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Abstract—A phenomenological model is formulated to
model the early stages of tumor formation. The model is
based on a cell-based formalism, where each cell is repre-
sented as a circle or sphere in two-and three dimensional
simulations, respectively. The model takes into account
constituent cells, such as epithelial cells, tumor cells, and
T-cells that chase the tumor cells and engulf them. Funda-
mental biological processes such as random walk, haptotaxis/
chemotaxis, contact mechanics, cell proliferation and death,
as well as secretion of chemokines are taken into account.
The developed formalism is based on the representation of
partial differential equations in terms of fundamental solu-
tions, as well as on stochastic processes and stochastic
differential equations. We also take into account the likeli-
hood of seeding of tumors. The model shows the initiation of
tumors and allows to study a quantification of the impact of
various subprocesses and possibly even of various treat-
ments.

Keywords—Tumor initiation, Cell-based modeling, Immune

system response, Fundamentalsolutions, Cell proliferation,

Mutation, Cell migration.

INTRODUCTION

Cancer, manifested as a malignant tumor, is a fa-
mily of diseases that involve abnormally increased cell
growth and proliferation, where cells may also detach
and invade other of the body. In modern society more
than 10 million new cases of cancer occur on a yearly
basis, and these cancers, which vary in nature and in
appearance in the body, are a major cause of death of
humans. The most often occurring cancers are lung

cancer, breast cancer, prostate cancer to mention just a
few. In aging populations, mutations leading to cancer
are more likely to take place and therefore cancer
treatment, aiming at curing patients, as well as pro-
longing life expectancy or improvement of life quality,
will set a heavier (economic) burden on health care in
the future. To improve treatments and make them
more efficient, scientific research is necessary to char-
acterize disease etiology, expected behaviors, and their
causes.

Tumor initiation and growth can lead to loss of
normal organ function and at well-developed stages
often pose serious threats to life, its quality and ex-
pectancy. Although treatment of tumors exist, not all
treatments are successful in removing all threats, and
thereby they aim at prolonging and increasing the
quality of life. It is well-known that tumors involve ab-
normal cell division and proliferation often with the
added ability to invade and spread into other parts of the
body. The first tumor cells in a body typically result from
the mutation in the genetic material (DNA) of the cell
that may occur during division and/or growth. As part
of themutation, the progenitor cell and all daughter cells
become immortal. Those immortal cells exhibit a new
phenotype in terms of cell stiffness, proliferation rates,
and significant reduction in cell death. As mutations
accumulate, a tumor may remain dormant and initiate
and only grow at later stages. The process, time-evolu-
tion and location of cancer initiation, growth and
spreading is known to be influenced by age, gender,
patient weight and patient life-style.

In order to improve current treatment of cancer, it is
essential to understand the mechanisms of tumor ini-
tiation and growth. This understanding requires well-
conducted experiments, which can be understood by
linking them to hypotheses. This link between hy-
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potheses and experiments clearly needs a quantifica-
tion step, which is obtained through mathematical
modeling, and therefore mathematical modeling has
become an important step in the understanding of tu-
mor dynamics. Regarding mathematical models for
tumor growth, many different models exists. Most of
these models are based on solving partial differential
equations for densities of tumor cells, where large size
tumors can be dealt with, see among many others, for
instance studies by Refs. 1,2,13,18. Some of these
models are based on sudden localized changes of the
tumor cell density where in fact a moving boundary
problem is solved, often using a phase-field approach,
such as the Cahn–Hilliard equation, see Ref. 6. Next to
these large-scale and fully deterministic approaches,
there exists various small-scale (semi-)stochastic
methods such as cellular automata-like models, see
Refs. 9,12 or cell-based models.

The present paper is based on the use of a cell-based
approach, where individual cells are considered. This
formulation has similarities to the particle models that
are common in many physical sciences where for in-
stance flow problems are simulated by the treatment of
individual molecules or most recently by the usage of
super molecules, which take clusters of molecules into
account. Our approach was initiated by Refs.
4,10,14,20,21, and later adopted in a very interesting
papers by Refs. 3,17. The present model utilizes a
domain of computation which is initially filled with
epithelial cells, that may mutate during division into
tumor cells, resulting in the subsequent spread and
proliferation of tumor cells at the expense of the host
organ cells. We also take into account the immune
response mechanism by considering T-cells that
transmigrate through adjacent small blood vessels and
strive to kill the tumor cells. The paper deals with the
development of the model which, we believe, can be
used more generally to relate tumor initiation stages
and progression under drug treatment, or with patient
life-style and nature of the tumor cells.

The paper is organized as follows. First we present
the mathematical model which is based on analytic
solution types. Subsequently, we present the numerical
solution technique. Then, we consider some ex-
perimental outcomes and the experimental procedures
regarding tumor cells penetrating stiff tissues. Finally,
we present simulation outcomes where some of the
parameters are varied.

MATERIALS AND METHODS

In this section, we describe the mathematical model
and the numerical method.

The Mathematical Model

We describe the mathematical model in terms of the
various processes involved. The processes are basically
given by diffusion of cytokines, migration of cells
(random walk, chemotaxis, haptotaxis and passive
migration), proliferation and death of cells, immune
cell engulfment of tumor cells, mutation of epithelial
cells, and extravasation of T-cells out of small blood
vessels. The treatment of the processes is described in
separate sections.

