, in the sense that a k link/node-
connected graph has at least k link/node-disjoint paths
between any pair of nodes in the graph. The minimum
number of links/nodes separating two nodes or sets of nodes
is referred to as a minimum cut. In order to assess the
link/node connectivity of a network, we therefore need to
find its minimum cut.

A somewhat less intuitive notion of connectivity stems
from the spectrum of the Laplacian matrix of a graph and is
denoted as algebraic connectivity. The algebraic connectivity
was introduced by Fiedler in 1973 [3] and is defined as
follows.

Definition 2 (algebraic connectivity). The algebraic connec-
tivity equals the value of the second smallest eigenvalue of
Q, where Q is the Laplacian matrix Q = Δ − A, with A an
N×N adjacency matrix with elements ai j = 1 if there is a link
between nodes i and j, else ai j = 0, and Δ = diag(d1, . . . ,dN)
an N ×N diagonal matrix with dj the degree of node j.

The algebraic connectivity has many interesting proper-
ties that characterize how strongly a graph G is connected
(e.g., see [4, 5]). Moreover, the multiplicity of the smallest
eigenvalue (of value 0) of the Laplacian Q is equal to
the number of components in the graph G. Hence, if the
algebraic connectivity α(G) is larger than 0, the network
is connected, else the algebraic connectivity is 0, and the
network is disconnected. We have that

α(G) ≤ κ(G) ≤ λ(G) ≤ δ(G), (1)

where δ(G) is the minimum degree in the network. For ease
of notation, when G is not specified, we use α, κ, λ, and δ.

Connectivity properties, may be less obvious when
applied to multilayered networks [6, 7], like IP over WDM
networks, where a 2-link-connected IP network operated
on top of an optical WDM network, with multiple IP links
sharing (e.g., groomed on) the same WDM link, could still
be disconnected by a single-link failure at the optical layer.

In probabilistic networks, links and/or nodes x are
available with a certain probability px, which is often
computed as px = MTTF(x)/(MTTF(x) + MTTR(x)), with
MTTF(x) the mean time to failure of x and MTTR(x) the
mean repair time of x. Often the term network availability is
used to denote the probability that the network is connected
(e.g., see [8]). When the node probabilities are all one and
all the link probabilities are independent and of equal value
p, then a reliability polynomial (a special case of the Tutte
polynomial, e.g., see [9]) is a polynomial function in p that
gives the probability that the network remains connected
after its links fail with probability p.

1.2. Network Augmentation. The outcome of testing for
network connectivity could be that the network is not
sufficiently robust (connected). Possibly, rewiring the (over-
lay) network could improve its robustness properties [10].
However, this is more involved when applied to the physical
network, and improving network performance or network

robustness is therefore often established by adding new links
and possibly also nodes to the network. Adding links or
nodes can be costly (which could be reflected by link/node
weights), and the new links/nodes should therefore be placed
wisely, such that the desired network property is obtained
with the fewest amount of links/nodes or such that the
addition of a fixed amount of links/nodes maximizes the
desired network property. This class of problems is referred
to as (network) augmentation problems, and within this class
the problems only differ in their objectives. For instance,
k-connectivity is an important property in the context of
network robustness, and reaching it through link additions
might be one such objective. The alternative objective of
algebraic connectivity augmentation leads to an NP-hard
problem [11]. Similarly, adding a minimum amount of links
to make a graph chordal is also NP-hard [12] (a graph is
chordal if each of its cycles of four or more nodes has a link
connecting two nonadjacent nodes in the cycle).

1.3. Path Protection. Network protocols like OSPF are
deployed in the internet to obtain a correct view of the
topology and in case of changes (like the failure of a link) to
converge the routing towards the new (perturbed) situation.
Unfortunately, this process is not fast, and applications
may still face unacceptable disruptions in performance. In
conjunction with MPLS, an MPLS fast reroute mechanism
can be used that, as the name suggests, provides the ability
to switch over in subsecond time from a failed primary path
to an alternate (backup) path. This fast reroute mechanism
is specified in RFC 4090 [13], May 2005, and has already
been implemented by several vendors. The concept has also
been extended to pure IP networks and is referred to as
IP fast reroute [14]. RFC 4090 defines RSVP-TE extensions
to establish backup label-switched path (LSP) tunnels for
local repair of LSP tunnels. The backup path can either
be configured to protect against a link or a node failure.
Since the backup paths are precomputed, no time is lost
in computing backup paths or performing signalling in the
event of a failure. The fast reroute mechanism as described
in RFC 4090 assumes that MPLS (primary and backup) paths
are computed and explicitly routed by the network operator.
Hence, there is a strong need for efficient algorithms to
compute disjoint paths.

Depending on whether backup paths are computed
before or after a failure of the primary path, survivability
techniques can be broadly classified into restoration or
protection techniques.

(i) Protection scheme: protection is a proactive scheme,
where backup paths are precomputed and reserved in
advance. In 1 : 1 protection, traffic is rerouted along
the backup path upon the failure of the primary path.
In 1+1 protection, the data is duplicated and sent
concurrently over the primary and backup paths.

(ii) Restoration scheme: restoration is a reactive mecha-
nism that handles a failure after it occurs. Thus, the
backup path is not known a priori. Instead, a backup
path is computed only after the failure in the primary
path is sensed.

ISRN Communications and Networking 3

In general, protection has a shorter recovery time since
the backup path is precomputed, but it is less efficient in
terms of capacity utilization and less flexible. Restoration,
on the other hand, provides increased flexibility and efficient
resource utilization, but it may take a longer time for
recovery, and there is no guarantee that a backup path
will be found. As a compromise between the two schemes,
Banner and Orda [15] considered designing a low-capacity
backup network (using spare capacity or by installing new
resources) that is fully provisioned to reroute traffic on
the primary network in case of a failure. The backup
network itself is not used to transport “primary” traffic.
Backup networks with specific topological features have also
been addressed in the literature, for instance protection
[16] and preconfigured [17] cycles or redundant trees
[18].

Depending on how rerouting is done after a failure in
the primary path, there are three categories of survivability
techniques.

(i) Path-based protection/restoration: in path-based pro-
tection, a link- or node-disjoint backup path is
precomputed and takes over when the primary
path fails. In path-based restoration, a new path is
computed between the source and destination nodes
of the failed path. If such a backup path cannot be
found, the request is blocked.

(ii) Link-based protection/restoration: in link-based pro-
tection, each link is preassigned a local route that
is used when the link fails, and in link-based
restoration, the objective is to compute a detour
between the two ends of the failed link for all paths
that are using the link. Since link-based protec-
tion/restoration requires signaling only between the
two ends of the failed link, it has a smaller recovery
time than path-based protection/restoration, which
requires end-to-end signaling between the source and
destination nodes.

(iii) Segment-based protection/restoration: the segment-
based scheme (e.g., see [19]) is a compromise
between path-based and link-based schemes. Thus,
in segment-based protection, backup routes are
precomputed for segments of the primary path. In
segment-based restoration, a detour of the segment
containing the failed link is computed following a
failure.

Depending on whether sharing of resources is allowed
among backup paths, protection schemes can be of two
types:

(i) Dedicated protection: in this scheme, resources (e.g.,
links, wavelength channels, etc.) are not shared
among backup paths and are exclusively reserved for
a given path request.

(ii) Shared protection: in this scheme, backup paths may
share resources as long as their primary paths do not
share links. In M :N protection, M backup paths are
used to protect N primary paths. The shared scheme

provides a better resource utilization; however, it is
more complicated and requires more information,
such as the shareability of each link.

In general, path protection requires less capacity than
link protection, while shared protection requires less capacity
than dedicated protection. However, path protection is more
vulnerable to multiple link failures than link protection, and
so is shared protection compared to dedicated protection.

1.4. Paper Outline and Objective. The remainder of this paper
is structured as follows. In Section 2, we give an overview of
several methods for determining the connectivity properties
of a network. In case a network is found to be insufficiently
connected from a survivability perspective, links may have to
be added to increase the connectivity. In Section 3, we list
key results in network connectivity augmentation. Once a
network is designed to withstand some failures, proper path
protection/restoration schemes should be in place that can
quickly defer traffic to alternate routes in case of a failure.
In Section 4, we survey work on finding disjoint paths in a
network. We conclude in Section 5.

Throughout the paper, the objective is not to list and
explain all the relevant algorithms. Rather, we aim to briefly
explain some fundamental concepts and some polynomial-
time algorithms that could easily be deployed by practition-
ers or which can be (and have been) used as building blocks
for more advanced algorithms, and to provide pointers to
further reading.

2. Determining Network Connectivity

In Section 1.1, we indicated that Menger’s theorem implies
that finding a minimum cut corresponds to finding the
connectivity of a network. In this section, we will look further
at finding cuts in a network.

Definition 3 (link (edge) cut). A link cut refers to a set of
links whose removal separates the graph into two disjoint
subgraphs, and where all links in the removed cut-set have
an end-point in both subgraphs.

The two subgraphs need not be connected themselves.

Definition 4 (node (vertex) cut). A node cut refers to a set of
nodes whose removal separates the graph into two disjoint
subgraphs, and where all nodes in the removed cut-set have
at least one adjacent link to both subgraphs.

Definition 5 (minimum link/node cut). A minimum cut is a
cut whose cardinality is not larger than that of any other cut
in the network.

Definitions for a cut also have a variant in which a source
node s and a terminating node t need to be separated.

Definition 6 (s-t cut). An s-t cut refers to a cut that separates
two nodes s and t in the graph such that both belong to
different subgraphs.

4 ISRN Communications and Networking

(1) f (u, v)← 0∀(u, v) ∈ L and f ∗ ← 0 /∗Initialize to zero flow∗/
(2) While /∗loop until the algorithm terminates in line 9∗/
(3) For all nodes u ∈ N , compute in Gf the hopcount h(u) to t /∗by

Breadth-First-Search [28] from t∗/
(4) Compute a blocking flow f in Gf thereby skipping links (u, v) for which

h(v) /=h(u) + 1
(5) If f exists
(6) f ∗ ← f ∗ + f
(7) Update Gf

(8) else
(9) return f ∗

Algorithm 1: Dinitz-Max-Flow (G, c, s, t).

Often, when referring to a cut, a link cut is meant. In the
remainder of this paper, we will use the same convention and
only specify the type of cut for node cuts.

Definition 7 (maximum cut). A maximum cut is a cut whose
cardinality is not exceeded by that of any other cut in the
network.

Definition 8 (sparsest cut). The sparsest cut (sometimes also
referred to as the (Cheeger) isoperimetric constant) is a cut
for which the ratio of the number of links in the cut-set
divided by the number of nodes in the smaller subgraph is
not larger than that of any other cut in the network.

Finding a maximum or sparsest cut is a hard problem
(the maximum-cut problem is APX-hard [20] and the
sparsest-cut problem is NP-hard [21, 22]), but fortunately a
minimum cut, and consequently the network’s connectivity,
can be computed in polynomial time as will be indicated
below. The algebraic connectivity α could be used to
approximate the sparsest cut γ as α/2 ≤ γ ≤ √

α(2δ − α)
[4, 21]. Dinh et al. [23] investigated the notion of pairwise
connectivity (the number of connected pairs, which bears
similarities to the sparsest-cut problem), and proved that
finding the smallest set of nodes/links whose removal
degrades the pairwise connectivity to certain degree is NP-
complete.

