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ABSTRACT
The dependency structure between hydrological variables is of critical importance to hydrological 
modelling and forecasting. When a copula capturing that dependence is fitted to a sample, information 
on the uncertainty of the fit is needed for subsequent hydrological calculations and reasoning. A new 
method is proposed to report inferential uncertainty in a copula parameter. The method is based on 
confidence curves constructed with the use of a pseudo maximum likelihood estimator for the copula 
parameter. The method was tested on synthetic data and then used as a tool in two hydrological 
examples. The first examines the probability of major floods in two locations on the Rhine River and its 
tributaries in the same calendar year. In the second example, rainfall–runoff from a karst region in Tunisia 
was analysed to determine a confidence interval for the delay between precipitation and runoff.
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1 Introduction

Properly dealing with uncertainty in all its variations is an impor-
tant aspect of both the science of hydrology and its engineering 
applications (Blöschl et al. 2019, problem 21). This study focuses 
on inferential uncertainty. In hydrology, this is dealt with either 
through Bayesian analysis and summarized by posterior distribu-
tions or with the help of frequentist methods and reported in 
terms of confidence intervals. A third option is presented here: the 
confidence curve. A confidence curve provides much more infor-
mation to the user than a confidence interval. In fact, a curve 
provides information similar to that contained in a Bayesian 
posterior distribution but in a frequentist context and without 
the need for a prior distribution. Moreover, confidence curves 
from different studies can be combined, and the result is a valid 
representation of the information on the parameter of interest 
contained in those studies (Cunen and Hjort 2021).

While a confidence curve is more generally applicable and can 
be defined without first introducing the confidence distribution 
concept, the idea behind the modern approach to confidence 
curves and confidence distributions is the same. According to 
Schweder (2018, p. 116), “the confidence of confidence intervals 
and confidence distributions is a concept of epistemic probability” 
and “By presenting the confidence curve, and thus confidence 
intervals of all levels, the reader is given a complete picture of the 
inferential uncertainty ...” (ibid., p. 118). To translate a confidence 
curve into such a picture, consider the following interpretation of 

the confidence curve. The width of a confidence interval at a given 
confidence level shows the trade-off between confidence and 
uncertainty. If a confidence interval is small, then the estimate 
has low uncertainty. Since a confidence curve is comprised of 
confidence intervals at all confidence levels, the shape of it will 
provide insight into the uncertainty in the parameter estimate: the 
smaller the confidence intervals at high confidence levels, the 
lower the uncertainty.

The popularity of the Bayesian approach to statistics in 
the hydrological community is clear from the literature. It is 
also easily understood, because a Bayesian method produces 
a posterior distribution for the parameter value. However, 
a Bayesian approach requires a prior distribution, construc-
tion of the posterior, which can be computationally inten-
sive, and acceptance of the Bayesian viewpoint. Finally, 
Bayesian and frequentist methods may well complement 
each other (Bayarri and Berger 2004). Therefore, it is worth-
while to study confidence curves and confidence distribu-
tions as they provide information on the uncertainty in 
parameter estimates that resembles the information obtained 
from Bayesian methods. Confidence curves can be used in 
many situations (Zhou et al. 2020, 2023). In this study, a new 
confidence curve construction method is proposed that is 
intended to represent inferential uncertainty in copula para-
meters. Ko and Hjort (2019) also construct confidence 
curves for copula parameters, but they use a two-stage pro-
cess (first fitting the marginals, and then the copula), while 
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the method presented here can build a confidence curve for 
the copula parameter without first fitting the marginals. 
After the introduction of the method, its properties are 
studied using synthetic time series generated from the 
Clayton, Frank, and Gumbel copulas. These are one-para-
meter copulas. Such copulas are popular in hydrology 
because the time series under study are often relatively 
short, so the number of parameters that can realistically be 
estimated is limited. Next, two examples of the application of 
confidence curves constructed with this method are given. 
The first examines the probability of major floods in two 
different locations on the Rhine River and its tributaries 
occurring in the same calendar year. In the second example, 
rainfall–runoff from a karst region in Tunisia was analysed 
to determine a confidence interval for the delay between 
precipitation and runoff. Finally, we present our conclusions. 
An overview of the notation used, the definition of 
a confidence curve, and some other useful facts are provided 
in the appendices.

2 Methodology

This section describes the construction of a confidence curve 
for the parameter of a one-parameter copula. In this article 
random variables (RVs), random vectors, and random 
matrices will be marked by an underscore (Hemelrijk 1966, 
Koutsoyiannis et al. 2017). The confidence curve will be con-
structed from a given observed time series of length n. It is 
assumed that this time series can be modelled as a sequence of 
two-dimensional random vectors Z ¼ z1; z2; . . . ; zn. This Z 
has two associated time series of RVs that correspond to the 
components of the random vectors xi ¼ zi;1 and y

i
¼ zi;2. It is 

assumed that the xi are independent identically distributed 
(iid) RVs with cumulative distribution function (cdf) F, and 
that the same holds for the y

i
, but with cdf G. It is also assumed 

that for a given i the RVs xi and y
i 
have a joint distribution with 

cdf H and that H does not depend on the value of i. In the 
remainder of the paper, x will stand for the random sample 
x1; x2; . . . ; xn; x will represent a realization x1; x2; . . . ; xn of 
that sample, and xobs will stand for a specific observed time 
series. The same holds for y, y, and yobs. The cdf H will be 
modelled by a copula C 

H x; yð Þ ¼ C F xð Þ;G yð Þð Þð Þ (1) 

where C is a Frank, Clayton, or Gumbel copula (for details, see 
Appendix C). The construction method of the confidence 
curve has as its most important ingredient the algorithm 
used to estimate the copula parameter.