Since we consider various cell types in the present
paper, we divide the set of all cells, being nc in number,
and given by VðtÞ ¼ f1; . . . ; ncg, note that as a result of
proliferation and death, the total number of cells
evolves in time, including the tumor cells, T-cells and
epithelial cells. This set is divided into the non-over-
lapping subsets WðtÞ, TðtÞ, which respectively denote
the set of T-cells (white blood cells) and tumor cells.
The remainder of the cells are the constituent cells
(epithelial cells) denoted by EðtÞ. Hence
VðtÞ ¼ EðtÞ [ TðtÞ [WðtÞ, and EðtÞ \ TðtÞ ¼ ;, etc.

Diffusion of Cytokines

The tumor cells secrete chemokines, cytokines that
induce chemotaxi, that are detected by the receptors on
the surface of the T-cells. To model attraction of im-
mune cells, the concentration gradient of the tumor-
cell released chemokines is needed at the position of
the T-cells. We assume that diffusion drives the
spreading of the chemokines and that the production is
active at the center of the tumor cell which is allowed
to migrate through the domain of computation. Let
xjðtÞ be the position of the jth cell, which is a tumor
cell, and let cjðtÞ be the amount of chemokine pro-
duced per unit of time in mol/mm3/h, then the con-
centration of chemokines in mol/mm3 satisfies

@c

@t
�DDc ¼ cjðtÞdðx� xjðtÞÞ; j 2 TðtÞ

cðt; xÞ ¼ 0:

ð1Þ

In the above equation, Dð:Þ ¼ r � rð:Þ represents the
Laplace operator. This above equation is based on
treating the release of chemokines by tumor cells as a
point source. This treatment allows to extend the cy-
tokine distribution to include multiple tumor cells. The
set of tumor cells is represented by TðtÞ. Then the
above equation upon taking into account the active
tumor cells is extended to

@c

@t
�DDc ¼

X

j2TðtÞ
cjðtÞdðx� xTj ðtÞÞ;

cðt; xÞ ¼ 0:

ð2Þ
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Equation (1) is solved formally by application of the
fundamental solution (Green’s Function) and the
Duhamel principle and the solution is represented by

cðt; xÞ ¼
Z t

0

cðsÞ
½4pDðt� sÞ�d=2

exp �
jjx� xTj ðsÞjj

2

4Dðt� sÞ

 !
ds;

ð3Þ

see Evans7 for more details. Here d represents the
dimensionality. Although this representation requires
the integration over an increasing time-interval, it is,
however, generic regarding dimensionality. In addi-
tion, it allows the evaluation of the concentration at
any point we want, whereas when the use of dis-
cretisation techniques such as the finite-element
method necessitates the computation of the concen-
tration over a mesh of points over the entire domain
of computation. A drawback is the fact that the
above solution holds over the entire space and that
the diffusion coefficient D has to be constant over
space. A time-varying diffusion coefficient can be
dealt with easily. Linearity of the diffusion equation
allows the application of the Superposition Principle
to extend solution Eq. (3) to multiple sources from
tumor cells

cðt; xÞ ¼
X

j2TðtÞ

Z t

0

cðsÞ
½4pDðt� sÞ�d=2

� exp � jjx� xjðsÞjj2

4Dðt� sÞ

 !
ds: ð4Þ

We evaluate the concentration gradient at the posi-
tions of the T-cells, which chase the tumor cells by
the mechanism of chemotaxis; this will be described in
a later section. The determination of the gradient of
the concentration is straightforward by differentiation
with respect to the spatial coordinates. There is the
following minor complication we still have to deal
with: Imagine that tumor cell k has died, but then the
chemokines released by it are still dispersed
throughout the tissue. Hence the contribution to the
total chemokine concentration field cannot be ig-
nored. For this reason we have to store each tumor
cell that ‘ever lived’ in the set of tumor cells that
release chemokines. This implies that Eq. (4) has to
be extended with the entries of tumor cells that lived
but died afterwards. For these tumor cells, the time-
interval during which they lived is recorded by ½sBk ; sDk �
where sBk and sDk , respectively, denote the time of
birth and death of tumor cell k. This set of dead
tumor cells is denoted by TDðtÞ, hence Eq. (4) is
adjusted to

cðt;xÞ ¼
X

j2TðtÞ

Z t

0

cðsÞ
½4pDðt� sÞ�d=2

exp � jjx� xjðsÞjj2

4Dðt� sÞ

 !
ds

þ
X

k2TDðtÞ

Z sD
k

sB
k

cðsÞ
½4pDðt� sÞ�d=2

exp � jjx� xkðsÞjj2

4Dðt� sÞ

 !
ds:

ð5Þ

We note that the concentration that has been deter-
mined using the Green’s Fundamental Solution rep-
resents a chemical signal where the T-cells will migrate
towards its positive gradient. Specifically, this migra-
tion can result from chemotaxis, haptotaxis, or their
combination, where, respectively cells move up the
gradient of chemical attractant existing in the sur-
rounding fluid, or up the gradient of the number of
adhesion sites in the extracellular matrix, see Ref. 11
for instance.

