

Delft

University of
Technology

Navigation to a human
in motion by using
points of interest

Tim Nagelkerke

Challenge the future

M
S

c
th

e
si

s
in

 G
e

o
m

a
ti

cs

On cover:

Abstract result of the SEA* method implemented in the outdoor implementation using real

GPS data, scenario 2, start position 3. The map used for visualization is obtained from

osmbuildings.org.

Navigation to a human in motion
by using points of interest

Master of Science Thesis

By

Tim Nagelkerke

Student number: 4083792

E-mail: t.nagelkerke@student.tudelft.nl

June, 2016

In partial fulfillment of the requirements for the degree of

Master of Science

in Geomatics

at the Delft University of Technology

to be defended publicly on Monday June 27, 2016 at 10:45 AM.

First mentor: Zlatanova, Dr.ing. S.

Second mentor: Diakite, A.A.

Co-reader: Quak, Drs.C.W.

Delegate of the board of examiners: Burg, Ir. L.P.J. van den

Faculty of Architecture and the Built Environment - Delft University of Technology

An electronic version of this thesis is available at: http://repository.tudelft.nl/

Delft

University of
Technology

http://repository.tudelft.nl/

Abstract

Navigating to a human target is underexposed in the current literature. However, there are cases

where it is necessary to get to the moving target as fast as possible. This thesis supports navigation of

a person to another person in motion that they lost or need. In this way, children, elderly, family,

coworkers and friends could be found more quickly.

This research thesis proposes the Semantically Enriched A * (SEA*) method to use semantics, in the

form of points of interest, to determine the prediction of the target and uses this prediction to

approach the target. Overall the SEA* method uses the positive components of the iterative A*

algorithm, semantics and the direction of the target to predict where the target is going to, to

successfully reach the target. Points of interest, landmarks, are critical points to check where a person

is moving towards. These static locations are promising for navigating to a person in motion.

Estimating the predicting location of the target is recommended by first limiting down the points of

interest by the approaching points of interest by the target and then using the point of interest that

is the closest to the target. This process gives a good prediction of the target in both implementations.

The proposed SEA* method is tested both in an indoor environment, as in an outdoor environment.

The SEA* method shows promising results in both the simulated indoor environment, represented by

a 2D square regular grid, as in the outdoor environment, represented by a road network, using real

GPS data. In this thesis the SEA* method is compared to the iterative A* approach and shows

promising improvements.

This thesis provides a framework that could be implemented to always find a person in motion or find

them faster by using shortcuts to get to this person. A variety of different spatial models could

implement the SEA* algorithm as long as the spatial model supports the A* algorithm, is able to

translate the positions of the user and the target to the spatial model and supports adding points of

interest to the model.

Finally this research discusses further implementations of this method. Future research must provide

answers to the questions if this method also works in a real-time case or if it works using a 3D spatial

model to support 3D indoor navigation.

Table of Contents

1. Introduction ... 1

1.1 Motivation .. 1

1.2 Research objective ... 5

1.3 Research scope ... 6

1.4 Research contributions ... 6

1.4.1 Scientific contribution ... 6

1.4.2 Societal contribution ... 7

1.5 Thesis outline .. 8

2. Theoretical background ... 9

2.1 Spatial models .. 9

2.1.1 Regular grids .. 10

2.1.2 Irregular grids .. 15

2.1.3 Hierarchical techniques ... 19

2.1.4 Discussion .. 19

2.2 Semantic modelling .. 20

2.3 Pathfinding algorithms ... 21

2.2.1 The A* algorithm ... 22

2.1.2 The incremental A* algorithm ... 27

3. Conceptual framework .. 31

3.1 Conceptual design .. 32

3.1.1 System requirements .. 32

3.1.2 The system architecture: Semantically Enriched A* (SEA*) .. 34

3.1.3 Input data .. 36

3.1.4 Output data ... 37

3.1.5 System parameters, terms and concepts .. 37

3.2 Conceptual components .. 38

3.2.1 The spatial model .. 38

3.2.2 The points of interest .. 42

3.2.3 Localization of the user and the target ... 44

3.2.4 Prediction of the target ... 46

3.2.5 Path planning algorithm .. 49

3.2.6 Detailed system flow ... 52

4. Implementation: Indoor environment ... 55

4.1 Pre-processing .. 55

4.1.1 The indoor dataset .. 56

4.1.2 Creating the spatial model .. 57

4.1.3 Calculating the approached points of interest ... 58

4.1.4 Determination of the points of interest .. 60

4.2 Scenario analysis .. 62

4.2.1 Scenario 1: Target moves from the hall to the coffee corner, user is in a study room 62

4.2.2 Scenario 2: Target leaves the building during closing hours .. 66

4.2.3 Scenario 3: Student has a lecture on the first floor. ... 70

4.2.4 Scenario 4: Visitors visit an event ... 74

4.3 Overview of the results .. 76

4.4 Discussion of the requirements ... 77

5. Implementation: Outdoor environment .. 79

5.1 Pre-processing .. 79

5.1.1 The spatial model .. 79

5.1.2 Adding the points of interest .. 82

5.1.3 The positioning of the target .. 84

5.1.4 The prediction of the target .. 84

5.1.5 Path planning algorithm .. 85

5.2 Scenario analysis .. 85

5.2.1 Scenario 1: Target is moving, but stops in between. .. 85

5.2.2 Scenario 2: Target is moving, without stopping. .. 90

5.3 Overview of the results .. 94

5.4 Discussion of the requirements ... 95

6. Conclusions and future work .. 97

6.1 Research questions .. 97

6.2 Discussion ... 101

6.3 Future work .. 102

Bibliography... 105

List of figures

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26
Figure 5.1
Figure 5.2

Navigation to a static and dynamic end point
2D square grid overrepresentation of three obstacles
2D hexagonal grid overrepresentation of three obstacles
2D triangular grid overrepresentation of three obstacles
Four adjacency within a 2D square grid
Eight adjacency within a 2D square grid
Adjacency in a 2D hexagonal grid
Twelve adjacency in a 2D triangular grid
Determining the adjacent triangles in a 2D triangular grid
The visibility graph
Four approaches for mesh navigation
Relation Voronoi Diagram and Delaunay Triangulation
Constrained Delaunay Triangulation
Waypoints and navigation mesh
A building using semantics
Search space of Dijkstra, A* and greedy Best First Search
Incremental A* search results in following the target
Desired behavior for the incremental A* search
Global overview of the conceptual framework, the SEA* method
Rasterization of vector data
Rasterization, from vector to a square grid
Overrepresentation of a passage
Navigable in the model, but not in reality
Retrieving the targets up-to-date location
Six different cases as input for the path planning algorithm
Detailed work flow of the SEA* method
Floorplan of the faculty of architecture of the University of Delft
Selected part from the floorplan of the faculty of architecture
2D square grid representation
Determination of all the doors/exits in the model
Two examples of selecting the prediction points based on the direction of the target
The prediction points based on the direction of the target with obstacles
Special cases to determine points of interest
All points of interest in a normal situation
Scenario 1 initialization of the target and the user
Result scenario 1 with the coffee machines as highest weights
Result scenario 1 with the Geolab with the highest weight assigned
Result scenario 1 with equal weights
Scenario 2 initialization of the target and the user
Result scenario 2 with higher weights for the exit doors
Result scenario 2 with equal weights
Result scenario 2 where the user is between the target and the destination of the target
Result scenario 2 where the user is approaching the path of the target from the left
Result scenario 2 where the user is approaching the path of the target from the right
Scenario 3 initialization of the target and the user
Result scenario 3 with higher weights for the stairs and elevator
Result scenario 3 with equal weights
Result scenario 3, navigating coffee machine, with higher weights for the stairs and elevator
Result scenario 3, navigating coffee machine, with equal weights
Scenario 4 initialization of the target and the user
Result scenario 4 with a higher weight for the event
Result scenario 4 with equal weights
Campus TU Delft
Mapping GPS location in the water to the nearest node

2
11
11
11
12
12
13
14
14
15
16
17
17
18
20
23
29
30
34
39
40
40
41
46
51
53
55
56
56
57
58
59
60
60
61
63
63
64
65
66
66
68
68
69
69
71
71
72
72
73
74
74
80
80

Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19

Mapping GPS location in a building to the nearest node
Points of interest in the outdoor environment
GPS log campus TU Delft per 10 seconds
GPS log data scenario 1
Starting positions of the user for scenario 1
Result scenario 1, position 1
Result scenario 1, position 2 SEA*
Result scenario 1, position 2 iterative A*
Result scenario 1, position 3 SEA*
Result scenario 1, position 3 iterative A*
GPS log data scenario 2
Starting positions of the user for scenario 2
Result scenario 2, position 1 SEA*
Result scenario 2, position 1 iterative A*
Result scenario 2
Result scenario 2, position 3 SEA*
Result scenario 2, position 3 iterative A*

81
82
83
85
86
87
87
88
88
89
89
90
91
91
92
92
93

List of tables

Table 2.1
Table 3.1
Table 4.1
Table 4.2
Table 5.1

Decomposition of spatial models
Data input parameters for the SEA* method
Weights per point of interest during a break for a male geomatics student
Summary of the results: indoor implementation
Summary of the results: outdoor implementation

10
36
62
75
93

List of algorithms

Algorithm 2.1
Algorithm 2.2
Algorithm 3.1
Algorithm 3.2
Algorithm 3.3
Algorithm 3.4
Algorithm 3.5
Algorithm 3.6
Algorithm 3.7
Algorithm 3.8

The A* algorithm
Path creation
Rasterization
Neighbor function
Position to grid
Prediction points
Approach 1: using weights
Approach 2: Using the closest distance
Determine path for the user
Determine movement for the user

26
27
40
41
46
48
49
49
52
52

List of abbreviations

GPS: Global Positioning System

MTS: Moving Target Search

TIN: Triangular Irregular Network

DT: Delaunay Triangulation

CDT: Constrained Delaunay Triangulation

SEA*: Semantically Enriched A*

POI: Point of Interest

2D: Two Dimensional

3D: Three Dimensional

API: Application Programming Interface

FRA*: Fringe-Retrieving A*

1 | P a g e

1. Introduction

1.1 Motivation

In the last decade the navigation market has been highly developed and continues to develop. There

is a huge boost in the number of navigation devices and applications used worldwide in the last few

years (European GNSS Agency, 2013). The navigation market exists out of several applications that

support pathfinding and guidance, from car navigation systems (MarketsandMarkets, 2011, TomTom,

2016 & Garmin, 2016), which navigate a user to a preferred destination, to indoor applications

(MarketsandMarkets, 2014, Infsoft, 2016 & Fallah et. al., 2013), which calculates a route to find the

right room for a meeting. Due to the development of mobile phones and the ability to use internet

services, many mobile applications have been developed to ease the user.

The current applications that support navigation all focus on the navigation from the user to a static

destination. In this way pathfinding, the process of finding a path to the desired end point, calculates

a path from the current position of the user to the position of the static destination. More advanced

applications also update the current position of the user and recalculate the path to the static

destination, so that if the user makes an error, the user still knows how to continue their way to the

destination. Navigation to a static destination is fine if the user wants to find a specific building or

room, which are all static places that always have the same geographical position. Although, there is

an emerging need for applications that provide a path towards a dynamic destination (Zlatanova et.

al., 2013), no applications are found to navigate a human to a dynamic destination. This dynamic

destination could for example be:

- A child that is lost and has to be found

- Finding your partner in a big city or big building

- A family member with Alzheimer that needs help to find the way back home

- A co-worker during an emergency in a crowded place

- A scarce tool in a hospital that is expensive and is used frequently in different operating rooms

A dynamic destination could therefore be defined as: a target, which is someone or something, in

motion that needs to be found or is needed.

2 | P a g e

By navigation to a static destination the path is calculated once and then the user can continue this

path until it reaches the end point. In this way, the path can be either the shortest path, the fastest

path or a user preferred path. By navigation to a dynamic destination it is not possible to determine

the shortest, fastest or user preferred path, because the target is moving and the destination will

change over time. Navigating to a previous location of a dynamic end point has no guarantees to

eventually meet the dynamic target. Figure 1.1 shows the difference between navigation to a static

end point and navigating to a dynamic end point. On the left, a user (A) is navigating to for example a

coffee machine (B), where the shortest and fastest path is visualized by the arrow. The coffee machine

is static and therefore the user will reach its destination. On the right, a user (A) is navigating to a

person in motion (B). The user navigates to the person, but because the person is moving the user

might not meet this person. In this case, the user and the person never meet each other when there

are no multiple measurements of the position of the target.

Figure 1.1, left: navigation to a static end point, right: navigation to a dynamic end point

Current buildings and city centers have signs to support navigation to a location. Current signs support

navigation to static end points, but cannot solve navigation to dynamic targets unless you promised

the target to meet at a specific place. However, verbal communication is not always possible between

two people. Therefore, there is a lack of possibilities to navigate to a person in motion. Especially for

a user that wants to navigate to a person that cannot verbally contact the user, like small children or

people with dementia.

