
 
 

Delft University of Technology

Open-source IP cores for space
A processor-level perspective on soft errors in the RISC-V era
Di Mascio, Stefano; Menicucci, Alessandra; Gill, Eberhard; Furano, Gianluca; Monteleone, Claudio

DOI
10.1016/j.cosrev.2020.100349
Publication date
2021
Document Version
Final published version
Published in
Computer Science Review

Citation (APA)
Di Mascio, S., Menicucci, A., Gill, E., Furano, G., & Monteleone, C. (2021). Open-source IP cores for space:
A processor-level perspective on soft errors in the RISC-V era. Computer Science Review, 39, Article
100349. https://doi.org/10.1016/j.cosrev.2020.100349

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cosrev.2020.100349
https://doi.org/10.1016/j.cosrev.2020.100349


Computer Science Review 39 (2021) 100349

c

h
1

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

Review article

Open-source IP cores for space: A processor-level perspective on soft
errors in the RISC-V era
Stefano Di Mascio a,∗, Alessandra Menicucci a, Eberhard Gill a, Gianluca Furano b,
Claudio Monteleone b

a Delft University of Technology, 2629 HS Delft, The Netherlands
b European Space Agency, 2200 AG Noordwijk, The Netherlands

a r t i c l e i n f o

Article history:
Received 4 August 2020
Received in revised form 4 December 2020
Accepted 9 December 2020
Available online 24 December 2020

Keywords:
Processors
Fault tolerance
Space

a b s t r a c t

This paper discusses principles and techniques to evaluate processors for dependable computing in
space applications. The focus is on soft errors, which dominate the failure rate of processors in space.
Error, failure and propagation models from literature are selected and employed to estimate the failure
rate due to soft errors in typical processor designs. A similar approach can be followed for applications
with different radiation environments (e.g. automotive, servers, experimental instrumentation exposed
to radiation on ground), by adapting the error models. This detailed white-box analysis is possible
only for open-source Intellectual Property (IP) cores and in this work it will be applied to several
open-source IP cores based on the RISC-V Instruction Set Architecture (ISA). For these case studies,
several types of redundancy described in literature for space processors will be evaluated in terms
of their cost-effectiveness and expected final in-orbit behavior. This work provides a comprehensive
framework to assess efficacy and cost-effectiveness of redundancy, instead of listing and categorizing
the techniques described in literature without assessing their relevance to state-of-the-art designs in
space applications.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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CI Cell Interleaving
CL Criticality Level
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CVF Cache Vulnerability Factor
CW Constant Workload
DC Data Cache
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DUE Detected Uncorrectable Error
ECC Error Correcting Code
EDAC Error Detection and Correction
EDC Error Detecting Code
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FF Flip Flop
FI Fault Injection
FinFET Fin Field-Effect Transistor
FPGA Field Programmable Gate Array
FPU Floating Point Unit
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FT Fault-Tolerant
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GP General Purpose
HC High Criticality
2

HPC High-Performance Computing
IB Instruction Buffer
IC Instruction Cache
ID Interleaving Distance
IF Instruction Fetch
II Instruction Issue
IOD In-Orbit Demonstration
IP Intellectual Property
IPC Instructions Per (clock) Cycle
IRF Integer Register File
ISA Instruction Set Architecture
IU Integer Unit
L1 Level 1
L2C Level 2 Cache
LC Low Criticality
LEO Low Earth Orbit
LET Linear Energy Transfer
LLC Last-Level Cache
LSU Load and Store Unit
M/D Multiplier and Divider
MBU Multiple Bit Upset
MCU Multiple Cell Upset
MD MBU Dominated
MLP Memory Level Parallelism
MPEG Moving Picture Experts Group
MTTE Mean Time To Event
MTTF Mean Time To Failure
OBC On-Board Computer
OoO Out-of-Order
OS Operating System
QoS Quality of Service
RF Register File
RHBD Radiation-Hardened By Design
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RR Register Rename
RTL Register Transfer Level
SAA South Atlantic Anomaly
SBF Single Bit Flip
SBU Single Bit Upset
SD SET Dominated
SECDED Single Error Correction and Double

Error Detection
SED Single Error Detection
SER Soft Error Rate
SET Single Event Transient
SEU Single Event Upset
SNR Signal-to-Noise Ratio
SoC System-on-Chip
SOI Silicon-On-Insulator
SRAM Synchronous Random Access Memory
TID Total Ionizing Dose
TMR Triple Modular Redundancy
UT Unexpected Termination
WB Write-Back
WT Write-Through

1. Introduction

Space systems rely on digital electronics for on-board data
andling and processing, and processors are key elements (along
ith memories and interfaces) to achieve such functionalities [1].
hen selecting a processor for satellite data systems, typically

wo choices are available: either a space-grade processor with
ong flight heritage and well-characterized behavior (e.g. LEON
rocessors [2]), or a proprietary Commercial-Off-The-Shelf (COTS)
rocessor employed as a black box (sometimes after adequate
adiation test [3,4]). The latter is preferred to the former when the
erformance required cannot be met with space-grade proces-
ors [5], which typically lag behind their commercial counterparts
n terms of performance [6]. The recent availability of open-
ource Intellectual Property (IP) cores for terrestrial applications ,
ainly based on the RISC-V Instruction Set Architecture (ISA) [7],
llows for a better understanding of their vulnerability, avoiding
lack-box characterization (typical of proprietary COTS compo-
ents) and allowing a trade-off between the two approaches. A
etter modeling of the inner working of processors can both help
hoosing the best IP core and its configuration. For instance, in [8]
he lack of public Register Transfer Level (RTL) models (typical
f proprietary processors) is identified as the main issue when
rying to characterize the effects of upsets in a microarchitecture
mainly because it is not possible to estimate the exact number
f sequential elements). Furthermore, the authors of [9] suggest
hat the failure rate measured with beam experiments is much
arger than the one estimated by Fault Injection (FI) due to un-
nown proprietary parts of the real physical hardware platform
ompared to the virtual platform where the FI was carried out.
Once the vulnerability of a processor is estimated, it can be re-

uced employing redundancy. Redundancy typically comes with
ignificant area, power and performance overhead. Therefore,
ssessing its cost-effectiveness is crucial. However, the amount
nd type of optimal redundancy can change drastically depending
n the requirements in terms of dependability (i.e. reliability,
vailability, safety [10]) and performance as well as on the tar-
et environment. For instance, in automotive the focus of the
tandard ISO-26262 [11] is on functional safety. For this reason,
 t

3

several Application-Specific Integrated Circuits (ASICs) for auto-
motive employ two processors executing instructions in lockstep,
so that errors can be detected comparing the outputs of the two
replicas and the processors are restarted in case of mismatch [3].
A similar approach can reduce availability, as for instance even
benign differences at the outputs of the processors will cause a
reset. Furthermore, as long as the safety requirements are met,
availability is not a primary concern in automotive. This is not the
case for space applications, as dependable processors in space are
expected to provide a certain service without interruptions over
a certain span of time, hence the focus is instead on availability.
For example, in the case of a geostationary telecommunication
satellite the time span of a mission could be more than 15 years
in which the whole space system is expected to provide a cer-
tain service 99.9% of the time [12]. Therefore, the unavailability
budget for the On-Board Computer (OBC) is even tighter. Fur-
thermore, when the processor is intended for usage in space,
the presence of ionizing radiation makes soft errors far more
likely and the amount of redundancy must be carefully evaluated
as power and area available in space data systems are typically
very limited. On the other hand, loss of performance in space
data systems can be easily tolerated in most cases. In High-
Performance Computing (HPC) the constraints are the opposite, as
the amount of loss in terms of performance that can be tolerated
is typically very limited [13].

1.1. Objective

The objective of this paper is to introduce readers familiar
with processors and typical performance/power/area trade-offs
in digital electronics [14] to consider also dependability with
quantitative tools, taking as a relevant example the extreme case
of space applications. This work develops a comprehensive frame-
work at processor-level1 to assess and mitigate the soft error
vulnerability of processors in a cost-effective way. The need for
this work and its nature of a survey, instead of a completely ex-
perimental paper (like for instance [16]), is given by the fact that
most of the works in literature describe in great detail specific as-
pects of the vulnerability of specific hardware structures and how
to address soft error vulnerability of specific units in a processor
(e.g. register files [17], data [18] and tag [19] array in caches).
This sub-processor approach is dictated by the extensive work
required to build a relevant test setup and to the number of ex-
periments required to get meaningful statistics. In this paper we
will complement these works by putting their results together,
using them to develop a comprehensive framework that the
reader can reuse and readapt to its own designs or when evaluat-
ing an open-source IP core. Although using several extrapolations
and approximations, this approach allows the reader to have a
complete view of the specific challenges involved in the design of
a dependable processor for space and to estimate the effects of a
different environment/technology/microarchitecture/redundancy
given limited experimental data.

1.2. Scope and related works

The techniques to increase dependability reported in this
work are those typically employed for space processors such
as LEON [2], TCLS [20] and those developed by Boeing [21].
Therefore, this work can be read as a survey of state-of-the-
art techniques to evaluate and design processors for dependable

1 That is, including caches but excluding peripherals, interconnects, interfaces,
ff-chip memories and main memory. However, processors are typically included
n a System-on-Chip (SoC) together with peripherals and memories. To further
xtend this framework, the reader can refer to the work in [15], which estimates
he impact of other subsystems of SoCs.
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pace applications. For readers interested in a wider range of
pplications, there are instead some related works in literature.
survey listing techniques to model and improve reliability of

omputing systems was published in [22]. From there, additional
echniques not included in this work (both because they are
ot relevant to space processors and for sake of brevity) can
e included in our framework. An introduction to the soft error
roblem in processors was published in [23], covering soft error
itigation techniques at device, circuit, microarchitectural and
oftware level. In this work, we will develop further all the
spects related to the microarchitecture and will establish a
odel built putting together results from literature. This will
ive more insights on how to evaluate open-source IP cores and
ow to enhance their dependability in a cost-effective way. For
nstance, only 10 out of 132 references of this paper are used also
n [23] and some of them are only necessary to introduce the
opic (e.g. [10], which proposes a nomenclature for dependable
ystems). Other comprehensive frameworks were proposed in
ecent years (2016–2019) [24,25]. The present framework differs
or three reasons: it is built from a survey of the literature, it has a
ider scope (e.g. comprising definition of threat models from the
pace environment, and considerations on availability and valida-
ion) and it is described step by step to the reader (see Table 15).
he reader can therefore implement the framework for its own
esigns and contribute to its extension in a straightforward way.

.3. Outline

To introduce the reader to the problem, the first part of this
aper follows the error from its generation to the occurrence of
he service failure (as shown in Fig. 1). In Section 2.1, typical faults
n space processors are identified and an error model is associated
o each of them, in Section 2.2 the outcomes of the defined error
odels are analyzed up to the service interface, and in Section 2.3

he application-dependent effects of errors at the service interface
re analyzed.
The second part of the paper follows instead the steps of a

ypical design flow for a fault-tolerant processor. In Section 3.1
quantitative model to identify the most vulnerable units of
rocessors is presented and in Section 3.2 it is applied to four
ifferent processor designs. Section 4 then analyzes several types
f redundancy and discusses their cost-effectiveness. Section 5
iscusses aspects related to validation and in-orbit expected be-
avior. Finally, Section 6 draws conclusions.

. Identifying and modeling threats

Fig. 1 shows how threats2 interact with a processor. A failure
s a deviation from the expected behavior of the service provided
t the service interface [10], and it is caused by one or more
eviations from the correct state of the system (errors). The
ause of the error is called fault [10]. Changes in the charge
tored in nodes due to particle strikes are typical faults in space
rocessors (external faults in Fig. 1), and they are called soft
rrors as they can be removed simply overwriting them with
he correct value [26]. This is not the case for hard errors [27],
here the distinction between fault (e.g. defective gate) and error
e.g. wrong result of a calculation) is needed for correct recovery
e.g. to replace a defective unit with a spare unit).

2 In [10], the term ‘threats’ refers to faults, errors, and failures.
4

2.1. Fault and error models

Regardless of the specific threats due to the space environ-
ment, processors in space have to be first of all robust against
faults common to processors in terrestrial applications.3 For in-
stance, simulations for a 32 nm ASIC technology show that the
data propagation delay of Flip Flops (FFs) increases less than 5%
in 5 years of stress conditions due to aging [28]. This can be
taken into account during design by applying larger margins on
the maximum allowed frequency. Aging and hard faults due to
imperfections or wear out can be classified as internal faults in
Fig. 1, for which environmental conditions and specific activation
patterns are required in order to generate errors. Despite hard
errors, soft errors due to radiation typically dominate the failure
rate of processors already in terrestrial environments. In [29]
the ratio of soft errors to hard errors for Synchronous Random
Access Memory (SRAM) arrays in processors ranges from 77 to
735, and in [30] 99.36% of the errors in an SRAM array are soft
errors while 0.64% are hard errors. Soft errors in space are even
more predominant, as in this case charged particle strikes are
more common (outside the Earth atmosphere the flux of particles
is higher) and different particles are present (heavy ions and
protons instead of neutrons) [31].

Furthermore, our focus in this paper is on faults capable of
generating functional errors and we will not consider faults which
generate electrical failures like Single Event Latchups [32] and
increase of absorbed current due to Total Ionizing Dose (TID)
effects [33]. The reason is that those are typically not addressed
at microarchitectural level but at technology and electrical level
instead.

