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Abstract

The application of autonomous robots in search-and-rescue (SAR) missions forms a challenging field of
research. Cooperative search behaviour can greatly increase the efficiency with which a multi-agent sys-
tem creates situational awareness of and finds victims within an unknown environment. In this research
we develop an autonomous mission planning approach that exploits non-homogeneous characteris-
tics of the robots to increase the overall search performance. Furthermore, the proposed approaches
incorporate a hierarchical, cooperative control architecture: At the lower level of control, every SAR
agent is locally controlled by a heuristic approach that uses fuzzy-logic control (FLC) and A* search
to guide its individual actions. At the higher level of control, a model-predictive-control-based (MPC-
based) system coordinates the actions of all SAR agents when two or more agents intend on searching
the same area at once. When simulated in a virtual SAR environment, we show that the area cov-
erage performance of the cooperative search approach is comparable to a purely heuristic approach
designed for area coverage, while simultaneously outperforming this and another optimisation-based
approach in victim detection efficiency. This shows that the hierarchical combination of the heuris-
tic local controller and the optimisation-based supervisory controller is able to outperform either one
approach individually. Furthermore, it is demonstrated that the cooperative search approach is able
to efficiently resolve particular SAR-related search conflicts where a non-cooperative structure fails.

Keywords: Cooperative Search, Hierarchical Control, Search-and-Rescue

1 Introduction

The past couple of decades have seen a rapid
increase in the applications of robotics in the field
of search-and-rescue (SAR). Recent advances in
SAR robots are motivated by a number of advan-
tages of these systems over teams of only human
workers. From a safety perspective, the deploy-
ment of (autonomous) robots reduces the risks
that human rescue workers would otherwise be
subject to [1]. Furthermore, human resources can
be scarce in an urban SAR scenario, and the

automation of search and relief tasks by means
of autonomous robots allows for vital human
resources to be made available for other tasks such
as logistics and victim aid. Finally, fast victim
detection time is of the essence in SAR mis-
sions [2]. In these disaster settings, fast, agile,
and autonomous drones such as unmanned aerial
vehicles (UAVs) can be deployed to rapidly map
out otherwise inaccessible disaster areas. Within
a SAR mission, many different tasks can be per-
formed by robots. One such tasks is gathering

1
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information from an unknown disaster environ-
ment to improve situational awareness. Such infor-
mation may include the location of victims, explo-
sives, or any other elements that may affect the
mission. During a SAR mission, situational aware-
ness can prove to be vital for mitigating risks and
saving lives [3, 4].

To reduce the time it takes to gather this
information, many SAR systems employ a fleet
of multiple robots. Initially, these robots were
controlled or closely supervised by human opera-
tors and thus had limited autonomy. The effective
operation of such robots is entirely dependent on
the human users developing situational awareness
on the robots and environment. Issues such as
difficulties in robot localisation, limitations in cog-
nitive resources, and poor integration of data at
the human-machine interface lie at the base of
human-induced errors in SAR missions [1, 3]. Con-
sequently, autonomy of these multi-agent systems
has increased throughout time, which has given
rise to a wide variety of SAR-related research
[5, 6].

When categorising cooperative multi-agent
search approaches, we make a distinction between
destination-oriented and coverage-oriented search
approaches. The first type commonly assumes the
availability of some source of prior knowledge
related to the target distribution in the environ-
ment. Examples of such search approaches can be
found in [7–10]. These are generally destination-
oriented search approaches, since they are less
concerned with any information the SAR agents
are able to gather while heading towards their
predetermined targets. These approaches gener-
ally perform poorly in an environment where no
prior knowledge is available to the SAR agents.
In an unknown SAR environment, however, the
problem of cooperative search has a lot in com-
mon with that of coverage path planning (CPP),
since every unknown area is a possible area of
interest for the SAR agents. In the past couple of
decades, CPP has been addressed in a consider-
able amount of research. Galceran and Carreras
in [11] provide an extensive survey of research
in CPP up until 2013. In this field of research,
ant-colony system (ACS) algorithms are a pop-
ular type of bio-inspired area coverage method,
due to their computational efficiency and simple
applicability [12, 13]. Other more recent coopera-
tive coverage methods include the use of machine

learning and neural networks, in which the sys-
tem’s agents progressively learn better area cov-
erage behaviour [14, 15]. The drawback of such
methods is that they require to be trained before
they can perform search tasks. Furthermore, it
must be noted that most CPP approaches, such
as ACS search, do not incorporate victim/tar-
get detection in their search behaviour, and are
limited to area coverage objectives. Arnold et al.
in [16] present a cooperative, multi-agent SAR
system that does incorporate both objectives; in
addition to directed victim detection, the agents
are also able to adopt exploratory behaviour in
order to increase situational awareness of the envi-
ronment. However, the SAR agents are restricted
to a set of fixed behaviour types which limits the
flexibility of their search strategy.

From a control architecture perspective,
another distinction can be made between cen-
tralised and decentralised control approaches
applied to multi-agent SAR. In centralised meth-
ods, the SAR agents communicate their situa-
tional awareness to a single control server, which
determines the mission plan for all SAR agents.
Examples of centralised search approaches can be
found in [7–10]. This has the advantage that all
computationally demanding tasks can be concen-
trated in a single ground station, which reduces
the cost of the robots used while yielding a
higher global mission performance. The disad-
vantage of centralised approaches, is that they
are reliant on a consistent communication link
and are vulnerable for single-point failure [17].
Decentralised approaches mitigate these risks by
equipping each SAR agent with their own on-
board controller, thus making them more robust
to loss of communication or failure. However,
a distributed approach may yield a sub-optimal
solution for the global mission [5]. Examples of
decentralised search approaches can be found
in [12, 14, 16, 17]. Hybrid or hierarchical con-
trol methods can combine the strengths of both
centralised and decentralised search approaches.
Especially in multi-agent SAR systems, hierarchi-
cal control may be beneficial to coordinate the
behaviour of multiple distributed (non-optimal)
controllers, while being robust against single-point
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failure. Little research is available of such hierar-
chical approaches in search (and rescue) applica-
tions. Examples of such hierarchical control archi-
tectures include [18–20], however these approaches
are limited to destination-oriented target search
and task allocation.

This research focuses on the multi-agent, coop-
erative search problem performed by a fleet of
non-homogeneous UAVs. More specifically, this
research is interested in developing a hierarchical
mission planning approach that exploits the non-
homogeneous sensory capabilities of each agent
to increase the search performance of the SAR
system. The mission task consists of maximising
situational awareness of an environment, by max-
imising both area coverage and victim detection
efficiency in the least amount of time. The aim of
this research is to formulate a novel type of control
approach to achieve this.

The remainder of this paper is structured as
the following: the contributions of this research
are highlighted in Section 2, which is followed by
defining the search problem and its corresponding
terminology in Section 3. Next, Section 4 discusses
the proposed ideas for developing a hierarchi-
cal mission planning controller for SAR robotics.
This is followed by Section 5, which describes
the case study and experimental setup that have
been used to evaluate the performance of the pro-
posed controller. After presenting the results of
these experiments, we analyse and discuss them
in Section 6. Finally, we summarise the main con-
tents of this paper and propose recommendations
for future research in Section 7.

2 Main Contributions

The main contributions of this research to the
state-of-the-art are twofold:

1. We present a new control framework for multi-
agent SAR, that utilises non-homogeneous sen-
sor characteristics of SAR agents in its search
strategy. Furthermore, this search strategy
includes both directed victim search and area
coverage tasks.

2. This research formulates a novel hierarchical
control approach, which combines distributed
local controllers for all SAR agents with a cen-
tralised supervisory controller to coordinate the

Fig. 1: Simulated SAR environment.

global mission. More specifically, the local con-
trollers use an FLC-based heuristic, whereas
the supervisory controller uses an MPC-based
approach.

3 Problem Formulation

In this section, we define and formulate the
mission planning problem for cooperative non-
homogeneous SAR agents. More specifically, we
discuss the modelling of the SAR environment in
Section 3.1. This is followed by a description of
the SAR agents and their sensory capabilities in
Section 3.2 and Section 3.3, respectively. Finally,
Section 3.4 covers the modelling of the victims
present in the SAR environment.

3.1 SAR Environment

The SAR environment E is modelled as a 2D
bounded cellular area of Lx × Ly cells. More
specifically, a cell corresponds to the coordinates
(x, y) of its centre. Each cell (x, y) is defined by
a number of quantified properties, including the
scan certainty value for time step τ , denoted by
c(x, y, τ) ∈ [0, 1]. The scan certainty value is deter-
mined based on the degree of information that is
known of the contents of that cell. This depends
on whether or not the cell has ever been visited
and scanned by an agent and if so, how accurate
the sensed or measured data is estimated to be. If
c(x, y, τ) = 0, the cell is completely unknown for a
SAR agent, whereas c(x, y, τ) = 1 implies that an
agent has full knowledge of that cell. The scan sta-
tus of each cell in the environment is included in a
matrix called the scan certainty map C. Dependent
on the control approach guiding the SAR agents
(elaborated upon in Section 4), C is either a glob-
ally available map or a local map of information
acquired and used by each SAR agent.
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Each cell can either be empty, or be occu-
pied by static obstacles (i.e., walls, pillars, rubble),
dynamic victims, or SAR agents. We assume that
for any time step, a cell can be resided by a single
victim only. Furthermore, static obstacles make an
area inaccessible for an agent or a victim to occupy
or pass through. If a cell is occupied by such an
obstacle, it will be included in a map called the
occupancy map W. A schematic representation of
the SAR environment is shown in Figure 1.

3.2 SAR Agents

For this research, we consider a multi-agent SAR
system composed of N non-homogeneous, rotary
UAVs, denoted by ai = a1, a2 . . . aN . The agents
may be different from each other in two proper-
ties regarding their sensory capabilities. Firstly,
SAR agents may have different perception radii
rp,i. Note that those cells of the environment E
that fall within the circle of radius rp,i, that is
centred at the current position of the SAR agent,
form the perception field of agent i (see Figure 2).
The perception field of a SAR agent is denoted
by Eai , where Eai ⊆ E. Secondly, the percep-
tual uncertainty reduction rate ηi for various SAR
agents may be different, where this parameter is
an indication of the accuracy of an agent’s sensor.
The perceptual uncertainty reduction rate will be
discussed in more detail in Section 3.3.

For every time step, each SAR agent is
described by its position in the grid environment
E (which corresponds to the cell the SAR agent
is flying above) and can move to one of its 8
neighbouring cells through one of the 8 direc-
tions (north, north-east, east, south-east, south,
south-west, west, north-west) shown in Figure 2.

During the SAR mission, the agents are
assumed to have a sufficient degree of manoeuvra-
bility, such that they have a turn radius that is
smaller than the cell they occupy, and that they
can remain in a stationary (hovering) position in a
cell if needed. Hence, it assumed that an agent can
at any time move in any of the 8 possible direc-
tions, regardless of its orientation. Furthermore, it
is assumed that the agents can avoid colliding with
each other by adjusting their altitude. This way,
two agents can (briefly) pass through the same cell
in the 2D plane.

Fig. 2: Perception field of an agent (a) and its move-
ment possibilities (b).

3.3 Sensory Capabilities of SAR
Agents

All agents have a sensory base consisting of two
main sensor types: First, each agent is equipped
with (optical) cameras that can be used to detect
victims and to gather visual information of the
environment. This information is stored in the
global scan certainty map C. Secondly, SAR agents
are equipped with sensors for detecting WiFi-
enabled devices. Studies such as [21] are focused
on locating disaster victims by means of the wire-
less signal of their passive mobile phones. For
this research, we assume that the SAR agents use
their WiFi sensors for both victim localisation and
assessment of a victim’s health condition. How-
ever, these requirements can also be met with
alternative sensors, such as acoustic, heat, and
optical sensors, or a combination thereof [1, 22].

The sensors of each SAR agent may in gen-
eral be imperfect, meaning that a single scan may
not yield full certainty/knowledge of all cells in
the perception field of the agent. We consider
two sources of sensory imperfections: (i) One visit
and complete round of scanning of a particular
cell for a single time step may not provide full
certainty due to structural imperfections in the
agent’s sensors. In this case, following Dempster’s
rule of combination [15], for every time step the
uncertainty of a cell is reduced by a perceptual
uncertainty reduction rate, which we show by ηi ∈
(0, 1] for SAR agent i. (ii) While all cells within
the perception field Eai of SAR agent i will be
scanned by the agent’s (possibly imperfect) sensor,
the rate change of scan certainty also decreases
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with increased distance from the SAR agent/sen-
sor. Therefore, the proximal uncertainty reduction
rate σ(x, y, τ) for a cell (x, y) for time step τ is a
function of the Euclidean distance ri(x, y, τ) of the
cell from the SAR agent i for time step τ . In other
words, while the perceptual uncertainty reduction
rate depends on which SAR agent is reporting
the value (i.e., it is agent/sensor-related), the
proximal uncertainty reduction rate is a distance-
related property. Mathematically speaking, we can
write:

σ(x, y, τ) =

N∏
i=1

max
{
σi(x, y, τ), 1

}
(1)

with

σi(x, y, τ) =1− e−ri(x,y,τ) (1− ηi) · (2)

1− sign
(
ri(x, y, τ)− rp,i

)
2

where we suppose that the proximity effect on
the rate of the scan certainty follows an exponen-
tial decay function. In (2), σi(x, y, τ) is the share
of the proximal uncertainty reduction rate of cell
(x, y) due to the information that is provided via
the sensor of SAR agent i. Based on the pro-
posed formulation (2), when ri(x, y, τ) = 0, i.e.,
for the cell that SAR agent i is currently located
in, the proximal uncertainty reduction rate corre-
sponding to agent i is equal to ηi. Moreover, when
ri(x, y, τ) ≥ rp,i, based on (2) the proximal uncer-
tainty reduction rate corresponding to agent i is
1. Note that in (1) the overall effect of all the N
SAR agents that are in the SAR environment is
considered. To prevent a 0 proximal uncertainty
reduction rate - corresponding to a SAR agent
that is too far from cell (x, y) to be able to scan
this cell - to falsely affect σ(x, y, τ), we have used
the max function in (1).

Finally, the updated degree of certainty
regarding cell (x, y) can be computed via:

c(x, y, τ + 1) = 1− z(x, y, τ + 1) (3)

with

z(x, y, τ + 1) = σ(x, y, τ)z(x, y, τ) ∀(x, y) ∈ Eai

(4)

which incorporates both sources of sensory imper-
fection that have been explained above. Here, the
degree of uncertainty of a cell z(x, y, τ) forms the
complement of c(x, y, τ).

3.4 Victim Modelling

The simulated environment contains a fixed and
unknown number of V victims with location and
health condition that are also unknown to all
agents. When simulating victims in this research,
two main characteristics are modelled. First, ran-
dom victim movement is considered. This victim
behaviour is added to the simulation in order to
evaluate the robustness of the mission planning
module when subjected to dynamic uncertainty.
For every time step, a victim moves to a neigh-
bouring cell with a probability of 8 × Pvm. Thus,
the movement of a victim is composed of 8 indi-
vidual, equal movement possibilities to either one
of that victim’s neighbouring cells.

Secondly, each victim has a victim health state
hV (τ) ∈ [0, 100], which corresponds with how
healthy or injured a victim is at time step τ . When
a victim is detected by a SAR agent, their ini-
tial health state is registered. Over time, hV may
decrease, which simulates the declining health
condition of victims when they remain unaided.
The rate of the changes ḣV in a victim’s health
state is assumed to follow the following relation:

ḣV (τ) =

{
−0.25 30 ≤ hV (τ) ≤ 100
hV (τ)
60 − 1 0 ≤ hV (τ) ≤ 30

(5)

Based on (5), a victim has a uniformly deterio-
rating health condition for 30 ≤ hV (τ) ≤ 100.
However, whenever hV (τ) ≤ 30, the rate of change
of the victim’s health state decreases linearly until
the victim perishes at hV = 0. This simulates
the accelerated deterioration of victims with a
more critical health condition, whereas victims
with a more stable condition can survive unaided
for a longer period of time. The values of the
victim’s health state degradation rate are chosen
in such a way, that an exhaustive search strat-
egy of the experimental environment described in
Section 5 cannot guarantee the survival of all vic-
tims. Hence, this introduces a time constraint to
the SAR mission.
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In this research, a SAR agent detects a victim
only when they are both present in the same cell.
When a victim is detected, the SAR agent stores
the location, health state, and time of detection
in its own matrix called the victim map Vi. By
locally storing this information, each SAR agent
only has knowledge about the victims that it has
detected itself.

4 Control System

This section explains the architecture of the pro-
posed hierarchical control system that guides the
search behaviour of the SAR agents, as well as
the control methods that are used in the vari-
ous control levels. The controller has two levels of
hierarchy, as shown in Figure 3. The distributed
lower-level controllers dictate the local search
behaviour of each SAR agent (see Section 4.1
for details), while the centralised supervisory con-
troller coordinates the behaviour of the entire fleet
of SAR agents, such that search conflicts between
the SAR agents are resolved (see Section 4.2 for
details). In this diagram it is also shown that the
SAR agents only communicate with the super-
visory controller, and do not share information
among themselves. This architecture combines
the strength of both centralised and distributed
control approaches; each local controller will be
able to independently guide its corresponding
SAR agent, while the supervisory controller coor-
dinates the global mission of all SARS agents
when required. This increases the robustness of
the SAR system against (communication) failure,
while containing heavy processing tasks in a cen-
tralised control module that considers the global
mission of the entire system.

4.1 Local Controller

The local controller of each agent consists of two
main parts. First, a SAR agent processes its own
local sensory data to form a priority map of its per-
ception field, which indicates how valuable each
cell is for the SAR agent to visit. Next, the con-
troller chooses the path that yields the highest
local gain in this priority, which is expressed by
means of a path grade. The grade that each path
receives, represents how favourable a path is. For
this, we must recall that the mission objective is to

Fig. 3: Hierarchical architecture of the cooperative
mission planning controller.

maximise area coverage and victim detection effi-
ciency in the least amount of time. From this, we
consider two main criteria when selecting a path:

1. Reduction of time: the SAR agent wants to
reach targets of interest in the shortest possi-
ble time in order to minimise the overall SAR
mission time.

2. Increase of exploration: the SAR agent
wants to scan as many other (unexplored) cells
along the way as possible, in order to maximise
area coverage.

The two objectives mentioned above may possess
a conflict: for the first objective, the SAR agent is
destination-oriented and aims to reach a specific
cell in the shortest possible time, while for the sec-
ond objective the SAR agent is coverage-oriented,
since every cell that the SAR agent visits on the
path to its destination is worth being visited.
The local controller is designed on the premise of
meeting both objectives.

4.1.1 Search Priority Assignment

The first main module within the local controller
of each agent is that of task priority assignment.
In the context of this research, scanning a search
area is the only type of SAR task considered.
From this, it follows that task priority is defined
as the urgency to scan a given cell within the
environment.