Current navigation systems consist out of a few techniques:

- Positioning of the user

- Positioning of the target

- Spatial model of a building or a city

- Algorithm to calculate the path

3 | P a g e

Both the position of the user and the target, the starting point and the end point, has to be known to

calculate a route. Based on the methods to obtain an accurate position of the user, there is made a

distinction between outdoor and indoor navigation. Outdoor navigation is based on the Global

Positioning System (GPS) that gives a high accurate position of the user. However, GPS does not have

accurate measurements to obtain the position in an indoor environment, due to the weak signal

strength. Therefore other positioning systems like RFID, Bluetooth, WLAN, UWB, Cellular-Based, IR

and Ultrasonic (Adalja, 2013) are used to determine the accurate positioning of the user within an

indoor environment. Nowadays systems lets the user enter an end destination that is static, but this

could also be a person in motion that is being tracked by one of these systems.

There also has to be a spatial model that represents the terrain that can be used for navigating

purposes. Algfoor et al. (2015) give a summary of possible spatial models used in the fields of gaming

and robotics. They make a distinction between regular grids, irregular grids and hierarchical

techniques to represent the terrain into a spatial model.

When there is an accurate location of both the target and the user and there is a spatial model, there

must be a way to calculate the path from the starting point to the end point. In case of navigating to

a static destination the A* algorithm is widely used and examined in the navigation domain (Fallah et.

al., 2013). This algorithm uses a heuristic value to speed up the process to find the fastest path

possible from the starting point to the end point. The A* algorithm always find a path, when there is

a path available between two points. Also the A* algorithm is faster than other path finding

algorithms, like the Dijkstra algorithm. Therefore this research focusses on using the A* algorithm. A

more in depth overview of the A* algorithm is described in chapter 2.

In other domains, like robotics and the gaming industry, navigating to a moving target is widely

explored and implemented under the term Moving Target Search (MTS). MTS is introduced by Ishida

and Korf (1991) and is a dynamic path planning problem where the user is trying to catch a moving

target with minimum movement cost. This problem is applicable to computer games, where

characters have to follow or attack each other, or to robotics where robots has to steer to a moving

target (Nussbaum and Ÿorükcü, 2015). Sun, Yeoh and Koenig (2010) offer two approaches to deal with

MTS, either an offline or an online approach.

The offline approach uses all possible parameters to find the best strategy for the user, but because

it calculates all the possibilities, it is not efficient for a large environment. Also the position of the

4 | P a g e

moving target is not known in advance, wherefore this approach is not suitable for navigation to a

moving person.

The online approach only uses the information that is available at the time and uses this to navigate

to the moving target. While the user gets more information if the target is moving, it will update the

information that is available and calculate a new path. Two algorithms that use the online approach

are real-time search algorithms (Ishida and Korf, 1991) and incremental search algorithms (Sun, Yeoh

and Koenig, 2009).

The real-time search algorithms only deal with a small amount of time before the target is moved and

the calculation has to be adjusted. The disadvantage is that when the user moves with only the

available information, the user might move in a suboptimal way. Undeger and Polat (2007) developed

a real-time edge follow alternative reduction method, which uses perceptual information. Undeger

and Polat their method has improved in contrast to previous real-time search algorithms like real-

time A* and real-time A* with n-look-ahead depth (Korf, 1990). Sun, Yeoh and Koenig (2010) mention

that real-time searches are really memory intensive and therefore do not scale well with larger

environments. Therefore, these algorithms are not applicable for large buildings or outdoor

environments.

Incremental search algorithms on the other hand first calculates a path and then starts to move

towards the moving target (Sun, Yeoh and Koenig, 2010). Incremental search algorithms are optimal

to calculate a path in a large environment and are all based on the iterative use of the A* algorithm,

which calculates the path every ‘n’ seconds and therefore updates the path to let the user reach the

target. The incremental A* algorithm is the leading algorithm for navigating a user towards a moving

target, in games and the robotics domain. Therefore this research will examine these kind of

algorithms that could be used to navigate a person towards a moving target.

However, these concepts could be used to navigate a person within a building to a moving target,

navigating persons differs from navigating robots or game characters. Persons do behave differently,

while robots and game characters have to be programmed. Therefore, the end position of a gaming

character can be known in advance. When there is a person walking around in a building, the end

destination of this person is unknown. The incremental A* algorithm has the limitation that the user

might follow the target, instead of finding a faster way towards the target by using a shortcut. Also

when a target is still moving, the target will be followed and never reached.

5 | P a g e

Also different from robots is that people can avoid obstacles in real-time. Therefore, the map

representation has not to be very precise and small or dynamic obstacles have not to be modelled.

Humans also differ from game characters in the way that they walk toward something within a

building, for example a door, a room, the coffee machine or a staircase.

These differences can be solved by using the semantics of a building. Semantics are a way to give

meaning to a model, so that the model knows where the important features for a certain person are.

A person in motion is always walking toward an interesting place for him or her. These places can be

defined as points of interest. Semantics of the building could be used to check where a dynamic target

is heading to and to navigate towards its prediction. The points of interest for a specific dynamic target

are then used as prediction points of this dynamic target. In this way, semantics can solve the issue

that the user can take shortcuts to get to a target faster and that it will always be able to reach the

target.

1.2 Research objective

Incremental A* algorithms are widely used in the gaming and robotics domains, but are never

implemented in applications to navigate a person towards another person in motion. This is because

of the differences in these domains, where humans interact differently than robots or gaming

characters. Adding semantics might be the factor to bridge the different domains and also make

applications for persons to navigate to a moving target. Semantics could be used to determine where

the person is moving to, which is the prediction of the target. Then the user can navigate towards this

prediction. The focus of this research is investigating possible improvements for using the iterative A*

algorithm for human navigation with using semantics. The general aim of this research is to develop

a conceptual framework that supports navigation to a human in motion based on the iterative A*

algorithm and semantics. To support these findings the proposed method will be implemented and

tested. The main research question for this thesis is as follows:

Which defined objects could be used to estimate the predicting location of a moving person to support

navigation to a person in motion?

To answer this main research question, the research question is divided into four sub questions:

1. What are the current limitations of the A* algorithm for navigating to a dynamic target?

2. What semantics are important for navigation to a moving target?

6 | P a g e

3. What are the improvements and limitations of the proposed method over using the iterative

A* algorithm?

1.3 Research scope

The core of this research is to check whether the iterative A* algorithm supports navigation from a

person to another person in motion and improve this algorithm by using semantics. This research will

be tested by implementing this method and test possible scenarios. Due to the fact that there is no

indoor positioning system available for this research, it is not possible to create an application for

indoor navigation. However, there will be built an application, based on real building data, where the

behavior of the target is simulated. Also this research will be tested within an outdoor environment,

using real GPS data.

The scope of this research focusses on:

- One person to one person navigation, there will be no examination of navigating multiple

people.

- A static indoor and outdoor environment, where small and dynamic obstacles are not

mapped. Only the static obstacles are mapped. This means that people automatically avoid

small and dynamic obstacles to get to their destination.

- Only 2D navigation is examined, 3D is out of the scope of this research. Extending the

framework to a 3D environment will be discussed in chapter 6.

- No indoor positioning techniques are used. The positioning of the user and the target is

simulated. In theory RFID-tags or a Wi-Fi system can be used to get an accurate position of

the target and the user within the indoor environment. The proposed method, will address

how this component could be implemented.

1.4 Research contributions

This thesis research has a research contribution that can be divided in a scientific contribution and in

a societal contribution.

1.4.1 Scientific contribution

This thesis studies the possibility to use and improve the iterative A* algorithm for human to human

navigation, instead of navigation a human to a static end point. To bridge the gap between the

domains where the iterative A* algorithm is implemented and to implement this algorithm in human

7 | P a g e

to human navigation, semantics will be added. To my findings there is no such application that

navigates a human to another human in motion. Also existing systems, like signs in buildings or on the

streets are not sufficient to deal with the problem to navigate to a moving target without having to

verbally contact the target. Therefore the developed method will give more insight in navigating to a

moving person. This research will investigate the limitation of the iterative use of the A* algorithm.

Determine possible points as the prediction of the target and navigate not directly to the target, but

to the prediction of this target is a new concept. The indoor application is based on real simulated

positioning data of the user and the target. For the outdoor application real GPS data is used to test

the conceptual framework. Therefore these implementations give good insight in how the conceptual

framework works. Where the effectiveness of the navigation could be determined.

Eventually the data that is necessary to navigate to a moving target is examined and used to support

both applications. The results of this thesis research cannot only be used for navigating one person to

one person, but eventually adjusted to navigate multiple people at the same time or navigating to

robots or animals.

1.4.2 Societal contribution

The main societal contribution of this thesis is to support navigation of a person to another person

that they lost or need. In this way children, elderly, family, coworkers and friends can be found more

quickly. Especially navigating to persons that cannot verbally communicate with the user, or animals

is a problem that can be solved by using this conceptual framework. These persons or animals need

an RFID-tag or some kind of positioning system to locate them so that the user could find them quickly

and spend no unnecessary time by following the target until it stops moving.

Examples are that parents could lose their child in a playground or in a big warehouse like IKEA, where

the parents have a smartphone and the child has a RFID-tag in his/her jacket. The parents could then

always find their child as fast as possible. Another example is that animals in a zoo can escape and

these have to be found very quickly to ensure there is no danger to the visitors. However, defining

points of interest is harder than by human navigation.

The emergency services could use this technique to navigate as quickly as possible to each other in a

dangerous situation. This could be for example a big fire for firefighters or a terroristic attack for

policemen. Also ambulance personnel can quickly navigate when they have to apply first aid to

8 | P a g e

someone that is leaving a building in a dangerous situation. Points of interest could then for example

be emergency exits.

1.5 Thesis outline

This thesis consists out of six chapters, which are structured as follows:

Chapter 1 introduces the problem statement, the research objectives, the scope of the research

 and the research contributions.

Chapter 2 presents the literature findings concerning the iterative/incremental A* algorithm,

 existing spatial models and the use of semantics for navigation. This chapter gives

 answers to the first two sub questions of this research, and theoretical background

 information.

Chapter 3 gives a detailed description of the developed conceptual framework method. This

 framework is using characteristics of the incremental A* algorithm and semantics to

 navigate from one human to another human in motion.

Chapter 4 presents the results of the implementation within an indoor environment of the

 conceptual framework explained in chapter three. This implementation uses

 simulation for the positioning of the user and the target.

Chapter 5 shows the results of the outdoor implementation of the conceptual framework

 explained in chapter three. This implementation uses real GPS data to test the

 framework.

Chapter 6 concludes this thesis research, answers the main research question and addresses

 future research topics.

The code used for both the indoor and outdoor implementation of the SEA* method is made public on the 27 th

of June and is available at: https://github.com/TimNagelkerke/thesis-implementation.

9 | P a g e

2. Theoretical background

This chapter discusses the theoretical background that is used for this thesis to answer the research

question. This chapter is mainly a literature study that discusses approaches to solve navigation from

one person to another person. This chapter is subdivided in three different subsections. Mainly

pathfinding consists out of a way to represent the terrain and a pathfinding algorithm. Section 2.1

describes the possible spatial models that are used to represent the terrain to obtain a navigable map.

Section 2.2 discusses the use of a semantic model for navigation purposes in the context of navigating

to a human in motion. Finally section 2.3 explains the working and the limitations of the A* algorithm

and the incremental A* algorithms for dynamic human navigation.

2.1 Spatial models
To navigate a user towards a target there must be knowledge about the terrain. The terrain where

the user wants to navigate on has to be represented by a graph. A graph is a structure that is used to

represent relations between different objects. These objects are called nodes, which could be defined

as “a certain place with a fixed geographical position”. A node for example could be a room in a

building or an intersection in a road network. The geometric model represents the location of the

nodes. The relations between these nodes are called edges. These edges are defined as “a connection

from one node to another node”. An edge for example could be a hallway in a building or a street

from the first intersection to the next intersection. The topological model represents the relations

between these nodes, with each a specific movement cost to travel from one node to the other node.

A graph is therefore a collection of nodes and edges (Trudeau, 1994 and Chartrand, 1984). A graph

could therefore be defined as:

𝐺 = (𝑁, 𝐸)

where N is the set of nodes and E is the set of edges.

Most spatial models do not only consist out of a geometrical component and a topological

component, but they also support a semantic component. This semantic model gives meaning to the

nodes and edges. For example, what specific room is meant by a specific node or what does that edge

in a road network represent, a highway or a normal road. Section 2.2 goes into more detail.

10 | P a g e

In a recent study Algfoor et. al. (2015) created an overview of the current spatial models. They divide

the spatial models into two categories: Grids and Hierarchical techniques. The grids are subdivided to

regular grids and irregular grids. A further decomposition is shown in table 2.1.

Table 2.1, decomposition of spatial models (Algfoor et. al., 2015).