2.1 Copula parameter estimation

In most cases, it is not known what type of parametric dis-
tribution best fits the marginals of H, which complicates 
copula parameter estimation. To avoid this complication, 
Genest et al. (1995) proposed a pseudo log-likelihood 
approach, where instead of parametric marginals, a rescaled 
version of the empirical cumulative distribution function 
(ecdf) was used. The rescaled ecdfs for x and y are 

bu xð Þ ¼
n

nþ 1
1
n

Xn

j¼1
1xj�x bv yð Þ ¼

n
nþ 1

1
n

Xn

j¼1
1� y

j
�y (2) 

As pseudo log-likelihood Genest et al. (1995) took 

, θð Þ ¼
Xn

i¼1
log c bu xið Þ;bvðyj

Þ; θ
� �� �

(3) 

where c is the probability density function (pdf) of the copula, 
and introduced 

bθ ¼ arg max
θ

, θð Þ (4) 

as pseudo maximum likelihood estimator (pmle) for θ, which 
is a consistent and asymptotically normal estimator. Chen and 
Fan (2005) showed this holds even under model mis- 
specification.

For a given set of observations xobs; yobs, the calculation is 
performed as follows: 

uj ¼
1

nþ 1

Xn

i¼1
1xobs;i�xobs;j vj ¼

1
nþ 1

Xn

i¼1
1yobs;i�yobs;j (5) 

, θð Þ ¼
Xn

i¼1
log c ui; vi; θð Þð Þ (6) 

which results in the estimate 

θ̂ ¼ arg max
θ

, θð Þ (7) 

for the copula parameter θ.
Note that if wx is a strictly increasing function, then 

a calculation of uj from wx x1ð Þ, wx x2ð Þ; . . . ;wx xnð Þ will give 
the same result as a calculation of uj directly from 
x1; x2; . . . ; xn. In fact, one could even replace xi by its 
rank in the sorted sequence of the xi. The same holds for 
the yi.

2.2 The construction of approximate confidence curves

Construction of an exact confidence curve (Appendix A, 
Definition 3) is quite difficult, because, like the construction 
of confidence distributions, it is not (yet) a question of apply-
ing a simple standard approach. However, there is a standard 
method to construct an approximate confidence curve for 
a parameter θ (Schweder and Hjort 2016). It assumes that 
a log-likelihood function is available. In this article, the pseudo 
log-likelihood defined earlier will be used. The construction of 
the approximate confidence curve is based on the deviance 
function D, defined by 

D θð Þ ¼ 2 , θ̂
� �
� , θð Þ

� �
(8) 

For θ ¼ θ̂, this function assumes its minimum value. The 
statistical properties of the deviance follow from 

D θð Þ ¼ 2 , bθ
� �
� , θð Þ

� �
(9) 

The cdf Kθ λð Þ for D θð Þ is defined as 
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Kθ λð Þ ¼ Pr D θð Þ � λf g (10) 

which, in this case, is unknown. If , were a true likelihood, 
then, according to Wilks’ theorem (Wilks 1938), for the true 
parameter value θtrue, the deviance D θtrueð Þ would be approxi-
mately χ2

1 distributed. As Chen and Fan (2005) have shown 
that the limit distribution for the estimator bθ is approximately 
normal, it is reasonable to assume that a version of Wilks’ 
theorem could be proved for the current deviance (see also 
Schweder and Hjort 2016). Therefore Kθ will be approximated 
by a χ2 distribution with one degree of freedom to avoid the 
additional computation time needed for a Monte Carlo 
approximation. With Fχ2

1 
as notation for the cdf of the χ2 

distribution with one degree of freedom, the approximate 
confidence curve is given by cc θð Þ ¼ Fχ2

1
D θð Þð Þ. For known 

xobs and yobs, the value of the confidence curve for θ can be 
calculated as follows:

(1) calculate ui and vi according to Equation (5);
(2) determine the value θ̂ for which ,, given by Equation 

(6), is maximal;
(3) use θ̂ to calculate D for θ according to Equation (8);
(4) use the cdf Fχ2

1 
to obtain cc θð Þ ¼ Fχ2

1
D θð Þð Þ.

2.3 Properties of confidence curves

To allow for proper comparison between copulas, the confi-
dence curves for θ have been transformed into confidence 
curves for Kendall’s τ using Table 1.

The value of Kendall’s τ corresponding to θ̂ is denoted by τ̂. 
To examine the usefulness of the confidence curves con-
structed according to the given algorithm, a statistical analysis 
of several key properties was performed. The following proper-
ties of these confidence curves were examined:

(1) Actual coverage versus nominal coverage at all confi-
dence levels (see also Appendix A). The actual coverage 
probability should be close to the nominal coverage 
probability. If the actual coverage probability is lower 
than the nominal one, then a confidence curve has 
a permissive coverage; it is too optimistic about finding 
the parameter in the interval. If the actual coverage 
probability is higher than the nominal one, then 
a confidence curve has conservative coverage, so it is 
unnecessarily pessimistic about finding the parameter 
in the interval.

(2) The width of the 95% confidence interval. For all con-
fidence levels, confidence intervals can be extracted 
from the confidence curve. Of most interest are those 
with a confidence above 50%. As a representative of 
that group, the 95% confidence interval was chosen. 

The size of a confidence interval gives an indication of 
its usefulness. In fact, for a parameter whose value is 
restricted to the interval [–1,1], such as Kendall’s τ, 
a confidence interval for τ corresponding to confidence 
level γ that is wider than 2γ does not provide any 
information (Appendix B).

(3) The difference between τ̂ and τtrue, where τtrue is the 
value of Kendall’s τ for the copula from which the 
synthetic time series was drawn. While this value is 
more closely related to the parameter estimator than 
to the confidence curve, it determines how close the 
most prominent point on the confidence curve is to the 
true parameter value.

3 Evaluation of the method with synthetic data

In order to evaluate the method, synthetic datasets from the 
three copulas (Frank, Gumbel, Clayton) were generated. The 
different copulas have different parameter ranges (see Table 1). 
Because the parameter ranges all extend to positive infinity, it 
would be difficult to directly compare results for confidence 
intervals for different copulas. Fortunately, for all three copu-
las, there is a strictly increasing function that maps the copula 
parameter to a value of Kendall’s τ. This allows displaying the 
results for the copula in terms of τ. Because the Gumbel copula 
cannot model negative correlations, only samples from copulas 
with positive τ were used.

