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Finite-element model for phase-change recording
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The finite-element method is applied to model phase-change recording in a grooved recording stack. A rigor-
ous model for the scattering of a three-dimensional focused spot by a one-dimensional periodic grating is used
to determine the absorbed light in a three-dimensional region inside the phase-change layer. The optical
model is combined with a three-dimensional thermal model to compute the temperature distribution. Land
and groove recording and polarization dependence are studied, and the model is applied to the Blu-ray Disc.
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1. INTRODUCTION
For rewritable optical storage media such as the rewrit-
able compact disc, the rewritable digital versatile disc,
and the Blu-ray Disc, data storage is based on two dis-
tinct states of a phase-change (PC) material. By applica-
tion of short high-power pulses with a laser beam that is
focused on the storage layer, submicrometer-sized amor-
phous marks are formed in a crystalline background. Af-
ter the marks have been written, they can be detected by
monitoring intensity variations in the reflected light of
the same focused laser beam at a much lower power level.

To increase the storage capacity and the data transfer
rates of PC optical disks, modeling of the recording pro-
cess is important. By use of numerical simulations, in-
sight can be gained into the effects of the polarization of
the laser spot, the effects of the spot size and the spot
shape on the mark formation, and the differences be-
tween land recording and groove recording. Further-
more, the groove geometry and the stack can be opti-
mized. Other phenomena that can be studied by
modeling are the occurrence of optical and thermal cross-
track cross talk.

The model of the recording process for PC optical disks
can be divided into three parts. In the first part the elec-
tromagnetic (EM) field distribution is calculated within
the disk. From this field the light absorption in the me-
dium can be derived. It is in general assumed that all of
the absorbed light is converted into heat. Then, in the
second part, the temperature distribution in the medium
is computed by solving the heat equation. The third part
is the modeling of temperature-induced mark formation
or erasure in the PC layer. In this paper only the first
two parts of the model will be considered.

Because the feature sizes of the grooved structure of
the medium are of the order of the wavelength of the laser
spot, the polarization of the incident light cannot be ne-
glected. A rigorous vector diffraction model based on
Maxwell’s equations is thus required in the calculation of
the light intensity in the stack.
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Many vector diffraction models have been considered
by other authors to derive the EM field distribution in
grooved multilayered stacks. These methods have been
developed in the context of the optical readout of prere-
corded digital versatile discs. Judkins and Ziolkowski1

used the finite-difference time-domain method with ab-
sorbing boundary conditions and with a Lorentz disper-
sion model to incorporate conducting metals of which the
real part of the electric permittivity is negative. Liu and
Kowarz2 applied the finite-difference frequency-domain
method by using Higdon’s absorbing boundary conditions
and a preconditioned conjugate gradient method to solve
the discretized system of equations. Marx and Psaltis3

used a Lippmann–Schwinger-type of integral equation to
solve the diffraction problem for a two-dimensional (2D)
incident beam.

In the above-mentioned papers the authors considered
the interaction of a 2D incident beam with 2D grooved ge-
ometries. Yeh et al.4 studied the more general problem of
a three-dimensional (3D) spot that is incident on a 2D pe-
riodically grooved structure. We will call this type of
model a two-and-one-half dimensional (21

2D) model. The
incident spot is expanded into plane waves, and a scatter-
ing problem is solved for every incident plane wave by use
of a coordinate transformation to transfer the diffraction
problem on the grooved structure to a configuration con-
sisting of flat interfaces but with inhomogeneous materi-
als (Chandezon’s method).

Recently some authors published models that combine
the calculation of the 3D EM field distribution, due to a
3D incident spot, with the computation of the 3D tem-
perature distribution. Peng and Mansuripur5 used a
finite-difference time-domain algorithm formulated in a
3D curvilinear coordinate system in order to determine
the EM field distribution in a PC optical recording stack
and to study thermal cross-track cross-talk effects. From
the EM field, the energy that is absorbed by the medium
is calculated. This absorbed energy is converted into
heat and is used as the source term in the thermal diffu-
2005 Optical Society of America
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sion equation. To obtain the temperature distribution in
the medium, Peng and Mansuripur solved this equation
numerically by using the alternating-direction implicit
finite-difference technique. Nishi et al.6 used a finite-
difference time-domain model based on the Lorentz dis-
persion model published by Judkins and Ziolkowski1 to
compute the 3D absorbed energy distribution.

In this paper we also present a model in which we com-
bine an optical model and a thermal model. To calculate
the EM field in a multilayered recording stack, we will
use the 21

2D model by Brok and Urbach.7 In that paper,
similar to Yeh et al.,4 the diffraction of a 3D incident spot
on a 2D configuration, by means of a plane-wave expan-
sion of the spot, was also considered. But the sampling is
done such that the plane waves can be divided into sets
that, for the given period of the grating, consist of waves
that are orders of each other. This considerably reduces
the number of scattering problems that has to be solved.
The superposition of the plane waves in each set yields an
incident field that is, apart from a phase shift, periodic.
The interaction of this incident field with the periodic
grating can be computed by solving a single boundary-
value problem (BVP). This BVP is derived on a 2D com-
putational box that is one period wide and is called a unit
cell. Instead of approximative absorbing boundary con-
ditions, exact radiation conditions for the scattered near
field are used. The solution of the BVP is computed with
the finite-element method (FEM). To calculate the ab-
sorbed EM energy in a 3D neighborhood of the unit cell

Fig. 1. Schematic visualization of the unit cell V in a cross sec-
tion of an optical disk.