2.1. Determining Link Connectivity. In the celebrated paper
from Ford and Fulkerson [24] (and independently by Elias et
al. [25]) a maximum flow from a source s to a terminal t in
a network, where the links have a given capacity, is shown to
be equal to the minimum-weight s-t link cut in that network,
where the weight of the cut is the sum of the capacities of the
links in the cut-set; the so-called max-flow min-cut theorem.
By using a max-flow algorithm and setting the capacity of
all links to 1, one can therefore compute the minimum s-
t link cut, or the minimum link cut when repeated over all
possible s-t pairs. It is not our goal to overview all maximum-
flow algorithms (an excellent discourse of the subject is
presented in the book by Ahuja et al. [26]), but we will
present Dinitz’s algorithm, which can be used to determine
the minimum s-t link cut in O(L · (min{N2/3,

√
L})) time.

We will subsequently present the algorithm of Matula for
determining the minimum link cut in O(NL) time.

2.1.1. Dinitz’ Algorithm. Dinitz’ algorithm, published in
1970 by Yefim Dinitz, was the first maximum-flow algorithm
to run in polynomial time (contrary to the pseudopolyno-
mial running time of the Ford-Fulkerson algorithm [24]).
The algorithm is sometimes referred to as Dinic’s or Dinits’
algorithm, and also different variants are known. A historical
perspective of the different variants is presented by Dinitz
himself in [27]. In order to describe Dinitz’ algorithm, as
presented in Algorithm 1, some definitions are given.

Definition 9. The residual capacity c f (u, v) of a link (u, v) is
interpreted in two directions as follows:

c f (u, v) = c(u, v)− f (u, v),

c f (v,u) = f (u, v),
(2)

where the flow f (u, v) over a link (u, v) cannot exceed the
capacity c(u, v) of that link.

Definition 10. The residual graph Gf of G is the graph in
which a directed link (u, v) exists if c f (u, v) > 0.

Definition 11. A blocking flow fb is an s-t flow such that
any other s-t flow f would have to traverse a link already
saturated by fb.

A blocking flow could be obtained by repeatedly finding
(via Depth-First-Search [28]) an augmenting flow along an
s-t path (or pruning the path from the graph in unit-capacity
networks). In unit-capacity networks, the algorithm runs
in O(L · (min{N2/3,

√
L})), which therefore also is the time

complexity to determine a minimum s-t link cut with Dinitz’
algorithm (for unit node capacities, a complexity of O(L

√
N)

can be obtained [29]).
For further reference, in Table 1, we present some key

achievements in computing minimum s-t link cuts.

2.1.2. Matula’s Algorithm. In this section, we describe the
algorithm from Matula [43] for determining the link connec-
tivity of an undirected network. Matula’s algorithm is based
on the following lemma.

ISRN Communications and Networking 5

Table 1: Related work on computing minimum s-t link cuts.

Year1 Reference Complexity Description

1951 Dantzig [30] O(N2LU)
Linear programming, where U is the largest link
capacity.

1956 Ford and Fulkerson [31] O(NLU) Augmenting paths.

1970 Dinitz [27] O(N2L), O
(
L ·
(

min
{
N2/3,

√
L
})) Resp. capacitated and unit-capacity graphs. Shortest

augmenting paths.

1974 Karzanov [32] O(N3)
Preflow-push (A simplification of Karzanov’s algorithm
has been presented by Tarjan [33]).

1980 Galil and Naamad [34] O(NL log2N) Extension of Dinitz’ algorithm.

1982 Shiloach and Vishkin [35] O
((
N3 logN

)
/p
)

Parallel algorithm for p ≤ N processors.

1983 Sleator and Tarjan [36] O(NL logN) Dynamic tree data structure.

1986 Goldberg and Tarjan [37] O
(
NL log(N2/L)

)
Highest-label preflow-push.

1987 Ahuja et al. [38] O
(
NL log

(
(N/L)

√
logU + 2

))
Excess scaling.

1989 Cheriyan and Hagerup [39] O(NL + N2log3N) Randomized algorithm.

1990 Alon [40] O(NL)
Deterministic version of Cheriyan and Hagerup’s
randomized algorithm.

1998 Goldberg and Rao [41] O
(

min
{
N2/3,

√
L
}
L log(N2/L) logU

)
Length function.

2011 Christiano et al. [42] Õ
(
LN1/3ε−11/3

)
, Õ
(
L + N4/3ε−8/3

) Resp. (1− ε) and (1 + ε) approximation, where
Õ
(
f (x)

)
denotes O

(
f (x)logc f (x)

)
for some constant c.

1
Throughout the paper, we take the convention of listing the year of the first (conference) publication, while referring to the extended (journal) version there

where applicable.

Lemma 12. Let G be a graph with a minimum cut of size
λ(G) ≤ δ(G)−1 that partitions the graph G into two subgraphs
G1(N1, L1) and G2(N2, L2), then any dominating set S of G
contains nodes of both G1 and G2 (a dominating set S ∈ N is
a subset of the nodes in G, such that every node in N is either
in S or adjacent to a node in S).

Proof. For subgraph Gi, i = 1, 2, holds that the sum of the
nodal degrees in Gi is bounded by

Ni(Ni − 1) + λ(G) ≥
∑

u∈Gi

d(u) ≥ Niδ(G). (3)

The upper bound occurs if all nodes in Gi are connected to
each other and some of the nodes have a link that is part of
the cut-set. The lower bound stems from each node having a
degree larger or equal than the minimum degree δ(G). From
the bounds in (3), we can derive that

(Ni − δ(G))(Ni − 1) ≥ δ(G)− λ(G). (4)

Since λ(G) ≤ δ(G) − 1 is assumed, (Ni − δ(G))(Ni − 1) ≥ 1
and consequently both terms on the left-hand side cannot be
smaller than 1. Hence, Ni − δ(G) ≥ 1, which means that,
under the assumption that λ(G) ≤ δ(G) − 1, there is at least
one node in G1 that does not have a neighbor in G2 (and
vice versa). In other words, any dominating set S of G should
contain nodes of both G1 and G2.

The algorithm of Matula (see Algorithm 2) starts with a
node of minimum degree (e.g., node s in G1) and gradually
builds a dominating set S by adding nodes not yet part of

or adjacent to the growing set. Since at one point a node,
for example u∗, from G2 needs to be added, keeping track of
the minimum cut between newly added dominating nodes,
and S will result in finding the overall minimum cut. The
algorithm is presented below.

In the algorithm of Matula, an augmenting path is a
path in the residual network, where a residual network is the
network that remains after pruning the links of a previous
augmenting path. There are no 1-hop paths from u∗ to S,
because then u∗ ∈ T . If u∗ has nT neighbors that belong to
T , then there exist nT 2-hop paths from u∗ to S, for which
either the first hop from u∗ to T or the second hop from T
to S is part of the minimum cut. These nT paths form the
first augmenting paths, after which λ(G)−nT remains. These
remaining augmenting paths can be found in O(L) time
each and since there are at most d(u∗) − nT such paths, the
complexity of the algorithm is bounded by O(NL). Finally,
if λ(G) = δ(G), then the initialization guarantees that that
value would be found.

For directed multigraphs, Shiloach [44] provided a
theorem that is stronger than Menger’s theorem, namely.

Theorem 13. Let G be a directed k-link-connected multigraph,
then for all s1, . . . , sk, t1, . . . , tk ∈ N (not necessarily distinct)
there exist link-disjoint paths Pi from si to ti for i = 1, . . . , k.

We refer to Mansour and Schieber [45] for an O(NL)-
time algorithm for determining the link connectivity in
directed networks.

For further reference, in Table 2 we present some key
achievements in computing minimum link cuts.

6 ISRN Communications and Networking

(1) For a node s of minimum degree set S← {s}, T ← {t | t ∈ adj(s)}, U ← N − S− T , and λ← d(s).
(2) While U /=∅
(3) Choose u ∈ U
(4) n← The number of shortest augmenting paths from u to S
(5) If n < λ then λ← n
(6) Set S← S∪ u, T ← T ∪ {t | t ∈ adj(u)}, followed by U ← N − S− T

Algorithm 2: Matula-Min-Cut (G).

Table 2: Related work on computing minimum link cuts.

Year Reference Complexity Description

1971 Podderyugin [70] O(NL)
Undirected graphs. Variation of Ford-Fulkerson max-flow
algorithm in how augmenting paths of one and two hops are
handled.

1971 Tarjan [67] O(N + L) Testing for 2-link connectivity in undirected graphs via DFS.

1975 Even and Tarjan [29] O
(
N5/3L

)
Application of Dinitz’ algorithm.

1986 Karzanov and Timofeev [59] O(λN2) Undirected graphs.

1987 Matula [43] O(NL), O(λN2)
Undirected graphs. It is also shown that the maximum
subgraph link connectivity can be determined in O(N2L).

1989 Mansour and Schieber [45] O(NL), O(λ2N2)
Directed graphs. Relation between minimum cut and
dominating set.

1990 Nagamochi and Ibaraki [71] O(L + λN2)
Undirected graphs. Algorithm does not use a max-flow
algorithm.

1991 Galil and Italiano [72] O(N + L) Testing for 3-link-connectivity in undirected graphs.

1991 Gabow [73]
O
(
λL log(N2/L)

)
,

O
(
L + λ2N log(N/λ)

) Directed, resp. undirected graphs. Matroid approach.

1996 Karger [74] O
(
L log2N

)
Randomized algorithm.

2.2. Determining Node Connectivity. Maximum-flow algo-
rithms can also be used to determine the node connectivity,
as demonstrated by Dantzig and Fulkerson [46] (and also
discussed in [47]), by transforming the undirected graph
G(N , L) to a directed graph G′(N ′, L′) as follows.

For every node n ∈ N place two nodes n′ and n′′ in
N ′ and connect them via a directed link (n′,n′′), using the
convention that the link starts at n′ and ends at n′′. For every
undirected link (i, j) ∈ L place directed links (i′′, j′) and
(j′′, i′) in G′. All links are assigned unit capacity.

The s-t node connectivity in G can be computed by
finding a maximum flow from s′′ to t′ in G′. This can
be seen as follows. Assume that there are κ node-disjoint
paths between s and t, then there are also κ corresponding
node-disjoint paths from s′′ to t′ in G′. Since each link has
unit capacity, there thus exists a flow of at least κ. Since
each link entering a node n′ ∈ G′ has to traverse a single
unit-capacity link (n′,n′′) at most one unit of flow can pass
through a node, which corresponds to a node-disjoint path.
Since there are only κ node-disjoint paths, the maximum
flow in G′ is equal to κ.

By using Dinitz’ algorithm, one may compute the s-t
node connectivity in O(L · (min{N2/3,

√
L})) time, and by

using the algorithm of Mansour and Schieber [45], the node
connectivity can be determined in O(NL) time. We refer to

Henzinger et al. [48] and Gabow [49] for more advanced
algorithms to compute the node connectivity in directed and
undirected graphs and to Yoshida and Ito [50] for a κ-node-
connectivity property testing algorithm (in property testing
the objective is to decide, with high probability, whether
the input graph is close to having a certain property. These
algorithms typically run in sub-linear time).

3. Network Connectivity Augmentation

In the previous section, we have provided an overview
of several algorithms to determine the connectivity of a
network. In this section, we will overview several network
augmentation algorithms that can be deployed to increase
the connectivity (or some other metric) of a network by
adding links. Network augmentation problems seem closely
related to network deletion problems (e.g., see [51]), where
the objective is to remove links in order to reach a certain
property. However, there may be significant differences in
terms of complexity. For instance, finding a minimum-
weight set of links to cut a λ-link-connected graph such that
its connectivity is reduced to λ = 0 is solvable in polynomial
time (as discussed in Section 2.1), while adding a minimum-
weight set of links to increase a disconnected graph to λ-link-
connectivity is NP-complete as shown in Section 3.1. When

ISRN Communications and Networking 7

both link deletions and link additions are permitted, we
speak of link modification problems, for example, see [52].

