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Abstract
This report is written as part of the Bachelor Graduation Project in the third year of the Electrical Engi-
neering Bachelor programme at the Delft University of Technology. This report is made by a subgroup
that is part of a larger project dedicated to finding a solution to frequency feedback in electroacoustic
systems, also known as the Larsen effect.

This problem has a long history of literature and many solutions to this problem have been pre-
sented. For this project, the focus lies on the application of Adaptive Feedback Cancellation (AFC).
This technique uses estimations of the Room Impulse Response (RIR) to minimise the feedback com-
ponent. This report focuses on estimating such a RIR in the case of a PA system. Several methods
will be discussed and compared by implementing and testing them in a simulation environment built in
Matlab. The different methods are subjected to a set of performance measurements that provide the
necessary information to see for each method and situation if and how the results measure up against a
set of predetermined system requirements. From the researched algorithms, one is chosen as the one
to be implemented in the final design of the group. At last, some considerations and recommendations
are given for implementing one of the algorithms into software and hardware components.
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This thesis was made as part of a bachelor graduation project, which is the final course of the Bachelor
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1
Introduction

Acoustic systems are used on a large scale. Such systems make use of both recording devices and
playback devices. Systems like that can be found in different forms, from mobile phones to public
address (PA) systems used at festivals and concerts. These systems are of a different scale, but rep-
resent the same. That makes that they also have a problem in common, one that holds for any system
that uses interconnected microphones and loudspeakers. A problem called frequency feedback. This
problem describes the situation in which sound from the loudspeaker is fed back to the microphone
and played again. When certain components of the signal are amplified with a gain larger than unity,
a loud and irritating sound occurs, referred to as ’howling’ or ’ringing’. This effect is also known as the
Larsen effect, after Danish scientist Søren Absalon Larsen, who first discovered the idea behind the
problem of frequency feedback.

1.1. Frequency Feedback
Frequency feedback occurs when, in a system that contains at least one recording device and one
loudspeaker that are interconnected, create a closed loop, in which the sound from the loudspeaker is
fed back to the recording device. For example in a lecture room where the lecturer has a microphone
and the speakers reflect from the wall back to the lecturer. In this closed loop, several gains are
identified, which are the circuit gain and the free space gain. The circuit gain includes the frequency
characteristics of the microphone and the loudspeaker, as well as alterations made to the signal by
means of, for example, a mixing setup. The free space gain is also referred to as the room impulse
response, or RIR, and indicates howmuch the frequency components attenuate when fed back. In most
spaces, the room impulse response is commonly expected to consist of mostly indirect reflections from
walls, obstacles and people.

Figure 1.1: Examples of acoustic equipment. When interconnected, they all experience frequency feedback.
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1.2. State of the Art in Acoustic Frequency Feedback
The problem of frequency feedback is a longstanding problem, with publications dating back as far as
the 1960’s.

Frequency and Phase Shifting (FS and PS) [1] [2] were one of the first solutions to the acous-
tic feedback problem, with articles dating back to the 1960’s. This concept uses phase modulation
techniques that shifts the phase and/or frequency of the signal slightly, to shift the rise in amplitude
to another frequency, which prevents the components from building up. Doing so smooths the loop
gain and makes the maximum stable gain (MSG) depend on the average gain magnitude instead of
the peak gain magnitude [2]. An increase of the MSG margin of 14 dB was reported, but for audible
after-effects of the FS operation, this is limited to 6 dB [2]. Because FS shifts the frequency compo-
nents of signals, relative relations between frequency components can change, which is not desired in
the case of speech and music signals [2]. A second group of methods makes use of adaptive notch
filters [3], called notch-based howling suppression (NHS) [2]. The goal of these methods is to detect
howling and use adaptive filters to reduce the gain around the critical frequencies. These filters are by
nature reactive, but efforts have been made make proactive versions [4]. Another set of solutions is
grouped under the term of Adaptive Feedback Cancellation (AFC). These methods try to estimate the
feedback component and subtract it from the received signal. These are generally effective methods
and many algorithms exist using this principle [5]. The estimation, however, has a certain bias towards
the source signal, which is to be kept. Such a bias is counteracted by accompanying the adaptive filter
with a decorrelation block.

1.3. Synopsis
For this project, the AFC method was chosen for reasons that are explained in Ch. 2 , since it is said
that FS, PS and NHS do not have much space to work with in terms of increasing the maximum stable
gain (MSG), whereas AFC does [2]. There is a lot of freedom in how one can make such an adaptive
filter. That is why the group decided on AFC. For this project, the group was split into three subgroups,
each of them working on a different part of an AFC filter, which are the Adaptive Filtering, Decorrelation
[6] and Postfiltering [7].

Adaptive Filtering includes estimating the RIR and building a cancellation filter based on the RIR,
Decorrelation handles decorrelation of the signals coming from the loudspeaker with the signals re-
ceived by the microphone and Postfiltering is about smoothing of residual peaks that the adaptive filter
couldn’t fix.

This report will discuss, as mentioned before, the Adaptive Filtering part. In Ch. 2 of the report,
the problem at hand is explained in more detail, to give you a good sense of the situation. System
requirements that are aimed at to meet are listed in Ch. 3. In chapter 4 a state of the art of existing
methods and algorithms to estimate the room impulse response (RIR) will be provided, to analyse and
compare the methods proposes in literature. Promising methods will be researched and eventually
compared with each other to determine which method will be chosen to be implemented in accordance
to our specifications, which is done in. Underlying theory about the different methods will be given
to support the choices that are made. In Chapter 5 A simulation setup will be discussed and used
to analyse the performance of the methods in multiple scenarios, which will be further discussed in
chapter 6 the discussion. At last, a number of considerations and advice will be given on creating
implementations based on our work. The report is closed with a final conclusion in Ch. 8.



2
Problem Description

As said before, the acoustic feedback cancellation method can be divided into three parts: Adaptive
Filtering, Decorrelation and Post-filtering, with Adaptive Filtering being discussed in this thesis. First,
a single-channel system without any feedback cancellation is considered. This system consists of a
single microphone and loudspeaker. From the microphone to the loudspeaker is an interconnection,
possibly going through a mixer or a computer of sorts, of which the combined gain is given by 𝐺. Let
𝑥(𝑡) be the signal to be send by the loudspeaker. The signal is sent out and modulated through the
room impulse response (RIR) 𝐹 denoted by signal 𝑦(𝑡) combined with the sound signal, for example
of somebody speaking into the microphone, 𝑠(𝑡) back to the microphone creating a closed loop signal
𝑚(𝑡) due to feedback. A system without feedback would be considered to have open loop gain as the
output has no influence. A schematic of the closed loop system is given in Fig. 2.1. From this figure,
the closed loop gain without AFC can then be given as:

𝐻(𝑠) = 𝐺
1 − 𝐺𝐹 (2.1)

where 𝐻(𝑠) is the transfer from 𝑠(𝑡) to 𝑥(𝑡).

Figure 2.1: Schematic of frequency feedback in acoustic systems. is the circuit gain, is the RIR

The idea of adaptive filtering is to add an extra block between the microphone and loudspeaker,
as shown in Fig. 2.2 as �̂�. This block is added, together with blocks for decorrelation 𝐷 [6], which
decorrelates the feedback 𝑦(𝑡) and microphone signals 𝑠(𝑡) needed for a good estimation of 𝐹, and
postfiltering 𝑃 [7], to improve the sound quality after feedback reduction and stabilise the system when
howling still occurs. With these additions to the system the closed loop gain changes to

𝐻(𝑠) = 𝐷𝑃𝐺
1 − 𝐷𝑃𝐺(𝐹 − �̂�) (2.2)

3
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The goal now is to make an as accurate as possible estimation of 𝐹 and use it to cancel out its effects
by subtracting an expected feedback signal �̂�(𝑡) which is the convolution of 𝑥(𝑡) and �̂�. The expected
signal without feedback 𝑢(𝑡) is further used in the system and amplified. It is seen from equation Eq.
2.2 that when the estimation of 𝐹 becomes more accurate, the influence of the feedback becomes less,
eventually nullifying the effects of the closed loop and leaving only the circuit or open-loop gain in the
ideal case, which is when �̂� = 𝐹.