Migration of Cells

Several mechanisms induce the migration of cells:
chemotaxis, contact forces, haptotaxis and random
walk. The migration component induced by the cell-
cell and cell-wall contact forces is referred to as passive
migration in this paper. Another component could be
mechanical drag, which is neglected in the present
study. The haptotaxis kinetics are modeled using the
formalism outlined in Ref. 20. For completeness, we
repeat the most important steps. Consider a set of
generic cells with spatial positions xjðtÞ at a certain
time t. Then, it is hypothezied that the migration of the
cells is determined by the experienced gradient of the
strain energy density. To this extent, we simplify the
Green’s Functions by considering an exponential at-
tenuation of the strain energy density from the pulling
forces exerted by cell j with radius Rj on position xj:

MðxÞ ¼M0
j exp �kj

jjx� xjjj
Rj

� �
; ð6Þ

where the induced strain energy density M0
j is given by

M0
j ¼

F2
j

2p2EsR
4
j

: ð7Þ

Here Fj and Es, respectively, denote the force exerted
by cell j and the elastic modulus of the extracellular
matrix. This strain energy density is detected by the
other cells provided the value exceeds a certain
threshold. Since the scalar quantity energy is additive,
to get the total strain energy density as a result of all
the cells, say nc, that mechanically pull the extracellular
matrix, we get

Semi-stochastic Cell-Level Computational Modeling of Tumor Initiation



MðxÞ ¼
Xnc

j¼1
MjðxjðtÞÞ ¼

Xnc

j¼1
M0

j exp �kj
jjx� xjjj

Rj

� �
:

ð8Þ

The cells detect the above given strain energy density
function. A second important contribution to the
strain energy density is that induced by physical con-
tact between neighboring cells. We note that this ap-
proach necessitates the simplification that the effects of
residual stresses on the mechanical behavior of the
extracellular matrix are neglected.

Densely packed cells will induce a deformation in
the each cell’s morphology, in epithelial cells typically
resulting in polygonal shapes (see Fig. 1a), where tu-
mor cells with specific mutations may also lose that
shape. However, in a physiological environment cells
are observed to be rounded many times (Fig. 1b).

Hence, we assume that all cells to remain spherical or
to maintain a circular projection on a 2D substrate.

Let the characteristic penetration depth of cell i into
cell j be given by

h ¼ 1

2
maxð0;Ri þ Rj � jjxj � xijjÞ; ð9Þ

where Ri and Rj are the cell radii. Using Hertz’ model
for contact forces, see Refs. 8,20, and integration over
the strain to get the strain energy density, we obtain for
the contribution of cell i pushing on cell j:

Mij ¼

16

25

Ecffiffiffi
2
p

p

h

Ri

� �5=2

; in R2

2

5

Ecffiffiffi
2
p

p

h

Ri

� �5=2

; in R3

8
>>><

>>>:
ð10Þ

where Ec denotes the elastic modulus of the cells. The
above relation gives the intercellular-contact contri-
bution to the strain energy density that is responsible
for repelling cells from one-another if cells partly
overlap. Similar rules are used to model the cell-outer
boundary of the domain and for the contact forces
between the cell and the wall of a small blood vessel.
All the contact contributions will make the cell move
away from the body it is in contact with. The strain
energy that is experienced by the cells from other dis-
tant cells will make the cell move towards regions of
higher strain energy density. This is the reason why
contributions from long-distance haptotaxis will be
assigned the positive sign and all other contributions
from contact mechanics will be given a negative sign.

To this extent, migration of cell i is directed towards
increasing values of the strain energy density and its
magnitude is determined by the actual value of the
strain energy density that the cell experiences. The
magnitude is adjusted in order to only account for
those contributions that exceed a certain threshold that
was experimentally observed in Refs. 5,16. The
adjustment gives

MðxÞ ¼
Xnc

j¼1
MjðxjðtÞÞ

¼
Xnc

j¼1
M0

j exp �kj
jjx� xjjj

Rj

� �
1jjx�xjðtÞjj<LðxÞ;

ð11Þ

where 1 denotes the indicator function, which, here, is
defined by

1ðxÞ ¼
1; x 2;
0; x j2:

�
ð12Þ

The direction of the migration velocity direction is
given by

FIGURE 1. Cells that pack closely may affect morphology. a
Metastatic breast cancer cells (MDA-MB-468) on glass sub-
strate, dense packing results in polygonal shapes. b On a soft,
physiological, cross linked collagen substrate, metastatic
breast cancer cells (MDA-MB-231) remain rounded. Scale bar
is 10 lm.
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zi ¼
Xnc

j¼1j6¼i
MjðxiðtÞÞvijðtÞ; for all i 2 f1; . . . ; ng; ð13Þ

where the vij denotes the unit vectors that connect a
pair of cells, which are given by

vij ¼
xj � xi

jjxj � xijj
: ð14Þ

Finally, we normalize the migration vector by

ẑi ¼
zi

jjzijj
: ð15Þ

Since the displacement over a time frame is assumed to
be in the direction of zi where the magnitude of the
displacement is assumed to be proportional to the
strength of the mechanical signal, we have

xiðtþ DtÞ � xiðtÞ ¼ DtaiMðxiÞẑi;
for all i 2 f1; . . . ; ng; ð16Þ

where ai is a parameter with a dimension m2s
kg

h i
¼ m3

Ns

h i
,

in which the force is directed along , hence perpen-
dicular to the upward cell traction force F. This cell
substrate friction force directed along is denoted by f.
Since dead cells are not able to migrate actively ac-
cording to chemical or remote mechanical signals, the
physical condition of a cell, that is, its viability, is an
additional parameter that influences the ability of a cell
to migrate. The parameter ai should also contain the
cell viability since the cell mobility depends on the cell
viability. Therefore, we express ai by

ai ¼
Fi

F̂

� �2

bi

R3

f
: ð17Þ

Herewith, we write the deterministic mechanical part
(composed of haptotaxis and contact forces) by

dxiðtÞ ¼ aiMðxiðtÞÞẑidt; i 2 VðtÞ: ð18Þ

The above described considerations were originally
presented in Ref. 20. We remark that an alternative
formulation could be obtained by a direct evaluation
of the strain energy density where one could use the
direct (numerical) solution or its corresponding
Green’s Functions. Since the last-mentioned approach
induces slower calculations, we adopt the present for-
malism in this paper.