Grids Hierarchical techniques

Regular grids Irregular grids

2D square grid Visibility graphs Probabilistic road maps

2D hexagonal grid Meshes navigation Quadtrees

2D triangular grid Waypoints Rapidly exploring random trees

3D cubic grid

According to Ma et. al. (2011) a grid is a composition of vertices/nodes that are connected by the

edges that represent these vertices/nodes. Navigation on a grid is possible by the properties of the

grid, the neighboring relations of the grid and the distance from one point to another point. There are

different kinds of grids, which are regular grids and irregular grids. The following sections will

elaborate on the different kind of spatial models.

2.1.1 Regular grids
Regular grids are the most used ones to create a graph representation (Alfgoor, 2015).There are a lot

of regular grids used for navigation purposes (Girard et. al. 2011, Lee, 2004, Kuffner, 1998, Bandi &

Thalmann, 1998 & Li et. al. 2010). These regular grids consist only out of one shape that repeats itself.

Examples of these regular grids are 2D square, hexagonal and triangular grids or a 3D cubic grid. A 2D

square grid is a grid consisting out of squares, where the other regular grids consist out of hexagons,

triangles and cubes. Each shape is representing a node that is used for navigation. It is important that

grids represent the terrain in a correct way. Therefore obstacles in the grid have to be representative.

A grid is never able to give an exact representation of the real situation. There is always some sort of

overrepresentation of the obstacles in a grid. This overrepresentation depends on the used shape,

see figures 2.1, 2.2 and 2.3. In these figures it is visible that a 2D square grid has a bigger

overrepresentation (the blue area) than the 2D hexagonal and the 2D triangular grids. Although the

2D square grid is represented by less shapes and therefore the computation on such a grid is faster.

To lower the overrepresentation of the obstacles the size of the shapes could be adjusted, for example

11 | P a g e

the size of the square could be smaller and therefore there would be less overrepresentation of the

obstacles. The size of the shapes in the grid is an important factor to represent the terrain.

Figure 2.1, 2D square grid overrepresentation of three obstacles (Algfoor, 2015).

Figure 2.2, 2D hexagonal grid overrepresentation of three obstacles (Algfoor, 2015).

Figure 2.3, 2D triangular grid overrepresentation of three obstacles (Algfoor, 2015).

The size of the shapes in the grid is determined by several factors. The first factor is the scale of the

map, the grid size has to represent the obstacles and the free space in a way that the grid size does

not block a possible passage, or makes an overrepresentation of the walls in a way a room has less

12 | P a g e

doors than in the real situation. The second factor is the natural movement of the person. A person

that is standing still is occupying between the 1 m² and 0.5 m² of free space. The last factor is the

speed on which a person moves, which is determined by the movement of the users of the navigation

system.

Obstacles in a grid could be represented in a few ways (Patel, 2006). This could be done by a Boolean

grid, where the value 0 stands for navigable and the value 1 stands for obstacle. Only the spaces that

have a value of 0 will be used for the navigation. Another way to represent obstacles is to remove the

obstacles from the grid, where the grid only represents the navigable space. Or the obstacles could

have an infinite movement cost to get to a particular obstacle. In this way these obstacles are never

used in the navigation, but the path planning algorithm that is used has to calculate all these

possibilities and therefore will be less efficient.

To create a grid, a map of the actual situation has to be crossed by a grid. When there is an obstacle

in the map the whole shape will be marked as an obstacle and it is not possible to cross this shape

during the navigation, see figures 2.1, 2.2 and 2.3. The process to convert a vector map to a raster

map is called rasterization. The outcome of this process is a graph with the set of nodes and set of

edges. The grid size is the most important parameter for this process.

Now that the geometrical component of the grid, the set of nodes, is discussed it is possible to explain

the relations between these shapes, the topological component. There are different possibilities of

adjacency within a grid. First for the regular square grid a four adjacency (figure 2.4) or an eight

adjacency (figure 2.5) could be used to. Where B are the adjacent squares of the square A.

Figure 2.4, four adjacency within a 2D square grid.

Figure 2.5, eight adjacency within a 2D square grid.

13 | P a g e

This is important to check what possibilities the user has to navigate in a certain direction. A four

adjacency square grid only let people navigate in the horizontal and vertical direction, while with an

eight adjacency square grid people are also allowed to move diagonal (Patel, 2006).

If in figure 2.4 the position of the tile in the middle is defined as (X, Y), then the adjacent neighbors

are the following:

X + 1, Y

X – 1, Y

X, Y + 1

X, Y – 1

The natural movement of a person also makes it possible to move diagonally in an open space. In the

case of an eight adjacency (figure 2.5) the neighbors are defined as follows:

X + 1, Y

X – 1, Y

X, Y + 1

X, Y – 1

X + 1, Y + 1

X + 1, Y – 1

X – 1, Y + 1

X – 1, Y – 1

Moving on a hexagonal grid has another adjacency function. In this case the neighbors of the center

hexagon are all the six neighbors, see figure 2.6. The adjacent neighbors are defined as follows, where

(X, Y) is the centering hexagon:

X – 1, Y + 1 (North West)

X – 1, Y (West)

X – 1, Y – 1 (South West)

X, Y + 1 (North East)

X + 1, Y (East)

X, Y – 1 (South East)

Figure 2.6, adjacency in a 2D hexagonal grid.

14 | P a g e

The adjacency on a triangular grid is more complicated due to the fact that there are twelve

neighboring triangles when movement in every direction is allowed (figure 2.7). A normal three

adjacency is insufficient for representing the behavior of navigating in any direction. The triangles

with number one represent triangles that share the same edge, triangles with number two represent

triangles that share an edge with number one and a corner with the centering triangle and triangles

with number three only share an edge with the centering triangle (Nagy, 2003).

Figure 2.7, twelve adjacency in a 2D triangular grid (Nagy, 2003).

Nagy (2003) discusses the twelve adjacency in a triangular grid, using three axes, x, y and z. According

to these rules each neighboring triangle could be expressed using these axes, where the x-axis is the

first term, the y-axis is the second term and the z-axis is the third term. This is visualized in figure 2.8.

When the triangle is in the opposite direction of the center triangle (0, 0, 0) respectively to the

direction of the axis then the value will decrease by one in that specific direction. When the triangle

is in the same direction as the center triangle respectively to the direction of the axis, then the value

will increase by one in that specific direction. In this way it is possible to determine all the twelve

adjacent triangles of the center triangle.

Figure 2.8, determining the adjacent triangles in a 2D triangular grid (Nagy, 2003).

15 | P a g e

A 3D cubic grid is using voxels to represent the 3D environment. Although this research focusses on

the 2D terrain, a cubic grid could represent the indoor environment in another way than the 2D grids.

The space is filled with cubes and whenever a cube intersects with an obstacle, this space is non-

navigable. However, it is harder to determine the exact topological model. Research is needed to

check in what situations a human could navigate to each of the neighboring cubes.

To navigate on a regular grid, the grid must be translated to a navigation graph. This graph is

constructed by using the center points of the shapes (square, hexagon, and triangle) of the grid as

nodes and the edges are the connections between those nodes, if two shapes are its neighbors.

2.1.2 Irregular grids
Also irregular grids, a network representation is used to subdivide the terrain for human navigation

(Brown et. al., 2013, Boguslawski & Gold, 2009, Liu & Zlatanova, 2012 & Lorenz et. al. 2006). Not the

whole terrain is subdivided in equal shapes, but in irregular shapes, like polygons. Each polygon is

then presented by a node, where the adjacency between the nodes is retrieved from the neighboring

relationship.

A visibility graph (figure 2.9) is a set of nodes, where each node represents the corners of the

obstacles, and the edges represent a visible connection between the nodes. For each set of two nodes

is checked whether the direct line between the two nodes intersects an obstacle. If the direct line

between the nodes intersects an obstacle, these nodes have no visibility edge. Else, they have a

visibility edge. This visibility graph always finds the shortest path, if the distances of each edge are

known, using a path finding algorithm. Using a visibility graph could give insight in the situation that

the user and the target could see each other. However, each time the position of the user or the target

changes the visibility graph has to be recomputed by adding the positions of the persons (Berg et. al.

2008). These nodes and edges could be directly used for navigation.

Figure 2.9, the visibility graph (Patel, 2006).

16 | P a g e

Mesh navigation (figure 2.10) does not represent the obstacles as polygons, as with the visibility

graph, but represents the navigable space as polygons. Patel (2006) mentions four possible

approaches to navigate on a mesh. First of all (figure 2.10, top left) it is possible to use the center of

each irregular shape as a node, second (figure 2.10, top middle) it is possible to use the middle of each

edge as the navigable nodes, the third approach (figure 2.10, top right) is using the corners of the

irregular shapes as navigable nodes and the last approach (figure 2.10, bottom) is combining the

second and third approach. The hybrid approach is the most promising, but makes the model also

more complex. The second approach is therefore the best alternative. All approaches however give a

sub-optimal path (figure 2.10, yellow paths) compared to using a visibility graph (figure 2.10, pink

path).

Figure 2.10, four approaches for mesh navigation (Patel, 2006)

Not only polygon shapes, but also triangular shapes could be used to represent a terrain. The

Triangular Irregular Network (TIN) is a vector-based topological data model that represents the

terrain. A TIN subdivides the terrain in irregular spaced triangles. A TIN is the result of the Delaunay

Triangulation (DT) of the Voronoi diagram representing the surface, figure 2.11. However, when

navigating in an environment with obstacles a DT is not sufficient, due to the fact that this approach

does not take into account the obstacles. Therefore a Constrained Delaunay Triangulation (CDT) is

17 | P a g e

developed which a result is depicted in figure 2.12 (Fleischmann, 1999). Here the original edges of an

obstacle are used as input to obtain a navigable graph. Therefore the nodes and edges of a CDT could

be used for navigation purposes. The Euclidean distances between these nodes will refer to the

movement costs in the path planning algorithm.

Figure 2.11, relation Voronoi Diagram and Delaunay Triangulation, retrieved from

http://www.csie.ntnu.edu.tw/~u91029/Triangulation.html.

Figure 2.12, Constrained Delaunay Triangulation (Fleischmann, 1999).

Waypoint navigation is a spatial model where people navigate based on waypoints, where

waypoints are physical locations. These waypoints often refer to landmarks, which are critical points

in human navigation. These waypoints could be used to indirectly navigate to a certain end

destination. The user visits first the specific points, the waypoints, and then continues its path to the

end destination. In this way it is possible to navigate with a certain strategy. The waypoints are

representing the nodes, where the relation between the landmarks are representing the edges to

obtain a navigable graph. The distances between the nodes have to be calculated to get the edge

cost for the path finding algorithm. Figure 2.13 shows how waypoints could be used to navigate

from the start point, to the end point. When the model contains more waypoints the path towards

the goal will be approaching the fastest path. Figure 2.13 shows the difference between using

18 | P a g e

waypoints and a navigation mesh. Both approaches obtain a sub-optimal path compared to a

visibility graph.

Figure 2.13, waypoints and navigation mesh, retrieved from
https://udn.epicgames.com/Three/AIAndNavigationHome.html.

Irregular grids include less nodes as the regular grids and therefore the path planning algorithm is

faster. Although, the positioning of both the user and the target cannot be described as detailed as

the regular grids. There are two methods to user the positioning of the user and the location. The

first approach is that the location of the user and the target are snapped to the closest node in the

model. This gives a bad result, when there are not that many nodes present in the model. When

there are more nodes present in the model, the positions of the user and the target are approached

more exact. The second approach is to use the positions of the user and the target as nodes in the

model. Then these nodes should be added to the irregular grid, where the edges must be retrieved

dealing with the criteria of the model. This is inefficient, because the edges in the model must be

recalculated, each time the position of the target or user has changed. Therefore the first approach

is recommended. Points of interest could be added, by adding nodes to each model. This could be

done when the spatial model is created. Both regular and irregular grids require considerable

memory space within large environments (Algfoor, 2015).

19 | P a g e

2.1.3 Hierarchical techniques
Grids use a lot of memory and are therefore not always efficient. Hierarchical techniques deal with

this problem and divide the terrain into multiple levels. Therefore it is possible to have a higher level

of abstraction, which represents the terrain in less detail, combined with lower levels of abstraction,

which represent the terrain into more detail. Algfoor (2015) defines three possible hierarchical

techniques: Probabilistic Road Maps, Quadtrees and Rapidly Exploring Random Trees.

Probabilistic Road Maps and Rapidly Exploring Random Trees are developed to use in autonomous

robotic path planning. Therefore the robot takes samples and uses these to initialize its search.

Humans behave totally different from robots, because they can find a path with the help of navigation

instructions. Therefore the model used for navigation has not to be very precise.

For human navigation the Quadtree could be used, which is a homogenous hierarchy with an arbitrary

number of levels. The Quadtree data structure is a hierarchical technique that subdivides the space in

four equally grid cells until each grid cell is either an obstacle or an empty space (Samet, 1988). The

Octree is the 3D equivalent of the Quadtree (Samet, 1988). In case there is a memory overload and a

grid representation is not suitable, the Quadtree is a good solution. The Quadtree data structure is

suitable to represent static environments. The Octree is suitable to identify the navigable space within

a 3D environment. This navigable space could be used for navigation, where the center of each square

represents a node and the edges are retrieved by the neighboring squares.

