
 
 

Delft University of Technology

Closed-Loop Active Model Diagnosis Using Bhattacharyya Coefficient
Application to Automated Visual Inspection
Noom, J.; Nguyen, Hieu Thao; Soloviev, O.A.; Verhaegen, M.H.G.

DOI
10.1007/978-3-030-71187-0_60
Publication date
2021
Document Version
Accepted author manuscript
Published in
International Conference on Intelligent Systems Design and Applications

Citation (APA)
Noom, J., Nguyen, H. T., Soloviev, O. A., & Verhaegen, M. H. G. (2021). Closed-Loop Active Model
Diagnosis Using Bhattacharyya Coefficient: Application to Automated Visual Inspection. In A. Abraham, V.
Piuri, N. Gandhi, P. Siarry, A. Kaklauskas, & A. Madureira (Eds.), International Conference on Intelligent
Systems Design and Applications: 20th International Conference on Intelligent Systems Design and
Applications (ISDA 2020) held December 12-15, 2020 (pp. 657-667). (Advances in Intelligent Systems and
Computing ; Vol. 1351). Springer. https://doi.org/10.1007/978-3-030-71187-0_60
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-71187-0_60
https://doi.org/10.1007/978-3-030-71187-0_60


Closed-Loop Active Model Diagnosis using
Bhattacharyya Coefficient: Application to

Automated Visual Inspection?

Jacques Noom(B), Nguyen Hieu Thao, Oleg Soloviev, and Michel Verhaegen

Delft Center for Systems and Control (DCSC),
Delft University of Technology, The Netherlands

j.noom@tudelft.nl

Abstract. This manuscript presents an improvement of state-of-the-art
Closed-Loop Active Model Diagnosis (CLAMD). The proposed method
utilizes weighted Bhattacharyya coefficients evaluated at the vertices of
the polytopic constraint set to provide a good trade-off between com-
putational efficiency and satisfactory input choice for separation of can-
didate models of a system. A simulation of a dynamical system shows
the closed-loop performance not being susceptible to the combination
of candidate models. Additionally, the broad applicability of CLAMD
is shown by means of a demonstrative application in automated visual
inspection. This application involves sequential determination of the op-
timal object inspection region for the next measurement. As compared
to the conventional approach using one full image to recognize handwrit-
ten digits from the MNIST dataset, the novel CLAMD-approach needs
significantly (up to 78%) less data to achieve similar accuracy.

Keywords: Active fault diagnosis · Model discrimination · Auxiliary
signal design · Bhattacharyya coefficient · Machine vision

1 Introduction

Model diagnosis is a key element in automated systems and will play an essential
role in the production lines of Industry 4.0. Applications range from fault detec-
tion and isolation in dynamical systems [4] to object recognition in images [11],
and beyond. In general, passive approaches are adopted, meaning that models
are discriminated using observations only. In contrast, active approaches apply
an auxiliary input to distinguish models with higher reliability. This auxiliary
input can be either precomputed, or determined during operation. Early studies
define this as offline and online (experiment) design [24], whereas modern con-
tributions shift to the conventions open-loop and closed-loop [5], respectively.
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many, France, Italy, Austria, Hungary, Romania, Sweden and Israel.
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In contrast to open-loop, closed-loop designs offer the possibility to tune the
input online in order to (further) optimize the model diagnosis. Generally, this
leads to less intrusive inputs for obtaining model estimates with similar or higher
confidence levels. Humans perform such sequential action-perception process un-
consciously in everyday life, yet this form of intelligence is nowadays not widely
spread in automation.

Among the first contributions on Closed-Loop Active Model Diagnosis (CLAMD)
are [7] for discriminating between two models and [3] for multiple models. Zhang
and Zarrop [25] were the first to apply CLAMD in dynamical systems [5] by using
the well-known sequential probability ratio test of Wald [20]. Further develop-
ments use applications mainly in the detection and isolation of faults, whereas
they generally contribute to the underlying theory of discriminating models.
Consequently, the term active fault diagnosis [5] has been adopted standardly,
thereby neglecting the equally relevant problem of discrimination between mod-
els instead of just faults. The focus of this paper is on model diagnosis.

Deterministic and stochastic approaches to CLAMD are developed to ac-
count for bounded and probabilistic uncertainties, respectively. For bounded un-
certainty, a deterministic approach enables guaranteed diagnosis of the correct
model (e.g. [13, 15, 22]). For probabilistic uncertainty such guarantee does not
exist. Instead, a stochastic (or: probabilistic) approach considers the probability
of misclassification. Whereas deterministic approaches anticipate worst-case sce-
narios, probabilistic approaches “often achieve reasonable accuracy with much
less aggressive input signals” [14]. It is more appropriate to formulate CLAMD
as a stochastic problem, since explicit bounds on signals are often difficult to
define in practice.