For each cell in Eai
a priority score is deter-

mined using fuzzy-logic control (FLC). The moti-
vation for this control approach, is that FLC is
an efficient heuristic control method that is able
to mimic human decision logic and express it in
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mathematical terms. Due to the limited compu-
tational power available on board of the SAR
agents, it is necessary to choose a computationally
efficient control approach. Furthermore, FLC was
chosen for the local SAR agent controllers due to
the strong link between SAR mission planning and
human operators. Currently, human rescue work-
ers are still the primary controllers when it comes
to allocating resources in a SAR mission. Hence, it
is argued that an effective controller tries to mimic
this human way of thinking, with the advantage
that the knowledge of human SAR personnel can
be directly incorporated in the control approach.
To achieve this, a rule-based Mamdani fuzzy infer-
ence system (FIS) is used for the local controller
of the SAR agents. The set of M if-then rules that
make up the rule base has the following structure:

Rm : If PV (x, y) is Am,1 and hV (τ) is Am,2

and c(x, y, τ) is Am,3 then ρ(x, y) is Bm

m = 1, 2, . . .M, (x, y) ∈ Eai (6)

In this type of fuzzy model, both the antecedent
propositions Am and consequent propositions Bm

are fuzzy sets, which are mathematically formu-
lated by their corresponding membership func-
tions. In the task priority assignment module, the
fuzzy system takes 3 inputs. For these inputs, it is
important to note that each SAR agent only has
its own local knowledge available, contained in its
scan certainty map Ci and victim map Vi. Con-
sequently, one SAR agent does not know which
victims are detected or which areas have already
been scanned by another agent.

The first input, the victim health state hV , has
been discussed in Section 3.4 and has fuzzy mem-
bership functions Critical, Medium, and Stable.
The scan status c has been discussed in Section 3.1
and Section 3.3 and has fuzzy membership func-
tions Unknown, Partial, and Known. Next, the
victim probability PV is defined as the probability
that the contents of a particular cell are correctly
identified as a victim. This differs from the scan
certainty, which indicates how completely the gen-
eral contents of a cell have been scanned. The
victim probability, however, relates to specifically
searching for victims, as opposed to the overall
area coverage of the environment. Similarly to the
scan certainty, we assume that PV is prone to

proximity-related sensor inaccuracies and is thus
a function of the distance between an agent and a
possible victim. It is supposed that PV follows a
basic quadratic loss function:

PV (r) = −
(

r

rp

)2

+ 1 r ∈ [0, rp] (7)

Cells that are not expected to contain a victim
receive a value of PV = 0. The victim probabil-
ity has membership functions Low, Medium, and
High.

The output of the FIS is the search prior-
ity score ρ for each cell in Eai , which represents
the level of interest/urgency to scan that cell.
The priority score has fuzzy membership functions
Very Low, Low, Medium, High, and Very High.
All membership functions are shown in Figure 4.
Furthermore, following the structure in (6), the
complete rule base in ascending order of priority
is shown in Table 1. In general, cells are given
a higher priority if they are likely to contain a
victim and if that victim is expected to be more
hurt. Similarly, cells that have not yet (exten-
sively) been scanned also receive a higher priority
score. Finally, cells contained in W (thus being
inaccessible to SAR agents) are given a priority of
0.

4.1.2 Path Planning

The second part of the local mission planning con-
troller, is the path planning module. Since time is
of the essence in the SAR mission and the SAR
agent is thus partially destination-oriented, the
local controller takes a shortest-path approach as a
basis for its path planning module. However, since
the SAR agent is also partially coverage-oriented,
at this stage every cell within its perception field
is still considered a potential target.

The first part of the path planning module is to
determine the globally shortest path p1i from the
SAR agent’s position si to any given target cell ti
within the perception field of SAR agent i. In this
research, the path planning module makes use of
an A* Search approach [23], which can be seen
as an extension of Dijkstra’s algorithm [24]. Con-
trary to the algorithm it is based on, A* Search
limits the number of path possibilities by avoid-
ing expanding paths that are already costly when
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Fig. 4: Fuzzy membership functions of the FIS inputs and output.

Table 1: FIS rule base

Ri PV hV c ρ
1 Low Stable Known Very Low
2 Low Medium Known Very Low
3 Low Stable Partial Very Low
4 Low Medium Partial Low
5 Low Critical Known Low
6 Medium Medium Partial Low
7 Medium Critical Known Low
8 Low Stable Unknown Low
9 Medium Stable Known Medium
10 Medium Medium Known Medium
11 Medium Stable Partial Medium
12 High Stable Partial Medium
13 High Medium Known Medium
14 High Critical Known Medium
15 Low Critical Partial Medium
16 Low Medium Unknown Medium
17 High Stable Known High
18 Medium Stable Unknown High
19 Medium Medium Unknown High
20 High Stable Unknown High
21 Low Critical Unknown High
22 Medium Critical Partial Very High
23 High Medium Partial Very High
24 Medium Critical Unknown Very High
25 High Medium Unknown Very High
26 High Critical Partial Very High
27 High Critical Unknown Very High

extended to the end goal. The algorithm does this
by including a heuristic when evaluating each path
possibility, which it then uses to only expand paths
that move roughly towards the goal point, and
neglect paths that only move away from the goal.
This greatly reduces the computational effort and
time required to find the optimal path, especially
when it is applied to equally distanced grid maps.

Once the shortest path between the agent and
target cell has been determined, it is possible to
find the next shortest alternatives to this path.
This is motivated by the coverage-oriented part of
the SAR agent: by determining a set of K per-
mutations on the shortest path, the SAR agent
is offered more possible paths that are compa-
rable in length but may pass through different
areas of interest. This is done with Yen’s algo-
rithm [25], as it ensures an efficient method for
determining theK guaranteed shortest paths pki =
{p1i , p21, . . . pKi } for agent i. The algorithm does this
by systematically closing subsequent nodes within
the previously found shortest path pk−1

i , and eval-
uating the path permutations this results in. It
stores these permutations in a set, and chooses
the shortest path in this set as the next short-
est path pki . The algorithm repeats this until path
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k = K has been determined. All shortest paths
are determined while avoiding obstacles in the
environment, by omitting cells contained in W.

4.1.3 Path Grading

Once the K shortest paths have been determined
for each possible target cell, it is necessary to grade
each possible target-path combination, and deter-
mine the best action for the agent to execute. As
mentioned previously, the grade that each path
receives represents how favourable a path is. This
grade is based on the level of exploration and the
time duration of a path. These elements form con-
flicting objectives within the SAR mission, and
will both compete in the path grade in some form.
For instance, a very short path may lead an agent
through an area that has a low task priority, or a
path that visits many high-priority cells may take
a lot of time to complete.

Each of the aforementioned pillars must be
expressed in mathematical terms, in order to effec-
tively grade a path. Time is a relatively straight-
forward aspect, since the travel time of the agent
can be derived from both the path length and the
agent’s speed. Since it is assumed that an agent
can at most move one cell at every time step, the
path duration Lp is simply equal to the Euclidean
distance of a path.

Secondly, a path is also graded based on its
area coverage, or exploration. The most straight-
forward method would be simply to count the
number of cells that the agent visits along the way,
however this could encourage the agent to visit
many low-priority cells before finally reaching the
goal cell which may have the main priority. There
is a risk that such behaviour defeats the purpose
of prioritising the end goal. To prevent this, explo-
ration is represented by defining the discounted
return Rpi

of a path, as shown in (8):

Rpi =

Hpi∑
τ=0

γτρτ (8)

The discounted return is the sum of the rewards
that an agent receives from its action sequence.
In this application, the actions of an agent i are
the cells that it visits during its prediction horizon
Hpi

, and the rewards ρτ are the priority scores of
each cell. Rewards that are further in the future
are discounted with a discount factor γτ , with

γ ∈ [0, 1]. This can be interpreted as holding less
value to more uncertain future actions, while at
the same time giving a higher grade to paths that
visit higher priority cells sooner. Exploration is
still encouraged, since visiting more cells will yield
a higher return, however it now also stimulates
the preference to visit mostly high-priority cells as
soon as possible.

With all inputs defined, it is possible to for-
mulate a function to evaluate the path grade Gpi

of each agent. For the initial grading function, a
weighted summation of the inputs is chosen:

Gpi = −αLpi + βRpi (9)

In this relation, the weights α and β are constant
values. Furthermore, it can be observed that Rpi

acts as a stimulus for the path grade, since more
rewarding paths (in terms of search priority) are
preferred. However, Lpi imposes a penalty on the
grade, since a longer travel time corresponds to a
less favourable path.

4.2 Supervisory MPC-Based
Controller

To perform the cooperative SAR mission, the
agents are guided by an additional supervisory
controller. It is assumed that an external, cen-
tralised server performs the supervisory control
task, while it both receives information from and
sends out control outputs to the SAR agents.
As mentioned previously, the supervisory con-
troller is mainly tasked with resolving search
conflicts between SAR agents. By definition, in
this research, a search conflict occurs when the
perception fields of two or more SAR agents
have an intersecting area above a certain thresh-
old, denoted by Eai ∩ Eaj ≥ I. Only when this
occurs, the supervisory controller is activated and
coordinates the global mission for all SAR agents.

In the hierarchical architecture of the devel-
oped controller, a model-predictive control (MPC)
approach is considered for the supervisory con-
troller. A process model of the SAR environ-
ment is used to predict the system output of
a sequence of actions over a prediction horizon
Hp. By optimising a given cost function, the
supervisory controller obtains an optimal action
sequence for the SAR agents to conduct. This
optimal sequence is the set of optimal paths for
all SAR agents to follow. The controller then
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implements the first action of this sequence, cor-
responding to the optimal next step for all SAR
agents. On a mathematical level, the supervisory
controller is thus optimisation-based, as opposed
to the (sub-optimal) heuristic controllers of the
individual SAR agents. The rationale is that the
local heuristic controllers can, in most cases, effi-
ciently find a satisfactory solution to guide each
SAR agent individually at a given time step.
In the less frequent case of a search conflict, it
is presumed that the local controllers alone are
unable to efficiently spread the SAR agents over
the environment. Hence, the optimisation-based
supervisory controller is activated to find the opti-
mal joint pay-off for all SAR agents, at the cost
of being more computationally demanding. How-
ever, since the supervisory controller is contained
on an external server, it is argued that it is possible
to utilise a more computationally demanding con-
trol approach than for the local controllers of the
SAR agents. Additionally, the supervisory con-
troller can then use the set of paths determined by
each SAR agent locally as an initial ’warm start’ to
the optimisation problem. The reason for this is to
help the supervisory controller converge faster to
an optimal solution, thus saving time on the opti-
misation computations while making extra use of
computations made by the local controllers.

4.2.1 MPC Objective Function

The proposed objective function to be maximised
for the supervisory controller is given by:

J(P ) = w1

N∑
i=1

Gpi + w2

∑
(x,y)∈E

c(x, y,Hp) (10)

where P is the set of paths of allN SAR agent, and
forms the design variable for the MPC optimisa-
tion. It can be seen that the objective function is a
weighted sum of two terms: (i) the overall grade of
all individual paths (estimated by (9)) and (ii) the
total predicted scan certainty of the entire envi-
ronment at the end of the prediction horizon Hp.
By incorporating this term in the objective func-
tion, the fleet of agents is encouraged to spread
out over the environment, since this yields a larger
predicted increase in summed scan certainty. This
enforces that the supervisory controller maximises
the combination of locally beneficial paths for each

agent, as well as a globally beneficial fleet distri-
bution for area coverage and determine a set of
paths for the SAR agents that results in a bal-
anced trade-off between these locally and globally
optimal solutions.

Contrary to the local controllers, the supervi-
sory controller uses the merged knowledge of all
SAR agents in its optimisation strategy, by means
of its communication link between all SAR agents
and the supervisory controller (shown in Figure 3).
As a result, the supervisory controller is able to
log and use the global scan certainty map C of
the environment, as well as merge all local victim
maps into a global victim map V containing the
information of all previously detected victims.

4.2.2 Optimisation Problem
Formulation

The optimal control problem, corresponding to an
MPC formulation can be defined as follows:

max
P

J(P )

s.t. P = {pi, i = 1, . . . N | p ∈ P} (11a)

pi = {(xa1,i, y
a
1,i), (x

a
2,i, y

a
2,i), . . . (x

a
n,i, y

a
n,i)|

(x, y) ∈ E, (x, y) /∈ W} (11b)

(xvj , y
v
j ) /∈ {pQ ∩ pR| Q,R ∈ {1, . . . N}

∧Q ̸= R} ∀ j = 1, . . . V (11c)

(xa1,i, y
a
1,i) = si ∀ i = 1, . . . N (11d)

In which J(P ) is given by (10) and constraint
(11a) states that the paths of all N SAR agents
should be contained in P, which denotes the set
of all feasible paths. In other words, each path
pi must consist of n adjacent and consecutive
cells. Furthermore, constraint (11b) defines that
each cell in the path should be within the sys-
tem bounds of the environment E and cannot be
occupied by an obstacle contained in W. Next,
constraint (11c) restricts multiple agents from vis-
iting the same victim, by stating that the location
of every victim (denoted with superscript v) can
only be present in the path of at most one SAR
agent. This aims to further improve victim search
efficiency and area coverage of the fleet. Finally,
constraint (11d) fixes the initial starting cell of
each path during the optimisation. This start-
ing cell coincides with the SAR agent’s current
location, denoted as si.
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5 Case Study

This section describes the set of numerical sim-
ulations designed to evaluate the performance of
the proposed control approach. First, Section 5.1
discusses and motivates a number of alternative
search approaches used as comparison for the pro-
posed search approach. Next, these approaches
are evaluated in both randomly initiated simula-
tion environments in Section 5.2, as well as a few
specially designed simulation cases in Section 5.3.
These tailored cases simulate specific SAR situ-
ations for which the proposed search approach
is designed, in order to showcase certain search
behaviour of this controller. Furthermore, the
computational time of each approach is evaluated.
All the experiments are conducted in MATLAB
R2019b on a PC with Intel Core i7 Processor with
2.20GHz frequency.

5.1 Comparison Search Approaches

The hierarchical control structure that includes
both the local SAR agent controllers and the
supervisory controller is termed the cooperative
search approach, since the inclusion of the supervi-
sory controller allows for a degree of coordination
between the SAR agents. Additionally, we com-
pare the cooperative case with four other search
approaches. We hypothesise that the combina-
tion of the local heuristic controller and the
supervisory MPC-based controller performs better
than either approach separately, in terms of vic-
tim detection, area coverage, and computational
effort. Hence, the comparative search approaches
aim to validate this theory.

First, an identical set of experiments will be
conducted excluding the supervisory controller.
This search approach is termed the selfish search
approach, since all agents are guided only by their
own local controller. The selfish approach serves
primarily as a reference base to determine the
added effect of the supervisory control module on
the performance of the SAR system.

The remaining three approaches are a purely
optimisation-based, a purely heuristic, and a ran-
dom search approach. For the purely optimisation-
based search approach, the MPC structure of the
supervisory controller as described in Section 4.2
is taken as a basis. Contrary to the cooperative
search approach, this pure-MPC method solves

the optimal control problem for each time step
and does not receive the solution from the local
controller as a warm start. Instead, the pure-
MPC method randomly initialises P0. For the
heuristic approach, an ant colony system (ACS)
search method is used, formulated using the basic
principles from Koenig and Liu in [12]. For the
pheromone map of the agents, the global scan cer-
tainty map C is used to indicate to what extent
certain areas have been visited/scanned. Hence,
the ACS will also represent a type of (passive)
cooperative search approach, since all agents will
share information relating to the global mission.
Finally, the fourth comparison approach uses a
random search strategy for each agent. Although
random search can be viable in an environment
that is initially completely unknown, this simple
search strategy serves primarily as a reference base
for the other search methods.

5.2 Random Environment
Simulations

The cooperative search approach is tested in a set
of 20 simulation cases with a run-time of τmax

and a seeded random placement of both victims
and obstacles in an environment of fixed size. All
environment characteristics are shown in Table 2.
Furthermore, this table contains the values for all
parameters related to victim and sensory mod-
elling, as well as the hyper-parameter values used
in the control approach. For the experiments con-
ducted in this research, we consider a number
of N = 2 agents. As mentioned in Section 3,
these agents are non-homogeneous in their sensory
perception radius rpi and perceptual uncertainty
reduction rate ηi. Additionally, both agents start
at fixed coordinates for each simulation case. The
values of these parameters are shown in Table 3.
At the start of each simulation, the agents have no
a priori information about the environment, i.e.
c(x, y, τ0) = 0 ∀(x, y) ∈ E.

As mentioned in Section 4, the controller
is designed for both area coverage and victim
search efficiency, which by nature form conflicting
objectives for the agent. To evaluate the search
approaches, we present a number of performance
indicators, which show the effectiveness of the
search approaches in terms of both area coverage,
victim search efficiency, and computational effi-
ciency. Area coverage is evaluated by means of two
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Table 2: Environment and modelling parameters

Parameter Value

(Lx, Ly) (40,25)
V 25
Pvm 5.0 %
K 5
γ 0.6
α 2.0
β 5.0
I 30
w1 1.0
w2 0.050
τmax 300

Table 3: Agent parameters for all different simulation
types.

Random rp η (x, y)τ0 Case 3 rp η (x, y)τ0

a1 6 0.1 (1,16) a1 7 0.1 (9,10)
a2 4 0.3 (13,25) a2 3 0.3 (5,8)

Case 1 rp η (x, y)τ0 Case 4 rp η (x, y)τ0

a1 6 0.1 (10,8) a1 4 0.1 (8,7)
a2 4 0.3 (10,6) a2 4 0.3 (8,9)

Case 2 rp η (x, y)τ0
Combi
Case

rp η (x, y)τ0

a1 6 0.1 (6,10) a1 7 0.1 (9,17)
a2 4 0.3 (6,8) a2 3 0.3 (5,15)

performance indicators. First we consider the total
scan certainty of the environment as function of
time, defined as:

S(τ) =
∑

(x,y)∈E

c(x, y, τ) (12)

which is shown in Figure 5 for all approaches.
Secondly the rise time of total scan certainty.
In Table 4, it is shown how many time steps
are required to reach a total scan certainty of
50%, 70%, 80%, 85%, and 90% for each search
approach. These performance metrics show both
the absolute area coverage performance of each
search approach, as well as how fast (and thus
efficiently) each approach is able to achieve this.

In terms of victim search efficiency, the per-
formance of each search approach is evaluated by
means of (i) the number of found and deceased
victims at the end of each simulation, (ii) the time

Fig. 5: The total scan certainty for each search
approach in a random environment; S is given as a
percentage of the maximum achievable scan certainty
of the entire environment.

step at which each victim is detected, and (iii) the
health state of each victim at time of detection.
The results of all these performance indicators are
shown in Figure 7.