Next to mechanically driven cell migration, we
consider the contribution resulting from chemotaxis,
which is assumed to be significant for the T-cells that
chase the tumor cells. The concentration of tumor-se-
creted chemokines was computed in the previous
subsection and this concentration is subsequently
substituted into the equation of motion of the T-cells:

dxi ¼ aiMðxiðtÞÞẑidtþ lrcðt; xiÞdt; i 2WðtÞ;
ð19Þ

where l denotes the chemotactic sensitivity parameter.
Next to chemotaxis, and mechanotaxis, cells are
known for exhibiting random walk, this is incorpo-
rated by a vector-Wiener process, dWðtÞ, which is
distributed normally with zero mean and variance dt.
The formal definition can be found in, for instance.19

This gives the following stochastic differential equation
for cell migration

dxiðtÞ ¼

aiMðxiðtÞÞẑidtþ rdWðtÞ; for i 2 VðtÞ
nWðtÞ;

aiMðxiðtÞÞẑidtþ lrcðt; xðtÞÞ þ rdWðtÞ;
for i 2WðtÞ:

8
>>><

>>>:

ð20Þ

We note that10 adopt similar stochastic differential
equations for modeling cellular migration. The above
equation can be generalized easily to incorporate other
biological signals that influence themigration of cells.We
remark that thepresent paper aimsat an introductionof a
generic model incorporating biomechanical and bio-
chemical signals. From a qualitative point of view, the
introductionofadditional signals does not complicate the
problem from a mathematical point of view.

Proliferation, Death, Cell Cycle and Tumor Spreading

Proliferating cells are known to roughly go through
the following stages: G1. cell growth by increase of
cytoplasm, S. copying of DNA, G2. cellular growth
and M. cell division (mitosis). To this extent, we in-
corporate the increase of volume of the cell during the
proliferation process. We assume that the cells are
actively migrating in the G1, S and G2-phases. During
the final proliferative phase, that is the M-phase, we
assume that the cells do not migrate actively, they will
only migrate as a result of contact forces exerted by
neighboring cells. Let Rj denote the radius of cell j,
then we assume the following relation

dRj ¼ cjjdtþ rgdWðtÞ; ð21Þ

where j denotes a growth constant and rg takes into
account probabilistic variations due to uncertainties in
tissue composition, cell composition, access of neces-
sary chemicals, etc. Since the cell only grows actively in
the G1 and G2 phase, the c-parameter is determined by
the phase a cell is in:

cj ¼
1; if cell j is in the G1 or G2-phase;

0; else.

�

ð22Þ
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The growth parameter mimics the average growth be-
havior and since the expectance EðdWðtÞÞ ¼ 0, we use

j ¼ Rmax � R0

TG1 þ TG2
; ð23Þ

where R0 and Rmax, respectively, denote the initial
(minimal) and the average radius under mitosis. The
expected time-interval length during the S-phase is
denoted by EðTS

i Þ ¼ TS. Let us assume that the time-
step is constant and given by Dt, and let N be the
number of time-steps then the simulated time is given
by tN ¼ NDt. Let PS!G2ðDtÞ denote the probability
that a cell transforms from phase S into G2 over a
time-interval Dt. Then, the likelihood that cell i has a
residence time of tN in the S-phase is given through the
geometric distribution

PðTS
i ¼ NDtÞ ¼ ð1� PS!G2ðDtÞÞN�1PS!G2ðDtÞ: ð24Þ

The expectancy of the number of time-steps in the
S-phase is given by

EðNÞ ¼ 1

PS!G2ðDtÞ
: ð25Þ

It follows that the expected residence time of cell i in
the S-phase is given by

EðTS
i Þ ¼ lim

N!1

XN

n¼1
tnPðTS

i ¼ nDtÞ

¼ lim
N!1

XN

n¼1
nDtð1� PS!G2ðDtÞÞn�1PS!G2ðDtÞ

¼ DtEðNÞ ¼ Dt
PS!G2ðDtÞ

:

ð26Þ

Upon setting EðTS
i Þ ¼ TS, the above result is rewritten

as

PS!G2ðDtÞ ¼
Dt
TS
: ð27Þ

This is an important result since now we can relate the
probability of transition from the S-phase to the G2-
phase over a certain time-step Dt to the average re-
sidence time in the S-phase and the time-step used. We
assume that mitosis takes place immediately after the
G2-phase. The position of the daughter cell is deter-
mined as presented in Vermolen & Gefen with an ex-
tension to three spatial dimensions, where a random
orientation-direction between the mother-and daugh-
ter is selected. Mother-and daughter cell are subse-
quently displaced along this direction such that the
point of physical contact coincides with the center of
the mother cell.