A major challenge in CLAMD is to provide a satisfactory input choice, while
suppressing computational effort. Although approaches for nonlinear systems
are currently being explored (e.g. [17, 18]), approaches for linear systems deserve
attention as improvements are still possible and linear system theory is still
highly relevant in practice. Further, it should be remarked that linear system
theory often serves as a basis for extension to nonlinear systems.

This paper further develops a recent linear stochastic approach in [12], in
which the sum of pairwise Bhattacharyya distances is maximized with respect
to the input in order to minimize the probability of misclassification. Since the
system uncertainties are Gaussian and the input constraints are assumed to be
polytopic, the sum of Bhattacharyya distances is convex. It is evaluated at all
vertices of the constraint set to find the maximum. The algorithm is implemented
using a receding horizon in order to achieve a closed loop. In contrast to the
reinforcement learning based linear stochastic approach in [16], no learning stage
is required to find a satisfactory input policy. Though computationally efficient,
the approach in [12] adversely separates all candidate models simultaneously,
disregarding current belief states. The performance hereby becomes susceptible
to the combination of candidate models being used. The proposed approach
overcomes this vulnerability, while suppressing the computational effort.
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The novelty of our approach is to evaluate a weighted sum of Bhattacharyya
coefficients instead, at identical vertices of the constraint set. This sum benefits
from large affinity with probability of misclassification, and therefore it is ex-
pected to generate more appropriate inputs for discrimination of models. Since
the latter method uses a number of evaluations equivalent to the method in [12],
the increase in computational effort is only moderate.

The second aim of this paper is to extend the applicability of CLAMD to
visual defect detection based on two-dimensional images. Whereas existing 2D-
approaches to passive fault detection (e.g. [21]) convert a 1D-signal of a dynami-
cal system to 2D-images, the application of our active approach inherently deals
with 2D-images of static objects. The auxiliary input defines what regions of
the object to inspect. The application closely relates to robotic view planning
[23] and sensor management [6, 9], yet it is distinctive by formulating it as a
general CLAMD-problem, regarding the views or sensors as inputs to the dis-
crimination problem. Hereby this work facilitates a valuable connection between
theory of CLAMD and applications including robotic view planning and sensor
management.

The manuscript is structured as follows. First, the methods are presented in
Sect. 2 with the state-of-the-art and the proposed approach. Then two simula-
tions of a dynamical system in Sect. 3 and of automated visual inspection in
Sect. 4 substantiate the use of the proposed approach. A conclusion is drawn in
Sect. 5.

2 Methods

Below, a summary of the approach in [12] for sequentially determining the aux-
iliary input, follows. Afterwards, the novel approach is presented. The notation
used here largely corresponds to the notation in [12], with a concatenated vector

ua:b = [u>a u>a+1 . . . u>b ]
>

or using ũa = ua:a+N−1 with prespecified horizon
length N , ‖·‖p indicates the `p-norm, ‖·‖0 the `0-“norm” counting the number of
nonzero elements, P (·) the probability of an event, p(x) the probability density
function (PDF) of a random variable x, and x|y a random variable x conditioned
on y.

Regard the linear time-varying models of a system

Mi :

{
xk+1 = A

[i]
k xk +B

[i]
k uk + E

[i]
k wk

yk = C
[i]
k xk + F

[i]
k vk

(1)

with k the time step and x ∈ Rnx , u ∈ Rnu , y ∈ Rny , w ∼ N (0, Q ∈ Rnw×nw)
and v ∼ N (0, R ∈ Rnv×nv ) the state, input, output, Gaussian process noise and
Gaussian measurement noise, respectively. The system is operating under one
of the models with discrete index i = {0, 1, . . .}. The goal is to minimise the
probability of error given by the Bayes risk using the PDFs p(ỹk+1|k|Mi, ũk|k)
and the belief states (or: prior probability) P (Mi|y0:k). The belief states are
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updated using Bayes’ theorem [12]. It is the task to minimize the Bayes risk by
choosing the optimal input from the constraint set Ũ :

ũ∗k|k = arg min
ũk|k∈Ũ

P (error|y0:k, ũk|k). (2)

From [2] we have that

P (error|y0:k, ũk|k) ≤
∑
i

∑
j>i

√
P (Mi)P (Mj)Bij(ũk|k) (3)

with

Bij(ũk|k) =

∫ √
p(ỹk+1|k|Mi, ũk|k)p(ỹk+1|k|Mj , ũk|k) dỹk+1|k (4)

the Bhattacharyya coefficient between models i and j. For Gaussian process
and measurement noise this coefficient equals Bij(ũk|k) = exp

(
−dij(ũk|k)

)
with

dij(ũk|k) the convex quadratic Bhattacharyya distance, constructed from the
state-space and covariance matrices as illustrated in [12].