Finally, Table 5 shows the average time
required to run a complete simulation of τmax

time steps for each search approach. Addition-
ally, Figure 6 shows the number of times a search
conflict has been registered by the SAR sys-
tem using both the cooperative and selfish search
approach. For the cooperative approach, this value
is coincidentally the number of times the supervi-
sory controller has been activated. In combination
with the previously mentioned performance indi-
cators, these results show the cost of area coverage
and victim detection performance as function of
processing effort.

5.3 Special Simulation Cases

In addition to the random environment simula-
tions discussed previously, we apply the cooper-
ative and selfish search approach to a number
of specific simulation scenarios. These small-scale
simulation cases place a non-homogeneous, multi-
agent system in different situations with conflicts
in local versus global mission control. The aim
of these special simulations, is to validate that
the developed search approach shows the search
behaviour that it was designed for. These cases
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Table 4: Time steps needed to reach various degrees of
total environment certainty in a random environment.

τS=50% τS=70% τS=80% τS=85% τS=90%

Cooperative 97 157 208 291 -
Selfish 104 167 238 - -
ACS 97 159 218 249 292
Pure-MPC 143 251 - - -
Random - - - - -

Table 5: Average computational time for a single sim-
ulation of τmax = 300 time steps.

Cooperative Selfish ACS Pure-MPC Random

22min 26s 15min 58s 0min 2s 57min 11s 0min 2s

Fig. 6: Number of registered search conflicts using
both the cooperative and selfish search approach.

have the same modelling parameters as specified in
Table 2, unless specified otherwise. Furthermore,
Table 3 lists all relevant agent parameters for each
simulation case.

5.3.1 Case 1: Victim-Victim Conflict

In the first special simulation case, 2 agents are
tasked with finding 2 victims in an environment
of (Lx, Ly) = (15, 15) which is partially known, in
which c(x, y, τ0) = 0.20 ∀x, y ∈ E. In this set-
ting, victim V1 has a health state of h1(τ0) = 10,
and victim V2 has a health state of h2(τ0) = 50.
This simulation case is illustrated in Figure 8. The
executed search path of both agents is shown in
Figure 13 for τmax = 9 time steps. Furthermore,

the change in total scan certainty ∆S as function
of time is shown in Figure 18.

5.3.2 Case 2: Victim-Coverage Conflict

In the second special simulation case, 2 agents are
tasked with finding 1 victim in an environment
of (Lx, Ly) = (15, 15) which is completely known,
save for one square area E′ ⊂ E. In this area
c(x, y, τ0) = 0, with c(x, y, τ0) = 1 elsewhere. This
scenario is illustrated in Figure 9. The executed
search path of both agents is shown in Figure 14
for τmax = 9 time steps, with the change in total
scan certainty ∆S shown in Figure 19.

5.3.3 Case 3: Sensor Radius
Exploitation

In this simulation case, 2 agents share the envi-
ronment of (Lx, Ly) = (15, 15) with 2 victims
and a set of obstacles, as is shown in Figure 10.
The environment is partially known to the agents,
with c(x, y, τ0) = 0.50 ∀x, y ∈ E. In this simu-
lation case, a1 has a sufficiently large perception
field such that it can see both victims, whereas
a2 can only see V1. Furthermore, h1(τ0) = 20 and
h1(τ0) = 15. The executed search paths for both
approaches are shown Figure 15 for τmax = 10
time steps. Furthermore, the change in total scan
certainty ∆S as function of time is shown in
Figure 20.

5.3.4 Case 4: Sensor Accuracy
Exploitation

In the fourth case, two agents are tasked with
scanning a partially known environment contain-
ing two square areas with a lower scan certainty
(E′

1, E
′
2) ⊂ E, as is shown in Figure 11. The scan

certainty values for these areas are as follows:

c(x, y, τ0) =


0 ∀(x, y) ∈ E′

1

0.30 ∀(x, y) ∈ E′
2

0.90 otherwise

Furthermore, Figure 16 shows the paths of
both agents for τmax = 10 time steps, and
Figure 21 shows the change in scan total certainty
as function of time.
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Fig. 7: Victim detection efficiency for each search approach in a random environment, evaluated by (a) the
number of found victims, (b) the number of deceased victims, (c) the time of detection, and (d) the health state
at the time of detection of a victim.

5.3.5 Combined Simulation Case

Finally, we present a simulation case that com-
bines the various individual scenarios, as described
previously. This simulation can be seen in
Figure 12 and is bounded by a larger environment
of (Lx, Ly) = (30, 15), containing 2 agents and
6 victims. Furthermore, the environment is par-
tially known, with a number of areas E′

1−7 ⊂ E of
varying initial scan certainty:

c(x, y, τ0) =



0.70 ∀(x, y) ∈ E′
1

0.40 ∀(x, y) ∈ E′
2

0.20 ∀(x, y) ∈ E′
3,4,5,6

0.10 ∀(x, y) ∈ E′
7

0.50 otherwise

The selfish and cooperative paths of both
agents are shown in Figure 17 for τmax = 35. Addi-
tionally, Table 6 shows the health state at the end
of the simulation, the number of times a victim has
been visited (f), and the first time of detection for
each victim (τf ). Similarly to the previous cases,
the change in total scan certainty is evaluated and
shown in Figure 22.
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Fig. 8: Special simulation case 1: victim-victim con-
flict.

Fig. 9: Special simulation case 2: victim-coverage con-
flict.

Fig. 10: Special simulation case 3: sensor radius
exploitation.

Fig. 11: Special simulation case 4: sensor accuracy
exploitation.

Fig. 12: Combination case simulation.
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Fig. 13: Case 1 - agent path map using the selfish (left) and the cooperative search approach (right).

Fig. 14: Case 2 - agent path map using the selfish (left) and the cooperative search approach (right).

Fig. 15: Case 3 - agent path map using the selfish (left) and the cooperative search approach (right).
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Fig. 16: Case 4 - agent path map using the selfish (left) and the cooperative search approach (right).

Fig. 17: Combination case - agent path map using the selfish (top) and the cooperative search approach (bottom).
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Fig. 18: Case 1 - change in total scan certainty. Fig. 19: Case 2 - change in total scan certainty.

Fig. 20: Case 3 - change in total scan certainty. Fig. 21: Case 4 - change in total scan certainty.

Fig. 22: Combination case - change in total scan certainty.
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Table 6: Combination case - victim detection results.

Selfish Cooperative

hv(τ = 35) f τf hv(τ = 35) f τf

V1 6.94 0 - V1 6.94 0 -
V2 24.9 2 10 V2 17.2 1 22
V3 17.97 2 3 V3 14.34 2 8
V4 0 0 - V4 6.03 1 11
V5 6.94 0 - V5 21.87 1 15
V6 6.94 0 - V6 11.15 1 30

6 Discussion

In this section we interpret and discuss the previ-
ously presented results in more depth. From this
analysis we draw conclusions about the perfor-
mance of each search approach.

6.1 Random Environment
Simulations

First, we discuss the area coverage performance
of all search methods when applied to a ran-
dom simulation environment. In Figure 5, we
show that both the selfish and cooperative search
approach achieve a comparable total scan cer-
tainty after 300 time steps. However, Table 4
shows that the cooperative approach is signifi-
cantly faster to reach a particular levels of scan
certainty in the later stages of the simulation, for
instance achieving 80% total scan certainty 14.4%
sooner than the selfish approach. Furthermore,
the ACS search approach proves best in terms of
final area coverage, with a 6.71% higher S(300)
than the cooperative approach, and a compara-
ble rise time in earlier stages. This is likely due
to the objective function of the ACS search algo-
rithm, which only uses the scan certainty map to
determine the most favourable next step for each
agent. Hence, this algorithm has a single, non-
conflicting objective, as opposed to the selfish and
cooperative approach. The pure-MPC approach,
however, performs worse than the cooperative and
selfish approach. When investigating the optimi-
sation behaviour of the search approach, it was
found that in many cases the solver reaches its
fixed iteration limit, and thus does not converge to
a globally optimal solution. This shows the added
value of warm-starting the supervisory controller
with the local controller solution in the coopera-
tive search approach. Lastly, the random search

approach achieves the worst degree of area cov-
erage of all approaches, due to its lack of search
objective.

Next, Figure 7.a and Figure 7.b show that the
cooperative and selfish approach achieve a simi-
lar performance in terms of both number of found
and deceased victims, with both approaches being
able to find all 25 victims in most simulation.
However, the cooperative approach has a lower
variance for the number of found and deceased
victims with σ2

f,coop = 0.134 and σ2
d,coop = 0.345,

respectively. This indicates a more consistent vic-
tim search performance compared to the selfish
case for which σ2

f,self = 3.10 and σ2
d,self = 2.22.

Yet, both control approaches outperform the pure-
MPC, ACS, and random search approach in terms
of victim detection. For the ACS search approach,
this lower performance can again be explained by
the structure of the objective function. Since the
ACS algorithm does not consider victim detec-
tion in its objective function, the SAR agents will
only detect victims they come across by chance,
similar to the random search approach. However,
the ACS approach still detects more victims than
random search, due to the better area coverage
performance of the algorithm. Furthermore, the
lower area coverage performance of the pure-MPC
approach also becomes apparent in its victim
detection efficiency, which is again likely due to
the convergence issues of the optimisation solver.
In Figure 7.c and Figure 7.d it is shown that the
cooperative and selfish case perform equally well
in terms of victim detection time and the victim
health condition at time of detection. This indi-
cates that both search approaches are able to find
victims at an equally fast rate, and that neither
approach finds these victims in a better or worse
health state than the other.

Finally, we analyse the computational effort
required for each search approach, as shown in
Table 5. Here, both the ACS and random search
approach perform the search task in the shortest
amount of time, due to their simple and efficient
heuristic algorithms. Furthermore, the coopera-
tive approach on average takes 40.5% longer to
complete a simulation compared to the selfish
search approach. This is due to the additional
computations performed by the supervisory con-
troller. This is confirmed by Figure 6, which shows
that on average the supervisory controller is acti-
vated 41 times when using the cooperative search
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approach, with a variance of σ2
confl,coop = 1.56e3.

A similar result can be observed for the pure-MPC
approach, which requires the highest computa-
tional effort since the supervisory controller is acti-
vated at every time step. However, Figure 6 also
shows that the SAR agents cause less search con-
flicts when controlled by the cooperative search
approach compared to the selfish approach. From
this result we reason that the supervisory con-
troller, when triggered, is able to better prevent
future search conflicts between the SAR agents.
This strengthens the conclusion that the cooper-
ative search approach is an effective method to
spread the SAR agents over the environment.

6.2 Special Simulation Cases

After the random environment simulations, we
analyse the results of the special simulation cases
starting with Case 1. In the selfish scenario,
Figure 13 shows that both agents prioritise V1 over
V2, since h1 < h2. Consequently, V1 is detected by
both agents at τ = 3. After this, the agents con-
tinue exploring the environment without moving
to V2. With the cooperative approach, both agents
are divided over V1 and V2, which they find at τ =
3 and τ = 5, respectively. This shows that a SAR
system adopting the cooperative search approach
is able to successfully coordinate the available
agents over multiple victims, where the selfish
approach fails. Furthermore, Figure 18 shows that
the cooperative approach achieves a ∆S that is
17.2% higher than that of the selfish approach at
the end of the simulation. This gain in area cov-
erage is an additional advantage of spreading out
the agents over different targets.

Case 2 shows a similar scenario, however now
the environment contains two types of potential
targets for the agents; one victim and one area of
lower scan certainty E′. For the selfish approach,
both agents initially head straight to V1, which
they both reach at τ = 4, as shown in Figure 14.
After this they both set an identical path for the
area with low scan certainty. In the cooperative
case, a1 is tasked with scanning the area with low
scan certainty, while a2 heads to V1 whom the
agent reaches at τ = 4. Both approaches detect
V1 equally fast, however Figure 19 shows that
the cooperative approach outperforms the selfish
approach with a factor of 4.03 in terms of ∆S. This

large difference is a result of the supervisory con-
troller, which successfully identifies both V1 and
E′ as targets of interest and divides the available
SAR agents between them.

Next, Case 3 shows a situation in which
the global mission may strongly conflict with a
SAR agent’s local objectives. In the selfish case,
Figure 15 shows that both a1 and a2 locally decide
to visit V1 at τ = 2 and τ = 5, respectively.
Although their health state is less critical, V1 is
prioritised over V2 by a2 since they can be reached
in fewer time steps. Both agents subsequently con-
tinue exploring the environment, but are unable to
find a feasible path to V2 due to their limited sen-
sor radius. In the cooperative case, a1 and a2 are
tasked with finding V2 and V1, whom they reach
at τ = 10 and τ = 5, respectively. Although a1
is able to reach V1 in a shorter time, the supervi-
sory controller in the cooperative control approach
decides that it is better to let V1 be detected at
a later time step if that means also detecting V2.
Hence, this simulation case highlights the abil-
ity of the cooperative control approach to assign
locally sub-optimal tasks to each SAR agent, while
still maximising the global mission pay-off. Fur-
thermore, Figure 20 shows the added benefit of
quickly spreading out the agents over the envi-
ronment, where the cooperative search approach
achieves a 18.7% higher ∆S compared to the
selfish approach.

When analysing Case 4, Figure 16 shows that
both agents locally decide to move to E′

1 in the
selfish case, since this area is expected to yield
the highest gain in scan certainty. With the coop-
erative search approach, both agents are divided
between E′

1 and E′
2. Moreover, a1 is sent to scan

E′
1 for two reasons. First of all, a1 is closer to this

area, which is valued in the objective function of
the local controller as explained in Section 4.1.3.
Secondly, the supervisory controller exploits the
fact that a1 has a higher sensor accuracy than
a2 and is therefore expected to yield a larger ∆S
when sent to this area. In Figure 21 the effect of
spreading out the agents in such a manner can
be seen in terms of area coverage. By dividing
the agents over different search areas, the cooper-
ative search approach achieves a 29.8% higher ∆S
compared to the selfish approach.

Finally, the Combination Case integrates ele-
ments of the previous special cases in a larger
simulation. In the selfish case, both agents locally



Springer Nature 2021 LATEX template

Article Title 21

decide to visit V3, after which they move to the
southwest quadrant of the environment. Here,
they individually visit V2 and continue to explore
the surrounding region. This results in 2 victims
detected (of which 2 are visited by both agents),
4 victims undetected, and 1 victim deceased dur-
ing the simulation. Using the cooperative search
approach, a1 and a2 are initially tasked with vis-
iting V4 and V3, respectively. After they have
reached their assigned targets, both agents explore
different areas of the environment, which results
in V2, V5, and V6 also being found. At the end
of the simulation, 1 victim remains undetected,
and no victims are deceased. Not only does the
SAR system detect more victims when adopting
a cooperative search approach, but this approach
also ensures that no victim is visited by more than
one different agent. This shows that the cooper-
ative search approach performs better in terms
of victim search efficiency. Moreover, by dividing
the agents over different victims, the SAR system
is able to simultaneously visit more areas with
a reduced scan certainty using the cooperative
control approach. This becomes apparent when
evaluating the change in total scan certainty as
function of time, as shown in Figure 22. At the
end of the simulation, the SAR system achieves
a 27.6% higher ∆S when adopting a cooperative
search approach, as opposed to the selfish control
approach.

7 Conclusions & Topics for
Future Research

In search-and-rescue missions, it is imperative to
create situational awareness of an unknown envi-
ronment. To achieve this, multi-agent systems of
cooperative robots can be deployed for fast and
efficient area mapping. This paper has presented
the framework for a new type of hierarchical,
cooperative mission planning control approach for
the application of multi-agent search-and-rescue
systems. Moreover, this control approach incor-
porates non-homogeneous sensory capabilities of
the SAR agents in its search strategy, in order
to increase its victim detection efficiency and
area coverage performance. On a lower level, each
SAR agent has its own heuristic local controller,
which uses FLC and a k-shortest path algo-
rithm to determine its own target and path. At

a higher level, a centralised MPC-based supervi-
sory controller coordinates the global mission of
all SAR agents if two or more agents have con-
flicting search objectives. The rationale is that the
distributed local controllers can, in most cases,
efficiently find a satisfactory, sub-optimal solution
to guide each SAR agent individually at a given
time step. In the less frequent case of a search
conflict, the centralised supervisor can optimise
the global pay-off for all agents, at the cost of
being more computationally demanding. This con-
trol architecture is termed the cooperative search
approach, as opposed to the selfish approach, in
which the SAR agents are only guided by their
own local controller.

In simulations with randomly positioned
obstacles and victims, the cooperative and self-
ish search approach show similar performance in
terms of victim detection efficiency and area cov-
erage, although the cooperative approach is faster
at reaching higher levels of area scan certainty
than in the selfish case. However, it is shown
that in specific SAR situations the cooperative
approach greatly outperforms the selfish approach
by efficiently resolving various types of search
conflicts. Furthermore, the area coverage perfor-
mance of the cooperative approach is comparable
to a purely heuristic approach designed for area
coverage, while simultaneously outperforming this
approach in victim detection efficiency. Similarly,
the cooperative search approach outperforms a
purely optimisation-based approach in both area
coverage and victim detection efficiency, show-
ing that the hierarchical combination of the local
and supervisory controller performs better than
either one control type separately. This comes
at the cost of the cooperative approach being
more computationally expensive than the selfish,
ACS, and random search approach. However, we
deem this acceptable and necessary when con-
sidering the higher-ranking performance of this
search approach in both victim detection efficiency
and area coverage.