Figure 2.2: Schematic of frequency feedback in acoustic systems. is the circuit gain, the RIR, ̂ the frequency cancellation
filter, the decorrelation block and the postfiltering block.

2.1. Least Squares Estimate
One of the most basic estimations, which also forms a basis for nearly all linear adaptive filtering algo-
rithms, is the Least Squares (LS) estimation. For estimation of a filter f given as

f = [𝑓 𝑓 … 𝑓 ] (2.3)
the LS estimate of the filter is given by

F̂(𝑡) = (X X) X m (2.4)

where f̂ is the filter estimate, m is the output signal of the filter received by the microphone and X is
defined as

X = [x(𝑡) x(𝑡 − 1) … x(1)] (2.5)
with

x(𝑡) = [𝑥(𝑡) 𝑥(𝑡 − 1) … 𝑥(𝑡 − 𝑀)] (2.6)
for a discrete time range [1, 𝑡].

A problem often encountered with this method, is that due to poor excitation of the input signal 𝑥(𝑡),
the matrix X X can be ill-conditioned or even singular, also called ill-posed problems. [8]. This makes
it hard to do computations with its inverse, which is done in Eq. 2.4. Situations like this cause a large
variance in the estimation F̂ of the RIR [8].

2.1.1. Bias
What is important to consider is the fact that solutions based on the LS estimate introduce a bias into
the estimate, following from

𝐸 {F̂(𝑡)} = F(𝑡) + 𝐸 {(U U) U s}
where 𝐸{⋅} is the expectation operator. The rightmost term is said to be nonzero in the case of sys-

tems with feedback. This causes the source and loudspeaker signals to be correlated, thus introducing
the bias given as

bias {F̂(𝑡)} = 𝐸 {(U U) U s} ≠ 0
This bias needs to be reduced to estimate the RIR more accurately. This problem is expected to be

mainly solved by the Decorrelation subgroup of this project.
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2.2. Maximum stable gain
The howling effect occurs when the loop gain is too large, which can be traced back to the Nyquist
stability criterion [2] [9] for closed loops, where we include the effects of �̂� and exclude those of 𝐷 and
𝑃, which is given as

|𝐺(𝜔, 𝑡) [𝐹(𝜔, 𝑡) − �̂�(𝜔, 𝑡)]| ≥ 1 (2.7)
∠𝐺(𝜔, 𝑡) [𝐹(𝜔, 𝑡) − �̂�(𝜔, 𝑡)] = 𝑛2𝜋, 𝑛 ∈ ℤ (2.8)

The maximum stable gain (MSG) follows as

MSG(𝑡)[dB] = −20 log [max
∈𝒫 ̂
|𝐽(𝜔, 𝑡) [𝐹(𝜔, 𝑡) − �̂�(𝜔, 𝑡)]|] (2.9)

with
𝒫 ̂ = {𝜔|∠𝐺(𝜔, 𝑡) [𝐹(𝜔, 𝑡) − �̂�(𝜔, 𝑡)] = 𝑛2𝜋} (2.10)

and 𝐽(𝜔, 𝑡) relates to 𝐺 as

𝐺(𝜔, 𝑡) = 𝐾𝐽(𝜔, 𝑡) (2.11)

This shows that if 𝐹 = �̂�, the MSG should be infinite. For this project, it is assumed that the gain 𝐺
is the same for all frequencies, which means that 𝐽(𝜔, 𝑡) = 1.

2.3. Filter size
The size of the estimated filter depends the time required to properly catch the effect of the room impulse
response. A longer filter length is required when the main components of feedback have to travel long
distances. A filter time 𝑡 = 100 ms will be assumed to capture enough information about the RIR. A
sampling frequency 𝐹 = 40 kHz is needed to include the required frequency range. In literature, this is
often increased to 𝐹 = 44.1 kHz, which will be used in this project as well. Fact is that the same sample
frequency is used for CD’s. The needed filter size is then given by 𝑀 = 𝐹 ⋅ 𝑡 resulting in a filter order of
𝑀 = 4410 weights. Large filter orders do come with disadvantages of more computational complexity
and possible lower convergence speed.



3
System Requirements

The goal of the project is to create a software implementation of an acoustic feedback cancellation
method.

3.1. Group System Requirements
• The system should consist of a program that can be added into a sound system loop and should
operate independently of the type of hardware used.

• The system is meant for speech and audio, which means the operating frequency range should
be 20Hz - 20 kHz

• It should increase the Maximum Stable Gain (MSG) by at least 10 dB. The MSG is the maxi-
mum gain the circuit can deliver over the input signal before the system becomes unstable. The
increase of MSG (Δ𝑀𝑆𝐺) is the increase in gain due to the implemented improvements.

• It should operate automatically without human interaction, besides setting up and starting the
system.

• The system should be able to sustain the throughput of incoming and outgoing audio data, not
creating gaps between frames. With a frame delay within 50 ms to avoid noticeable or distracting
delays in the sound. [10]

• The sound after being altered by the system should still be intelligible.

• It should work with a single channel setup.

• It should work for both music and speech signals.

3.2. Adaptive Filter Estimation System Requirements
• The program should be quick enough in computation to not block other needed operations that
are in the loop and interfere with the delay requirement of the complete system

• The estimated filter should converge to stability.

• While converging the filter should not introduce noticeable signal changes due to it not being at
the right estimation, for example increasing the feedback temporarily.

• The estimated filter should, when stable, have a misalignment equal to or smaller than -5 dB

• The filter subsystem itself should give an increase of the maximum stable gain Δ𝑀𝑆𝐺 of at least
10 dB.

• The system should be stable with multiple speech and music samples for 30 seconds.

• With inputs 𝑥(𝑡) and 𝑚(𝑡) the program has to pass a signal 𝑢(𝑡) which is the microphone input
with the estimated feedback subtracted.

6



4
State of the Art

As mentioned before, the problem of estimating an unknown system is a longstanding problem. Over
time, different kinds of solutions have been presented, most of these also having different ways to
implement them. There are several groups of methods. The first group is based on minimising the
least squares error. The second group is based on minimising the gradient of the error. The third
group is the use of Cepstral analysis to estimate the filter, which has recently been proposed, but due
to it being very distinct from the other solutions and being rather complex with limited information, this
method will not be considered. This leaves a set of more similar algorithms, which are discussed below.

In the following algorithms 𝑚(𝑡) denotes the desired signal the filter output should converge to and
𝑥(𝑡) the input signal.

4.1. RLS and Fast RLS
To solve the so-called ill-posed problems, mentioned in section 2.1, in which singular matrices are
used, regularisation is applied. Regularisation techniques make ill-posed problems into more well-
posed ones. Most often seen is the method derived by Tikhonov et al. [11], which adds a scaled
identity matrix to the matrix X X. Using this method, an algorithm can be derived called the Recursive
Least Squares (RLS) algorithm [8]. Just as the normal LS algorithm, the RLS tries to estimate the
coefficients of the RIR f.

RLS is a high-performance algorithm, often at the cost of higher complexity. There exist, however,
fast versions of the algorithm. A benefit of RLS is being able to converge very fast [5].

In Horita et al. [12], a method is proposed that uses the normal RLS algorithm, but with the addition
of a so-called forgetting factor. This gives relatively more weight to more recent samples.

The RLS algorithm [5] is given by A.1, where R(𝑡) is the time-average correlation matrix of the input
signal, x(𝑡), f̂(𝑡) is a vector with the estimated filter weights, 𝑦(𝑡) is the desired output signal and c(𝑡)
is the Kalman gain vector. In an ideal, noise-free case, the RLS algorithm would converge exactly, but
since there is the initialisation of the matrix R(−1) = 𝛿I and the vector f̂(−1) = f̂ = 0 gives a certain
bias to the estimate [5]. The complexity of RLS algorithms is of order 𝑂(𝑀 ).

It is shown in literature, that the previously mentioned Kalman gain vector can be updated in so-
called ’fast’ schemes [13]. To do so, the FRLS algorithm uses amechanism using forward and backward
predictions. This gives the order of the complexity as 𝑂(7𝑀). This means that while having the same
properties of the RLS algorithms, its complexity is made comparable to that of the LMS algorithm, which
is discussed later.