2.1.1. Upsets
Ionizing particles can change the value stored in a single or

more sequential elements. In the first case, the terms Single Event
Upset (SEU) or Single Bit Upset (SBU) are employed. In the second
case, the term Multiple Bit Upset (MBU) can be used.4

The upset rate λev mainly depends on the radiation environ-
ment (including also shielding), the technology5 and the choice
of the sequential and combinational elements in the processor
within the same technology. The upset rate can be either esti-
mated with environmental models or measured on the field [34].
In the first case, a standard approach is to carry out a radiation
test composed of several test runs with particles with different
Linear Energy Transfer (LET)6 and measure the respective cross
section.7 Afterwards, tools like SPENVIS [36] are used to calculate
the differential LET spectrum which can be obtained from the

3 In our discussion we do not include systematic failures due to bugs that
hould not be considered part of dependability but of normal engineering
ractice (verification).
4 Sometimes the term Multiple Cell Upset (MCU) is employed instead, while
BU is reserved to cases where the multiple upsets are in the same Error
etection and Correction (EDAC)-protected word. Furthermore, the notation
BU(n) will be employed to indicate MBUs causing n upsets with a single
article strike.
5 Several factors can be included in the technology. For instance, the error

ate per bit on a specific technology depends on the voltage chosen (in [16]
ecreasing the voltage from 1.2 V to 0.8 V results in an increase of the error
ate by a factor 1.5x up to 3x, depending on the radiation source). However, as
hown in [16], this does not change the ratio between errors from combinational
nd sequential logic.
6 The LET represents the energy loss of the particle when it travels a unit
istance in the semiconductor [35]. It is typically normalized to the density of
he material and given in MeVcm2/mg.
7 The device cross section for a given LET is defined as the quantity that
ultiplied by the particle flux produces the SEE rate of that flux of particles. It

s typically given as cm2/device or cm2/b [35].
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article differential energy spectra in a certain orbit [35]. The
pset rate can be then found with the following integral [35]:

ev =

∫ inf

0

∫ 1

−1

∫ 2π

0
f (L, θ, φ) σ (L, θ, φ) dφ dcos(θ ) dL (1)

where the differential flux f and the cross section per bit σ
depend on the LET L and the incidence and rotation angles (θ and
φ) [35].

Data from [37] shows for a commercial 28 nm Fully-Depleted
Silicon-On-Insulator (FDSOI) SRAM an in-orbit SEU rate of 4.66×

10−9 upsets/bit/day for solar minimum in Geostationary Orbit
(GEO). From data in the same work, an estimation of 5 × 10−7

for worst week in GEO and 5 × 10−10 upsets/bit/day for Low
Earth Orbit (LEO) can be taken (three orders of magnitude less
than GEO worst conditions). Data from [38] show that considering
different time spans will have different worst cases, e.g. the upset
rate for the worst case of an SRAM array for one week in GEO
is one order of magnitude lower than the worst case for 5 min,
the latter reaching an upset rate of around 10−2 upsets/bit/day
(similar values are given in [39], some of them even reaching 10−1

upsets/bit/day). Furthermore, the upsets are not homogeneously
distributed in a certain orbit. For instance, all reboots in [40] (LEO)
due to upsets happened in the South Atlantic Anomaly (SAA) and
over the poles, where the level of radiation is higher due to the
lower magnetic field shielding. To provide a comparison with
processors in terrestrial environment, the upset rates at sea level
in [41] is assumed to be 2.7×10−11 upsets/bit/day, which is four
orders of magnitude less than for the 28 nm FDSOI in GEO (worst
week).

The radiation environment experienced by the processor de-
pends also on the amount of shielding, which cannot be con-
trolled by the designer of the processor. In [38] it is shown that
the reduction of upset rate due to an ideal aluminum sphere
going from 0.1 mm to 2.5 mm is of 4 orders of magnitude for
a 45 nm Silicon-On-Insulator (SOI) SRAM in the case of trapped
protons, typical of LEO [42]. Considering an electronic box in a
spacecraft brings the upset rate down of roughly another order of
magnitude. However, in [38] it is shown that Galactic Cosmic Rays
(GCR) are insensible to shielding depths. This causes a plateau of
8.64 × 10−7 upsets/bit/day for the SRAM technology considered
in [38], where adding more shielding does not improve the radi-
ation tolerance of the part which must be addressed exclusively
at semiconductor level.

In a similar manner, different technologies exhibit differ-
ent upset rates in the same radiation environment. A typical
Radiation-Hardened By Design (RHBD) SRAM memory based on
a 250 nm technology has been reported in [34] to operate in
GEO with an average of 1.8×10−10 upsets/bit/day. A commercial
SRAM based on 65 nm bulk technology in [43] is reported to
experience an average of 1.5 × 10−7 upsets/bit/day in LEO, and
in GEO would show an even higher upset rate. Space-grade

processors are currently based on 65 nm (e.g. GR740 [1]) or even

5

180 nm (e.g. GR716 [2]) RHBD ASIC technologies, while typical
processors for terrestrial application are typically below 28 nm
(e.g. [44]). These newer technologies are expected to be more
vulnerable: when scaling from 65 nm to 14 nm the upset rate
increases from around 10−12 to around 10−11 upsets/bit/day for
planar bulk technologies, while it increases from 10−11 to 10−10

upsets/bit/day for FDSOI and Fin Field-Effect Transistor (FinFET)
technologies [45] (all of them measured at ground altitudes). For
all three types of technologies the increase happens when going
beyond 28 nm, while from 65 to 28 nm the upset rate is constant
or slightly decreasing.

Even in the same technology, different sequential elements
composing the processor can have different upset rates. For in-
stance, the OpenSPARC T2 in [46] (65 nm) is mainly composed
of SRAM arrays optimized for density (for caches) with an up-
set rate ranging between 8.58 × 10−13 and 1.14 × 10−12 up-
sets/bit/day, less-dense and higher-performance SRAM arrays (for
register files) with an upset rate per bit of half or less and FFs with
an upset rate per bit of one-third or less compared to the SRAM
array optimized for density. However, as [47] shows, this is not
always the case and several technologies (especially newer ones)
show the opposite situation. As a matter of fact, the ratio of the
upset rate of FFs to SRAM cells in [47] is 0.44 for 130 nm, 1.96
for 90 nm, 1.75 for 65 nm and 1.15 for 40 nm technologies.

The differentiation between FFs and SRAM arrays is also re-
quired because FFs have temporal masking, which is not present
in SRAM arrays. If we consider an upstream sequential element
connected to a downstream element through combinational logic,
an upset happening in the upstream element between t = tsamp−

Tprop and t = tsamp (where tsamp is the sampling instant given by
the clock and Tprop is the time required for the correct sampling
of a signal propagating from the upstream to the downstream
element) will not propagate to the sequential elements down-
stream. A sampling factor can be defined as SFFF = 1 −

Tprop
Tclk

,
here Tclk is the clock period for the FFs. This implies that the

raction of temporally masked errors in FFs actually increases
ith the frequency [16]. Despite this masking, typical models
sed in literature assume a constant failure rate for FFs when
hanging frequency [48], while more refined analyses find that
here is an increase of the failure rate due to a Single Event
ransient (SET) mechanism in the combinational logic between
aster and slave [49]. Data provided in [49] show that this

ncrease is very small, when considering a single FF the maximum
ound is 5 × 10−15 errors/bit/day/MHz. Considering a design
oing from 100 MHz to 1 GHz, the error rate increases by 4.5 ×

0−12 errors/bit/day, which is of orders of magnitude less even
ompared to the less vulnerable technologies for space (around
0−10 upsets/bit/day). However, as mentioned in [16], testing

shift registers where Tprop is close to zero fails to take into account
temporal masking, and SFFF is close to one for practical values of
frequency. On the other hand, when testing a circuit with both
sequential and combinational logic, understanding which of the
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wo generated the error sampled in an FF to validate the temporal
asking model is a daunting task. According to the model in [16],

emporal masking instead can have a considerable impact. In [16]
n average SFFF of 66.6% is given. When lowering the frequency

on the same design the sampling factor increases, until for 100
MHz the sampling factor gets to 96.66%.

Even the same type of sequential element can come in dif-
erent sizes for the right performance/power/area trade-off. Data
rom [50] shows that FFs for a 65 nm commercial bulk technology
ave upset rates ranging between 1.6 × 10−7 upsets/bit/day

(fastest FF) and 4.1 × 10−7 upsets/bit/day (slowest FF, 2.56x
more vulnerable). Rad-hard (radiation-hardened) versions of the
same technology have upsets rates ranging from 8.12 × 10−8 to
.82 × 10−9 upsets/bit/day (2.24x increase of vulnerability with
3x increase in drive strength). From [51] it can be seen that a
ad-hard version of a FF on commercial technology can achieve a
eduction of upset rate of 350x. In [16] several frequency targets
ranging from 100 MHz to 900 MHz) are set when synthesizing
processor, generating implementations with different mix of
Fs. This increases vulnerability up to 10% (i.e. RVFF = 1.1)
aking the less vulnerable as reference. This increase follows a
egular pattern, growing with the difference between the target
requency (e.g. 900 MHz) and the real clock frequency (e.g. 100
Hz).
The upset rate λev is typically assumed constant [52] (i.e. inter-

rrival times of raw errors in a component are independent [52])
nd therefore the reliability function is exponential for each se-
uential element, i.e. Rb(t) = e−λev×t . The use of the exponential
istribution implies that the error rate of a series of elements
ecomes the sum of the error rates and the probability of not
aving an upset in the processor is RSEU (t) = e−SERSEU×t , where

the Soft Error Rate (SER) due to SEUs is:

SERSEU = λev ×
(
NSRAM × RVSRAM + NFF × RVFF × SVFF

)
(2)

where NSRAM and NFF are respectively the number of SRAM cells
and FFs. RVSRAM and RVFF are the average vulnerability of re-
spectively SRAM cells and FFs employed relatively to a reference
sequential element with event rate λev .

When considering MBUs, they can be measured as fraction
of the total events. This means that if two events happen, one
generating a SBU and one a MBU, the fraction of MBU is 50%
regardless of the number of errors due to the MBU. Data from [53]
show that for SRAM arrays in a 90 nm ASIC technology 95% of
events cause a SBUs, 4% cause a MBU(2) and 1% cause MBU(3).
For 65 nm SRAM arrays the situation reported in [53] is quite
different: 45% are SBUs, 18% are MBU(2), 10% are MBU(3) and
27% are MBU(≥4). As a pessimistic estimation for Ultra Deep
Sub Micrometer (UDSM) technologies data from [54] for a 32 nm
SRAM array8 can be taken: in this case the fraction of SBUs is 24%,
the fraction of MBU(2) is 52%, the fraction of MBU(3) is 3% and
the fraction of MBU(≥4) is 21%.

.1.2. Single event transients (SETs)
A single particle hitting a combinational node is able to cause

transient voltage pulse [55]. This pulse can be latched by the
equential elements downstream and can be either seen as a
ingle error or multiple errors in sequential elements by the user
e.g. software level). Even if the user is not able to distinguish
etween SETs and upsets, SETs have different generation mecha-
isms that require different redundancy techniques compared to
BUs and MBUs. As a matter of fact, SETs have additional levels

8 It is not possible to define worst cases and best cases that will be always
uch for each type of redundancies explored in the following sections. So as a
etric to define the best, average and worst case in Table 1, the total percentage
f MBUs is considered.
6

of masking (electrical and logical) [56]. Furthermore, they have
a different temporal masking mechanism: if the pulse reaches
the sequential element outside from the sampling window, then
the spike is not sampled and the error not generated. This im-
plies that the contribution of SETs increases with the increase of
the frequency. The reason is that when frequency increases, the
sampling window becomes a larger fraction of the total time.

In relatively old technologies (e.g. technology nodes larger
than 90 nm), SETs are not predominant as they are attenuated
by large capacitance (electrical masking) and the low clock fre-
quencies make the sampling unlikely (temporal masking) [57]. In
more recent technologies instead, capacitance is reduced and the
clock frequency is higher. For this reason, the probability that a
spike is latched increases [57]. In [58] a comparator, an FF chain
and an inverter chain are tested to compare the contribution
of SETs and SEUs on a 45 nm bulk technology. The chain of
inverters in [58] has a depth (12 stages) to emulate the highest
electrical masking available typically in designs and accounts only
for electrical and temporal masking, while the comparator also
account for logical masking. As logical masking depends upon
the input combination, in [58] a best, average and worst case are
given. The worst case counts around twice the SETs compared to
the best case. Furthermore, in [58] errors due to combinational
logic (inverter chain) are less than one eighth of errors in se-
quential elements up to 100 MHz, around half at 500 MHz and
uncertainties overlaps for 1 GHz (even if the expected value is
still at half the sequential elements). The crossover frequency is
around 1.5 GHz for the inverter chain and between 1.7 and 5 GHz
for the comparator. However, considering that the vulnerability
of FFs decreases with frequency, the contribution of sequential
logic would be higher and the crossover frequency lower. This
shows how increasing frequency does not necessarily increase
the error rate, but certainly increases the relative vulnerability of
combinational logic in the design, making optimal redundancy for
low frequency not fit for higher frequencies, as it will be shown
in Section 4. The SER due to SETs can be written as:

SERSET = λev ×
Acomb

Ab
× SFSET × RVcomb (3)

where Acomb is the area of the combinational logic, Ab the area of
the reference sequential element associated with λev , and SFSET is
the sampling factor of SET pulses (indicating how many pulses
are actually sampled by the sequential elements downstream).
In [59] the overall probability of a SET being latched given a strike
is 16.55% for 45 nm, 21.31% for 32 nm, 26.27% for 22 nm and
28.71% for 16 nm. We will consider a best case with SFSET =

0%, an average case with SFSET = 15% and a worst case with
SFSET = 30%. Also in this case we defined a RVcomb that keeps
into account different frequency targets that will imply the choice
of different combinational elements. Data from [16] show that
different timing targets (e.g. 100 MHz) can increase the failure
rate of combinational logic by 2x compared to the timing target
minimizing the failure rate (900 MHz), when running both imple-
mentations at the same frequency (100 MHz). It should be noted
that in the case of combinational logic, as opposed to sequential
elements, smaller gates are more sensitive to SETs [16].

