technical design book
Embrace diversity: (un)divided Hebron
coexistence through architecture of water

klaas johannes de jong
13th of April 2018
technical design book

author: Klaas Johannes de Jong
final version: 13 April 2018
institution: Faculty of Architecture, Delft University of Technology
Graduate Lab master graduation studio

graduation project title: Embrace diversity: (un)divided Hebron:
Coexistence through architecture of water
location: Hebron, West Bank, Palestine

design tutor: ir. Henri van Bennekom
research tutor: prof. dr. ing. Carola Hein
building technology tutor: ir. Hubert van der Meel
delegate of board of examiners: ir. Daan Vitner
contents

project introduction 02
structure design 04
- starting points
- process
- concept
- elaboration
climate design 14
- starting points & process
- concept - overall strategy
- concept - ventilation
material design 20
- starting points
- concept
- material sustainability
- detail overview
- detail plans & elevations - drinking area
- detail plans & elevations - bathing area
- detail plans & elevations - worshipping area
- detail drawings

colophon ii
contents iii
Project introduction and design specifications

The Temple of Water is a building that embodies the architecture of water in attempt for the increase of tolerance and the ability to coexist between the Israelis and Palestinians.

The Temple of Water - from its concept to stand out in the (direct) environment - is shaped discordantly to its context while connecting to the people, and has many challenges to overcome and accomplish both socially as technically.
Structural design starting points

The structural design specifications follow the creation of the building and the concept of the connection between the bottom and the top of the building.

The structural design follows the concept of drilling deep into the limestone rock soil, and uses the same material as aggregate for the concrete retaining walls and other concrete structural elements.

The floor plan underground stretches into the air with columns, on which the upper water storage basin is built upon. Connections are moment-resisting casted to guarantee the building's stability.
towards space without barriers

water storage well/water storage tower

well tapping/water purification basin

completion/connection
Structural design process

structure
Structural design concept

structure
extrusion of underground to carry water tower
tension cables to carry purification basin
ground anchors to retain walls
structural columns to retain reservoir
Structural design elaboration

structure

1. construction of underground with bottom water storage
2. wall-topping through water purification basins

3. application of tension cable structure for basin support
structure
4. construction of entrance arm leading to main space

5. vertical extension of floor plan into column structure
Climate design starting points & process

The climate design for the Temple of Water follows the needs of the building, the desired atmosphere of the concept and the health measurements for the users.

The humidity is held high naturally due to the building’s function, and is not adjust by any mechanical climate systems.

Fresh air in the underground part is let in mechanically through air duct systems that guarantee the fresh flow of air into the building from the three different levels.

Temperature and fresh air control in the upper water storage happens through the low-tech solution of cross-ventilation, as wind blows much in the upper levels. Also, as the upper water basin is built for only short stay, no extra requirements with regards to climate control have to be met.

The building humidifies the extreme hot and arid air in Hebron, and collects natural fall of water into the building, as well as it collects waste water from the city. Water is purified by the building and reused. Also dirt water from use in the building is drained underneath the wooden flooring from the clean water areas and reused.

Acoustically the sound of water is only diffused by washed concrete but held at its volume - the sound of people is much absorbed by porous limestone panels backed by mineral wool insulation.

The waterfall in the building guarantees the supply of energy through the use of hydropower.
material?
cooling through purification mechanism.
Walls at constant temperature through location & thickness
pool: cold or warm
Heated elements for people sitting.
Facade rough for sound breaking (acoustics)
Heated seating.
Heated pool(?)
Dirt water flowing underneath the people's feet
Cross ventilation.
Climate design concept - overall strategy

Israel and the Palestinian Territories have a long history of being in an originally native-settler conflict. In the early decades of the 20th Century, Jews were coming to the ‘Land of Israel’. The migration caused extreme nationalism from the Arabs holding on to their land and from the Zionist movement of returning to the ‘Promised Land’. The migration went together with warfare between the Arabs and Zionists, creating a society in which both groups mistrust and misunderstand each other, of which Israel had the ability to secure and protect itself from the Palestinians by walls.
cross-ventilation
temperature and fresh-air control

shading of square

humidification and cooling of arid air

condensation/water collection on cold water tubes in warm air

helophytes & nanofiltration
water purification

noise-reducing
material use

air flow inlet

dirt-water drainage underneath floor finish/re-use of water

hydropower energy

condensation/water collection on cold water tubes in warm air

shading of square

humidification and cooling of arid air

condensation/water collection on cold water tubes in warm air

helophytes & nanofiltration
water purification

noise-reducing
material use

air flow inlet

dirt-water drainage underneath floor finish/re-use of water

hydropower energy
Climate design concept - ventilation
cross-ventilation
temperature and fresh-air control

dirt air
suction

HVAC
fresh air
inlet
treated air
inlet

dirt air
inlet

SNAC
Material design starting points

The material design is mostly based on the use of the local limestone rock, which can be used in many ways, e.g. veneer, solid panels, concrete aggregate.