A drawback of FRLS is the fact that it has poor error performance, caused by the innate instability
of the algorithm [13]. There has been quite some research into the instability of the algorithm and some
successful solutions have already been presented. These solutions use specific variables and try to
estimate these variables as part of a feedback system. These variables lead to another set of variables
that include parameters that are chosen through careful selection [13]. Another drawback is the fact
that there exists a constraint on the factor 𝜆, which negatively affects the convergence rate and tracking
ability of the algorithm [13].

7
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4.2. Stochastic gradient descent methods
A large portion of the available algorithms are based on the stochastic gradient descent method. Con-
vergence is dependent on a step size 𝜇 in the direction of the steepest descent of the mean squared
error. These methods commonly only use the current error and can categorised as posteriori error
algorithms.

The least mean squares (LMS) algorithm, given in A.2, uses a constant step size independent of the
signal power. The Normalised LMS (NLMS) algorithm, given in A.3, is a variant that solves the problem
of LMS for choosing a step size that is stable by normalising with the input to cancel the effects of signal
power deviation [14].

Block processing for adaptive filter design was studied by Clark et al. where the convergence was
found to be the same as for continuous LMS [15]. Further reductions in computational complexity
can be achieved by realising the LMS algorithm in the frequency-domain (FLMS) and were shown to
achieve the optimum filter weights[16]. The advantage of block implementations is that the new weights
are only calculated once per block thus reducing complexity.

There are many variants of the Frequency Domain Adaptive Filter (FDAFs). J.J.Shynk [17] gives
an overview of several FDAFs. FDAFs generally have lower computational complexity and a higher
convergence rate than the time domain alternatives. Circular convolution FDAF, given in A.4, was
found to be the most computationally efficient of the single window approaches. Dividing the frame in
frequency sub-bands can also improve decorrelation and computational complexity.

MDF (Multi Delay block FDAF), as given in A.6, reduces the size of the FFT blocks by buffering
multiple delayed frames. Using multiple smaller FFT blocks reduces the block delay and computational
complexity by calculating smaller FFT’s for a longer filter estimation order. The convergence speed is,
up to a certain extend, increased with the number of blocks. Its complexity is

𝑂((4𝐷 + 6)𝑙𝑜𝑔 (𝑁) + 8𝐷 − (4𝐵 + 6)𝑙𝑜𝑔 (𝐷)

where 𝐷 is the number of blocks and 𝑁 the frame length which is half the length of the FFT [18].

4.3. APA and Fast APA
A generalised form of NLMS and RLS exists, called the Affine Projection algorithm (APA). As mentioned
in [13], APA can be seen as an algorithm that estimates the filter by minimising the error norm

𝑐 (𝑛) = argmin ‖𝑐 − 𝑐 (𝑛 − 1)‖

with use of the constraint given as
𝑌 (𝑛) = 𝑋 , 𝑐

This algorithm was introduced in [19] as an improvement of NLMS. In there most common form, APA
has poor performance when there is noise present in the output signal or if the input signal is non-
stationary, as is for most cases of acoustic feedback cancellation. Countermeasures for this are reg-
ularisation and using the time-average correlation matrix of the input signal in the algorithm, which
makes the APA resemble the RLS algorithm [5].

Fast implementations of APA are of an order comparable to LMS and are not very sensitive to
computational noise due to the use of predictions [5].

Fast APA uses the shift-invariant property of the input signal vector and the error vector in com-
bination with derivations done for the Fast RLS algorithm in [13]. From the sliding-window Fast RLS
algorithm, back and forward prediction vectors can be computed and used to estimate the variable
vector. In Fast APA, this is the error with the unknown filter, rather than the estimated coefficients of
the filter [13]. A derivation of the Fast APA is found in [20].

4.4. Frequency-domain Kalman Filter
An adaptation to the Kalman filter for implementation in echo cancellation was successfully developed
in the frequency domain (FDKF) [21]. It is based on the use of a first-order Markov process that models
the behaviour of the acoustic path which is assumed to change slowly. Further research on the use,
performance and improvements for the Kalman filter in acoustic feedback cancellation are very recent
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but show promising results [22] [23] without increase of complexity due to the simplicity of the underlying
statistical model [21]. Obtaining said underlying models would require additional research that falls
outside of the scope of this thesis.

4.5. Comparison
RLS and APA have a much higher complexity than the other options if the filter order is increased and
are not viable as high filter orders are required. Most of the used methods are based on the LMS
algorithm which is well known and researched. Frequency domain analysis has advantages over time
domain due to the options it gives like sub-band analysis and partitioned blocks resulting in FDAF and
MDF with reduced complexity due to efficient use of the frequency domain. Cepstral Analysis and the
Frequency domain Kalman Filter approaches are not feasible due to their high complexity, asmentioned
before.

MDF complies with the specifications as it is efficient with memory, converges to stability, reaches a
good estimation and is not computationally complex with a low delay, which makes it the most promising
method to use. Tab. 4.1 summarises the options discussed.

Algorithm Complexity Stability Convergence speed
LS 𝑂(𝑀 ) Good Instant
LMS 𝑂(2𝑀) Poor slow
NLMS 𝑂(3𝑀) Good okay
RLS 𝑂(𝑀 ) Good quick
FRLS 𝑂(8𝑀) Poor quick
APA 𝑂(𝑀 ) Good quick

Fast APA 𝑂(2𝑀 + 21𝑃) Good quick
FLMS 𝑂(10𝑙𝑜𝑔 (𝑀) + 8) Good slow

Circular FDAF 𝑂(3𝑀𝑙𝑜𝑔 (𝑀) + 8𝑀) Good okay
MDF 𝑂((4𝐷 + 6)𝑙𝑜𝑔 (𝑀) + 8𝐵 − (4𝐷 + 6)𝑙𝑜𝑔 (𝐷) Good okay
FDKF Similar to MDF Good okay

Table 4.1: Algorithm characteristics summary. It holds that . and is the number of delay blocks used in the MDF
algorithm.



5
Testing & Results

To check the insights and knowledge gained from literature, all methods that are deemed feasible were
implemented. Methods that were considered feasible were LMS, NLMS, Circular FDAF and MDF. It
was decided not to implement the Fast APA, Fast RLS and Frequency-domain Kalman Filter methods,
because of the extent of the theory behind it. APA and RLS were considered unfeasible options, since
their high complexity wouldmake them very slow and not satisfy our requirements by blocking continues
audio throughput. It was decided that, to match the scope of this project, it would be better to implement
multiple smaller algorithms, giving this project a wider approach.

To test and simulate the different methods and algorithms, a simulation environment was built in
Matlab, for this subgroup in specific for the easier tracking and control of computations. For the project
group Simulink is used for the time based simulation approach.

In the following chapter, powers of 10 are denoted by E, i.e. 2𝐸 means 2 ⋅ 10 .

5.1. Test Setup
Two simulations are used to test potential algorithms and their performance. The first simulation is
an adaptive filter estimation without feedback, therefore creating a open loop system and is commonly
used as the setup used to evaluate adaptive filter designs. Themainly used setup for this is illustrated in
Fig. 5.1 where the filter is adapting to minimise the error between desired and input. Input is generated
by a convolution of a desired input signal (audio, speech or noise) with the filter 𝐹 that has to be
estimated. The simulation is setup in sample time steps of 𝑇 = 1/𝐹 . The estimations of the filter
are done in buffered frames to simulate the case when a digital audio processor is used that outputs
frames.

Figure 5.1: Schematic of test setup for general adaptive filter estimation

The second simulation is implemented with feedback to simulate the actual problem at hand and
creates a closed loop system. Fig. 2.2 shows the setup for this situation, although for the following

10
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tests, 𝐷 and 𝑃 are excluded. The adaptive filter estimation and output function is implemented with the
input signal 𝑥(𝑡) and the desired signal 𝑚(𝑡). The output is the estimated feedback from 𝑥(𝑡) in 𝑚(𝑡),
denoted by �̂�.

