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A Set Based Probabilistic Approach to Threshold Design for Optimal
Fault Detection

Vahab Rostampour, Riccardo Ferrari, and Tamás Keviczky

Abstract— Traditional deterministic robust fault detection
threshold designs, such as the norm-based or limit-checking
method, are plagued by high conservativeness, which leads to
poor fault detection performance. On one side they are ill-suited
at tightly bounding the healthy residuals of uncertain nonlinear
systems, as such residuals can take values in arbitrarily shaped,
possibly non-convex regions. On the other hand, they must be
robust even to worst-case, rare values of the modeling and mea-
surement uncertainties. In order to maximize performance of
detection, we propose two innovative ideas. First, we introduce
threshold sets, parametrized in a way to bound arbitrarily well
the residuals produced in healthy condition by an observer-
based residual generator. Secondly, we formulate a chance-
constrained cascade optimization problem to determine such
a set, leading to optimal detection performance of a given class
of faults, while guaranteeing robustness in a probabilistic sense.
We then provide a computationally tractable framework by us-
ing randomization techniques, and a simulation analysis where
a well-known three-tank benchmark system is considered.

I. INTRODUCTION

Advanced model-based fault diagnosis methods have
emerged in important industrial sectors, such as aerospace,
as fundamental tools for guaranteeing high operational readi-
ness levels and reducing unneeded maintenance costs [1]. A
key problem to be solved for widespread industrial adoption
is the development of robust methods providing satisfactory,
and easy to tune performances in terms of the so-called false
alarm ratio (FAR) and missed detection ratio (MDR). Ideally
a model-based fault diagnosis solution should be robust
with respect to the unavoidable model and measurement
uncertainties, thus having a zero or very low FAR. At the
same time, it should have good fault detection properties,
which translates into a negligible MDR.

Unfortunately, in the general case, it is not possible to
simultaneously obtain both zero FAR and zero MDR, so
existing designs will favor either one or the other, or seek
a reasonable trade-off [1]. In the case of linear systems,
and under some conditions also for nonlinear ones [2], [3],
[4], geometric approaches lead to residuals that are perfectly
decoupled from the uncertainties, thus making the problem
of threshold design trivial. For general nonlinear systems, it
is customary to assume the existence of a known, static or
dynamic upper bound on the uncertainties’ magnitude, thus
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allowing to obtain a zero FAR by design [1]. Such a pow-
erful property often comes at the cost of very conservative
thresholds, which lead to high MDR. Two key reasons stand
behind this: the inability of traditional norm-based or limit-
checking kind of robust deterministic thresholds to tightly
bound the arbitrarily shaped, possibly non-convex regions to
which healthy residuals belong; and the need to account also
for large, but possibly rare values taken by the uncertainties.
This last problem in practical situations is exacerbated by
the fact that tight dynamic bounds on the uncertainties are
seldom known, thus leading to users choosing excessively
high and even static bounds.

This paper aims to address both sources of conservative-
ness by introducing adaptive, arbitrarily shaped threshold sets
and by relaxing the deterministic robust zero-FAR condition,
in favour of a more flexible, probabilistic one. Through a set-
based approach to threshold design, the probability of false
alarms will be defined as a user-tunable design parameter,
and the detection with respect to a given class of faults will
be simultaneously maximized.

The use of probabilistic thresholds in model-based fault
diagnosis has been investigated previously in the literature
(see [1] and the references cited therein), and recently the
important case of nonlinear uncertain systems has been
considered [5], [6], [7]. The use of sets in fault diagnosis
has been inspired by the corpus of works on set-membership
system identification [8], [9], [10], which initially addressed
the inverse problem of finding, at each time step, the set of
system parameters that could be able to explain current mea-
surements, and compare it to a nominal one [11], [12]. Other
works considered instead the direct problem of describing the
admissible values of the residual in healthy condition using
a set [13], [14], with [15] being a notable example in the
field of active fault diagnosis.

To the best of the authors knowledge, no previous work
considered a set-based threshold design problem for fault
detection in nonlinear uncertain systems, with the goal of
simultaneously guaranteeing robustness to uncertainties in a
probabilistic sense, and maximizing detection of a given class
of faults. In particular, the main contributions of the present
paper are as follows:
• A formal definition of a novel fault detection threshold

set design problem, using the concept of probabilistic
set approximation through polynomial superlevel sets
[16];

• The formulation of a cascade framework for designing
threshold sets, through a two-stage chance-constrained
optimization problem, in which the first step is aimed
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at fulfilling a probabilistic robustness constraint, and
the second step maximizes the performance of detection
with respect to a given class of faults;

• The introduction of a computationally tractable frame-
work for the solution of the chance constrained problem,
through a randomization technique where the results
of the so-called scenario approach are extended to the
present case, and theoretical guarantees are given;

• An illustration of the applicability of the proposed
framework, through a numerical simulation study on a
three-tank uncertain nonlinear system.