Regarding cell death, similar probabilistic principles
are applied. We compute the likelihood that a cell dies
during a time-stepDt. Initially, we assume that the death
of the cell is not affected by its environment. On the
basis of the average time-interval of the cell cycle, with
length TC, we estimate the probability of death during
time-interval Dt. We relate this probability as well as
possible to possible experimental observations. In ex-
perimental colonies, one could follow the dynamics of
doubling of the population. Knowing the cell-cycle for
proliferation, we can relate the idealized cell prolif-
eration kinetics and the actual experimentally observed
population dynamics to the kinetics of cell death (or
apoptosis in some cases). Let PDðDtÞ denote the prob-
ability that a cell dies within the interval Dt, the prob-
ability that a cell dies within a time-interval tN ¼ NDt
should not depend on the magnitude of the time-step
employed. Hence we hypothesize that the probability of
survival of a cell over the time-interval ½0; tn� is given by
1� PDðnDtÞ ¼ ð1� PDðDtÞÞn. Imagine that the length
of this time-interval is given by the average time-span of
the cell cycle, given by TC, that is tn ¼ TC, then

1� PDðTCÞ ¼ ð1� PDðDtÞÞn ¼ ð1� PDðDtÞÞ
TC

Dt : ð28Þ

Let mðtÞ be the number of (experimentally) observed
cells in a colony at time t and let mð0Þ ¼ m0>0, then
the expectancy for the number of cells after a period
TC is given by

EðmðTCÞjmð0Þ ¼ m0Þ ¼ 2ð1� PDðTCÞÞm0: ð29Þ

Let T2 be the experimentally observed time at which
the colony has doubled, then

EðmðT2Þjmð0Þ ¼ m0Þ ¼ 2ð1� PDðTCÞÞ
� �T2

TCm0 ¼ 2m0:

ð30Þ

This implies that

1� PDðTCÞ ¼ 2
ð 1T2�

1

TC
ÞTC

; ð31Þ

which, combined with Eq. (28), finally yields the like-
lihood of cell death over a time-interval Dt

PDðDtÞ ¼ 1� 2
ð 1T2�

1

TC
ÞDt
: ð32Þ

This relation is used to estimate the probability of
death of a cell over a certain time-interval. This like-
lihood is related to experimental and biological pa-
rameters and the length of the time-interval we are
interested in. Until now, we did not yet deal with the
influence of the environment of the cell on the cell cycle
and death.

We postulate that the death and proliferation ki-
netics of a cell are influenced by the pressure a cell
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endures. This is in line with the observations that the
cells in the core of a tumor experience high pressure,
which is part of the reason for the typical necrotic core.
Let p denote the pressure due to contact forces that a
cell experiences, then we postulate that the probability
for a cell to change phase from S to G2 under pressure
p is adjusted by

PS!G2ðpÞ ¼
Dt
TS
� FðpÞ; where FðpÞ ¼ c1

1þ c2 expðc3pÞ
:

ð33Þ

We choose the constants c1; c2 and c3 such that the
‘average’ cell experiences some pressure and we assert
PS!G2 ¼ 1:1 Dt

TC if p ¼ 0. To this extent, we use c1 ¼ 11,
c2 ¼ 9 and c3 ¼ 1. Next to the cell cycle, the pressure
also influences the death rate of a cell by

PDðDtÞðpÞ ¼ 1� 2
ð 1T2�

1

TC
ÞDt�GðpÞ

;

where GðpÞ ¼ c4
1þ expð�c5pÞ

; ð34Þ

for similar consideration as regarding cell cycle, we
choose c4 ¼ 9 and c5 ¼ 10.

The tumor cells are modeled as having a higher
proliferation rate, that is a faster cell cycle than normal
cells, and it is assumed to rather be inclined to adjust
its environment than it actually adjusts to its envi-
ronment. In addition to migration, cell death and cell
proliferation, it is possible that tumor cells will also
penetrate into the small blood vessels. For simplicity, it
is assumed that the stiffness of the extracellular matrix
is homogeneous and isotropic. Durotaxis is hence ne-
glected in the present study although we realize that
this phenomenon could be of importance. In the
model, we assume that tumor cells penetrate into the
small blood vessel if the pressure that they apply onto
the vessel wall exceeds a certain threshold. We model
this in an energetic approach by considering the strain
energy density as we did in all the mechanical parts of
the model. To this extent, tumor cells penetrate into
the small blood vessel with radius Rb if

MðxiÞ>M�b; for i 2 TðtÞ: ð35Þ

If the above criterion is satisfied then the tumor cell is
transported though the blood stream and seeding/
spreading of the tumor can later ensue. For each tumor
cell that intravasates into the small blood vessel, we as-
sume that the probability of contributing to the spread
of the tumor in the body is denoted by PS. Having many
tumor cells ending up in the small blood vessel gives an
increased probability of seeding out of the tumor, yet the
efficiency of tumor spread in the body is very low.

Next to the processes of cell death and proliferation,
we take into account the T-cells that enter the domain

by transmigration through the small blood vessel walls.
The complicated cascade of biochemical cell signaling
reactions during this extravasation process is simplified
by assuming the probability of a T-cell entering the
domain to depend only on the concentration of tumor-
cell secreted chemokines. The probability that a T-cell
enters the domain is motivated using similar
probabilistic principles as earlier, and it is given by

PTðDtÞ ¼ 1� 1� Acðt; xbÞ2

Bþ cðt; xbÞ2

 !Dt

; ð36Þ

where xb denotes a position at a small blood vessel
within the domain. These positions have been ap-
proximated by a discrete set of points. Proliferation of
T-cells is not included and it is assumed that death of a
T-cell is described by a stochastic variable as described
earlier.