5.1.1. Assumptions
In the feedback simulation maximum signal strengths are implemented. Typical conversion rates for
microphones are used to create a base voltage reference. Using the specifications of a typical podium
microphone [24] with a sensitivity of 20 mV/Pa. Normal conversation voice sound level is 70 dB [25]
which is converted to 𝑠(𝑡) = ±1.25 mV, and maximum microphone range is set to 102 dB or ±50 mV
for 𝑚(𝑡) and �̂�(𝑡) and a maximum of 130 dB or ±1.25V which is the pain threshold for sound for the
loudspeaker signal x(t) is used as a maximum. The conversion from pascal to decibel is done by

𝑃 = 20 ⋅ 𝑙𝑜𝑔10(𝑃 /0.00002)

where 𝑃 is the sound pressure in decibel and 𝑃 the sound pressure in pascal. Then, the voltages
can be calculated as

𝑈 = 20 ⋅ 10 (𝑉)
It is expect that no unknown delay exist between 𝑢(𝑡) and 𝑥(𝑡), any delay that is added will be known.

From the decorrelation group a delay of 2000 samples at 𝐹 = 44.1 kHz has been implemented. A delay
is implemented between 𝑢(𝑡) and 𝑥(𝑡) to simulate the delay effect of the decorrelation sub-group.

The system is only aware of the inputs 𝑚(𝑡) and 𝑥(𝑡) and no other setting will be supplied to the
estimator.

5.1.2. Room impulse response
The room impulse response will be assumed to have typical RIR characteristics. The estimated room
impulse response will have a length of𝑀 = 4410. A measured RIR from the Aachen Impulse Response
Database [26] is used as a real example of an aula.

Figure 5.2: Room Impulse Response used in simulations of 4410 samples

5.1.3. Input Signals
One audio sample of 30 seconds will be used. The sound fragment is a cut from Take On Me from
A-ha [27] where the cut is made to have the singing start at 15 seconds from the beginning of the audio
sample.

5.1.4. Procedure
The selected algorithms will be tested first in the open loop simulation. Variations in step sizes will
be made by multiplying or dividing by 10. Misalignment, Maximum stable gain and estimation error
will be used as will be discussed in Sec. 5.2. The results are used to create a baseline of expected
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performance, viable parameters and exclude methods that under perform or of which the calculation
time will be to high.

The second simulation is used to test the performance in a feedback environment. Under performing
algorithms from the first test will be excluded. Gains of 1, 10, 25 and 100 will be used to analyse the
performance of the methods.

5.2. Analysis criteria
Three criteria will be considered to analyse the achieved performance of the algorithms in the suggested
simulation setups. These are the misalignment,maximum stable gain (MSG) and the estimation error.

5.2.1. Misalignment
The performance of the system is highly related to the estimation of the adaptive filter. Themisalignment
mis(𝑘) with 𝑘 the frame number is calculated as [28]

mis(𝑘) = ‖𝑓 − ̂𝑓‖
‖𝑓‖ (5.1)

5.2.2. Maximum stable gain
To get an indication of the MSG a different approach was used from Sec. 2.2 due to the lack of critical
frequencies the simulation setup. The simplified approach from B. Bispo [28] is used instead.

𝜀(𝜔, 𝑛) = |𝐹(𝜔, 𝑛) − �̂�(𝜔, 𝑛)|
𝜀(𝑛)[𝑑𝐵] = 20 log [max𝜀(𝜔, 𝑛)]
MSG(𝑛) = −20 log [max𝜀(𝜔, 𝑛)]

5.2.3. Estimation Error
A simple method that was implemented was taking the relative error between the feedback signal 𝑦(𝑡)
and the estimated feedback signal �̂�(𝑡) or the desired signal and estimated signal in the no feedback
simulation.

𝐸(𝑡) = 10 log (|𝑦(𝑡) − �̂�(𝑡)| − 10 log (|𝑦(𝑡)|) (5.2)

where 𝐸(𝑡) is the estimation error.
Local differences come up pretty fast with this method, which is why there was mostly looked at the

mean of this error. An average of the errors can be used to quantify the performance.

5.3. Test Results
In the following section, the results of the simulations done are presented in the form of tables, with the
methods, simulation parameters and results displayed. Essentially, the only parameter that is adjusted
is the step size. Step sizes larger or smaller than the listed values were found to be unstable, show no
improvements or even decreased the performance.

5.3.1. Computation time
The simulations are performed in Matlab on a personal computer. The computation times in Tab. 5.1
and 5.2 are factors relative to the lowest method computation time of 1.5ms to indicate the differences
in computational complexity. The actual computation time will dependant on the hardware.

5.3.2. Open Loop Simulations
Based on the simulation results shown in Tab. 5.1 it can be seen that a low misalignment of −7.04 dB
can be achieved by NLMS with a step size of 𝜇 = 1. This however does not reflect immediately in a
low estimation error or high MSG compared to lower step sizes. Fig. B.2 shows that for smaller step
sized the misalignment reduces slower but do result in a smaller estimation error whilst converging,
this is supported by the average error of 𝜇 = 0.1 which is higher. Although NLMS shows good results,
its computation time is certainly a factor that has to be taken into account.
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The lowest error and largest MSG are both achieved by LMS at a step size of 𝜇 = 1E . Notable is
that increasing the step size breaks the trend of increasing performance, resulting in a unstable system
of which the results are excluded from the table.

Circular FDAF shows a lower misalignment than MDF but has a higher average error. In Fig. B.3 it
can be seen that for longer simulation the algorithm does not seem to converge further and for higher
step size is unstable even. Circular FDAF will not be tested in a feedback loop due to the long compu-
tation time and does not meet the requirements.

MDF shows the best results in the case 𝐷 = 32, 𝜇 = 1E and continues improving in time as seen
in Fig. B.5, B.6 and B.4. As expected the performance improves for more delay blocks except for
𝐷 = 1. The computation time increases in the test setup for more delay blocks, this might be caused
by the program not having a noticeable difference for shorter FFT lenghts.

Without feedback LMS has the highest MSG, NLMS the lowest MIS and MDF the lowest computa-
tion time.

Method Step size 𝜇 Avg. MIS [dB] Avg. MSG [dB] Avg. error [dB] comp. time factor
LMS 0.001 -5.86 36.58 -13.77 100

1E -1.93 29.41 -6.93
NLMS 1 -7.04 34.15 -9.80 200

0.1 -4.91 34.81 -12.42
0.01 -1.39 28.47 -5.94
0.001 -0.33 26.68 -3.17

Circular FDAF 0.01 27.00 -44.92 27.48 666
0.001 -1.49 27.77 -1.50
1E -1.24 27.95 -1.19

MDF(𝐷 = 1) 1E -0.70 27.25 -4.46 1
1E -0.16 26.29 -2.10
1E -0.03 26.00 -0.39

MDF(𝐷 = 2) 1E -0.19 18.18 0.67 2
1E -0.25 26.52 -2.81
1E -0.05 26.00 -0.71

MDF(𝐷 = 4) 1E -0.39 26.23 -3.50 4
1E -0.08 25.87 -1.20

MDF(𝐷 = 8) 1E -0.60 26.00 -4.24 8
1E -0.14 25.48 -1.87

MDF(𝐷 = 16) 1E -0.93 26.60 -5.11 16
1E -0.22 25.55 -2.60

MDF(𝐷 = 32) 1E -1.44 27.66 -6.21 32
1E -0.34 25.69 -3.29

Table 5.1: Simulation results without feedback. With MDF, indicates the amount of delay blocks. The computation time is
given as a factor w.r.t. 0.0015s, which is the lowest achieved loop time.