A distinctive, practical advantage of the proposed random-
ization technique is that its implementation requires only the
availability of a discrete number of samples from the healthy
behaviour of the system, which can for instance be obtained
from historical data.

This paper has the following structure. Section II describes
the nonlinear uncertain system under study and its faults,
and provides the formal definition of the proposed threshold
set design problem. The proposed framework, probabilistic
solution approach, is described in Section III, while the
randomization technique and the theoretical results extending
the scenario approach are presented in Section IV. Finally,
simulation results and concluding remarks are provided in
Section V and VI, respectively.

II. PROBLEM STATEMENT

This section provides a formal description of the fault
threshold design problem. We first present the general un-
certain nonlinear system dynamics, and then we introduce a
fault detection observer producing a time-varying dynamic
residual. Finally we provide a formulation of the problem
on which our novel probabilistic framework will be based.

A. System Dynamics
Consider a nonlinear uncertain discrete time system, de-

scribed as:{
xk+1 = g(xk, uk) + η(xk, uk, wk) + φ(xk, uk, fk)

yk = xk + vk
, (1)

where k ∈ N is the generic discrete time index and
xk ∈ Rn, uk ∈ Rm denote the state and input variables,
respectively. g : Rn × Rm 7→ Rn represents the nominal
healthy dynamics, while η : Rn×Rm×Rp 7→ Rn describes
the effect on the system dynamics of the process modelling
uncertainties wk ∈ Rp. φ : Rn × Rm × Rq 7→ Rn is the
fault function, which is characterized by an unknown time
varying fault parameter vector fk ∈ F ⊆ Rq , such that
φ(xk, uk, 0) = 0, ∀xk, uk and the following holds.
Assumption 1. No fault acts on the system, that is fk = 0,
for 0 ≤ k < kf , with kf being the fault occurrence time.
Moreover, the variables xk and uk remain bounded before
and after the occurrence of a fault, i.e., there exist some
stability regions S = Sx × Su ⊂ Rn × Rm, such that
(xk, uk) ∈ S,∀ k.
Remark 1. As in this paper we consider only fault detection,
and not fault isolation, it suffices to consider a fault class

containing the single fault function φ and assume its param-
eterization is capable of representing any possible fault to
which the system can be subjected.

Finally, yk ∈ Rn is the measurement vector, where it is
assumed for the sake of simplicity that the state vector is
completely measurable, with the extension to input-output
systems being addressable as in [17]. We also assume the
presence of a measurement noise vk ∈ Rn.
Assumption 2. wk and vk are random variables de-
fined on some probability spaces (W,B(W),PW), and
(V,B(V),PV), respectively, where W ⊆ Rp, V ⊆ Rn, B(·)
denotes a Borel σ-algebra, and PW, PV are a probability
measure defined over W, V, respectively. Furthermore, wk
and vk are not correlated and are independent from xk, uk
and fk.
Remark 2. It is important to note that, as in [16], [18], we
do not require the sample spaces W, V and the probability
measures PW, PV to be known explicitly, as it will be
explained in Section IV.

B. Residual Generator

We will adopt a model-based fault detection approach such
as in [19], and will generate a dynamic residual rk := yk−
ŷk as the state measurement error of the following nonlinear
estimator {

x̂k+1 = g(yk, uk) + Λ (ŷk − yk)

ŷk = x̂k
, (2)

where Λ , diag(λi, i = 1 . . . n) is a diagonal matrix, and
|λi| ≤ 1 denotes a filtering parameter chosen to guarantee
the stability of the estimator.

By using eqs. (1),(2), we can then compute the residual
generator dynamics as

rk+1 = Λ rk + δk + φ(xk, uk, fk) , (3)

where we introduced the stochastic process δk, which is the
random total uncertainty influencing the residual generator:

δk := g(xk, uk)− g(yk, uk) + η(xk, uk, wk) + vk+1 . (4)

Thanks to Ass. 1, 2 and eq. (4), it follows that δk is a random
variable on a probability space (∆k,B(∆k),Pδk), where ∆k

is produced by letting wk vary over W, and vk and vk+1

vary over V. We can now introduce a compact notation for
the residual generator described by eqs. (2),(3),(4), through
a mapping function Σ : Rn ×Rn ×Rn 7→ Rn defined as

Σ(rk, δk, φ(xk, uk, fk)) := rk+1. (5)

Remark 3. From (3),(5) it follows that the mapping from the
uncertain variable δk ∈ ∆k to the residual variables rk+1 is
measurable, so that the residual signal rk+1 can be viewed as
a random variable on the same probability space as δk.