2.1.4 Discussion
There are several ways to represent a 2D flat terrain, which are regular grids, irregular grids or using

a Quadtree. Each of these implementations has its own applications and complexity. Algfoor (2015)

& Ma (2011) both note that a regular grid gives the best representation for a plane surface, while

irregular grids are better to represent three dimensional surfaces. Also a regular grid gives very

detailed locations of both the user and the target, while irregular grids do not exactly describe the

location, but give a more abstract location. In the case that there must be an accurate description of

the positions of the user and the target a 2D square grid is recommended. This spatial model is

thoroughly tested and supports path planning algorithms and semantic modelling. The geometrical

and topological model is easier to construct than by the other spatial models. When efficiency is more

important than the precise location, an irregular grid is recommended. A visibility graph returns the

shortest path and is therefore the most optimal representation. When a grid becomes inefficient, a

Quadtree must be used to represent the terrain.

20 | P a g e

2.2 Semantic modelling

People that navigate in a building mainly have a clear end destination. For example a person that goes

to his work, walks to his room, gets a coffee in the breaks at the coffee machine and eventually leaves

the office at one of the exits. Adding semantics to a model is actually a technique to give meaning to

a model. In this way it is for example possible to check where the room of the target is that the user

needs, or where the coffee machines are within a building. In this way it is possible to make a

distinction between different objects in a model. The characteristics of the target could support the

user to navigate to a moving target.

Worboys (2011) notes that semantic models represent the entities in an indoor space with their

properties and mutual relationships. Also Worboys makes an important difference between different

kinds of semantics, namely the difference between the static and the dynamic environment. The static

environment is everything that cannot be moved, for example the doors, walls, rooms, windows and

the floors (figure 2.14). The dynamic environment is everything that can move on its own or be moved,

like furniture, people and equipment. Landmarks play a really important role in navigation

applications and location-based services (Worboys, 2011). According to the Cambridge dictionary the

definition of a landmark is: “a building or place that is easily recognized, especially one that you can

use to judge where you are”. So landmarks could be defined as critical points in a building where a

person makes decisions where to navigate to or to where a person wants to navigate to.

Figure 2.14, a building using semantics (Li et. al., 2010)

It is important that semantics are supported by the used spatial model. A regular grid is suitable for

using semantics. Each shape on the grid represents a certain location. The geometrical model remains

the same, only there is extra information about what each shape represents. If for example a coffee

21 | P a g e

machine is on this specific location, this shape will get a value that represents that there is a coffee

machine. In this case it is possible to store all the coffee machines in a building and retrieve their

locations. Adding semantics to an irregular grid is more difficult. Most landmarks and important points

are modelled as nodes, however this does not always have to be the case. Especially using a visibility

graph, it is hard to add extra points to the model. In a real-time application the visibility graph has to

be recomputed each time there is a new node involved. Also by using waypoints or a mesh navigation

this is the case, but these representations mostly include the landmarks. Then for each node

semantics could be added.

The end destinations where a person moves to are defined as points of interest. Goetz and Zipf (2011)

also use points of interest to represent important fixed locations for a specific person. These points

of interest each have its own fixed position, are user specific and can change over time. Each person

has other points of interest within a building, for example a visitor of a company has other points of

interest than the personnel working for that company. Also it is important to note that some points

of interest are more likely to be visited at a specific time than at another time. For example the

canteen is more likely to be visited around noon than at other times. Also when a building is closing,

the exits of the building are becoming points of interest for the people that are inside the building.

The static semantics according to Worboys (2011) always have a fixed location and do not change

over time, assuming that there are no renovations. The indoor location of a target can be inaccurate,

however indoor position techniques are improving. Navigating to a static end point is more accurate,

because this is a precise location. Therefore the static entities are important future destinations for

the moving target. These could be used to navigate to the prediction of the target.

2.3 Pathfinding algorithms

Now that the spatial models are discussed, it is important to know what approaches there are to

navigate to a moving target. There are a lot of algorithms developed that solve the calculation of a

path from the beginning point to the end point, which are called path planning algorithms. These

algorithms each fulfill the user needs on its own way. Examples of these algorithms are algorithms

that calculate the shortest, the fastest or a least risks path for the user to the destination. Most current

applications use the A* algorithm to find the fastest route from the beginning point to the end point

(Fallah et. al., 2013). The A* algorithm is the fastest algorithm that always finds a path when there is

a path available between two points. Also it finds always the fastest path between two points, given

the edge costs in the model. Therefore the A* algorithm is recommended over the Dijkstra algorithm

22 | P a g e

or a greedy Best First Search algorithm. The A* algorithm is suitable to navigate to a static end point,

but is not sufficient to navigate to a moving target. Therefore the incremental A* algorithms are

developed, which is based on the iterative use of the A* algorithm. This algorithm is used a lot in

robotics and the gaming industry to solve the continuous calculation of a path to a moving target. As

discussed in the introduction of this thesis research the focus lies on the incremental A* algorithms.

To understand this algorithm first the basic A* algorithm will be explained. Second, the incremental

A* algorithms that are available will be examined and the limitations of these algorithms will be

explained.

2.2.1 The A* algorithm

The A* algorithm is first described by Hart et. al. (1968) which is an extension of the algorithm of

Dijkstra (Dijkstra, 1959). The A* algorithm is a best-first search algorithm that searches all possibilities

to find the shortest path from the beginning point to the end point. To speed up the search of all

possibilities a heuristic function is used. This function determines which next step will be the most

promising and chooses this step as the next iteration. This process continues until the end destination

is reached.

Before the algorithm can be explained it is important to explain the movement cost function that is

used. The movement cost function sums the cost to get to the node and the prediction of the cost it

will take to get to the end point, which is the heuristic function. The movement cost function is as

follows (Hart et. al., 1968):

𝐹(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

where g(n) = the movement cost/distance from the starting node to the current node

where h(n) = the cost/distance of the current node until the end node, the heuristic function

where F(n) = total costs of the current node

The heuristic function (h(n)) is the important estimate to control the A* search behavior. There are

several cases where the A* algorithm behaves optimal or far from optimal (Patel, 2006 & Hart et. al.,

1968):

- If h(n) is zero, this algorithm will act as the Dijkstra algorithm.

- If h(n) is lower than the cost of moving from the node to the goal, the algorithm will find a

shortest path more quickly than the Dijkstra algorithm.

23 | P a g e

- If h(n) is equal the cost of moving from the node to the goal, only the best path will expand

and therefore the search is very quick. This however is nearly impossible to achieve.

- If h (n) is higher than the cost of moving from the node to the goal, the algorithm is fast but

uncertain to find the destination.

- If h (n) is very high in comparison with g(n), only the heuristic function determines the

movement costs. The algorithm will act as a greedy Best First Search.

These cases are really different from each other and therefore it is important to use a correct heuristic

function. The heuristic function determines the speed and the accuracy of the path planning

algorithm. Because in real-time applications the speed of the system must satisfy the user needs, the

algorithm must be fast. However the user also needs to navigate to the end destination, and therefore

must always find the end destination. In this case the best heuristic that should be used is that h(n) is

lower than the cost of moving from the node to the goal. In this way the algorithm is faster than the

Dijkstra algorithm and always finds the path from the starting point to the end point, see figure 2.15.

Figure 2.15, the search space of the Dijkstra algorithm (left), a greedy Best First Search (middle) and the A*

algorithm (right)

Now that the behavior of the heuristic function is discussed, several different heuristic functions will

be examined. The focus of this thesis lies on a regular square grid, and therefore only grid based

heuristic functions will be discussed.

The heuristic function that has to be chosen depends on the movement that is allowed. Patel (2006)

discusses that the Manhattan distance is best for 4 directional movement on a grid and that the

Chebyshev or the octile distance is best for 8 directional movement on a grid. Also it is possible to use

the Euclidean distance as the heuristic.

24 | P a g e

Manhattan distance

The Manhattan distance is according to Black (2006): “The distance between two points measured

along the axes at right angles”. The Manhattan distance in a plane is calculated by the following

formula:

𝐷Manhattan = |𝑥1 – 𝑥2| + |𝑦1 – 𝑦2|

 Where the starting point is x1, y1

 Where the ending point is x2, y2

The Manhattan heuristic is not taking into account diagonal movement and therefore not suitable for

human navigation on a grid. The heuristic is an overestimate of the actual distance (Rabin and

Sturtevant, 2013). This heuristic is suitable for navigating when only horizontal and vertical movement

is allowed (Patel, 2006).

Chebyshev distance

The Chebyshev distance is the distance that is known as the chessboard distance (Kresse and Danko,

2012 & Math.NET, 2016). The Chebyshev distance in a plane is calculated by the following formula:

𝐷Chebyshev = max (|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|)

 Where the starting point is x1, y1

 Where the ending point is x2, y2

The Chebyshev heuristic takes diagonal movement into account. In this case the diagonal movement

cost is the same as the vertical or horizontal movement cost. The Chebyshev distance does not align

with the human movement, due to the fact that the movement cost in each direction is equal.

Octile distance

The Octile distance is the distance that allows diagonal movement as a movement cost of √2 (Rabin

and Sturtevant, 2013). The Octile distance in a plane is calculated by the following formula:

𝐷Octile = max(|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|) + (√2 − 1) ∗ min (|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|)

 Where the starting point is x1, y1

 Where the ending point is x2, y2

25 | P a g e

The Octile heuristic is according to Rabin and Sturtevant (2013) closest to the natural movement of a

person. Therefore this heuristic is the most accurate to use on a grid. Also Patel (2006) argues that

the Octile distance is the best heuristic for movement in eight directions.

Euclidean distance

The Euclidean distance is according to Black (2004): “The straight line distance between two points”.

The Euclidean distance in a plane is calculated by the following formula:

𝐷Euclidean = √((𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2)

 Where the starting point is x1, y1

 Where the ending point is x2, y2

According to Patel (2006) and Rabin and Sturtevant (2013) the Euclidean distance is an underestimate

of the actual distance on a grid. This heuristic assumes that movement in any direction is allowed,

which is not possible on a grid. The Euclidean distance is best for applications where movement in any

direction is allowed. Therefore the Euclidean distance is the best heuristic to use with an irregular

grid.

Now that the cost function and the heuristic functions are discussed, the A* algorithm will be

explained. First of all the algorithm needs to initialize an open list, a closed list and a list that keeps

track of what the parent of which node is. The closed list is the list of the nodes that already are

evaluated. The open list is the set of nodes that are the current search space. The starting node is

initially the starting point from where the search begins and this node is added to the open list. Then

when the open list is not empty the algorithm sorts the open list and takes the node with the least

movement cost (F(n)). This node then has to be removed from the open list. If this node is the goal

then the path is the reverse of the list that keeps track of what the parent of which node is that starts

with the current node. If the current node is not the end goal then the current node is added to the

closed list. Then the neighboring nodes are evaluated for potential candidates. Then for each

neighboring node that is not already visited and is not in the open list the neighboring node is added

to this open list. If the neighboring node is not in the closed list then the movement cost (F(n)) is

recalculated to be sure that this is not a more promising path. When the movement cost is more

promising this node’s movement cost has to be updated. If the current neighboring node is the most

promising, this node is added to the list that keeps track of what the parent of which node is. During

this process the total movement cost of each node is stored and this value is used to aim the search

26 | P a g e

of the A* algorithm. The pseudocode of the A* algorithm is algorithm 2.1: The A* algorithm (based

on Eranki, 2002, Patel, 2006 & Hart et. al., 1968).

Algorithm 2.1: the A* algorithm

Input:

 Starting point

 End point

Output:

 Path from the starting point to the end point

1. Function A*(start, end)

2. initialize

3. Closed list = {}

4. Open list = {start} where the f(n) = 0

5. cameFrom = empty map

6.

7. While open list is not empty:

8. Sort the open list based on the lowest f(n)

9. Current node = first of the open list

10.

11. If current = end:

12. Return path(cameFrom, end)

13.

14. Remove the current node from the open list

15. Add the current node to the closed list

16. Determine all the neighbors of the current node

17. For each neighbor:

18. If neighbor in closed list:

19. Continue

20. G(n) neighbor = current G(n) + distance current and neighbor

21. If neighbor not in open list:

22. Add neighbor to open list

23. Else if G(n) >= G(n) neighbor

24. Continue

25.

26. Add current to cameFrom[neighbor]

27. F(n) neighbor = G(n) neighbor + H(n)

28. Return no possible path

27 | P a g e

In the case that the open list is empty before the end node is reached there is no path from the starting

point to the end point. In the case the goal is reached, another algorithm is used that actually

reconstructs the path. This algorithm reverses the list that keeps track of what the parent of which

node is and gives the path from the beginning node to the end node. This is algorithm 2.2: Path

creation.