2.1.3. Errors in SRAM-based FPGAs
The correct behavior of processors implemented on SRAM

Field Programmable Gate Arrays (FPGAs) is dependent on large
configuration memories. An interesting finding in [60] is that the
percentage of bit flips in the configuration memory normalized
to the resource utilization (fraction of sensitive bits in the config-
uration memory divided by the fraction of slices utilized in the
FPGA) is roughly independent from the specific IP core (ranging
from around 3% to around 6%). However, the impact of soft
errors on the microarchitecture is similar to those of hard errors
(e.g. stuck-at [61]) and therefore they will not be included in this
framework.
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rror models for soft errors identified for space processors (data derived from
16,53,54,59]) for different types of technology defined in Section 2.1.4: Low
riticality (LC), Average Criticality (AC), High Criticality (HC), SET Dominated
SD) and MBU Dominated (MD).
Technology LC AC HC SD MD

SFSET% 0% 15% 30% 30% 0%
SFFF% 97% 82% 67% 67% 97%
SBU% 95% 45% 24% 95% 24%
MBU(2)% 4% 18% 52% 4% 52%
MBU(3)% 1% 10% 3% 1% 3%
MBU(≥ 4)% 0% 27% 21% 0% 21%
MBU(even)% 4% 45% 73% 4% 73%

Fig. 2. Technology space considered in this work, delimited by dashed lines.
‘Edge’ and ‘average’ technologies in black solid lines.

2.1.4. Model adopted
Given the discussion in previous sections, the SER of the pro-

cessor will be estimated as SER = SERSEU + SERSET , which can be
ewritten as:

ER = λev × Neq (4)

where Neq is the number of reference sequential elements that
would produce the same SER given a certain λev . In our model
(Eqs. (2) and (3)):

Neq = NSRAM×RVSRAM+NFF×RVFF×SVFF+
Acomb

Ab
×SFSET×RVcomb (5)

Finally, the effect of the fraction of MBUs on the final failure
rate will be taken into account as described in Section 3.3.3. In
Table 1 the parameters of the proposed model for 5 different
types of technologies are reported. These parameters describe a
three-dimensional space of technologies, as shown in Fig. 2. Four
of the selected technologies (LC stands for Low Criticality, MD
stands for MBU Dominated, HC stands for High Criticality, and
SD stands for SET Dominated) are edges of a solid in this space
and one is the average case (AC stands for Average Criticality).
As a matter of fact, technologies not only affect λev (quantity
of events), but with the relative contribution of SEUs, SETs and
MBUs (quality of events) they also determine which redundancy
is more effective. The rest of the edges of the solid are defined
considering only a finite range of λev (10−12

− 10−6), defined
according to average values experienced during several missions
(Section 2.1.1), while considerations on extreme conditions such
as worst week and worst 5 minutes in GEO will be carried out in
Section 4.1.2.

2.2. Error propagation to the service interface

Errors generated by a fault not masked at the technology level
can be masked during their propagation to the service interface
(even when not considering redundancy) at the microarchitec-
tural level (e.g. the error does not influence the behavior of the
processor) and at the software level (e.g. an error which affects
7

a bit in an unused instruction or is used only by a dynamically
dead instruction9), as shown in Fig. 3. When the error is masked,
the application terminates normally and output pins (and files)
do not differ from the fault-free execution.10

When redundancy is employed, along with the intrinsic mi-
croarchitectural and software masking, error detection and han-
dling are also possible. The capability of a processor to avoid an
error to turn into a failure is referred to as ‘‘fault tolerance’’ [10].
The possible outcomes of error detection and handling are:

• Correctable error: the error detection and handling mech-
anism proceeds to correct the error (correction). However,
when more errors than expected are present, the correction
can be wrong (miscorrection [64]).

• Detected Uncorrectable Error (DUE): the error detection and
handling mechanism is able to detect the error and to pre-
vent it from propagating to the service interface [65]. The re-
action to a detected DUE (e.g. rollback) may cause penalties
in terms of availability.

• Unexpected Termination (UT): its effect on the error prop-
agation is the same as a DUE, but it is typically caused
by the Operating System (OS) and software [66] instead
of hardware. For instance, a process may terminate abnor-
mally thanks to built-in protections (memory access viola-
tion, kernel panic, and arithmetic exception) triggered by an
anomalous behavior [67].

• Undetected: in this case the redundancy employed fails at
detecting the error during its propagation and no action is
taken.

2.3. Service interface and error tolerance

The system service defines the service interface at which the
service is to be provided and which outputs of the software
(e.g. variables directly mapped to a failure) and hardware (e.g. sig-
nals to other subsystems) will be able of propagating the errors.
An error, when propagated to the service interface, can generate
wrong data, wrong commands or unavailability of the system
(Fig. 3). The unavailable state can be expanded in a case where the
unavailability is due to the intrinsic vulnerability of the processor
(i.e. hang) and a case where it is due to error handling.

2.3.1. Intrinsic error tolerance
In many works, wrong data and wrong commands on the

output are both assumed to be a failure, calling this Silent Data
Corruption (following the terminology of [65]). However, this is
not always the case, as some services are inherently tolerant to
wrong data at the service interface. In [68] a system is defined
as error tolerant with respect to a service, if the system produces
acceptable results to the end user according to a certain Quality
of Service (QoS) even when errors are propagated to the outputs
of the system. The system fails due to insufficient QoS instead
when the QoS is below a certain threshold (QoSthr). For instance,
in a system providing edge detection for images, the QoS is
defined in [69] as the peak Signal-to-Noise Ratio (SNR) when
comparing the corrupted and correct images and the QoSthr is set
to 10 dB. More complex services have a more complex definition
of acceptable quality. For instance, in Moving Picture Experts
Group (MPEG) encoding there are three types of frames: I frames,

9 A dynamically dead instruction is an instruction which outputs are not used
y any other instructions and that does not actually influence the output of the
rocessor [62].
10 In [63], masked cases are instead classified in two different categories
epending on whether the final architectural status is different from a fault-free
xecution (referred to as Output Not Affected) and those where it is the same

(referred to as Vanished).
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Fig. 3. Propagation of errors to the service interface and effects on the system service.
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frames and B frames [69]. In general, the loss of B and P frames
an be compensated by the decoder, while the loss of an I frame
ill result in a substantial quality degradation. In [69] a frame is
onsidered bad if the SNR (compared to the correct frame) is more
han 2 dB for I frames, 4 dB for P frames and 6 dB for B frames. The
oS in [69] is then defined as the percentage of good frames and
oSthr is then set to 10% of bad frames. An example of even more
omplex service is inference for image classification. In this case
he QoSthr is defined as the difference in confidence of the top
anked element compared to the top ranked element of the fault-
ree execution [70]. In addition, the concept of QoS is introduced
lso for the catastrophic failures, which in this case is when the
op ranked element differs from the golden execution. As a matter
f fact, a differentiation is done between the case where the top
anked element is at least a ’good candidate’ (i.e. one of the first
) in the fault-free execution and the opposite case.
In [69] it is shown that in order to fully exploit the concept of

rror-tolerance, control operations (defined as those which can
hange the control flow in the software and therefore potentially
enerate wrong commands at the outputs) must be identified and
rotected. As a matter of fact, catastrophic failures are avoided
oth for Susan (edge detection) and MPEG (MPEG encoding) when
rrors are not injected in control operations (while some other
enchmarks have catastrophic failure rates up to 19% even when
rrors are not injected in control operations). When control oper-
tions are protected, more than 100 errors per second had to be
njected in Susan to show any frame loss due to the SNR being too
ow. MPEG had instead about 2% loss at 10 errors per second. Both
rror rates are pessimistic for space, as the error rate in this case
s several order of magnitude lower (in Section 3.2 the maximum
ER found is around three errors per day at the highest upset
ate considered). MPEG crashes disabling protection for control
peration, while for Susan disabling protection leads to very poor
idelity of output. This can be attributed to the relatively small
umber of control instructions (less than 9%) in Susan compared
o the higher percentage in MPEG (around 50%) [69].

.3.2. Explicit error tolerance
Once models of failures at the service interface are defined,

xplicit techniques of error tolerance can be employed. One of the
ost commonly used is the watchdog timer, namely a counter

hat if not periodically reset by the processor will reset the
rocessor itself [71]. This is represented in Fig. 3 with Timeout
nd it is based on the simple model of Hang of the processor at
he service interface. However more complex models can be em-
loyed, and in [71] also a smart watchdog is proposed. Similarly,
n [72] a symptom-based mechanism is employed to reduce the
ailure rate by 20x over a baseline design without explicit error
olerance.

. Modeling the vulnerability of processors

Once the models for the threats are defined, the following
tep is to build a model to identify the most vulnerable parts
f the design. A common model in literature is the Architectural

ulnerability Factor (AVF) decomposition [41].

8

.1. AVF decomposition

In order to take into account the masking effects due to soft-
are and microarchitecture, in [73] the AVF of a unit is defined
s the probability that a fault in that unit of the processor will
ause a failure at the outputs of the processor. For this reason, the
VF depends on which event of those described in Section 2.3 are
onsidered as failures. In this work, we will use the definitions of
ailures as indicated in Fig. 3 (at the service interface).

The rate of occurrence of a failure f for the unit i can be
odeled as λi,f = SERi × AVFi,f . In order to have a correct
xecution, all the units of the AVF decomposition are required
o not propagate an error to the outputs of the processor. As a
esult, units in an AVF decomposition can be thought as a series
f components in a reliability block diagram [41]. Assuming that
he masking is uniform (therefore not changing the distribution
f events) and assuming that failures in different components are
ndependent of each other, the total reliability is given by the
roduct of the reliability of the units composing the processor.
he processor-level failure rate for the failure f λf is then given
y:

f =

∑
i

SERi × AVFi,f = SER × AVFf (6)

As SER = λev × Neq, the effects of failures on a service for space
applications (relatively high λev and low Neq) can be sometimes
compared to the effects on services for application with lower
λev and higher Neq (e.g. servers) [41]. Eq. (6) can also be written
as λf = λev

∑
i λ̂i,f , where λ̂i,f = Ni × AVFi,f is the failure rate

normalized to the upset rate per bit. For failures causing wrong
outputs or data, the failure rate λw (Fig. 3) is enough to estimate
heir effect on the service.11

The impact on the service interface of failures causing un-
vailability12 instead is also determined by the duration of the
navailability Tu,i they cause each time they manifest. Different

types of events causing unavailability can be observed:

• Timeout (λh): these events are due to residual AVFu not pro-
tected by redundancy. We assume they are addressed em-
ploying a watchdog timer that triggers a hard reset (power
cycle) when it expires. An order of magnitude for Tu,h can be
found in [74], where it is assumed to last 5 min, as extensive
checking (e.g. memory) is required.

• UT (λeh,ut ): when a process is terminated, a possible solution
is to use an interrupt service routine for diagnostic and
restart of the process. These have typically lower impact
than a reset. The work in [75] shows that a process can be
restarted with a latency on the order of 10 ms.

11 Sometimes, instead of the failure rate, the Mean Time To Failure (MTTF)
is employed to indicate how often a failure will happen on average. The
use of an exponential reliability function simplifies further the calculations, as
MTTFw = 1/λw .
12 If a system is unavailable for a total TUnavailable during a certain TMission ,
the unavailability is then defined as U =

TUnavailable
TMission

and the availability as
Availability = 1 − U .
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Fig. 4. Fraction of time a location in the RF is in ACE (gray) and un-ACE (white).
Between write and last read an arbitrary number of reads can happen.

• DUE in data without valid copies (λeh,hr ): in this case, e.g. er-
rors in Write-Back (WB) caches, a DUE requires at least a soft
reset (i.e. ending the current processes and booting again).
From the work in [76], a penalty of 45 s can be assumed for
a soft reset, composed of end time and boot time.

• Rollback to an up-do-date value (λeh,rb): when the corrupted
data is available in the most up-to-date value, the loss in
terms of availability is minimal. For instance, in case of a
DUE in a Level 1 (L1) cache with Write-Through (WT) policy
the data can be read from the Level 2 Cache (L2C), with a
penalty of a cache miss [77]. As can be seen in [77], 150
Clock Cycles (CCs) can be taken as a pessimistic estima-
tion for a cache miss and even in this case, assuming a
clock frequency of 100 MHz, the penalty is in the order of
microseconds (which is in most cases negligible).

• Correction (λeh,c): the latency in this case is very short. For
instance, the LEON2FT checks the EDAC code on the Register
File (RF) during the execution phase, writes back errors
in the RF with the correct value, flushes the pipeline and
restarts from the instruction that reads the operand with the
error [78]. This procedure causes typically minimum penalty
in terms of stalling (in this case just 5 CCs).

• Device-specific rollback (λeh,ds): some devices save the old
status to rollback to it in case of DUE [79] or they compare
the output of three processors and restore the correct status
from one of the golden replica [20]. In these cases the
penalty in terms of availability is implementation-specific.
We will discuss this aspect further in Section 4.

The unavailability due to each type of these events i can be
expressed as:

Ui =
Nu,i × Tu,i
TMission

=
(TMission × λu,i) × Tu,i

TMission
(7)

where Nu,i is the number of times the events i happened during
the mission and TMission is the total mission time. Therefore, the
unavailability of the processor considering all the possible sources
i of unavailability is:

U = Tu,h × λh +

∑
i

Tu,eh,i × λeh,i = λev × Û (8)

3.1.1. Vulnerability in time: ACE analysis
More insights can be gained on the meaning of the AVF by

considering how AVF is estimated in [73], i.e. considering the bits
required for an Architecturally Correct Execution (ACE). A bit is an
ACE-bit when changing its value will cause the error to propagate
to the service interface and it is an un-ACE bit otherwise. A
bit typically changes from ACE to un-ACE and vice versa during
program execution, as shown in Fig. 4 for a bit in a location of the
RF.