5.3.3. Closed Loop Simulations
The results of the simulations with feedback are shown in Tab. 5.2. In the table, a row showing the
results of a simulation without any feedback cancellation is given, which is used as reference. The
highest achieved MSGs are reached by MDF for 𝐷 = 1, 2 and LMS for 𝜇 = 1E , both for a gain
of 𝐺 = 25. NLMS shows the best filter approximation in terms of the misalignment, with an average
misalignment of −7.04 dB, but despite that does not achieve the lowest estimation error or highest
MSG.
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Method Gain [dB] Step size 𝜇 Avg. Avg. Avg. Comp. time
MIS [dB] MSG [dB] error [dB] factor

Without 1 - 0 25.964 −7E -
Cancellation 10 - 0 25.964 0.1407

25 - 0 25.964 23.2629
LMS 1 0.1 0.4114 22.6667 2.0061 100

0.01 8.7244E 25.9587 -0.0163
0.001 −4.9626E 25.9635 -0.0097

10 0.1 0.1546 22.2881 2.4654
0.01 -0.0844 26.0673 0.0924
0.001 -0.0370 25.9769 -0.0097

25 0.1 NaN NaN 4.2604
0.01 -0.8585 28.9277 -1.2242
0.001 -0.3120 28.0037 -1.1332

NLMS 1 1 12.0867 -5.1927 17.7868 200
0.1 10.1755 -3.8759 17.0771

10 1 3.0644 13.8862 8.2300
0.1 1.2508 15.5903 7.3737

25 1 -0.6401 23.1410 3.7690
0.1 -1.7930 23.5735 3.3179

MDF(𝐷 = 1) 1 1E −7.1840E 25.9632 -0.0192 1
10 1E -0.0581 26.0081 -0.4413
25 1E -0.4108 28.1994 -1.3933

MDF(𝐷 = 2) 1 1E -8.9982E-4 25.9621 -0.0324 2
10 1E -0.0755 26.0480 -0.4361
25 1E -0.5088 28.4881 -1.4931

MDF(𝐷 = 4) 1 1E 5.1371E 25.7722 -0.0332 4
10 1E -0.0548 25.8576 -0.2134
25 1E Inf -121.8932 -0.77745

MDF(𝐷 = 8) 1 1E 0.0102 25.2998 0.0430 8
10 1E 0.0771 25.1445 0.2644
25 1E NaN NaN 2.0281

MDF(𝐷 = 16) 1 1E 0.0488 25.3009 0.37623 16
10 1E 0.3345 24.5383 0.97404
25 1E NaN NaN 1.7512

MDF(𝐷 = 32) 1 1E 0.1812 24.9124 1.1390 32
10 1E 0.5769 23.8896 1.7532
25 1E NaN NaN 1.9002

Table 5.2: Simulation results with feedback for a gain of and . For MDF, indicates the amount of delay blocks.
The computation time is given as a factor w.r.t. 0.0015 s
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Figure 5.3: Closed loop simulation misalignment results for gain

Figure 5.4: Closed loop simulation maximum stable gain results for gain
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Figure 5.5: Closed loop simulation estimation error results for gain , Estimation error is the average over 44100 samples



6
Discussion

In the following sections, the results of the simulations, both without and with feedback, are discussed.
The results will be mentioned again, which will be discussed in further detail, with as goal to find logical
explanations behind the achieved results.

6.1. Open Loop Simulations
A difference with the initial expectations is seen from the results, where it is shown the best filter esti-
mation does not result in the lowest estimation error and highest MSG, as is the case with NLMS.

In the case of the open loop estimation with no feedback, The lack of correlation of the misalignment
with the MSG with respect to the estimation error could be explained by stating that the misalignment
says more about the differences with the RIR in a global way and the estimation error more locally,
making the latter also more susceptible for local variations, making it possibly less consistent. In the
case of NLMS, bigger steps are taken due to it being normalised from a small signal input, which results
in a quick approximation with the addition of errors as a consequence. It could be seen that for MDF a
higher step size resulted in a higher MSG, but that after a certain threshold the estimation completely
derails. A bigger step size results more quickly in a better estimation of the RIR, and in literature it was
already shown that for a higher value of 𝐷, the error would decrease as well.

6.2. Closed Loop Simulations
In the simulations with feedback, the misalignment seems to be more in line with the estimation error
for all methods. It still holds that the best results in terms of average MSG come from LMS with a gain
of 𝐺 = 25 and MDF with 𝐷 = 1, 2. For all methods a higher gain, within the stable range, is beneficial for
the three specifications. For low gains and attenuation through the room the magnitude of the feedback
is relatively small compared to the voice signal. For LMS and MDF the error and MIS do not change
much from the initial state, due to the fixed step size and low signal strength, NLMS however shows
more variation. Higher gains see improvements to the estimation and compared to without cancellation
the system becomes stable for a gain of 𝐺 = 25.

In the test setup no decorrelation techniques or noise has been added. The length of the RIR used
for the simulation could be changed to simulate the effect on the estimation and error when using a
shorter filter estimation. Typical and atypical RIR’s could be used for the filter estimation testing, as
having multiple scenarios would benefit the research.

From the closed loop simulations it can be concluded that LMS or MDF is the most suitable solution,
MDF with 𝜇 = 1𝐸 and 𝐷 = 2 showed the lowest average error and MSG. The misalignment is lower
than for LMS 𝜇 = 0.01, however a lower error is a more direct link to the feedback cancellation and is
considered more valuable. While LMS shows the top results, MDF shows results of about the same
order, but more consistently for different values of the gain, while LMS is merely situationally effective.
Due to this, the most viable method to be implemented is MDF with 𝐷 = 2 delay blocks. This complies
with the comparison made in the Ch. 4.

The specifications set in the requirements 3 are not met by the proposed solution, in terms of the
amount of misalignment and increase in MSG. This could be because of several reasons. The first is
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that the requirements were unreasonable in the first place, due to misinterpretation of literature, from
where most of the expected performance is derived. Secondly, the fault could lie in the simulation
environment being imperfect in the sense that not the right parameters were used and conditions were
met to achieve the results derived from literature. However, when listening to the output compared to
when no feedback cancellation is present, howling was successfully removed by the solution and only
a small echo was still audible.



7
Implementation Advice & Considerations
Due to situational restrictions, no physical implementation of the system could be realised. However,
in the following sections, some advice and considerations are given for future reference.

One option is to implement the algorithm into software. Common languages that one can use are
Python, C and C++. It is even possible to implement the algorithm into Matlab and convert it into C.
In addition to this, one would also have to make a graphical interface of sorts, as well as provide the
program with the ability to adapt itself to the hardware used, letting the user of the program choose
how and where to use the program. Advantages of making a software implementation are that it saves
physical space, but the way the program is executed will be greatly dependent on the hardware used.
A program also requires a computer with operating system to run.

To implement the solution into real hardware two audio inputs, one audio output and a processor
with memory will be required. The audio input and outputs could either work on frame or sample base,
although sample base would be preferred to remove block delay from the MDF algorithm when the
estimated RIR is used on a single sample base. The delay would be lower if more delay blocks are
used resulting in smaller buffers. MDF with 𝐷 = 2 and 𝑀 = 4410 requires a FFT length of 2𝑁 = 4410
and buffer frame length of 𝑁 = 2205 which would result in a delay of 𝑇 = 𝑁/𝐹 = 50 ms which is
outside of the specifications, when combined with the decorrelation. Increasing the amount of delay
blocks would reduce the delay and the FFT size. In the algorithm, a total of 𝑀 + 3 FFT’s and 𝑀 + 2
IFFT’s are computed, all with the same previously mentioned FFT length. A latency time for calculating
the FFT’s is realistically between 4.9 and 57 ms for FFT and between 4.9 and 38.9 ms for IFFT as
tested on a FPGA for lengths of a 4096[29]. The computation time will be between 44 and 423 ms.
The selection of proper hardware that can compute the FFT’s within a frame of 50 ms is possible for
this solution. Performance can be increased by considering the availability of more efficient Digital
Signal Processors with dedicated FFT hardware which are more effective than FPGA’s and makes the
implementation of the algorithm easily possible within the frame.
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8
Conclusion

The goal of this thesis was to implement an adaptive filter design to remove acoustic feedback from
a closed loop system. The literature study showed many years of work on the subject in fields such
as hearing aids, noise cancelling and echo cancellation. The state of the art listed potential solutions,
of which MDF was deemed the most promising. A test setup and simulation were designed to test
a selection of the algorithms. Without the possibility to have a real system, research was done to
make a realistic simulation by implementing signal hysteresis and relate it to voltage levels. Although
it was concluded in the end that the MDF algorithms would be the best to implement of the selected
algorithms, the open loop and closed loop simulations showed unexpected results. The performances
were lower than expected from literature, which could be a result from the simulation setup, which might
not have been designed in a way that fully used the algorithms correctly, variations of systems and room
impulse responses, i.e. in length, amplitude, signal levels and parameter settings that have not been
fully explored. In the end, we could not meet the set requirements derived from the performance of
certain algorithms in literature, although there were clear improvements to the system signals with
respect to the case without any feedback cancellation and when listening the audible feedback was
clearly reduced.