Fig. 2. Section of (kx , ky) space showing a fragment of the Bril-
louin zone B 3 R (hatched). The grid distance Dkx is taken such
that 2p/p is a multiple of Dkx (in the figure 2p/p 5 2Dkx). For
clarity, the spacing in the ky direction, Dky , is chosen equal to
Dkx . The encircled points, on the one hand, and the crossed
grid points, on the other hand, are sets of grid points that are
each other’s order.
that is illuminated by the spot and that is relevant for the
heat diffusion problem, one must first extend the solution
of the BVPs from the unit cell to this 3D region by using
the property that the fields are, apart from a phase shift,
periodic. After this, the extended fields are added coher-
ently to compute the total EM field in the 3D region of in-
terest.

In our model, both the total EM field and the tempera-
ture distribution are calculated with the FEM. All finite-
element computations are performed with the SEPRAN8

finite-element package. Besides the fact that a lot is
known about its mathematical properties, the FEM has
certain advantages over other methods. The main ad-
vantage is that all kinds of geometries, such as bumped
layers, can be simulated. The shape of the interfaces is
not restricted, and kinks are permitted. Furthermore,
the presence of metals with negative real electric permit-
tivity does not cause any problem. For configurations
that are of the order of the wavelength such as in the
problem studied in this paper, a relative error in the total
field, measured in the energy norm, of less than 1%, re-
quires a mesh of approximately 20 elements per wave-
length (measured in the material). However, when the
configuration is many wavelengths large, more elements
per wavelength are needed to prevent the accumulation of
phase errors.

Owing to the fact that the 3D scattering problem is
solved by expanding the incident field into fields that are
periodic apart from a phase shift and by solving for each
of these incident fields a 2D problem on the unit cell, the
systems of equations to be solved are sufficiently small for
a direct method (Gaussian elimination) to be applied. By
the use of a direct method, it is guaranteed that the cor-
rect solution is always obtained.

In the present model of the recording process, the spot
is considered to be turned on continuously for a given pe-
riod of time. For a given stack geometry, the absorbed
energy in the medium is derived and used as heat source
in the thermal diffusion equation. Changes in the optical
properties of the medium due to the heating by the spot
are not taken into account.

The content of this paper is as follows. In Section 2 we
consider the scattering of an arbitrary 3D incident field by
a one-dimensional diffraction grating. In particular, we
discuss how the solutions of the scattering problems on
the unit cell are extended to the 3D region of interest for
the thermal problem. In Section 3 we discuss how the ac-
quired absorbed energy distribution, i.e., the heat source,
is integrated into the 3D thermal diffusion model. We
conclude this paper with a benchmark study in which we
compare our model qualitatively for a stationary spot
with that of Peng and Mansuripur. Finally, we consider
land and groove recording for the Blu-ray Disc.

2. SCATTERING OF A FOCUSED SPOT BY
A ONE-DIMENSIONAL DIFFRACTION
GRATING
Consider a periodic grating structure as shown in Fig. 1.
With respect to a Cartesian coordinate system (x, y, z),
the grating is assumed to be p periodic in the x direction
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and translation invariant parallel to the y axis. The z
axis coincides with the optical axis of the illumination
system. All materials are nonmagnetic; hence the mag-
netic permeability m 5 m0 everywhere. Let the 2D unit
cell V be the region in the plane y 5 0 defined by

V 5 H ~x, z !u2
p

2
, x ,

p

2
, a , z , bJ . (1)

The planes z 5 a and z 5 b are chosen such that z , a
and z . b are half-spaces in which the electric permittiv-
ity e is constant and such that V has minimal area.

Let the electric field Ei of the incident spot be given in
a certain plane z 5 zi above the grating. Let

Fig. 3. Extended geometry. The cell on which the BVPs are
formulated is called the computational cell. The extended re-
gion is taken large enough to contain at least the region in which
the intensity of the laser spot is essentially nonzero.

Fig. 4. Tetrahedral mesh used in the thermal calculations. In
the region in which the absorbed energy is mapped, the grid size
is taken of the same order in size as that of the triangular mesh
of the optical model.
F(Ei)(kx , ky , zi) be the Fourier transform of Ei with re-
spect to x and y in the plane z 5 zi :

F~Ei!~kx , ky , zi! 5 E
2`

` E
2`

`

Ei~x, y, zi!

3 exp@2i~kxx 1 kyy !#dxdy. (2)

Fig. 5. To compute the absorbed energy in a nodal point (circles)
of the tetrahedral mesh for the thermal model, we first calculate
the values in the intersections X with the two enclosing ex-
panded cells of the optical model. These values are linearly in-
terpolated by using the piecewise linear basis functions on the
triangles. The absorbed energy in the nodal point is then the
linearly interpolated value of the values in the intersection
points.

Fig. 6. Cross section of the stack as used in configuration C1 ac-
cording to Peng and Mansuripur.5 The structure is translation
invariant in the y direction.