Now it can be observed that Bij(ũk|k) is minimized by maximizing the convex
quadratic function dij(ũk|k). For applying this concept to multiple models, a
further relaxation is made by taking the sum of pairwise Bhattacharyya distances∑

i

∑
j>i dij(ũk|k) as objective to maximize. Solutions can be found at the border

of the constraint set Ũ . Since this “set Ũ is assumed to be a closed and bounded
convex polytope” [12], the latter sum only needs to be evaluated at a finite
number of points q to find its global optimum. The resulting optimization reads
as

ũ∗k|k = arg max
ũk|k

∑
i

∑
j>i

dij(ũk|k) s.t. ũk|k ∈ {ũ[1], ũ[2], . . . , ũ[q]}. (5)

As closed-loop implementation this maximization is implemented in a receding-
horizon: only the first element of ũ∗k|k is applied to the system and the input
sequence is updated after next measurement.

2.1 Proposed Approach

Instead of evaluating (5) at all vertices of the constraint set, the proposed ap-
proach evaluates the right-hand side of (3) at the same vertices. The advantage
is that the belief states are now considered in the right proportions regarding (3),
instead of completely neglecting those. The result of the proposed minimization

ũ∗k|k = arg min
ũk|k

∑
i

∑
j>i

√
P (Mi)P (Mj)Bij(ũk|k) s.t. ũk|k ∈ {ũ[1], ũ[2], . . . , ũ[q]}

(6)
is not necessarily identical to the result of maximization (5) but evidently it
is equal or closer to the global optimum of (2). Furthermore, with Gaussian
uncertainties Bij(ũk|k) just equals the exponent of −dij(ũk|k). Together with
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the fact that (6) is evaluated at an equivalent number of vertices as (5), the
increase in computational effort is only moderate.

In next section, a proof-of-concept simulation of a dynamical system is pre-
sented advocating the use of (6) over (5). Subsequently, the use of (6) is demon-
strated in a static imaging system with non-Gaussian uncertainties.

3 Simulation of Dynamical System

As proof-of-concept, the simulation of the dynamical system consists of five
candidate models as illustrated in Fig. 1(a). Consider two groups of models.
Models 0 and 1 are similar, except for a small change in damping. Models 2,
3 and 4 are again very similar, but now except for a different DC-gain. The
constraints on the auxiliary input (which is the only input in this case), are:

|uk| ≤ umax = 2.5, |uk+1 − uk| ≤ ∆umax = 2

The horizon length for calculating optimal input sequences is N = 4, and the
prior probabilities at time step k = 0 are P (M0) = 0.6 and P (M1:4) = 0.1. The

system is operating under model M3. The initial conditions are x0 =
[

0 0
]>

and
Σ0 = 0.5I2. Noise covariances are R = Q = 0.2.
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Fig. 1. Simulation of dynamical system with (a) magnitude plots of candidate models.
Models M0 and M1 have microscopic difference in damping, and models M2,3,4 differ
in DC-gain. The system operates under model M3. In (b) is the system output against
measurement number, using auxiliary inputs plotted in (c); and in (d) and (e) the belief
states using (5) and (6), respectively. Maximization (5) finds an input for separating all
models simultaneously, whereas minimization (6) takes into account the belief states,
leading to proper separation with significant increase in decision certainty.
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The results are plotted in Fig. 1(b-e). The original approach computes the opti-
mal auxiliary input for separating all 5 models simultaneously. It fails to diagnose
a (correct) model within 200 time steps. On the contrary, the adapted approach
computes the inputs while regarding the current belief states. Once the proba-
bilities for models M0 and M1 approximate zero, it starts generating a (nearly)
constant input for checking the DC-gain, after which it correctly diagnoses model
M3 in 64 time steps with 98% certainty. The computational time per measure-
ment using an Intel i7-9750H CPU is 0.87 ms and 1.32 ms for the original and
proposed approach, respectively. In view of the increase in decision confidence,
the increase in computational effort is moderate.