We identify a number of topics for future
research. First, the fidelity of victim and agent
simulation can be improved by using more exten-
sive models for their behaviour, movement, and
physical capabilities/limitations. For example,
this research only considers non-homogeneous sen-
sory capabilities between the SAR agents. How-
ever, this can be extended to differences in moving
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speed, computational capacity, or task specialisa-
tion (such as area mapping, victim aid, explosive
removal, etc.). Moreover, this recommendation
can be extended to the simulation environment
itself. True SAR scenarios include a wide vari-
ety of (dynamic) obstacles and hazards that need
to be considered by the mission planning con-
troller. Future research may include the modelling
of fire spread, smoke, explosive materials, and
falling debris, which require increasingly robust
controllers. Furthermore, we recommend further
research into the effects of increasing the SAR fleet
size. It is hypothesised that the performance dif-
ferences between search approaches will become
more pronounced for an increased SAR system
fleet size, albeit at the cost of more computational
effort for the supervisory controller. Investigating
the extent of this effect can contribute to quan-
tifying the feasibility and real-life applicability of
this research.
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Executive Summary
Both natural and man-made disasters claim many lives and cause immeasurable societal damage
around the world. Due to the unpredictable nature of all disasters, there will always be a need for more
efficient search-and-rescue (SAR) protocols in response to a disaster. This literature study aims to
support a thesis research into reducing victim search time of a multi-agent search-and-rescue system
(SARS) of non-homogeneous unmanned aerial vehicles (UAVs) in the response and relief phase of a
disaster. Specifically, the thesis proposal aims to contribute to the research field of SARS, by devel-
oping a mission planning approach which will exploit the non-homogeneous nature of each UAV in the
system, thus increasing the victim search efficiency of the system. This literature review first covers
various types of control approaches relevant to SAR mission planning, including fuzzy logic control
(FLC), prioritised planning, and model-predictive control (MPC). For each control approach, the funda-
mental principles, characteristics, and common fields of application are explained, along with relevant
extensions or adapted variations of the control methods. This is followed by a critical review of the state-
of-the-art of current SARS research. The literature is broken down and discussed based on disaster
environment, fleet composition, sensory capabilities of the agents, task assignment, path planning, and
the uncertainties and disturbances that are incorporated in the SARS research. From this review, a
number of trends can be identified in the literature. The first of these trends, is that airborne robots
have taken over land-based robots as the dominant type of robotic SARS agent in the past decade.
Furthermore, mathematical control approaches for mission planning are becoming popular in SARS
research, although heuristic approaches are still considered viable for current applications. Moreover,
sensors that can detect wireless devices have been found viable for victim detection in a SAR setting, in
combination with (more conventional) sensors such as cameras. The final trend, is that uncertainty and
disturbances in the SAR environment are rarely explicitly addressed in (theoretical) SARS research,
leaving room for extensions and improvements on such investigations. From the reviewed literature on
control approaches, SARS research, and SAR simulator design, it is possible to formulate this thesis
research proposal. First, a novel control approach termed Fuzzy-Logic Assisted Prioritised Task As-
signment and Path Planning (FLAPTAPP) is proposed for the mission planning aspect of the SARS.
The approach combines both task assignment and path planning in one controller, utilising fuzzy logic
control (FLC) and prioritised planning, respectively. This mission planning approach is designed to ex-
ploit the individual capabilities of the agents in the SARS, thus contributing to non-homogeneous SARS
mission planning. Additionally, the world model that the mission planning controller uses, is updated in
real-time to improve the search strategy adopted by the mission planning module. Finally, to validate
the proposed SARS of this thesis work, a custom simulator is built based on both previous work by the
research group of this thesis work, and the internationally recognised SAR environment simulator by
Robocup-Rescue. The contributions of this research to the field of SARS, are both a more extensive
mission planning approach which exploits the individual capabilities of the agents in the SARS, and a
novel controller type, that combines fuzzy task assignment and prioritised path planning.
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1
Introduction

Disasters frequently grip the headlines of news media. Such articles may be focused on a single
cataclysmic event, such as the 2020 Beirut explosion, which resulted in at least 204 lives lost, 6500
injured, an estimated 300,000 citizens left homeless, and US$15 billion in damage [1][2]. However,
certain types of disasters can be a more regular (even seasonal) occurrence, such as climate-related
and geophysical disasters. Based on an investigation in [3], publicised by the United Nations Office for
Disaster Risk Reduction (UNDRR), these types of disasters accounted for 1.3 million casualties in the
period between 1998 and 2017, with a further 4.4 billion directly affected1 by the event.

In both the single and reoccurring case, these statistics show that disasters can have an enormous
impact on society and the environment. Disaster management (also referred to as emergency man-
agement) involves the preparation for, response to, and recovery after a disaster. In the context of
disaster management, the UNDRR defines a disaster as follows2:

”[A disaster is] a serious disruption of the functioning of a community or a society at any
scale due to hazardous events interacting with conditions of exposure, vulnerability and
capacity, leading to one or more of the following: human, material, economic and envi-
ronmental losses and impacts.”

(UNDRR, 2020).

In [4], Khorram et al. provide a detailed review of many different aspects of disaster management,
which corresponds with the vision of the UNDRR. Most notably, they state that an important charac-
teristic of disasters is that they cannot be prevented. Floods, fires, or pandemics are almost always
unavoidable events, of which only the consequences can be mitigated. This stresses that, no matter
how rigorous the preparation, there will always be a need for efficient response and recovery protocols
to soften the aftermath of a disaster. One task within the response and recovery phase of any disaster,
is victim aid and relief. For this objective, rescue teams are deployed in a disaster scenario.

1.1. Search-and-Rescue Robotics
In the past, a search-and-rescue system (SARS) consisted of almost exclusively human rescue workers
(with the exception of trained rescue animals). The past couple of decades have seen a rapid increase
in the applications of robots in the field of urban search-and-rescue (USAR) disaster settings. Recent
advances in search-and-rescue (SAR) robots are motivated by a number of advantages of these sys-
tems over teams of only human workers. From a safety perspective, the deployment of (autonomous)
robots reduces the risks that human rescue workers would be subject to. For example, a system of
crawlers was deployed in the direct aftermath of the World Trade Centre attack on 11 September 2001,
operating in environments with risks such as compromised structures, fire, and (toxic) dust and gasses
[5]. The application of robots stems from the philosophy that machines are expendable and human lives
are not. Therefore, human rescue workers no longer need to risk their own lives to save that of others.
1Injured, left homeless or displaced, or in need of emergency assistance.
2https://www.undrr.org/terminology/, (Retreived November 2020)
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Furthermore, human resources can be scarce in a USAR scenario, and the automation of search and
relief tasks by means of autonomous robots reduces the workload on human rescue personnel. This
allows that vital human resources can be made available for other tasks such as logistics and victim
aid. Apart from safety and resource availability, autonomous robots can offer another advantage over
human workers in the form of victim detection efficiency. In the initial period directly after any disaster,
search time is a critical factor when it comes to recovering survivors. Coburn et al. in [6] propose a
model for mortality predictions after an earthquake. Here, they determine that survival rates of victims
greatly increase with increased rescue efficiency in the first 24-36 hours after the disaster. In an effort to
increase this victim detection efficiency (and thus reduce search time), fast, agile autonomous drones
such as unmanned aerial vehicles (UAVs) are deployed to map out disaster areas faster which might
be entirely inaccessible to humans and ground robots.

For faster response and relief, a SARS can be combined with more efficient autonomous mission
planning approaches. For this thesis research, mission planning is defined as the combination of two
problems. First, the problem of assigning a task or destination to an agent, and secondly, to determine
a corresponding path to reach it. Task assignment becomes a factor in mission planning when there are
more tasks than agents in a multi-agent system. In other words, the mission planner must decide which
tasks get prioritised over others. Furthermore, the task assignment problem acquires an extra dimen-
sion when the SARS has non-homogeneous agents. A homogeneous system is characterised by all
agents being roughly identical; they have the same performance capabilities (range, speed, computa-
tional power), the same payload/sensors, the same functionality, and thus essentially the same relative
value. However, in a non-homogeneous multi-agent system, different agents may have different capa-
bilities, and as a result may be more specialised or efficient for different tasks within the SAR mission.
Not only does the mission planning module decide on the priority of each area in the search grid, but it
must also determine which agent’s capabilities are best suited for each task. The second aspect of mis-
sion planning is determining the path an agent should take to reach its destination, also referred to as
trajectory planning. In a disaster environment with varying dynamics and uncertain elements (moving
victims, spreading fire, compromised structures), it can be challenging to find the fastest feasible path
to a particular destination. What adds to the challenge is the fact that a mission planning module must
run constantly in real-time, in order to keep updating the commands that the SARS agents receive.
These challenges of both task assignment and trajectory planning, combined with the requirements
imposed on the SARS, raise the need for more advanced mission planning approaches.

1.2. Project Scope
This literature study is meant to support a thesis research into reducing victim search time of a multi-
agent SARS of non-homogeneous UAVs in the response and relief phase of a disaster. The thesis
centres around designing a mission planning controller, with the goal to minimise victim search time
and maximise the area coverage of an urban disaster setting. More specifically, the mission planner is
designed for a non-homogeneous SARS, and strongly focuses on exploiting the different capabilities
of the system’s agents. Since the mission planning module will incorporate the specific capabilities of
each agent into its strategy, it is hypothesised that such an approach will increase the victim search
efficiency of the SARS with respect to both the search time and area coverage. The mission planning
controller will be adaptive, since its strategy is dependent on input data that the agents gather during
their deployment, such as unexpected fire hazards or damaged structures. Essentially, the controller
will progressively ’learn’ more about the environment, which it will use to further optimise its search
strategy.

The thesis research will consist of two main parts. First, the control approach for mission planning
is developed. This is followed by implementing the mission planning approach in a simulation envi-
ronment. In this simulation, the mission planning module will be applied to a SAR environment and
evaluated based on its performance.

1.3. Project Objectives
The ultimate goal of any SAR mission is to save as many lives as possible, and to do this in the least
possible time. From this, it follows that the main research objective of this thesis is:

”To reduce the total number of casualties caused by a disaster, by increasing the victim
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search efficiency with respect to mission time and area coverage of a multi-agent, non-
homogeneous search-and-rescue system of UAVs.”

Thismain objective of the research can be divided into a number of sub-goals. Themain contribution
of this research will focus on optimising the victim search behaviour of a SARS with non-homogeneous
agents, with a mission planning controller that uses dynamic models of the environment for its de-
cision making. Since there are many possible control methods for both trajectory planning and task
assignment, an appropriate control method must first be chosen before it can be designed. This will
form the first sub-goal of the research. The environment model that the resulting mission planning
controller uses, is constantly updated based on the information gathered by the agents in the disaster
scene. Hence, the mission planning approach will not only exploit the individual capabilities of non-
homogeneous agents, it will also have an adaptive structure to account for changes in the disaster
environment. It follows that one sub-objective of this research will be to keep updating the environ-
ment model for the mission planner, by combining it with real-time input data provided by the agents.
The mission planning controller will provide information/input for the agents to steer their search be-
haviour. Hence, another sub-objective will be to set up appropriate information exchange between
the mission planning controller and agents, by investigating what information they require for optimal
mission planning. Furthermore, it is a requirement to run the mission planning module in real-time.
If the computational load is found to be too high for this application, it must be mitigated by reducing
and/or distributing the load. Finally, it is necessary to test and evaluate the resulting system. For this,
the victim search efficiency of the SARS will be tested, by designing a simulation environment with all
necessary elements, including fire, structural damage, victim condition and behaviour, and wind.

1.4. Research Questions
From the objectives of this thesis, it is possible to formulate the main research question and its sub-
questions. The main research question of this thesis is:

”Cananadaptive, autonomousmissionplanningapproach fornon-homogeneous
agents increase the victim search efficiency of a robotic search-and-rescue sys-
tem?”

To support this research question, a number of sub-questions have been formulated. Answering
these questions will form the basis for achieving the sub-goals of this research, which have been dis-
cussed in Section 1.3.

• What control approach is best suited for non-homogeneous, multi-agent mission planning in terms
of victim search time and area coverage?

• How can an adaptive mission planning approach be used to incorporate real-time data from the
agents in the system?

• What information exchange is required between agents in a multi-agent SARS?

• What information exchange is required between the agents and the mission planning module in
a multi-agent SARS?

• How can the computational load of a mission planning controller be managed, such that it can be
solved at each time step in the system in real-time?

• How should a simulation environment be designed in order to assess the victim search efficiency
of a SARS?

1.5. Literature Study Structure
This literature review is structured as follows. First, Chapter 2 discusses the theory, characteristics,
and various applications of a number of control methods. This provided the basis for determining which
control approach may be best suited for the mission planner. This is followed by Chapter 3, in which
the specifics of mission planning and agent sensing are addressed. Additionally, this chapter includes
a brief overview of recent SARS researches and evaluate them based primarily on mission planning,
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fleet composition, and the communication and sensing infrastructure of the agents. Next, Chapter 4
reviews and compares different modelling sources en methods for the simulation environment, in which
the developed mission planning approach are tested. Once the mission planner and simulation envi-
ronment are reviewed, the final proposed system for the thesis research is summarised in Chapter 5.
Finally, Chapter 6 concludes this literature study and recapitulates the key points of all chapters.



2
Control Approaches

Before research on different SARS applications can be reviewed and compared, it is necessary to pro-
vide a theoretical basis for the commonly used control approaches. This chapter reviews a number of
heuristic and mathematical control methods by discussing the main concepts, controller characteristics,
and relevant theoretical and practical extensions of the main theory.

The first control approach is fuzzy logic control, discussed in Section 2.1. This is followed by a
review of model-predictive control (MPC) in Section 2.3, and prioritised planning in Section 2.2. Next, a
number of hybrid control approaches are reviewed in Section 2.4, which are combinations or extensions
of the previously discussed control methods. Finally, Section 2.5 presents a concise summary of the
main characteristics of each controller reviewed in this chapter.

2.1. Fuzzy Logic Control
This section provides an overview of fuzzy logic and its application in fuzzy logic control (FLC). Although
the philosophical idea of fuzzy theory has existed for far longer, it was Zadeh who first introduced it as
a mathematical discipline in 1965 in [7]. Additionally, Dubois presents a broad, complete overview of
fuzzy logic and fuzzy systems in [8]. These sources will form the main basis for the following review of
FLC.

In Section 2.1.1, a brief introduction is given to fuzzy logic as a mathematical concept. This is
followed by an overview of different types of rule-based fuzzy systems and their corresponding infer-
ence mechanisms in Section 2.1.2. Finally, Section 2.1.3 discusses different forms of fuzzy systems
in control applications, along with a number of research examples.

2.1.1. Fuzzy Logic
In general, fuzzy logic is a method for representing (non-stochastic) uncertainties in a mathematical
framework and for mathematical reasoning in presence of uncertainty. To better understand this, first
the basic elements of fuzzy logic are explored, starting with fuzzy sets. In classical set theory, sets
are crisp or well-defined, i.e. an object 𝑥 is either a member of a set 𝐴, or not a member of the set. In
mathematical terms, its so-called membership (or characteristic) function is equal to 1 or 0, as is shown
in Equation (2.1):

𝜇𝐴(𝑥) = {
1 𝑥 ∈ 𝐴
0 𝑥 ∉ 𝐴 (2.1)

However, there exist more vague, ambiguous, or common-sense concepts for which sets are not
well-defined. For instance, when defining ”the set of very tall people” or ”the set of expensive cars”
it might not always be clear whether an element belongs to it. This is due to the fact that linguistic,
’human’ terms are used to define the sets, instead of exact, quantified terms. However, these types
of ambiguous concepts are still an essential part of human reasoning, decision making, and (manual)
control. To define such uncertainties mathematically, fuzzy sets have been developed. Contrary to
classical sets, an object can be a partial member of a fuzzy set, as shown in Equation (2.2). Instead
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of being a binary relation, the membership function 𝜇𝐴(𝑥) is now a mapping of 𝑋 on the unit interval
𝜇𝐴(𝑥) ∶ 𝑋 → [0, 1].

𝜇𝐴(𝑥) = {
1 x is with full certainty member of A
∈ (0, 1) x is partially a member of A
0 x is with full certainty not member of A

(2.2)

As an example, the ”set of very tall people” can be considered. The linguistic term ’very tall’ is a
vague and subjective measure which humans use to describe their height, since it is inexact and depen-
dent on one’s personal interpretation of the terms. For instance, one’s own height or sex might strongly
influence their definition of a very tall person. In this case, it is convenient to first define a function that
corresponds a membership degree to a certain realisation of the linguistic terms. For example, one
can argue that anyone shorter than 1.85m is definitely not very tall, whereas anyone taller than 2.10m
definitely is. The area in between the two limits is where people have a partial (fuzzy) membership to
the ”very-tall-people-set”. When graphically displaying the resulting membership function, it could look
like Figure 2.1.

Figure 2.1: Membership function corresponding to the set of very tall people

2.1.2. Rule-Based Fuzzy Systems
Fuzzy systems are built on information originating from a-priori knowledge and/or data measurements.
A-priori knowledge is usually gathered from system experts, such as process engineers or designers.
Broadly speaking, a fuzzy system is any system that uses fuzzy sets and their mathematical principles.
Fuzzy sets can be present in (control) systems in a number of different ways, however this research
primarily focuses on systems with fuzzy sets in the description of the system. This can, for instance, be
in the form of a set of if-then rules with fuzzy propositions. Such systems are called rule-based fuzzy
systems, and will form the main interest of this literature review due to their wide range of applications
in controllers. The rules of a rule-based fuzzy system have the following structure:

If antecedent proposition then consequent proposition.

In such systems the antecedent is always fuzzy, whereas the consequent can be a number of
different types, such as a crisp value, a function, or another fuzzy set. The knowledge of the process
experts is captured in these if-then rules instead of mathematical formulas. The rationale is that such a
rule base can mimic the behaviour of an experienced system operator. Two main types of rule-based
fuzzy models are discussed in this literature review, which are the linguistic fuzzy model (and singleton
fuzzy model) and the Takagi-Sugeno model. Furthermore, in control theory, fuzzy systems are used
to map input-output relations. In rule-based fuzzy systems, this is done by means of inference, which
is the process of deriving an output fuzzy set given the rule basis and the input. For the previously
mentioned fuzzy systems, the most common inference methods are discussed as well.

Linguistic Fuzzy Model
The if-then rules of a linguistic fuzzy model are formulated in the following structure:



2.1. Fuzzy Logic Control 37

𝑅𝑖: If x is 𝐴𝑖 then y𝑖 is 𝐵𝑖 i = 1,2,…K

In these fuzzy models, both the antecedent and consequent are fuzzy. There are many different
inference methods to obtain fuzzy outputs from inputs and a given rule base. One of the most widely
used inference methods is Mamdani Inference, named after the mathematician who first applied it to
the control of a steam engine in [9]. The general steps of the Mamdani inference algorithm are shown in
Algorithm 1. First, the input 𝑥 is converted to a fuzzy set 𝐴′. This step is also referred to as fuzzification.
Next, the degree of fulfilment 𝛽 of the input is calculated for each rule. Essentially, 𝛽 resembles how
well the input matches with the antecedent membership function of each rule. This is done by taking the
maximum of the intersection of the input membership function 𝜇𝐴′(𝑥) and the membership function of
each rule in the rule base 𝜇𝐴𝑖(𝑥). In the second step, the individual fuzzy consequent sets are derived,
by taking the intersection of each degree of fulfilment with the consequent membership function of each
rule. Finally, all consequent sets are aggregated into one fuzzy set 𝐵′, by finding the maximum of all
output membership functions at each output value 𝑦.

In most control applications, a fuzzy output set must be converted into a crisp, numerical value which
can be processed by a computer. This extra conversion is called defuzzification. A common defuzzifi-
cation method is the centre-of-gravity (COG)method, in which the weighted average of the membership
function corresponding to the consequent fuzzy set is taken as the crisp output. The equation for the
COG method is shown in Equation (2.3). Another defuzzification approach is the mean-of-maxima
(MOM) method, in which a crisp output is obtained by taking the average value of the arguments for
which the fuzzy set is at its maximum. The MOM relation is shown in Equation (2.4), where 𝑌 is the do-
main of output 𝑦. If there is only a single maximum in the consequent fuzzy set, the MOM method can
greatly save computational effort compared to the COG method. However, choosing the appropriate
defuzzification method strongly depends on the nature and application field of the fuzzy system itself.