Table 1. Numerical Values for the Complex
Refractive Index n, Heat Capacity rC, and

Thermal Conductivity k as Used in Simulations for
the Configuration of Fig. 6

Material n
rC

(J/cm3 °C)
k

(W/cm °C)

Cover (polycarbonate) 1.54 1.7 0.0023
Dielectric (ZnS-SiO2) 2.3 2.005 0.0058
PC layer (Ge2Sb2.3Te5) 1.78 1 3.23i 1.285 0.006
Reflector (Al alloy) 0.5 1 3.8i 2.45 0.2
Substrate (polycarbonate) 1.54 1.7 0.0023
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Fig. 7. Dominant field components (arbitrary units) and absorbed energy (W/p3) in the unit cell for a TM-polarized spot that is incident
on a flat version of the multilayered stack of Fig. 6. (a) uHyu and (b) absorbed energy. The spot is focused in air in the middle of the PC
layer.
The inverse Fourier transform yields

Ei~x, y, zi! 5
1

4p2
E

2`

` E
2`

`

F~Ei!~kx , ky , zi!

3 exp@i~kxx 1 kyy !#dkxdky , (3)

which corresponds to a plane-wave expansion of the inci-
dent field with wave vectors k, of which kx and ky are the
components along the x and y axes, respectively. The
time dependence is given by the factor exp(2ivt), which is
omitted from all formulas.

We will always choose the branch of the complex square
root z1/2 such that the cut is along the negative real axis
and such that, for positive real z, z1/2 . 0 and (2z)1/2

5 1iz1/2. Because all waves of the incident field are
propagating downward and since the time dependence of
the fields is assumed to be given by exp(2ivt), it follows
that the z component of the wave vectors k in the plane-
wave expansion of the incident field is given by kz
5 2@v2e0m0eu 2 (kx

2 1 ky
2)#1/2, where eu is the relative

electric permittivity of the material in the upper homoge-
neous half-space z . b. The incident field in any other
plane z 5 constant is thus given by

Ei~x, y, z ! 5
1

4p2
E

2`

` E
2`

`

F~Ei!~kx , ky , zi!

3 exp$i@kxx 1 kyy 1 kz~z 2 zi!#%dkxdky .

(4)

We rewrite this as follows:
Ei~x, y, z !

5
1

4p2
E

2`

` E
2`

`

F~Ei!~kx , ky , zi!

3 exp$i@kxx 1 kyy 1 kz~z 2 zi!#%dkxdky

5
1

4p2 (
m52`

` E
2`

` E
2p/p12pm/p

p/p12pm/p

F~Ei!~kx , ky , zi!

3 exp$i@kxx 1 kyy 1 kz~z 2 zi!#%dkxdky

5
1

4p2 (
m52`

` E
2`

` E
2p/p

p/p

F~Ei!S kx 1
2pm

p
, ky , ziD

3 expH F iS kx 1
2pm

p D x 1 ikyy

1 kz
m~z 2 zi!G J dkxdky

5 E
2`

` E
2p/p

p/p

Ekx ,ky

i ~x, z !exp@i~kxx 1 kyy !#dkxdky , (5)

where

kz
m 5 2@v2e0eum0 2 ~kx 1 2pm/p !2 2 ky

2#1/2,

Ekx ,ky

i ~x, z !exp@i~kxx 1 kyy !#

5
1

4p2 (
m52`

`

F~Ei!S kx 1
2pm

p
, ky , ziD

3 expF iS kx 1
2pm

p D x 1 ikyy 1 ikz
m~z 2 zi!G .

(6)

The field Ekx ,ky

i (x, z) is p periodic with respect to x and is
independent of y. The field (6) depends harmonically on
y and is, apart from a phase-shift, p periodic in x.
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Since the incident field satisfies the source-free Max-
well equations in the upper half-space,

“ 3 Ei 5 ivm0Hi, (7)

“ 3 Hi 5 2ive0euEi, (8)

we have

F~Hi!~kx , ky , z ! 5
k

vm0
3 F~Ei!~kx , ky , z !. (9)

For the magnetic field component of the incident spot Hi,
we can therefore write

Hi~x, y, z ! 5 E
2`

` E
2p/p

p/p

Hkx ,ky

i ~x, z !

3 exp@i~kxx 1 kyy !#dkxdky , (10)

where

Hkx ,ky

i ~x, z !exp@i~kxx 1 kyy !#

5
1

4p2 (
m52`

` km

vm0
3 F~Ei!S kx 1

2pm

p
, ky , ziD

3 expF iS kx 1
2pm

p D x 1 ikyy 1 ikz
m~z 2 zi!G .