Given these preliminaries, and for analysis purposes, it
is now possible to write the following two fundamental
concepts (see Fig. 1).
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Fig. 1. The faulty residual set RF′
+ can be thought as the image obtained

by computing the output Σ for the actual values r, x, u, respectively, of
the residual, state and input, and letting δ and f vary over ∆ and F′,
respectively. The healthy residual set R0

+ can be obtained by restricting to
F′ = {0}.

Definition 1. The time varying F′–faulty residual set RF′
k+1

at time index k + 1 is defined as the image of the sets ∆k

and F′ ⊆ F through Σ and φ, respectively, that is

RF′
k+1 :=Σ(rk,∆k, φ(xk, uk,F

′))

={r | r = Σ(rk, δ, φ(xk, uk, f)), δ ∈ ∆k, f ∈ F′}.
Consider now a special case of the above definition.

Definition 2. The time varying healthy residual set R0
k+1 at

time index k + 1 is defined as the F′–faulty residual set in
the case F′ = {0}.

Furthermore, the notation r0k ∈ R0
k denotes the generic

element of the healthy residual set. When there is no ambi-
guity, in the rest of the paper we will drop the index k, and
instead employ the index “+” to denote the value of a set
or variable at next time index, such as in r+ = Σ(r, δ, φ).

C. Fault Detection Threshold Design Problem

Having built a residual generator, the remaining central
problem in fault detection is designing a threshold with
suitable robustness and detection performance guarantees.
Traditional solutions to the deterministic robust threshold
design problem (see [20] for a survey) seek a threshold
bounding all possible values of the healthy residual r0,
thus guaranteeing zero FAR by design. In the norm-based
approach, a scalar threshold τ bounding ‖r0‖ is sought,
whereas in the limit checking approach a vector is found
such that its j–th component τ(j) bounds |r0(j)|. In order to
minimize the MDR, such thresholds should be made as small
as possible, a goal which we may express as

(I)

{
min
τ∈R

τ

s.t. ‖r0‖ ≤ τ
, (II)

 min
τ(j)∈R

τ(j)

s.t. |r0(j)| ≤ τ(j)
,

where problem (II) should be solved for each j = 1 . . . n
independently. If we interpret the thresholds resulting from
(I) and (II) in a set theoretic setting, it is easy to see that they
lead, respectively, to the smallest ball and axis-aligned box in
Rn containing the healthy residual set R0 (Fig. 2–a and 2–b).
Such solutions are clearly over-conservative, for two reasons.
First, they use simple and convex manifolds to bound the set
R0, which in general can have an arbitrary shape and be

non–convex, because of the assumed nonlinearity of both
the system nominal dynamics g and uncertainty function η.
Secondly, bounding the entire set R0 does indeed lead to a
deterministic guarantee on the FAR, but ignores the fact that
in real applications some values of r0 may have a negligible
probability of being produced, and as such they could be
excluded in the threshold design procedure.

It is the stated objective of the present paper to address
both the aforementioned sources of conservativeness. First
of all we will introduce an adaptive, parameterized set-
based threshold, which could approximate arbitrarily well
the shape of the set R0. In second place we will relax the
deterministic, hard constraints of problems (I) and (II) with
a probabilistic guarantee, thus reaching a desired level of
FAR. Finally, thanks to our assumption on the knowledge
of the functional dependence of the fault function φ on the
unknown but bounded fault parameter f , we will propose
a threshold design framework, which will aim at the same
time to reducing the MDR.

In order to formalize the above ideas, we first define Tk ⊆
Rn as an adaptive threshold set at time index k for fault
detection, and then introduce the following novel concept.

Definition 3. Given the residual generator function Σ and a
fixed α ∈ [0, 1], an adaptive threshold set Tk is said to be
probabilistically α–robust with respect to the random total
uncertainty δ ∈ ∆, if

V(T+) := P
[
r0+ /∈ T+

]
< 1− α , (6)

where V(T+) is the violation probability of the healthy
residuals r0+ ∈ R0

+.