3.1 Synthetic time series generation

To determine the statistical properties of the method, synthetic 
time series of length n ¼ 50; 100; 200 were generated by 
drawing from the Clayton, Frank, and Gumbel copulas for 
τ ¼ 0:1; 0:3; 0:5; 0:7; 0:9. For each combination of copula 
family, length, and τ, a set of N = 1000 time series was 
generated. For each set, the resulting 1000 confidence curves 
were used to analyse the coverage of the associated confidence 
intervals, the frequency distribution of the estimate τ̂, and the 
frequency distribution of the width of the confidence intervals 
at the 95% level. For each τ value the corresponding value of θ 
for a given copula was calculated using the formula from 
Table 1 and is listed in Table 2. The parameter value that was 
used to generate a specific series will be denoted by θtrue and 
the corresponding τ by τtrue.

3.2 Examples of synthetic data

Several synthetic samples are shown in Fig. 1. When τ ¼ 0:9 
(Fig. 1(c), (f), (i)), the correlation between u and v is clearly visible. 
For τ ¼ 0:1 (Fig. 1(a), (d), (g)), a plot of the ui; við Þ pairs does not 
show a clear pattern. For the Frank copula with τ ¼ 0:5, Fig. 1(b) 

Table 1. Parameter ranges and the relation between θ and Kendall’s τ, where D1 θð Þ is the first Debye 
function (Abramowitz and Stegun 1970).

Copula family Parameter range Relation between θ and Kendall’s τ

Frank � 1< θ<1, θ�0 τ ¼ 1 � 4 1� D1 θð Þð Þ

θ
Gumbel 1 � θ<1 τ ¼ 1 � 1

θ
Clayton � 1 � θ<1 τ ¼ θ

θþ2

HYDROLOGICAL SCIENCES JOURNAL 3



shows correlation over the whole range, but with peaks of equal 
height in the lower left and upper right corner. For Gumbel with 
τ ¼ 0:5, the plot in Fig. 1(e) displays some correlation over the 
whole range, somewhat stronger in the lower left corner, and very 
strong correlation in the upper right corner. For Clayton with 
τ ¼ 0:5, the role of the corners is reversed (Fig. 1(h)).

The approximate confidence curves for τ for the bivariate 
copula samples (Fig. 1) are shown in Fig. 2. A confidence curve 
reaches its lowest point, cc τð Þ ¼ 0, at the pseudo maximum 
likelihood estimate τ̂. For other positions of τ, cc τð Þ lies within 
0; 1ð �. A traditional 95% confidence level is presented in 

a dashed line in each plot, and one can extract a nominal 

Table 2. Copula parameter θ for given Kendall’s τ.

Copula τ 0:1 0:3 0:5 0:7 0:9

Frank 0:91 2:92 5:74 11:41 38:28
Gumbel 1:11 1:43 2:00 3:33 10:00
Clayton 0:22 0:86 2:00 4:67 18:00

Figure 1. Scatter plots of a sample from a copula with τ =  0.1, 0.5, 0.9 and n =  100.

Figure 2. Example of confidence curves for τ for one of the synthetic samples for each copula with τtrue = 0.1, 0.5, 0.9 and n = 100.

4 C. ZHOU ET AL.



confidence interval for τtrue with a confidence level of 95% 
from each confidence curve.

Figure 2 shows that, in principle, a confidence curve for τ 
contains more information than one confidence interval for 
a single confidence level. It also shows that, as τtrue increases, 
the widths of the confidence intervals that make up the curve 
decrease. However, Fig. 5 shows that the actual coverage for 
high τtrue is permissive, so part of the decrease may be due to 
an underestimation of the interval width. Figure 3 shows that 
some of the decrease is real.

3.3 Spread in the estimate of Kendall’s τ

The box plots in Fig. 3 show that for τ̂ � τtrue both the spread 
of the outliers and the interquartile distance decrease with 
increasing sample length for all copulas. The spread of the 
outliers and the interquartile distance for τ̂ � τtrue also 
decrease with increasing τ.

This decrease in spread may be caused by the high correla-
tion associated with high τ values. However, as shown by 
Fig. 4, the spread in the copula parameter increases with 
increasing parameter values. The non-linear relation between 
θ and τ and between θ and the copula shape make it difficult to 

determine what the actual variation in the copula shape is for 
a given variation in τ.

3.4 Actual coverage probability for Kendall’s τ

The actual coverage of the confidence interval associated with 
the confidence curve was examined for all confidence levels. The 
actual versus nominal coverage probability for random copula 
samples is shown in Fig. 5, and the coverage at the 95% con-
fidence level is listed in Table 3. According to the results shown 
in Fig. 5, sample length has little effect on the actual coverage 
probability up to τ ¼ 0:5, and the actual coverage probability 
does not change much when n increases from 50 to 200. For 
τ ¼ 0:9, the sample length has a visible effect on the actual 
coverage probability for the Frank and Gumbel copulas but 
not for the Clayton copula (Fig. 5(g)–(i)).

The dependence level strongly influences the coverage. If the 
samples are weakly dependent, for instance when τ ¼ 0:1, then 
the actual coverage probability is close to nominal (Fig. 5(a), (d), 
(g)). For samples with high dependence, for instance for τ ¼ 0:9, 
the actual coverage probability is lower than the nominal (Fig. 5 
(c), (f), (i)).

Figure 3. Box plots of τ̂ � τtrue for different copulas and different sample sizes.

HYDROLOGICAL SCIENCES JOURNAL 5



For bivariate samples from a Frank copula with τ ¼ 0:9 
and nominal coverage probability of 95%, the actual cover-
age probability is only 73% for n = 50, 84.6% for n = 100, 
and 86.5% for n = 200. Results are similar for the other 
copulas (Table 3).

The statistics for τ̂ � τtrue in Fig. 3 show that the error in the 
estimate of τ decreases with increasing τtrue. The results in Fig. 3 
are in line with this, but Fig. 5 shows that the interval widths for 
high τ are overly optimistic. So, while strong dependence is 
associated with lower uncertainty, the approximate confidence 
curves calculated by the current version of our code are too 
optimistic for values of τ close to 1. Better coverage could perhaps 
be obtained by using the techniques suggested in Schweder and 
Hjort (2016) to improve the accuracy of the approximation of the 
confidence curve.

3.5 The width of 95% confidence intervals for the 
dependence parameter in copulas

Information on the distribution of the widths of the 95% con-
fidence intervals is shown in Fig. 6. The figure shows that the 
sample length n has a significant effect: the interval width 

decreases as n gets larger. Therefore, the uncertainty about τ̂ 
decreases as the sample length gets larger. These results are in 
qualitative agreement with those shown in Fig. 3.