Algorithm 1: Mamdani Inference
1. Fuzzify the input ;

𝐴′ = {𝜇𝐴′(𝑥)/𝑥 |𝑥 ∈ 𝑋 };
2. Compute the degree of fulfilment of the input for each rule in the rule base ;

𝛽𝑖 = 𝑚𝑎𝑥𝑥[𝜇𝐴′(𝑥) ∧ 𝜇𝐴𝑖(𝑥)] 1 ≤ 𝑖 ≤ 𝐾 ;
3. Derive the fuzzy sets of the output for each rule ;

𝐵′𝑖 ∶ 𝜇𝐵′𝑖 (𝑦) = 𝛽𝑖 ∧ 𝜇𝐵𝑖(𝑦) 1 ≤ 𝑖 ≤ 𝐾 ;

4. Aggregate the output fuzzy sets into one ;
𝐵′ ∶ 𝜇𝐵′(𝑦) = max

1≤𝑖≤𝐾
𝜇𝐵′𝑖 (𝑦)

𝑦′𝐶𝑂𝐺 = 𝐶𝑂𝐺(𝐵′) =

𝑁
∑
𝑖=1
𝜇𝐵′(𝑦𝑖)𝑦𝑖

𝑁
∑
𝑖=1
𝜇𝐵′(𝑦𝑖)

(2.3)

𝑦′𝑀𝑂𝑀 = 𝑚𝑒𝑎𝑛{𝑦̂| (𝜇𝐵′(𝑦̂) =max𝑦̂∈𝑌
𝜇𝐵′(𝑦̂))} (2.4)

A special case within linguistic fuzzy models, is the singleton fuzzy model. In a singleton fuzzy
model, the consequence propositions of the rule base are real constants (also called singleton sets).
In such a model, the rule base has the following structure:

𝑅𝑖: If x is 𝐴𝑖 then 𝑦𝑖 is 𝑏𝑖 i = 1,2,…K

For singleton fuzzy models, the Mamdani inference algorithm described in Algorithm 1 can still
be used, although it can be simplified considerably after step 2. Now, 𝜇𝐵(𝑦) = 1 for 𝑦 = 𝑦0 and
𝜇𝐵(𝑦) = 0 for all other values of 𝑦. This means that the the COG-method for defuzzification can
directly be combined with the computed degrees of fulfilment to calculate a crisp output, as shown in
Equation (2.5).
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𝑦′ =

𝑁
∑
𝑖=1
𝛽𝑖𝑏𝑖

𝑁
∑
𝑖=1
𝛽𝑖

(2.5)

Takagi-Sugeno Fuzzy Model
The second type of rule-based fuzzy model is the Takagi-Sugeno (TS) fuzzy system. This fuzzy system
type is named after the mathematicians who first developed it and applied it to a water cleaning plant
and a converter in a steel-making plant [10]. In TS rule bases, the consequent is a function of the
antecedent variables, instead of being a fuzzy proposition. This does require the antecedent variables
to be crisp values. The rule structure of a TS fuzzy system is as follows:

𝑅𝑖: If x is 𝐴𝑖 then y𝑖 is f𝑖(x) i = 1,2,…K

The inference approach for a TS model is a simple extension of the inference method used for
singleton fuzzy models, discussed in Equation (2.5). Similarly, an average of the consequent func-
tion values is taken, weighted with how well the membership function of the input fits each of the
antecedent functions (i.e. the degrees of fulfilment). This yields a crisp output value 𝑦′, as is shown in
Equation (2.6):

𝑦′ =

𝑁
∑
𝑖=1
𝛽𝑖f(x𝑖)

𝑁
∑
𝑖=1
𝛽𝑖

(2.6)

2.1.3. Fuzzy Logic Controllers
As mentioned previously, rule-based FLC aims to mimic the adaptive, non-linear decision making be-
haviour of human operators by integrating process knowledge in its rule base. Since this knowledge is
generally very qualitative, FLC-based approaches are heuristic by nature. Hence, FLC can be a very
efficient method for control input estimation, at the cost of being non-optimal approaches. Moreover,
apart from being able to perform non-linear control tasks, FLC has a very transparent logic structure.
This is an advantage when designing or adjustments in FLC, since a designer can readily find the dif-
ferent sources of knowledge and reasoning integrated in the rule base. In more black-box approaches,
such as in artificial neural networks (ANNs), a lack of such transparency may lead to a poor under-
standing of the underlying process. There are different ways to implement FLC in processes. Three
categories are distinguished for the purpose this research:

• Direct fuzzy logic control; the reference and feedback variables form the input to a fuzzy logic
controller, which directly commands a control output.

• Supervisory fuzzy logic control; a fuzzy inference system acts as secondary controller with the
objective to augment the performance of the primary controller.

• Model-based fuzzy logic control; through fuzzy system identification, a model of the process
is estimated and used to control it. A specific type of model-based FLC is fuzzy model reference
learning control, which will be further discussed in Section 2.4.1.

First, direct FLC uses a fuzzy inference system to directly map an input to a control output for the
system. A schematic block diagram of a direct closed-loop FLC and its sub-elements is shown in
Figure 2.2. A reference signal is fed through the fuzzification block, which transforms the (crisp) signal
value into a fuzzy set by determining its degree of membership to the antecedents. Next, the output
fuzzy set is obtained by passing the input through the inference mechanism and the rule base. Finally,
the output can be defuzzified before it is passed as control command to the system.

Mamdani (linguistic) controllers are commonly used in such a control architecture, with either fuzzy
or singleton consequent propositions. The research applications of Mamdani controllers span many
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different topics, with early applications being mainly in industrial process control [11], such as temper-
ature regulation [12] or suppressing the swing of overhead cranes [13]. More recently in an aerospace
application, a Mamdani controller is used in [14] to directly control the power output of a hybrid fuel
cell/battery systems for UAVs. TS controllers can also be used as direct FLC approaches, and re-
semble gain scheduling approaches. In such applications, the fuzzy system consists of several linear
controllers. The controllers are all activated in different magnitudes based on the degree of fulfilment
of the input to the rules. In [15], TS gain scheduling is used to control servo-pneumatic actuators in
their non-linear operating regions.

Figure 2.2: Direct FLC architecture

Next, supervisory (indirect) FLC is considered. The FLC itself still has the same structure and
elements as in Figure 2.2, however it now acts as a secondary controller which tunes the parameters
of the main controller. The supervisory FLC can take information from the process, primary controller,
and/or from external sources as input for its inference mechanism. The output of the supervisory
controller then adjusts the control behaviour of the primary controller. The advantage of supervisory
FLC, is that it can simply be added to existing controllers as opposed to needing to design an entirely
new controller. For example, a simple linear controller can be fitted with a supervisory FLC to increase
its performance in non-linear regions of the system. Such a system is used in [16], in which the linear
controller of a cement mixer is improved with a supervisory FLC. In addition to direct control, a direct
TS controller with linear consequent functions, such as in [15], can also be seen as a simple form of
supervisory control, since it essentially represents an adaptive combination of linear controllers.

Figure 2.3: Supervisory FLC architecture

2.2. Prioritised Planning
Another heuristic control approach is prioritised planning. Prioritised planning was first introduced by
Erdman and Lozano-Perez in their research in [17] in 1987. This control approach is specifically de-
signed for motion planning of agents in a multi-agent system. In prioritised planning, each agent is
assigned a unique priority, after which the algorithm solves a shortest-path trajectory problem sequen-
tially starting from the highest priority agent. In pseudo-code, the algorithm of prioritised planning is
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shown in Algorithm 2.

Algorithm 2: Classical Prioritised Planning [18]
Algorithm PP:

Δ ← ∅;
for 𝑖 ← 1…𝑛 do

𝜋𝑖 ← Best-traj(𝒞, Δ);
if 𝜋𝑖 = ∅ then

report failure and terminate
end
Δ ← Δ ∪ 𝑅Δ𝑖 (𝜋𝑖);

end

Function Best-traj(𝒞′, Δ):
return optimal satisfying trajectory for agent i in 𝒞′ that avoids regions Δ if it exists,
otherwise return ∅

In the algorithm, Δ resembles the dynamic occupation space of the planned agents, which is natu-
rally initiated as an empty set. For each of the 𝑛 agents in the system, a policy 𝜋𝑖 is determined based
on the optimal possible trajectory at that stage. This is dependent on which spaces are already occu-
pied at which time instance, contained in Δ, and on the static work space 𝒞, which resembles stationary
obstacles and the bounds of the system. The trajectory of the highest priority agent only has to avoid
collisions with the static work space, whereas lower-priority agents must also avoid collisions with the
trajectories of previously planned agents. In dense environments, it may occur that there is no possible
trajectory anymore for the 𝑖𝑡ℎ agent in the priority sequence (i.e. 𝜋𝑖 = ∅). When the algorithm fails to
find a feasible trajectory for an agent, the planning algorithm is terminated and possibly a change in
priority sequence is needed.

2.2.1. Computational Effort
There are a number of important characteristics of prioritised planning compared to other trajectory
planning approaches. Since the trajectory of each agent is planned independently, prioritised planning
is a fully decoupled (and thus uncoordinated) approach. This increases the speed with which the se-
quential trajectory planning can be performed, making it generally fast enough for real-time applications.
In [19] Van den Berg and Overmars compare the computational time of their own prioritised planning
approach with a coordinated, optimisation-based algorithm. In their results, they show that the priori-
tised planning algorithm is much faster and, with their hardware, always provides a feasible solution
within 1 second. On the other hand, the optimisation-based approach usually required a computational
time a factor 100-500 times higher. Furthermore, this approach became computationally intractable for
systems with more than 3 agents. Albeit to a lesser extent, the prioritised planning approach also suf-
fered under an increase in agents, which would cause the computational time to increase exponentially,
as shown in Figure 2.4.

To further reduce the computational time, Velagapudi et al. in [20] investigate the application of
various distributed controller architectures for prioritised planning. Similar to the structures described
in Section 2.3.2, a distributed control structure divides the central path planning problem over the indi-
vidual agents in the system, resulting in each agent simultaneously determining its own path. In such
a system, each agent knows its own static priority, but must communicate with other agents to receive
and transmit path and priority information. After this information exchange, a new iteration of path
planning is performed by each agent, now taking into account the trajectories of higher-priority agents.
Velagapudi et al. in [20] prove that, in a system with 𝑛 agents, such a distributed approach yields the
same solution as the centralised approach within 𝑛+1 iterations. Furthermore, they propose a number
of different communication strategies for the agents, which vary in what information is sent to which
agents. Compared to centralised (classical) prioritised planning, the distributed structures discussed in
[20] are able to reduce the computational time by a factor 2. A shortcoming of this distributed method, is
that the iteration cycles of each agent are globally synchronised. This typically becomes a problem for
non-homogeneous systems, since synchronisation forces faster computing agents to wait for slower
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agents, thus inefficiently distributing the computational load.

Figure 2.4: Computational time of a prioritised planning algorithm as function of the number of agents in the system, by Van der
Berg and Overmars [19]

Figure 2.5: A conflicting priority sequence in prioritised planning leading to no feasible solutions, taken from [18]

2.2.2. Incompleteness
A major drawback of prioritised planning approaches is their incompleteness. By definition, an incom-
plete algorithm is a method that can fail to produce a solution to a problem that is in fact solvable.
When looking at Algorithm 2, for prioritised planning this would mean the following. At some point in
the priority sequence, agent 𝑖 will have no possible trajectory to follow, despite the fact that the problem
could have been solved with, for instance, a different priority sequence. One example of this can be
seen in Figure 2.5. In this scenario, agent 1 starting at 𝑠1 has first priority to receive a trajectory to
its destination 𝑔2. However, this leaves no feasible solution for agent 2 to reach its own goal of 𝑠2,
since all possible trajectories will conflict with the higher-priority trajectory of agent 1. Clearly, there is
a feasible solution to the path planning problem of this system, since switching the priorities of agents
1 and 2 would ensure that agent 1 will simply wait before agent 2 has passed before moving to its own
destination.

There are a number of other conflict types that can occur in prioritised planning, making classical
prioritised planning an incomplete algorithm. Hence, there is an apparent need for a formal under-
standing under which conditions prioritised planning approaches are guaranteed to yield a solution.
To address this problem, Čáp et al. formulate an extended approach in [18] called revised prioritised
planning (RPP). They prove that RPP is guaranteed to yield a solution if 1) there exists a solution at all,
2) each agent avoids the starting position of lower-priority agents, and 3) each agent avoids the goal
position of higher-priority agents. By imposing these additional constraints on the planning approach,
Čáp et al. formally prove that RPP is a complete algorithm. One drawback is that agents controlled
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by RPP will preemptively avoid certain starting and goal regions in the environment, which generally
increases the length of their trajectory.

2.3. Model-Predictive Control
The next control approach covered in this literature study is model-predictive control (MPC). MPC is
a collective name for a family of control methods which use a model of the system to find a next-step
control action, based on predicting an entire sequence of optimal control actions given the current
measured state of the system. Clarke et al. in [21] describe an early form of MPC (referred to as
generalised predictive control) and show it can outperform a PID controller when applied to a simple
plant model. Furthermore, Rawlings et al. in [22] present an extensive foundation for the theory and
design of MPC. Moreover, the 2𝑛𝑑 edition of the book has added various advances in the field of modern
MPC, thus making it a fairly up-to-date source. In addition to the fundamentals of MPC, Rawlings et al.
also discuss decentralised, distributed, and cooperative MPC of either coupled or uncoupled systems.
Additionally, a comprehensive survey of such algorithm architectures for MPC is given by Scattolini in
[23]. These sources will form the main information sources for the review on MPC presented in this
section.

First, Section 2.3.1 discusses the fundamental theory of MPC along with its most important charac-
teristics related to control applications. Next, a brief overview is given of decentralised and distributed
MPC architectures in Section 2.3.2. This is followed by Section 2.3.3, which discusses an extension to
deterministic MPC which makes it possible to incorporate stochastic processes in the control strategy
of an MPC-based approach.

2.3.1. Fundamentals of MPC
First of all, a theoretical basis for MPC is reviewed. In Equation (2.7), the standard formulation is given
for modelling the dynamic progression of a deterministic, time-invariant system:

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘)
𝑦𝑘 = ℎ(𝑥𝑘 , 𝑢𝑘) (2.7)

In Equation (2.7), 𝑥𝑘+1 is the one-step-ahead value of the state vector, 𝑥𝑘 is the current state vector, 𝑢𝑘
is the current control input vector, and 𝑦𝑘 is the current system output. Such a system forms the basis
for all deterministic MPC-based approaches discussed in this section (either linear or non-linear). At
its basis, all MPC methods consist of three main steps :

1. A process model is used to predict the process outputs or states at future time steps (in discrete
time) for a given prediction horizon.

2. An optimal sequence of control inputs is determined over a given control horizon by minimising
a cost function.

3. Of this control sequence, only the first action is implemented. The horizon is moved forward for
one control time step and the optimisation is performed again.

In Figure 2.6, these basic principles of MPC are shown. At present time step 𝑘 the process output
𝑦̂ is predicted over the prediction horizon 𝐻𝑝. The optimal control sequence is then computed over
control horizon 𝐻𝑐, and its first action is implemented. To find the optimal control sequence, a quadratic
cost function is commonly used, such as the one shown in Equation (2.8):

𝐽 =
𝐻𝑝

∑
𝑖=1
||𝑟𝑘+𝑖 − 𝑦̂𝑘+1||2𝑃𝑖 +

𝐻𝑐
∑
𝑖=1
||Δ𝑢𝑘+𝑖−1||2𝑄𝑖 (2.8)

The cost function consists of two main parts. The first term is the cumulative squared error of the
process reference signal. This value represents how well the process is able to follow the reference,
and penalises any mismatch between the two. The second term represents the penalty imposed on the
control effort. In most processes, the control action requires some form of power, energy, or ’resource’
in general, which is preferably kept at as low as possible. Both the signal error and control effort
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are weighted with weight matrices 𝑃𝑖 and 𝑄𝑖, respectively. The values of both matrices determine the
importance of the two elements with respect to each other. By finding the argument for which the cost
function is minimised, the optimal control sequence is determined. At each control time step 𝑘, this can
be denoted as follows:

𝐽∗𝐻𝑝 (𝑥𝑡) =min𝜋 𝐽𝑘(𝑥𝜅 , 𝜋) (2.9)

subject to:
𝑥𝜅+1 = 𝑓(𝑥𝜅 , 𝑢𝜅) (2.10)
𝑦𝜅 = ℎ(𝑥𝜅 , 𝑢𝜅) (2.11)
𝜋𝜅 ∈ 𝕌 (2.12)

In this notation, 𝐽∗ represents the cumulative optimal cost function value within the prediction win-
dow, and 𝜋 is the control sequence of length 𝐻𝑝. Furthermore, constraints 2.10 and 2.11 indicate that
the state and output vectors adhere to the system model dynamics, and constraint 2.12 states that
the control sequence should belong to the total control space. The rationale of MPC is to convert a
control problem to a finite horizon optimisation problem of this form. This problem can be solved in a
number of ways. One such way is iteratively with the Nelder-Mead algorithm [24], although this is a
computationally intensive method and thus usually only applicable to small systems. Another optimi-
sation approach is with dynamic programming (DP) branch-and-bound techniques. Such methods can
quickly eliminate large branches of possible control sequences, which can speed up the optimisation
problem. However, with increasing variables, the number of branches increase exponentially. Further-
more, there exist various optimisation techniques which first linearise the process either in the current
control time step or in multiple control time steps. Then, the optimal solution can easily be found with
an ordinary least squares (OLS) estimator, which greatly reduces the computational effort required.
This comes at the cost of reducing the model fidelity in strongly non-linear regions of the system, and
thus the controller performance.

Figure 2.6: Fundamental MPC scheme [25]

From the different optimisation methods, it is apparent that a key characteristic of MPC methods is
their computationally heavy nature. Since each optimisation calculation must be performed in real-time
for each time step, early applications of MPC systems were only suitable for slow industrial processes
[26]. In more recent research, methods have been developed to reduce or mitigate this computational
load by developing faster algorithms such as Wang and Boyd propose in [27]. Another strategy is
by means of distributed or decentralised MPC architectures, which will be discussed in more detail in
Section 2.3.2. An advantage, however, is that MPC is an optimisation-based approach. This results
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in a locally optimal solution within the finite prediction horizon, although the solution is not guaranteed
to be a global optimum. Furthermore, MPC-approaches incorporate both current and future states in
their optimisation strategy. This makes them more likely to converge to a global optimum. Another
advantage of MPC, it is very straight-forward to impose constraints on the state and control input of
the system. This characteristic makes it possible to incorporate, for instance, limits on actuators or
no-go zones and physical obstacles in a simulation/test environment. Since MPC is a model-based
control approach, its accuracy, performance, and stability characteristics are heavily dependent on the
fidelity of the model used by the controller. It is thus necessary to have a sufficiently accurate model to
successfully apply MPC to a system.