Algorithm 2.2: Path creation

Input:

cameFrom mapping

End point

Output:

Path from the starting point to the end point

1. Function Path(cameFrom, end)

2. initialize

3. Path = {end}

4.

5. While end in cameFrom:

6. end = parent of the end node

7. Add end to the Path

8. Return Path

2.1.2 The incremental A* algorithm

Now that the A* algorithm is explained it is possible to describe the incremental A* algorithms. In

general incremental search algorithms combine the heuristic search of the A* algorithm and calculate

the path for each unit of time (Koenig et. al., 2004), therefore these algorithms give the same results

as the iterative A* algorithm. Incremental search algorithms are mostly based on the A* algorithm. It

is possible to calculate the path with the A* algorithm every time when the end destination changes,

but because A* can be slow for large environments, this might be insufficient and the user of the

system has to wait every time the system recalculates a path. To solve this issue there are a lot of

different variations on the A* algorithm. Mainly incremental search uses the information of a previous

search to speed up the calculation for the current search, which makes the path finding algorithm

faster than calculating the A* from scratch (Deo and Pang, 1984). Incremental search algorithms are

especially made to deal with incomplete information, which means that the map of the environment

is unknown to the user, or with information that changes over time, which focusses on pathfinding to

28 | P a g e

a moving target (Koenig et. al., 2004). Sun, Yeoh and Koenig (2010) classify two different families of

incremental searches.

The first kind uses information from the previous search and updates the heuristic values to focus for

the next search. Examples of this first kind are MT-Adaptive A* (Koenig, Likhachev and Sun, 2007) and

Generalized Adaptive A* (Sun, Koenig and Yeoh, 2008).

The second type of incremental searches uses the previous search tree as a starting point for the

current search tree. This has the advantage over incremental A* that it does not start from scratch.

Examples of this second kind are Differential A* (Trovato and Dorst, 2002), D* (Stentz 1994; 1995),

D* Lite (Koenig and Likhachev, 2005), Fringe-Retrieving A* (FRA*) (Sun, Koenig and Yeoh, 2009),

Generalized FRA* (Sun, Koenig and Yeoh, 2010) and Moving Target D* Lite (Sun, Koenig and Yeoh,

2010). These kind of incremental searches were designed for static environments. Therefore this type

of algorithms is best for solving the pathfinding problem in a static indoor or outdoor environment.

Sun, Koenig and Yeoh (2010) proved that FRA* has the smallest runtime in a static environment when

navigating to a moving target. Nussbaum and Ÿorükcü (2015) invented a new incremental search

algorithm called Moving Target Search with Sub-Goal Graphs which has a faster runtime than the

previous named incremental search algorithms. Nussbaum and Ÿorükcü use the subgraph algorithm

of Uras, Koenig and Hernandez (2013). The idea is to simplify the spatial model to a higher level in a

preprocessing step, to speed up the search algorithm. This is only possible if the environment is static

and no new obstacles appear. Therefore the preprocessing, by making the subgoal graphs, is ideal for

a static environment like a building. Although when the algorithm scales to other buildings,

preprocessing will be time consuming. Also when buildings are adjusted, because of renovations, all

the preprocessing has to be renewed. Another possibility is to use compressed path databases (CPDs)

in the field of moving target search as executed by Baier et. al. (2015), which also gives good results

but has a lot of preprocessing steps to cope with the path planning problem.

Incremental search algorithms based on the A* algorithm are used to calculate a path as fast as

possible to deal with an autonomous robot in real-time or with game characters that all have to follow

each other and have to react quick. It is important to note that the A* algorithm in general is sufficient

to calculate a path for a user to a static destination. Using the A* algorithm incrementally could be

sufficient to calculate the path each time the target is moving and therefore the user has to be

redirected to the target. Especially when the path has not to be calculated every time the target is

29 | P a g e

moving, but only if the moving target is making an important decision. Using the A* algorithm

incrementally would be sufficient for this research. This makes the implementation far less complex

and there are less steps involved in preprocessing the data to compute very fast paths.

Incremental search algorithms have a few drawbacks in finding a path from the user to the target.

Because the incremental search algorithms are based on the A* algorithm it is always used to calculate

the shortest path from the start point to the end point. In this way the algorithm does not use any

information about the target. For example, the movement vector of the target, the trajectory of the

target or other characteristics are not used to navigate to the target. Because only the path is

calculated from the user to the target, no possible future shortcuts are taken into account. The

behavior of the incremental search will lead to following the target, instead of making smart decisions

based on the characteristics of the target. This behavior of following is depicted in figure 2.16. In the

top left, the user A navigates to the target B while B is moving north. Then the path will be calculated

from A to B. The user A will follow this path, while B moves north. The result of the movement

according to this path is shown in the top right. Now the path from A to B has to be recalculated,

because the user did not reach the target. This next movement step is showed in the bottom left and

the result of this next step is shown in the bottom right. In this case the user A ‘follows’ the target B.

In an open space, incremental search algorithms work fine, because it will always use the

shortest/fastest path. However, when there are obstacles these algorithms can work sub optimal.

Figure 2.16, Incremental A* search results in following the target

30 | P a g e

Another drawback is that if the target is moving all the time and the target is moving away from the

user, the target will never be reached. This is especially the case when the target is moving faster than

the user. If the target is moving slower than the user then the user will be able to finally navigate to

the target.

In order to meet the target and to reach the moving target faster it is desired to make use of the

characteristics of the target. Therefore not the sub-optimal behavior of following the target as shown

in figure 2.16 is preferred, but taking into account the movement of the target (figure 2.17).

Figure 2.17, desired behavior for the incremental A* search

The movement of the target could be described by a vector that changes over time. A vector is an

element that exists of a magnitude and a direction. The notation of a vector is as follows, where a1 is

the movement in the horizontal direction and a2 is the movement in the vertical direction:

The movement in the horizontal direction can be translated to the movement on the x-axis and the

movement in the vertical direction can be translated to the movement on the y-axis. When the vector

is three dimensional, instead of two dimensional, another parameter is added (a3) that represents

the movement in the upwards direction, translated to the z-axis.

31 | P a g e

3. Conceptual framework

Semantically Enriched A* (SEA*)

The introduction and the theoretical framework clarify that path finding to a moving person is

underexposed in the current literature. Developed algorithms are suitable for navigation to a static

destination, a dynamic robot or game character, but are insufficient to obtain a ‘smart’ path from the

user to the person he needs. In this context the term ‘smart’ refers to the idea of making use of

possible shortcuts in contrast to only following the target, which is used in the current state of

incremental search algorithms. Using not only the current position of the target, but also the other

characteristics of the target could support this way of smart pathfinding. Humans in motion are more

likely to visit points of interest. Given this notion the user could identify the points of interest for the

person he wants to navigate to and navigate to these destinations instead of navigating directly to

the person.

The aim of this chapter is to provide a conceptual framework to answer the main research question

of this thesis research. This chapter is divided into two parts to provide this conceptual framework.

 The first part gives an overview of the design of the conceptual framework. The design will

discuss the requirements of the framework, gives the overall system architecture and discusses the

used parameters. The requirements are used to specify the behavior of the provided conceptual

framework given specific criteria and assumptions. The system architecture discusses the overall

methodology at a higher level, discusses the input and output data and the relationships between the

different components. The system parameters give the definitions of the used concepts.

 The second part discussed each component of the overall methodology in more depth. Each

component has its own input and output data and the pseudocodes are provided. The framework

consists out of five main components. These components are the spatial model, the points of interest,

localization of the user and the target, the prediction of the target and the path planning algorithm

from the user to the prediction of the target. This section ends with a detailed system flow.

32 | P a g e

3.1 Conceptual design

This section gives the overall scheme of the conceptual framework and discusses the design at a higher

level.

3.1.1 System requirements

The system requirements frame the concept and are divided into criteria, which are conditions that

have to be achieved by the method, and assumptions, which are conditions that are taken for granted

or accepted without having the actual proof.

Criteria are used to frame the developed method so that the method is user-friendly and could be

implemented in real world cases. Therefore five criteria are defined, which should be met by the

conceptual framework. These criteria are then used for validation and discussion of the method. The

following criteria are defined:

- Spatially logical: The data that is used must represent the terrain correctly. This has not to be

very detailed, but it must be possible to navigate in ways it is possible to navigate. In this

research the focus lies on navigating people, therefore paths must be obtained that can

navigate real persons from the start point to the moving target. This could be defined as the

space where a person could fit through. The implementation of this method should therefore

take this into account.

- Scalable: The implementation of the conceptual framework must be able to use multiple

spatial models and multiple datasets. In this way this process is not optimal for only one

building in 2D, but can also be used for other buildings in 2D. Also outdoor situations must be

covered by this framework. When the conceptual framework is scalable, more people could

use the method.

- User dependent: The system must be user dependent, because each person has different

points of interest. Therefore the user of the system must be able to use its own knowledge to

improve the system, by providing a list of points of interest per target. In this way the solution

could be optimized for a specific target group.

- Effective: The user must always be able to find the target and it must be quicker or at the

same speed as a normal iterative A* search. In this way it is always possible to find the person.

The method should improve an iterative A* search, because otherwise this method has no

added value.

33 | P a g e

- Efficient: The user must also be able to get directions to the target as quick as possible and

has not to wait longer than possible. In this way the user should not wait more than a few

seconds to get a response for its next move. Otherwise the user navigates to a previous

measurement of the target and the method will act as the iterative A* search. Also the user

wants to find the target, if the user has to wait a long time, it will not use this framework.

The most important criteria are that the methodology should be spatially logical, effective and

efficient. These criteria will be used for the validation process that determines whether the

methodology is successful. The other two criteria, that the solution must be scalable and user

dependent, are requirements that are preferred but won’t be used for the validation. These two

criteria will be used in the discussion of this research.

There are a few assumptions that will support this research, which are determined by the theoretical

framework in the previous chapter. The following assumptions for the conceptual framework are

used:

 A person that is standing still is occupying between the 1.2 m² and 0.45 m² of free space,

which is defined by Hall (1969) as the personal distance. The height where a person might fit

through is determined by the lowest standardized door height, which is 201.5 cm (Skantrae,

2016). Although this research focusses only on a two dimensional surface, this surface must

fulfill the criteria of spatially logical. Therefore only heights of 201.5 cm or higher and widths

of 0.45 meter or more are suitable for human navigation.

 The focus does not lie on indoor positioning. Therefore the assumption is that for an indoor

environment the position is measured every few seconds and that the accuracy of these

positions are high enough to calculate a movement vector.

 The third dimension is not examined and therefore three dimensional and 2.5 dimensional

are used as a two dimensional representation. Stairs to another floor are represented as

‘exits’.

 The data of the building is up-to-date. This means that the building has no reconstructions in

the time between the creation of the spatial model and the time that the actual path planning

is used.

 The persons are walking at a constant speed. Important is that the users both use the same

mode of transport, otherwise the time it takes for the user and the target to get to a prediction

point are different.

34 | P a g e

These assumptions are necessary to make decisions in the methodology. These areas require more in

depth research and will be discussed in the final chapter of this thesis.

3.1.2 The system architecture: Semantically Enriched A* (SEA*)

Navigating to a moving target has more complexity than navigating to a static destination. The

incremental A* algorithm lacks in navigating to a moving target, because the algorithm does no

prediction at all about the movement of the target. Because persons behave logical it is possible to

predict where they are going and not directly navigate to the moving target but navigate towards this

prediction. Therefore the aim of this concept is to provide a path to a user, where the user can

navigate to another person by predicting the movement of this other person.

The system is divided into five components: The spatial model, the points of interest, localization,

prediction of the target and path planning. Figure 3.1 gives an overview of these five components and

the relation between these components. These components together should result in a path where

the user should navigate to at each moment in time. Important is the factor that the methodology is

used in real time, where the localization must be up-to-date and each time the locations change a

new path should be calculated. The localization, the prediction of the target and the path planning

are acquired, processed and analyzed in real time. The spatial model is not up-to-date and are

therefore acquired and pre-processed before the actual path planning from the user towards the

moving target. The next sections will describe each component in more detail.

Figure 3.1, global overview of the conceptual framework, the SEA* method

35 | P a g e

The conceptual framework is called the Semantically Enriched A* method, or SEA*. The method uses

semantics of the building, in the form of points of interest, to predict where the target is moving to

and navigates the user to this prediction.

First there must be a spatial model that represents the terrain. Map data is used to represent the

actual situation. This map data must be converted to a grid in a way where the requirement spatially

logical is achieved. The translation of the map data to the spatial model is described in section 3.2.1.

This section explains the usage of a regular grid and the usage of an irregular grid.

The points of interest component uses semantic data to enrich the incremental A* search by providing

possible predictions of the target, translated as points of interest. The user of the system has to decide

by itself which points of interest are important to take into account, because this person knows which

person he or she is following. This step is executed before the actual path finding and is an important

pre-processing step, because the whole navigation depends on a good definition of the points of

interest for a specific person. Also it must be possible to integrate the semantics into the spatial

model, in a way that it is possible to navigate to these points of interest. The semantic model and its

detailed implementation is explained in section 3.2.2.