3.6 Effects of the mis-specification of copula

Box plots of the difference between the true value and the estimate 
of τ in the synthetic experiments are given in Fig. 7. If the Clayton 
or Gumbel copula was used to fit a sample from one of the other 
copula families and calculate, then this resulted in a biased esti-
mate (Fig. 7(d), (f), (g), (h)). The Frank copula did much better in 
this respect (Fig. 7(a)–(c)). While it is not unexpected that mis- 
specification has an adverse effect, because of the different shape 
of the three copulas, it is still worth noting that the Frank copula 
provides a good estimate of τ, even when applied to a Gumbel or 
Clayton copula, while the reverse does not hold.

4 Two examples of the use of the method on 
observed hydrological time series

The method introduced in this study can be used to examine 
the uncertainty about dependence between time series and the 

Figure 4. Box plots of θ̂ � θtrue

� �
for different copulas and different sample sizes.
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Figure 5. Actual coverage probability versus the nominal one for τ in copulas.

Table 3. Actual coverage probability (%) of a confidence interval with a nominal coverage probability of 95%.

Copula
τ 

n 0:1 0:3 0:5 0:7 0:9

Frank 50 94:2 92:6 93:1 91:5 73:0
100 95:0 93:2 92:6 92:0 84:6
200 94:4 94:6 93:3 93:6 86:5

Gumbel 50 94:3 90:6 87:2 84:1 72:1
100 94:0 90:2 87:4 85:5 74:6
200 94:7 89:8 88:0 84:6 78:1

Clayton 50 92:0 86:5 85:1 78:5 62:3
100 92:1 86:2 83:7 81:5 63:4
200 93:1 88:1 82:6 79:4 64:1

HYDROLOGICAL SCIENCES JOURNAL 7



effects of this uncertainty on an analysis based on that depen-
dence. Two examples are given. In the first example the 
method is used to show the uncertainty about the dependence 
structure for yearly extremes for several pairs of measurement 
stations on the Rhine River and its tributaries. The second 
example investigates estimating the lag between rainfall and 
runoff for a karst area and the uncertainty in that estimate.

4.1 The relation between time series of annual maxima in 
the Rhine and its tributaries

In this section the dependency structure of annual minimum 
or maximum flows will be examined. This structure can be 
used to answers questions such as

(1) What is the probability that high flows will occur in 
different parts of the same catchment within a given year? 
This question may be of interest from an insurance, 
government budget, or disaster preparation point of view.

(2) If only series of annual maximum flows are available for 
branches of a given river system, then can these series 
provide any information about links between high 

flows upstream and high flow downstream? If only 
a time series of annual maximum flows is available, 
without dates of occurrence, then the probability that 
two flows will augment each other cannot be deter-
mined. However, the probability of a combination of 
two high flows in the same year is a definite upper 
bound on the probability that they would combine to 
generate high discharges downstream. The accuracy of 
the approximation depends on the way the yearly max-
imum is determined.

(3) If only series of annual minimum flows are available, 
then can these series provide any information about 
navigability of the system?

(4) Are all parts of the catchment responding in the same 
way to climate change? In this case dependence 
between yearly statistics should not change from one 
period to another.

4.1.1 Methodology used to examine uncertainty of the 
dependency of return periods
The mapping from annual maximum flows to return periods is 
a strictly increasing function. In Section 2.1 it was shown that 

Figure 6. Box plots of the width of confidence intervals for a 95% confidence level.
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due to the preparatory step for the fitting method used in this 
article, mapping discharges to return periods or vice versa will 
not change the result of the fitting process. This implies that 
using the fitting method to determine the copula parameters 
for the three different copulas and the associated uncertainty 
will tell us something about the dependence structure of the 
return periods. More specifically, are high return periods cor-
related, and if yes, then how? For the corresponding copula, 
this would mean that there should be a peak in the pdf in the 
upper right hand corner of the (u,v) plane. The uncertainty in 
the dependence structure can be examined by looking at the 
copula corresponding to the estimated parameter and the 
difference between that copula and copulas corresponding to 
the lower or upper bound of a confidence interval for a given 
confidence level.

Time series of annual daily maximum flows for several 
stations for the Rhine and one station each for the Mosel and 
the Main were obtained from the Global Runoff Data Center 
(GRDC 2021). The stations are shown in Fig. 8. As the time 
series are series of annual maxima, a copula package by Hofert 
et al. (2020) was used to extend the collection of one-para-
meter copulas applied to the series with additional copulas 
specifically suited for extreme values: Galambos and Huesler- 
Reiss (Appendix C.2). Of the other extreme value copulas, the 

Tawn copula was not considered because it is limited to values 
for Kendall’s τ below 0.418, and the t-EV copula was not 
considered because it has two parameters. To allow for high 

Figure 7. Box plots of the difference between the true value and the estimate of τ in the synthetic experiments with n = 200.

Figure 8. Station locations.

HYDROLOGICAL SCIENCES JOURNAL 9



correlation both for low and for high return periods, the 
copulas that have different correlation structure for low and 
high parameters (Clayton, Gumbel, Galambos, Huesler-Reiss) 
were tried both in their standard orientation and after a 180 
degree rotation; the rotated copula will be denoted by adding 
“180°” after the copula name. As in the rest of the paper, the 
uncertainty in the parameter is represented by a confidence 
curve for Kendall’s τ. For a given τ, the shape of the Galambos 
and Huesler-Reiss copulas is very close to that of the Gumbel 
copula.