3.1. Link Connectivity Augmentation. In this section, we
consider the following link augmentation problem.

Problem 1 (the link connectivity augmentation (LCA) prob-
lem). Given a graph G(N , L) consisting of N nodes and
L links, link connectivity λ and an integer β, the link
connectivity augmentation problem is to add a minimum-
weight set of links, such that the link connectivity of the
graph G is increased from λ to λ + β.

We can discriminate several variants based on the graph
(directed, simple, planar, etc.) or if link weights are used or
not (i.e., in the unweighted case all links have weight 1). Let
us start with the weighted link connectivity augmentation
problem.

Theorem 14. The weighted LCA problem is NP-hard.

We will use the proof due to Frederickson and JáJá [53]
to show that the 3-dimensional matching (3DM) problem
is reducible to the weighted LCA problem (an earlier proof
has been provided by Eswaran and Tarjan [54], but since it
aims to augment a network without any links to one that is 2
connected and has N links (a cycle), it has the characteristics
of a design rather than an augmentation problem).

Problem 2 (3-dimensional matching (3DM)). Given a set
M ⊆ X × Y × Z of triplets, where X , Y , and Z are disjoint
sets of q elements each, is there a matching subset M′ ⊆ M
that contains all 3q elements, such that |M′| = q, and thus
no two elements of M′ agree in any coordinate?

Proof. For a 3DM instance M ⊆ X × Y × Z, with |M| = p,
X = {xi | i = 1, . . . , q}, Y = {yi | i = 1, . . . , q}, and Z =
{zi | i = 1, . . . , q}, we create the graph G(N , L) of the corre-
sponding instance of the weighted LCA problem as follows:

N = {r} ∪ {xi, yi, zi | i = 1, . . . , q
}

∪
{
ai jk, ai jk |

(
xi, yj , zk

)
∈M

}
,

L = {(r, xi),
(
r, yi

)
, (r, zi) | i = 1, . . . , q

}

∪
{(

xi, ai jk
)

,
(
xi, ai jk

)
|
(
xi, yj , zk

)
∈M

}
.

(5)

The graph G as constructed above forms a tree and therefore
is 1 connected. Links from the complement Gc of G can
be used to augment the graph to 2-link connectivity.
The weights of the links in Gc(N , Lc) are w(ai jk, ai jk) =
w(yj , ai jk) = w(zk, ai jk) = 1 for (xi, yj , zk) ∈ M, and for the
remaining links in Gc, the weight is 2.

M contains a matching M′ if and only if there is a set
L′ ⊆ Lc of weight w(L′) = p + q such that G′(N , L ∪L′)
is 2-link connected. Assuming M′ exists, then adding links
(yj , ai jk) and (zk, ai jk) for each triple (xi, yj , zk) ∈ M′ will
establish the (2-connected) cycle r−yj−ai jk−xi−ai jk−zk−r.
Since |M′| = q, the weight of these added links is 2q. The

remaining nodes that are not yet on a cycle are the nodes ai jk
and ai jk belonging to (xi, yj , zk) ∈ {M −M′}. These nodes
will be directly connected, thereby creating the cycle xi−ai jk−
ai jk − xi. In total, |M −M′| = p − q additional links will be
added, leading to a total weight of links that have been added
of p+q. Since the graph G is a tree with 2(p+q) leaves and the
minimum link weight is 1, a network augmentation solution
of weight p + q is indeed the lowest possible. It remains to
demonstrate that an augmentation of weight p+q will lead to
a valid matching M′. Since, in a solution of weight p+q, each
leaf will be connected by precisely one link from Lc, a link
(yj , ai jk) will prevent adding a link (ai jk, ai jk), and therefore
also link (zk, ai jk) must be added. The corresponding triple
(xi, yj , zk) was not augmented before and is, therefore, part
of a valid matching. The remaining p − q links (ai jk, ai jk) do
not contribute to the matching.

Frederickson and JáJá also used the construction of
this proof to prove that the node-connectivity and strong-
connectivity variants of the weighted LCA problem are NP-
hard (in a directed graph strong connectivity is used, which
means that there is a directed path from each node to every
other node in the graph). We remark that the unweighted
simple graph preserving LCA problem was claimed to be NP-
hard by Jordán (reproduced in [55]) by using a reduction
to one of the problems treated by Frederickson and JáJá.
However, Jordán appears to be using an unweighted problem
of which only (in the paper [53] referred to) the weighted
version is proved to be NP-hard, and it is therefore not clear
whether the unweighted problem is indeed NP-hard. For
fixed β, the unweighted simple graph preserving problem can
be solved in polynomial time [55].

Eswaran and Tarjan [54] were the first to report on
augmentation problems. They considered augmenting a
network towards either 2-link connectivity, 2-node con-
nectivity or strong connectivity, and provided for each
unweighted problem variant an algorithm of complexity
O(N + L) (Raghavan [56] pointed out an error in the strong
connectivity algorithm and provided a fix for it). Since
most protection schemes only focus on protecting against
one single failure at a time (by finding two disjoint paths
as discussed in Section 4), we will first present the 2-link-
connectivity augmentation algorithm of Eswaran and Tarjan
[54].

3.1.1. Eswaran and Tarjan Algorithm. The algorithm of
Eswaran and Tarjan as presented in Algorithm 6 makes use of
preorder (Algorithm 4) and postorder (Algorithm 3) num-
bering of nodes in a tree T (the label l(u) of node u denotes
its number as a result of the ordering) and a procedure
(Algorithm 5) to find 2-link-connected components.

We have assumed that the initial graph was connected.
Eswaran and Tarjan’s algorithm also allows to start with
disconnected graphs, by augmenting the forest of condensed
2-link-connected components to a tree.

3.1.2. Cactus Representation of All Minimum Cuts. The
algorithm of Eswaran and Tarjan uses a tree representation
of all the 2-link-connected components in G, which is

8 ISRN Communications and Networking

(1) For each v ← adj(u) do PostOrder (v, i)
(2) i← i + 1
(3) l(u)← i

Algorithm 3: PostOrder (T ,u, i).

(1) i← i + 1
(2) l(u)← i
(3) For each v ← adj(u) do PreOrder (v, i)

Algorithm 4: PreOrder (T ,u, i).

subsequently used to find a proper augmentation. By using
a so-called cactus representation of all minimum cuts in a
network, a similar strategy could be deployed to augment a
network to a connectivity >2. A graph G is defined to be a
cactus graph if any two distinct simple cycles in G have at
most one node in common (or equivalently, any link of G
belongs to at most one cycle). In this section, we will present
the cactus representation.

We will use the notation (X ,Y) to represent a set of links
that connect nodes in X to nodes in Y . The link-set (X ,X),
with X = N \ X , refers to a cut-set of links whose removal
separates the graph into two subgraphs of nodes X and nodes
X . Dinitz et al. [58] have proposed a cactus structure H(G)
to represent all the minimum cuts of a graph G (possibly
with parallel links) and have shown that there can be at most(
N
2

)
such minimum cuts. The structure H(G) possesses the

following properties.

(1) H(G) is a cactus graph, that is, any two distinct
simple cycles of H(G) have at most one node in
common.

(2) Each proper cut in H(G) is a minimum cut (a cut
is called proper if the removal of the links in that
cut partitions the graph in precisely two subgraphs.
A minimum cut is always proper).

(3) For any link (u, v) that is part of a cycle in H(G) the
weight w(u, v) = λ/2, else w(u, v) = λ.

(4) w(λ(H(G))) = λ(G), where w(λ(H(G))) represents
the minimum-weight link cut of H(G).

A cactus graph without cycles is a tree, and if λ(G) is odd,
then H(G) is a tree. Cycles in the cactus graph H(G) reflect
so-called crossing cuts in G.

Definition 15. Two cuts (X ,X) and (Y ,Y), with X ,Y ∈ N ,
are crossing cuts, if all four sets X ∩ Y , X ∩ Y , X ∩ Y , and
X ∩ Y are non-empty.

Karzanov and Timofeev [59] have outlined an algorithm
to compute H(G) that consists of two parts: (1) com-
puting all minimum cuts and (2) constructing the corre-
sponding cactus representation. However, Nagamochi and
Kameda [60] reported that their cactus representation may

not be unique. We assume that all minimum cuts are already
known (e.g., by computing minimum s-t cuts between all
possible source-destination pairs, by the Gomory-Hu tree
algorithm [61], or with Matula’s algorithm as explained in
[62]) and focus on explaining—by following the description
of Fleischer [63]—how to build a unique cactus graph H(G)
for the graph G.

Karzanov and Timofeev [59] observe that for a link
(i, j) ∈ L, any two minimum cuts (X ,X) and (Y ,Y) that
separate i and j are nested, which means that X ⊂ Y (or
vice versa). If we assign the nodes of G a preorder labelling
{n1, . . . ,nN}, such that node ni+1 is adjacent to a node in the
set Ni := {n1, . . . ,ni}, and define Mi to be the set of mini-
mum cuts that contain Ni−1 but not ni, then it follows that
all cuts in Mi are noncrossing for each i ∈ {2, . . . ,N}. For
instance, consider a 4-node ring {(a, b), (b, c), (c,d), (d, a)},
where three minimum cuts separate nodes a and d, namely,
({a}, {b, c,d}), ({a, b}, {c,d}), and ({a, b, c}, {d}). Clearly
{a} ⊂ {a, b} ⊂ {a, b, c}, which allows us to represent them as
a path graph a− b − c − d. The three possibilities to cut this
chain correspond to the three minimum cuts that separate a
and d in the ring graph. For each Mi there is a corresponding
path graph Pi. These N − 1 path graphs are used to create a
single cactus graph. We proceed to present the algorithm as
described by Fleischer [63] (for an alternative description we
refer to [64]), see Algorithm 7. We define η to be the function
that maps nodes of G to nodes in H(Gi+1), and we define
Gi to be the graph G with nodes Ni contracted to a single
node (and any resulting self-loops removed). Let Gr be the
smallest graph that has a minimum cut of value λ, where r
corresponds to the largest index of such a graph. H(Gr) is a
path graph. The algorithm builds H(Gi) from H(Gi+1) until
H(G1) =H(G) is obtained.

Figure 1 gives an example of the execution of the
algorithm on a 4-node ring.

3.1.3. Naor-Gusfield-Martel Algorithm. Naor et al. [65] have
proposed a polynomial-time algorithm to augment the link
connectivity of a graph G from λ to λ + β, by adding the
smallest number of (possibly parallel) links. The authors first
demonstrate how to augment the link connectivity by one
in O(NL) time, after which it is explained how executing
this algorithm β times could optimally augment the graph
towards λ + β link connectivity (Cheng and Jordán [66]
further discuss link connectivity augmentation by adding
one link at a time). In practice, as a result of the costs
in network augmentation, a network’s connectivity is likely
not augmented with β > 1. We will therefore only present
the algorithm to augment the link connectivity by one, see
Algorithm 9, and refer to [65] for the extended algorithm.
The algorithm uses the cactus structure H(G) that was pre-
sented in the previous section to represent all the minimum
cuts of a graph G. The algorithm is similar in approach to
the Eswaran-Tarjan algorithm, since a cactus representation
of a 1-connected network is the tree representation used by
Eswaran and Tarjan, and the algorithm connects “leafs” as
Eswaran and Tarjan have done. Naor et al., however, use a
different definition of leafs for cactus graphs.

