FAÇADE FOR WIND AND STACK DRIVEN VENTILATION IN TROPICAL HIGH-RISE OFFICE
Content

Introduction
Climate of Singapore
Thermal Comfort
Natural ventilation
Concept design
Design collaboration
Final design
Discussion
Highrise
High-rise trend

Trendline

Tallest buildings in the world

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Name</th>
<th>City</th>
<th>Country</th>
<th>Height (m)</th>
<th>Floors</th>
<th>Built</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Burj Khalifa★</td>
<td>Dubai</td>
<td>UAE</td>
<td>828 m</td>
<td>163</td>
<td>2010</td>
</tr>
<tr>
<td>2</td>
<td>Shanghai Tower</td>
<td>Shanghai</td>
<td>China</td>
<td>632 m</td>
<td>128</td>
<td>2015</td>
</tr>
<tr>
<td>3</td>
<td>Abraj Al-Bait Clock Tower</td>
<td>Mecca</td>
<td>Saudi Arabia</td>
<td>601 m</td>
<td>120</td>
<td>2012</td>
</tr>
<tr>
<td>4</td>
<td>Ping An Finance Centre</td>
<td>Shenzhen</td>
<td>China</td>
<td>599 m</td>
<td>115</td>
<td>2016 [C]</td>
</tr>
<tr>
<td>5</td>
<td>Goldin Finance 117</td>
<td>Tianjin</td>
<td>China</td>
<td>597 m</td>
<td>117</td>
<td>2016 [C]</td>
</tr>
<tr>
<td>6</td>
<td>Lotte World Tower</td>
<td>Seoul</td>
<td>South Korea</td>
<td>555 m</td>
<td>123</td>
<td>2016 [C]</td>
</tr>
<tr>
<td>7</td>
<td>One World Trade Center</td>
<td>New York City</td>
<td>United States</td>
<td>541 m</td>
<td>104</td>
<td>2014</td>
</tr>
<tr>
<td>8</td>
<td>CTF Finance Centre</td>
<td>Guangzhou</td>
<td>China</td>
<td>530 m</td>
<td>111</td>
<td>2016 [C]</td>
</tr>
<tr>
<td>9</td>
<td>Taipei 101★</td>
<td>Taipei</td>
<td>Taiwan</td>
<td>509 m</td>
<td>101</td>
<td>2004</td>
</tr>
<tr>
<td>10</td>
<td>Shanghai World Financial Center</td>
<td>Shanghai</td>
<td>China</td>
<td>492 m</td>
<td>101</td>
<td>2008</td>
</tr>
</tbody>
</table>
Energy usage office buildings

Average office

- HVAC: 33%
- Lighting: 31%
- Fans, pumps & controls: 29%
- 1%

Office in Singapore

- HVAC + FAN: 164kWh/m²/year (58%)
- HVAC: 27%
- Lighting: 7%
- Fans, pumps & controls: 4%
- Water system energy: 11%
- Office equipment: 51%

HVAC + FAN: 117kWh/m²/year (39%)
Research question

“How can we design a BUILDING SKIN to maintain a THERMAL COMFORTABLE office with WIND and STACK VENTILATION in a TALL OFFICE BUILDING in a TROPICAL CLIMATE to REDUCE THE COOLING LOAD?”
How do we design a high-rise?
High-rise design strategies

Naturally ventilated (NV)
- Small & floorplates
- Occupant manual control
- Small windows, **no solar radiation**
- **External conditions**
- Low energy usage

Air conditioned (AC)
- Deep floorplan
- “ceiled glass-box”
- **Complex**, uniform thermal conditions
- **IAQ problems**

Mixed-Mode (MM)
- No more than **15m** deep
- **Operable windows**
- Automatic and occupant control
- Energy **Should be** less than AC
- **AC on background**
Test case Singapore
City-state Singapore

Office climate
• International business hub
• Office climate (22°C set point)
• 4.3 million inhabitants
• All urban area (6,929/km²) (NL 393/km²)

Climate characteristics
• High temperatures
• High humidity
• Prevailing wind direction
• Always cloudy
• Rain
Historical climate data Singapore

Radiation
- 150 – 480 kWh/m²

High temperatures
- Temperature range 24°C - 32°C

Prevailing wind
- Avg. 3.2m/s
Thermal comfort
Thermal comfort

Heat exchange

Comfort zone

Comfort zone (±2 – 3°C)
- of PPD10%
- Draught
- Humidity
Comfortable office

Temperature (10% dissatisfied)

Indoor conditions (10% dissatisfied)

temperature + humidity limit

Daily heat peak 11 – 16H

Extra cooling by airflow

Heat accumulation

Extra cooling by airflow

Outdoor = indoor

404

DAYS PER YEAR

COMFORTABLE OFFICE HOURS PER YEAR

INDOOR TEMPERATURE IN RELATION TO OUTDOOR TEMPERATURE

INTRODUCTION - CLIMATE OF SINGAPORE - THERMAL COMFORT - NATURAL VENTILATION - CONCEPT DESIGN - DESIGN COLLABORATION - FINAL DESIGN - DISCUSSION
Natural ventilation
Natural ventilation

Pressure difference

- Building form
- Façade design
- Radiation gradient
- Temperature difference

\[Q = C_d A_e \left(\frac{2\Delta P}{\rho} \right) \]