At any instant in time, the AVF can be expressed as the number
of ACE bits in a structure NACEi over the total number of bits in
the structure Ni: AVFi(t) =

NACEi (t)
Ni

. The average AVF can then be
efined as the average number of ACE-bits in a certain timespan.
sing Little’s law [73], the average number of ACE-bits within a
tructure (e.g. instruction buffer or execution unit) can be written
9

Table 2
Features of the cache subsystem common to LE and HE (data derived from [82]).
‘Pref.’ stands for ‘prefetcher’.
Unit Size Block size Associativity Policy Prefetching

DC 32 KiB 64B 4-way WB Stride pref.
IC 32 KiB 64B 4-way Read-only Pref.
L2C 1 MiB 64B 16-way WB w/o pref.

as the product of the arrival rate (bandwidth BACEi ) of ACE bits and
the average time of persistence in the structure (latency Li):

AVFi =
NACEi

Ni
=

BACEi × Li
Ni

(9)

For instance, when considering hardware structures storing or ex-
ecuting instructions, the rate of arrival of ACE bits is given by the
number of Instructions Per (clock) Cycle (IPC). The average time
these bits spend in the structure depends on the functionality
of the block, which may store it for a long time (e.g. memory
or buffers) leading to high AVFs or for shorter times (execution
units) leading to lower AVF. Furthermore, for functional units
like Arithmetic Logic Units (ALU), Eq. (9) shows that the more
frequently they are used and the longer is the latency of the
operation, the more vulnerable they are. For memories, it shows
that the longer the average lifetime and the higher the memory
utilization, the higher the AVF is.

3.2. Impact of the microarchitecture on the failure rate

In [7] the authors provided an overview on RISC-V and pro-
posed how to employ the RISC-V ISA in space data systems
to address present and future needs. In this roadmap, several
‘profiles’ of processors were proposed. Here we will analyze four
General Purpose (GP) profiles from the point of view of depend-
ability as case studies for our models: GP-LE-1, GP-LE-4, GP-HE-1
and GP-HE-4.13 The LE-4 can be seen as an implementation
equivalent to the state of the art of space-grade components
(single-issue, in-order pipeline, quad-core like the GR740 [2]),
while the HE-4 can be seen as a possible future space-grade
processor. These configuration will be represented by the Rocket
(LE) and the BOOM processor (HE) where FI was carried out
in [67]. Therefore, for units in Tables 3 and 4 we use values
for AVFs from [67]. However, to provide a more comprehensive
comparison of the contribution of each block in a realistic design,
we also include estimations for one L1 Instruction Cache (IC) per
core, one Data Cache (DC) per core, one FPU per core and L2C
(one shared among the cores in LE-4 and HE-4). For the Floating
Register File (FRF) we use as a pessimistic estimation the same
value of the Integer Register File (IRF) of the Rocket, as data
from [80] shows for FRF similar contribution to the failure rate
compared to the IRF. When considering the functional part of
the Floating Point Unit (FPU), [81] shows that in average (over
different benchmarks) only 1.76% of errors in FPUs reach the FPU
output.14 For all the profiles we use the same cache configu-
ration, i.e. the baseline of [82] that is reported in Table 2 and

13 As defined in [7], ‘‘LE’’ stands for Low-End and ‘‘HE’’ stands for High-End.
The following digit indicates the number of cores. In the remainder of this paper,
‘‘GP’’ is usually omitted as only GP processors are considered.
14 Further data shows that AVF for control modules in the FPU is 8.9% while
datapath modules have a 1.43%. The large percentage of area dedicated to the
datapath in a FPU explains the low average value. Also, this is a pessimistic
estimation for the AVF of a FPU in a processor as the service interface is taken
at the output of the FPU and not at the output of the processor, thus neglecting
the masking effect of the rest of the processor to errors coming from the FPU.
These data do not differentiate between types of failure so we assume that the
breakdown is similar to the one of the Arithmetic-Logic Unit (ALU) in the HE-1
in terms of AVF , AVF and AVF .
w h eh,ut
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Table 3
AVF (from [67,80,81]) and Neq for LE-1 (without caches), decomposed in IRF, Multiplier and Divider (M/D), Instruction
Buffer (IB), rest of the Integer Unit (IU), Control and Status Registers (CSR), FRF and FPU.
LE-1 IRF M/D IB IU CSR FRF FPU

AVFw 3.3% 0.2% 0.5% 2.4% 5.9% 3.3% 1.0%
AVFh 1.0% 0.1% 0.3% 4.4% 8.2% 1.0% 0.2%
AVFeh,ut 12.2% 0.4% 1.1% 4.9% 4.3% 12.2% 0.6%
Neq,LC 2.65E+3 2.17E+2 9.9E+1 1.1E+3 1.2E+3 2.8E+3 1.6E+3
Neq,AC 2.65E+3 5.72E+2 1.4E+2 1.7E+3 1.4E+3 2.8E+3 5.0E+3
Neq,HC 2.65E+3 9.27E+2 1.8E+2 2.2E+3 1.6E+3 2.8E+3 8.5E+3
Table 4
AVF (from [67,80,81]) and Neq for HE-1 (without caches), decomposed in IRF, Register Rename (RR), Instruction Fetch (IF), Instruction Issue (II), Load and Store Unit
(LSU), ReOrder Buffer (ROB), BP, ALU, CSR, FRF and FPU.
HE-1 IRF RR IF II LSU ROB BP ALU CSR FRF FPU

AVFw 1.9% 2.4% 2.6% 2.4% 1.5% 1.2% 0.8% 1.2% 3.9% 3.3% 1.0%
AVFh 1.0% 3.3% 1.0% 3.1% 2.4% 2.4% 1.5% 0.4% 0.2% 1.0% 0.2%
AVFeh,ut 8.7% 5.7% 7.3% 0.9% 3.7% 0.8% 0.1% 0.7% 5.4% 8.7% 0.6%
Neq,LC 4.5E+3 2.9E+3 4.1E+3 7.1E+2 2.1E+3 1.1E+3 2.8E+3 1.9E+3 1.3E+3 3.4E+3 4.8E+3
Neq,AC 6.4E+3 4.1E+3 5.6E+3 9.8E+2 2.6E+3 1.2E+3 3.0E+3 3.7E+3 1.5E+3 4.3E+3 7.5E+3
Neq,HC 8.4E+3 5.2E+3 7.1E+3 1.2E+3 3.1E+3 1.4E+3 3.1E+3 5.5E+3 1.8E+3 5.1E+3 1.0E+4
Table 5
AVF (from [82]) and Neq (the same for all technologies) for caches. LE-1 and HE-1 have one DC and one IC each.
LE-4 and HE-4 are obtained replicating 4 times the respective single-core version and adding a L2C.
Caches DCWT DCWB IC L2CWB

AVFw 5% 8.8% 0.5% 0.5%
AVFh 1.3% 2.5% 5% 0.6%
AVFeh,ut 2.9% 4.3% 5.2% 1.7%
Neq 5.14E+4 5.7E+2 2.0E+5 2.4E+6
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with AVF values reported in Table 5. This will provide the reader
with an estimation of how the same size of caches influences the
failure rate in different designs (even if higher performance pro-
cessors may employ larger caches). However, in Section 3.2.1 we
will also provide models and considerations on scaling of cache
size. For simplicity, in this section we will consider only data
arrays and not tag arrays in caches. Even if tag arrays in [83] are
reported to be have higher AVF than data arrays15 (as for instance
hey have on average an AVF 2.76x higher than data arrays in
C), they typically are smaller (around 7 KiB, i.e. around 9 times
maller than the data array). Therefore, not including tag bits in
he model can be expected to underestimate the vulnerability of
aches by around 20% according to Eq. (6). Furthermore, using
alues for caches of a processor with a different ISA does not
mpact AVF of caches in a significant way, as in [84] the AVF
f caches for two different ISAs (ARM and x86) for 10 MiBench
enchmarks shows that the difference is small.16
Furthermore, we assume same average values of AVF for sin-

le and quad-core versions of the same design. As a matter of
act, [85] investigates the changes in AVF in a dual-core processor
here each core is running a different thread and it shows that
VF is roughly the same compared to a single core (the change
n AVF is within a +/−2% of the AVF single core value).

Estimations of Neq are obtained with syntheses on Design
ompiler on a 65 nm bulk commercial technology targeting 100
Hz and using the code available to the public of the Rocket
rocessor17 and of the BOOM processor.18 However, as we do
ot have access to the memory compiler of the ASIC technology
as it is often the case), we will estimate the size of caches using
ACTI [86].

15 Also [19] shows a high value for tag arrays (32.5%).
16 Intuitively, this is more true for L2C (−4%) and DC (+5%), while the
ifference is slightly larger for ICs (+24%), which store ISA-specific instructions
84].
17 https://github.com/chipsalliance/rocket-chip.git.
18 https://github.com/riscv-boom/boom-template.git.
10
It can be noted from Figs. 5 and 6 that caches are the most
ulnerable units in processors, even considering technologies
ith high SER from combinational logic. This was already shown

n [87] with a less refined model. Most of the units have a similar
elative contribution to λw and U, except the IC which has a
imilar impact compared to L2C in terms of unavailability but
ags behind more than a order of magnitude in terms of λw . Most
f the units increase their failure rate when moving from LC to
D. However, for a few of those (those with higher percentage
f sequential elements like BP), the failure rate decreases due to
F temporal masking (as shown in [16]). Furthermore, microar-
hitectures impact the failure rate much more in terms of Neq
han in terms of AVF. As a matter of fact, the maximum ratio
etween two different designs in terms of Neq with the same type
f technology defined in this section (cacheless LE-1 and the HE-
) is around 100 for each technology, while the maximum ratio
f AVFs found in literature due to different microarchitectures is
round 4x (in [88]).

.2.1. Design explorations
In [89] the effect of the processor width and of the number of

unctional units (e.g ALU and FPU) on the AVF of the functional
nits is investigated but no clear correlation is found. Looking at
ata from the literature for IRF and caches (e.g. [82]), we define
wo models of scaling of the failure rate for an array of sequential
lements based on Eq. (9), as shown in Fig. 7:

• Constant Workload (CW): the workload for the array re-
mains constant while increasing the size of the unit, mean-
ing that the failure rate remains constant and the AVF de-
creases by the same factor as the size was increased.

• Constant Utilization (CU): the relative utilization of the array
remains constant while increasing the size of the array,
meaning that the AVF remains the same and the failure rate
increases of the same amount the size was increased.

s shown in Fig. 7 some units show a behavior similar to CW
e.g. physical register), some lay in between CU and CW (DC on

https://github.com/chipsalliance/rocket-chip.git
https://github.com/riscv-boom/boom-template.git
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Fig. 5. Normalized failure rate for wrong outputs λ̂w for LE-1 (cacheless), HE-1 (cacheless) and caches (from left to right). Calculations based on Eq. (6).
Fig. 6. Normalized unavailability Û for LE-1 (cacheless), HE-1 (cacheless) and caches (from left to right). Calculations based on Eq. (8).
Fig. 7. Effects of size on λ̂ (normalized to the λ̂ of the smallest size considered) and AVF for 2x and 4x increases (based on [82]).
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average and IC for all benchmarks from [82]) and some other
units increase their utilization when their size is increased (DC
for the corners benchmark in [82]) and in this case we talk about
‘‘superlinear’’ behavior (as done in [90]).

The results in [91] confirm the increase of failure rate of the
DC when increasing its size. However, in this case the behavior
shown is superlinear (and not in between CW and CU), as in-
creasing its size of 16x (from 16 KiB to 256 KiB) increases its
failure rate by 21x. Interestingly, they also show that increasing
the size of DC by 16x has an effect on the failure rate of L2,
which decreases by around 2x. The work in [92] highlights how
cache arrays typically exhibit a superlinear behavior when the
cache hit rate increases with the increase of the size (e.g. for
the FFT and matrix multiplication benchmarks), while if the cache
hit rate remain constant they typically show a CW behavior. An
explanation for this is presented in [90] and reported in Fig. 8
(left). Let us consider a program that reads the variable A, then
the variable B and then again the variable A. In a large cache,
it is more likely that both A and B will reside in the cache. For

this reason reading B does not cause a cache miss and line A is s

11
not evicted. In a small cache instead, reading B is more likely to
cause a cache miss and a replacement of A with B, thus reducing
drastically the fraction of time the location stores ACE-bits. The
mechanism described happens for both WT and WB policies,
while in Fig. 8 (right) it is also shown a mechanism specific of WB
caches. As a matter of fact, in WB caches dirty lines also exist and
those are always ACE, as they will be eventually written back to
main memory. Fig. 8 (right) shows a program which writes A and
hen reads B and then does not act on the location until the end
f the program, when the dirty lines will be written back. Also in
his case, a small cache which substitute A with B can reduce the
raction of time the location stores ACE-bits considerably.

The previous discussion shows also that the write policy in-
luences the AVF of the L2C: in [82] a value of 7% can be taken
or a WB L2 cache (in [84] a similar value is given) and 4.2% for a
T L2C (1 MiB), which implies almost double the SER due to the

2C.
Furthermore, as show in [82], the AVF of the DC is roughly

nsensitive to the associativity (5 benchmarks out of 8), while

ome benchmarks (djpeg and smooth) exhibit a steep variation
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Fig. 8. Examples of superlinear behavior for a location in DC storing the variable A, similarly to [90].
f AVF for a specific number of ways, and only one (search)
hows an increase of AVF with the number of ways. IC instead
ecreases its AVF when the number of ways is increased [82].
dding prefetches to the DC leaves substantially unchanged the
VF, while removing prefetchers for IC reduces the AVF, which
ecomes, on average, 0.67x the baseline AVF [82].

.3. Impact of other factors on the failure rate

Several factors impact the failure rate. Fig. 9 summarizes these
actors indicating how large is the maximum value compared
o the minimum value found of the failure rate when varying a
ertain factor. The impact of technology (and of the environment)
nd of microarchitecture was already assessed in Sections 2.1 and
.2 respectively. The remainder of this subsection quantifies the
mpacts of other factors.

.3.1. Dependence on performance and compiler flags
The work in [93] observes a fuzzy correlation between AVF

nd each performance metric considered (i.e. IPC, branch predic-
ion rate and several cache miss rates) across several SPEC2000
enchmarks. However, in [94] the use of performance throttling
s proposed to lower the overall AVF of a processor. Acting both
n pipeline resources and cache miss rate, a failure rate reduction
p to 35% is achieved.
Another way to change performance is to employ specific

ompiler flags. In [95], GCC with several combinations of opti-
ization flags for the MiBench benchmark suite are compared in

erms of performance and AVF. It is shown that the optimal set
f flags for AVF decreases the AVF by around 9% compared to -
3 and of 8% compared to -O2. Among the optimization levels,
n [96] -Os is found to be better than the -O0 for around 75% of
he benchmarks (on a total of 25 benchmarks considered), while
he lowest AVF in average is obtained with -02. Recent work [97]
hows that the ratio of the AVF obtained with the worst and best
ets of optimization flags is around 2x.