ISRN Communications and Networking 9

(1) Find a directed spanning tree T in G rooted at a node s
(2) PostOrder (T , s, 0)
(3) For i = 1, . . . ,N
(4) For j ∈ adj(i) /∗Only nodes “downstream”∗/
(5) if min({i−ND(i) + 1} ∪ {NL(j)} ∪ { j | (i, j) /∈ T}) > j −ND(j) and

max ({i} ∪ {NH(j)} ∪ { j | (i, j) /∈ T}) ≤ j /∗ND(i) is the number of descendants
in the tree including i∗/

(6) then (i, j) is 1-link-connected. /∗Its removal cuts the graph∗/

Algorithm 5: Tarjan-2-link-components (G), developed by Tarjan [57].

(1) Find the 2-link-connected components of G
(2) Condense G into a tree T for which each node represents one of the 2-link-

connected components of G
(3) Number the nodes in T in preorder, starting from an arbitrary non-leaf node

s /∗PreOrder (T , s, 0)∗/
(4) For i = 1, . . . , �r/2� choose links (u(i),u(i + �r/2�)), where u(i), . . . ,u(r) are the

r leaves of T ordered in increasing node number
(5) Map the ends of each chosen link to an arbitrary node in the corresponding

2-link-connected component

Algorithm 6: Eswaran-Tarjan-2-link-augmentation (G).

Definition 16 (cactus leaf). A node in a cactus representation
H(G) is a cactus leaf if it has degree 1 or is a cycle node of
degree 2.

Similarly to a tree, if the cactus H(G) has k leafs, then
�k/2� links need to be added to increase the connectivity by
1.

The algorithm uses a Depth-First-Search-like procedure,
see Algorithm 8, to label the nodes of the cactus graph.

For further reference, in Table 3, we present some key
achievements in augmenting link connectivity in unweighted
graphs.

Splitting off a pair of links (u, v) and (v,w) refers to
deleting those links and adding a new link (u,w). A pair
of links is said to be splittable if the s-t min-cut values
remain unaffected after splitting off the pair of links and is
considered in the context of Mader’s theorem.

Theorem 17 (Mader [68, 69]). Let G be a connected undi-
rected graph where for some node s the degree d(s) /= 3, and the
removal of one of the adjacent links of s does not disconnect the
graph, then s has a pair of splittable links.

Mader’s theorem has been used by for instance Cai and
Sun [75] and Frank [77] in developing network augmenta-
tion algorithms. The algorithms (as already outlined in 1976
by Plesnı́k [84]) attach a new node s to the graph with (λ+β)
parallel links between s and all other nodes in the graph and
subsequently proceed to split off splittable links.

As indicated by Theorem 14, the weighted LCA problem
is NP-complete for both undirected graphs and directed
graphs. Frederickson and JáJá [53] provided an O(N2) algo-
rithm to make a weighted graph 2 connected. The algorithm

is a 2-approximation algorithm if the starting graph is
connected, else it is a 3-approximation algorithm. Khuller
and Thurimella [85] proposed a 2-approximation algorithm
for increasing the connectivity of a weighted undirected
graph to (λ+β) that has a complexity of O(N(λ+β) logN(L+
N logN)). Taoka et al. [86] compare via simulations several
approximation and heuristic algorithms, including their own
maximum-weight-matching-based algorithm.

Under specific conditions, the weighted LCA problem
may be polynomially solvable, as shown by Frank [77] for
the case that link weights are derived from node weights.

3.2. Node Connectivity Augmentation. In this section, we
consider the following node augmentation problem.

Problem 3. The Node Connectivity Augmentation (NCA)
problem. Given a graph G(N , L) consisting of N nodes
and L links, node connectivity κ and an integer γ, the node
connectivity augmentation problem is to add a minimum-
weight set of links, such that the node connectivity of the
graph G is increased from κ to κ + γ.

Like for the LCA problem.

Theorem 18. The weighted NCA problem is NP-hard.

Proof. The proof of Theorem 14 also applies here.

The unweighted undirected NCA problem has received
most attention. The specific case of making a graph 2-
node connected was treated by Eswaran and Tarjan [54],
Rosenthal and Goldner [87] (a correction to this algorithm
has been made by Hsu and Ramachandran [88]). Watanabe

10 ISRN Communications and Networking

(1) Compute Pi for i = 2, . . . ,N
(2) For i = r − 1, . . . , 1
(3) Replace the node q in H(Gi+1) that contains nodes {n1, . . . ,ni+1} with the Path Pi+1.

If Pi+1 = X1, . . . ,Xk , then remove q and introduce k new nodes q1, . . . , qk with links
(qj , qj+1) for 1 ≤ j < k.

(4) Connect path Pi+1 to H(Gi+1). For any tree or cycle link (q,w) in H(Gi+1), let W /=∅
be the set of nodes in w, or if w is an empty node, the nodes in any nonempty
node w

′
reachable from w by some path of links disjoint from a cycle containing

(q,w). Find the subset Xj such that w ⊂ Xj and connect W to qj .
(5) Label the nodes of Pi+1. Let Q be the set of nodes mapped to q in H(Gi+1).

Update η by η−1(qj) := Xj ∩Q for all 1 ≤ j < k. All other mappings remain
unchanged.

(6) Remove all empty nodes of degree ≤ 2 and all empty 2-way cut nodes by contracting
an adjacent tree link (a node is an x-way cut node if its removal separates the graph into
x connected parts). Replace all empty 3-way cut nodes with 3 cycles.

Algorithm 7: Build-Cactus (G).

1 4

2 3

1, 2 4

3

1, 2, 3 4

1 4 23 1, 2 4 3 1, 2, 3 4

1, 2, 3 4
4

1, 2 3

4

34

1 2

4 3

1, 2 3

4

1 4

2 31, 2 3

4

1 4

2 3

1

G1 G2 G3

P4
P2 P3

H(G3)

H(G2)

H(G1) = H(G)

Figure 1: Example of a cactus construction for a 4-node ring topology. The top “row” gives the graphs Gi, for i = 1, . . . , r. The second row
gives the paths Pi, for i = 2, . . . ,N . The third row presents the first iteration of the for loop in algorithm Build-Cactus, while the fourth row
presents the last iteration. The last row presents the cactus representation of the ring, which is a ring itself.

(1) Assign different colors to the different simple cycles /∗, for example, by finding the articulation
points [67]∗/

(2) DFS traversal that starts at an arbitrary node and obeys the following rule: if a node u is visited
for the first time via a cycle with some color, then traverse all other differently colored links
adjacent to u before traversing the adjacent link of the same color. Enumerate the cactus leafs
u1, . . . ,uk in the order in which they are first encountered in the DFS traversal.

Algorithm 8: Cactus-DFS (H(G)).

ISRN Communications and Networking 11

(1) H(G)←Build-Cactus (G)
(2) Cactus-DFS (H(G))
(3) Form the pairs {(Ui,Ui+�k/2�) : 1 ≤ i ≤ �k/2�}, where Ui is the set of nodes from G

that map to the leaf ui of H(G).
(4) For each pair (Ui,Ui+�k/2�) : 1 ≤ i ≤ �k/2�, add a link between a node from G in Ui

and a node from G in Ui+�k/2�. If k is odd, then connect a node in U�k/2� to a node in
a different leaf Uj .

Algorithm 9: Naor-Gusfield-Martel-Aug-1 (G).

and Nakamura [89] and Jordán [90] solved the case for
achieving 3-node-connectivity, while Hsu [91] developed
an algorithm to upgrade a 3-node connected graph to a
4-node-connected one. Increasing the connectivity of a κ-
node-connected graph (where κ can be any integer) by
1 was studied by many researchers [90, 92–97], since it
was long unknown whether the problem was polynomially
solvable. In 2010, Végh [98] provided a polynomial-time
algorithm to increase the connectivity of any κ-node-
connected unweighted undirected graph by γ = 1.

Augmenting the node connectivity of directed graphs has
been treated by Frank and Jordán [99]. They found a min-
max formula that finds the minimum number of required
new links to make an unweighted digraph (κ + γ)-node
connected. Frank and Végh [100] developed a polynomial-
time algorithm to make a κ-node-connected directed graph
(κ + 1)-node connected.

As the weighted NCA problem is NP-complete, special
cases have been considered [88–91, 98, 101]. Most of these
articles discuss specific connectivity targets (γ and/or κ
have specific values) or specific topologies, like trees. Also
heuristic and approximation algorithms have been proposed
[85, 102–107].

4. Disjoint Paths

When a network is (made to be) robust, algorithms should be
in place that can find link- or node-disjoint paths to protect
against a link or node failure. There can be several objectives
associated with finding link- or node-disjoint paths.

Problem 4. Given a graph G(N , L), where |N | = N and
|L| = L, a weight w(u, v) and a capacity c(u, v) associated
with each link (u, v) ∈ L, a source node s and a terminal
node t, and two bounds Δ1 ≥ 0 and Δ2 ≥ 0 find a pair of
disjoint paths from s to t such as the following.

Min-Sum Disjoint Paths Problem. The total weight of the pair
of disjoint paths is minimized.

Min-Max Disjoint Paths Problem. The maximum path
weight of the two disjoint paths is minimized.

Min-Min Disjoint Paths Problem. The smallest path weight
of the two disjoint paths is minimized.

Bounded Disjoint Paths Problem. The weight of the primary
path should be less than or equal to Δ1, and the weight of the
backup path should be less than or equal to Δ2.

Widest Disjoint Paths Problem. The smallest capacity over all
links in the two paths is maximized.

The most common and simpler one is the min-sum
disjoint paths problem. If the two paths are used simultane-
ously for load-balancing purposes (or 1 + 1 protection), then
the min-max objective is desirable. Unfortunately, the min-
max disjoint paths problem is NP-hard [108]. If failures are
expected to occur only sporadically (and in case of 1 : 1 pro-
tection), then it may be desirable to minimize the weight of
the primary (shorter) path (min-min objective), which also
leads to an NP-hard problem [109]. The min-max and min-
min disjoint paths problems could be considered as extreme
cases of the bounded disjoint paths problem, which was
shown to be NP-hard [110] and later proven to be APX-hard
by Bley [111] (the graph structure referred to as lobe that was
used by Itai et al. [110] to prove NP-completeness has since
often been used to prove that other disjoint paths problems
are NP-complete, e.g., [112–114]). Finding widest disjoint
paths can easily be done by pruning “low-capacity” links
from the graph and finding disjoint paths. When the capacity
requirements for the primary and backup paths are different,
disjoint paths problems usually become NP-complete [115].

Beshir and Kuipers [116] investigated the min-sum
disjoint paths problem with min-max, min-min, bounded,
and widest, as secondary objectives in case multiple min-sum
paths exist between s and t. From these variants, only the
widest min-sum link-disjoint paths problem is not NP-hard.

Li et al. [112] studied the min-sum disjoint paths
problem, where the link-weight functions are different for
the primary and backup paths and showed that this problem
is hard to approximate. Bhatia [117] demonstrated that the
problem remains hard to approximate in the case that the
weights for the links of the backup path are a fraction 0 <
ρ < 1 of the normal link weights (for the primary path).

Sherali et al. [118] investigated the time-dependent min-
sum disjoint paths problem, where the link weights are time-
dependent. They proved that the problem is NP-hard, even if
only one link is time-dependent and all other links are static.

4.1. Min-Sum Disjoint Paths. Finding min-sum disjoint
paths is equivalent to finding a minimum-cost flow in
unit-capacity networks [26]: a minimum-cost flow of k

12 ISRN Communications and Networking

Table 3: Related work on augmenting link connectivity in unweighted graphs.

Year Reference Complexity Description

1976 Eswaran and Tarjan [54] O(N + L) Augmenting to 2-connectivity.

1986 Cai and Sun [75] NA Splitting off links.

1987 Watanabe and Nakamura [76] O
((
λ + β

)2
N4
((
λ + β

)
N + L

)) Based on a derived formula for the minimum number
of links to (λ + β)-link-connect G.