4.1.2 Results found for uncertainty in dependency structure 
of return periods
To illustrate the type of results that would be obtained, four 
pairs of measurement stations were selected that were expected 
to have different dependency structures. For each pair the 
discharge at a station downstream of the confluence point 
was determined. The pair Andernach and Koeln serves as 
a test case. For these stations a near perfect correlation was 
expected because no major tributaries enter the river between 
the stations. Figure 9(a) confirms this. Figure 9(b) shows that 

Figure 9. Confidence curves and scatter plots for pairs of stations. Discharge at the downstream station is indicated by the colour of the dots in the scatter plots.
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high discharges at the downstream station tend to be corre-
lated as well. Values of the parameter θ and τ values can be 
found in Tables 4 and 5, respectively. The other station pairs 
combine a station on a tributary with a station on the Rhine 
upstream of the confluence. All pairs show definite correlation, 
as the bounds of the confidence intervals up to 99% are well 
away from zero (Fig. 9(b)–(d)). For all pairs the best fit was 
obtained with the version of Gumbel, Galambos or Huesler- 
Reiss that is rotated 180° around the point (0.5,0.5) in the (u,v) 
plane. Given the shape of the pdf of these copulas, with a peak 
in the lower left quadrant, this could suggest stronger correla-
tion for short return periods than for long return periods. 
However, the scarcity of points in the upper right corner 
could also have caused this preference for the rotated version 
(Fig. 9(f)–(h)).

In the scatter plots (Fig. 9(e)–(h)) colour is used to show the 
discharge at a station downstream of the confluence of tribu-
tary and main river. These plots were added to show that even 
the (at first sight oversimplified) approach of looking for 
dependence between high discharges in the same 
calendar year may provide at least some information on high 
flows.

An illustration of the variation in shape of the pdf of 
a copula over a 95% confidence interval can be found in 
Fig. 10 for the pair Cochem and Kaub. For example, for the 
Frank copula Fig. 10(a) shows the pdf for θ̂; Fig. 10(f) shows 
the difference between the pdf at θ̂ and the pdf at the lower 
bound of the confidence interval, and Fig. 10(k) shows the 
difference between the pdf at θ̂ and the pdf at the upper bound 
of the confidence interval. Similar plots are shown for the other 
copulas.

The confidence curves provide the variation in the copula at 
different confidence levels and therefore provide insight into 
the effect of uncertainty on specific joint return times. While 
the whole upper quadrant ([0.5,1] × [0.5,1]) would be of 
interest, limitations deriving from viewing three-dimensional 
information in two dimensions usually lead to examination of 
exceedance frequencies or, equivalently, return periods. The 
relation between return periods and copulas is discussed by 
Salvadori et al. (2007, sec. 3.3). For instance, the probability 
that in a specific year the discharges in both rivers are in the 

top 10% of return periods corresponds with the integral of the 
pdf of the copula over the rectangle [0.9,1] × [0.9,1], which 
corresponds to the value �C 1 � 0:9; 1 � 0:9ð Þ where 

�C u; vð Þ ¼ uþ v � 1þ C 1 � u; 1 � vð Þ (11) 

which relates to a return period by μT=
�C 1 � 0:9; 1 � 0:9ð Þ, 

where μT is the the mean inter-arrival time (for annual maxima 
this is one year). We can now relate the copula to return 
periods for combined μT= 1 � uð Þ, μT= 1 � vð Þ floods. The con-
fidence curve allows us to pick a copula parameter range 
associated with a given confidence level. As a result, we get 
a confidence interval for the return period of two floods within 
the same year.

4.2 Dependence structure between rainfall and discharge 
for a karst area

The relation between rainfall onto and runoff out of 
a catchment is determined by physical processes and there-
fore it is a deterministic one. However, there is considerable 
epistemic uncertainty about the processes and their para-
meters. As a result, the relation between rainfall and runoff 
may seem to be different at different times. The simplest 
possible deterministic model for this relation would be one 
in which the runoff is a shifted and scaled version of the 
rainfall. A first improvement would be replacement of the 
simple scaling relationship by a joint distribution of runoff 
and shifted rainfall. The model would be constructed by 
fitting a dependence structure to the shifted rain and the 
runoff for a range of shifts. The shift would be chosen by 
assuming that the dependence would be strongest for a shift 
that best corresponded to the delay between rainfall and 
runoff. This approach would only work if the shift could 
be determined with sufficient certainty. It was decided to 
investigate the uncertainty in the estimate of the shift with 
the confidence curve method proposed in this article, using 
a dataset from the Djebel Zaghouan region in Tunisia.

The Djebel Zaghouan is the most important Jurassic for-
mation of the Zaghouan massif and lies about 50 km to the 
south of Tunis. The massif consists mainly of overlapping 
limestone monoclines. It is also contains marls of the 

Table 4. Dependence parameters between time series and width of the 95% confidence intervals for the estimate of dependence parameter.

Time series pair

Frank Clayton Gumbel 180� Galambos 180� Huesler-Reiss 180�

θ Width θ Width θ Width θ Width θ Width

Andernach and Koeln 59.0 21.7 20.3 7.8 14.7 5.1 14.0 5.1 16.4 5.0
Cochem and Kaub 8.0 3.8 2.3 1.3 2.5 0.9 1.8 0.9 2.2 0.8
Cochem and Worms 5.4 3.2 1.5 1.0 1.9 0.7 1.2 0.6 1.7 0.7
Worms and Frankfurt 4.6 3.8 1.2 1.1 1.7 0.7 1.0 0.7 1.5 0.8

Table 5. Kendall’s τ values between time series and width of the 95% confidence intervals.

Time series pair

Frank Clayton Gumbel 180� Galambos 180� Huesler-Reiss 180�

τ Width τ Width τ Width τ Width τ Width

Andernach and Koeln 0.93 0.02 0.91 0.03 0.93 0.02 0.93 0.02 0.93 0.02
Cochem and Kaub 0.60 0.14 0.53 0.14 0.60 0.14 0.60 0.14 0.58 0.13
Cochem and Worms 0.48 0.19 0.43 0.16 0.48 0.18 0.48 0.18 0.47 0.16
Worms and Frankfurt 0.43 0.26 0.37 0.22 0.42 0.25 0.42 0.24 0.42 0.23
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Figure 10. The pdfs for copulas for the station pair Cochem and Kaub.
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Cretaceous and Eocene (Castany 1951). The Djebel 
Zaghouan is characterized by the presence of southern and 
transverse faults that have created blocks (Ferjani et al.  
2020). These faults facilitate infiltration. The Zaghouan 
karst aquifer covers an area of approximately 19.6 km2 

(Fig. 11). In the eastern part, conditions are favourable for 
the storage of seepage water, whereas in the western part 
marl deposits result in a much lower storage coefficient 
(Djebbi et al. 2001).