Quite some research was done on the state of the art and trying to compare the algorithms by
literature alone. Since the initial thought was to compare the different algorithms based on literature and
past results alone, less time was spent preparing a simulation setup on our own. More time time could
have been better spent working on the Matlab implementations rather than theorising. In hindsight,
the goals of the project would be better reached if one algorithm from the state of the art was selected
based on literature, thoroughly understood and implemented with improvements to robustness and
performance. The initial results of the simulations showed a lot of instability for some of the algorithms,
against all expectations. This caused for more effort being put into making sure of the trustworthiness
of the results and the way the algorithms were implemented, rather than making real improvements to
the system with the chosen method.
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A
Algorithms

A.1. RLS
c(𝑡) = 𝜆 R (𝑡 − 1)x(𝑡)

𝛾 (𝑡) = 1 + c (𝑡)x(𝑡)
R (𝑡) = 𝜆 R (𝑡 − 1) − c(𝑡)𝛾(𝑡)c (𝑡)

𝜖(𝑡) = 𝑚(𝑡) − f̂ (𝑡 − 1)x(𝑡)
f̂(𝑡) = f̂(𝑡 − 1) + 𝜖(𝑡)𝛾(𝑡)c(𝑡)

with initialisation conditions

R(−1) = 𝛿I
𝛿 = 0.01𝜎

h(−1) = 0

A.2. LMS
The weight equation can be described as

̂𝑓 = ̂𝑓 − 𝜇Δ𝜀[𝑛]

With 𝜀 representing the mean squared error.
The algorithm

For 𝑛 = 0, 1, 2...
x(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1), ..., 𝑥(𝑛 − 𝑀 + 1)]
𝑒(𝑛) = 𝑚(𝑛) − ̂𝑓(𝑛)x(𝑛)

̂𝑓(𝑛 + 1) = ̂𝑓(𝑛) + 𝜇 𝑒∗x(𝑛)

with

̂𝑓(0) = 0

0 < 𝜇 < 2
𝜆

where 𝑀 is the filter order and 𝜇 is the so-called step size. With 𝜆 the auto-correlation matrix, its eigen
values which are non negative. With maximum convergence speed when

𝜇 = 2
𝜆 + 𝜆

21



A.3. NLMS 22

A.3. NLMS
For 𝑛 = 0, 1, 2...
x(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1), ..., 𝑥(𝑛 − 𝑀 + 1)]
𝑒(𝑛) = 𝑚(𝑛) − ̂𝑓(𝑛)x(𝑛)

̂𝑓(𝑛 + 1) = ̂𝑓(𝑛) + 𝜇𝑒∗x(𝑛)
x (𝑛)x(𝑛)

with
̂𝑓(0) = 0

When there is no interference (𝑣(𝑛) = 0) it holds that

𝜇 = 1

For the general case with interference, assuming 𝑠(𝑛) and 𝑥(𝑁) are uncorrelated and 𝑦(𝑛) and �̂�(𝑛)
are the outputs of the actual filter and the estimated filter resulting from 𝑥(𝑛), the optimal step size is
given as

𝜇 = Ε[|𝑦(𝑛) − �̂�(𝑛)| ]
Ε[|𝑒(𝑛)| ]

A.4. Circular FDAF
�F(0) = [0..0]
𝑃 (0) = 𝛿 , 𝑚 = 0, ..., 𝑁 − 1
𝑋(𝑘) = 𝑑𝑖𝑎𝑔FFT[𝑥(𝑘𝑁), ..., 𝑥(𝑘𝑁 + 𝑁 − 1)]
M(𝑘) = FFT𝑚(𝑘)
Y(𝑘) = 𝑋(𝑘)�̂�(𝑘)
E(𝑘) =M(𝑘) − Y(𝑘)
𝑃 (𝑘) = 𝜆𝑃 (𝑘 − 1) + 𝛼|𝑋 (𝑘)| , 𝑚 = 0, ..., 𝑁 − 1
𝜇(𝑘) = 𝜇(0)𝑑𝑖𝑎𝑔(𝑃 (𝑘), ..., 𝑃 (𝑘))

�̂�(𝑘 + 1) = �̂�(𝑘) + 2𝜇(𝑘)𝑋(𝑘)E(𝑘)

A.5. LMS derivation

𝑒(𝑛) = 𝑑(𝑛) − f̂ x(𝑛) (A.1)
𝐶(𝑛) = 𝐸 {|𝑒(𝑛)| } (A.2)

−∇f̂ 𝐶(𝑛) = ∇f̂ 𝐸 {|𝑒(𝑛)| } (A.3)
∇f̂ 𝐶(𝑛) = 2∇f̂ (𝑒(𝑛))𝑒(𝑛) (A.4)

∇f̂ (𝑒(𝑛)) = ∇f̂ (𝑑(𝑛) − f̂ x(𝑛)) = −x(𝑛) (A.5)
∇f̂ 𝐶(𝑛) = −2𝑒(𝑛)x(𝑛) (A.6)

f̂ (𝑛 + 1) = f̂ (𝑛) + 𝜇x(𝑛)𝑒(𝑛) (A.7)
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A.6. MDF

X(𝑚, 𝑗) = diag {FFT [𝑥 (𝑗 − 1), 𝑥 (𝑗 − 1), … , 𝑥 / (𝑗 − 1), 𝑥 (𝑗), 𝑥 (𝑗), … , 𝑥 / (𝑗)] } (A.8)

X(𝑚, 𝑗) = X(𝑚 − 1, 𝑗 + 1), 𝑚 = 1, 2, … ,𝑀 − 1 (A.9)

y(𝑗) = last 𝑁 /2 terms of {FFT [∑ X(𝑚, 𝑗)W(𝑚, 𝑗)]} (A.10)

E(𝑗) = FFT {0 × / , [d(𝑗) − y(𝑗)] } (A.11)

𝜙(𝑚, 𝑗) = first half of {FFT [X∗(𝑚, 𝑗)E(𝑗)]} (A.12)

Φ(𝑚, 𝑗) = FFT [𝜙(𝑚, 𝑗),0 × / ] (A.13)
W(𝑚, 𝑗 + 1) =W(𝑚, 𝑗) + 𝑀𝜇 Φ(𝑚, 𝑗) (A.14)



B
Figures

Figure B.1: No feedback simulation results of the LMS algorithm, Estimation error is the average over 100 samples

Figure B.2: No feedback simulation results of the NLMS algorithm, Estimation error is the average over 100 samples

24
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Figure B.3: No feedback simulation results of the Circular FDAF algorithm, Estimation error is the average over 100 samples

B.1. Test Results

Figure B.4: No feedback simulation estimation error results of the MDF algorithm, Estimation error is the average over 44100
samples

Figure B.5: No feedback simulation MSG results of the MDF algorithm
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Figure B.6: No feedback simulation MIS results of the MDF algorithm



C
Matlab Code

C.1. Matlab Simulation Environment Without Feedback
1 %{
2 Testing enviorment for adaptive filter estimation algorithms
3 Authors; Cees Kos, Mathijs Bekkering
4 %}
5 clear all
6 close all
7
8 M = 4410; %Estimated filter length
9 Nf = 4410; %Room Impulse Response (RIR) filter length used for filter

output
10
11 load RIR44100.mat %Load RIR
12 f = f(1:Nf); %Section to wanted length
13
14 %load test audio sample (input) and sampling frequency (Fs)
15 [input,Fs] = audioread(’a-ha - Take On Me.mp3’);
16
17 input = input(23*Fs:24*Fs,1); %Section 30 seconds
18 samples = length(input); %Samples in test signal
19
20 desired = conv(f,input); %Generate desired signal for testing with RIR
21 desired = desired(1:samples); %Resize
22
23 Methods = [”No” ”Perfect” ”LS” ”LMS” ”NLMS” ”FNLMS” ”APA” ”MDF” ”

CircularFDAF” ”Overlap_safe_FLMS” ”FNLMS” ”BLMS” ”BNLMS” ”RLS”];
24 selected = [”LMS”];
25 for method = selected
26 disp(method)
27 %Initialization of algorithm
28 %mu is the stepsize
29 switch method
30 case ”No”
31 w = zeros(M,1);
32 N = M; %Size of frame
33 case ”Perfect”
34 N = M;
35 w = f(1:M);
36 case ”LS”