(11)

Here km 5 (kx 1 2pm/p, ky , kz
m). We have thus writ-

ten the electric and magnetic components of the incident
spot as an integral over kx and ky of the fields

Ekx ,ky

i ~x, z !exp@i~kxx 1 kyy !#, (12)

Hkx ,ky

i ~x, z !exp@i~kxx 1 kyy !#, (13)

where Ekx ,ky

i (x, z) and Hkx ,ky

i (x, z) are p periodic in x.
The integral extends over B 3 R, where B is the one-
dimensional Brillouin zone, defined by

B 5 H kxu2
p

p
, kx ,

p

p J . (14)

Let e(r) denote the relative (in general, complex-
valued) electric permittivity at position r 5 (x, y, z).
Then e is p periodic with respect to x and independent of
y. It then follows from Bloch’s theorem that for each of
the incident fields (12) and (13) the corresponding scat-
tered fields are, apart from a phase shift, p periodic in x
and harmonic in y for the same kx and ky as the incident
field. Hence the total EM field can, similarly to the inci-
dent and the scattered fields, be written as an integral:

Etot~x, y, z ! 5 E
2`

` E
2p/p

p/p

Ekx ,ky

tot ~x, z !

3 exp@i~kxx 1 kyy !#dkxdky , (15)

Htot~x, y, z ! 5 E
2`

` E
2p/p

p/p

Hkx ,ky

tot ~x, z !

3 exp@i~kxx 1 kyy !#dkxdky , (16)
where Ekx ,ky

tot (x, z) and Hkx ,ky

tot (x, z) are p periodic in x and
independent of y.

It is shown in Ref. 7 that the field Ekx ,ky

tot (x, z),
Hkx ,ky

tot (x, z) can be derived from the solution of a BVP on V

with the right-hand side derived from the incident field
Ekx ,ky

i (x, z), Hkx ,ky

i (x, z). At interfaces between differ-
ent materials across which e is discontinuous, the tangen-
tial components of Ekx ,ky

tot and Hkx ,ky

tot are continuous. For
every (kx , ky), the corresponding BVP consists of a
coupled system of two linear second-order partial differ-
ential equations in terms of the axial components
îy – Ekx ,ky

tot and îy – Hkx ,ky

tot only, with exact radiation condi-
tions on the lower and upper boundaries z 5 a and z
5 b, respectively, and two periodic boundary conditions
on the boundaries x 5 6p/2. This BVP is equivalent to
the Maxwell equations for the given (kx , ky). The radia-
tion boundary conditions are derived with a plane-wave
expansion of the reflected and the total fields in the upper
and lower half-spaces. These boundary conditions are
nonlocal, since they are formulated in terms of Fourier se-
ries. The series have infinitely many terms because they
contain contributions not only of the propagating plane
waves but also of the evanescent waves. The series con-
verge slowly so that a direct numerical summation would
be time-consuming. However, as has been explained in
Ref. 9, the general term of the series can be expanded as-
ymptotically in terms of inverse powers of the Fourier in-
dex m, and the sum of the series that is thus obtained can
be summed analytically. The series whose terms consist
of the remainders of the asymptotic expansion still have
to be summed numerically, but these series converge
much faster than the original series. In this way, a very
efficient implementation of the radiation boundary condi-
tions is obtained.

We remark here that the expressions given in Brok and
Urbach7 for the nonlocal boundary conditions are correct
only if the dielectric permittivity is continuous across the
upper and lower boundaries of the computational domain.
But in the more general case that the computational do-
main is chosen such that e is different on both sides of
these boundaries, the expressions should actually be
slightly modified. In the computer code that was used to
obtain the results described in Brok and Urbach7 and in
the present paper, the correct expressions were imple-
mented.

The advantage of the formulation in terms of the axial
field components îy – Ekx ,ky

tot and îy – Hkx ,ky

tot is that these
components are always tangential to all interfaces; hence
they are continuous everywhere. Therefore, in the FEM,
one can use standard (so-called H1) linear elements. A
drawback of this approach is the loss of accuracy when
the other field components are computed, since they must
be obtained by differentiation of the axial components.

The incident field is computed with the package
DIFFRACT10 for a TE- or a TM-polarized plane wave or a
Gaussian beam that is focused by a positive lens of high
numerical aperture (NA). TE means that the electric
field of the plane wave or Gaussian beam that is incident
on the lens is parallel to the grooves, and TM means that
the magnetic field is parallel to the grooves. In the cal-
culation of the field in the focal plane z 5 zi , the rotation
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Fig. 8. Top view of the absorbed energy (104 W/mm3) and the
temperature distribution [degrees Celsius (°C)] halfway in the
PC layer for a TM-polarized spot incident on a flat version of the
stack shown in Fig. 6. (a) Absorbed energy, (b) temperature dis-
tribution.
of the field vectors is taken into account by use of the
theory of Ignatowsky11 and Richards and Wolf.12 The fo-
cused spot therefore is not perfectly TE or TM polarized
but is only predominantly TE or TM polarized. DIF-
FRACT gives only the Ex

i and Ey
i components of the inci-

dent field, whereas to solve our BVPs we need the Ey
i and

Hy
i components. Both Ex

i and Ey
i can be written as a su-

perposition of plane waves in the plane z 5 zi , as in Eq.
(3). It then follows from F(Ei) • k 5 0 that

F~Ez
i ! 5 2

1

kz
@kxF~Ex

i ! 1 kyF~Ey
i !#. (17)