2.3.2. Decentralised & Distributed MPC
With the basic theory and characteristics of MPC systems discussed, it is possible to review more
specialised MPC-based control approaches. This section starts with a survey on distributed and de-
centralised MPC architectures. Both architectures are used for large-scale systems, for which it may
be more convenient to divide them into smaller and simpler subsystems. Whether a decentralised or
distributed MPC structure is required, depends on how interlinked the different subsystems are.

First of all, decentralised MPC requires no strict communication between the individual subsystems,
and can thus be applied to decoupled or loosely coupled systems. Compared to centralised control,
which optimises the global control problem for all decision variables, the local controllers in decen-
tralised control only optimise their own local variables, without taking into account the control inputs of
other controllers. The communication between the local controllers is shown in Figure 2.7.a, for a simple
system consisting of 2 subsystems. This yields a simpler implementation of the optimisation problem,
however it may reduce the performance of the system if it is more tightly coupled than assumed when
decentralising the problem [22]. For further reference, a pioneering survey on decentralised control is
presented by Sandell et al. in [28], while a more recent review is given by Šiljak in [29].

In a distributed MPC system, it is assumed that some information is exchanged between the local
controller in such a way that both have some awareness of the behaviour of the others, as can be
seen in Figure 2.7.b. This MPC structure assumes that the individual subsystems are strongly cou-
pled, meaning that any optimisation performed on one controller will influence the behaviour of one or
more other controllers. In terms of coupling connectivity between the subsystems, a system can be
either fully connected or partially connected. In a fully connected system, information from any local
controller is transmitted to and received by all other local controllers. On the other hand, a subsystem
in a partially connected system will transmit (and receive) this information only to a subset of the other
local controllers. Such a structure is convenient to use for large systems with many loosely coupled
subsystems and only several strongly coupled links, since it can greatly reduce complexity and compu-
tational effort. Furthermore, this information exchange can occur at different rates. In so-called iterative
algorithms each local controller receives information multiple times per discrete time step, as opposed
to only once per time step in non-iterative algorithms. Iterative approaches are more computationally
expensive, however they are more likely to converge to a (global) optimum due to the availability of
more information. The last sub-class of distributed MPC relates to the optimisation behaviour of the
local controllers. In some cases, the local controllers all work together to optimise a central, global cost
function, which is referred to as cooperative control. This can, for instance, be relevant for large chem-
ical plants with multiple process steps, in which the behaviour at each step influences the performance
of the next steps. When a local controller only optimises its own local cost function (or even actively
reduce the performance of other controllers), one speaks of independent or non-cooperative control.
An example of such systems could be in search robotics, with targets that are actively trying to avoid
detection.

These various classifications of decentralised and distributed MPC algorithms are important for
organising and categorising research, hence the most important features are summarised in Table 2.1.

2.3.3. Stochastic MPC
In practice, a controlled process is subject to some degree of uncertainty. In Section 2.1, this uncer-
tainty took the form of fuzzy ambiguity and vagueness, which is generally referred to as non-stochastic
uncertainty. On the other hand, stochastic uncertainty encapsulates all randomness due to process or
measurement noise which can be expressed in mathematical terms. Stochastic uncertainty can thus
also be dubbed the ’known unknowns’ of a system, since an understanding of the system has made it
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Table 2.1: Classification of decentralised and distributed MPC types

Information Exchange/Use Exchange Frequency Optimisation Strategy

Partially connected
Not all controllers exchange/use
information from each other

Iterative
Multiple updates per time step

Cooperative
All local controllers optimise a
global cost function

Fully connected
All controllers transmit, receive,
and use information from all others

Non-iterative
One update per time step

Non-cooperative/independent
All local controllers optimise a
local cost function

Fully decoupled
No use of information from other
controllers (decentralised)

Figure 2.7: Block diagrams of both decentralised and distributed control

possible to account for a probabilistic phenomenon.
To incorporate stochastic processes in a control strategy, stochastic MPC (SMPC) can be used. It

must be noted that, to a certain degree, MPC can already deal with system uncertainties, due to its
feedback-based nature and repeated receding-horizon optimisation at each time step. However, when
such uncertainties become a problem for conventional MPCwhen they are large or when they grow with
time. Furthermore, for explicit incorporation of stochastic processes in the control law, a more robust
control architecture is needed. In Equation (2.13) the general formulation for modeling the evolution of
the dynamics of a stochastic, time-invariant system:

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘 , 𝑣𝑘)
𝑦𝑘 = ℎ(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘) (2.13)

Contrary to the deterministic formulation in Equation (2.7), a stochastic system includes disturbance
terms 𝑣𝑘 and 𝑤𝑘, which can be due to measurement or system noise. Both 𝑣𝑘 and 𝑤𝑘 have their own
(known) probability distributions 𝑃𝑣 and 𝑃𝑤, respectively. This results in the cost function Equation (2.8)
now also being subject to stochastic terms. To optimise this problem, the cost function is usually subject
to chance constraints, which can for instance represent certainty thresholds which the control sequence
must satisfy. The new optimal cost value is now denoted as follows:
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𝐸[𝐽∗𝐻𝑝 (𝑥𝑡)] = 𝐸[min𝜋 𝐽𝑁(𝑥𝑘 , 𝜋, 𝑣𝑘 , 𝑤𝑘)] (2.14)

subject to:
𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) (2.15)
𝑦𝑘 = ℎ(𝑥𝑘 , 𝑢𝑘) (2.16)
𝜋𝑘 ∈ 𝕌 (2.17)

𝑃𝑥𝑘{𝑦̂𝑘 = 𝑦𝑘} ≥ 𝛽𝑗 ∀𝑗 = 1,… 𝑠 (2.18)

When compared to the optimisation problem for deterministic MPC, this form includes the additional
chance constraint 2.18, which denotes that the probability thresholds 𝛽𝑗 should be satisfied. This allows
for both fulfilling the control objectives, as well as guaranteeing that all 𝑠 chance constraints due to
uncertainty are met.

For an extensive survey of SMPC, its history, sub-types, and open challenges, the reader is re-
ferred to [30]. In this review, Mesbah states that the various approaches for SMPC can be mainly
divided into approaches for either linear or non-linear systems. Within both, he argues that there is
no clear way to classify all different approaches, although methods can be roughly grouped based on
different features in the algorithms. All SMPC approaches do share a number of central challenges,
in addition to the general challenges of MPC described in Section 2.3.1. First, the chance constraints
are non-convex and computationally intractable. Thus incorporating these constraints in the optimisa-
tion problem, makes the problem non-convex and computationally intractable as well. Furthermore,
the process of propagating uncertainty through the dynamics of a system adds to the (already high)
computational complexity of SMPC approaches, particularly for non-linear systems. Apart from these
challenges, a remaining open challenge is establishing proofs for theoretical properties of SMPC-based
controllers, such as stability and convergence.

2.4. Combined Controllers
This section serves as a brief review of various combinations or hierarchical adaptations of the previ-
ously discussed control approaches.

2.4.1. Fuzzy Model Reference Learning Control
The first integrated controller type that will be discussed, is fuzzy model reference learning control
(FMRLC). This control type was first developed by Layne and Passino in [31], in which they combine a
FLC with a learning mechanism, as shown in Figure 2.8.

The fuzzy system forms the primary controller, thus making this a form of direct FLC. Additionally,
a supervisory learning mechanism is added in the form of model-reference adaptive control (MRAC).
In this control structure, a reference model determines a desired model output 𝑦𝑚, which represents a
set of pre-defined design goals. This model output is compared with the measured output of the actual
controlled process 𝑦. Any mismatch between the two values represents an error in the FLC, which the
learning mechanism will try to cancel. This learning mechanism will tune the consequent parameters in
the FLC such that the closed-loop behaviour of the process matches the reference model. The learning
process consists of two parts. First, the fuzzy inverse model is used to map the necessary changes
which need to be made in the output signal such that the model error is reduced to 0. Secondly, the
knowledge-base modifier maps these output changes to required modifications for the fuzzy rule-base.

The main advantage of such a learning control approach is that the performance of the primary con-
troller can be improved both autonomously and iteratively. Compare this to conventional FLC, in which
the fuzzy parameters are determined beforehand in a very subjective and qualitative fashion, without
concrete justification. A controller that can train itself to tune these parameters can greatly increase its
control performance. This way, the strengths of a FLC are kept, while mitigating the subjective nature
of the fuzzy rule-base parameters. However, it must be noted that the adaptive learning mechanism
still contains learning parameters of which the values are still chosen in a relatively arbitrary fashion,
without strong theoretical motivation. Furthermore, it is still to be determined if a FLC in FMRLC can
achieve optimal control in non-linear systems [31].
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Figure 2.8: Block diagram of fuzzy model reference learning control, from [31]

2.4.2. Feedback Linearisation with Model-Predictive Control
Another type of non-linear control approach, is by means of feedback linearisation (FBL). In FBL, a
non-linear feedback method is combined with the system, such that the to-be-controlled system is
effectively reduced to a linear system. This way, a simpler linear control law can be applied to the
system. However, conventional FBL techniques cannot incorporate constraints on the input and output
space. This can be problematic, since FBL approaches can often result in output commands are beyond
the bounds of the output space, causes scenarios such as actuator saturation [32].

From this rationale, FBL techniques were combined with MPC approaches, with the first examples
coming from the chemical process industry [33]. A simple block diagram of such a control approach is
shown in Figure 2.9. The combination of FBL and MPC is symbiotic. Firstly, the MPC approach allows
for easy incorporation of input and output constraints in the control scheme. Secondly, the feedback
controller enables the use of a linear MPC approach. This greatly reduces the computational load of
the algorithm, as opposed to the non-linear MPC approach which would alternatively be required. In
[32], Van Soest et al. show that an MPC and FBL can be an effective control method for flight path
following. Moreover, such a combination outperforms that of FBL with a PID controller, which was
found to show stronger oscillations on the control input. A drawback of FBL combined with MPC, is
that FBL is heavily dependent on the fidelity of linearisation feedback. Anymodel error that is introduced
in this block, adds to the total system error (in addition to the possible model error introduced by the
MPC block). Furthermore, an open challenge remains to perform a formal stability analysis of such a
combined control approach.

2.5. Summary
This section reviews the theoretical basis and characteristics of various control approaches. To sum-
marise this study, Table 2.2 shows the main advantages and disadvantages of each control approach.
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Figure 2.9: Block diagram of a feedback linearisation controller combined with a model-predictive controller
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Table 2.2: Summary of all discussed controller characteristics
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3
Search-And-Rescue Systems

This chapter reviews current research into SARS. By evaluating and comparing this research, it is
possible to identify the state-of-the-art and open challenges of this field. This provides the basis for
the motivation of this proposed thesis, as well as forms a theoretical framework for a number of design
choices in the research.

In order to break down the literature available on SAR missions, a number of important research
aspects are identified. These different elements form the research focus points, constraints, and as-
sumptions of the literature. A comparative discussion between SARS articles is given for each research
aspect. First, Section 3.1 addresses the disaster environment in which the SARS is deployed. Another
major aspect of any SARS is the hardware that it uses for its agents, which is discussed in Section 3.2.
This elaborates on the type and number of agents in the SARS, which is also referred to as fleet com-
position in this literature review. Furthermore, Section 3.3 discusses the required sensing capabilities
of the individual agents in the system. This section also briefly addresses the problem of simultane-
ous localisation and mapping (SLAM), which can strongly influence the efficiency of the agents’ search
behaviour. Next, Section 3.4 elaborates on the different aspects and considerations of SAR mission
planning, followed by a review of the different system uncertainties of SAR applications in Section 3.5.
Finally, Section 3.6 summarises the key aspects of each discussed article.

3.1. Environment
One of the most important characteristics of any SARS, is the environment or disaster setting in which
the system is deployed. Dependent on the specific scenario, the SARS may have different objectives,
or may need to account for different system dynamics.

A distinction can be made between indoor and outdoor SARmissions. A key characteristic of indoor
SAR settings, is that the environment is more cluttered than large-scale and sparsely occupied outdoor
environment. This may, for instance, pose challenges for the visual recognition and object avoidance
capabilities of the SARS agents. As a consequence of these smaller-scale environments, the SARS
agents must also become smaller in size in order to manoeuvre efficiently through the environment.
This limits the size of the agents, and thus also limits their computational and sensory capabilities [34].
Examples of indoor SARS applications can be found in [5], [34], and [35].

For outdoor SAR missions, the operational environment can vary strongly from indoor settings.
Since outdoor SARS are generally applied to large-scale environments, their agents can be larger and
more powerful in terms of speed, range, computational power, and sensory capabilities. Furthermore,
the obstacles and dynamic elements within the environments aremore sparsely distributed, as opposed
to a more cluttered indoor environment. For this literature review, three different scenarios can be
distinguished within outdoor SAR missions: urban, wilderness, or marine. The terminology for each of
these settings is USAR, WiSAR, and ASR, respectively. The type of outdoor setting influences the SAR
mission profile. For example, USAR missions generally involve searching for an unknown number of
stationary victims trapped within (collapsed) structures, of which the locationmay be known with relative
certainty. In contrast, ASR or WiSAR missions are usually characterised by a fixed number of moving
search targets, such as drifting life boats, or mobile humans [36]. Furthermore, the marine environment
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of ASR missions are almost always devoid of environmental elements such as buildings, debris, or
natural landmarks. Such a sparsely occupied environment can influence the used mission planning
methods, such as trajectory planning for the agent(s). Applications of USAR systems can be found
in [37], [38], and [39]. WiSAR missions have been widely researched, and successful applications of
such rescue systems are presented in [40], [41], [42], and [43]. Finally, in [44] De Alcantara et al. apply
a SARS to an ASR scenario. In their research, De Alcantara et al. explicitly incorporate and analyse
the effect of wind in their mission planning approach. More generally, this research shows the large
influence that meteorological effects can have on the performance of any outdoor SARS.

3.2. Fleet Composition
In terms of fleet composition, this literature review is mainly focused on multi-agents SARS research.
Also referred to as agent equipment, the term fleet composition is used to classify the hardware and
software specifications of different robots in a multi-agent SARS.

Physical differences are the most obvious type of variation between robots in SARS applications.
First of all, and strongly dependent on the environment in which the agent is deployed, is the distinction
between land-based, aerial, or sea-based robots. This review will mostly cover aerial robots, more
commonly referred to as UAVs, although a number of relevant studies into land-based SARS agents
will be mentioned. For instance, Casper and Murphy in [5] are among the first to apply land-based
crawlers to a combined indoor-USAR disaster setting. These robots were chosen for their ability to fit
and safely manoeuvre within rubble voids with diameters as small as 0.5m. Further applications of land-
based robots in SARS can be found in [35], [38], [45], and [46]. Contrary to robots such as crawlers,
which are limited to land-based operations, robots such as rotary or fixed-wing UAVs are exclusively
airborne. Goodrich et al. in [42] and [43] identify a number of key benefits of airborne robots (and
specifically fixed-wing UAVs) for WiSAR applications. The main advantage is the ability of UAVs to
quickly cover large search areas of difficult terrain, which may be challenging to navigate or completely
inaccessible for land-based operations. Similarly, De Alcantara et al. in [44] investigate the use of
fixed-wing UAVs for ASR missions, since they are able to traverse a marine/coastal environment while
providing a ’birds-eye view’ of the search area. With rapid technological advances in airborne drones
of the past decade, research into UAVs in SARS applications has also increased. Further examples of
such UAV SARS research can be found in [34], [37], [38], [40], [41], and [47]. The cases of both aerial
and land-based robots show the influence of the disaster environment on the robot type.

Furthermore, when analysing multi-agent SARS applications, one can make an extra distinction
between homogeneous and non-homogeneous (also referred to as heterogeneous) fleets. In a ho-
mogeneous fleet, all agents are identical in terms of their performance capabilities, functionality, and
equipped sensors. This can add a degree of flexibility and robustness to the SARS through redun-
dancy, since all agents are equally well suited to execute any of the mission tasks. Hence, any agent is
able to replace any other agent in case of a failure, as opposed to one agent having to replace an agent
which is specialised for a certain type of task. However, this research focuses on the application of
non-homogeneous agents. In a non-homogeneous multi-agent SARS, different agents have different
capabilities or hardware specifications, and as a result may be more specialised or efficient for different
tasks within the SAR mission. In [38] Beck et al. split their SARS agents into both search robots and
rescue robots. The reasoning is that robots tasked with searching for victims will generally require high
speed and an advanced sensor base for victim detection, whereas rescue robots will need manoeuvra-
bility and actuators to provide aid to found victims. Furthermore, Tanzi et al. in [47] propose a SARS
fleet architecture of 3 different UAV types: vertical axis drones for indoor manoeuvrability, fixed-wing
drones for fast area coverage, and blimps as communication infrastructure. Tanzi et al. argue that a
SARS can be more efficient if different drone capabilities are exploited in the mission planning strat-
egy, similar to the hypothesis of this research. In addition to exploiting the individual capabilities of each
agent, the use of non-homogeneous agents can form an economic benefit. For instance, distributing
different types of sensors over different agents is financially cheaper than integrating all sensory ca-
pabilities on a single agent [48]. In [40], Stecz and Gromada. propose such a SARS with different
sensory capabilities distributed over the agents in the system. However, due to lack of a standardised
test bed, the developed system could not be compared properly to existing methods. It is thus unclear
if the flexible sensor platform increases the victim search efficiency of the SARS.

On a final note, another form of non-homogeneous SARS agents is discussed by Arnold et al. in
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[37]. This research focuses on how the victim detection performance is affected by assigning different
’personality types’ to the UAV agents in the system. These personality types determine the search-
ing behaviour of an agent. The concept makes the agents in such a SARS non-homogeneous on a
behavioural level, instead of from a hardware perspective.

3.3. Agent Sensing & Simultaneous Localisation And Mapping
The highly stochastic and dynamic environments in which a SARS is deployed, pose a major chal-
lenge for practical applications of these systems. For example, any prior knowledge that may be fed
into the system can be partially or completely invalid in the aftermath of a disaster. One can think of
collapsed structures and inaccessible areas due to flooding. Furthermore, a SARS may have to ac-
count for moving victims, fire spread, or falling debris during its operations. These challenges lay at the
heart of Simultaneous Localisation And Mapping (SLAM), in which an autonomous agent must collect
information about the environment while storing the agent’s position within it. This way, agents can
communicate what they perceive through their sensors and where they have perceived it. For a more
comprehensive overview of the theory and history of SLAM, the reader is referred to [49], [50], and [51].
Additional examples of successful applications of real-time mapping of unknown disaster environments
are discussed in [35], [46], and [52].