.3.2. Dependence on software
Error masking in a processor, like performance, depends on

he software employed. For this reason, it is crucial that the set
f programs employed during the estimation of the AVF is repre-
entative of the final application or is general enough to represent
wide spectrum of applications. Most works in literature use the
PEC benchmark suites [67,88], others use EEMBC suites [80] and
thers MiBench [82,95] for its similarities to the SPEC benchmarks
n terms for instance of instruction mix. As a matter of fact,
nstruction mix of the software can have a significant impact on
12
the failure rate of certain units of the processor. For instance, data
from [98] show that moving from benchmarks with low fraction
of FPU instructions like AMG2006 and UMT (0.03 and 0.1 per CC)
to those with high fraction of FPU instructions like LINPACK (0.64
per CC) increases the failure rate of the FRF by 50x.

The variation of AVF on a microarchitecture employing differ-
ent programs depends also on the microarchitecture itself. For
instance, the work in [88] shows how, while for an in-order
‘‘small core’’, the AVF ranges from 8% to 16% (2x maximum
increase) for the benchmarks of the SPEC CPU2006, for an Out-
of-Order (OoO) ‘‘big core’’ it ranges from around 8% to around
29% (3.63x). Furthermore, the OoO core has for every benchmark
a higher AVF compared to the in-order processor (except for
gobmk). Ref. [88] also shows the Cycles Per Instruction (CPI)
stack19 for each benchmark and notices that there is no sim-
ple rule to predict whether a workload has high or low AVF.20
According to [88], the benchmarks with low AVF have low vulner-
ability because of their high number of branch mispredictions and
instruction cache misses. The benchmarks with high AVF show in-
stead a more complex behavior. Some benchmarks (e.g. milc) are
memory-intensive: a load operation accessing main memory typ-
ically blocks the head of the ROB, which causes the ROB to fill up.
This leads to a significant increase of ACE bits while servicing the
memory operation.21 However, some memory-intensive bench-
marks (e.g., mcf and libquantum) have low AVF because of branch
mispredictions. Other high-AVF benchmarks (e.g. zeusmp) are
compute-intensive: high IPC and high Memory Level Parallelism
(MLP)22 is achieved by having high occupancy in various queues.
Some benchmarks with high AVF instead experience resource
stalls because of DC misses, L2C misses, limited Instruction Level
Parallelism (i.e., chains of dependent instructions) which cause
the ROB and issue queues to fill up with instructions. Data in [67]
show a different trend. In this case, the AVF values of the OoO core
are smaller than those of the in-order core for every benchmark,
and the trend is also true for the only two benchmarks in common

19 A CPI stack quantifies the fraction of cycles spent doing useful work, ‘lost’
cycles because of resource stalls, branch mispredictions, instruction cache misses,
Last-Level Cache (LLC) misses and main memory accesses [88].
20 However the ACE states of caches are not evaluated in this case, as caches
are assumed to be protected.
21 This mechanism is only relevant to OoO processors and does not happen
in in-order processors. This explain why the ranges are different.
22 MLP is the average number of useful long-latency off-chip accesses out-
standing when there is at least one such access outstanding [99]. Also in this
case, this is a mechanism typical of OoO processors, as simulation results in [99]
show that a moderately aggressive OoO issue processor improves MLP over an
in-order issue processor by 12%–30%.
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Fig. 9. Factors impacting the failure rate and their relative impact. Estimation is in gray because it does not affect the failure rate on the field.
ith [88] (bzip and gcc). Also, the increase in ratio between the
inimum and the maximum AVF found is much lower: from
2.4% to 20.6% for the in-order (1.66x) against 7% to 12.3% (1.76x)
or the OoO processor. When considering caches, in [82] the AVF
or the baseline DC ranges from around 3% to around 23% (7.66x).

.3.3. Dependence on the fraction of MBUs
In [8] more complex error models compared to the Single

it Flip (SBF) of [67] are employed to investigate the effects of
BUs on the AVF. The most relevant result is that the AVF value
aturates on average around 3 upsets per strike, with an increase
f around 10% compared to the value found with the SBF model
n average and with a peak of around 25%. To take into account
his effect, the AVF employed in Eq. (6) will be then AVF =

MU × AVF . We will employ αMU = 1 for technologies with a low
fraction of MBUs (LC and SD), αMU = 1.1 for technologies with an
average fraction of MBUs (AC) and αMU = 1.25 for technologies
with a high fraction of MBUs (HC and MD). The impact of MBUs
on the failure rate is limited, as the ratio between the minimum
and the maximum value of AVF changing the number of upsets
per strike reported in [8] is around 2x. Also in [98], the maximum
ratio found when injecting one and four upsets is 2x.

3.3.4. Uncertainty due to the estimation method employed
AVF was originally defined with an ACE analysis implemented

on a microarchitectural simulator [73]. In [100], the ACE approach
is found to underestimate on average fault masking about 250%
compared to FI. The causes identified for such overestimations
are: the limited information on the bits (when it cannot be
determined whether a bit is in a ACE or un-ACE state, it is
assumed in ACE-sate to prove that requirements can be met);
limited size of time windows to analyze dead instructions; and
Y-bits.23 The conclusion in [100] is that ACE analysis can be
refined until a theoretical threshold, after which is not possible
to reduce conservatism further because of Y-bits. However, before
this theoretical limit for ACE analysis is reached, ACE analysis be-
comes intractable due to the increase of complexity. The authors
of [102] reject this point of view, arguing that while FI on RTL may
provide a more accurate AVF by modeling all low-level masking
effects, much of this can be accounted for at the performance
level by identifying and modeling those masking effects that
significantly impact the AVF and that the Y-bit effect is on the
order of 14% on the AVF and that it can be addressed with a
more refined ACE analysis [100]. While most of the extended
microarchitectural simulators are not available to the public, a
modified version of the gem5 simulator capable of assessing soft
error vulnerability [103] is available.24

FI requires a large number of experiments and either a work-
ng hardware platform or a RTL model that can be simulated.
owever, the results in [104], regarding a dual-core processor

23 Y-Bits are bits that can alter the course of execution in the processor
ithout causing a failure, for instance branches for which the behavior of the
pplication is unaffected by whether the particular branch instance is taken or
ot. Around 40% of the executed branches in SPECint2000 are Y-branch [101].
24 https://github.com/MPSLab-ASU/gemV.
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design consisting of around 350k sequential elements, show that
randomly selecting more than 2.85% elements (10k) for injec-
tions provides only marginal improvements in terms of reduc-
tion of uncertainty (the standard deviation when considering 10
different groups of FFs saturates).

To inject errors also in microarchitectural resources of a hard-
ware prototype, hardware support is needed. For instance, in [67]
faults are injected in a FPGA prototype with an extra XOR at the
input of each FF of the processor. The host processor within the
FPGA decides which FF to inject (and at which CC) and sends
the command to the fault injector connected through a crossbar.
Without a similar hardware support, errors could be injected only
via software in architectural resources. Another possibility is to
simulate an RTL model and inject errors during the simulation,
changing the value of a specific signal [105].

3.4. Limitations of the AVF decomposition

Although the use of the AVF decomposition as introduced in
Section 3.1 is common [41], there are some limitations in its
capability of assessing the vulnerability of processor units.

3.4.1. Sub-unit vulnerability
The AVF decomposition does not provide insights on the ho-

mogeneity in terms of vulnerability of a certain structure. The
work in [80] provides instead also data for sub-unit vulnerability.
In this case, the sequential elements of each unit are grouped in
Criticality Levels (CLs), depending on the percentage of times an
error in that sequential element propagates to the outputs. For
instance, CL0 means that a fault in that element never causes
a failure and CL5 indicates that a fault in that element always
causes a failure. This classification may allow selecting redun-
dancy more efficiently. For instance, a memory array with a
large fraction of CL0 sequential elements can be protected more
efficiently with selective information redundancy [106,107] or
partial hardware redundancy [108]. While [80] adopts a conserva-
tive approach that defines a FF critical if it is critical at least for a
benchmark, data from [16] suggest that a considerable part of the
critical FFs remains the same among 8 workloads from MiBench
(85 out of the top 200 vulnerable FFs of each benchmark), and
only a minority (around 13% for each benchmark) are critical in
only a single benchmark. For instance, [106] notes that only a few
‘‘long-lived’’ registers (10% for the IRF) are responsible for 40% of
the total vulnerability time of the IRF. Based on this consideration,
it is proposed to use a cache smaller than the RF to store the
ECC of physical registers and replace check bits of ‘‘short-lived’’
registers with those of the ‘‘long-lived’’ ones.

3.4.2. Propagation to specific signals at the service interface
The AVF decomposition does not take into account to which

signal of the service interface the errors will propagate. In [80]
it is found that errors manifest only in 65% of the outputs, with
almost 80% of these errors manifesting in only 20% of the ports.

https://github.com/MPSLab-ASU/gemV
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.4.3. Propagation time
The AVF decomposition also does not take into account how

ong it takes for the propagation of the error to the service inter-
ace. Data from [80] show that all of the processor components
without considering caches) have a minimum error manifesta-
ion time equal or less than 7 CCs, whereas the average error
anifestation time for an error in the processor is 1204 CCs. The
orst propagation time is 153,287 CCs (for the logic responsible

or branch prediction). Errors propagate more quickly when they
irectly affect the processing data (e.g. ALU and FPU), while
torage units like RFs have instead longer propagation times [80].
RF has longer average propagation times (2950 CCs) compared
o IRF (370 CCs), mainly because of more matrix operations and
onger latency of the FPU compared to the ALU. The exception are
ome long-life integer variables, such as indexes in iterative loops
propagation time on the order of the thousands of CCs) [80].

.4.4. Error accumulation
The AVF decomposition assumes that the software is com-

osed of program loops of period TL each [41]. In order for the AVF
ecomposition to produce a negligible error, the product TL × λ

must be small [41]. This means that AVF decomposition is valid
when a small number of soft errors occur in a loop iteration.
In [109] a model to overcome this limitation is proposed, however
it is much more complex. Nevertheless, for each unit a failure rate
λi = DF × SERi can be associated, where DF is a more general
erating factor. Therefore, the final result of such more detailed
odel is a failure rate for each unit in the design like those in
igs. 5 and 6, on which the same procedures to apply and validate
edundancy can be followed like done in Sections 4 and 5.1.

. Applying cost-effective redundancy

Given the possible large overhead of redundancy, the concept
f cost-effectiveness is introduced in [106] (where a proposed
echnique is compared to others in terms of area, power and
erformance overhead) and in [108] (where area and power
verhead are considered). To provide a metric for this concept,
e define the following cost function:

= α
∆Tex
Tex

+ β
∆A
A

+ γ
∆P
P

+ δ
∆λw

λw

+ ϵ
∆U
U

(10)

where α, β , γ , δ, and ϵ are arbitrary weights depending on the
target of the design. We will show how weights can affect the
optimal choice for two opposite cases:

1. Focus on dependability (Cd): α = 0.25, β = 0.5, γ = 0.5,
δ = 1, ϵ = 1. This can be seen as the case of an OBC for
command and control operations.

2. Focus on performance (Cp): α = 1, β = 0.5, γ = 0.5, δ
= 0.25, ϵ = 0.5. This can be seen as the case of a payload
processor for high-performance on-board processing.

ex is the execution time for a (set of) program(s) employed to
valuate performance or the execution of a certain task. We will
se a linear model where Tex = Tclk × CPI × NI , where Tclk is the
lock period, CPI the number of CCs per instruction and NI the
umber of instructions in a program.25 However, a decrease in
clk may be partially compensated by an increase in CPI due to
he fact that memories are typically slower than processors and
or this reason the penalty is less than proportional to the loss in
clk. Furthermore, we do not include latencies in case of DUEs or

25 It should be noted that increases in CPI are actually more expensive
han increases in Tclk as the increase in CPI implies that the FT processor is
ot functionally equivalent to its COTS counterpart even when errors are not
etected.
14
corrections in the loss of performance, as they are not frequent
enough to cause degradation in performance (as opposed to in-
crease of latency even when there are no errors). The terms ∆A

A
and ∆P

P indicate respectively the relative increase in terms of area
and power of the whole processor (keeping the same target and
operative frequency). ∆λw

λw
and ∆U

U account for the percentage of
errors detected by the redundancy, i.e. its coverage. For instance,
the ∆λ̂w of a certain redundancy technique can be found as:

∆λ̂w = −

∑
i

AVFw,i

[
Neq,SEU,i

(
1 +

∆Neq,SEU,i

Neq,SEU,i

)
Pdet,comb,i

+ Neq,SET ,i

(
1 +

∆Neq,SET ,i

Neq,SET ,i

)
Pdet,seq,i

] (11)

where Pdet,seq,i is the probability of detecting an error in the unit i
for sequential logic and Pdet,comb,i its analogous for combinational
logic. Effective redundancy will have a negative ∆λw

λw
and will

decrease the cost function, but it is mathematically possible to
have a positive ∆λw

λw
, when:(

1 +
∆Neq,SEU

Neq,SEU

)
>

1
Pdet,seq,i

(12)

The case where unavailability increases is instead more common,
because of the increase in unavailability from frequent error
handling:

∆Û = Tu,h × ∆λ̂h +

∑
j

Tu,eh,j × ∆λ̂eh,j (13)

where j is the index of the jth type of unavailability due to error
handling, ∆λ̂h can be found with the same formula as Eq. (11)
and ∆λ̂eh,j can be found as:

∆λ̂eh,j =

∑
i

AVF ′

w,i

[
Neq,SEU

(
1 +

∆Neq,SEU

Neq,SEU

)
Pdet,seq,i

+ Neq,SET

(
1 +

∆Neq,SET

Neq,SET

)
Pdet,seq,i

] (14)

where AVF ′

i is the masking factor for all events considering as
service interface the point where the redundancy can detect the
error in the processor. This is needed because redundancy will
react also to errors that manage to propagate to this point and
that would be mask in the rest of the propagation to the real
service interface if redundancy was not included. This implies
that the rate of new error handling events ∆λ̂eh =

∑
j λ̂eh,j is

arger than the decrease of the rate of other events −∆λ̂ =

(∆λ̂w + ∆λ̂h + ∆λ̂eh,ut ). An example is given in Section 4.1.3,
here ∆λ̂eh is larger than −∆λ̂ by a factor ranging from 1.8x to
3.6x.
In the following subsections we will introduce several types of

edundancy for different units of processors and we will evaluate
heir efficacy and cost-effectiveness for different designs and
ifferent technologies/environments. In order to show different
ypes of redundancy, we will apply the cost function to each part
f the processor, decomposed in:

1. Cache Arrays (Section 4.1)
2. Register Files (Section 4.2.1)
3. Mixed logic (Section 4.2.2), composed of the remaining

combinational and sequential logic

or each of them the most cost-efficient redundancy for different
esigns, weights and technologies will be assessed. In Section 5
he total effect of applying the most cost-efficient to all the
omponents of the processors will be analyzed. More complex
ptimization methods can be employed, as done in [25].
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.1. Choice of redundancy for cache arrays

Memory arrays are typically protected with information re-
undancy, i.e. information is stored with more bits than strictly
equired, employing EDAC codes [78]. EDAC codes can be classi-
ied according to their capabilities in terms of number of errors
hat can be detected and corrected in a single protected memory
lock,26 which are determined by the minimum distance (‘d’,
.e. the minimum number of bits that differs) between two valid
ords of the code (‘codewords’) [110]. A binary (n, k) linear block
ode encodes words of k bits using n = k + r bits, with r
being the number of check bits [110]. Despite several codes with
high correction and detection capability are proposed in litera-
ture (e.g. in [18] up to 8-error detection and 9-error correction),
implementations typically employ Single Error Detection (SED)
codes [78,111–113] or Single Error Correction and Double Error
Detection (SECDED) codes [111–114], as in [18] it is shown how
with the increase of the minimum distance within the codewords
there is an exponential increase in overhead in terms of area and
energy per access to the memory block.

SED detects all single errors in an EDAC-protected block [115].
This is often referred to as ‘parity’, as can be easily implemented
adding a zero if the block has an even number of ones or a one if
the number is odd, so that all codewords have an even number of
ones. Parity is an example of Error Detecting Code (EDC). Parity
is also capable of detecting every odd number of errors, while
an even number of errors will generate an undetected error.
Given its simplicity and low overhead, parity is sometimes used
at sub-word level to detect more than one error in one word. For
instance in [18] an 8 bit-interleaved parity is described, which for
a 64 bit word results in 8 times the overhead in terms of check
bits. This approach increases area and power overhead linearly
instead of exponentially with the detection capability (even if no
correction capabilities are added).

SECDED corrects all single errors and detects all double errors
in a memory block [18]. The probabilities of miscorrection and
detection for more than two errors in the same word depends
upon the specific SECDED code employed. In [64], the (39,32)
Hsiao code has a miscorrection probability of 59.66% for triple
errors, while for the (39,32) Odd-Weight Column code it is 58.43%.
The miscorrection probabilities for the (72,64) Hsiao code and
the (72,64) Odd-Weight Column code are respectively 56.28% and
54.78%. In [116], the Odd-Weight Column code (39,32) miscorrects
1.7% of four errors in a word and the (72,64) Odd-Weight Column
miscorrects 0.8% of them. These codes are examples of Error
Correcting Codes (ECCs).

4.1.1. Layout solutions
A way to avoid the exponential increase of overhead due to

EDAC codes with increased correcting and detecting capability
is to apply Cell Interleaving (CI) at layout level to deal with
MBUs instead of using codes capable of detecting more than
two errors [117]. In CI, memory cells that belong to the same
logical EDAC-protected word are physically non-contiguous in the
memory array. In this way, a single ionizing particle capable of
causing multiple upsets is more likely to cause several single bit
errors in different EDAC-protected words. The figure of merit of a
certain cell-interleaved memory is the Interleaving Distance (ID),
which indicate how many columns in an SRAM array must be
involved during a particle strike to have a non-zero probability
of two upsets in the same word. In [117] it is shown that an ID
of 16 comes with an area increment of 32% and power increment
of 25%, and can be deemed enough to avoid MBUs in most tech-
nologies (even with conservative estimations). We will assume a

26 In the rest of this work we will assume EDAC codes applied to words.
15
100% increment in power and area for CI in an SRAM array (i.e. the
same given in [117] for a 4 KiB SRAM array when increasing ID
from 4 to 32). This value is an upper boundary for the acceptable
cost of interleaving in terms of area of power for a memory array,
as duplication would have a similar cost.

4.1.2. Refreshing
In [52] a model is proposed to quantify accumulation in an

EDAC-protected word, from which (assuming that the scrubbing
period is small compared to the MTTE27 for the accumulation28)
the MTTE for accumulation of two errors in a word of n bits for
an array of M words and a scrubbing period Ts is:

MTTE =

∫ inf

0
e−λev n M t (1 + λev n Ts)

M t
Ts dt

=
1

λev n M −
M
Ts

ln (1 + λev n Ts)

(15)

he accumulation for three SEUs in the same word can be esti-
ated instead using the following equation, derived in a similar
ay as in [52]:

MTTE =

∫ inf

0
e−λev n M t

(
1 + λev n Ts +

λ2
ev n2 T 2

s

2

)M t
Ts dt

=
1

λev n M −
M
Ts

ln
(
1 + λev n Ts +

λ2ev n2 T2s
2

) (16)

Fig. 10 (left) shows the MTTE for one upset, accumulation of
two and three upsets in the same word for extreme upset rates,
assuming a 10 min refresh rate (which can be seen as a worst
case estimation compared to realistic applications as in [118] is
shown that typical lifetime in a LLC is in the order of tens of
microseconds). Even with this pessimistic assumption, accumu-
lation is in general negligible compared to the contribution of
MBUs (the ratio of MTTE of ‘accumulation of two upsets’ and ‘one
upset’ is around 400 for λev = 10−2 upsets/bit/day and 2E+5
or ‘accumulation of three upsets’ and ‘one upset’). This implies
hat accumulation will have negligible impact on failures due
BUs, as the latter are much more common (even considering LC,

he ratio between two upsets and one upset is 24 and the ratio
etween three upsets and one upset is 95). The figure on the right
nstead shows that, even if the sensitivity of the accumulation
o the memory size is the same for all events, the MTTE for
arge memories is small enough to contribute significantly to the
ailure rate. For instance mass memories like the one described
n [119] have a memory scrubber to read and correct locations
ccording to EDAC codes, therefore limiting accumulation to the
crubbing period. Furthermore, it is worth to note that, while
emories with words of 64 bits perform slightly better for one
pset because (72,64) is more efficient in terms of added cells
ompared to (39,32) (i.e. the product n × M is slightly smaller
or memories carrying the same amount of bites), memories with
ords of 32 bits perform better for accumulation of two upsets
nd (by a larger margin) for accumulation of three upsets. This is
ntuitive, as accumulation becomes more likely when the number
f bits in a word increases.

.1.3. Cost-effective redundancy for cache arrays
Several processors described in literature employ SED in L1

aches and SECDED in L2C (referred to as EDC/ECC), while others
ave SECDED in both levels (referred to as ECC/ECC) [77]. The

27 We prefer in this case to use Mean Time To Event (MTTE), instead of MTTF,
to avoid confusion with the terminology introduced in Section 2.
28 In this work we will consider the models for accumulation of two and three
bits valid if T < 0.1 × MTTE.
s
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Fig. 10. MTTE for accumulation of errors in the same word when changing upset rate (on the left: memory array size is 32 KiB and refresh rate is 10 min) and
memory size (on the right: upset rate is 5E–8 upsets/bit/day and refresh rate is 12 h) according to Eqs. (15) and (16). In both cases the impact of the word length
and EDAC code is shown, i.e. solid line for (32,39) and dashed line for (64,72). In gray the range of MTTE where the models for 2 and 3 upsets in the same word
are not valid for the selected scrubbing rate.
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main argument in favor of the EDC/ECC approach is that it causes
a smaller increase in word length, as the increase in word length
increases the access latency to the word. For this reason, the
latency penalty per access compared to an unprotected L1 cache
is less than 1% for the SED, while for the SECDED it is larger (but
still below 10%, as the access latency is dominated by the data
array’s word-line decoder [77]). However, EDC/ECC cannot correct
errors in L1 caches, therefore program execution cannot in gen-
eral resume after detection and a reset is required. This problem is
typically mitigated reading the correct, up-to-date value from the
next level of the memory hierarchy [113]. In order to make this
correction possible, this solution requires WT policy for DC, which
incurs in significant performance and power overheads [18]. On
average EDC/ECC has a runtime penalty comparable with ECC/ECC
(+12% vs. +2% for SPECint in [77]). However for some spe-
cific benchmarks the penalty for using EDC/ECC is much higher.
For instance, for bzip2-graphic the penalty of EDC/ECC over the
unprotected version is +157% and +75% for vortex3. However,
ccording to the data in [77], SED incurs in less area overhead
virtually none already for L1 caches of 8 KiB), while the SECDED
t L1 causes an area overhead between around 50% and 10%
epending on the area of the cache (in case of 32 KiB it is around
0%). Using CACTI [86] it can be found that the increase in terms
f area for applying ECC in a 1 MiB L2C is around 21%. Regarding
ower, ECC/ECC has an overhead on the order for 32 KiB of 20%
n [77], while using CACTI a 24.46% increase for a cache of 1
iB. With EDC, also considering the required write to the next

evel of the memory hierarchy due to the WT policy, it is around
50% [77]. It should be noted that both power and area given
reviously are at cache subsystem level, thus using them directly
n the cost function would overestimate the cost in terms of
ower and area of cache redundancy (even if caches in most
ases consume a large fraction of the power of a processor [120]).
o estimate the actual relative increases at processor-level, we
odel the LE and HE in McPAT [121]. This modeling shows that
C and IC consume respectively 18.95% and 4.53% of the total
ower consumption for the LE-1 and 17.12% and 4.11% for the
E-1. In the case of LE-4 DCs consume 14.97% of the total power,
Cs 3.58% and L2C 18.95% for LE-4. The same fractions for the HE-4
re respectively 14.82%, 3.56% and 11.13%.
16
Regarding the changes in failure rate and unavailability, limit-
ing our analysis to triple and quadruple errors in the same word,
the probability of miscorrection for a SECDED is:

PSD,misc = (MBU(3)% × Pmisc,3 + MBU(4)% × Pmisc,4) (17)

herefore, the change in failure rate due to the ECC/ECC is:

λ̂w = −[nc NL1 (AVFDCWB +AVFIC ) +NL2C AVFL2C ](1−PSD,misc) (18)

here NL1 is the size of a single L1 cache and nc is the number of
ores. In the case of EDC/ECC the change in failure rate is instead:

∆λ̂w = −[nc NL1 (AVFDC,WT + AVFIC )(1 − MBU(even)%)]
− NL2C AVFL2C (1 − PSD,misc)

(19)

hen calculating the change in availability, estimating the
λ̂eh,DUE as −∆λ̂w is too optimistic, as once a certain location

s read, the error handling mechanism will act also on detected
rrors that would not reach the service interface. To eliminate
he fraction of masking due to the propagation from the cache to
he outputs of the processor, the Cache Vulnerability Factor (CVF),
efined in [122] as the probability of an error in the cache to
ropagate outside the cache (i.e. being read), can be used instead.
n [122] average CVF data for a similar cache configuration are
iven when running 11 benchmarks from SPEC2000. The CVFs
ound are 38.03% for L2CWB, 57.70% for DCWB, 16.47% DCWT, and
2.05% for IC. The increase in λeh,DUE for ECC/ECC can be then
stimated as:

λ̂eh,DUE = [ncNL1(CVFDCWB+CVFIC )+NL2CCVFL2C ](1−PSD,misc) (20)

n the case of EDC/ECC the change in λeh,DUE is:

∆λ̂eh,DUE = [nc NL1 (CVFDCWT + CVFIC ) MBU(odd)%]
+ NL2C CVFL2C (1 − PSD,misc)

(21)

In Table 6 we compare the cost of applying EDC, ECC and EDC
CI to single core versions and EDC/ECC, ECC/ECC and EDC
CI/ECC to quad-core versions in terms of area, power and

erformance. In Table 7 the change of reliability shows that while
DC + CI and EDC + CI/ECC have the highest reduction for
very technology, for technologies with low fraction of MBUs the
mprovement they can provide over ECC and ECC/ECC is negligi-
le. The unavailability of quad-core designs with AC technology
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able 6
elative change (%) in execution time, area and power for redundancy in caches and different designs. Data from [77,117] and modeling in CACTI and McPAT.
Redund. EDC ECC EDC+CI EDC/ECC ECC/ECC EDC+CI/ECC

Design LE-1 HE-1 LE-1 HE-1 LE-1 HE-1 LE-4 HE-4 LE-4 HE-4 LE-4 HE-4
∆Tex
Tex

12 12 2 2 12 12 12 12 2 2 12 12
∆A
A ∼0 ∼0 14 10 72 49 17 9 20 18 31 29

∆P
P 30 10 5 1 54 20 37 12 7 2 45 16
Table 7
Relative changes in λw and U (%), referred to the respective unprotected version with DCWB (according to Eqs. (18), (19), (20), and (21)). The SECDED for ECC is an
dd-Weight Column code. In bold the most effective redundancy for each design/technology combination.