The magnetic incident field Hi and, in particular, Hy
i are

then found with Faraday’s law [Eq. (7)].
The double integrals (5) and (10) with z 5 zi are dis-

cretized on a grid (kx
i , ky

j ) in B 3 R. The fast Fourier
transform (FFT) is used to compute the amplitudes
F(Ei) (kx

i , ky
j , zi). We choose the mesh distance Dkx of

the FFT grid such that 2p/p is a multiple of Dkx , i.e.,
such that

2p/p 5 nDkx , (18)

for some integer n. Then, for every grid point (kx
i , ky

j )
that is in B 3 R and with kz

i 5 iDkz, we find that the
points that are the higher orders of (kx

i , ky
j ) can be writ-

ten as

S kx
i 1

2pm

p
, ky

j D 5 ~kx
nm , ky

j !, (19)

where m is an integer (see Fig. 2). We conclude that, ow-
ing to the fact that Dkx is chosen such that 2p/p is a mul-
tiple of Dkx , the higher orders of a grid of the FFT grid
that is in B 3 R are also in the FFT grid. Therefore the
FFT grid of the spot is divided into the following sets:

H S kx
i 1

2pm

p
, ky

j D , m integerJ , (20)

where (kx
i , ky

j ) is a grid point that is inside B 3 R. The
sum of plane waves in each set is, apart from a phase
Fig. 9. Temperature distribution (°C) for a TM-polarized spot (a) in a cross section perpendicular to the groove direction and (b) a cross
section of (a) perpendicular to the interfaces along the optical axis. The stack is that of Fig. 6 except that the interfaces are flat. The
temperature values are much too large because the effect of latent heat is neglected, but the shape of the cross sections should be correct.
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shift, p periodic in x, and therefore this sum can be taken
as an incident field for the BVP corresponding to (kx

i , kj
j).

In this way the number of BVPs that have to be solved is
minimum and equal to the number of grid points of the
FFT grid that are inside the set B 3 R.

For every pair (kx
i , ky

j ) in B 3 R, the BVP is solved
with the FEM. A triangular grid is generated for the
unit cell, and piecewise linear basis functions are used for
the interpolation of the solution. For sufficient accuracy,
around twenty mesh points per wavelength (measured in
the material) are taken. The resulting large matrix is
complex valued and, in general, nonsymmetric and non-
Hermitian and is partially nonsparse owing to the nonlo-
cal boundary conditions at z 5 a and z 5 b. Because
the matrix is relatively small, a direct solver is used.

The formulas (15) and (16) for the total EM field do not
only apply to points in the unit cell but also are valid for
arbitrary (x, y, z). For all positive and negative inte-
gers m, n, the total EM field in a strip $(x, y, z)u(m
2

1
2 )p < x < (m 1

1
2 )p; y 5 nDy% is given by

Etot~ x̄ 1 mp, y, z ! 5 E
2`

` E
2p/p

p/p

Ekx ,ky

tot ~ x̄, z !exp@ikx~ x̄

1 mp ! 1 ikynDy#dkxdky , (21)

Htot~ x̄ 1 mp, y, z ! 5 E
2`

` E
2p/p

p/p

Hkx ,ky

tot ~ x̄, z !exp@ikx~ x̄

1 mp ! 1 ikynDy#dkxdky , (22)

where 2p/2 , x̄ , p/2. Hence the extension of the total
EM field from the unit cell to other cells in the plane y
5 0 and in other planes y 5 nDy requires that the fields
corresponding to every (kx , ky) in B 3 R are multiplied
by the factor exp@i(kxmp 1 kynDy)# for appropriate integers
m and n. Subsequently, the integrals (15) and (16) over
B 3 R have to be computed. Note that owing to the
(kx , ky) dependency of the exponential multiplication fac-
tor, the extension to a 3D region of interest cannot be
done after the total EM field in the unit cell has been cal-
culated. Instead, each periodic solution must be ex-
tended separately, and after that the integral must be
computed.

To be more specific, the following procedure has been
implemented. The total EM field for the unit cell is ex-
tended to a region Lopt with dimensions (Dx , Dy , Dz
5 b 2 a) that are so large that outside of Lopt the spot
can be considered to be negligible. For the discretization
in the y direction, a sufficiently small step size Dy is cho-
sen; see Fig. 3. The unit cell on which the BVP is formu-
lated will from this point onward be referred to as the
computational cell. For every pair (kx

i , ky
j ) in B 3 R, the

corresponding BVP is solved on the computational cell
with an incident field Ekx

i ,ky
j

i (x, z), Hkx
i ,ky

j
i (x, z). For

fixed ky
j the solutions corresponding to all kx

i are extended
to the neighboring cells that are in the same plane y
5 0 as the computational cell by means of multiplication
by the appropriate factor exp(ikx

imp), after which the ex-
tended fields are added coherently. The thus obtained
accumulated field in the plane y 5 0 corresponding to the
fixed ky

j is then extended to the cells in the y direction by
multiplication by the factor exp(iky
j nDy). This procedure

is carried out for all ky
j , and, by coherent summation of

all these extended fields, the total EM field in all cells of
interest in a neighborhood of the spot is obtained.

We assume that, in those layers of the recording stack
that are absorbing, the absorbed EM energy in Lopt is
transformed entirely into heat. Hence the rate Q (J m23)
at which heat is generated per unit volume, owing to the
absorption of light, is given by

Q~r! 5
1
2 ve0 Im@e~r!#uEtot~r!u2, (23)

where Im[e(r)] denotes the imaginary part of the relative
electric permittivity at position r.