4 Application to Automated Visual Inspection

In this section, two examples illustrate how CLAMD can be applied in auto-
mated visual inspection. Both examples rely on choosing the most appropriate
region of the object to inspect, based on previous measurements. A single-image
case diagnoses the sample using one single realization of a class. This can be
interpreted as single-image object recognition, in which the images are sequen-
tially inspected at small image subregions which are believed to carry most
useful information for classification. It will reduce the required amount of data
for classification, hereby making integrated visual inspection less dependent on
the limited data transfer rate between camera and computer.

Measurement number 0 1 2 3 4

Calculate

Calculate

Exclude

Single-image

Multiple-image

Fig. 2. Illustration of CLAMD in automated visual inspection using a single image
(top) and multiple images from the same class (bottom), taken from the MNIST hand-
written digit dataset [10]. After each measurement, the optimal next 4×4-pixel inspec-
tion region u∗k+1|k is calculated. In the single-image case, previously inspected area is
excluded, whereas the multiple-image case can have equivalent inspection regions for
different measurement numbers.
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In contrast, the multiple-image case uses more realizations of the same class for
diagnosis. This is useful e.g if an industrial machine produces consecutive prod-
ucts with similar faults, and inspection of an entire object is costly. As more spe-
cific example, one could think of inspection of wafers in semiconductor industry,
where complete inspection is very time consuming due to mechanical constraints
on the visual inspection machine [1]. By inspecting only the small parts of the
wafers which are believed to carry most useful information for classification, the
inspection time per product is decreased while ensuring classification with high
reliability.

Both cases are tested on the MNIST handwritten digit dataset [10], as il-
lustrated in Fig. 2. The 28×28-pixel images are split into 49 small 4×4-pixel
regions. Each time step, the CLAMD-algorithms decide which image region to
inspect. In the single-image case the previously inspected regions are excluded
in future optimizations to prevent double usage of information.

4.1 Formulation of CLAMD-problem

The inspection problem is shaped to a CLAMD-problem as follows. The surro-
gate measurement model for this problem is

yk+1 = f(uk) (7)

with uk binary inputs indicating what regions to inspect, and f(·) a nonlinear
function formed by a neural network. The corresponding minimization becomes

ũ∗k|k = arg min
ũk|k

∑
i

∑
j>i

√
P (Mi)P (Mj)Bij(ũk|k) (8)

s.t.
∥∥ũk|k∥∥0 = 1,

∥∥ũk|k∥∥1 = 1.

Since the MNIST dataset does not include any dynamics in its samples, the
Bhattacharyya coefficient is only dependent on the prior knowledge of the (non-
Gaussian) noise parameters and can be calculated offline using (4). Note that
the proposed approach in Sect. 2.1 guarantees global optimality of (8). On the
contrary, the method in [12] is only suitable under Gaussian noise and relies on a
varying Bhattacharyya coefficient. Therefore, the proposed closed-loop approach
will be compared to an open-loop approach instead. This open-loop approach
calculates the optimal input sequence offline based on Bhattacharyya coefficients.
In the single-image case, it will result in an equivalent sequence for each experi-
ment and in the multiple-image case, it results in constantly inspecting the same
region.

For each 4×4-pixel region, a neural network is constructed using the 60 000
training samples of the MNIST handwritten digits dataset, which are normalized
and contain noise with variance 10−4. All 49 neural networks have 3 layers with
128, 10 and 1 neurons, respectively. The first two layers have as activation func-
tion a rectified linear unit (ReLU). The mean squared error of the 1-dimensional
predictions with the training labels is used as loss function. For optimizing the
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variables in the neural network, the Adam optimizer [8] is utilized. As reference,
for full image classification a similar neural network design is taken using 2 lay-
ers with 128 and 10 neurons, respectively, with the first layer having a ReLU
activation (TensorFlow 2 quickstart for beginners, in [19]).

Using the same data as for training the neural network, the PDFs are con-
structed using Gaussian kernel density estimation from the Python-command
scipy.stats.gaussian kde(). In some regions e.g. in the corners, the 4×4-pixel
regions convey very little information, as those regions are mostly black for all
classes. This results in very sharp peaks in the histograms, frustrating determina-
tion of accurate PDFs. Therefore, image regions with histograms of which more
than 40% of the data is within a neural network output of 0.02, are disregarded
for CLAMD. This results in 15 remaining valid inspection regions.

A final decision was made if the belief state satisfies P (Mi) > 0.98 for any
class i. In the single-image case there is a finite number of regions to inspect.
Therefore, if P (Mi) ≤ 0.98 for all classes i after inspecting all valid regions in
the single-image case, the full image is considered for classification.