1990 Frank [77] O(N6)
Different s-t connectivities may be specified, instead of
one

(
λ + β

)
-connectivity for all pairs1.

1990 Naor et al. [65] O(β2NL + β3N2 + NCflow)
Cflow is the complexity of computing a maximum flow.
If β = 1, then the complexity is O(NL).

1991 Gabow [78] O
(
L + (λ + β)2N logN

) Poset representation of cuts applied to the
Naor-Gusfield-Martel algorithm.

1994 Benczúr [79] Õ
(
min

{
N3,βN2

})
, O(N4) Resp. randomized and deterministic algorithms.

1996 Nagamochi and Ibaraki [80] O(N(L + N logN) logN) Splitting off links.

1998 Benczúr and Karger [81] O(N2log8N) Randomized algorithm.

2004 Nagamochi and Ibaraki [82] O(NL + N2 logN) Maximum adjacency ordering2.
1
NP-hard variations of this problem and corresponding approximation results are provided by Nutov [83].

2Maximum adjacency ordering rule: add a new node ni+1 to previously selected nodes {n1, . . . ,ni} that has the largest number of links to the set {n1, . . . ,ni}.
Start with an abitrary node n1.

will traverse k disjoint paths. In fact, Suurballe’s algorithm,
which is most often cited as an algorithm to compute two
disjoint paths, is an algorithm that uses augmenting paths,
like in several max-flow algorithms. The original Suurballe
algorithm as presented in [119] allows to compute k node (or
link) disjoint paths between a single source-destination pair,
by using k shortest path computations. Later, this approach
was used by Suurballe and Tarjan [120] to find two link (or
node) disjoint paths from a source s to all other nodes in the
network (i.e., N − 1 source-destination pairs), by using only
two shortest-paths computations, that is, in O(N logN + L)
time. Both papers focus on directed networks, but can also
be applied to undirected networks.

In directed networks, a link-disjoint paths algorithm can
be used to compute node-disjoint paths, if we split each node
u into two nodes u1 and u2, with a directed link (u1,u2), and
the incoming links of u connected to u1 and the outgoing
links of u departing from u2.

In undirected networks, a link-disjoint paths algorithm
can be used to compute node-disjoint paths by the transfor-
mation described in Section 2.2.

We will present the Suurballe-Tarjan algorithm, see
Algorithm 10, for computing two link-disjoint paths
between s and every other node in the network.

Instead of finding an augmenting path for each source-
destination pair, Suurballe and Tarjan have found a way
to combine these augmenting flow computations into two
Dijkstra-like shortest-paths computations. First a shortest
paths tree T is computed in line 1, and based on the com-
puted shortest path lengths, the link weights are modified
in line 2. This link weight modification was also used by
Suurballe and is to assure that w(u, v) ≥ 0 for all links, with
equality if (u, v) is in T . In Suurballe’s original algorithm
the direction of the links on the shortest path from s to
d was reversed, after which a shortest (augmenting) path

in the newly modified graph was computed. In Suurballe-
Tarjan’s algorithm the links maintain their direction, but
an additional parameter q is used instead. The algorithm
proceeds in a Dijkstra-like fashion. Lines 3–6 correspond to
the initialization of the smallest length l(i) from s to i found
so far, its corresponding predecessor list π(i) and q(i). The
algorithm repeatedly extracts a node of minimum length (in
line 8) and removes that node from the tree T (in line 9).
A slightly different relaxation procedure is used (lines 10–
12). Upon termination of the algorithm, the disjoint paths
between the source s and a destination t can be retrieved via
the lists π() and q() with Algorithm 11.

Taft-Plotkin et al. [121] extended the approach of
Suurballe and Tarjan in two ways: (1) they return maximally
disjoint paths, and (2) they also take bandwidth into account.
Their algorithm, called MADSWIP, computes maximum-
bandwidth maximally disjoint paths and minimizes the total
weight as a secondary objective. Consequently, by assigning
all links equal bandwidth, the MADSWIP algorithm returns
the min-sum maximally disjoint paths.

For a distributed disjoint paths algorithm, we refer to the
work of Ogier et al. [122] and Sidhu et al. [123].

Roskind and Tarjan [124] presented an O(L logL +
k2N2) algorithm for finding k link-disjoint spanning trees
of minimum total weight. Xue et al. [125, 126] have
considered quality of service and quality of protection issues
in computing two disjoint trees (quality of Protection (QoP)
as used by Xue et al. refers to the amount of link failures
that can be survived. QoP sometimes is used to refer
to probabilistic survivability, as discussed in the following
section or protection differentiation as overviewed by Cholda
et al. [127]). Ramasubramanian et al. [128] proposed a
distributed algorithm for computing two disjoint trees. Guo
et al. [129] considered finding two link-disjoint paths subject
to multiple Quality-of-Service constraints.

ISRN Communications and Networking 13

(1) Compute the shortest paths tree T rooted at s
(2) Modify the weights of each link (u, v) ∈ L to w′(u, v) = w(u, v)− l(s, v) + l(s,u)

/∗l(s, i) is the length of the shortest path in G from s to i∗/
(3) For i = 1, . . . ,N
(4) l(i)←∞, q(i)← NIL, π(i)← NIL
(5) l(s)← 0
(6) Q ← N
(7) While Q /=∅
(8) EXTRACT-MIN (Q) → u
(9) DELETE (T ,u) /∗T becomes a forest of subtrees∗/
(10) For each non-tree link (i, j) in T such that i = u or i and j are in different subtrees
(11) If l(u) + w(i, j) < l(j)
(12) l(j)← l(u) + w(i, j), π(j)← i, q(j)← u

Algorithm 10: Suurballe-Tarjan-2-link-disjoint-paths (G, s).

(1) x ← t
(2) While x /= s
(3) mark x
(4) x ← q(x)
(5) For i = 1, 2
(6) x ← t
(7) While x /= s
(8) If x is marked
(9) unmark x
(10) Pi ← Pi + (p(x), x)
(11) x ← p(x)
(10) Else
(11) Pi ← Pi + (y, x) /∗y is parent of x in T∗/
(12) x ← y

Algorithm 11: Return-Suurballe-Tarjan-2-link-disjoint-paths (G, s, t).

4.2. Probabilistic Survivability. When two disjoint primary
and backup paths are reserved for a connection, any failure
on the primary path can be survived by using the backup
path. The backup path therefore provides 100% survivability
guarantee against a single failure. When no backup paths
are available, that is, unprotected paths are used, then the
communication along a path will fail if there is a failure on
that path. Banner and Orda [130] have introduced the term
p-survivable connection to denote a connection for which
there is a probability≥ p that all its links are operational (the
related notion of Quality of Protection (QoP), as defined by
Gerstel and Sasaki [131], was argued to be difficult to apply
to general networks). The previous two cases correspond
to p = 1 and p = 0, respectively. Banner and Orda
proved that, under the single-link failure model, at most two
paths are needed to establish a p-survivable connection, if it
exists. Based on this observation, they studied and proposed
algorithms for several problem variants, namely establishing
p-survivable-B-bandwidth, most survivable, and widest p-
survivable connections for 1 : 1 and 1 + 1 protection archi-
tectures (the MADSWIP algorithm [121] can also be used to
find the most survivable connection). The p-survivable-B-
bandwidth problem asks for a connection with survivability

≥ p and bandwidth≥ B and solving it provides a foundation
for solving the other problems. We will therefore discuss the
solution proposed by Banner and Orda for the p-survivable-
B-bandwidth problem.

The approach by Banner and Orda to solve the p-
survivable-B-bandwidth problem is twofold. First, the graph
is transformed, after which a minimum-cost flow is found
on the resulting graph. The graph transformation is depicted
in Figure 2 and slightly differs for the 1 : 1 and 1 + 1 cases.
Clearly, if a link does not have sufficient spare capacity
to accommodate the requested bandwidth B, then it does
not need to be considered further (Figure 2(a)). If, for 1 : 1
protection, be ≥ B, then there is sufficient bandwidth for
both disjoint paths, since the backup path is only used after
failure of the primary path. To allow for both paths to
share that link, it is transformed to two links (Figure 2(b)).
If the original link is only used by one path, then that
link is protected, and hence the weight 0 is assigned to
the top link. If both paths have to use the original link,
then the connection’s survivability is affected by the failure
probability of that link, which is why the weight − ln(1 −
pe) is assigned to the lower link (the logarithm is used to
transform a multiplicative metric to an additive metric).

14 ISRN Communications and Networking

1 : 1 and 1 + 1, if be < B :

(be , pe)

×

(a)

1 : 1, if be ≥B

1 + 1, if be ≥2B:

(B, 0)

(B,− ln(1− pe))

(be , pe)

(b)

1 + 1, if B≤ be < 2B:
(B, 0)(be , pe)

(c)

Figure 2: Graph transformation for the p-survivable-B-bandwidth problem. For each link e with capacity be and failure probability pe, the
new links consist of a bandwidth-weight pair.

The same applies to the 1 + 1 case, with the exception that
the concurrent transmission of data over both paths requires
twice the requested bandwidth. For the remaining range B ≤
be < 2B for 1 + 1 protection (Figure 2(c)), it holds that only
one of the paths can use that link, which is why there is no
weight penalty.

In the transformed graph, a minimum-cost flow of 2B
units corresponds to two maximally disjoint paths of each B
bandwidth. The minimum-cost flow could, for instance, be
found with the cycle-canceling algorithm of Goldberg and
Tarjan [132], while the corresponding maximally disjoint
paths could be returned via a flow-decomposition algorithm
[26].

Luo et al. [133] studied the min-sum p-survivable
connection problem, where each link is characterized by
a weight and a failure probability, and the problem is to
find a connection of least weight and survivability ≥ p.
Contrary to the min-sum maximally-disjoint paths problem,
this problem is NP-hard, since it contains the NP-hard
restricted shortest paths problem (e.g., see [134]). Luo et
al. proposed an ILP and two approximation algorithms for
this problem. Chakrabarti and Manimaran [135] studied
the min-sum p-survivable-B-bandwidth problem, for which
they considered a segment-based protection strategy.

She et al. [114] have considered the problem of finding
two link-disjoint paths, for which the probability that at
least one of these paths will not fail is maximized. They
refer to this problem as the maximum-reliability (max-
rel) link-disjoint paths problem. The rationale behind this
problem is to establish two disjoint paths that give 100%
protection against a single-link failure, while reducing the
failure probability of the connection as much as possible
when multiple failures may occur. Assuming that the link-
failure probabilities pi are independent, then the reliability of
a connection (consisting of two link-disjoint paths P1 and P2)
is defined as

∏
i∈P1

qi +
∏

j∈P2
qj +

∏
i∈P1

qi ·
∏

j∈P2
qj , with qi =

1 − pi, for i ∈ L. The max-rel link-disjoint paths problem
is proven to be NP-complete. She et al. [114] evaluated two

simple heuristic algorithms that both transform the link
probabilities pi to link weights logqqi, with qi = 1− pi, for i ∈
L, and 0 < q < 1. Based on these weights, one heuristic finds
a shortest path, prunes its links from the graphs, and finds a
shortest path in the pruned graph. This is often referred to
as an active-path-first (APF) approach. The second heuristic
uses Suurballe’s algorithm to find two link-disjoint paths.
Contrary to the first heuristic, the second always returns link-
disjoint paths if they exist.

4.3. Multiple Failures. The single-link failure model has been
most often considered in the literature, but multiple failures
may occur as follows.

(i) Due to lengthy repair times of network equipment,
there is a fairly long time span in which new failures
could occur.

(ii) In case of terrorist attacks, several targeted parts
of the network could be damaged. With Suurballe’s
algorithm, k link/node-disjoint paths can be found
to establish full protection against k − 1 link/node
failures.