When investigating the sensory and SLAM-solving capabilities of a fleet of SAR drones, it is impor-
tant to state the purpose of addressing SLAM in a disaster setting: to collect and relay unknown infor-
mation about the environment to the mission headquarters, such that improved mission plans can be
determined. Mission planning approaches can be influenced by real-time updates of dynamic changes
in the system. More specifically, sensory data gathered by the agents of a system can provide ad-hoc
knowledge of such changes. It is thus important to assess what type of information or data is important
to the mission planning controller. In [45], Riley and Endsley follow a USAR team and observe the
human-robot interaction between the rescue workers and the remote drones they used. In this coop-
erative system, the human rescue workers are essentially the ’mission planners’, manually performing
task assignment and path planning for the robotic agents. Since the mission planning module in an
autonomous SARS attempts to process input data similar to a human operator, the research of Riley
and Endsley can offer a valuable comparison. This first-hand, practical experience gives good insight
for assessing what information from the SARS agents is important for the mission planner to receive.
In addition to this, in [5] Casper and Murphy provide an extensive post-hoc analysis of the human-robot
interaction during the response and relief phase directly after the World Trade Centre attack on 11
September 2001.

Both [5] and [45] strongly emphasise the importance of situational and perceptual awareness of
SARS agents. In most SARS research, visual perception forms the primary method for object classifi-
cation, object avoidance, and risk assessment. This is generally most commonly achieved with optical
sensors such as cameras, heat sensors (infra-red), or light detection and ranging (LiDAR) sensors.
Visual input from the agents is especially useful if there is a mismatch between the agent’s perceptual
data and the environment model of the mission planner. Furthermore, acoustic sensors can provide
auditory awareness for the agents. Most notably, this can be of use when trying to localise victims
based on their calls for help. A SARS application that uses acoustic sensors in combination with op-
tical cameras and heat sensors has been investigated by Ganesan et al. in [53]. Additionally, recent
studies have begun investigating the use of wireless sensors to detect passive electronic devices. An
early research in this field is performed by Loukas and Timotheou in [54], in which SARS agents are
used as mobile wireless routers to detect the cell phones of victims. More recently, Wang et al. in [55]
similarly investigate the feasibility of using WiFi-enabled UAVs to detect victims in a SAR environment.
In their research, the authors show that it is indeed a viable search method, although it is not as widely
used as other sensors yet.

3.4. Mission Planning
As stated in Chapter 1, this research defines mission planning as a twofold problem. First, the problem
of assigning a destination or search area to an agent, and secondly, to determine a corresponding path
to reach that destination.

First of all, the problem of task assignment arises when there are more tasks than agents in a
system. This is more commonly referred to as a multi-robot task assignment (MRTA) problem. Fur-
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thermore, this literature study mainly investigates Single-Task robots, Single-Robot tasks, and Time-
extended Assignment (ST-SR-TA). This means that every robot can execute one task at a time, every
task can be executed by one robot, and each task takes a certain time duration to complete [56]. For
this type of task assignment problem, the mission planner must decide which tasks have priority over
others at each time step. In a USAR disaster setting, the to-be-searched areas in the search grid form
the different tasks to which the mission planning controller must assign a priority score. In [41] San
Juan et al. construct a Mamdani FLC approach to give a priority score to each cell in a given search
grid, which corresponds to the potential hazard to victims in that cell. This score is based on terrain
and emergency factors, such as how frequent the cell is visited by people and how close a SAR team
is to that position. In contrast to this, task prioritisation in [44] by De Alcantara et al. takes a far simpler
form. Here, assignment of a search area is purely based on which agent is closest to the most desir-
able location, which is incorporated in an MPC cost function. In a similar fashion, Beck et al. in [38]
assign search areas to robots by minimising the cumulative travel time, since it is assumed that the
mission tasks are already defined. Apart from prior environment knowledge, real-time updates in the
form of in-situ measurements from the agents can form an additional source of information for the task
assignment controller. This type of system knowledge is strongly dependent on the sensing capabilities
of the agents, which have been discussed in Section 3.3.

Furthermore, the introduction of non-homogeneous agents adds an extra degree of freedom to the
task assignment problem. In addition to assigning a priority score to each area in the search grid, the
mission planner must also decide which agent is best suited to execute each task. To determine this,
themission planner can incorporate the characteristics of each agent. For instance, a high-speed drone
may be the best choice for a distant, high-priority search area with a time constraint on it. In another
case, if a building is known to have a compromised structure, a cheaper agent can be assigned to
search it, since the consequences of losing this agent are less costly. While performing this literature
review, no explicit research has been found into SAR task assignment with non-homogeneous agents.

The second aspect of mission planning is determining the path that each agent follows to reach its
sub-goal. Many different approaches have been researched and developed for trajectory planning, with
different value criteria that assess which path is chosen. One of the most popular types of path planning
methods, are shortest path planning approaches. In these approaches, themission planner always tries
to find the trajectory with minimal travel distance or time for the agent. The motive for these approaches
is that time and energy are two important cost factors for most systems, thus making it preferable to
minimise both. Most of the previously discussed research articles incorporate a shortest path approach.
The shortest path problem can be solved in various ways. Heuristic approaches have historically been
favoured for their computational efficiency, at the cost of non-optimality. Many heuristic shortest path
approaches have been applied to SAR missions, such as reaction-based swarming [37], FLC [41], and
ant colony optimisation [54]. However, with advances in computational power and algorithm efficiency,
mathematical approaches are becoming more applicable to larger SAR missions. Examples of such
approaches in SAR missions are hindsight optimisation (HOP) [38], mixed-integer linear programming
(MILP) [40][57], and distributed nonlinear model-predictive control (NMPC) [44].

Another type of path planning methods, are risk-based path planning approaches. Generally, such
approaches are focused on finding a path that provides a trade-off between being both short and safe.
Especially in environments with dynamic, stochastic risks such as in a USAR setting, agents can them-
selves be at risk of damage or loss. From this rationale, risk-based path planning approaches try to
incorporate knowledge of possible environmental hazards and threats into the trajectory of each agent.
Applications of risk-based path planning approaches can be found in both [40] and [58].

3.5. Uncertainty
One final way of categorising SARS research, is by what type of disturbances or uncertainties are in-
corporated in the system. In general, the integration of stochastic processes or disturbances is found
to be rarely addressed in current SARS research. However, a reoccurring uncertainty in various re-
search, is the largely unknown location of victims. To incorporate this uncertainty, victim probability
distributions can be used as input for the mission planning controller, as is done in [41], [44], and [57].
These probability maps increase the search efficiency of a SARS, since they ensure a ’warm start’
when assigning search areas to the agents.

Furthermore, uncertainties such as sensor noise are often assumed to be negligible, if discussed
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at all, in most articles reviewed in the previous sections. However, in [46] Chen et al. account for noise
in LiDAR sensors by applying a Kalman filter to the measurements. Similarly, Goodrich et al. in [43]
address noise in the optical cameras of their UAVs due to low image resolution. This problem was
only encountered during field tests of their SARS, and resulted in uncertainty when detecting victims
from images. The authors propose to mitigate this noise by using higher resolution sensors. In [53]
Ganesan et al. use an image filter for noise elimination of their robot’s optical input.

Beck and al. in [38] address uncertainty in the tasks of the SAR mission. As mentioned previously,
the authors split the set of all tasks into either search tasks or rescue tasks. In this division, all search
tasks are assumed to be predefined in the mission profile, and are thus considered as known tasks T.
Since a rescue task can only be performed if a victim is found during a search task, it is considered to
be an uncertain task 𝒯+. In this case, the mission planning controller maximises the expected optimal
task assignment solution of the union of both task sets T ∪ 𝒯+. Beck et al. term this approach uncertain
multi-robot task assignment (UMRTA).

3.6. Summary & Conclusions
In Table 3.1, a complete breakdown is presented of the utilised literature. The overview forms the basis
for establishing the current state-of-the-art of research into SARS, and how this research proposal can
add to that body of knowledge. In addition, it is now possible to identify a number of trends throughout
the field of SARS research.

First of all, it can be seen that the fleet composition of SARS research from the last decade mostly
consists of airborne agents. SARS research with (mostly manual) land-based robots was common-
place before 2010, whereas airborne robots such as fixed-wing UAVs and vertical takeoff rotor craft
are emerging as the new dominant type of SARS agents. This can be attributed to the rise of in-
expensive, easy to operate UAVs for the consumer market [36]. Combined with the ability of UAVs
to traverse difficult or inaccessible terrain, this puts airborne agents at an operational advantage com-
pared to land-based robots. Next, in Chapter 2 it was determined that more computationally demanding
control methods, such as optimisation-based approaches, are applied in practice, due to technological
advances in processing units. As a result, it can be expected that this trend will also be apparent in the
control approaches used in SAR mission planning research. Indeed, it was found that recent research
has analysed the applicability of mathematical control approaches to SAR mission planning. However,
when reviewing the state-of-the-art of SARS research, it was found that heuristic approaches are still
an equally popular choice for this purpose. Both types are viable choices for mission planning, and
each have their own merits and drawbacks. Furthermore, today’s ’modern’ disaster victims almost al-
ways carry a cell phones or other wireless device on their person. This has sparked research into the
use of sensors that can detect WiFi signals of passive devices. This is proven to effectively extend the
sensing capabilities of SAR agents, in addition to conventional sensors such as optical cameras and
heat sensors. Finally, uncertainty is frequently left unaddressed in SARS research, with the exception
of the uncertain location of victims. Moreover, it is usually only evaluated and accounted for once a
real-life test of the SARS has been performed. In such a case, it is found that sensor noise is one of
the most common types of uncertainty to be addressed.
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Table 3.1: SARS state-of-the-art literature breakdown
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4
Simulation Design

Finally, a SAR simulator must be constructed to test the performance of the developed SARS. In various
literature presented in Chapter 3, it was established that one of the main challenges of developing a
new mission planning approach is using an appropriate test platform for the system. For a high-fidelity
test environment, it would be preferred to simulate a physical, life-size disaster setting combined with
an actual system of UAVs. In practice, such a set-up would prove too costly and time-consuming to
develop. Moreover, in the initial stages of any novel system, it is necessary to test first the concept in
a virtual simulation. This way, the consequences of any (sub)system failure will be limited to the virtual
environment of the simulation. For these reasons, this research will make use of a virtual simulation
environment as test bed, in which virtual SARS agents can interact with a disaster environment and
search for victims. In the literature, the virtual disaster settings created for validating the proposed
solutions are not based on a standard simulation framework. Therefore, making a fair comparison
between different solutions is difficult.

This chapter offers a review and discussion of simulation design for disaster settings, which have
the purpose of functioning as a test bed for a SARS. In Section 4.1, the different static and dynamic
elements that are necessary for a SAR simulator are discussed. This section will take various interna-
tionally recognised directives for SAR simulation as a basis. Once the basic objects and elements of a
SAR simulator are discussed, Section 4.2 will review various existing simulator environments that may
be appropriate for SAR research.

4.1. Simulator Elements
First of all, it is important to review the demands to which a SAR simulator must adhere. For the
purpose of this chapter, two main requirements are identified: the simulator must 1) contain appropriate
elements which could also be expected in a real-life disaster scenario, and 2) model the characteristics,
dynamics, and constraints belonging to each element with a sufficient degree of fidelity. For the first
requirement, Robocup-Rescue1 can be used as internationally recognised reference framework for
disaster scenario simulation. Robocup-Rescue was developed after the Great Hanshin earthquake in
Japan on January 17 1995. One of the aims of Robocup-Rescue is to provide a standard benchmark
for evaluating research into SARS. In [59], founders Kitano et al. summarise the initial proposal for
Robocup-Rescue, in which they also list a number of simulation elements for a disaster scenario. These
elements are listed below:

• Building damage. This simulates the degree of structural damage to houses and other buildings
in the environment.

• Fire spread. Fire models can simulate how flames spread through the disaster setting.

• Life-line damage. This includes simulating damage to infrastructure such as roads, water lines,
and power grids.

1https://rescuesim.robocup.org/, (Retreived November 2020)
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• Victim modelling. This models the behaviour and (medical) condition of victims in a disaster
setting.

• Refugee modelling. This models the behaviour of larger groups of people, such as fleeing the
disaster scene.

Over time, Robocup-Rescue has developed more sophisticated open-source models of these simula-
tion elements, which can form the basis for the simulation used to evaluate this research. For reference,
the user manual of the Robocup-Rescue simulator2 is used. Additionally, Robocup-Rescue has added
wind effects in its more recent simulation environments. Wind couples strongly with fire spread and tra-
jectory planning of (airborne) agents. The following subsections will briefly discuss the considerations
for building damage, fire spread, victim modelling, and wind effects.

4.1.1. Building Damage
In most USAR settings, structural damage to buildings is a common effect of disasters. Furthermore, it
can form an obstacle or hazard for both victims and SARS agents during the mission. In the simulator
software of Robocup-Rescue, building damage is modelled by attributing properties to all structures in
the virtual environment. These properties are mainly thematerial and the collapse degree of a building.
The materials considered for the simulator are wood, steel, and concrete. The collapse degree of
each building, with increasing severity, are none, slight, moderate, severe, and destroyed. Buildings
with enough structural damage can trap victims inside them. The simulator is initialised by randomly
assigning structural damage to buildings with a predefined probability distribution, and does not change
the structural properties of buildings during the simulation.

4.1.2. Fire Spread
Gas leaks and electrical short-circuiting have the potential of starting fires during a disaster. In the
presence of flammable material and/or strong winds, fires can spread within and between buildings,
posing risks for both victims and rescue agents. In Robocup-Rescue, buildings have an additional
property termed fieryness, which indicates the fire intensity and fire-related damage to the building.
With increasing severity, the fire intensity can be unburnt, heating, burning, or inferno. The fire damage
is categorised as either minor, moderate, severe or completely burnt out. How the fire will spread
through the simulator is based on parameters such as the material of a building, the wind intensity and
direction, and intensity of the fire.

4.1.3. Victim Modelling
In real-life USAR settings, victims of a disaster may have different levels of movement freedom, either
due to injuries, being trapped, or feeling disoriented. In Robocup-Rescue the behaviour of victims
is modelled by attributing a number of properties to them. First, a victim’s level of buriedness will
determine what level of movement (if any) is possible, as well as determine the damage level of the
victim. This second property determines how much health points the victim loses per time step in the
simulation (i.e. how hurt a victim is). If a victim is reduced to 0 health points, they perish. If the victim
is free to move, they will always try to make their way to a safe refuge in the simulator.

4.1.4. Wind Effects
In small UAV missions, wind can quickly exceed more than half of a UAV’s airspeed, thus significantly
affecting the UAV ground speed. In the case of two agents that are equally distanced from a target,
the upwind agent can reach the target in a shorter time and with less required energy. Furthermore,
as discussed in Section 4.1.2, the wind direction and intensity can influence how fire sources spread
in the simulation environment. Robocup-Rescue incorporates wind in the simulator by setting a time-
invariant, uniform wind vector for the entire environment.

4.2. State-Of-The-Art Simulators
As has been shown in the previous sections, Robocup-Rescue has a wide and extensive availability
of simulation tools specifically designed for USAR disaster settings and SARS development. The flex-
2https://rescuesim.robocup.org/resources/documentation/, (Retreived December 2020)
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ible design toolbox allows for custom creation of maps and disaster scenarios. These disaster maps
are 2D, and are generally on the scale of a city block or larger. Additionally, the open-source nature
and documentation make for a convenient and reasonably supported test platform for SARS research.
The historical context which motivated Robocup-Rescue to be developed, shows that its environmen-
tal models are primarily focused on modelling earthquake disasters (or disasters with similar conse-
quences). For other natural disasters, such as flooding or hurricanes, the simulator has significantly
less supporting tools.

Another popular simulation environment is Gazebo Sim3. Gazebo has a wide range of applica-
tions, with the ability to accurately and efficiently simulate (populations of) agents in complex indoor
and outdoor environments. The sophisticated physics engine and 3D graphics of Gazebo make it a
simulator with high-fidelity modelling power. Moreover, Gazebo is a free service with a large, active
community. A disadvantage of Gazebo, is that it is not specifically developed for SARS testing. This
results in a lack of specific toolboxes and internationally recognised standards that simulators such as
Robocup-Rescue do possess. When reviewing whether Gazebo adheres to the requirements of a SAR
simulator, it can thus be determined that not all elements of a real-life disaster scenario are present
in the software. However, the elements that can be modelled have a relatively high degree of fidelity
compared to other simulator environments.

Next, Netlogo4 is discussed as simulation environment. NetLogo is a 2D modelling environment,
used for high-level modelling of multi-agent systems. Similarly to Gazebo, Netlogo is not specifically
designed for modelling disaster settings, and thus lacks many of the toolboxes that Robocup-Rescue
has. Moreover, its high-level modelling engine makes it a low-fidelity simulator for agent behaviour.
Hence, NetLogo adheres poorly to both requirements of SAR simulators stated previously. Nonethe-
less, Netlogo may be suitable as a simple and fast test platform for (sub)system testing of certain
controller architectures.

One final simulator option, is to construct a custom simulator based on the elements and require-
ments of directives such as Robocup-Rescue. The main advantage of this is that the simulator can be
tailored to the needs of the SARS experiments. Therefore, the simulator will contain all relevant ele-
ments without any unnecessary features. The risk of this option, is that it will take up too much (time)
resources to complete in the time span of this thesis work. This risk can be mitigated by extending the
simulator on previous research/development by members of the research group in which this thesis is
performed, thus reducing the workload.

3http://gazebosim.org/ (Retrieved December 2020)
4https://ccl.northwestern.edu/netlogo/ (Retrieved December 2020)





5
Proposed SARS Approach

The purpose of reviewing all literature from the previous chapters, is to establish a theoretical basis
of different control approaches, review the state-of-the-art of current SARS, and address the different
elements required for an accurate SAR simulator. With this, it is possible to formulate a thesis plan
which adds to the body of research related to SARS. To do this, the objective of this thesis work is
stated once more:

To reduce the total number of casualties caused by a disaster, by increasing the victim
search efficiency with respect to mission time and area coverage of a multi-agent, non-
homogeneous search-and-rescue system of UAVs.

One of the main focuses of this research, is how the non-homogeneous nature of multiple SARS
agents can be incorporated in the mission planning approach. The hypothesis is that, by correctly
exploiting the individual capabilities of each agent, the victim search efficiency of a SARS can be in-
creased. Hence, the SARS agents in this proposal will have physically different performance charac-
teristics. These performance differences will initially be in terms of speed, range, computational power,
battery power/size, and value, with the possibility of adding more parameters at a later stage of the
research.