3. THERMAL MODEL
The use of a 21

2D optical model has the limitation that
changes in the optical properties of the medium and thus
in the absorbed energy distribution, owing to the heating
of the laser spot, cannot be taken into account in the 3D
thermal model because these changes are 3D. The effect

Fig. 10. Absorbed energy distributions (104 W/mm3) halfway in
the PC layer for a TE-polarized spot that is incident on the
grooved multilayer of Fig. 6. (a) Center of the spot is in the
groove, (b) center of the spot is on the land.
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of these changes on the light distribution in the stack and,
in particular, on the absorbed energy is, in general, small.

The laser spot is contiguously turned on between t
5 0 and t 5 te . The disk rotates at the speed v (meters
per second). In the thermal model a 3D computational
box Ltemp with dimensions (Lx , Ly , Lz) is used. The
chosen coordinate axes are parallel to the axes of the co-
ordinate system used in the optical model but, in contrast
to the latter, are attached to the disk. Hence the coordi-
nate system used in the heat problem moves with speed v
along the grooves in the positive y direction with respect
to the coordinate system of the optical model. In the x
direction the computational box Ltemp consists of a
grooved structure of equal width as the extended region
Lopt of the optical model. This structure is further ex-
tended ungrooved to the exterior of Ltemp .

The temperature rise above ambient in the disk,
T(r, t) (degrees Celsius), satisfies the heat diffusion
equation:

rC
]T

]t
2 ¹ • @k¹T# 5 Q~x, y 1 vt, z !, (24)

Fig. 11. Absorbed energy distributions (104 W/mm3) halfway in
the PC layer for a TM-polarized spot that is incident on the
grooved multilayer of Fig. 6. (a) Center of the spot is in the
groove, (b) center of the spot is on the land.
where k (W/m °C) is the heat conductivity, r (kg/m3) is the
density, and C (J/kg °C) is the specific heat. These quan-
tities are in general different in different layers of the op-
tical disk but are taken constant in each layer. Hence
they are assumed to be independent of temperature in the
temperature range of interest. Note that by choosing the
coordinate system to move with the disk, no additional
convection term is introduced, but the source term be-
comes time dependent. The heat problem is taken to be
adiabatic, and therefore we take as boundary condition

]T/]n 5 0, (25)

where n denotes the outward-pointing unit normal at any
of the outer surfaces of Ltemp. The dimensions of Ltemp ,
in particular the lengths of the ungrooved continuations
in the x direction, are chosen large enough to ensure that
the choice of boundary conditions does not influence the
solution.

In Eq. (24) it is assumed that the temperature rises be-
cause of the total generated heat. In fact, a considerable
fraction of Q is latent heat, which does not contribute to
the rise in temperature but instead is used for the solid-
to-liquid transition during melting of the PC material.

Fig. 12. Temperature distributions (°C) halfway in the PC layer
for a TE-polarized spot that is incident on the grooved multilayer
of Fig. 6. (a) Center of the spot is in the groove, (b) center of the
spot is on the land. (Temperatures should be corrected for la-
tent heat.)
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The diffusion problem [Eqs. (24) and (25)] is 3D and
time dependent. It could, in principle, be reduced to a set
of uncoupled time-dependent problems on the unit cell V
by Fourier expanding Q and T in terms of functions that
are periodic in x apart from a phase shift, as was done for
the optical problem. But since the diffusion problem is a
BVP for a single real-valued function, the time-dependent
3D problem can just as well be efficiently solved directly
on the 3D region.

On the region Ltemp a mesh is generated, consisting of
tetrahedral elements whose size increases toward the
edges; see Fig. 4. The coarseness is taken such that, in
the subregion Lopt of Ltemp , the fineness of the tetrahe-
dral mesh is approximately of the same order in size as
that of the triangular mesh used in the EM field calcula-
tion. In points of Lopt the absorbed energy Q is mapped
onto the mesh for Ltemp by means of a linear interpola-
tion; see Fig. 5. Each nodal point of the tetrahedral grid
is first interpolated within the corresponding triangles of
two of the expanded cells in planes differing by the dis-
tance Dy of the optical mesh, by use of linear basis func-
tions. The obtained interpolated values are then once
more linearly interpolated in the y direction to find the

Fig. 13. Temperature distributions (°C) halfway in the PC layer
for a TM-polarized spot that is incident on the grooved
multilayer of Fig. 6. (a) Center of the spot is in the groove, (b)
center of the spot is on the land. (Temperatures should be cor-
rected for latent heat.)
absorbed energy in the point of interest. In points of
Ltemp outside of Lopt , the absorbed energy is taken equal
to zero.

The temperature problem [Eqs. (24) and (25)] is solved
by use of the FEM with piecewise linear basis functions.
The finite linear system of equations is, for every time
step, iteratively solved with the conjugate gradient
method. For the time integration the Euler implicit
method is used.

4. NUMERICAL RESULTS
The model described in the preceding sections has been
applied to two land–groove configurations. The first con-
figuration is chosen equal to the multilayered stack called
‘‘case C1’’ by Peng and Mansuripur5 and is shown in Fig.
6.