Within the material design, different uses of limestone and combinations with concrete are used, much in the same color tone as the color of limestone itself.

The outside of the building is executed in polished limestone concrete; when entering the building, this polished character slowly fades into a rough, rocky and cave-y implementation of limestone, representing the feeling of walking into a cave.

While limestone does not change a lot over time, it connects to the identity of the location and it remains at its own location. One wall in the building is not cladded with any material and left bare as drilled limestone rock. Over time this will be the place where nature will take over and use sun light and humidity as the source for vegetation.

The rocky materials serve as the base for growth of vegetation and the visibility of water upon the surface. The wood stays red-ish inside and steel will oxidate.
Material design concept

material
acoustically absorbing materials around social functions

transparent surfaces for natural light entry

rough surface diffusing the sound of water

use of local limestone
- as concrete aggregate
- as solid panels and pieces

acoustically absorbing materials around social functions
Material design concept

Material

use of wood
orientational
alternated with
limestone

material finish transition
upon entering temple

smooth/sleek

rough/cave-y
Material design sustainability

In addition to the esthetic qualities of the used materials, the choice of materials also is made from a sustainability and durability perspective.

Part of the building is left as a bare limestone rocky facade, (re-)using the existing grounds for the building esthetics. The digging and drilling underground works as a resource for a big proportion of the building elements. The cut limestone is manufactured and reused throughout the building as limestone panels (glued or attached ventilated), as solid blocks and as an important aggregate to the concrete structure - also giving the building its sandy texture.

Not only the Temple of Water itself is provided with the local limestone, also other houses in the region can be built from this material - as it is the wide spread building material throughout Israel and the Palestinian Territories. Socially it is able to temporarily create extra jobs in the region.

Through the qualities of the limestone, the fire safety and security is higher than with regular concrete aggregates. Also higher concrete classifications can be achieved through the use of limestone as the aggregate, and no other aggregates are necessary to be used.

The steel and wood can be applied untreated, and thus no chemical means have to be used on the materials - nor any actions for maintenance (except for replacing wood planks every now and then).
Detail overview in section
Steel flooring
Reinforced concrete with limestone aggregate
Purification pond surrounded by structure
Helophytes & nanofiltration basins
Suspension cables
Washed concrete flooring with limestone aggregate
Porous limestone panels mounted with mineral wool to flooring
Heated limestone and saltstone with fresh air inlets
Bronze retaining buttons
Existing drilled Limestone rock conservation
Grout anchors to retain Limestone rock facade
Reinforced concrete retaining walls with Limestone aggregate
Polished concrete in underground passageways
Steel flooring
Reinforced concrete with limestone aggregate
Purification pond surrounded by structure
Helophytes & nanofiltration basins
Suspension cables
Washed concrete flooring with limestone aggregate
Porous limestone panels mounted with mineral wool to flooring
Heated limestone and saltstone with fresh air inlets
Bronze retaining buttons
Existing drilled Limestone rock conservation
Grout anchors to retain Limestone rock facade
Reinforced concrete retaining walls with Limestone aggregate
Polished concrete in underground passageways
Detail plans & elevations - drinking area

Material

Detail elevation
Drinking area
scaled to 1/100
(originally 1/50)
Horizontal detail section
Drinking area
scaled to 1/100
(originally 1/50)
Detail plans & elevations - bathing area

material

Detail elevation
Bathing area
scaled to 1/100
(originally 1/50)
Horizontal detail section
Bathing area
scaled to 1/100
(originally 1/50)
Detail plans & elevations - worshipping area

material
Horizontal detail section
Worshipping area
scaled to 1/100
(originally 1/50)
Detail drawings

The details as indicated in the detail sections, plans and elevations, are elaborated on scale 1/10 on the next pages. In these drawings the connections, dimensions and exact materialisation i.e. the detailed elaboration can be read.
Theater stairway
- Limestone blocks; dimensions according to stairwell
- Upper surface waterproof grip
- Sealing mortar
- Reinforced concrete retaining bottom; min. 400mm; limestone aggregate; moment-resisting connections