Effective surface area

- Windows are more important than wind direction
- Primary pressure losses by ducts
- Secondary pressure losses by obstructions
Design considerations

Local climate
- `urban canyons`
- Wind gradient
- Temperature gradient
- Solar radiance
- Street dimensions

Building form
- Solar shading
- Efficient form
- Air flow pattern
- Segmentation
- Materialisation

Occupancy
- Internal heat load
- Thermal mass
Concept design
Comfortable office with AC reducing façade

Design requirements
- Broad applicable
- Flexible for future changes
- Comfortable
- Cooling load reducing

Design approach
- Bioclimatic design approach
- Natural ventilation
- Cooling load reduction
- Cross ventilation
- Stack ventilation
- Mixed mode concurrent
- Solar shading
- Adaptive thermal comfort
Facade functions

Main function

- Separate and filter between nature and interior spaces

Primary Functions

- Allow reasonable building methods
- Provide a comfortable interior climate
- Responsible handling in terms of sustainability
- Support use of the building
- Spatial formation of facade

Secondary Functions

- Allow transport
- Create reasonable assembly methods
- Create a comfortable temperature
- Create a comfortable humidity level
- Keep climate within a given range
- Minimized energy consumption during use
- Generate energy
- Maintain comfortable climate
- Maintain facade/building value
- Enable faultless use of the building
- Enable architectural possibilities
- Respond to urban context
Concept

Concept steps

Step 1
Sun shading

Step 2
Cross ventilation

Step 3
Solar chimney
Design collaboration
Cooling load reduction

Cooling demand

Demand $Q = \frac{200 \text{W} \cdot (12 \text{ occupants})}{c_{\text{air}} \cdot (T_c - T_{\text{outdoor}})} = \text{m}^3/\text{s}$

T_{outdoor}

T_c

HVAC saving hours

<table>
<thead>
<tr>
<th>Categories</th>
<th>NV</th>
<th>NV + fan</th>
<th>NV + AC</th>
<th>AC</th>
<th>Hours without HVAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{4}$</td>
<td>0</td>
<td>3650 hrs. (100%)</td>
</tr>
<tr>
<td>Energy required</td>
<td>0</td>
<td>500W</td>
<td>750W</td>
<td>1000W</td>
<td></td>
</tr>
</tbody>
</table>
Combination

adaptable
Final design
Final design

Unitized curtain wall element

Facade elevation & section
Structural

Aluminium construction

2500 PG-Wall system
split mullion

Composition
Airflow control

Facade adaptations

Airflow control
Performance

10%-20%
Dilemma

We cannot solve our problems with the same thinking we used when we created them.

~ Albert Einstein

Comfort ↔ Energy reduction
Discussion

- This is not the solution for energy reduction. It is managing of the energy reduction.
- The innovative solution that has been found, lamella, chimney, windows are a part of the whole solution.
- Third way, it is not a compromise
- Both parties are included
 - High friction -> lower result
 - 10%PPD, 80%RH limit
Conclusion

- It is not possible to have an office without AC
- Urban canyon is hard to predict
- 16.2% HVAC saving hours is more than expected to be possible.
- Solar shading is effective
- Operable windows are a positive addition
- The addition of the chimney is doubtful according to extra costs, maintenance and structural necessities
- In an other climate or location NV improvements can be made if diurnal differences, higher radiation, lower temperatures, less humid
Recommendation

- Building integrated pv panels
- Daylight collector
- Cable floor air supply
- Windows are more important than wind direction!

<table>
<thead>
<tr>
<th>Opportunity</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible façade chimney ratio</td>
<td>With aluminum the details stay the same, easy adaptable.</td>
</tr>
<tr>
<td>Daylight savings</td>
<td>Integration of daylight collector in chimney</td>
</tr>
<tr>
<td>Energy productivity</td>
<td>Putting PV’s on the chimney</td>
</tr>
<tr>
<td>Private offices</td>
<td>Via the ceiling the system can still provide natural ventilation via the ceiling and or hollow walls</td>
</tr>
<tr>
<td>Displacement air strategy</td>
<td>If possible the supply of air via the floor to enhance personal controlled airflow, will increase comfort temperature</td>
</tr>
<tr>
<td>City canyon</td>
<td>The façade has potential to function in dense city as the driver is wind.</td>
</tr>
</tbody>
</table>
Further research

- Behavior of induced stack effect in combination with:
 - Friction: Primary pressure losses
 - Photovoltaics
- Behavior of wind in dense urban areas on high-rise facades.
- Influence of open windows on the pressure coefficient. If all the windows are open the effectiveness will reduce due to the lower pressure differences between leeward and windward side.
- Improvement of basic daylight collector with lenses.
- Improvement of local airflow.
- The temperature gradient: temperature at higher levels in dense urban areas in different climates, seasons, humidity levels and temperatures, diurnal differences.
- Resistance in the solar chimney and wind duct (fluid dynamics).
- Personalized air supply designed in furniture to enhance airflow close to the body.
- The integration of a dehumidifying system and the natural ventilation potential. Zoning of the offices. Can the chimneys of one office assist the other office.
FAÇADE FOR WIND AND STACK DRIVEN VENTILATION IN TROPICAL HIGH-RISE OFFICE