(iii) In layered networks, for instance IP-over-WDM,
one failure on the lowest-layer network, may cause
multiple failures on higher-layer networks. Similarly,
the links of a (single-layered) network may share the
same duct, in which case a damaging of the duct may
damage all the links inside. These links are often said
to belong to the same shared risk link group (SRLG)
(the node variant SRNG also exists. When both nodes
and links can belong to a shared risk group, the
term Shared Risk Resource Group (SRRG) is used,
e.g., see [136]). Finding two SRLG-disjoint paths—
paths of which the links in one path may not share
a risk link group with links from the other path—
is an NP-complete problem [137]. In specific cases,
the SRLG-disjoint paths problem is polynomially

ISRN Communications and Networking 15

solvable, as discussed by Bhandari [138], Datta and
Somani [139], and Luo and Wang [140]. In those
cases, for instance, when the links in a SRLG share the
same endpoint, a graph transformation can be made
that reflects the shared risk groups, and on which
a simple link-disjoint paths algorithm can be run.
Lee et al. [141] have generalized the SRLG problem
to include failure probabilities. In the deterministic
SRLG scenario, when a SRLG r fails (e.g., a cable
in the physical network is cut) all higher-layer links
that belong to that group fail. In the probabilistic
SRLG (PSRLG) scenario, the links (i, j) in that
PSRLG r fail with probability pri j > 0. If pri j ∈
{0, 1}, for (i, j) ∈ L, then the problem of finding
PSRLG-disjoint paths reduces to the NP-complete
problem of finding SRLG-disjoint paths. For SRLG
types of problems, often an integer programming
formulation is provided (e.g., [137, 142–144]) or
an active-path-first (APF) approach is used as a
heuristic. Hu [137] provided a basic ILP formulation
to return a min-sum pair of SRLG-disjoint paths. Xu
et al. [143] gave an ILP and an APF heuristic for the
case of shared (backup paths) protection.

(iv) Natural disasters may affect all nodes and links
within a certain geographical area. Work on mul-
tilink geographic failures has mostly focused on
determining the geographic max-flow and min-cut
values of a network under geographic failures of
circular shape (e.g., Sen et al. [145], Agarwal et al.
[146], and Neumayer et al. [147]). Trajanovski et
al. [148] proved that, the problem of finding two
region-disjoint paths is NP-hard, and they proposed
a heuristic for it.

5. Conclusion

We have provided an overview of algorithms for network
survivability. We have considered how to verify that a
network has certain connectivity properties, how to augment
an existing network to reach a given connectivity, and, lastly,
how to find alternative paths in case network failures occur.
Our focus has been on algorithms for general networks,
although much work has also been done for specific net-
works, such as optical networks, where additional constraints
like wavelength continuity and signal impairments induce an
increased complexity, for example, see our work [149–151].
We have not discussed how to design a survivable network
from scratch. Typically network design problems are hard
to solve and involve many constraints, but since they only
need to be solved sporadically, longer computation times are
permitted. Predominantly, integer programming is used to
design a network, as we have done in [152].

Acknowledgment

The author would like to thank Professor Piet Van Mieghem
for his constructive comments on an earlier version of this
paper.

References

[1] M. Al-Kuwaiti, N. Kyriakopoulos, and S. Hussein, “A com-
parative analysis of network dependability, fault-tolerance,
reliability, security, and survivability,” IEEE Communications
Surveys and Tutorials, vol. 11, no. 2, pp. 106–124, 2009.

[2] K. Menger, “Zur allgemeinen kurventheorie,” Fundamenta
Mathematicae, vol. 10, pp. 96–115, 1927.

[3] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak
Mathematical Journal, vol. 23, pp. 298–305, 1973.

[4] P. Van Mieghem, Graph Spectra for Complex Networks,
Cambridge University Press, 2011.

[5] N. M. M. de Abreu, “Old and new results on algebraic
connectivity of graphs,” Linear Algebra and Its Applications,
vol. 423, no. 1, pp. 53–73, 2007.

[6] K. Lee, E. Modiano, and H. W. Lee, “Cross-layer survivability
in WDM-based networks,” IEEE/ACM Transactions on Net-
working, vol. 19, no. 4, pp. 1000–1013, 2011.

[7] K. Lee, H. W. Lee, and E. Modiano, “Reliability in layered
networks with random link failures,” IEEE/ACM Transactions
on Networking, vol. 19, no. 6, pp. 1835–1848, 2011.

[8] W. Zou, M. Janic, R. Kooij, and F. A. Kuipers, “On the
availability of networks,” in Proceedings of the BroadBand
Europe, Antwerp, Belgium, December 2007.

[9] C. J. Colbourn, The Combinatorics of Network Reliability,
Oxford University Press, New York, NY, USA, 1987.

[10] P. Van Mieghem, H. Wang, X. Ge, S. Tang, and F. A. Kuipers,
“Influence of assortativity and degree-preserving rewiring on
the spectra of networks,” European Physical Journal B, vol. 76,
no. 4, pp. 643–652, 2010.

[11] D. Mosk-Aoyama, “Maximum algebraic connectivity aug-
mentation is NP-hard,” Operations Research Letters, vol. 36,
no. 6, pp. 677–679, 2008.

[12] M. Yanakakis, “Computing the minimum fill-in is NP-
complete,” SIAM Journal on Algebraic and Discrete Methods,
vol. 2, no. 1, pp. 77–79, 1981.

[13] P. Pan, G. Swallow, and A. Atlas, “Fast reroute extensions to
RSVP-TE for LSP tunnels,” IETF Request for Comments RFC
4090, 2005.

[14] M. Shand and S. Bryant, “IP fast reroute framework,” IETF
Request for Comments RFC 5714, 2010.

[15] R. Banner and A. Orda, “Designing low-capacity backup
networks for fast restoration,” in Proceedings of the IEEE
INFOCOM, San Diego, Calif, USA, March 2010.

[16] G. Ellinas, A. G. Hailemariam, and T. E. Stern, “Protection
cycles in mesh WDM networks,” IEEE Journal on Selected
Areas in Communications, vol. 18, no. 10, pp. 1924–1937,
2000.

[17] R. Asthana, Y. N. Singh, and W. D. Grover, “p-cycles: an
overview,” IEEE Communications Surveys and Tutorials, vol.
12, no. 1, pp. 97–111, 2010.

[18] M. Médard, S. G. Finn, R. A. Barry, and R. G. Gallager,
“Redundant trees for preplanned recovery in arbitrary
vertex-redundant or edge-redundant graphs,” IEEE/ACM
Transactions on Networking, vol. 7, no. 5, pp. 641–652, 1999.

[19] K. P. Gummadi, M. J. Pradeep, and C. S. R. Murthy, “An
efficient primary-segmented backup scheme for dependable
real-time communication in multihop networks,” IEEE/ACM
Transactions on Networking, vol. 11, no. 1, pp. 81–94, 2003.

[20] C. H. Papadimitriou and M. Yannakakis, “Optimization,
approximation, and complexity classes,” Journal of Computer
and System Sciences, vol. 43, no. 3, pp. 425–440, 1991.

16 ISRN Communications and Networking

[21] B. Mohar, “Isoperimetric numbers of graphs,” Journal of
Combinatorial Theory, Series B, vol. 47, no. 3, pp. 274–291,
1989.

[22] D. W. Matula and F. Shahrokhi, “Sparsest cuts and bottle-
necks in graphs,” Discrete Applied Mathematics, vol. 27, no.
1-2, pp. 113–123, 1990.

[23] T. N. Dinh, Y. Xuan, M. T. Thai, E. K. Park, and T. Znati, “On
approximation of new optimization methods for assessing
network vulnerability,” in Proceedings of the IEEE INFOCOM,
San Diego, Calif, USA, March 2010.

[24] D. R. Fulkerson and G. B. Dantzig, “Computation of maximal
flows in networks,” Naval Research Logistics, vol. 2, no. 4, pp.
277–283, 1955.

[25] P. Elias, A. Feinstein, and C. E. Shannon, “A note on the
maximum flow through a network,” IRE Transactions on
Information Theory, vol. 2, pp. 117–119, 1956.

[26] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows:
Theory, Algorithms, and Applications, Prentice Hall, Upper
Saddle River, NJ, USA, 1st edition, 1993.

[27] Y. Dinitz, “Dinitz’ algorithm: the original version and Even’s
version,” in Essays in Memory of Shimon Even, O. Goldreich,
A. L. Rosenberg, and A. L. Selman, Eds., vol. 3895 of Lecture
Notes in Computer Science, pp. 218–240, Springer, Berlin,
Germany, 2006.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, MIT Press, Cambridge, Mass,
USA, 3rd edition, 2009.

[29] S. Even and R. E. Tarjan, “Network flow and testing graph
connectivity,” SIAM Journal on Computing, vol. 4, pp. 507–
518, 1975.

[30] G. B. Dantzig, “Application of the simplex method to a
transportation problem,” in Activity Analysis of Production
and Allocation, pp. 359–373, John Wiley & Sons, New York,
NY, USA, 1951.

[31] L. R. Ford and D. R. Fulkerson, “Maximal flow through a
network,” Canadian Journal of Mathematics, vol. 8, pp. 399–
404, 1956.

[32] A. V. Karzanov, “Determining the maximal flow in a network
by the method of preflows,” Soviet Mathematics-Doklady, no.
15, pp. 434–437, 1974.

[33] R. E. Tarjan, “A simple version of Karzanov’s blocking flow
algorithm,” Operations Research Letters, vol. 2, no. 6, pp. 265–
268, 1984.

[34] Z. Galil and A. Naamad, “An O(EV log2 V) algorithm for
the maximal flow problem,” Journal of Computer and System
Sciences, vol. 21, pp. 203–217, 1980.

[35] Y. Shiloach and U. Vishkin, “An O(n2log n) parallel max-flow
algorithm,” Journal of Algorithms, vol. 3, no. 2, pp. 128–146,
1982.

[36] D. D. Sleator and R. E. Tarjan, “A data structure for dynamic
trees,” Journal of Computer and System Sciences, vol. 26, no. 3,
1983.

[37] A. V. Goldberg and R. E. Tarjan, “A new approach to the
maximum-flow problem,” Journal of the ACM, vol. 35, no.
4, pp. 921–940, 1988.

[38] R. K. Ahuja, J. B. Orlin, and R. E. Tarjan, “Improved time
bounds for the maximum flow problem,” SIAM Journal on
Computing, vol. 18, no. 5, pp. 939–954, 1989.

[39] J. Cheriyan and T. Hagerup, “Randomized maximum-flow
algorithm,” SIAM Journal on Computing, vol. 24, no. 2, pp.
203–226, 1995.

[40] N. Alon, “Generating pseudo-random permutations and
maximum flow algorithms,” Information Processing Letters,
vol. 35, no. 4, pp. 201–204, 1990.

[41] A. V. Goldberg and S. Rao, “Beyond the flow decomposition
barrier,” Journal of the ACM, vol. 45, no. 5, pp. 783–797, 1998.

[42] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and
S. H. Teng, “Electrical flows, laplacian systems, and faster
approximation of maximum flow in undirected graphs,”
in Proceedings of The 43rd ACM Symposium on Theory of
Computing, STOC’ 11, pp. 273–281, San Jose, CA, USA, June
2011.

[43] D. W. Matula, “Determining edge connectivity in O(nm),”
in Proceedings of the 28th Symposium on Foundations of
Computer Science (FOCS ’87), pp. 249–251, Los Angeles,
Calif, USA, October 1987.

[44] Y. Shiloach, “Edge-disjoint branching in directed multi-
graphs,” Information Processing Letters, vol. 8, no. 1, pp. 24–
27, 1979.