Since tumor cells generally result from mutations
due to errors that are made and accumulate during cell
division, we incorporate a probability of mutation of a
constituent (epithelial) cell describing mutation. This
probability per cell division is represented by PM.
Mutation is modeled at the very last stage of cell
proliferation: during the M-phase it is ‘decided’ whe-
ther a cell can become a tumor cell. From a biological
perspective, mutation occurs during copying DNA,
that is during the S-phase, we expect that this adap-
tation does not significantly contribute to the overall
kinetics. The probability of mutation could mimic the
lifestyle, gender, or age of the patient. Cell division
rate, including the rates characteristic for tumor cells,
could mimic the condition and age of the patient.

The Numerical Method and Parameter Values

In this subsection, we describe the numerical meth-
od and parameter values.

Time-Integration Method

For the solution of the stochastic differential equa-
tions that describe cell migration, we use the fourth
order Runge–Kutta method for the deterministic part.
For the stochastic part, a classical Maruyama method
is used. The time-step is limited such that a cell
maximally displaces over a quarter of its diameter.
This implies that the numerical time-step often fluc-
tuates over the simulation time. The cell growth during
the cell cycle is dealt with analogously. The concen-
tration of cytokines that is obtained through integra-
tion over time is determined using the Trapezoidal
Rule for numerical quadrature. Note that the history-
path of the tumor cell locations have to be stored
during the entire simulation. We also have to take into

Semi-stochastic Cell-Level Computational Modeling of Tumor Initiation



account the contributions from the tumor cells that
already died. Since it can be proved that these contri-
butions decrease monotonically over time down to
zero and that hence after a certain amount of time
these contributions become negligible, the terms are
disregarded if they get lower than a certain tolerance.
From our simulations, we saw that the effects from
already dead tumor cells become negligible as soon as
t� sD � ~t. This time ~t depends on the problem, pa-
rameter values etc. In our simulations, we use ~t ¼ 80
where contributions to the chemokines concentration
from already dead tumor cells became less than a tenth
of a percent, which is considered negligible. For even
more gaining of computational efficiency, we consider
the function CðsÞ for large times with various distances
between the position x and the location of a tumor cell
xk. For long times, the concentration of chemokines
released by tumor cell k can be approximated by in-
tegrating over

CðsÞ ¼ c
4pDðt� sÞ ; ð37Þ

which gives

Z t�t�

sB

CðsÞds ¼

c
4pD

log
t� sB
t�

� 	
; in R2;

c
2pD

1ffiffiffiffi
t�
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

t� sB
p

� �
; in R3:

8
>><

>>:

ð38Þ

Here we assumed for simplicity that c does not depend
on time. A temporal dependence could be dealt with
analogously in deriving just upper bounds. These
aforementioned rules are used to approximate the
concentrations at long times on the positions of the
points on the small blood vessel. To gain a further
reduction in integration time, we use time-steps in the
integration of the concentrations that are larger than
the time-steps in the migration, death, and prolif-
eration of cells. As the overall time-step decreases
down to zero, this time-step also decreases down to
zero. Note that these concentrations are only needed at
the positions of the T-cells and on the points on small
blood vessels where T-cells possibly originate from. At
no other points are these concentrations computed.
This is opposite to discretisation methods like the fi-
nite-element method where global concentration fields
have to be computed.

Parameter Values

To perform the simulations, we use the values that
are listed in Table 1. Most of the parameter values
were not known and since our paper only aims at the
formulation of a model, we have chosen the parameter

values such that they mimic reality as well as possible.
We note that for the radius of cells in the S-phase, we
used the arithmetic mean of the initial cell radius right
after cell division and the cell radius right before di-
vision. The average residence times of cell in the sub-
sequent phases are listed for epithelial cells and tumor
cells. On the basis of these times, the probability of cell
death is estimated using the principles from Section
2.3. We note that these times should be considered as
dimensionless and hence do not reflect quantitative
reality. They merely reflect the proportion of the cell
cycle times of the tumor cells in relation with the cell
cycle times of the epithelial cells. The times in Table 2
for the proliferation rates of the tumor cells have been
exaggerated so that a fast tumor development is pre-
dicted to illustrate the potential of the model.

RESULTS

We show how the model works in the two-and
three-dimensional case. We vary the parameter values
in a two-dimensional setting since the computations
need more time in the three-dimensional case.

TABLE 1. Default parameter values.

Parameter Value Unit

Es 5.0 kPa

Ec 0.5 kPa
~F 1 nN

M�b 0.1 kPa

R0 3 lm

Rmax 21=3R0 lm

RT�cell 4.5 lm

Rb 4 lm

L 30 lm

D 100 lm2s�1

c 2 nmol/(m3 s)

f 0.2 –

bi 10 s21

l 104ai –

PM 0.25 –

A 0.05 –

B 200 –

TABLE 2. Average residence times (s).