The Zaghouan region lies on the border between the upper 
semi-arid and the sub-humid climate zones. It is characterized 
by an average annual rainfall of 467 mm (values ranging from 
245 to 625 mm) with a heterogeneous spatial and temporal 
distribution. Rainfall measurements were taken on a daily 
basis at the “Zaghouan controle” station (latitude: 36.39583N; 
longitude: 10.14917E) during the period from 1915 to 1944. 
However, there are gaps in the data for the entire year of 1929 
and for January 1930. These gaps were filled by using data from 
the nearby station “Zaghouan SM” (latitude: 36.40306N; long-
itude: 10.14472E). This resulted in a complete series of daily and 
weekly cumulative rainfall. The discharge series used was 
recorded from 1915 to 1943 at the Nymphée spring. It was 
originally recorded in graphical form only. Measurements 
were taken at irregular intervals with frequencies varying from 
twice weekly to monthly. To extract information, the graphical 
data was digitized. The time series contains two atypical years: 
a very wet one during the hydrological year running from 
September 1920 to August 1921 and a relatively dry 
hydrological year starting in 1926. These resulted in total 
volumes of 6.5 × 106 m3 and 1.9 × 106 m3, respectively. 
A fragment of the original document from the archive of hydro-
logical yearbooks of the General Directorate of Water Resources 
(abbreviated DGRE, in French) containing the hydrograph 
(curve) from 1924 to 1926 is shown in Fig. 12. Major engineer-
ing works were performed in 1944, but the data from 1915 to 
1943 reflects the natural flow conditions.

These observations are consistent with the natural flow of 
the resurgences during this period. According to the criteria in 
Olarinoye et al. (2020), the accuracy and quality of the 

hydrograph is class A: the discharge observation measurement 
is known, recognition of individual events on the spring’s 
hydrograph, recognition of seasonal events on the spring’s 
hydrograph, and identification of recession events on the 
hydrograph (see Fig. 12). The karst falls into class 6 as defined 
by Cinkus et al. (2021) in the Karst Aquifer Resources avail-
ability and quality in the Mediterranean Area (KARMA) pro-
ject. The karst has a minimum inertia of two months, so it was 
deemed appropriate to acquire consistent time series of daily, 
weekly, and monthly flows by linear interpolation. The daily 
flow series was used primarily to test the algorithm. Today, the 
aquifer is fully exploited to provide drinking water to the city 
of Zaghouan. Unfortunately, this overexploitation has hin-
dered the natural reemergence of springs in this region for 
many years.

4.2.1 Methodology used to determine the shift between 
rainfall and runoff
The lag between rainfall and runoff was estimated by fitting 
copulas to the rainfall time series and a version of the runoff 
series that was shifted by m steps for m ranging from 0 up to 
mmax. To avoid artefacts due to different time series lengths for 
different lags, the last mmax points of the rainfall time series 
were dropped and the shifted runoff series length was adjusted 
to match. Different copulas were fitted to see if this made an 
appreciable difference in the results. The lag was estimated by 

m̂ ¼ arg max
θ

θ̂ mð Þ

where θ̂ mð Þ is the estimate of the copula parameter. The pmle 
is asymptotically normal (Genest et al. 1995). An estimate of 
the standard deviation of this normal distribution was 
obtained by taking the 95% confidence interval and translating 
this into a standard deviation for the normal distribution. For 
selected values, this was checked against calculations using the 
R copula package, which gave very similar results but took 
much longer to perform the calculations and sometimes ran 
into problems when the procedure did not converge. The lag 
estimate was used to get bounds on the lag as follows:

Figure 11. Location of the karst area. Both figures combine Google Map data ©2015 with material from Natural Earth.
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(1) Construct an interval m0;m1½ � around  on which τ̂ mð Þ, 
the Kendall’s τ value corresponding to θ̂ mð Þ, is strictly 
positive.

(2) For each m 2 m0;m0 þ 1; . . . ;m1f g use the confidence 
curve for θ̂ mð Þ to get the 95% confidence interval width 
w95 mð Þ.

(3) For each m draw random values θi;m, i ¼ 1; 2; . . . ; nR 
(nR ¼ 10000) from the normal distribution with mean 
θ̂ mð Þ and standard deviation σ mð Þ ¼ w95 mð Þ=3:92. 
Here, 3.92 is the approximate width of the 95% con-
fidence interval for the standard normal distribution. 
This results in nR � m1 � m0 þ 1ð Þ values θi;m.

(4) For all θi;m, calculate the corresponding values τi;m.
(5) For each i, determine the lag corresponding to the 

maximum value of τi;m and label this m̂i. Use the cdf 
of the m̂i to determine the bounds of a confidence 
interval for the lag. This procedure ignores the 

constraint that the curve should have exactly one local 
maximum in m0;m1½ � and is therefore probably on the 
conservative side.

4.2.2 Results found for the lag
Figure 13 shows daily rainfall and runoff for the karst area. In 
addition, a line is plotted representing the runoff shifted back-
ward in time over a number of days corresponding to the 
estimated lag. Frank, Gumbel, and Clayton confidence curves 
for τ̂ m̂ð Þ are shown in Fig. 14(a), (c), and (e) for time steps of 
one day, one week, and one month, respectively. The results 
for a time step of one day served mainly to test the algorithm.

The curves of τ̂ mð Þ versus the lag m for Frank, Gumbel, and 
Clayton are shown in Fig. 14(b), (d), and (f) for time steps of 
one day, one week, and one month, respectively. The estimated 
lag and confidence interval are shown for the Frank copula 
only. Please note that the Gumbel copula can only model 

Figure 12. The hydrograph (curve) for Nymphée spring from 1924 to 1926. The figure also contains a monthly hyetograph (bars).

Figure 13. Daily rainfall, runoff, and shifted runoff.
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positive correlations, so a result of zero was returned when the 
dependence would result in a negative τ. The Frank copula 
consistently delivered the highest values. Lags of about 3 to 
4 months were found at all temporal scales. Table 6 provides 
values of the lag estimates and the 90% and 95% confidence 

intervals for these estimates. The confidence intervals show 
that the results for all time scales and all copulas are compa-
tible. This was in accordance with results obtained with the 
conceptual KarstMod model and with neural networks in the 
KARMA project (Mazzilli et al. 2019, KARMA 2021).