Definition 4. A fault function φ is said to be detectable over
F′ ⊆ F by an adaptive threshold set Tk and a residual
generator Σ if ∀ f ∈ F′, ∃ r ∈ R, (x, u) ∈ S and δ ∈ ∆
such that r+ /∈ T+, with r+ = Σ(r, δ, φ(x, u, f)).

We now describe the adaptive threshold set Tk, using a
generalized indicator function IT(r, θk) : Rn × Rt 7→ R

parametrized by a time varying vector θk ∈ Rt, as follows:

Tk := {r ∈ Rn | IT(r, θk) ≥ c} . (7)

This yields a c–superlevel set [21] of IT , for any value of
c, as the adaptive threshold set Tk, while Def. 3 leads to
an expected FAR better then 1 − α. The following remark
describes better our idea into the above definitions and the
proposed probabilistic framework.

Remark 4. A fundamental point in understanding Def. 3, is
that the probabilistic condition (6) is expressed in terms of
the future healthy residual belonging to the future threshold
set. In fact, while at a given time the actual residual r is
a computable and as such deterministic quantity, its future
value r+ is a random variable, as it linearly depends on
the random variable δ. It thus makes sense to consider the
probability, measured with respect to the probability space
on which δ is defined, that in healthy conditions r+ will
belong to the set T+. The latter is a deterministic set that
shall be computed at the current time, as will be highlighted
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Fig. 2. A pictorial, intuitive comparison of different robust threshold
and residual evaluation approaches. Representative healthy values r0 of the
residual are drawn as filled black circles, while rare ones r̃0 are drawn
as empty circles. For convenience, in all cases the evaluation condition is
represented as membership in a set drawn with a tick line. a) Norm based.
b) Limit checking. c) The proposed, probabilistic set-based approach.

in the next sections. We stress again the fact that Def. 3
does not require T+ to be a (proper) subset of R0

+, but only
that T+ approximates it in the given probabilistic sense. This
distinction will be the key in designing the solution proposed
in Sect. III.

III. PROPOSED PROBABILISTIC FRAMEWORK

This section proposes a unified framework to design a
threshold set that is probabilistically α–robust and at the
same time maximizes the detectability over a given fault
parameter set F′. The threshold set T will be obtained
as the solution of the cascade of two chance-constrained
optimization problems.

A. Probabilistic Threshold Set Design
In the proposed approach we will assume the indicator

function IT(r, θ) to be a polynomial function of given degree
d, with θ containing the polynomial coefficients in a suitable
order. Denoting πξ(r) a vector of monomials of degree up
to ξ := dd/2e1, we can conveniently define IT(r, θ) :=
πξ(r)

>G(θ)πξ(r), where G(θ) is a matrix depending on the
coefficients contained in θ, which eventually is the quantity
to be solved for during the proposed design procedure.

We first formulate a chance-constrained optimization prob-
lem to obtain the minimum volume threshold set T that
fulfills Def. 3 for a user-designed α:{

min
θ

vol T

s.t. V(T) < 1− α ,
(8)

where vol T :=
∫
T
dr is the volume or Lebesgue measure

of T. The proposed optimization problem (8) is in general
non-convex and hard to solve, due to the numerical com-
plexity arising from the minimum volume objective, and the
probabilistic constraint. Following [22] and [23] to proceed
further, we restrict the range of our indicator function to be
non-negative which yields IT to be a polynomial sum-of-
squares (SoS) and G(θ) to be a symmetric Gram matrix.
We are now able to bound the objective function using the
relation:

vol T =

∫
T

dr ≤
∫
B
IT(r, θ) dr = trace(G(θ)M) , (9)

1d·e is the ceiling operator which returns the smallest integer greater than
or equal to its argument.

where B ∈ Rn is an arbitrary compact set so that T ⊆ B and
M := c−1

∫
B πξ(r)πξ(r)

>dr denotes the matrix of moments
of the Lebesgue measure on B in basis πξ(r). Thanks to (9)
and Def. 3, we can reformulate (8) as

min
θ,γ

γ

s.t. G(θ) � 0 ,

trace(G(θ)M) ≤ γ ,
P
[
IT(r0+, θ) ≥ c

]
≥ α .

(10a)

(10b)
(10c)

(10d)

Remark 5. Constraint (10b) imposes the positive semidef-
initeness of G(θ) in order to constrain IT to be SoS.
Moreover, in (10c) we introduced the auxiliary variable γ
to allow us to upper bound the objective function, using epi-
graphical reformulation [24]. Finally note that, as explained
in Remark 4 the probabilistic constraint in (10d) is measured
with respect to the underlying random variable δ.