[45] Y. Mansour and B. Schieber, “Finding the edge connectivity
of directed graphs,” Journal of Algorithms, vol. 10, no. 1, pp.
76–85, 1989.

[46] G. B. Dantzig and D. R. Fulkerson, “On the max-flow min-
cut theorem of networks,” in Linear Inequalities and Related
Systems, Annals of Mathematics Studies, Study 38, pp. 215–
221, Princeton University Press, Princeton, NJ, USA, 1956.

[47] S. Even, Graph Algorithms, Computer Science Press, 1979.
[48] M. R. Henzinger, S. Rao, and H. N. Gabow, “Computing

vertex connectivity: new bounds from old techniques,”
Journal of Algorithms, vol. 34, no. 2, pp. 222–250, 2000.

[49] H. N. Gabow, “Using expander graphs to find vertex
connectivity,” Journal of the ACM, vol. 53, no. 5, pp. 800–844,
2006.

[50] Y. Yoshida and H. Ito, “Property testing on k-vertex-
connectivity of graphs,” Algorithmica, vol. 62, no. 3-4, pp.
701–712, 2012.

[51] P. Van Mieghem, D. Stevanović, F. A. Kuipers et al.,
“Decreasing the spectral radius of a graph by link removals,”
Physical Review E, vol. 84, no. 1, 2011.

[52] A. Natanzon, R. Shamir, and R. Sharan, “Complexity classifi-
cation of some edge modification problems,” Discrete Applied
Mathematics, vol. 113, no. 1, pp. 109–128, 2001.

[53] G. Frederickson and J. JáJá, “Approximation algorithms for
several graph augmentation problems,” SIAM Journal on
Computing, vol. 10, no. 2, pp. 270–283, 1981.

[54] K. P. Eswaran and R. E. Tarjan, “Augmentation problems,”
SIAM Journal on Computing, vol. 5, no. 4, pp. 653–665, 1976.

[55] J. Jensen and T. Jordán, “Edge-connectivity augmentation
preserving simplicity,” in Proceedings of the 9th Annual
ACM/SIAM Symposium On Discrete Algorithms (SODA ’97),
pp. 306–315, 1997.

[56] S. Raghavan, “A note on Eswaran and Tarjan’s algorithm for
the strong connectivity augmentation problem,” in The Next
Wave in Computing, Optimization, and Decision Technologies,
vol. 29 of Operations Research/Computer Science Interfaces
Series, pp. 19–26, Springer, 2005.

[57] R. E. Tarjan, “A note on finding the bridges of a graph,”
Information Processing Letters, vol. 2, no. 6, pp. 160–161,
1974.

[58] E. A. Dinitz, A. V. Karzanov, and M. V. Lomonosov, “On the
structure of the system of minimum edge cuts of a graph,” in
Issledovaniya po Diskretnoi Optimizatsii, A. A. Fridman, Ed.,
pp. 290–306, Nauka, Moscow, Russia, 1976.

ISRN Communications and Networking 17

[59] A. V. Karzanov and E. A. Timofeev, “Efficient algorithm
for finding all minimal edge cuts of a nonoriented graph,”
Cybernetics and Systems Analysis, vol. 22, no. 2, pp. 156–162,
1986.

[60] H. Nagamochi and T. Kameda, “Canonical cactus represen-
tation for minimum cuts,” Japan Journal of Industrial and
Applied Mathematics, vol. 11, no. 3, pp. 343–361, 1994.

[61] R. E. Gomory and T. C. Hu, “Multi-terminal network flows,”
Journal of the Society for Industrial and Applied Mathematics,
vol. 9, no. 4, pp. 551–570, 1961.

[62] D. Gusfield and D. Naor, “Extracting maximal information
about sets of minimum cuts,” Algorithmica, vol. 10, no. 1, pp.
64–89, 1993.

[63] L. Fleischer, “Building chain and cactus representations of all
minimum cuts from Hao-Orlin in the same asymptotic run
time,” Journal of Algorithms, vol. 33, no. 1, pp. 51–72, 1999.

[64] H. Nagamochi, “Graph algorithms for network connectivity
problems,” Journal of the Operations Research Society of Japan,
vol. 4, no. 4, pp. 199–223, 2004.

[65] D. Naor, D. Gusfield, and C. Martel, “A fast algorithm for
optimally increasing the edge connectivity,” SIAM Journal on
Computing, vol. 26, no. 4, pp. 1139–1165, 1997.

[66] E. Cheng, “Successive edge-connectivity augmentation prob-
lems,” Mathematical Programming B, vol. 84, no. 3, pp. 577–
593, 1999.

[67] R. E. Tarjan, “Depth-first search and linear graph algo-
rithms,” SIAM Journal on Computing, vol. 1, no. 2, pp. 146–
160, 1972.

[68] W. Mader, “A reduction method for edge-connectivity in
graphs,” Annals of Discrete Mathematics, vol. 3, pp. 145–164,
1978.

[69] A. Frank, “On a theorem of Mader,” Discrete Mathematics,
vol. 101, no. 1–3, pp. 49–57, 1992.

[70] V. D. Podderyugin, “An algorithm for determining edge-
connectivity of a graph,” in Proceedings of the Seminar on
Combinatorial Mathematics, Moscow, Russia, 1971, Doklady
Akademii Nauk SSSR, Scientiffic Council on the Complex
Problem “Cybernetics”, pp. 136–141, 1973.

[71] H. Nagamochi and T. Ibaraki, “Computing edge-
connectivity in multigraphs and capacitated graphs,”
SIAM Journal on Discrete Mathematics, vol. 5, no. 1, pp.
54–66, 1992.

[72] Z. Galil and G.F. Italiano, “Reducing edge connectivity to
vertex connectivity,” ACM SIGACT News, vol. 22, no. 1, pp.
57–61, 1991.

[73] H. N. Gabow, “A matroid approach to finding edge-
connectivity and packing arborescences,” Journal of Com-
puter and System Sciences, vol. 50, no. 2, pp. 259–273, 1995.

[74] D. R. Karger, “Minimum cuts in near-linear time,” Journal of
the ACM, vol. 47, no. 1, pp. 46–76, 2000.

[75] G. Cai and Y. Sun, “The minimum augmentation of any
graph to a K-edge-connected graph,” Networks, vol. 19, no.
1, pp. 151–172, 1989.

[76] T. Watanabe and A. Nakamura, “Edge-connectivity augmen-
tation problems,” Journal of Computer and System Sciences,
vol. 35, no. 1, pp. 96–144, 1987.

[77] A. Frank, “Augmenting graphs to meet edge-connectivity
requirements,” SIAM Journal on Discrete Mathematics, vol. 5,
no. 1, pp. 25–53, 1992.

[78] H. N. Gabow, “Applications of a poset representation to
edge connectivity and graph rigidity,” in Proceedings of the

32nd Annual Symposium on Foundations of Computer Science
(FOCS ’91), pp. 812–821, October 1991.

[79] A. A. Benczúr, “Augmenting undirected connectivity in RNC
and in randomized Õ(n3) time,” in Proceedings of the 26th
Annual ACM Symposium on Theory of Computing (STOC
’94), pp. 658–667, New York, NY, USA, May 1994.

[80] H. Nagamochi and T. Ibaraki, “Deterministic Õ(nm) time
edge-splitting in undirected graphs,” Journal of Combinato-
rial Optimization, vol. 1, no. 1, pp. 5–46, 1997.

[81] A. A. Benczúr and D. R. Karger, “Augmenting undirected
edge connectivity in Õ(n2) time,” Journal of Algorithms, vol.
37, no. 1, pp. 2–36, 2000.

[82] H. Nagamochi and T. Ibaraki, “Graph connectivity and
its augmentation: applications of MA orderings,” Discrete
Applied Mathematics, vol. 123, pp. 447–472, 2002.

[83] Z. Nutov, “Approximating connectivity augmentation prob-
lems,” ACM Transactions on Algorithms, vol. 6, no. 1, article
5, 2009.

[84] J. Plesnı́k, “Minimum block containing a given graph,” Archiv
der Mathematik, vol. 27, no. 1, pp. 668–672, 1976.

[85] S. Khuller and R. Thurimella, “Approximation algorithms for
graph augmentation,” Journal of Algorithms, vol. 14, no. 2, pp.
214–225, 1993.

[86] S. Taoka, T. Watanabe, and T. Mashima, “Maximum weight
matching-based algorithms for k-edge-connectivity augmen-
tation of a graph,” in Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS ’05), pp. 2231–
2234, May 2005.

[87] A. Rosenthal and A. Goldner, “Smallest augmentation to
biconnect a graph,” SIAM Journal on Computing, vol. 6, no.
1, pp. 55–66, 1977.

[88] T. S. Hsu and V. Ramachandran, “Finding a smallest
augmentation to biconnect a graph,” SIAM Journal on
Computing, vol. 22, no. 5, pp. 889–912, 1993.

[89] T. Watanabe and A. Nakamura, “A minimum 3-connectivity
augmentation of a graph,” Journal of Computer and System
Sciences, vol. 46, no. 1, pp. 91–128, 1993.

[90] T. Jordán, “On the optimal vertex-connectivity augmenta-
tion,” Journal of Combinatorial Theory B, vol. 63, no. 1, pp.
8–20, 1995.

[91] T. Hsu, “On four-connecting a triconnected graph,” in
Proceedings of the 33rd Annual Symposium on Foundations
of Computer Science (FOCS ’92), pp. 70–79, IEEE Computer
Society, Washington, DC, USA, October 1992.

[92] T. Jordán, “A note on the vertex-connectivity augmentation
problem,” Journal of Combinatorial Theory B, vol. 71, no. 2,
pp. 294–301, 1997.

[93] B. Jackson and T. Jordán, “A near optimal algorithm for
vertex-connectivity augmentation,” in Proceedings of the 11th
International Conference on Algorithms and Computation
(ISAAC ’00), pp. 312–325, Springer, London, UK, December
2000.

[94] B. Jackson and T. Jordán, “Independence free graphs and
vertex connectivity augmentation,” Journal of Combinatorial
Theory B, vol. 94, no. 1, pp. 31–77, 2005.

[95] G. Kortsarz and Z. Nutov, “Approximating minimum-
cost connectivity problems,” in Handbook of Approximation
Algorithms and Metaheuristics, Chapter 58, Chapman &
Hall/CRC, 2007.

[96] G. Liberman and Z. Nutov, “On shredders and vertex
connectivity augmentation,” Journal of Discrete Algorithms,
vol. 5, no. 1, pp. 91–101, 2007.

18 ISRN Communications and Networking

[97] J. Cheriyan and R. Thurimella, “Fast algorithms for k-
shredders and k-node connectivity augmentation,” Journal of
Algorithms, vol. 33, no. 1, pp. 15–50, 1999.

[98] L. A. Végh, “Augmenting undirected node-connectivity by
one,” SIAM Journal on Discrete Mathematics, vol. 25, no. 2,
pp. 695–718, 2011.

[99] A. Frank and T. Jordán, “Minimal edge-coverings of pairs of
sets,” Journal of Combinatorial Theory, Series B, vol. 65, no. 1,
pp. 73–110, 1995.

[100] A. Frank and L. A. Végh, “An algorithm to increase the node-
connectivity of a digraph by one,” Discrete Optimization, vol.
5, no. 4, pp. 677–684, 2008.

[101] A. Frank, “Connectivity augmentation problems in network
design,” in Mathematical Programming: State of the Art 1994,
J. R. Bridge and K. G. Murty, Eds., University of Michigan,
Ann Arbor, Mich, USA, 1994.