27
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37 N = M;
38 w = zeros(M,1);
39 case ”LMS”
40 mu = 0.01;
41 N = M*2;
42 w = zeros(M,1);
43 case ”NLMS”
44 mu =1;
45 N = M*2;
46 w = zeros(M,1);
47 case ”APA”
48 N = M;
49 mu = 1;
50 w = zeros(M,1);
51 x_N_old = zeros(N,1);
52 case ”FNLMS”
53 N=M;
54 w = zeros(N,1);
55 W = fft(w);
56 mu = 0.0005;
57 P = zeros(M,1);
58 case ”Overlap_safe_FLMS”
59 W = zeros(2*M,1);
60 mu = 0.00001;
61 x_old = zeros(M,1);
62 P = zeros(2*M,1);
63 N=M;
64 case ”CircularFDAF”
65 N=M;
66 mu = 0.1;
67 W = zeros(M,1);
68 P = zeros(M,1);
69 w = zeros(M,1);
70 case ”BLMS”
71 N = 2*M;
72 mu = 1;
73 w_l = zeros(M,1);
74 w = w_l;
75 case ”BNLMS”
76 N = M;
77 mu = 3;
78 w_l = zeros(M,1);
79 w = w_l;
80 case ”RLS”
81 N = 2*M;
82 w_l = zeros(M,1);
83 w = w_l;
84 delta = 0.01*var(input);
85 Phi = delta*eye(M);
86 P = inv(Phi);
87 lambda = 0.999;
88 case ”MDF”
89 DelayBlocks = 32; %Amount of delay blocks
90 Np = 2*M/DelayBlocks; %Size of FFT
91 N = Np/2; %Size of frame
92 mu = 0.00001; %stepsize
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93 x_previous = zeros(Np/2,1);
94 W = zeros(Np,DelayBlocks);
95 X = zeros(Np,DelayBlocks);
96 w = zeros(M,1);
97 otherwise
98 disp(”NO case”)
99 end

100
101 %Reset simulation enviorment
102 xx = []; %Input
103 yy = []; %Output
104 dd = []; %Desired
105 ww = []; %Estimated Filter
106 buffer_fh = zeros(M,1); %M buffer length for estimated filter length
107 bufferx = zeros(N,1); %N buffer length for frames
108 bufferd = zeros(N,1);
109 buffery = zeros(N,1);
110
111 loopcountN = 0;
112 loopcountW = 0; %Loop count for storing estimated weights
113 simulation_time = tic;
114
115 for n = 1:samples
116 calculationstime = tic;
117 x = input(n);
118 d = desired(n);
119 [y,buffer_fh] = ContinuesFIR(w,x,M,buffer_fh); %Estimated filter

output
120
121 %Buffers for estimators
122 bufferx = circshift(bufferx,1);
123 bufferx(1) = x;
124
125 bufferd = circshift(bufferd,1);
126 bufferd(1) = d;
127
128 buffery = circshift(buffery,1);
129 buffery(1) = y;
130
131 if loopcountN == N %If buffer is full
132 method_time = tic; %Method time estimation
133 switch method
134 case ”No”
135 case ”Perfect”
136 case ”LS”
137 [w] = LS_Func(M,N,flip(bufferx),flip(bufferd));
138 case ”LMS”
139 [w,e] = LMS_Func(bufferd,bufferx,N,M,mu,w);
140 case ”NLMS”
141 [w,e] = NLMS_Func(bufferd,bufferx,N,M,mu,w);
142 case ”APA”
143 [e,w,x_N_old,X_LN] = AlgorithmAPAloop_rec(N,M,mu,w,x_N_old,

flip(bufferx),flip(bufferd));
144 case ”FNLMS”
145 [W,~,e] = FNLMS_Basic(flip(bufferx),flip(bufferd),W,mu,N,P)

;
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146 w = ifft(W);
147 case ”Overlap_safe_FLMS”
148 [x_old,W,e,~] = Overlap_Save_Func(N,x_old,x,W,mu,d,P);
149 w = ifft(W);
150 w = w(1:M);
151 case ”CircularFDAF”
152 [W,E,Y,P] = Circular_Conv_Func(flip(bufferx),W,mu,flip(

bufferd),P);
153 w = ifft(W);
154 case ”BLMS”
155 [w_l] = BLMS_Func((bufferd),flip(bufferx),M,N,mu,w_l,(

buffery));
156 w = flip(w_l);
157 case ”BNLMS”
158 [w_l] = BNLMS_Func(flip(bufferd),bufferx,N,M,mu,w_l,flip(

buffery));
159 w = flip(w_l);
160 case ”RLS”
161 [e,w] = AlgorithmRLSloop((bufferx),(bufferd),M,P,lambda,w);
162 case ”MDF”
163 [~,X,W,x_previous,PHI,phi,E] = MDF_1Func(Np,DelayBlocks,mu,

flip(bufferx),flip(bufferd),X,W,x_previous);
164 w = ifft(W);
165 w = (reshape(fliplr(w(1:Np/2,:)), [DelayBlocks*Np/2,1])); %

Reshape to single filter estimation
166 otherwise
167 end
168 loopcountN = 0;
169 method_time = toc(method_time);
170 end
171
172 loopcountN = loopcountN + 1;
173 loopcountW = loopcountW + 1;
174
175 if loopcountW > M %Store filter estimation
176 ww= [ww w];
177 loopcountW = 0;
178 end
179
180 %% save information
181 dd(n) =d;
182 xx(n) =x;
183 yy(n) =y;
184 end
185 end
186
187 %Calculate performance
188 for k = 1:size(ww,2)
189 mis = sqrt(sum((abs((f(1:M)-ww(1:M,k)).^2))/sum(f(1:M).^2)));
190 MIS(k) = mis; %Misalignment
191 msg = calcMSG(1,f,[ww(1:M,k); zeros(length(f)-M,1)]);
192 MSG(k) = msg.M; %Maximum Stable Gain
193
194 end
195
196 Estimation_error = movmean(10*log10(abs(dd-yy)),100)-movmean(10*log10(abs(
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dd)),100);
197
198 %Plots
199 timeaxis =(0:samples-1)/Fs;
200 frametimeaxis = linspace(0,(samples-1)/Fs,length(MIS));
201
202 figure;
203 subplot(3,1,1)
204 plot(frametimeaxis,10*log10(MIS));
205 title(’MIS’)
206
207 subplot(3,1,2)
208 plot(timeaxis,Estimation_error)
209 title(’estimationerror’)
210
211 subplot(3,1,3)
212 plot(frametimeaxis,MSG)
213 title(’MSG’)
214
215 sgtitle(strcat((method), ” M:”, num2str(M), ” Nf:”, num2str(Nf), ” u:”,

num2str(mu) ))

C.2. Matlab Simulation Environment With Feedback
1 %{
2 Testing enviorment for adaptive filter estimation algorithms
3 Authors; Cees Kos, Mathijs Bekkering
4 %}
5 clear all
6 close all
7
8 M = 4410; %Estimated filter length
9 Nf = 4410; %Room Impulse Response (RIR) filter length used for filter

output
10 G = 50; %Loop gain
11
12 load RIR44100.mat %Load RIR
13 f = f(1:Nf); %Section to wanted length
14
15 %load test audio sample (input) and sampling frequency (Fs)
16 [input,Fs] = audioread(’a-ha - Take On Me.mp3’);
17
18 input = input(23*Fs:24*Fs,1); %Section 30 seconds
19 samples = length(input); %Samples in test signal
20
21 buffermst =[];
22 bufferxst =[];
23
24 Methods = [”No” ”Perfect” ”LS” ”LMS” ”NLMS” ”FNLMS” ”APA” ”MDF” ”