The localization component is very important, but out of scope of this thesis research. Without an

accurate localization of the target and the user it is not possible to calculate a path from the user to

the target. In this research the possibilities, input and output data is briefly discussed. The

implementation however uses a logical simulation of the user and the target to test the methodology

in an indoor environment. The framework is also implemented within the outdoor environment using

real GPS data. The localization of the user and the target should be up-to-date and the more accurate

measurements, the more accurate the path finding will be. This component is briefly described in

section 3.2.3.

The prediction of the target component determines to which point of interest the target is most likely

to move. It compares the semantic input that the user has given, based on the map data and

knowledge about the target, with the actual movement of the target. In this way the most likely point

of interest is the prediction of the target. Because there could be multiple points of interest the target

is heading to, two approaches are defined. First of all probabilities over time will be used to determine

the most likely point of interest the target is navigating to. These probabilities are pre-processed in

the points of interest component by the user. The second approach is using the closest point of

36 | P a g e

interest the target is heading to as the prediction of the target. The determination of the prediction

of the target is fully explained in section 3.2.4.

The final component is the path planning component. This component uses the position of the user

and the prediction of the target as input for the path planning algorithm. The A* algorithm is used

iterative to calculate this path every time when the prediction of the target changes. In this way not

every movement of the target will acquire an intensive A* search. The spatial model that is created is

used as the navigable map. The detailed description of this component is stated in section 3.2.5.

3.1.3 Input data

This section gives an overview of all the data inputs that are necessary for the navigation to a moving

target by using semantics. The input data consist out of real-time data and no real-time data, which

are listed in table 3.1. These data input each has its own value and the source where the data is derived

from is included.

Table 3.1, data input parameters for the SEA* method

Real-time Data Value Derived from

Yes Up to date position of
the user

X,Y
Every ‘n’ second(s)

Positioning system

Yes Up to date position of
the target

X,Y
Every ‘n’ second(s)

Positioning system

No Spatial model 2D square Boolean grid

Map

Yes Date
Time

Date
Hour: minutes

Exact time in the
current time zone

No Points of interest Place: X,Y
Weight (from 0 to 1)
per time interval

User defined, statistics

First of all the up to date position of the user is necessary to know, where the user’s position is, so

this can be used as the starting point for the navigation. This position is the (X, Y) position of the user

at the current moment in time. Because it is important to keep the navigation path up-to-date this

position of the user must be obtained every ‘n’ seconds. This user’s up-to-date location has to be

derived by a positioning system.

Second, the up to date position of the target must be known. This position also has the (X, Y) position

of the target at that moment of time. To achieve that the navigation to this person is as accurate as

37 | P a g e

possible, also this position must be in real-time and obtained every ‘n’ seconds. The target’s up-to-

date location has to be derived by a positioning system.

The third input data source is the spatial model. The navigable graph is obtained by using a map of

the current situation. This map could be a floor plan for a building, or a correct map of an outdoor

environment. Both an analog and a digital map could be used, but this has consequences for the pre-

processing time. The translation from a map to a useful spatial model is explained in section 3.2.1.

The time and the date are used to determine in what time interval the system is to see which weights

are applicable for the points of interest. This time parameter is derived from the current time in the

specific time zone. The date is defined as the current date.

The points of interest are determined by the user of the system. The user defines the locations of the

points of interest that are interested for the target. In this way the input is a list of points of interest.

The user then has to define for each point of interest a weight per time interval. In this way the most

important point of interest could be derived from using the current time and the weight at that

specific time. Then these locations are used as predictions of the target. The system is highly

dependent on the users input data, so the user has to reason every point of interest carefully.

3.1.4 Output data

The output data is the real time path that the user has to take every time the prediction of the target

changes. This path should be effective and efficient to guide the user towards the target. This up-to-

date path should be correctly visualized or directions towards the target should be given. Otherwise

the user has no clue where to go.

3.1.5 System parameters, terms and concepts

This section gives a summary of all the parameters, terms and concepts that are used to make the

following sections more clear. Each of these system parameters will be briefly explained.

User: This is the person that uses the system and wants to navigate to the target.

Target: The person that is needed by the user.

Spatial model: A model containing geometrical, topological and semantic features.

2D regular square grid: A spatial model where the space is subdivided in tiles, in the horizontal and

in the vertical direction, of each the same size.

38 | P a g e

Tile: One square with a minX, maxX, minY and maxY coordinate that represents the reality. The center

point of the tile is used as navigation node.

Tile size: The size of each tile in reality. A grid size of 1 meter means that each tile is 1 by 1 meter, 1

m².

Movement cost: The cost that is used to travel to a certain node.

Distance: One of the in the previous chapter defined distances. The Manhattan, the Chebyshev, the

Octile or the Euclidean distance.

A* algorithm: The algorithm presented in the previous chapter, described in Algorithm 1.

Point of interest: A place of interest for the target, defined as a node, with a physical location.

Weight: The weight given as a chance between 0 and 1.

Prediction of the target: The most likely place the target will navigate to based on the points of

interest, the weights given by the user and the direction of the target.

Door: A navigable space, where a person fits through that connects two spaces.

Obstacle: A space that in not navigable, or where a person does not fit through.

3.2 Conceptual components

This section discussed each component of the overall methodology in more depth. Each component

has its own input and output data. The framework consists out of five main components. These

components are the spatial model (section 3.2.1), the points of interest (section 3.2.2), localization of

the user and the target (section 3.2.3), the prediction of the target (section 3.2.4) and the path

planning algorithm from the user to the predication of the target (section 3.2.5).

3.2.1 The spatial model

The aim of the spatial model component is to provide a navigable map for the user to use to find a

path to the target. Map data of an indoor environment or an outdoor environment is used to translate

the terrain into a model. Map data that is suitable for representing an indoor environment is a floor

plan of the actual situation. A floor plan can both be analog or digital. The difference between these

is the time that it takes to translate the map to a navigable model. The obtained model must both

support the geometrical features and the topological features. The model created has a significant

influence on the other components of the system. The spatial model must support adding semantics

and the path finding algorithm must be able to deal with the specific spatial model. Both regular and

irregular grids could be used as the spatial model. This component explains how map data must be

translated to a spatial model. The following input and output data are acquired:

39 | P a g e

Input:

 Map data

 Shape size

Output:

 Spatial model

Regular grids:

The process to convert a vector floor plan to a regular grid is called rasterization. In this process there

is information loss, because a regular grid cannot precisely define obstacles. A vector map however

defines the precise locations of the obstacles. This rasterization process is depicted in figure 3.2.

Figure 3.2, rasterization of vector data (ArcGIS, 2016). Left: Vector data & right: raster data.

The floor plan is crossed by a raster and for every obstacle in the floor plan the tile will be marked as

obstacle. In figure 3.3 this process is visible and the algorithm is given in algorithm 3.1. The shape size

is an important factor to take into account, because this determines the level of detail that is kept in

the model. The tile size could be adjusted to the specific needs of the developer of the system.

Logically this tile size is for human navigation between the 0.45 and 1.2 meter. Not only squares have

to be used, also hexagons or triangles could be used to subdivide the terrain in regular shapes. The

same process applies to these shapes.

40 | P a g e

Figure 3.3, rasterization, from vector to a square grid.

Left: floor plan, middle: floor plan crossed by a raster and right: 2D square grid

Algorithm 3.1: Rasterization

1. Procedure Rasterization(map, grid)
2. Squaregrid
3. For tile in grid:
4. If tile is empty:
5. SquareGrid[tile] = 0 //This space is navigable
6. Else:
7. SquareGrid[tile] = 1 //This is an obstacle
8. Return SquareGrid

It is important that the regular grid that is obtained by the rasterization process represents the reality

so that people can navigate in a way they also could navigate in the real world. There are two

important features that have to be taken into account:

 Overrepresentation of a passage: When there is a door in reality, there must be an opening

in the model (figure 3.4).

 Navigable in the model, but not in reality: If it is not possible to go from one room to

another room, then there must be an obstacle between those two rooms (figure 3.5). Here

the diagonal movement, that as best represents the natural movement of a person, must be

taken into account.

Figure 3.4, Overrepresentation of a passage.

Left: floor plan, middle: incorrect rasterization and right: desired rasterization

41 | P a g e

Figure 3.5, navigable in the model, but not in reality.

Left: floor plan, middle: incorrect rasterization and right: desired rasterization

There has to be dealt with these errors, to use a regular grid. Reducing the tile size solves the

overrepresentation of passages in the model. However, it gives an error in the other problem, namely

navigation in the model, when it is not possible to navigate in reality.

Now that the floor plan is rasterized to a regular grid, it is important to note the topological relations

of the tiles in the grid. For the A* search algorithm it is important to detect the neighboring

relationship between the tiles. Because diagonal movement is allowed, the neighbors of each tile are

determined by the Algorithm 3.2, which uses an eight adjacency. This algorithm uses the relationships

of the neighbor from the previous chapter to calculate all possible neighbors. Then the neighbor is

only added to the list of neighbors when the neighbor exists and when the neighbor is not an obstacle.

In this way the neighbors of each tile can be determined. For other shapes, triangles or hexagons, the

adjacency as described in chapter 2 has to be applied instead of the square grid implementation. The

process however is the same. The movement cost of each step is defined by the Octile distance in a

square grid and a hexagonal grid. For a triangular grid, the Euclidean distance is better.

Algorithm 3.2: Neighbor function

1. Function Neighbor(tile, SquareGrid)
2. Neighbors
3. NeighborRelationship = [(1,0), (0, 1), (-1, 0), (0, -1), (-1,-1), (1,1), (-1,1), (1,-1)]
4. For relationship in NeighborRelationship:
5. Neighbor = (tile[x] + relationship[0], tile[y] + relationship[1]
6. If SquareGrid[Neighbor] = 0: //Check if the current tile exists and is not an obstacle
7. Neighbors Neighbor
8. Return Neighbors

42 | P a g e

Irregular grids:

Not only regular grids could be used as a spatial model, also irregular grids could be used. From the

map data a graph must be obtained. A visibility graph, a mesh navigation or waypoints could be used

to model a 2D or 3D environment. The nodes of these graphs represent the important locations a

person could navigate to. A visibility graph only has an edge when two nodes could ‘see’ each other.

The other irregular grids have edges when the nodes are linked to each other. Each node then has a

set of neighboring nodes, which concept is also used by the regular grids. The cost to move from one

node to another node must be derived from the distance between the two nodes. For irregular grids

this distance is the Euclidean distance between two nodes. A more detailed implementation of using

waypoints is given in chapter 5.

Now the spatial model is suitable for navigating purposes. Obstacles and passages in reality are

represented in the model and knowledge about possible navigation is obtained.

3.2.2 The points of interest

The points of interest are used to identify possible predictions of the target. From the map data

different points of interest could be derived. These points of interest have to be identified before the

system is ready. First a list of all possible points of interest of a building must be obtained. Then the

user gives according to a specific target weights per time interval for each of these points of interest.

The output of this component is a list of locations of the points of interests, where each point of

interest has a weight per time interval. The location of a point of interest is represented by a node in

the spatial model.

Input:

 Map data

Output:

 Collection of nodes representing the points of interest with weights per time interval

It is impossible to obtain all points of interest automatically from the map data. Therefore the

developer of the system should identify the points of interest by itself. A point of interest is specific

for each person and therefore it is impossible to give a complete list of points of interest within a

building. Information about this target, like its time table, preferences of the target, meetings and

43 | P a g e

attended events could be used to determine the points of interest for a target. Possible points of

interest are mainly landmarks and could for example be:

 Rooms (Work space, cafeteria, bathroom, etc.)

 Exits of a building

 Doors within the building

 Stairs/ Elevator

 Coffee Machines

 Information desk

Each point of interest has a static location where it should be able to navigate to. To use these

locations the points of interest must have a link to the spatial model. These positions have to be

retrieved from the input map data. Each point of interest therefore is represented as a node.

Therefore a point of interest must always be defined in the navigable space. The user has to determine

the location of each point of interest.

For both a regular grid as an irregular grid, the location of the point of interest is defined by the node

representing this landmark. In a regular grid this is the tile representing the object. Each point of

interest only could be represented by one node. Therefore if a room contains one door, the point of

interest is represented by the node of the location of that door. A room with multiple doors is

represented by the center tile in the room. Other objects that consist out of multiple tiles must be

represented by the center tile where the person interacts with the object. In this way each point of

interest could be translated to one shape in a regular grid:

𝑃𝑂𝐼𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑖𝑙𝑒[0]

In an irregular grid the points of interest are mostly defined as the nodes. If there is a point of interest

which is not represented by a node, a node should be added to the spatial model. Another alternative

is to snap the location of the point of interest to the closest node in the spatial model. In this way it is

possible to use the same spatial model while using different sets of points of interest for specific

people. Also no adjustments have to be made concerning the spatial model.