Parameter Epithelial cell Tumor cell

TG1 300 10

T S 400 0

TG2 300 10

TM 1 1

T C 1,001 21

T2 107 4,000
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Two-Dimensional Simulations

We start illustrating the method in two spatial di-
mensions. In Fig. 2 we show a snapshot of the con-
sidered tissue where we consider a domain with radius
of 40 micrometer that is initially filled with endothelial
cells. On four points of the domain, we assume that T-
cells can invade the region where they neutralize the
tumor cells. The epithelial cells are depicted as green
cicles, whereas the tumor cells and T-cells, respectively,
are represented by red and blue circles. We use the data
from Tables 1 and 2 as input data, and we adjust the
data for the immune system, where we increase the T-
cell mobility, and appearance rate on the small blood
vessels. To this extent, we model a ‘good’ immune
system response by taking A ¼ 0:5, B ¼ 100 and
l ¼ 5� 104ai. The results for the T-cell counts are gi-
ven in Fig. 3. It is clear that the T-cell counts are sig-
nificantly higher for the ‘good’ case. Further, it is also
clear to see that the number of tumor cells significantly
reduces with a ‘good’ immune system response as to be
expected. The ‘good’ immune system is able to battle
the tumor in its early stages and the tumor cells dis-
appear completely. It is further clear to see that the
number of epithelial cells stays more or less constant
with a ‘good’ immune system response, whereas if the
immune system is poor then the number of epithelial
cells decreases due to enhanced cell death as a result of
the pressure that is experienced by the epithelial cells.
To show the variation from the uncertainty in the
model, we show the tumor cell fraction for two runs
with identical parameters for the ‘bad’ immune system
response, and one run with a ‘good’ immune system in
Fig. 4. Although the variations between the two ‘bad’

immune system response are considerable, we see that
the fraction ranges up to about 30 percent in both runs.
Hence qualitatively the runs mimic similar behavior.
The results for the ‘good’ immune system mimic a
totally different behavior for the tumor cell fraction.

FIGURE 2. A snapshot of the cell composition and arrange-
ment of the cells in the tissue. The green cells denote the
epithelial cells, the red ones are the tumor cells and finally the
blue cells are the T-cells (not present here). Further, the large
white circles represent the small blood vessels or the points
at which T-cells possibly originate.

FIGURE 3. The number of T-cell counts (left), tumor cells
(middle) and epithelial cells (right) in the tissue vs. time for a
‘good’ and ‘bad’ (with adjusted immune system parameters).
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The fraction stays around zero at all times. From these
calculations, it is shown that a good immune system
response could prevent cancers to initiate.

Three-Dimensional Simulations

We consider a spherical domain with radius of 40
micrometer that is initially filled with endothelial cells.
The epithelial cells are allowed to migrate, proliferate
and allowed to die. Further, they may mutate to tumor
cells. At six points of the domain edge, we assume that

T-cells can invade the domain. The epithelial cells are
depicted as green spheres, the tumor cell are red and
finally the T-cells are blue spheres. Further, the small
blood vessel points where T-cells originate from are
depicted by large black dots. See Fig. 5 for the initial
state. At later stages, it can be seen that the T-cells
appear in the domain and start chasing the tumor cells.
To this extent, we plot four consecutive snapshots of
the front and rear view in Figs. 6 and 7. In Figs. 6 and
7, it can be seen that the tumor develops in a con-
tinuous way. Tumor cells are seen to be inside the cell
colony, where the T-cells invade the region from the
boundary. The T-cells have to make their way by
chemotaxis while enduring the contact forces that they
experience from the native epithelial cells. In Fig. 8, we
see the cell pattern at a late stage where the tumor cells
are dominant in the tissue. The number of red tumor-
cells has increased tremendously. This stage could ac-
count for a decrease of performance of the body under
consideration. One could insert a measure for dis-
function of an organ to quantify the damage that the
tumor is causing to the patient. Further, in Fig. 9, we
plot the number of T-cells, tumor cells and epithelial
cells vs. time, from which the proportion of the tumor
cells can be determined, see also in Fig. 9. It can be
seen that the calculation was stopped near the point
where the fraction of the tumor cells is equal to 0.5
(that is 50 %). The number of tumor-cells increases
almost exponentially and gradually take over the tissue
by making the epithelial cell counts decrease as a result
of the pressure that is exerted onto the latter. The

FIGURE 4. The number of tumor cells in the tissue vs. time
for a ‘good’ and ‘bad’ (with adjusted immune system pa-
rameters). For the ‘bad’ immune system case, we show two
different runs.

FIGURE 5. The stage just after the initial state for the simulation of tumor development. The green cells denote the epithelial cells,
the red ones are the tumor cells and finally the blue cells are the T-cells (not present here). Further, the large black dots represent
the points at which T-cells possibly originate. Left: front view, Right: rear view.
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number of T-cells does not increase sufficiently in this
run to fight the tumor cells. Next to plotting the
number of cell counts for the various phenotypes over
time, we present the cumulative number of tumor-cells
that transmigrate into the small blood vessel in Fig. 10.
It can be seen that this number increases exponentially.
This number of cells is related to the likelihood of
tumor expansion into other anatomic parts of the
body. The exponential nature of this quantity over
time illustrates the danger of tumor expansion, which

is partly kept in check by the immune system and
various obstacles that the cells encounter.

DISCUSSION

A mathematical model for the initiation of tumors
has been formulated in terms of hybrid modeling
where all cell types (epithelial cells, tumor-cells and
T-cells) have been treated individually, whereas the

FIGURE 6. Front view of tumor development at four consecutive times. The green cells denote the epithelial cells, the red ones
are the tumor cells and finally the blue cells are the T-cells (not present here). Further, the large black dots represent the points at
which T-cells possibly originate. Snapshots are at times 128,130,132 and 134 s.
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concentration of tumor-released chemokines through
the tissue matrix is modeled by solving the diffusion
equation on a continuum. The stiffness of the extra-
cellular matrix is taken into account in the traction
forces that the cells ‘colorred exert. We, however, as-
sume that the stiffness does not change in time, despite
the fact that cancer cells do change the stiffness of their
environment. This feature will be dealt with in future
studies. Cells are allowed to mutate, proliferate, die
and to migrate by chemotaxis, haptotaxis, and random

walk. The cell shape is spherical and circular in the
three-and two dimensional simulations, respectively.
The chemokines are monitored by the use of Green’s
Fundamental solutions, which allows the determina-
tion of the concentrations only at these points where
they are needed without the need of solving the entire
diffusion field using discretisation techniques like the
finite-element method. The method does, however,
need elaborate time-integration procedures for the
evaluation of the Green’s Functions and to make the