Figure 14. Kendall’s τ for different lags and confidence curves for the selected lag (CI = confidence interval).

Table 6. Table of lags and confidence intervals.

Copula Time step τ̂ m̂ð Þ m̂ 90% interval 95% interval

Frank Day 0.114 115 [86.0, 131.0] [83.0, 133.0]
Week 0.149 18 [13.0, 20.0] [12.0, 21.0]
Month 0.233 3 [3.0, 5.0] [2.0, 5.0]

Clayton Day 0.081 116 [85.0, 136.0] [82.0, 141.0]
Week 0.122 18 [13.0, 21.0] [12.0, 22.0]
Month 0.156 4 [3.0, 5.0] [3.0, 6.0]

Gumbel Day 0.074 87 [78.0, 125.0] [75.0, 128.0]
Week 0.140 17 [11.0, 19.0] [11.0, 20.0]
Month 0.229 3 [2.0, 4.0] [2.0, 5.0]
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5 Conclusions

In this article, a new method was developed that uses confi-
dence curves as a means to represent epistemic uncertainty in 
the estimate of the copula parameter for one-parameter copu-
las. A pseudo maximum likelihood estimator (pmle), denoted 
by θ̂, was used to estimate the copula parameter θ for synthetic 
and real data. For the copulas used here, there is a one-to-one 
correspondence between the θ and Kendall’s τ that respects 
ordering. This allows better comparison between results of 
different copulas and a more convenient interpretation, so 
the parameter θ of each copula was transformed into the 
corresponding τ and θ̂ was transformed into τ̂.

Confidence curves have the advantage that they offer much 
more information than just one confidence interval. In fact, 
they offer about the same amount of information as an 
a posteriori Bayes distribution, but without the need to first 
find the correct prior. In hydrology, such information is espe-
cially important because the decisions based on hydrological 
analyses usually have a large impact, and the questions posed 
can rarely be adequately answered with a simple yes or no. 
A confidence curve allows the exploration of a range of 
answers based on different levels of confidence.

Statistical analysis of confidence curves constructed from 
synthetic time series resulted in the following findings:

(1) For all copulas a box plot showed that τ̂ � τtrue 
decreased with increasing time series length and with 
increasing τ. Here, τtrue is used to denote the τ of the 
copula used to generate the sample. The results suggest 
that the pmle estimator gives an acceptable 
performance.

(2) For all copulas a comparison of actual and nominal cover-
age shows that the confidence curves are permissive, 
especially for τ > 0:5. This could be addressed by using 
techniques suggested by Schweder and Hjort (2016).

(3) For all copulas, the width of the 95% confidence inter-
val decreased with increasing time series length and 
increasing τ. The results suggest that this interval is of 
a reasonable size, although the results for τ > 0:5 show 
sizes that still need to be corrected for the permissive 
coverage.

(4) The pmle for the Frank copula provided good estimates 
for τ even for samples from the Gumbel and Clayton 
copula.

For the Rhine River case study, two results stand out. 
Firstly, all extreme value copulas fit best when rotated 
180°, and, secondly, the parameter estimate and the con-
fidence curve for Kendall’s τ delivered by the Frank copula 
are very close to the estimates and the confidence curves 
corresponding to the extreme value copulas. This suggests 
that the effect observed for synthetic data, namely that 
Frank seemed to give good results for Kendall’s τ even 
when the time series was drawn from another copula, 
may well extend to real time series.

For the Tunisian karst region, the pmle estimate was 
mapped to a τ value, and this was used to estimate the lag 
between rainfall and runoff. The confidence curve for the 

τ corresponding to the chosen lag served as an initial 
check on the relevance of the correlation. It was also 
used to approximate the distribution of the points on the 
curve of the estimated τ̂ mð Þ versus the lag m. This in turn 
allowed the generation of alternative curves and an esti-
mate of a confidence interval for the lag. The lag found 
was in accordance with results of earlier research. As the 
Gumbel copula cannot model negative correlations, this 
copula gave no results when the actual correlation was 
negative. When calculating τ for the different lags, the 
Frank copula gave values that were larger in magnitude 
than the Clayton and Gumbel copulas. The delays found 
are in accordance with the results obtained with the con-
ceptual KarstMod model and with neural networks in the 
KARMA project (Mazzilli et al. 2019, KARMA 2021).

In both cases, the confidence curves for the copula 
parameter allowed simple propagation of the uncertainty 
in the parameter to quantities of direct hydrological sig-
nificance, and in both cases, the Frank copula gave the 
highest estimate for Kendall’s τ.

All results show that confidence curves for copula para-
meters are a valuable addition to the hydrological tool set 
and can be used in a wide variety of hydrological settings. 
Earlier work already showed the value of confidence curves 
for change point analysis (Zhou et al. 2020, 2023). In 
certain cases confidence curves may provide an alternative 
to Bayesian methods. Further research is planned to see 
whether the coverage can be corrected either by 
a correction factor, as suggested for a more general case 
by Schweder and Hjort (2016), or through the use of 
Monte Carlo simulation to generate an approximate prob-
ability distribution for the deviance.
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Appendices

Appendix A. Notations and definitions

The probability of a given event E is denoted by Pr(E). The indicator function is a very useful function in statistics, but 
the notation used for it varies widely. In this article, an abbreviated form of the traditional notation is used. If A is a set, 
then the indicator function 1A xð Þ is 1 for elements of A and 0 elsewhere: 

1A xð Þ ¼
�

1 if x 2 A
0 if x‚A (A1) 

In probability theory, it is often applied to RVs with as set an interval like � 1; xð �; in that case the following abbreviation is used: 

1x�x ¼ 1 � 1;xð � xð Þ
Let Z ¼ z1; z2; . . . ; znð Þ be a random sample of size n where the zi are independent identically distributed random vectors, and 
Z ¼ z1; z2; . . . ; znð Þ a realization of such a sample. In the following definitions, λ is a property of the distribution of zi that can be 
expressed as a real number; it can be one of the distribution parameters, one of its moments, or perhaps a specific quantile. 