The optical axis coincides with the z axis and is in the
middle of Fig. 6. Hence the center of the spot is at the
center of the groove in Fig. 6, and therefore this case is
called groove recording. When the stack is translated
over half a period in the x direction, the center of the spot
is at the center of the land, and therefore this situation is
called land recording. In all simulations the spot is
focused in air in the middle of the PC layer, and the disk
is at rest.

The track pitch is 720 nm. The groove depth of 50 nm
has been exaggerated in order to study to what extent the

Fig. 14. Cross sections of the temperature distributions (°C)
halfway in the PC layer as shown in Figs. 12 and 13. (a) Center
of the spot is (a) in the groove, (b) on the land. (Temperatures
should be corrected for latent heat.)
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polarization of the incident spot influences the absorbed
energy and the temperature distribution. The material
properties of the stack are listed in Table 1. The beam
that is incident on the aperture of the lens is Gaussian,
having its 1/e amplitude at the rim of the aperture of the
lens. The output power of the laser is 4 mW, of which
86% is captured by the objective lens. The lens has a
NA 5 0.65 and wavelength of the incident light l
5 410 nm.

Before studying a grooved stack, we consider the inter-
action of a focused spot with an ungrooved version of the
multilayer stack. The results of the simulations for this
configuration are shown in Figs. 7 and 8. In Fig. 7 the
amplitude of the dominant magnetic field component and
the absorbed energy distributions are shown for a TM-
polarized spot, i.e., a spot for which the electric field is
predominantly parallel to the x direction. The layers
shown in the figures are (from bottom to top) the reflec-
tive layer, the first dielectric layer, the PC layer, and, fi-
nally, the second dielectric layer. In Fig. 7(a) standing
waves are clearly visible. It follows from Fig. 7(b) that
almost all the light is absorbed by the PC layer.
In Fig. 8(a) the absorbed energy distribution is shown
halfway in the PC layer (z 5 144 nm) after the extension
of the 2D distribution shown in Fig. 7(b) and a mapping to
the 3D thermal mesh. Figure 8(b) shows the correspond-
ing temperature distributions halfway in the PC layer for
TM polarization after t 5 100 ns.

Because the multilayer has flat interfaces, the ab-
sorbed energy density and temperature distribution in
the planes z 5 constant corresponding to TE polarization
are, of course, obtained from those of TM polarization by a
counterclockwise rotation over 90 deg around the z axis.

In Fig. 9(a) the temperature distribution is shown in
the y 5 0 plane when a TM-polarized spot is incident on
the flat multilayer (the y 5 0 plane contains the center of
the spot). Figure 9(b) shows the temperature along the
line x 5 y 5 0 as a function of the depth coordinate z. It
can be seen that there are steep gradients near and
within the PC layer. This implies that slightly changing
the position of the intersection plane can lead to relatively
large differences in the temperature profile. This is im-
portant when one compares the results with those found
Fig. 15. Temperature distribution (°C) for a TE-polarized spot in a cross section perpendicular to the groove direction for the stack of
Fig. 6. (a) For groove recording, (b) for land recording. (The temperature values are much too large because the effect of latent heat is
neglected).
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Fig. 16. Temperature distribution (°C) for a TM-polarized spot in a cross section perpendicular to the groove direction for the stack of
Fig. 6. (a) For groove recording, (b) for land recording. (The temperature values are much too large because the effect of latent heat is
neglected).
elsewhere in the literature. It should be remarked that
in this and in the other figures, the temperatures shown
are unrealistically large owing to neglect of the effect of
latent heat.

In Fig. 10, cross sections through the middle of the PC
layer are shown for the absorbed energy distributions for
a TE-polarized spot that is focused on a groove [Fig. 10(a)]
and a land [Fig. 10(b)] of the configuration shown in Fig.
6. The cross-sectional planes follow the topography of
the grooves. In Fig. 11 the analogous results are shown
for a TM-polarized spot. The corresponding temperature
distributions after the spot has been turned on for 100 ns
are shown in Figs. 12 and 13 (these are also cross sections
through the middle plane of the PC layer).

Noticeable differences can be observed according to
whether the spot is focused on a land or a groove and also
between different polarizations. For the absorbed energy
of the TE-polarized spot, a much smoother profile is found
along the edges of the groove than for a TM-polarized
spot. This holds for both the land- and the groove-
centered spots. Also, the TM case shows considerably
steeper gradients on and near the edges. Besides, a
larger number of local maxima are found for the TM-
polarized spot.

In Fig. 14 the cross-track temperature distributions in
the middle of the PC layer and parallel to the x axis are
shown for both polarizations when the focused spot is po-

Table 2. Numerical Values for the Complex
Refractive Index n, Heat Capacity rC, and

Thermal Conductivity k as Used in the
Simulations of the Blu-Ray Disc

Material n
rC

(J/cm3 °C)
k

(W/cm °C)

Cover 1.55 1.75 0.0025
PC layer (Ge6In2Sb72Te20) 1.5 1 3.45i 1.5 0.05
Dielectric (ZnS–SiO2) 2.3 2.005 0.0058
Si3N4 2.07 1.7 0.08
Reflector (Ag) 0.173 1 1.999i 1.9 0.7
Substrate (polycarbonate) 1.62 1.7 0.0023
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Fig. 17. Cross section of the stack as used for the Blu-ray Disc
simulation.