FIGURE 7. Rear view of tumor development at four consecutive times. The green cells denote the epithelial cells, the red ones are
the tumor cells and finally the blue cells are the T-cells (not present here). Further, the large black dots represent the points at
which T-cells possibly originate. Snapshots are at times 128,130,132 and 134 s.
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computations tractable we investigate the increase of
numerical efficiency under retaining reasonable
(qualitative) accuracy levels. The Fundamental solu-
tions are valid over an infinite domain, which simplifies
the approach. On the other hand, finite-sized domains
require the formulation of boundary conditions such
as periodic conditions or no-flow conditions where
these conditions are required to describe physical cas-
es. Since the possible diffusion field is much larger than
the physical domain in many cases, the mathematical
need for describing boundary conditions is therefore
not always desirable. We note that linear, isotropic

diffusion is a simplification since diffusivities often
depends on the composition of the extracellular ma-
trix. We also remark that diffusion in many tissues
could be non-isotropic. Non-isotropic diffusion would
need either a finite-element approach or could be
tackled with the use of diagonalization arguments
combined with the Fundamental solutions. The latter
approach could be an interesting topic of further re-
search. These simplifications enable the use of the
Green’s Fundamental solutions. Furthermore, as
mentioned earlier the changes that are inflicted on the
extracellular matrix by the tumor cells are disregarded

FIGURE 8. Front view of tumor development at four consecutive times at a later stage. The green cells denote the epithelial cells,
the red ones are the tumor cells and finally the blue cells are the T-cells (not present here). Further, the large black dots represent
the points at which T-cells possibly originate. Snapshots are at times 494, 496, 498 and 500 s.
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in the present study. We also realize that the me-
chanical issues in the model are simplified by the use of
a phenomenological relation for the displacements and
strain energy density. The present approach enables to
get rapid numerical results and a good qualitative re-
production of the mechanical signals and its conse-
quences. Boundary effects, as well as non-isotropic
effects need a different finite-element based approach,
which would pose a major revision of the mechanical
part of the model.

The number of cell-types including tumor cells is
limited to three phenotypes, which is a simplification of
reality. We also bear in mind that in this sense the
model exactly captures the most important features
like spread and proliferation of tumor-cells at the ex-
pense of the constituent epithelial cells, and thereby the
model performs very well. The mechanism of T-cells
transmigration through the small blood vessel walls, is
simplified in the current model. Although the entire
chain of bio-chemical reactions could be taken into
account, this model extension will not change the

FIGURE 9. Left: Plot of the number of cells vs. time in days.
Represented are the number of tumor-cells, epithelial cells,
and T-cells vs. time. Right: the fraction of tumor cells as a
function of time.

FIGURE 10. Plot of the accumulated number of tumor-cells
that transmigrate into a small blood vessel vs. time in days.
Transmigration takes place if the pressure of the tumor-cell
onto the vessel wall exceeds a certain threshold value.

FIGURE 11. Side view using confocal imaging of cells in-
teracting with a impenetrable, polyacrylamide gel substrate
with elastic modulus of 2300 Pa. The white are particles
marking the gel surface location, green is microtubules, and
blue is the cell nucleus. A A low metastatic potential breast
cancer cell (MDA-MB-468) applies pressure to the substrate
and indents it, likely in attempted penetration. B A benign
breast cell (MCF-10A) will adhere to the substrate, flatten out
slightly, but will not significantly deform the substrate. Scale
bar is 10 lm.
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nature of the modeling results and implications, but
would rather make the model less tractable in the sense
that the complexity increases, which faces us with the
need of more bio-physical parameters to determine
from possible experiments.

In this sense, having a minimalistic model that still
captures the most relevant aspects of the initiation of
tumors: through cell proliferation and migration and
even captures the most important qualitative aspects of
the performance of the immune system response to
tumor development, is a very valuable tool. The model,
although still in its developmental phase, can be used
to monitor the use of drugs and other treatments to
battle cancer development. Even life-style of a patient
could be varied in the simulations for the evaluation of
the likelihood of cancer development. One could think
of certain underlying diseases that could increase the
probability of mutations, as could prescription drugs
or environmental conditions. Extension to larger cell
numbers is mathematically straightforward, but re-
quires the use parallel algorithms, such as executed in a
Graphical Processing Unit (GPU) environment. This
will be done in future work and this will also be key to
real-world geometries and tissue applications.

In addition to tumor initiation, the model is capable
of monitoring the pressure applied by the tumor-cells
on the small blood vessel walls. If the pressure exceeds
a certain threshold value, then the cell is allowed to
penetrate into the vessel wall, which is assigned a
quantitative likelihood for the successful spreading of
an initiated tumor at other organs in the body. Figure
11 shows that while cancer cells will attempt to invade
a soft substrate, benign cells will simply attach to it.

Finally, we realize that the stochastic nature of the
model requires the execution of multiple simulations
for each parameter set. In future studies, these natural
model variations will be studied more extensively once
a solid parallel computational framework has been
accomplished.
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