It is intuitive that a minimum volume threshold set is
an effective, albeit heuristic strategy for maximizing fault
detection. A more rigorous investigation of this problem will
be presented in next section.

B. Maximization of Fault Detection

By looking at Ass. 1 and at Def. 1 and 4, the following
can be shown, justifying the quest for the smallest T.

Theorem 1 (Detectability). A necessary condition for the
fault function φ to be detectable over F′ during the evolution
of system (1) is that ∃ k ≥ kf so that RF′

k+1∩Tk+1 6= ∅, where
T denotes the complement of set T.

Anyway, this is not sufficient, as in general it may still
hold RF′

k+1 ∩ Tk+1 6= ∅, which means that at least one of
the possible realizations of the random variable δk will keep
the residual rk+1 inside Tk+1, even for k ≥ kf . Eq. (3)
reveals that this can easily happen when the fault and the
uncertainty have similar magnitude and opposite direction,
as in the trivial case δk = −φk. Our approach in the present
paper will be to maximize the probability of a successful
detection at each time step k, by making Tk as much distant
as possible from RF′

k , in the sense that is described next.
We will assume the availability2 of a description of the set

RF′ through a polynomial SoS generalized indicator function
IRF′ (r, ψ) := πξ(r)

>G(ψ)πξ(r) with the same degree d
and the same monomial basis πξ(r) as IT . By denoting ψ∗

the actual value of ψ so that IRF′ (r, ψ) ≥ c for all r ∈
RF′ , we are now in a position to formulate an optimization
problem for maximizing the distance between the threshold
set T and the faulty residual set RF′ :{

max
θ

‖ IT(r, θ)− IRF′ (r, ψ∗) ‖∞
s.t. ‖θ‖∞ ≤ c̄ ,

(11)

where c̄ is a given constant parameter. The objective function
aims at maximizing the Chebyshev distance between IT and

2A simple way to obtain it is to solve a problem analogous to (10), where
the constraint (10d) is imposed deterministically on all elements of RF′ .



IRF′ , which is also known as the polynomial height [25].
Since both of them share the same monomial basis vector
πξ(r), this leads to the maximization of the distance ‖G(θ)−
G(ψ∗)‖∞ between their Gram matrices [25]. Notice that the
second constraint in (11) is added to ensure that the solutions
remain bounded. We now propose a cascade of two chance-
constrained optimization problems (10) and (11), which is in
general hard to solve.

C. Cascade Problem Formulation Scheme
In order to attain our stated goal of obtaining a prob-

abilistically α–robust threshold set which also maximizes
detecttion of the fault function φ in the sense of Def. 4
and of Subsect. III-B, we propose a cascade of two chance-
constrained optimization problems as follows:

min
θ,γ

γ

s.t. G(θ) � 0 , trace(G(θ)M) ≤ γ
P
[
IT(r0+, θ) ≥ c

]
≥ α

,


max
θ

‖G(θ)−G(ψ∗)‖∞
s.t. G(θ) � 0 , trace(G(θ)M) ≤ γ∗

P
[
IT(r0+, θ) ≥ c

]
≥ α

,

(12a)

(12b)

where the quantity γ∗ is the optimal cost obtained by solving
the first stage (12a), while (12) has to be solved sequentially
in a lexicographic (multi-objective) sense [26]. Note that
the unnecessary constraint in (11) is dropped due to the
introduced bound in (12b).
Remark 6. The first stage problem (12a) aims at determining
the minimum volume threshold set T subject to the prob-
abilistic α–robust constraint, but in doing so is ignoring
any information on the faulty residual set RF′ . This could
possibly lead to unsatisfactory detection properties due to
a large intersection T ∩ RF′ . The goal of the second stage
problem (12b) is then to find a new parameter θ, leading to a
new threshold set T with the same robustness guarantee and
a volume which is not worse than the one resulting from the
solution of problem (12a), but which is as distant as possible
from the set RF′ . The effectiveness of such improvement
may, anyway, be limited by the degree ξ of the monomial
basis used by IT and IRF′ [23, Lemma 1].

The proposed optimization problem (12) is however non-
convex and hard to solve due to chance constraints being
in general difficult to enforce. In the following section, we
provide a computationally tractable randomized approach,
together with a rigorous theoretical analysis of its properties.