[102] M. Grötschel, C. L. Monma, and M. Stoer, “Design of
survivable networks,” in Handbooks in Operations Research
and Management Science, vol. 7, pp. 617–672, 1995.

[103] M. Penn and H. Shasha-Krupnik, “Improved approximation
algorithms for weighted 2- and 3-vertex connectivity aug-
mentation problems,” Journal of Algorithms, vol. 22, no. 1,
pp. 187–196, 1997.

[104] S. Khuller, “Approximation algorithms for finding highly
connected subgraphs,” in Approximation Algorithms for NP-
Hard Problems, D. S. Hochbaum, Ed., pp. 236–265, PWS
Publishing, Boston, Mass, USA, 1997.

[105] S. Khuller and B. Raghavachari, “Improved approximation
algorithms for uniform connectivity problems,” Journal of
Algorithms, vol. 21, no. 2, pp. 434–450, 1996.

[106] R. Ravi and D. P. Williamson, “An approximation algorithm
for minimum-cost vertex-connectivity problems,” Algorith-
mica, vol. 18, no. 1, pp. 21–43, 1997.

[107] G. N. Frederickson and J. JáJá, “On the relationship between
the biconnectivity augmentation and travelling salesman
problems,” Theoretical Computer Science, vol. 19, no. 2, pp.
189–201, 1982.

[108] C.-L. Li, S. T. Mccormick, and D. Simchi-Levi, “The com-
plexity of finding two disjoint paths with min-max objective
function,” Discrete Applied Mathematics, vol. 26, no. 1, pp.
105–115, 1990.

[109] B. Yang, S. Q. Zheng, and S. Katukam, “Finding two disjoint
paths in a network with min-min objective function,” in
Proceedings of the 15th IASTED International Conference on
Parallel and Distributed Computing and Systems, November
2003.

[110] A. Itai, Y. Perl, and Y. Shiloach, “The complexity of finding
maximum disjoint paths with length constraints,” Networks,
vol. 12, no. 3, pp. 277–286, 1982.

[111] A. Bley, “On the complexity of vertex-disjoint length-
restricted path problems,” Computational Complexity, vol.
12, no. 3-4, pp. 131–149, 2003.

[112] C.-L. Li, S. T. Mccormick, and D. Simchi-Levi, “Finding
disjoint paths with different path costs: complexity and
algorithms,” Networks, vol. 22, no. 7, pp. 653–667, 1992.

[113] D. Xu, Y. Chen, Y. Xiong, C. Qiao, and X. He, “On finding
disjoint paths in single and dual link cost networks,” in
Proceedings of the IEEE INFOCOM, March 2004.

[114] Q. She, X. Huang, and J. P. Jue, “How reliable can two-path
protection be?” IEEE/ACM Transactions on Networking, vol.
18, no. 3, pp. 922–933, 2010.

[115] B. H. Shen, B. Hao, and A. Sen, “On multipath routing
using widest pair of disjoint paths,” in Proceedings of the High
Perfomance Switching and Routing (HPSR ’04), pp. 134–140,
April 2004.

[116] A. A. Beshir and F. A. Kuipers, “Variants of the min-
sum link-disjoint paths problem,” in Proceedings of the 16th
Annual IEEE Symposium on Communications and Vehicular
Technology (IEEE SCVT ’09), IEEE/SCVT, Louvain-la-Neuve,
Belgium, November 2009.

[117] R. Bhatia, M. Kodialam, and T. V. Lakshman, “Finding dis-
joint paths with related path costs,” Journal of Combinatorial
Optimization, vol. 12, no. 1-2, pp. 83–96, 2006.

[118] H. D. Sherali, K. Ozbay, and S. Subramanian, “The time-
dependent shortest pair of disjoint paths problem: complex-
ity, models, and algorithms,” Networks, vol. 31, no. 4, pp.
259–272, 1998.

[119] J. W. Suurballe, “Disjoint paths in a network,” Networks, vol.
4, no. 2, pp. 125–145, 1974.

[120] J. W. Suurballe and R. E. Tarjan, “A quick method for finding
shortest pairs of disjoint paths,” Networks, vol. 14, pp. 325–
336, 1984.

[121] N. Taft-Plotkin, B. Bellur, and R. Ogier, “Quality-of-service
routing using maximally disjoint paths,” in Proceedings of the
7th International Workshop on Quality of Service (IWQoS),
pp. 119–128, London, UK, May 1999.

[122] R. G. Ogier, V. Rutenburg, and N. Shacham, “Distributed
algorithms for computing shortest pairs of disjoint paths,”
IEEE Transactions on Information Theory, vol. 39, no. 2, pp.
443–455, 1993.

[123] D. Sidhu, R. Nair, and S. Abdallah, “Finding disjoint paths
in networks,” ACM SIGCOMM Computer Communication
Review, vol. 21, no. 4, pp. 43–51, 1991.

[124] J. Roskind and R. E. Tarjan, “Note on finding minimum-
cost edge-disjoint spanning trees,” Mathematics of Operations
Research, vol. 10, no. 4, pp. 701–708, 1985.

[125] G. Xue, L. Chen, and K. Thulasiraman, “Quality-of-service
and quality-of-protection issues in preplanned recovery
schemes using redundant trees,” IEEE Journal on Selected
Areas in Communications, vol. 21, no. 8, pp. 1332–1345, 2003.

[126] W. Zhang, G. Xue, J. Tang, and K. Thulasiraman, “Faster
algorithms for construction of recovery trees enhancing QoP
and QoS,” IEEE/ACM Transactions on Networking, vol. 16, no.
3, pp. 642–655, 2008.

[127] P. Cholda, A. Mykkeltveit, B. E. Helvik, O. J. Wittner, and A.
Jajszczyk, “A survey of resilience differentiation frameworks
in communication networks,” IEEE Communications Surveys
& Tutorials, vol. 9, no. 4, pp. 32–55, 2007.

[128] S. Ramasubramanian, M. Harkara, and M. Krunz, “Linear
time distributed construction of colored trees for disjoint
multipath routing,” Computer Networks, vol. 51, no. 10, pp.
2854–2866, 2007.

[129] Y. Guo, F. A. Kuipers, and P. Van Mieghem, “A link-disjoint
paths algorithm for reliable QoS routing,” International
Journal of Communication Systems, vol. 16, no. 9, pp. 779–
798, 2003.

[130] R. Banner and A. Orda, “The power of tuning: a novel
approach for the efficient design of survivable networks,”
IEEE/ACM Transactions on Networking, vol. 15, no. 4, pp.
737–749, 2007.

[131] O. Gerstel and G. Sasaki, “Quality of protection (QoP): a
quantitative unifying paradigm to protection service grades,”
Optical Networks Magazine, vol. 3, no. 3, pp. 40–49, 2002.

ISRN Communications and Networking 19

[132] A. V. Goldberg and R. E. Tarjan, “Finding minimum-cost
circulations by canceling negative cycles,” Journal of the ACM,
vol. 36, no. 4, pp. 873–886, 1989.

[133] H. Luo, L. Li, and H. Yu, “Routing connections with differ-
entiated reliability requirements in WDM mesh networks,”
IEEE/ACM Transactions on Networking, vol. 17, no. 1, pp.
253–266, 2009.

[134] F. A. Kuipers, A. Orda, D. Raz, and P. Van Mieghem,
“A comparison of exact and ε-approximation algorithms
for constrained routing,” in Proceedings of the 5th IFIP
Networking Conference, Coimbra, Portugal, May 2006.

[135] A. Chakrabarti and G. Manimaran, “Reliability constrained
routing in QoS networks,” IEEE/ACM Transactions on Net-
working, vol. 13, no. 3, pp. 662–675, 2005.

[136] D. Coudert, P. Datta, S. Perennes, H. Rivano, and M. E. Voge,
“Shared risk resource group: complexity and approximability
issues,” Parallel Processing Letters, vol. 17, no. 2, pp. 169–184,
2007.

[137] J. Q. Hu, “Diverse routing in optical mesh networks,” IEEE
Transactions on Communications, vol. 51, no. 3, pp. 489–494,
2003.

[138] R. Bhandari, Survivable Networks: Algorithms for Diverse
Routing, Kluwer Academic Publishers, New York, NY, USA,
1999.

[139] P. Datta and A. K. Somani, “Graph transformation
approaches for diverse routing in shared risk resource group
(SRRG) failures,” Computer Networks, vol. 52, no. 12, pp.
2381–2394, 2008.

[140] X. Luo and B. Wang, “Diverse routing in WDM optical
networks with shared risk link group (SRLG) failures,” in
Proceedings of the 5th IEE International Workshop on Design
of Reliable Communication Networks (DRCN ’05), Island of
Ischia, Naples, Italy, October 2005.

[141] H. W. Lee, E. Modiano, and K. Lee, “Diverse routing in
networks with probabilistic failures,” IEEE/ACM Transactions
on Networking, vol. 18, no. 6, pp. 1895–1907, 2010.

[142] W. D. Grover, Mesh-Based Survivable Transport Networks:
Options and Strategies for Optical, MPLS, SONET and ATM
Networking, Prentice Hall PTR, London, UK, 2003.

[143] D. Xu, Y. Xiong, C. Qiao, and G. Li, “Trap avoidance
and protection schemes in networks with shared risk link
groups,” Journal of Lightwave Technology, vol. 21, no. 11, pp.
2683–2693, 2003.

[144] H. Zang, C. S. Ou, and B. Mukherjee, “Path-protection
routing and wavelength assignment (RWA) in WDM mesh
networks under duct-layer constraints,” IEEE/ACM Transac-
tions on Networking, vol. 11, no. 2, pp. 248–258, 2003.

[145] A. Sen, S. Murthy, and S. Banerjee, “Region-based
connectivity—a new paradigm for design of fault-tolerant
networks,” in Proceedings of the 15st International Conference
on High Performance Switching and Routing (HPSR ’09),
Paris, France, June 2009.

[146] P. K. Agarwal, A. Efrat, S. Ganjugunte, D. Hay, S. Sankarara-
man, and G. Zussman, “The resilience of WDM networks to
probabilistic geographical failures,” in Proceedings of the IEEE
INFOCOM, pp. 1521–1529, Shanghai, China, April 2011.

[147] S. Neumayer, A. Efrat, and E. Modiano, “Geographic max-
flow and mincut under a circular disk failure model,” in
Proceedings of the 31st Annual IEEE International Conference
on Computer Communications (INFOCOM ’12), March 2012.

[148] S. Trajanovski, F. A. Kuipers, P. Van Mieghem, A. Ilić, and
J. Crowcroft, “Critical regions and region-disjoint paths in a
network”.

[149] A. A. Beshir, F. A. Kuipers, P. Van Mieghem, and A.
Orda, “On-line survivable routing in WDM networks,” in
Proceedings of the 21st International Teletraffic Congress (ITC
’21), Paris, France, September 2009.

[150] A. A. Beshir, F. A. Kuipers, A. Orda, and P. Van Mieghem,
“Survivable impairment-aware traffic grooming in WDM
rings,” in Proceedings of the 23rd International Teletraffic
Congress, San Francisco, Calif, USA, September 2011.

[151] A. A. Beshir, F. A. Kuipers, A. Orda, and P. Van Mieghem,
“Survivable routing and regenerator placement in optical
networks,” in Proceedings of the 4th International Workshop
on Reliable Networks Design and Modeling (RNDM ’12),
Petersburg, Russia, October 2012.

[152] A. A. Beshir, R. Nuijts, R. Malhotra, and F. A. Kuipers, “Sur-
vivable impairment-aware traffic grooming,” in Proceedings
of the 16th European Conference on Networks and Optical
Communications (NOC ’11), Northumbria University, New-
castle upon Tyne, UK, July 2011.