Redund. Design ∆λw,LC
λw,LC

∆λw,AC
λw,AC

∆λw,HC
λw,HC

∆λw,SD
λw,SD

∆λw,MD
λw,MD

∆ULC
ULC

∆UAC
UAC

∆UHC
UHC

∆USD
USD

∆UMD
UMD

EDC LE-1 −92 −69 −53 −90 −54 −92 −59 −36 −91 −37
HE-1 −88 −64 −49 −84 −51 −86 −54 −33 −82 −35

ECC LE-1 −94 −91 −92 −92 −93 −87 −37 −84 −86 −85
HE-1 −90 −85 −85 −85 −89 −82 −34 −77 −78 −80

EDC+CI LE-1 −94 −93 −93 −93 −94 −95 −94 −94 −94 −95
HE-1 −90 −88 −86 −86 −90 −89 −87 −85 −85 −89

EDC/ECC LE-4 −95 −79 −70 −94 −71 −77 56 −47 −77 −47
HE-4 −92 −76 −66 −89 −68 −75 54 −50 −73 −46

ECC/ECC LE-4 −96 −93 −95 −95 −96 −75 66 −70 −74 −71
HE-4 −93 −90 −90 −90 −93 −73 64 −67 −71 −69

EDC+CI/ECC LE-4 −96 −95 −95 −95 −96 −79 38 −75 −78 −75
HE-4 −93 −91 −91 −90 −93 −76 37 −71 −74 −73
Table 8
Cost-effectiveness of several redundancies for caches for several technologies and weights. In bold the most cost-effective solutions for each combination of redundancy,
design and technology.
Redund. Design Cd,LC Cd,AC Cd,HC Cd,SD Cd,MD Cp,LC Cp,AC Cp,HC Cp,SD Cp,MD

EDC LE-1 −1.66 −1.09 −0.71 −1.63 −0.72 −0.42 −0.19 −0.04 −0.41 −0.05
HE-1 −1.66 −1.11 −0.74 −1.57 −0.78 −0.48 −0.26 −0.12 −0.45 −0.13

ECC LE-1 −1.66 −1.13 −1.61 −1.63 −1.64 −0.37 −0.12 −0.36 −0.36 −0.36
HE-1 −1.61 −1.09 −1.51 −1.52 −1.59 −0.38 −0.13 −0.34 −0.35 −0.37

EDC+CI LE-1 −1.23 −1.22 −1.20 −1.20 −1.23 0.04 0.04 0.05 0.05 0.04
HE-1 −1.42 −1.38 −1.33 −1.33 −1.42 −0.21 −0.19 −0.18 −0.17 −0.21

EDC/ECC LE-4 −1.42 0.06 −0.87 −1.40 −0.88 −0.23 0.47 −0.02 −0.23 −0.02
HE-4 −1.53 −0.09 −1.03 −1.48 −1.00 −0.38 0.30 −0.19 −0.36 −0.17

ECC/ECC LE-4 −1.52 −0.09 −1.46 −1.51 −1.48 −0.28 0.43 −0.25 −0.27 −0.26
HE-4 −1.51 −0.11 −1.42 −1.46 −1.46 −0.30 0.40 −0.26 −0.28 −0.27

EDC+CI/ECC LE-4 −1.34 −0.16 −1.29 −1.32 −1.30 −0.13 0.45 −0.11 −0.13 −0.12
HE-4 −1.44 −0.29 −1.37 −1.39 −1.41 −0.27 0.30 −0.24 −0.25 −0.25
increases compared to a version without redundancy because of
DUEs due to a large fraction of MBU(2). In Table 8 the total cost is
shown for each technology/design/redundancy combination. EDC
is the most cost-effective for both single-core designs and weight
factors for technologies with low fraction of MBUs (i.e. LC, SD).
When the fraction of MBUs becomes significant, its distribution
determines the most cost-effective redundancy. For instance, AC
requires EDC + CI and EDC + CI/EDC because most of its fraction
f MBUs causes more than two upsets, while ECC and ECC/ECC
s enough in most cases for HC as in this case the majority of
BUs causes only two upsets. It should also be noted that in the
ase of AC the cost of applying EDAC codes to quad-core designs
s always positive, implying that not applying EDAC codes would
e more cost-effective. However, EDAC codes are typically applied
nyway to achieve requirements in terms of MTTFw .

.2. Choosing the redundancy for the rest of the processor

The rest of the processor can be divided in residual (smaller
han caches) SRAM arrays (e.g. RFs) and mixed logic (i.e. com-
osed of FFs and combinational logic). Two main approaches
an be found in literature: protecting separately RFs and mixed
ogic [78] (Sections 4.2.1 and 4.2.2) or protecting them simulta-
eously [20] (Section 4.2.3).
17
4.2.1. Choosing the redundancy for the RFs
Similarly to caches, RFs are typically protected with infor-

mation redundancy. However, as they are smaller than caches,
replicating the RF may be a viable solution. For this reason, we
compare the effects in the case of SECDED (RF-ECC) and Triple
Modular Redundancy (TMR) of the RFs (RF-TMR). In [106] RF-
ECC is reported to increase the power of the RF by 100% and the
area of 4.9%. Table 9 reports how these estimations increase area
and power at processor level for the two designs and Table 10
which relative variations in terms of failure rate and unavailabil-
ity they produce. As shown in Table 9, RF-TMR is in general more
expensive in terms of area and power, although less expensive
in terms of performance. In [17], a Double Modular Redundancy
(DMR) with parity is proposed as a less expensive version of RF-
TMR, which is capable of achieving the same relative change in
failure rate and unavailability with lower overhead in terms of
area and power. Nevertheless, RF-TMR can be more cost-effective
than RF-ECC when the focus is on performance and for some
designs (e.g. HE-1), as shown in Table 11.

4.2.2. Choosing the redundancy for mixed logic
To protect the rest of the processor composed of mixed logic,

one of the most common approach is the one described in [78]
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elative increase (%) in execution time, area and power for redundancies protecting RFs, mixed logic and both simultaneously. Data from [78,106,123–126] and
odeling in McPAT.
Redund. RF-ECC RF-TMR FF-TMR FFD-TMR C-TMR C-DMR

Design LE-1 HE-1 LE-1 HE-1 LE-1 HE-1 LE-1 HE-1 LE-1 HE-1 LE-1 HE-1
∆Tex
Tex

4 4 1 1 8 8 45 45 0 0 0 0
∆A
A 0 1 8 26 9 32 15 53 65 107 28 51

∆P
P 5 9 9 17 66 65 71 71 60 61 43 44
Table 10
Relative changes (%) in wrong outputs and of unavailability for the LE-1 and HE-1 when adding redundancy to IRF and RFR. In bold the most effective solutions for
each combination of redundancy, design and technology.

Redund. Design ∆λw,LC
λw,LC

∆λw,AC
λw,AC

∆λw,HC
λw,HC

∆λw,SD
λw,SD

∆λw,MD
λw,MD

∆ULC
ULC

∆UAC
UAC

∆UHC
UHC

∆USD
USD

∆UMD
UMD

RF-ECC LE-1 −3.6 −3.5 −1.7 −3.5 −3.5 −1.2 −0.3 −1.2 −1.2 −1.2
HE-1 −2.9 −3.7 −4.6 −4.6 −2.9 −1.8 −1.9 −2.9 −2.9 −1.8

RF-TMR LE-1 −3.6 −3.5 −3.5 −3.5 −3.6 −1.4 −1.4 −1.3 −1.3 −1.4
HE-1 −2.9 −3.8 −4.7 −4.7 −2.9 −1.9 −2.5 −3.0 −3.0 −1.9
Table 11
Cost of redundancy in IRF and FRF in the case of SECDED (RF-ECC) and triplication of the RFs (RF-TMR). In bold the most cost-effective solutions for each combination
of redundancy, design and technology.
Redund. Design Cd,LC Cd,AC Cd,HC Cd,SD Cd,MD Cp,LC Cp,AC Cp,HC Cp,SD Cp,MD

RF-ECC LE-1 −0.01 0.00 0.01 −0.01 −0.01 0.05 0.05 0.05 0.05 0.07
HE-1 0.01 0.00 −0.02 −0.02 0.03 0.15 0.15 0.14 0.14 0.15

RF-TMR LE-1 0.04 0.04 0.04 0.04 0.04 0.08 0.08 0.08 0.08 0.08
HE-1 0.04 0.03 0.02 0.02 0.04 0.08 0.07 0.07 0.07 0.08
c

for the LEON2FT. This approach uses FFs with Triple Modular
Redundancy (FF-TMR), sampling and storing a bit on three dif-
ferent FFs and using a voter on the output to mask upsets and
provide the correct value without any CCs of latency. To avoid
common failures to the FFs in the TMR, each of the three FFs
can have separate clock-trees, so that a SET in one clock-tree can
be tolerated even if the data of a complete lane of thousands
of registers is corrupted [78]. FF-TMR is applied also in [127],
where it provides a 2.5x reduction in wrong commands/content
at the outputs (used in conjunction with safe FSMs). The authors
of [127] suggest that between 20% and 40% of the errors in the
baseline processor are the result of SETs. As a matter of fact, SETs
in the combinational logic can still be sampled by the majority of
the FFs of a FF-TMR.

However, triplicating both sequential elements and combina-
ional logic (to address also SETs) is reported to increase Tmin by
60% and area by 326% [128], which is a very high cost. To address
also SETs with less overhead, [124] proposes a FF-level TMR with
different delays for the three FFs (FFD-TMR) to avoid that a SET
is sampled in more than a FF. The area of a FF-TMR cell is [123]
is 3.47x larger than a regular FF and consumes 2.7x more power.
FFD-TMR cells are instead reported to be about 6x larger than a
FF in [124] and 5.2x in [125]. In [125] FFD-TMR cells consume
between 3 to 4x more compared to a regular FF, depending on
the switching activity. The minimum clock period in the FFD-TMR
version is 45% longer than the baseline, showing a substantially
larger penalty compared to FF-TMR without delays. As a matter
of fact, in [78] FF-TMR increases the minimum period for correct
execution of 8% on a 250 nm ASIC technology and the same value
is given from different authors in [126] for the same processor
using a 65 nm ASIC technology.

Furthermore, in order to minimize the penalty in frequency,
the triplicated FFs are typically placed close to each other. In this
way, MBUs can cause wrong data to become majority and to be
promoted to correct state, state causing data corruption [126].

As the cross section for a triplicated FF is between three to
one order of magnitude less compared to the cross section of an
unprotected FF in [129], for FF-TMR and FFD-TMR it is assumed
18
that 10% of the events will corrupt more than one of the FFs in
MD and HC, 1% of the events will corrupt more than one FF in AC
and 0.1% in LC and SD (see Table 12). Furthermore, FFD-TMR is
considered to mask all SETs, as [124] report immunity to spikes
up to 105 ps.

Despite the optimistic assumptions on the capability of FFD-
TMR to mask all the SETs, its cost is so high that FF-TMR is
preferable for all designs, technologies and weights considered
(the table for the cost-effectiveness is not reported for sake of
brevity). This is due to the large area overhead of FFD-TMR for
Cd and to the performance overhead of FFD-TMR for Cp. Even
considering the weights and type of technology for which FFD-
TMR is less expensive (Cd and SD) and reducing the overhead
ompared to FF-TMR by 50% (e.g. ∆Tex

Tex
= 0.27), FFD-TMR is still

less cost-effective than FF-TMR. However, the cost of both FF-
TMR and FFD-TMR is positive for any design/technology/weight
combinations, showing that they are both expensive types of
redundancy in general.

To reduce the cost of redundant sequential elements, different
designs of sequential elements have been proposed to replace
FFD-TMR and FF-TMR. For instance, a DICE-FF cell has a reduction
of 61.54% in terms of area, between 40.30% and 48.72% in terms
of power (depending on the switching activity) and 15.13% in
terms of delay compared to a sequential element of FF-TMR [125].
However, while FF-TMR uses three simple FFs and a voter (and
therefore in principle could be implemented in RTL) as a redun-
dant cell, FFD-TMR and other designs require technology-specific
adjustment at layout and electrical level within the sequential
element. For instance, the DICE-FF requires the design of a custom
cell not available in commercial technologies [125].

4.2.3. Protecting simultaneously small SRAM arrays and mixed logic
An alternative to the approach shown in Sections 4.2.1 and

4.2.2 is to replicate entirely the core, excluding large SRAM ar-
rays (i.e. caches) that can be protected efficiently by information
redundancy as shown in Section 4.2. In [20] the TCLS is described,
a core-level TMR implementation of the ARM Cortex R5. The three
cores share an IC and a DC. In [20], this approach is not found to
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able 12
elative changes (%) in λw and U for redundancies protecting mixed logic. In bold the most effective redundancy for each design/technology combination.

Redund. Design ∆λw,LC
λw,LC

∆λw,AC
λw,AC

∆λw,HC
λw,HC

∆λw,SD
λw,SD

∆λw,MD
λw,MD

∆ULC
ULC

∆UAC
UAC

∆UHC
UHC

∆USD
USD

∆UMD
UMD

FF-TMR LE-1 −2.2 −1.7 −0.9 −1.5 −1.3 −3.7 −3.0 −2.5 −2.5 −2.6
HE-1 −7.1 −6.7 −3.2 −5.1 −4.3 −8.9 −7.1 −3.5 −8.2 −6.1

FFD-TMR LE-1 −2.2 −3.0 −2.8 −3.8 −0.9 −3.7 −4.1 −3.2 −4.8 −1.5
HE-1 −7.1 −8.1 −8.1 −11.1 −2.8 −8.9 −9.8 −7.9 −11.7 −4.9
Table 13
Relative changes in λw and U (%) for redundancies protecting both small SRAM array and mixed logic for different technologies and designs. In bold the most effective
redundancy for each design/technology combination.