CircularFDAF” ”Overlap_safe_FLMS” ”FNLMS” ”BLMS” ”BNLMS” ”RLS”];
25 selected = [”APA”];
26 for method = selected
27 disp(method)
28 %s is signal going into microphone from person or music
29 %y is feedback from speaker
30 %y_hat is estimated feedback
31 %x is signal going to speaker
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32 %u is signal after subtraction of extimation
33 %m is signal from microphone
34 %mu is the stepsize
35
36 %Initialization of algorithm
37 switch method
38 case ”Perfect”
39 w = f;
40 N = M; %N is frame size
41 case ”NO”
42 w = zeros(M,1);
43 N = M;
44 case ”LS”
45 M = N/2;
46 f_l = f(1:M);
47 w = f;
48 case ”LMS”
49 mu = 0.001;
50 N=M*2;
51 w = zeros(M,1);
52 case ”NLMS”
53 mu = 0.1;
54 N = M*2;
55 w = zeros(M,1);
56 case ”APA”
57 N = M;
58 mu = 1;
59 w = zeros(M,1);
60 x_N_old = zeros(N,1);
61 case ”FNLMS”
62 mu = 0.02;
63 w = zeros(M,1);
64 W = fft(w);
65 N=M;
66 case ”Overlap_safe_FLMS”
67 W = zeros(2*N,1);
68 mu = 0.00001;
69 x_old = zeros(N,1);
70 P = zeros(2*N,1);
71 M = N;
72 f_l = f(1:N);
73 case ”CircularFDAF”
74 N = M;
75 W = zeros(N,1);
76 mu = 0.001;
77 P = zeros(N,1);
78 w = zeros(N,1);
79 case ”BLMS”
80 M = N/2;
81 f_l = f(1:M);
82 mu = 50;
83 w_l = zeros(M,1);
84 case ”BNLMS”
85 M = N/2;
86 f_l = f(1:M);
87 mu = 30;



C.2. Matlab Simulation Environment With Feedback 33

88 w_l = zeros(M,1);
89 case ”RLS”
90 f_l = f(1:M);
91 M_RLS = length(f);
92 w_l = zeros(M_RLS,1);
93 w = zeros(M_RLS,1);
94 delta = 0.01*var(input);
95 Phi = delta*eye(M_RLS);
96 P = inv(Phi);
97 lambda = 0.999;
98 case ”MDF”
99 DelayBlocks = 1; %Amount of delay blocks

100 Np = 2*M/DelayBlocks;
101 N = Np/2;
102 mu = 0.0001; %stepsize
103 x_previous = zeros(Np/2,1);
104 W = zeros(Np,DelayBlocks);
105 X = zeros(Np,DelayBlocks);
106 w = zeros(M,1);
107 otherwise
108 disp(”NO case”)
109 end
110 %Reset simulation enviorment
111 xx = [];
112 yy = [];
113 uu = [];
114 mm = [];
115 yy_hat = [];
116 ww = [];
117 ss = [];
118 Delaybuffer = zeros(2000,1); %Delay in loop
119 buffer_f = zeros(Nf,1);
120 buffer_fh = zeros(M,1);
121 bufferx = zeros(N,1);
122 bufferm = zeros(N,1);
123 bufferu = zeros(N,1);
124 loopcountN = 0;
125 loopcountW = 0;
126
127 for n = 1:samples
128 % insert estimation function
129 s = input(n);
130
131 [y,buffer_f] = ContinuesFIR(f,x,Nf,buffer_f);
132 [y_hat,buffer_fh] = ContinuesFIR(w,x_est,M,buffer_fh);
133
134 m = s+y; %Feedback + Input signal
135
136 %Saturation of input signal
137 if m > 0.05
138 m = 0.05 ;
139 elseif m < -0.05
140 m = -0.05 ;
141 end
142
143 %Saturation of estimation signal
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144 if y_hat > 0.05
145 y_hat = 0.05 ;
146 elseif y_hat < -0.05
147 y_hat = -0.05 ;
148 end
149
150 u = m-y_hat; %Feedback cancellation
151
152 %buffers
153 bufferx = circshift(bufferx,1);
154 bufferx(1) = x;
155
156 bufferm = circshift(bufferm,1);
157 bufferm(1) = m;
158
159 bufferu = circshift(bufferu,1);
160 bufferu(1) = u;
161
162 if n > 2*N %Delay to fill buffers with usable data
163 if loopcountN > N %If buffer is full
164 method_time= tic; %Method time estimation
165 switch method
166 case ”Perfect”
167 case ”NO”
168 case ”LS”
169 [w] = LS_Func(M,N,estimation_bufferx,estimation_bufferm);
170 case ”LMS”
171 [w,e] = LMS_Func((estimation_bufferm),(estimation_bufferx),N,M

,mu,w);
172 case ”NLMS”
173 [w,e] = NLMS_Func(estimation_bufferm,estimation_bufferx,N,M,mu

,w);
174 case ”APA”
175 [e,w,x_N_old,X_LN] = AlgorithmAPAloop_rec(N,M,mu,w,x_N_old,

flip(estimation_bufferx),flip(estimation_bufferm));
176 case ”FNLMS”
177 [W,~,e] = FNLMS_Basic(estimation_bufferx,estimation_bufferm,W,

mu,N);
178 w = ifft(W);
179 case ”Overlap_safe_FLMS”
180 [x_old,W,e,~] = Overlap_Save_Func(N,x_old,x,W,mu,m,P);
181 w = ifft(W);
182 w = w(1:N);
183 case ”CircularFDAF”
184 [W,E,Y,P] = Circular_Conv_Func(flip(estimation_bufferx),W,mu,

flip(estimation_bufferm),P);
185 w = ifft(W);
186 case ”BLMS”
187 [~,w,e] = BNLMS_Func(m,x,N,M,mu,w);
188 case ”BNLMS”
189 [~,w,e] = BNLMS_Func(m,x,N,M,mu,w);
190 case ”RLS”
191 [e,w_l] = AlgorithmRLSloop(x,m,M_RLS,P,lambda,w_l);
192 w = flip(w_l);
193 case ”MDF”
194 [~,X,W,x_previous,PHI,phi,E] = MDF_1Func(Np,DelayBlocks,mu,
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flip(estimation_bufferx),flip(estimation_bufferm),X,W,
x_previous);

195 w = ifft(W);
196 w = (reshape(fliplr(w(1:Np/2,:)), [DelayBlocks*Np/2,1]));
197 otherwise
198 disp(”NO case”)
199 end
200 method_time = toc(method_time);
201 loopcountN = 0;
202 end
203 end
204 loopcountN = loopcountN + 1;
205
206 x = Delaybuffer(end)*G; %Delay buffer and loop gain G
207 Delaybuffer = circshift(Delaybuffer,1);
208 Delaybuffer(1) = u;
209
210 %Loudspeaker saturation
211 if x > 1.25
212 x = 1.25;
213 elseif x < -1.25
214 x = -1.25;
215 end
216
217 %% save information
218 ss(n) = s;
219 xx(n) = x;
220 yy(n) = y;
221 uu(n) = u;
222 mm(n) = m;
223 yy_hat(n) = y_hat;
224 xx_est(n) = x_est
225
226 loopcountW = loopcountW + 1;
227 if loopcountW > M
228 ww= [ww w];
229 loopcountW = 0;
230 end
231 end
232 end
233
234 %Calculate performance
235 for k = 1:size(ww,2)
236 mis = sqrt(sum((abs((f(1:M)-ww(1:M,k)).^2))/sum(f(1:M).^2)));
237 MIS(k) = mis; %Misalignment
238 msg = calcMSG(1,f,[ww(1:M,k); zeros(length(f)-M,1)]);
239 MSG(k) = msg.M; %Maximum Stable Gain
240 end
241
242 Estimation_error = movmean(10*log10(abs(yy-yy_hat)),100)-movmean(10*log10(

abs(yy)),100);
243 Signal_error = movmean(10*log10(abs(ss-uu)),100)-movmean(10*log10(abs(ss))

,100);
244
245 timeaxis =(0:length(yy)-1)/Fs;
246 frameaxis = linspace(0,(length(yy)-1)/Fs,length(MIS));
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247
248 %% Plot
249 figure()
250 subplot(241)
251 plot(timeaxis,yy);
252 title(’yy’);
253 subplot(243)
254 plot(timeaxis,ss);
255 title(’ss’);
256 subplot(242)
257 plot(timeaxis,yy_hat);
258 title(’yy_hat’);
259 subplot(244)
260 plot(timeaxis,uu);
261 title(’uu’);
262
263 subplot(245)
264 plot(frameaxis,10*log10(MIS));
265 title(’mis’);
266 subplot(246)
267 plot(frameaxis,MSG)
268 title(’MSG’);
269 subplot(247)
270 plot(timeaxis,Estimation_error);
271 title(’Estimation_error y_hat-y’);
272 subplot(248)
273 plot(timeaxis,Signal_error);
274 title(’Signal_error u-s’);
275
276 sgtitle(strcat(method,” u ”, num2str(mu),”G ”, num2str(G)))
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