When all the points of interest are defined, the user can give target specific weights per time interval

to each point of interest. The weights determine the chance that a point of interest is used as

prediction of the target in contrast to the other weights of the points of interest. For example, a target

44 | P a g e

is moving towards an elevator and a staircase, but the user of the system knows that this target

prefers taking the stairs. In this case the stairs get a higher probability then the elevator. The user

determines all these weights for the target. However, the probability of navigating to a point of

interest could differ over time. Most points of interest only have a high probability during a certain

time interval. For example the coffee machine can be visited all day long by a user and then the weight

of the coffee machine is the same during the whole day. But a cafeteria has certain opening hours,

which determine the likelihood of the target navigating to this place. During the opening hours the

weights should be higher than when the cafeteria is closed.

To define this concept, each point of interest has a list of a certain time interval (∆𝑡) and a probability

(p) per time interval:

𝑊𝑒𝑖𝑔ℎ𝑡(∆𝑡) = [∆𝑡1: 𝑝1, ∆𝑡2: 𝑝2, ∆𝑡3: 𝑝3, ∆𝑡𝑛: 𝑝𝑛]

These time intervals do not have to be all of the same duration, for example the weights of a cafeteria,

with opening hours from 12:00 to 13:00, could be:

𝑊𝑒𝑖𝑔ℎ𝑡(∆𝑡) = {

0.1 𝑓𝑜𝑟 08: 00 − 11: 45
0.7 𝑓𝑜𝑟 11: 46 − 13: 00
0.1 𝑓𝑜𝑟 13: 01 − 18: 00

In this case people are unlikely to navigate to the cafeteria when the cafeteria is closed. However,

when the cafeteria is open the probability increases.

These weights could also be extended to a list of weights that is different for each day. For example

when there is an event on a specific day, points of interest are different than on another day. This

problem is solved by using a list of weights per time interval for each specific day. This process should

be repeated for each of the points of interest and acquires a lot of pre-processing time to eventually

use the system. However, weights could be determined in advance, so it costs no processing time

during the path calculation.

The result of this process is a whole list of points of interest with each their own location and relative

weights per time interval. This list is used as input for the determination of the prediction of the target.

3.2.3 Localization of the user and the target

However the aim of this research is not about localization, it is important to address how the locations

of the user and the target should be implemented in this framework. For outdoor environments GPS

45 | P a g e

is suitable to locate the user and the target. For indoor environments other positioning systems, like

RFID, Bluetooth, WLAN, UWB, Cellular-Based, IR and Ultrasonic (Adalja, 2013) are used to determine

the accurate positioning of the user and the target. The positions have to be mapped to the 2D square

grid to use them as input data for the path finding algorithm.

 Input:

 Position of the user

 Position of the target

Output:

 Tile where the user currently is

 Tile where the target currently is on the user’s device

This component consists out of two factors:

 Localization of the user

 Localization of the target

Localization of the user is retrieved by the system of the user itself, for example a mobile device which

is used to visualize the path from the user to the target. The sensors of this mobile phone are then

used to determine the accurate location. This location is used by the device itself to determine where

the user is in the model. Within an outdoor environment the GPS sensor of the mobile device is used

to retrieve the up-to-date position.

The localization of the target is different in a way that this data has to be send from the target to the

device of the user. When the target is tracked by a mobile device, this mobile device has to send the

current location to a database that stores this data. Then the mobile device of the user could access

this data by querying the database for the targets current position. This process is depicted in figure

3.6. The GPS sensor would be used to determine the location of the targets device within an outdoor

environment.

Important is that these locations have to be determined every ‘n’ seconds. It is necessary to obtain

the locations of both the user and the target in real time, because otherwise false data is used as input

for the path finding algorithm.

46 | P a g e

Figure 3.6, retrieving the targets up-to-date location.

When these locations are obtained it is necessary to map these locations to the model. When a regular

grid is used for the path finding algorithm, the location of both the user and the target have to be

translated to the tiles/shapes of the grid. This process is described in Algorithm 3.3. For each of the

positions is checked in which tile they are at the current moment of time. Here the properties of each

tile are used to determine where the user and where the target are positioned.

Algorithm 3.3: PositionToGrid

1. Function PositionToGrid(user, target, Squaregrid)
2. UserTile
3. TargetTile
4.
5. For tile in grid:
6. If tile[min x] > user[x] < tile[max x] and tile[min y] > user[y] < tile[max y]
7. UserTile tile
8. Else if tile[min x] > target[x] < tile[max x] and tile[min y] > target[y] < tile[max y]
9. TargetTile tile
10. Return UserTile, TargetTile

Using an irregular grid, the locations of both the user and the target have to be mapped to the closest

node in the spatial model. This node will then be the starting point for the navigation and will

determine where the target is located.

3.2.4 Prediction of the target

The most important component of this system is predicting where the target is moving towards. This

prediction is used as input to determine the path that the user has to take. This component is a

47 | P a g e

combination of the localization component and the points of interest component. The target’s

positions determine in what direction the target is moving. A target is moving towards his end goal.

The points of interest represent all the possible end goals that are interesting for the target. Therefore

the points of interest are used as prediction points of the target. Path finding algorithms are

developed to navigate to one single node at the time. This means that the total list of points of interest

has to be narrowed down to one point of interest. The movement of the target determines which of

the points of interest are approached and which points of interests are not. Therefore in the ideal

situation, the length of the path from the target to each of the points of interest has to be calculated.

Each time the target moves, the length of these paths should be recalculated and must be compared

to the previous length of these paths. In the case that the length of the path, the distance from the

target to the point of interest, is decreasing over time, the target is approaching the point of interest.

Now that there is a list of approaching points of interests by the target, these have to be narrowed

down to one point of interest. Therefore two approaches are defined:

1. The first approach uses the weights per point of interest per time interval to determine the

most likely point of interest the target is navigating to. These probabilities are pre-processed

in the points of interest component by the user. The point of interest with the highest weight

at that moment in time, will be the prediction of the target. When multiple points of interest

have the same value for the weights, then the closest point of interest to the target is used.

2. The second approach is not using any probability at all, but is using the closest point of interest

the target is heading to as the prediction of the target.

Input:

 Positions of the target

 Collection of points of interest with weights per time interval

 Current time and date

Output:

 The location of the prediction of the target

The first step in this process is to determine the direction of the movement of the target. The positions

of the target has to be retrieved from the database. First to initialize, the distance from each point of

interest to the target is calculated by using the A* algorithm, then these distances are stored per point

of interest. Every following update in the database is used to recalculate the distance from the target

to each of the points of interest. Then when the new calculated distance is smaller than the initial

distance, the point of interest is added to the points that are approached by the target, the prediction

48 | P a g e

points. Each time when the distance is recalculated this distance is the new up-to-date distance to the

specific point of interest. If there is no point of interest that is approached by the target, then the

target itself will be used as the prediction. This process of checking which points of interest are

approached by the target is described in Algorithm 3.4.

Algorithm 3.4: Prediction points

1. Function Predictionpoints(points of interest, first location of the target, new location of
the target)

2. Predictionpoints
3. For point in points of interest: //initialize the distance
4. Point.Distance = A*(first location of the target , point)
5.
6. While new location of the target:
7. For point in points of interest:
8. NewDistance = A*(new location of the target, point)
9. If NewDistance < Point.Distance:
10. Predictionpoints point
11. Point.Distance = NewDistance //Update the initial distance
12.
13. If Predictionpoints is empty:
14. Predictionpoints Target
15.
16. Return Predictionpoints

Now only the points of interest that are approached by the target are obtained, these points are used

to select the most likely point of interest the target is navigating to. When there is only one prediction

point this point will be used as input for the path finding algorithm. When there are multiple

prediction points, then these could be narrowed down by the two approaches as described before.

The first approach is determined by using the weights that are given per time interval in section 3.2.2.

The time and the date are used to determine the weight of each point of interest at that moment in

time. Then these weights are compared to each other and the point of interest with the highest

probability is chosen as the predication point (Algorithm 3.5).

The second approach uses the closest point of interest compared to the location of the target, the

pseudocode for the second approach is described in Algorithm 3.6.

In this case only one point of interest or the position of the target is used as input for the path finding

algorithm. The prediction is used as the end goal in the iterative A* search. The targets position is

used as prediction when the target is standing still or the target is not moving to any of the predefined

points of interests. Otherwise the most likely point of interest is used as a prediction for the target.

49 | P a g e

Algorithm 3.5: Approach 1: Using weights

1. Function Prediction(PredictionPoints) //Input Algorithm 3.4
2.
3. If length(PredictionPoints) = 1:
4. Prediction PredictionPoints[0]
5. Else:
6. Prediction.weight = 0 //initialize a prediction with weight 0
7. time = current time
8. date = current date
9. PredictionPoints(Weight) time, date //get weight at the current time and date
10.
11. For point in PredictionPoints:
12. If point.weight >= Prediction.weight:
13. Prediction point
14. If length(Prediction) < 1:
15. Prediction min(point.distance) //point.distance is obtained from Algorithm 3.4
16.
17. Return Prediction

Algorithm 3.6: Approach 2: Using the closest distance

1. Function Prediction2(PredictionPoints) //Input Algorithm 3.4
2.
3. If length(PredictionPoints) = 1:
4. Prediction PredictionPoints[0]
5. Else:
6. Prediction min(point.distance) //point.distance is obtained from Algorithm 3.4
7.
8. Return Prediction

3.2.5 Path planning algorithm

The last component uses the user’s current position and the prediction of the target, obtained by the

component described in the previous section, to calculate a path for the user. In the theoretical

framework is discussed that an iterative A* algorithm is suitable for this application.

Input:

 Position(s) of the user: Node

 Position(s) of the target: Node

 The prediction(s) of the target: Node

 Spatial model

Output:

 Path from the user to the prediction of the target or the target itself

50 | P a g e

Important to notice is that navigating to a prediction of the target is not always faster than navigating

to the target itself. There are six cases that could be distinguished, by comparing the distance of the

paths from the user and the target to the predicting of the target and the location of the user and the

target compared to the prediction of the target. The length of the path from the target to the

prediction of the target is determined by the A* algorithm presented in Algorithms 2.1 and 2.2. The

same determination is executed by the path from the user to the prediction of the target. These are

represented as:

 Length path user

 Length path target

Then the position of the target and the user compared to the prediction of the target is important to

determine different situations. Both the target and the user could be on the same side of the

prediction of the target. Together these parameters determine the six following different cases:

 Case 1: Length path target > Length path user & user and target are on the other side

compared to the prediction of the target.

 Case 2: Length path target = Length path user & user and target are on the other side

compared to the prediction of the target.

 Case 3: Length path target < Length path user & user and target are on the other side

compared to the prediction of the target.

 Case 4: Length path target > Length path user & user and target are on the same side

compared to the prediction of the target.

 Case 5: Length path target = Length path user & user and target are on the same side

compared to the prediction of the target.

 Case 6: Length path target < Length path user & user and target are on the same side

compared to the prediction of the target.

These six cases are visualized in figure 3.7. Only for cases 2, 3 and 6 navigating to the prediction is

more effective than navigating to the target directly. In the cases 2 and 6 the user and target are likely

to meet each other at the point of interest, representing the prediction of the target. Case 3 the target

will reach this point as first, therefore the user should navigate towards this prediction. For case 4

navigating to the target itself would be more effective over navigating to the prediction of the target.

This is because the user is could intercept the target before the target reaches the prediction of the

target. Case 5 depends on the situation, navigating to both the prediction of the target of the target

itself could be faster, but with small corridors the target itself would be better. Case 1 represents

another problem, where the user first has to navigate to the prediction of the target. Then this

problem becomes the same as in case 4, if the user reaches the prediction of the target, navigating to

51 | P a g e

the target itself is more effective than waiting for the target to navigate to the prediction. Therefore

in case 1, the user should navigate to the position of the target, while visiting the location of the

prediction of the target.

Figure 3.7, different cases as input for the path planning algorithm. Top: left: case 1, middle: case 2 and right:
case 3. Bottom: left: case 4, middle: case 5 and right: case 6.

For the path finding the Algorithms 2.1 and 2.2 are used to calculate the fastest path at any given

moment in time. The heuristic used for the A* algorithm is the Octile distance in a square grid and the

Euclidean distance in an irregular grid, as presented in the theoretical framework. Algorithm 3.7

represents this process of using A* to calculate a path that the user has to take, taking into account

the six developed cases.

Algorithm 3.7 only returns the path to the user at a given time. Now this has to be executed iterative,

which is shown in Algorithm 3.8. Each time the user has not found the target, a path is calculated, the

user moves according to this path, until new input data is obtained. When new input data is obtained,

the calculation of the prediction of the target is updated and the search continues. This means that

the process is ended when the user and target reached each other. This is determined by a distance

buffer, where the user and the target should see each other. This is the minimal distance that is

required to actually meet someone. Ideally this distance is determined by the visibility of the user,

however it is hard to determine in what specific situation it is possible to actually see the person.