Redund. Design ∆λw,LC
λw,LC

∆λw,AC
λw,AC

∆λw,HC
λw,HC

∆λw,SD
λw,SD

∆λw,MD
λw,MD

∆ULC
ULC

∆UAC
UAC

∆UHC
UHC

∆USD
USD

∆UMD
UMD

C-TMR LE-1 −5.8 −6.6 −7.4 −7.4 −5.8 −5.1 −5.7 −6.3 −6.3 −5.1
HE-1 −10.0 −12.2 −14.4 −14.4 −10.0 −10.8 −12.7 −14.6 −15.2 −10.8

C-DMR LE-1 −5.8 −6.6 −7.4 −7.4 −5.8 4.5 4.6 4.8 4.8 4.5
HE-1 −10.0 −12.2 −14.4 −14.4 −10.0 5.8 3.7 2.6 6.9 5.2
Table 14
Comparison of cost-effectiveness of C-TMR, C-DMR and the most cost-effective solution from Table 11 and FF-TMR. In bold the most cost-effective redundancy for
each design/technology combination.
Redund. Design Cd,LC Cd,AC Cd,HC Cd,SD Cd,MD Cp,LC Cp,AC Cp,HC Cp,SD Cp,MD

C-TMR LE-1 0.52 0.50 0.49 0.49 0.52 0.59 0.58 0.57 0.57 0.59
HE-1 0.63 0.59 0.55 0.54 0.63 0.76 0.75 0.73 0.73 0.76

C-DMR LE-1 0.34 0.34 0.33 0.33 0.34 0.36 0.36 0.36 0.36 0.36
HE-1 0.43 0.39 0.36 0.40 0.43 0.48 0.46 0.45 0.47 0.48

Table 11 & FF-TMR LE-1 0.32 0.35 0.37 0.34 0.34 0.48 0.49 0.50 0.49 0.50
LE-1 0.36 0.37 0.42 0.36 0.44 0.58 0.59 0.61 0.58 0.60
m
a

e
e
b
t
z
b

cause frequency penalties. However, in a previous work [130] a
10% penalty is reported, which shows that, even if not critical as
in the case of FFD-TMR, the frequency can actually be penalized. A
drawback of this approach is that errors are not masked with zero
latency like in the case of FF-TMR and FFD-TMR, even if the Teh
an be kept low enough compared to a hard or soft reset. When a
iscrepancy in the outputs is found, the processor takes 923 CCs
o save and 909 CCs to restore the state (with caches enabled),
or a total of 1832 CCs. The time required to propagate the error
o the service interface does not influence the availability, as
orrect operation is ensured until the error is propagated to the
utputs. The propagation time has instead to be considered for
ccumulation, as it is possible that the data selected as ‘golden’
nd replicated into all the three cores have latent errors that will
anage to reach the outputs of the three processors completely
ndetected after the state is restored. However, even considering
he most vulnerable design/technology combination (HE-1 with-
ut caches for HC technologies and λev = 10−6 upsets/bit/day)
here we use as Tprop the worst-case propagation time [80] (1,204
Cs at 100 MHz, i.e. 12.04 µs), the probability of accumulation of

two errors is negligible (8 orders of magnitude less compared to
the failure rate due to the cacheless HE-1).

The situation in terms of unavailability is quite different with
Core-level Dual Modular Redundancy (C-DMR) (e.g. [3]), as it is
not possible to vote to chose a golden version when a mismatch
is found and a soft reset is required. Another possibility is to save
periodically the status of one of the core [79], but this generates
substantial penalties in terms of execution time (ranging from
+26% to 548%).

Table 13 and Table 14 show the comparison between C-TMR,
C-DMR, and the most cost-effective solution found combining
the results from Table 11 and FF-TMR. It shows that protecting
separately RFs and mixed logic and replicating the core have in
general similar cost-effectiveness, so they are both viable solu-
tions. As a trend, FF-TMR and RF-ECC are more cost-effective
for (older) technologies with relative low fraction of MBUs and

high masking of SETs (i.e. LC, AC) and when the focus is on

19
dependability. For (newer) technologies higher fraction of MBUs
and SETs sampled C-DMR is more cost-effective. In case the focus
is on performance (Cp), C-DMR is found as the most cost-effective
solution regardless of other parameters. C-TMR is generally the
least cost-effective solution because of a larger area and power
overhead. It becomes more cost-effective than C-DMR only in case
the weight of the availability is higher (ϵ = 5 instead of 1 for Cd).

5. Expected in-orbit behavior and validation

Fig. 11 (left) shows the absolute MTTFw of LE-4 and HE-4
before and after the most cost-effective solutions according to
Cd are employed. It is worth to note that, while from a quantity
perspective the vulnerability is roughly the same for all types of
technologies and quad-core designs (LE-4 and HE-4), the qual-
ity of the vulnerability is so different that applying redundancy
produces very different MTTFw (around one order of magni-
tude of difference). Fig. 5 shows that this is the case because
caches dominate the MTTFw and have small variations in terms of
vulnerability changing type of technology. Also, the comparison
between LE-4-FT/HE-4-FT and LE-1-FT/HE-1-FT in Fig. 12 shows
that going multicore has a large cost in terms of availability,
e.g. for λev = 10−7 upsets/bit/day LE-4-FT and HE-4-FT cannot
meet an availability target of 99.999%, while both LE-1-FT and
HE-1-FT can meet a 99.99999% target. This findings show that
techniques to reduce the vulnerability of L2Cs, e.g. employing a
L2CWT to lower the AVF of the [82] and to decrease the Teh,due,
ay be a cost-effective solution to increase the MTTFw and the
vailability of quad-core processors.
When the focus is on a target MTTFw instead of cost-

ffectiveness, a chart similar to Fig. 11 (right) can be employed to
valuate possible trade-offs. Once the MTTFw target is set, a com-
ination of microarchitecture and redundancy will be fit only if a
echnology (for the target environment) exists for which the hori-
ontal line corresponding to the microarchitecture/redundancy is
elow the oblique line representing the MTTFw target. Assuming a

target ofMTTFw = 10,000 hr (1.14 years), the combinations below

the respective line are:
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Fig. 11. On the left, MTTFw for LE-4 and HE-4 in different technologies. Solid lines indicate unprotected versions and dashed lines versions with the most cost-effective
redundancy found according to Cd . On the right, MTTFw in hours for different designs depending on λ̂ and λev . (FT indicates a ‘‘Fault-Tolerant’’ implementation,
.e. employing the most cost-effective redundancies found with Cd). Red lines indicate different classes of designs in terms of MTTFw . (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. On the left, availability of LE-4 and HE-4 (AC). On the right, decomposition in core (RFs + mixed logic) and caches. Solid lines indicate unprotected versions
and dashed lines versions with the most cost-effective redundancy found for each combination of design/technology. The unavailability has been estimated with
Eq. (8).
• HE-4-FT (HC) (C-DMR + EDC/ECC) on RH technology in LEO
(HC, λev ≤ 10−10 upsets/bit/day)

• HE-4-FT (LC) (FF-TMR + RF-ECC + ECC/ECC) on rad-hard
technology in LEO and GEO or rad-tol (radiation-tolerant) in
LEO (the latter only up to λev = 10−8 upsets/bit/day).

• HE-4-FT (HC) (C-TMR + ECC/ECC) on rad-hard technology
in LEO and GEO or rad-tol in LEO (the latter only up to
λev = 10−7 upsets/bit/day).

• LE-4-FT (LC) (FF-TMR + RF-ECC + ECC/ECC) for commer-
cial technologies in LEO, and both rad-hard and rad-tol
technologies both in GEO and LEO.

Interestingly, Fig. 11 (right) shows that processors without redun-
dancy achieve low MTTFw with commercial technology at ground
level. This is reflected by the trend of including redundancies
20
in processors for terrestrial applications, mainly in caches [113]
and sometimes also in RFs [112]. However, the figure also shows
that designs intended for space operate also at λev ≥ 10−10 up-
sets/bit/day and therefore they require more redundancy. Fig. 11
(right) also shows that having a limited range for λev implies that
it is not possible in general to make a certain design reliable
enough to achieve an arbitrary MTTFw target using a rad-hard
technology. Therefore, processors in Fig. 11 (right) can be binned
in three classes in terms of MTTFw using non-overlapping MTTFw
isolines (e.g. 107, 104 and 10 h, shown in red). For instance,
none of the design/redundancy combinations can meet a tar-
get MTTFw higher than 107 h and there is a higher level of
MTTFw for which quad-core processors are not fit for any de-
sign/redundancy combination and the designer must resort to
smaller implementations.
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able 15
ummary of the framework presented and adaptations required for use with different designs.
# - Step Ref. Possible adaptations/extensions

1 - Definition of fault and error models Section 2.1 Use of SFSET% , SFFF% , SBU% , MBU(n)% , and λev for specific technology and
frequency.

2 - Definition of failure models Section 2.3
Fig. 3

Use of QoS to distinguish between acceptable and unacceptable behavior.

3 - Estimation of Neq or SER Section 3.2
Eq. (4)

MCPath can be employed for closed source processors (only total area).

4 - Estimation of AVF Section 3.3.4 Extended microarchitectural simulators (e.g. [103]) or fault injection on FPGA
prototype.

5 - Estimation of λ̂ and Û Section 3.1
Eqs. (6)–(8)

Use of alternative derating factors and decompositions to convert SER to λ̂

(e.g Section 3.4.4).

7 - Application of redundancy Section 4
Eqs. (11)–(14)

Requires estimation of Pdet . If AVF ′ and ∆Neq/N are unknown, they can be
approximated respectively as AVF and 0.

8 - Analysis of cost-effectiveness Section 4
Eq. (10)

Sensitivity analysis on weights and technical parameters ( ∆Tex/Tex , ∆A/A,
∆P/P).

9 - Meet requirements Section 5
Figs. 11–12

Use of more complex optimization algorithms (e.g. [25]) to minimize cost of
achieving MTTF ≤ MTTFtarget and U ≤ Utarget .

10 - Validation Section 5.1 SEE radiation tests (protons, heavy ions) and IOD missions.
5.1. Validation

The most common method to validate a processor for usage
n space is radiation testing [78,131]. The main advantage of
adiation testing is that it can reproduce exactly the physical
echanisms that will be experienced by the device in space. For

his reason, radiation testing can be used both to validate the
esign and as a validation of the error models employed to select
he redundancy (e.g. fraction of MBUs and of SETs sampled).

Sometimes FI is proposed as a validation method. However, FI
s not capable of validating the fault models (e.g. percentage of
BUs) as the model of fault injected is arbitrary. On the other
and, radiation testing typically have difficult controllability and
bservability [3]. Therefore, it is hard to pinpoint where the
rror was generated. Furthermore, in order to achieve meaning-
ul statistics in a limited time, sometimes the flux of particles
mployed during radiation testing is several order of magnitude
igher than in space. This can produce artifacts, as, for instance,
he probability of accumulation of two errors in the scrubbing
eriod is much larger than in space. A field example is provided
n [132], where the beam flux had to be throttled down in order
o allow error handling in caches to complete successfully and to
llow the logging of errors.
Several works in literature (e.g. [9,132]) compare failure rates

rom FIs and simulations to failure rates during beam testing. The
ost severe underestimation found in literature is of a factor
0x [51] compared to data from radiation tests. However, this
alue has been found by simply multiplying the AVF by the
opulation of FFs, so this can be seen as an upper boundary of the
ossible underestimation. For instance, in [9] the underestimation
f the AVF compared to radiation tests is of 11x and the expected
ailure rate on the field lies in between these two values. This
uggests the adoption of a safety factor of at least 10 when setting
target in terms of MTTFw and to prefer radiation testing for
alidation, as it provides a worst case estimation. However, it is
hown in [132] a similar AVF for FI, protons tests and neutrons
ests (respectively 5.02%, 4.35%, 2.65%) when the flux is tuned
own enough.
Typically after radiation test the processor is validated in

pace with an In-Orbit Demonstration (IOD) mission. Data of the
ehavior of processors in space are not common in literature.
ata from [40] shows in-orbit statistics for six identical LEO
atellites. The average number of reset is 4.67 reboots per year
or each satellite, with an MTTF of 2.57 months. This reflects
DUE

21
roughly our models for a LE-1 (typically employed as OBC [7])
for technologies with λev ranging from 10-8 to 10-7 upsets/bit/day
(rad-tol technology in LEO).

5.2. Summary

A summary of the framework (containing the description of
each step, the references to sections, figures and equations in
the paper and possible adaptations or extensions) is reported in
Table 15.

6. Conclusion

This paper provides readers familiar with processors with a
framework to evaluate the fitness of a microarchitecture for the
space environment or any other environment where failure rates
are dominated by soft errors. This framework allows to include
considerations on soft errors when selecting and configuring an
open-source IP core like most of those based on the RISC-V ISA.

Models from literature were introduced and further devel-
oped to evaluate the vulnerability of different processor units
and evaluate the cost-effectiveness of redundancy in terms of
penalties in area, performance, power and availability for several
case studies. However, the framework can be easily adapted
to different designs and data for a specific technology can be
employed to model a specific implementation. Furthermore, the
reader is provided also with tools to find the microarchitec-
ture/redundancy/technology combinations which meet specific
MTTFw and availability requirements.

From the models developed, technology and microarchitecture
are the factors impacting the most on the dependability of a
processor. Furthermore, this work also highlights that estima-
tions of AVF are not the only concern when characterizing the
dependability of processors, as other parameters influence the
final dependability of the design (e.g. total area, the ratio between
sequential and combinational area, temporal masking, etc.) in a
comparable way. Caches are shown to be the most vulnerable
structures (especially in multi-core processors) and therefore in-
formation redundancy in caches is typically very cost-efficient.
However, it can be expensive in terms of availability for particular
distributions of MBUs for which the number of uncorrectable
errors is high. Furthermore, scrubbing has low efficacy in caches
(as opposed to when dealing with large external memories), as
accumulation in caches has negligible effects compared to MBUs.
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Work is still required to characterize the SER in space of
SIC technologies below 28 nm (for instance in terms of fraction
f MBUs for unprotected FFs and FF-TMR) and some specific
elationships between AVF and microarchitectural choices (for
nstance the effect of different microarchitectures on the AVF
f caches). Furthermore, at the moment of writing no validated
xtended microarchitectural simulators to estimate soft error
ulnerability supporting the RISC-V ISA are available to the public.
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