Theater front
- Railing suspension; Steel tube+L-profile welded & mounted to concrete
- Limestone panel; 100x700mm; glued to concrete
- Water reservoir

Detail V.01
scale 1/10
Detail V.02

Theater structure:
- Wooden planks flooring; 20mmx114mm
- Sealing mortar
- Saltstone blocks; 60x100mm
- Limestone panels; 100x720mm
- Heating tubes; water heating
- Insulation; mineral wool; 35mm
- Fresh air inlet system; casted in concrete
- Reinforced concrete retaining bottom; min. 400mm; limestone aggregate; moment-resisting connections
- Existing limestone rock

Water cube structure:
- Water surface; helophyte filters
- Structural suspension cable; 50mm
- Earth filtration layers
- Nanofiltration membrane; 40mm
- Reinforced concrete bottom; 400mm-tapered to 250/300mm; limestone aggregate; washed surface; moment-resisting connections
- Existing limestone rock
Theater structure:
- Wooden planks flooring; 20mmx114mm
- Sealing mortar
- Saltstone blocks; 60x100mm
- Limestone panels; 100x720mm
- Heating tubes; water heating
- Insulation, mineral wool; 35mm
- Fresh air inlet system; casted in concrete
- Reinforced concrete retaining bottom; min. 400mm; limestone aggregate; moment-resisting connections
- Existing limestone rock

Water cube structure:
- Water surface; vegetation
- Structural suspension cable; 50mm
- Earth filtration layers
- Nanofiltration membrane; 40mm
- Reinforced concrete bottom; 400mm-tapered to 250/300mm; limestone aggregate; washed surface; moment-resisting connections

scale 1/10
Detail V.04

Pond side
- Water purification basin
- Waterproof glass panels - friction intercepting mounted
- Steel cables supporting purification basin; Ø=50mm

Scale 1/10
Water tower structure

- SIKA plan; waterproof membrane including leak detection
- Reinforced concrete bottom; 300mm; limestone aggregate; moment-resisting connected to
- Reinforced concrete column; 400x600mm; limestone aggregate; moment-resisting connected at bottom
- Water tube system included in core; Ø=100mm

scale 1/10
Detail V.06

Observation deck
- Steel raster flooring
- Steel suspension lip
- Tempered glass water proof sealing structure; supported by steel tubes on rubber
- Steel beam flooring; UNP 200
- Water overflow area
- SKA plan; waterproof membranes including leak detection
- Reinforced concrete bottom; 300mm; limestone aggregate; moment-resisting connections

Entrance passageway
- Reinforced concrete retaining wall; 400mm; limestone aggregate, polished surface; moment-resisting connections

Gate entrance
- Vertical sliding profile embedded in concrete wall; garage door sliding vertically
Observation deck
- Steel raster flooring
- Steel suspension lip
- Tempered glass waterproof sealing structure; supported by steel tubes on rubber
- Steel beam flooring; UNP 200
- Water overflow area
- SIKA plan; waterproof membrane including leak detection
- Reinforced concrete bottom; 300mm; limestone aggregate; moment-resisting connections

Entrance passageway
- Reinforced concrete retaining wall; 400mm; limestone aggregate; polished surface; moment-resisting connections

Gate entrance
- Vertical sliding profile embedded in concrete wall
- Garage door sliding vertically

scale 1/10
Entrance passageway:
- Reinforced concrete retaining wall; 400mm; limestone aggregate, washed surface; moment-resisting connections

Detail H.02

Theater wall:
- Porous limestone panels; 50x1200mm; anchored to concrete back structure
- Insulation; mineral wool; 70mm
- Reinforced concrete retaining wall; 400mm; limestone aggregate; moment-resisting connections

Passageway underground:
- Reinforced concrete retaining wall; 400mm; limestone aggregate, polished surface; moment-resisting connections
Entrance passageway

- Reinforced concrete retaining wall; 400mm; limestone aggregate, washed surface; moment-resisting connections.

Theater wall

- Porous limestone panels; 50x1200mm; anchored to concrete back structure
- Insulation; mineral wool; 70mm
- Reinforced concrete retaining wall; 400mm; limestone aggregate; moment-resisting connections

Detail H.03

- Reinforced concrete retaining wall; 400mm; limestone aggregate, polished surface; moment-resisting connections.