4.2 Results

The results of the validation test using 10 000 realizations, of both single-image
and multiple-image case are given in Table 1 and Fig. 3. In the single-image
case, Table 1 shows a moderate decrease in data usage from 784 to 489 and 470
data points (or: pixels) using open- and closed-loop implementation, respectively.
However, the accuracy also decreases. A possible reason for this is inaccuracy in
construction of PDFs, which can result in erroneous belief states. In the multiple-
image case, the decrease in number of data points is considerable with 171 data
points for the closed-loop implementation. Furthermore, the accuracy increased
to 98.9%. This means that a higher accuracy was achieved in classifying objects
using 78.2% less data, compared to inspecting one full image.

The mean decision time for the full 28×28-pixel image is notably less than
the open- and closed-loop implementations. They are, however, not directly com-
parable with each other. Moreover, full image inspection only regards the classi-
fication step, whereas the open- and closed-loop designs consider the integrated
vision system including data acquisition and transfer, which can be done in a
pipeline in parallel with the computations.

Fig. 3 shows that the digits 0 and 1 are in general recognized in fewer mea-
surements than the other digits. This is probably due to their clear spatial dis-
similarity with the digits 2 to 9, especially in the middle of the images, where
the first measurements are taken. In agreement with Table 1, the closed-loop
approach is remarkably favorable in the multiple-image case. The open-loop ap-
proach separates all classes simultaneously by taking the single best region for
this. Instead, the closed-loop approach only separates the classes of which the
belief states are high, which is considerably more efficient for most digits.

The difference in performance increase using CLAMD between the single-
image and multiple-image case is so large for two reasons. First, the accessible
information is more valuable using multiple images of the digits (i.e. similar
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Table 1. The results for single- and multiple-image cases, computed using Intel i7-
9750H CPU. In the single-image case, the closed-loop approach results in a moderate
decrease in number of data points with respect to the open-loop approach. Whereas
the accuracy is lower compared to single full image classification, the open- and closed-
loop approaches reduce data consumption with from 784 to 489 and 470 data points,
respectively. In the multiple-image case, the closed-loop approach uses only 171 data
points, while obtaining a higher accuracy than single-image classification.

Average Average Mean Accuracy
#measurements #data points decision time

Single-image case
Full image 1 784 0.758 ms 97.8%
Open-loop 12.4 489 43.2 ms 95.2%
Closed-loop 11.8 470 50.9 ms 95.4%

Multiple-image case
Open-loop 37.4 598 136 ms 96.3%
Closed-loop 10.7 171 56.8 ms 98.9%

0 1 2 3 4 5 6 7 8 9
0

5

10

15

0 1 2 3 4 5 6 7 8 9
0

20

40

60

Fig. 3. Average number of measurements per class number, for the single-image (left)
and the multiple-image case (right), using open-loop and proposed closed-loop ap-
proach, respectively. Whereas the advantage of closed-loop diagnosis in the single-
image approach is only moderate, it becomes more prevailing for the multiple-image
case. In specific, for the digits with high spatial similarities (i.e. 2 to 9) the number of
measurements decreases significantly using the closed-loop method.
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regions can be inspected in multiple images). Second, inspection of only one
region as being done in the open-loop multiple-image case, is clearly inadequate
for recognizing most digits. Altogether, this experiment advocates the use of
CLAMD in a multiple-image case for classification using little data.

5 Conclusions

This paper improves the state-of-the-art in CLAMD and shows its broad ap-
plicability. A simulation of a dynamical system shows the existence of certain
cases with which the proposed CLAMD-approach can deal, while a recently de-
veloped approach fails in discriminating the models. Moreover, it is expected
that the proposed approach either equals, or outperforms the existing approach
in all cases. The CLAMD-approach is applied to automated visual inspection, in
which most informative object regions are sequentially inspected based on most
recent measurements. In recognizing the MNIST handwritten digits, a reduc-
tion in data usage of 78% is achieved, while maintaining accuracy with respect
to inspecting one full image using a similar neural network design. This makes
the CLAMD-approach particularly suitable for efficiently handling costly and/or
time-consuming measurements in inspection problems.

Future perspectives count on development of efficient algorithms for handling
more types of constraints, such as bounding the input energy. Possible applica-
tions include, but are not limited to medical imaging systems in which exposure
to radiation should be minimized while information gain should be maximized.
CLAMD enforces artificial agents to thoroughly interpret reality by acting on
it, just like humans do. A fine interpretation enhances reliability, efficiency and
intelligence. With the goal of Industry 4.0 to increase both throughput and fi-
delity, implementation of CLAMD seems indispensable for efficiently picking the
right information for accurate product examination.
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