IV. COMPUTATIONALLY TRACTABLE METHODOLOGY

Chance-constrained optimization problems are known to
be non-convex and hard to solve [27], [28], however they
received increasing attention due to recent developments
toward computationally tractable approaches [29]. In partic-
ular, randomization techniques allow to approximate chance
constraints in an equivalent sense without imposing any
restriction on the probability distribution and geometric infor-
mation of uncertain variables. The basic idea is very simple:

chance constraints are substituted with finitely many hard
constraints that correspond to samples from the uncertainty
realizations [30]. Using this approach, we are now able to
formulate the following tractable optimization problem:

min
θ,γ

γ

s.t. G(θ) � 0 , trace(G(θ)M) ≤ γ ,
IT(r

0,(i)
+ , θ) ≥ c , i = 1, 2, · · · , N

max
θ

‖G(θ)−G(ψ∗)‖∞
s.t. θ � 0 , trace(G(θ)M) ≤ γ∗ ,

IT(r
0,(i)
+ , θ) ≥ c , i = 1, 2, · · · , N

(13a)

(13b)

where r
0,(i)
+ = Σ(r, δ(i), φ(x, u, 0)), and δ(i) ∈ ∆ are

samples of the random variable δ. We assume to be able
to generate samples based on the knowledge of η, and
availability of the uncertainty samples from W and V. Should
this knowledge be not available, samples can still be obtained
using historical data recorded in healthy conditions from
system (1) and by inverting eq. (3).

The link between the chance-constrained program and
the quality of its approximation is the number of samples
N that should be considered in order to reach a given
level of confidence. This has been rigorously investigated
in the scenario approach, a powerful randomized method
developed recently (see [31] and the references therein). The
crucial requirement to invoke these results is the convexity
of the optimization problem in the decision variables, but
unfortunately in the present case this does not hold due
to use of the Chebyshev distance in the objective (13b).
It is, however, easy to show that (13b) can be transformed
into a number of different convex programs. As it has been
shown in [5, Lemma 4.3], the set of the solutions of (13b)
is equivalent to the union of the solution sets of ξ different
convex programs, where we recall that 2ξ is the degree of
IT(r, θ). The following remark highlights some issues to be
addressed in order to extend the theoretical results in [31]
and the experimental two-step solution of [32] to the cascade
structure of the optimization formulation (13).

Remark 7. Applying the results in [31, Th. 1] leads to
computing the number N of samples as a function of the total
degrees of freedom of problem (13a) and of the confidence
level with which it is desired to approximate (12a). Solving
(13a) then yields an optimal solution (θ∗a, γ

∗), the last term
of which is used as a fixed constraint for solving (13b).
Based on [31, Th. 1], there exists theoretical guarantee for
feasibility of solution (θ∗a, γ

∗), however here we compute θ∗b
which might not be feasible for (12a) together with γ∗. It is
important that the same N is used for both (13a) and (13b):
otherwise, there are no guarantees that the program (13b),
which is based on the solution of (13a), is feasible. This is
due to γ∗a being a random variable and depend on the specific
value of N .

In [31] the existence and uniqueness of the tractable
program solution is assumed. This was later relaxed by



applying a tie-break rule (e.g., lexicographic rule) and se-
lecting among the optimal solutions the one with the best
Euclidean distance [31, Section 2.1.5]. This is, however, not
true in general for differently structured problems, such as the
cascade formulation in (13), since in [31] a single tractable
optimization program was considered. More specifically, a
tie-break rule can be employed if the non–unique optimal
solutions are obtained regardless of the number N of samples
of the uncertain variable. As it is explained in the above
remark, this cannot be guaranteed here in (13) due to the
fact that the optimal solution γ∗ is a random variable and
depends on N . The following extends the result obtained in
[31] to the present setting.

Theorem 2. Consider υ := [θ, γ]> ∈ R` to be the
augmented vector of all the decision variables of (13). Let
β ∈ [0, 1] and N ≥ N(ε, β, `), where

N(α, β, `) := min

{
N ∈ N

∣∣∣ d `−1∑
i=0

(
N

i

)
(1− α)iαN−i ≤ β

}
.

Then, the optimizer υ∗ := [θ∗b , γ
∗]> of the randomized

cascade convex program (13) is a feasible solution of the
chance-constrained cascade optimization problem (12) with
confidence level (1− β), in the average.