Definition 1. A confidence set for λ at a given confidence level γ is a set valued function R Zð Þ such that for the true value λtrue of λ 
the expression R Zð Þ is a random set that satisfies 

Pr λtrue 2 R Zð Þð Þ ¼ γ (A2) 
The value γ is the nominal coverage probability. In practice, (A2) may not hold exactly, either because it holds only when the sample size 
n tends to infinity, or because it was derived under assumptions on the sample that are only approximately satisfied during the 
experiment. The actual coverage probability of a confidence interval is the probability of the confidence interval containing the true 
value of a statistic λ in the experiment as it was performed. A confidence interval is a special case of a confidence set.

Definition 2. If f is a function from R to R , then a sub-level set of f at level γ is a set 

t 2 R : f tð Þ � γf g (A3) 
Definition 3. A confidence curve is a function cc λ;Zð Þ from R � R k�n to [0,1] that satisfies the following conditions (Schweder 
and Hjort 2016, Definition 4.3):

(1) The sub-level set of cc λ;Zð Þ at level γ is a confidence set for λ at the confidence level γ, so 

Pr λtrue 2 λ : cc λ;Zð Þ � γf gð Þ ¼ γ 
(2) There is a function λ̂ Zð Þ from R k�n to R such that the RV λ̂ Zð Þ is a point estimator for λ.
(3) For all realizations Zobs of a random sample Z, min

λ
cc λ;Zobsð Þ ¼ cc λ̂ Zobsð Þ;Zobs

� �
¼ 0

(4) For the true value λtrue of λ, the RV cc λtrue;Zð Þ has a uniform distribution on the unit interval.

For a confidence curve cc, the actual coverage probability of a confidence interval at a confidence level of γ for a sample 
of size n can be estimated by 

1
n

Xn

i¼1
1cc λtrue;zobs;ið Þ�γ (A4) 

It should be close to the nominal coverage probability γ.

Appendix B. An uninformative confidence interval for τ

It is known that τ 2 � 1; 1½ �. Now suppose that γ 2 0; 1ð Þ and there is no a priori information on the location of τ. If a point y is 
selected at random in the interval � 1; 1 � 2γ½ �, then 

Pr τ 2 y; yþ 2γ½ �ð Þ ¼ ò
1

x¼� 1
ò

1� 2γ

y¼� 1
1y�x�yþ2γ

1
2 dx 1

2� 2γ dy

¼ 1
4 1� γð Þ

ò

1� 2γ

y¼� 1
ò
1

x¼� 1
1y�x�yþ2γdxdy

¼ 1
4 1� γð Þ

ò

1� 2γ

y¼� 1
ò

min yþ2γ;1ð Þ

x¼y
1y�x�yþ2γdxdy 

so 
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Pr τ 2 y; yþ 2γ½ �ð Þ ¼ 1
4 1� γð Þ

ò

1� 2γ

y¼� 1
ò

yþ2γ

x¼y
dxdy

¼ 1
4 1� γð Þ

ò

1� 2γ

y¼� 1
2γdy

¼ 1
4 1� γð Þ

2γ 2 � 2γð Þ ¼ γ 

This implies that, as long as there is no a priori reason to assume the parameter has a certain value, it is possible to obtain 
a confidence interval at level γ without using the sample, as long as an interval length of (at least) 2γ is allowed.

Appendix C. Copulas

Copulas were introduced by Sklar (1959). For a modern overview and hydrological examples see, for instance, Salvadori and De 
Michele (2004, 2007), Favre et al. (2004), or Genest and Favre (2007).

Appendix C.1 Some Archimedean copulas

Appendix C.1.1. Frank copula

The cdf for the Frank copula is 

CF u; v; θð Þ ¼ �
1
θ

log 1þ
exp � θuð Þ � 1ð Þ exp � θvð Þ � 1ð Þ

exp � θð Þ � 1

� �

(C1) 

where � 1< θ< 0 or 0< θ<1. The pdf for the Frank copula is 

cF u; v; θð Þ ¼
θ 1 � exp � θð Þð Þexp � θ uþ v½ �ð Þ

exp � θð Þ � exp � θuð Þ � exp � θvð Þ þ exp � θ uþ v½ �ð Þð Þ
2 (C1) 

Appendix C.1.2. Clayton copula

The cdf for the Clayton copula is 

CC u; v; θð Þ ¼ max u� θ þ v� θ � 1; 0
� �� �� 1=θ

(C3) 
where � 1 � θ<1. The pdf for the Clayton copula is 

cC u; v; θð Þ ¼

0 η u; v; θð Þ< 0
0 η u; v; θð Þ ¼ 0; � 1< θ< 0
1þ θð Þu� 1� θv� 1� θη u; v; θð Þ

� 2� 1=θ η u; v; θð Þ > 0

8
<

:
(C4) 

where η u; v; θð Þ ¼ u� θ þ v� θ � 1

Appendix C.1.3. Gumbel copula

The cdf for the Gumbel copula is 

CG u; v; θð Þ ¼ exp � � loguð Þ
θ
þ � logvð Þ

θ
h i1=θ

� �

(C5) 

where 1 � θ<1. The pdf for the Gumbel copula is 

cG u; v; θð Þ ¼
CG u;v;θð Þ

uv logulogvð Þ
θ� 1

� loguð Þ
θ
þ � logvð Þ

θ
� �1=θ� 2

� � loguð Þ
θ
þ � logvð Þ

θ
� �1=θ

þ θ � 1
� � (C6) 

Appendix C.2 Some extreme value copulas

A bivariate extreme value copula is a copula that satisfies 

C un; vnð Þ ¼ C u; vð Þð Þ
n
; n > 0 (C7) 

The Gumbel copula described earlier is an extreme value copula.

Appendix C.2.1. Galambos copula

The cdf for the Galambos copula is 
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CGa u; v; θð Þ ¼ uvexp � loguð Þ
� θ
þ � logvð Þ

� θ
h i� 1=θ
� �

(C8) 

where 0 � θ<1.

Appendix C.2.2. Huesler-Reiss copula

The cdf for the Huesler-Reiss copula is 

CHR u; v; θð Þ ¼ exp loguð ÞΦ
1
θ
þ

θ
2

log
logu
logv

� �� �

þ logvð ÞΦ
1
θ
þ

θ
2

log
logv
logu

� �� �� �

(C9) 

where 0 � θ<1 and Φ is the cdf of the univariate standard normal distribution.
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