For the mission planning approach, the following architecture is proposed. To mimic the human-like
reasoning used in task assignment, it is concluded that FLC is best suited for this aspect of mission
planning. An FLC-based task assignment module will be designed to take knowledge from both the
environment and agents as inputs, and yields the priority ranking of all search areas with their cor-
responding agent allocation. This approach has a number of key advantages. First, an FLC-based
controller can mimic the inherently human background of task assignment in SAR mission planning;
the FLC-based controller will be able to incorporate uncertainty in the form of linguistic inputs (for ex-
ample, a high probability of fire in a search area), and yield crisp singleton outputs. Hence, the task
assignment module will have the structure of a direct Mamdani controller. Furthermore, it is possible to
initially build up an extensive fuzzy rule-base using the existing knowledge of expert SAR personnel.
A form of fuzzy priority assignment was found in [41], although the proposed FLC method of this thesis
will incorporate a wider variety of a-priori knowledge and additionally yield the agents’ task allocation
as an output. It is expected that the integration of expert knowledge in the controller increases its victim
search performance, compared to control approaches that cannot incorporate such knowledge. This is
due to the hypothesis that the mission planning module will be able to more efficiently assign tasks that
have a higher chance of saving victims if it has knowledge of their possible locations and the hazards
and obstacles within the environment. The second part of the mission, trajectory planning, will be done
by means of a prioritised planning approach. Such an approach is chosen, since its simple architec-
ture is specifically developed for multi-agent motion planning. Furthermore, the priority sequence of
the agents will already be a product of the previously discussed fuzzy task assignment controller. This
way, the priority computations are efficiently used for both aspects of the mission planning approach. If
needed, the computational effort can be mitigated further by distributing the algorithm over the agents,
as was found in [20] and [18]. One drawback of prioritised planning, is the possibility of trajectory plan-
ning failure due the incompleteness of the algorithm. However, such conflict situations generally occur
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in densely packed environments. Since disaster settings are more sparsely occupied compared to the
scale of the agents, it is expected that such conflicts will be rare. Nonetheless, the possibility of using
the extension of RPP [18] is kept as a mitigation measure. This proposed combination of fuzzy control
and prioritised planning for task assignment and trajectory planning is termed Fuzzy-Logic-Assisted
Prioritised Task Assignment and Path Planning (FLAPTAPP) .

The mission planning approach will only be adaptive in terms of its utilised world model, since it will
be updated in real-time with sensory data gathered by the agents. To update the world model of the
mission planning approach, the agents will be modelled as UAVs with basic sensing capabilities, such
as camera vision. This way, agents can relay information about the environment to the central mission
planning module. With this approach, the mission planning controller can adapt its strategy based
on new knowledge of the environment, gathered by the agents interacting with it. Furthermore, it is
determined that little communication is required between the individual agents in the SARS. Assuming
there is a relatively stable communication link between the agents and the mission planning approach,
the latter will function as a central distributor of all relevant information about tasks, trajectories, and
the disaster environment.

Finally, a custom, 3D simulation environment is developed to test the proposed SARS. It is chosen
to build a custom simulator since it is desired to follow a simple, step-by-step approach in the develop-
ment of the SARS. This involves testing all individual subsystems, before integrating them into a final
SARS. It is expected that this is best done in a custom environment with only the most necessary SAR
elements included in the simulator. The simulated disaster scenario will be that of an indoor USAR
setting, including the modelling of fire spread, victims, and structural damage. Both the modelling of
fire spread and victim movement are of a stochastic nature, in order to simulate the uncertainty of their
dynamics in a real-life SAR scenario. To ensure the validity of the simulator, these elements and their
dynamic models, properties, and characteristics will be based on the internationally recognised stan-
dards of Robocup-Rescue. By using their open-source, SAR-specific models, the custom simulator
is validated. The main risk of developing a custom simulator for this application, is that it will take up
too much time to develop within the time span of this thesis work. To reduce the required workload,
previous work related to SAR simulators from the research group, in which this thesis is performed, is
incorporated in the development of the simulator environment.

To provide a high-level concept of the proposed SARS, the preliminary architecture of the system
is shown in Figure 5.1. With this research proposal for a novel SARS approach, it is possible to refor-
mulate the research question for this thesis work.

Can an adaptive FLAPTAPP approach for non-homogeneous agents increase
the victim search efficiency of a search-and-rescue system of UAVs in terms of
victim search time and area coverage?

To support this question, a new set of revised sub-questions can be formulated.

• How can a FLAPTAPP approach be applied to mission planning?

– How is priority assigned to areas in the search grid?
– How are non-homogeneous agent capabilities integrated in FLC?
– How are the trajectories determined by the prioritised planning controller?

• What is the communication architecture between the central mission planning controller and the
SARS agents.

– How is mission-related information exchanged between agents and the central mission plan-
ning controller?

– How is the world model of the mission planning controller updated?
– What protocols must be in place in case of communication disruption?

• How must a simulation environment be designed in order to test the victim search efficiency of a
SARS?

– How are the different static and dynamic elements of the simulator modelled?
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– How are the dynamics of the agents modelled?
– How must an experiment be designed for fair comparison between SAR mission planning
approaches?

The main contributions of this research are twofold. First and foremost, this thesis work extends on
previous research concerning SAR mission planning for non-homogeneous agents. Specifically, this
thesis proposal investigates the integration of a-priori knowledge about the agent’s capabilities into the
task assignment and trajectory planning problem of the SAR mission. During the SAR mission, this
system knowledge is expanded with real-time sensory data collected by the agents. The novelty of this
research is applying this form of knowledge-based mission planning to a non-homogeneous SARS.
This mission planning approach is designed, developed, and evaluated against alternative mission
planning methods.

Secondly, a novel control approach is proposed, by combining FLC and prioritised planning in an
integrated mission planning controller. This integrated controller architecture is termed FLAPTAPP.
While performing this literature study, no previous publications were found which use a control ap-
proach similar to that shown in Figure 5.1. This research attempts to design, develop, and evaluate
the performance of this control approach against alternative control approaches.

Figure 5.1: Proposed SARS and simulator architecture





6
Conclusion

To increase the victim search efficiency of a robotic search-and-rescue system (SARS) in a disaster
setting, the development of autonomous, adaptive mission planning control approaches is required.
This document provides a literature research to support a thesis proposal which investigates a possible
solution to this case. Specifically, the thesis proposal aims to contribute to the research field of SARS, by
developing a mission planning approach that exploits the non-homogeneous nature of various UAVs in
the system. Since the mission planning controller incorporates the individual capabilities of each agent
into its mission strategy, it is hypothesised that such an approach increases the victim search efficiency
of the SARSwith respect to both the search time and area coverage. Furthermore, themission planning
controller is adaptive, since its strategies may improve based on input data that the agents gather
during their deployment, such as unexpected fire hazards or damaged structures. Essentially, the
controller progressively improves the fidelity of the environment model, which the controller uses to
further optimise its search strategy. Based on this research, the literature study attempts to answer the
following question:

”Can an adaptive, autonomous mission planning approach for non-homogeneous agents
increase the victim search efficiency of a robotic search-and-rescue system?”

To answer this question, the proposed thesis research is divided into two main parts: designing the
mission planning module, and developing an appropriate simulator environment to test it in. Corre-
spondingly, in Chapter 2 we have provided a theoretical review of various control approaches, which
are commonly used in SARS-related research. The chapter mainly focuses on fuzzy control, model-
predictive control (MPC), and prioritised planning, with additionally a number of combined/hybrid control
approaches. This is followed by Chapter 3, in which the current state-of-the-art of SARS research has
been reviewed. With this survey, it has ben possible to identify a number of trends in the mission plan-
ning and agent hardware used in SARS research (or in more general applications). The first of these
trends, is that airborne robots have taken over land-based robots as the dominant type of robotic SARS
agent in the past decade. Furthermore, mathematical control approaches for mission planning are be-
coming popular in SARS research, although heuristic approaches are still considered viable for current
applications. For almost all SARS agents, optical sensors such as cameras, heat sensors, and LiDAR
form the primary sensor platform (and source of situational awareness). However, with an increase
in wireless connectivity in today’s society, sensors that can detect wireless devices have been found
viable for victim detection in a SAR setting. The final trend, is that uncertainty and disturbances in
the SAR environment are rarely explicitly addressed in (theoretical) SARS research. Once the review
on controller types and SARS research has been completed, it is necessary to consider the different
aspects of search-and-rescue (SAR) simulation, which has been discussed in Chapter 4. More specif-
ically, a simulator is considered as test bed, since the performance of any novel SARS is preferably
tested in a safe, consequence-free environment before being applied to a real-life disaster scenario.

Following this comprehensive research of control approaches, the different aspects of SARS re-
search, and SAR simulation, in Chapter 5 we have formulated the specific research proposal of this
thesis work. First of all, it has been chosen to use a fuzzy-logic-assisted prioritised task assignment
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and path planning (FLAPTAPP) approach for the mission planning controller. This control approach is
chosen for its ability to incorporate expert (human) SAR knowledge in its control strategy, as well as its
simple and computationally efficient structure. Additionally, the world model that the mission planning
controller uses, is updated in real-time to provide the most accurate situational awareness. This en-
ables the mission planning approach to adapt its strategies based on newly acquired information from
the environment. The proposed control approach is next applied to a multi-agent, non-homogeneous
SARS of UAVs, which are deployed in an indoor USAR environment. In an effort to validate the pro-
posed SARS of this thesis work, a custom simulator is built based on previous work by the research
group of this thesis work, and the internationally recognised SAR environment simulator by Robocup-
Rescue. The motivation for this is that such an experiment yields a fairer comparison between different
mission planning strategies, while still being feasible to construct in the time span of this thesis. The
simulator includes SAR environment elements such as fire spread, victims, and structural damage.
Both the modelling of fire spread and victim movement are of a stochastic nature, in order to simu-
late the uncertainty of their dynamics in a real-life SAR scenario. The different aspects of this thesis
proposal are enveloped in the following research question:

Can an adaptive FLAPTAPP approach for non-homogeneous agents increase
the victim search efficiency of a search-and-rescue system of UAVs in terms of
victim search time and area coverage?

The outcome of this thesis provides a more extensive mission planning approach, which exploits
the individual capabilities of the agents in the SARS, thus contributing to non-homogeneous SARS
research. Secondly, a novel control approach will be developed, termed FLAPTAPP, which combines
both fuzzy task assignment and prioritised path planning in one controller. The main aim of combining
these two elements, is that together they increase the victim search efficiency compared to other mis-
sion planning approaches, and thus contribute to the ultimate aim of SAR research of reducing disaster
victims.
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A
Simulation Code Manual

All code for the numerical simulations developed during this thesis is made publicly available on the
Github of the author1. This chapter explains how the code is constructed and how it should be used.

A.1. Prerequisites
This research is performed exclusively in MATLAB R2019b (academic use) on a PC with Intel Core i7
Processor with 2.20GHz frequency. In addition to this, two extra Matlab add-ons are required:

• Global Optimization Toolbox. This toolbox is required for the supervisory controller to perform
the optimisation problem.

• Parallel Computing Toolbox. This toolbox reduces the time it takes to run the experiments
by distributing the computational effort of both the local and supervisory controller over multiple
parallel processors. This toolbox is not strictly necessary, however the following changes must
be made to the code if it is not used:

1. The parfor command in simulate_step.m - line 79 must be changed to a regular
for command.

2. The optimisation options in MPC_optimise.m - lines 57–59 must be commented out.

A.2. main.m
The file main.m is the main file that is run when conducting experiments/simulations.

Lines 13–28 The file starts by clearing the work space and adding all necessary directory paths.
Additionally, the user can toggle the Boolean variables plot_scan plot_env,
which shows the global scan certainty map and a schematic representation of the
environment during the simulation, respectively.

Lines 31–63 Two user inputs are defined with preset dialog options, which determine the type of
search approach used (search_app) and the type of simulation in which the SAR
system is evaluated (sim_type). After this, sim_type is used to set the appropriate
simulation settings

Line 65 The loop for all selected simulation cases starts here. If either one of the special
simulation cases is chosen, the code simply runs that case only (e.g. if the user
has previously selected ’Case1’ to be run, the code will run this case and stop
afterwards). If the Random simulation option is chosen, the code will run multiple
seeded random simulation scenarios with seeds values from start until stop.

1https://github.com/dekoningchristopher/NonHomogenous-SARS-Mission-Planning
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Lines 66–86 The previously selected simulation is initialised with the function handle
init_Environment.m (details in Appendix A.3). Furthermore, if selected previ-
ously, these lines create two figure windows for both the global scan certainty map
and the environment.

Lines 89-104 The loop for simulating the steps of a single simulation case starts here. The simu-
lation is terminated if the maximum limit of tau_max time steps has been reached.
In this loop, simulate_step.m is the primary function that simulates the next time
step (detail in Appendix A.4). The updated scan certainty map and environment plots
are subsequently shown.

Lines 107–116 Once tau_max has been reached, the simulation is completed and the relevant raw
data is stored in the folder \_data in a .mat file. The location and name of the data
file is automatically generated from the simulation type and search approach. For
the special simulation cases, the raw data includes:

• tot_SCAN, the summed scan certainty of all cells in the environment.

• M_SCAN, the global scan certainty map of the environment.

• M_TRACK, the tracks of each agent during the simulation.

• M_VIC, the global victim map.

In addition to these parameters, the random simulation cases also save confl,
which is the total number of search conflicts registered during the simulation.

Lines 119–126 In these lines the user can toggle which results they would like to plot. The primary
plotting settings are contained in plot_results.m.

A.3. init_Environment
In main.m line 44 the function handle init_Environment is created. This function handle is con-
structed from the user’s input and calls the desired simulation function (init_Random.m, init_Case1.m,
init_Case2.m, init_Case3.m, init_Case4.m, or init_CombiCase.m). In this section only
init_Random.m will be extensively detailed, however all special simulation cases are roughly struc-
tured the same way.

Lines 34–45 The first few lines construct the various environment maps with the desired envi-
ronment dimensions. Additionally, these lines initiate the (empty) containers for the
performance indicators. Finally, the function init_fuzzy.m constructs the Mam-
dani fuzzy inference system for the local controller (including the rule base and all
input and output membership functions).

Lines 57–67 The obstacles are randomly placed in the environment with seeded random numbers
that are scaled to the environment dimensions. The number of obstacles is depen-
dent on the obstacle density value perc_obs, which represents what percentage of
the total environment is covered in obstacles.

Lines 71-81 Similarly to the obstacles, a fixed number of victims is randomly placed in the en-
vironment with a (different) set of seeded random numbers. The victim location is
stored in the occupancy map such that the agents can detect them. Additionally, the
global victim map M_VIC is created, which has dimensions (𝑟𝑜𝑤𝑠, 𝑐𝑜𝑙𝑠) = (𝑛𝑣𝑖𝑐 , 5).
Columns 1 and 2 contain a victim’s 𝑦 and 𝑥 coordinates, respectively. Column 3 con-
tains the victim health state, which is a randomly initiated value in the range [50, 100].
Finally, column 4 indicates the first time of detection of a victim, and column 5 shows
how many times a victim has been visited (this element remains ’NaN’ if a victim is
not detected).
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Lines 85–87 Finally, the SAR agents are initiated and added to the environment. Each SAR agent
can be accessed through the map container structure A_database, which is con-
structed with the function get_agents.m. This function fills the database with ele-
ments of the class agent. The agent class is used to store both fixed and variable
properties/states of each simulated SAR agent. The fixed properties of a SAR agent
include its name, sensory perception radius 𝑟𝑝, and uncertainty reduction rate 𝜂. The
variable properties of an agent are its (𝑥, 𝑦) coordinates, perception field 𝐸ai , and a
list of all victims it has found. With get_agents.m the SAR agents are initiated
with a set of predefined properties, however they may be adjusted for the special
simulation cases.

A.4. simulate_step.m
The function simulate_step.m contains all calculations that update the entire simulation for a single
time step. This includes updating the victims, calculating the path/next action for each agent (based on
the selected search approach), and finally updating their respective positions in the environment map.

Line 44 Updates the victim position and health state with the function update_victims.m.

Lines 47–52 Updates the perception field of all agents with get_perception.m and stores this
new array in the agent database. Additionally, the global scan map and victim map
are updated with this function, by increasing the scan certainty of the cells within
𝐸ai and checking if the agent has detected any victims. This simulates an agent
scanning its surroundings.

Line 55 This line initiates a switch case for the string variable corresponding to the selected
search approach search_app. This determines which search approach is used to
determine the next step for each SAR agent.

Lines 56–70 For both the selfish and cooperative search approach, the local controller of
each SAR agent is activated. First, each agent constructs its own local vic-
tim map M_VIC_hat using the list of victims it has already found (stored in
agent.vic_list). This enables each agent to calculate the priority score for each
cell within 𝐸ai with the function calc_localprio.m.

Lines 73–81 For each cell in 𝐸ai the SAR agent calculates the K shortest paths with
plan_kshortest.m. Within this function, the function plan_path.m is used to
find the globally shortest path to the target cell using A* Search. The function
plan_path.m is an adapted version of the A* Search tutorial provided by P. Pre-
makumar2.

Lines 83–101 Next, the function grade_path.m grades each of the K paths. Due to the use of
parallel processing, only a single one of these K paths can be stored to the overall
list of paths and their corresponding grades (P_i and GRADE_LIST, respectively).
Hence, an intermediate step is taking by storing all K paths and their grades in the
variable temp_gradelist, and only adding the path with the highest grade to P_i
and GRADE_LIST. Once all target-path combinations have been determined, the
local solution for the SAR agent is obtained by determining the highest scoring path.
The paths for all agents are contained in the cell P.

Lines 106–118 Both the cooperative and selfish register search conflicts, by determining if any SAR
agents have an intersecting perception field of more than I cells. The supervi-
sory controller is activated only if the cooperative search approach has been se-
lected. The supervisory controller performs the optimisation problem with the func-
tion MPC_optimise.m.

2https://www.mathworks.com/matlabcentral/fileexchange/26248-a-a-star-search-for-path-planning-tutorial
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Lines 120–123 In case of the pure-MPC search approach, the initial path solution must be randomly
initialised with init_path.m before performing the optimisation procedure.

Lines 125–130 In case of the ant-colony search approach, the path of each agent is determined with
the function ACS_search.m.

Lines 132–137 Similarly, random_search.m determines the paths of all agent in case the random
search approach is selected.

Lines 139–153 With the determined paths, the next step of each agent is determined by execut-
ing the first action/cell of their respective paths. The new position of the agents is
updated in their class object and in the environment map. Furthermore, their old
position must be removed from this map.

Lines 156 Finally, this line determines the total scan certainty of the environment and stores it
in the variable tot_SCAN.



B
Simulation Code Flowcharts

This chapter provides the flow charts for a number of sections within the code for the numerical simu-
lations.
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