Proof. Due to the non-convexity introduced by the Cheby-
shev distance, we have to recast the second stage problem
(13b) into ξ sub-programs. By denoting with Ψj the feasible
solution set of the j–th subproblem it is clear that the
optimizer of (13b) can be found in

⋃ξ
j=1 Ψj [5]. For clarity

the proof will be broken down into three steps: a) application
of the scenario approach of [31] to each individual sub-
program; b) extension to the ξ sub-programs; c) theoretical
conditions for the optimizer υ∗ := [θ∗b , γ

∗]> to be a feasible
solution of (12). Let us now denote with T(θ∗b ) the threshold
set T obtained when IT is parameterized by a given θ∗b , and
recall that V(T(θ∗b )) is the violation probability (Def. 3).

a) Applying the existing results in [31] to each sub-
program, we have for all j ∈ {1, · · · , ξ}:

PN
[
V(T(θ∗bj )) ≤ 1− α

]
≤
∑`−1

i=0

(
N

i

)
(1− α)iαN−i.

b) Considering that V(T(θ∗b )) ⊆ ⋃ξj=1 V(T(θ∗bj )), we can
readily extend the aforesaid results to ξ sub-programs
as follows:

PN [V(T(θ∗b )) ≤ 1− α] ≤

≤ PN
[⋃ξ

j=1
V(T(θ∗bj )) ≤ 1− α

]
≤
∑ξ

j=1
PN
[
V(T(θ∗bj )) ≤ 1− α

]
< ξ

∑`−1

i=0

(
N

i

)
(1− α)iαN−i ≤ β.

Notice that the obtained bound is the desired assertion
as it is stated in the theorem. However, the most
important part of the proof is to extend this result to
the cascade setup of the present optimization problem
in (13).

c) In order to proceed let us first define an indicator
function 1{·} : [0, 1] 7→ {0, 1} that indicates whether
the inequality in its argument, which is a function
of a random variable, holds or not. We now have to
provide a new bound for the following N -fold prod-
uct conditional probability PN

[
V(T(θ∗b )) ≤ 1− α

∣∣γ∗]
which is a random variable with respect to γ∗ due
to the fact that γ∗ is an optimal solution of the first
step optimization problem and it depends on specific
random samples. To this end consider the following
N -fold product conditional expectation problem:

EN
[
1{V(T(θ∗b ))≤1−α}

∣∣∣γ∗]
= 1 · PN

[
V(T(θ∗b )) ≤ 1− α

∣∣∣γ∗]
+ 0 · PN

[
V(T(θ∗b )) ≤ 1− α

∣∣∣γ∗]
= PN

[
V(T(θ∗b )) ≤ 1− α

∣∣∣γ∗] .
(14)

The best approximation of PN [V(T(θ∗b )) ≤ 1− α|γ∗]
is given by EN

[
1{V(T(θ∗b ))≤1−α}

∣∣γ∗] which is a func-
tion of random variable γ∗. The best here means that
one cannot do any better than this due to the fact
that PN [V(T(θ∗b )) ≤ 1− α|γ∗] is itself a function of
random variable γ∗. Finally, we calculate the above
quantity by the law of the unconscious [33] as follows:

(15)EN
[
EN

[
1{V(T(θ∗b ))≤1−α}

∣∣∣γ∗]]
=
∑

ν
EN

[
1{V(T(θ∗b ))≤1−α}

∣∣∣γ∗ = ν
]
PN [γ∗ = ν]

= EN
[
1{V(T(θ∗b ))≤1−α}

]
= PN [V(T(θ∗b )) ≤ 1− α] ,

where the last equation is due to the partition theorem.
The proof is completed by noting that the final expression
in (15) is already bounded in part (b) of the proof.

V. SIMULATION STUDY

In this section a demonstration of the proposed scheme
will be given, by using the well known three-tank benchmark
system [19]. Using the proposed approach in [23], that
translates the problem (13) into linear programs, at each time
step the problem (13) will be solved using the Matlab Opti-
mization Toolbox (linprog), and the fault detection condition
IT(r, θ) < c = 1 will be tested.

A. Description of system and faults parameters

For simulating the nominal dynamics function g in the
observer (2), the following nominal values have been chosen:
A = [1 1.3 2] m2 for the tanks’ cross-section, Ap =
[0.2 0.1] m2 with unitary outflow coefficients for the pipes
one, and Ad = [0.1 0.1 0.1] m2 with outflow coefficients
equal to 0.5 for the drains. Instead, when simulating the
physical system (1), we assumed w and the function η
to account for a uniformly distributed uncertainty in the
parameters, ranging up to 5% for the tanks’ cross section,
15% for the pipes’ and drains’ cross section and levels, and
up to 20% for the pipes’ outflow coefficient. The initial levels