Fig. 18. Absorbed energy distributions (104 W/mm3) halfway in
the PC layer for a TM-polarized spot that is incident on the
grooved multilayer for the Blu-ray Disc (stack is shown in Fig.
15). The NA of the lens is 0.85, the wavelength of the light is
405 nm. (a) Center of the spot is in the groove, (b) center of the
spot is on the land.
sitioned over either a land or a groove. The sidelobes in
the temperature distributions seem to be typical for TM-
polarized spots. When positioned over a land, both polar-
izations show steeper gradients near the edges of the
groove. When the spot is positioned over a groove, tem-
peratures found on the neighboring lands are higher than
temperatures found on the neighboring grooves when the
spot is positioned over a land. These higher tempera-
tures of '650 °C imply a possible occurrence of undesir-
able cross-track cross-talk effects.

The shape of the isotherms as shown in Figs. 12 and 13
and the cross-track temperature distributions of Fig. 14
are very similar to the corresponding results published by
Peng and Mansuripur.5 Absolute temperatures differ,
however. The reason is that in the current work the la-
tent heat, which is used for the solid-to-liquid transition
during melting, is not taken into account. The tempera-
tures as shown in the figures should therefore be cor-
rected for this latent heat.

In Figs. 15 and 16, temperature distributions are
shown in the plane y 5 0 that is perpendicular to the
grooves and contains the center of the spot. In Fig. 15
the spot is TE polarized, and in Fig. 16 it is TM polarized.

Fig. 19. Temperature distributions (°C) halfway in the PC layer
for a TM-polarized spot that is incident on the grooved
multilayer for the Blu-ray Disc of Fig. 15. (a) Center of the spot
is in the groove, (b) center of the spot is on the land. (Tempera-
tures should be corrected for latent heat.)
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It can be seen that the temperature in the dielectric above
the PC layer is quite high.

Finally, we consider the Blu-ray Disc. The numerical
values of the physical parameters of the various materials
are listed in Table 2. In Fig. 17 a cross section of one pe-
riod of the multilayer stack of the Blu-ray Disc is shown.
The track pitch is only 320 nm. It can be seen that, com-
pared with the stack in Fig. 6, there is an additional thin
layer above the reflector. Furthermore, the PC material
and the reflector consist of materials other than in the
previous example. The wavelength is l 5 405 nm. The
output power of the laser is 4 mW, as before. The focus-
ing lens now has NA 5 0.85. The spot is again focused in
air in the middle of the PC layer. The plane wave front
that is focused by the lens is linearly polarized with the
electric field vector parallel to the x direction. Therefore
the field of the spot is predominantly TM polarized. Be-
cause of the high NA, it is now essential to take the rota-
tion of polarization into account when the light is focused
by the lens. As has been remarked before, the spots that
we use as an incident field have all been calculated by
applying the theory of Ignatowsky11 and Richards and
Wolf.12

In Figs. 18 and 19 the absorbed energy and tempera-
ture distributions after 100 ns are shown in the plane in
the middle of the PC layer of the Blu-ray Disc (the cross-
sectional plane follows the topography of the grooves).
When the results for groove and land recording in Figs.
18(a) and 18(b) are compared with the absorbed energy
distributions in Fig. 11 (for which the incident spot is also
predominantly TM polarized), quite large differences can
be seen. First of all, owing to the higher NA of the lens,
the spots are narrower in the Blu-ray case. Further-
more, the distributions for the Blu-ray stack have fewer
local extrema. Besides, for the Blu-ray case the highest
absorption values are observed near, or even on, the
sloped edges, instead of in the center of the groove or
land.

Although the absorption values for the Blu-ray stack
are more than twice as large as those found for the stack
of Fig. 6, the corresponding temperature profiles shown in
Fig. 19 show considerably lower values. The shape of the
Fig. 20. Temperature distribution (°C) for a TM-polarized spot in a cross section perpendicular to the groove direction for the Blu-ray
stack of Fig. 15. (a) Center of the spot is in the groove, (b) center of the spot is on the land. (Temperatures should be corrected for latent
heat.
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isotherms, however, is similar to that observed in Fig. 13.
The lower temperatures in the case of the Blu-ray stack
are caused by the fact that the illuminated region of the
PC layer is smaller because the spot is narrower and the
PC layer is thinner.

In Fig. 20, cross sections are shown of the temperature
in the plane y 5 0 (this plane contains the center of the
spot). The highest temperatures occur for land record-
ing.

5. CONCLUSIONS
The 2D rigorous diffraction model for the scattering of a
3D incident spot on a 2D periodically grooved geometry by
Brok and Urbach7 has been successfully modified to ob-
tain the total EM field in a 3D region of interest for opti-
cal recording simulations. The optical model has been
combined with a 3D thermal model in order to compute
the temperature distribution in a grooved multilayer re-
cording stack. The results are found to be in good accor-
dance with results published by Peng and Mansuripur.5

Furthermore, results were presented for groove and land
recording on a Blu-ray Disc.
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