of the tanks were set to x(0) = [6 7 3] m while the pump
inflows were computed as u1(k) = 0.2 · cos (0.5 · kTs) + 0.8
and u2(k) = 0.1 · sin (0.1 · kTs) +1. The sampling time was
Ts = 0.1 s, and the filter coefficients λi = 0.85. A 30%
partial shutdown of pump no. 1 is introduced at time Tf =
20 s, by defining a fault function φ(x, u, f) = [−u · f 0 0]>

with f ∈ F′ = {0.3}.
B. Numerical implementation

A degree d = 4 was chosen for the polynomials IT and
IRF′ , and without loss of generality the boundary value of
the superlevel set c was fixed to be one. Following Theorem
2, at each time step, two sets of N = 512 samples of the
residual r+ one step ahead were generated by a Monte Carlo
method, one in the healthy (f = 0) and one in the faulty
(f = 0.3) hypothesis, using the available information on
the function η and on the domains W and V to which w
and v belong. In order to approximate an hyper-rectangle
deterministic threshold set, against which to compare our
results, an additional simulation was run with a higher
number N ′ = 216 of samples per each time step.

The faulty samples, denoted by r
F′,(i)
+ , are used to find

the parameter ψ∗ needed to describe the faulty residual set
RF′ (Subsect. III-C), by solving the additional problem:

min
ψ,λ

λ

s.t. G(ψ) � 0 , trace(G(ψ)M) ≤ λ ,
IRF′ (r

F′,(i)
+ , ψ) ≥ c , ∀ i = 1 . . . N

. (16)

The healthy samples, denoted by r
0,(i)
+ , are instead used

to solve problem (13). Both (13) and (16) are indeed a
semidefinite program on the polynomial coefficients θ and
ψ, but for numerical efficiency they can be converted to
linear programs by introducing an additional set of artificial
constraints requiring the polynomials to be positive on a
dense grid of points in the integration domain B, as described
in [23]. The moment matrix M is computed only once for
both polynomials, as long as B is of a suitable size as
to be held constant during the simulation. This is another
advantage of having chosen the same monomial basis for
both IT and IRF′ .

C. Simulation Results

In Figure 3 it is possible to see an example of the resulting
faulty residual set RF′ obtained from solving (16), and of
the threshold set T obtained first from (13a) and then from
(13b).

It is very interesting, in order to show the advantage
of the proposed scheme with respect to an adaptive, but
deterministic approach leading to hyperrectangular sets, to
analyze the ratio of the volume of the proposed polynomial
superlevel set to a deterministic hyperrectangular one, as
mentioned earlier. As it can be seen in Figure 4, before the
fault occurrence time on average the obtained probabilistic
threshold set volume is always smaller than about 57% of the
hyper-rectangular one, a fact allowing for better detectability

Fig. 3. An example of the sets obtained using 4th order polynomials as
indicator functions. The blue color denotes the threshold set T obtained by
solving problem (13b). The red color shows the faulty residual set RF′

obtained by solving problem (16).
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Fig. 4. Ratio between the volume of the proposed polynomial superlevel
threshold set and of an equivalent deterministic hyperrectangular set.

performances with all other conditions being kept equal.
Finally, the behavior of the polynomial IT(r, θ∗b ) applied to
the actual computed residual r+ is shown in Figure 5, where
the correctness of the detection decision using the proposed
scheme is testified by the polynomial dropping below the
boundary value (c = 1) after the fault onset time Tf = 20 s.
No false alarms are reported before this time.

VI. CONCLUSIONS

In this paper a novel approach to the design of robust
detection thresholds for uncertain nonlinear systems was pro-
posed, leading to theoretically sound probabilistic guarantees
on the performance level in terms of expected false alarm
ratio and fault detection. This problem was cast as a bi-
level cascade convex optimization program, where in the first
stage the volume of the resulting polynomial threshold set is
minimized while meeting a desired bound on the probability
of false alarms. In the second stage, the previous solution
is used as a starting point for optimizing the threshold
sensitivity to a given class of faults, while maintaining the
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Fig. 5. Time behavior of the polynomial IT(r, θ∗b ) applied to the residual
r+. The drop below the boundary value c = 1 after the fault time (20 s)
indicates a successful detection.

desired level of false alarm probability. The complete chance-
constrained problem is then solved in a tractable scheme
by relying on randomization techniques, while providing
theoretical guarantees on the feasibility of the solution with
high confidence level in the average. Finally, simulation
results on the well known three-tank benchmark are provided
along with useful insights on the advantages with respect to
established deterministic robust thresholds.
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