52 | P a g e

Algorithm 3.7: Determine path for the user

1. Procedure UserPath(UserNode, TargetNode, Prediction)
2.
3. PathUser = A*(UserNode, Prediction)
4. PathTarget = A*(TargetNode, Prediction)
5. PathUserLength = length of PathUser
6. PathTargetLength = length of PathTarget
7.
8. If (UserNode[x] <= Prediction[x] <= TargetNode[x] or UserNode[x] >= Prediction[x] >= TargetNode[x]) and
9. (UserNode[y] <= Prediction[y] <= TargetNode[y] or UserNode[y] >= Prediction[y] >= TargetNode[y]):

10. SameSide = False
11. Else:
12. SameSide = True
13.
14. If SameSide = False:
15. Return PathUser
16. Else if PathTargetLength < PathUserLength and SameSide = True:
17. Return PathUser
18. Else:
19. PathUserToTarget = A*(UserNode, TargetNode)
20. Return PathUserToTarget

Algorithm 3.8: Determine movement for the user

1. Procedure UserMovement(UserNode, TargetNode, Prediction, BufferDistance)
2.
3. while Distance(UserNode, TargetNode) > BufferDistance:
4. Path = UserPath(UserNode, TargetNode, Prediction)
5. userMovement = Path(next step)
6.
7. Return user reached the target

3.2.6 Detailed system flow

Figure 3.8 gives a detailed system flow of all the components and every decision that is presented in

the previous sections. The spatial model is used as input for all the processes presented in this system

flow. The inputs are presented at the left and decisions are represented as diamond shapes. Note that

the determination of the most likely point of interest the target is navigating to could be determined

by the two different approaches as presented in section 3.2.4.

53 | P a g e

Figure 3.8, detailed work flow of the SEA* method.

54 | P a g e

55 | P a g e

4. Implementation: Indoor environment

The aim of this chapter is to implement the methodology presented in chapter 3 of this thesis

research. The dataset that is used to implement the conceptual framework is a floorplan from the

faculty of architecture of the University of Delft. This floorplan is representing an indoor environment.

There is no indoor positioning system available and therefore simulation of the positioning of the user

and the target will be used to test the methodology. Because there is no existing application that

provides the data that is needed to test this method, a new theoretical application will be made. This

application is written in the programming language Python.

Section 4.1 discusses the implementation of the methodology. A spatial model must be established,

with the geometrical, topological and semantic components as presented in the conceptual

framework. The results of this implementation will be presented in section 4.2 where a normal

iterative A* algorithm is used to validate the SEA* method. The positions are simulated and the

weights are determined per scenario. Section 4.3 gives an overview of all the results described in

section 4.2. Also it discusses situations that are hard to visualize, because the method is dynamic.

Finally section 4.4 discusses the requirements that are set for this method in chapter 3.

4.1 Pre-processing
First the dataset that is used for the implementation is discussed, section 4.1.1. Then this dataset is

translated to a spatial model, section 4.1.2. The spatial model used for this implementation is a 2D

square grid. This spatial model is chosen because of three reasons. First of all a 2D square grid gives

an accurate description of the positions of the user and the target. The second reason is that a square

grid supports using the A* algorithm, which is the used path planning algorithm. The third reason is

that a square grid supports adding semantics to the model, because semantics could be added to

every tile in the model. Overall the 2D square grid is an easy and clear spatial model to work with and

to implement this method. Also a square grid is the best representation according to Algfoor (2015)

& Ma (2011) for a 2D environment. Due to the lack of optimizing the developed code, the approached

points of interest by the target are calculated differently, this is explained in section 4.1.3. Finally the

points of interest are determined by using the semantics of the building, which is described in section

4.1.4.

56 | P a g e

4.1.1 The indoor dataset
The dataset that is used is a floorplan from the faculty of architecture of the University of Delft, see

figure 4.1. This dataset is used because of four factors:

 The used dataset must contain shortcuts in the building. This method is developed to let the

user take shortcuts instead of following the target. For example in a building with only one

big corridor there are no possible shortcuts. This method will then have the same behavior

of a normal iterative target search, which is following the target.

 The environment must be known by the developer of the system, because probability

weights must be given to the points of interest.

 There are different users of the building, like teachers, students, visitors etc. Each user has

its own points of interest and therefore different behavior can be tested.

 This method gives more insight in the way of navigating inside the faculty of architecture,

which could be used for further research in this domain.

Concerning the first factor, only a part of the building of Architecture contains shortcuts for navigation

purposes. Therefore only this part, see figure 4.1, will be examined. The floorplan contains data about

where what room is located, the obstacles and the navigable space. However, it is not possible to

automatically translate this floorplan into a representative model. This is caused by extra information

about where what room is located, doors are not modelled as white space and there are some

obstacles in the floorplan that are no real obstacles for human navigation.

Figure 4.1, floorplan of the faculty of architecture of the University of Delft (Julianalaan 134, Delft)

57 | P a g e

Figure 4.2, selected part from the floorplan of the faculty of architecture.

4.1.2 Creating the spatial model
It is not possible to automatically generate a 2D square grid with this floorplan. Therefore the spatial

model is constructed manually. The floorplan is crossed by an empty grid and for each tile is

determined, whether a human could navigate in this space or not. Special attention to doors and small

obstacles is necessary to give a representative model. The used size of the tiles is 1 m². The result is

an occupancy grid as displayed in figure 4.3. In this case brown tiles represent the obstacles, like the

walls, and the white tiles represent the navigable space, like the doors and the empty space. This grid

has a width of 78 meters and a height of 58 meters.

Figure 4.3, 2D square grid representation.

58 | P a g e

For each navigable space it is possible to navigate to each of the neighboring tiles, if these tiles are

also representing a navigable space. Therefore diagonal movement is allowed. To deal with this given

factor moving horizontal and moving vertical has a movement cost of 1. While moving in a diagonal

way has a movement cost of √2 .

4.1.3 Calculating the approached points of interest

It turns out that calculating a path to each of the points of interest each time the target moves and

checks what points are approached by the target is very inefficient and cannot be optimized due to

the lack of programming skills. Therefore the direction that represents the movement of the target is

used in combination with the positions of the doors and the knowledge of the current rooms of the

user and the target. For this approach the doors per room and the tiles per room have to be known.

The doors are needed to check if a person could leave the room if he is heading that direction or not.

Therefore for each room all the possible exits are stored. All the doors and exits are manually

extracted from the floorplan, see figure 4.4.

Figure 4.4, determination of all the doors/exits in the model.

The position of the target is compared to the tiles per room. Then the doors per room determine

whether the target could reach a point of interest or not. All the doors and openings that are available

in the current situation are modelled. However, not all doors could be used by a certain type of users.

This depends on closed doors, emergency exits and doors that are always open to everyone.

59 | P a g e

To calculate the direction of the target, two measurements of the position of the target has to be

known. Because the magnitude of a vector only has some meaning in an open space and not in

navigating in an environment with obstacles, the vector is normalized and only the direction is taken

into account. The direction of the movement of the target is determined by the vector.

In this case a1 represents the normalized change in the horizontal direction and the a2 represents the

normalized change in the vertical direction. This direction of the target determines to what points of

interest this person is navigating to. This is the first step to narrow all the points of interest down to

only one single point that is used for the navigation. Figure 4.5 shows how the direction is used to

focus on the points of interest where the target is moving towards. There are eight different cases:

 When the direction of the target is
1
1

 then the search space for points of interest is in the

North-East quadrant (II).

 When the direction of the target is
1

−1
 then the search space for points of interest is in the

South-East quadrant (IV).

 When the direction of the target is
−1
1

 then the search space for points of interest is in the

North-West quadrant (I).

 When the direction of the target is
−1
−1

 then the search space for points of interest is in the

South-West quadrant (III).

 When the direction of the target is
1
0

 then the search space for points of interest is in the

East quadrants (II & IV).

 When the direction of the target is
−1
0

 then the search space for points of interest is in the

West quadrants (I & III).

 When the direction of the target is
0
1

 then the search space for points of interest is in the

North quadrants (I & II).

 When the direction of the target is
0

−1
 then the search space for points of interest is in the

South quadrants (III & IV).

Figure 4.5, two examples of selecting the prediction points based on the direction of the target.

60 | P a g e

Figure 4.6, the prediction points based on the direction of the target without (left) or with (right) a door.

Figure 4.6 shows how the direction is used in combination with obstacles to focus on the points of

interest where the target is moving towards. Now only the points of interest where the target can

navigate to are obtained, and if there is no point of interest in the search area, the current position of

the target is used as the prediction point (figure 4.6, left). When there is only one prediction point this

point will be used as input for the path finding algorithm. When there are multiple points of interest,

then the most likely point is determined as described in 3.2.5.

4.1.4 Determination of the points of interest
To predict where the target is moving to, points of interest should be identified. A point of interest

could be any of the tiles that is interesting for the target to navigate to. Doors are important decision

making points for the behavior of a target. Therefore doors could be used as points of interest. There

are rooms with only one door. These doors are the only possibility to enter a certain room or leave a

certain room. Each room with only one door/entrance has this door/entrance as points of interest,

representing the total room. Rooms with multiple doors are represented by a point of interest in the

middle of the room. The doors to the outdoor environment are all important points for the target to

navigate to and therefore used as points of interest. Other objects are represented by the tile where

the person interacts with the object. In case there is no emergency, emergency doors should not be

used by the target, therefore these doors are in a normal situation not marked as points of interest.

Next to using doors that represent the rooms as points of interest, some points are more important.

For example in the faculty of architecture people often visit a coffee machine or a coffee corner. In

case of an event, the lobby is becoming a point of interest for people visiting the event.

Figure 4.7 shows special cases that represent points of interest. In a normal situation the closed door,

the door of a storage space, and the emergency exits are not used as points of interest. However, the

coffee machines and the location where an event is held are important points to use as possible

predictions of the target.

61 | P a g e

Figure 4.7, special cases to determine points of interest.

Figure 4.8, all points of interest in a normal situation.

Figure 4.8 shows all the points of interest where the target could navigate to in a normal situation.

For each of these points a weight must be given concerning the target the user is navigating to. The

next section describes the weights per created scenario. In total there are 26 points of interest

62 | P a g e

defined. These points of interest are representing 3 coffee machines, 4 study rooms, 6 lecture rooms,

1 elevator, 2 staircases, 5 exits (2 outdoor exits and 3 indoor exits), 2 bathrooms, 1 event location and

2 rooms with other destinations.

4.2 Scenario analysis
This section describes several scenarios based on real situations. For each of the scenarios, the

position of the user and the position of the target are simulated. Also the path the target takes is

simulated in this implementation. The results per scenario are given, this means the path the user

takes to reach the target. This path is per scenario compared to the iterative implementation of the

A* algorithm. Sometimes the methods have overlapping paths, this means that the iterative A*

method takes the same route as the SEA* method.

4.2.1 Scenario 1: Target moves from the hall to the coffee corner, user is in a study room

In this scenario the target is moving from the one side of the building to get a coffee in the other side

of the building. The path of the user is the shortest path between the target and the coffee corner

that he wants to visit. The user is currently in a study room. Figure 4.9 shows the initialization of this

scenario.

Figure 4.9, scenario 1 initialization of the target and the user.

63 | P a g e

Weights per point of interest per time interval are needed to determine the most likely point of

interest. To test the recommended approach one weight per point of interest is used to represent the

likelihood that the target is navigating to this point of interest. The implementation therefore uses a

specific time interval. The time interval in this case is a 15 minute break between a lecture. The target

is in this case a male geomatics student. On this day there is no special event planned. The reasoning

and the weights that are assigned to the points of interest are presented in table 4.1. Now these

weights are used to predict the movement of the target. The Geolab, coffee machines, the bathroom

and the outdoor exits are the most important points of interest during a break. These points will have

the biggest impact on the SEA* approach.

Table 4.1, weights per point of interest during a break for a male geomatics student.

POI Chance Reasoning

Lecture rooms 0.1 It is not likely that a student is visiting another lecture
room in the break of its own lecture room.

Coffee machines 0.8 During a break most people are visiting a coffee
machine.

Bathroom 0.7 [0.0] People are likely to visit the bathroom during lecture
breaks. However a male will only visit the male toilet,
the female toilet will have a chance of 0.

Elevator, stairs and indoor
exits

0.4 Students will probably not visit another floor during
the break, but this is not impossible.

Geolab 0.7 Geomatics students often visit the Geolab.

Study rooms 0.1 Someone could visit another study room than the
Geolab, but this is unlikely.

Outdoor exits 0.7 Students are likely to go outside during the break.

Event 0.0 There is no event scheduled, therefore this is not
modelled as a point of interest.

Other rooms 0.1 It is very unlikely that students are spending their
breaks here.

The result of the SEA* method and the result of the iterative A* algorithm is shown in figure 4.10.

First both methods navigate east. When the distance of the target to the prediction is equal or smaller

than the distance of the user to the prediction the SEA* method turns and navigates to the prediction

of the target. The method detects that the coffee machines are the most likely points of interest. The

iterative A* algorithm is navigating to the target at each moment in time and therefore follows the

target. The SEA* method reaches the target in 57 tiles, while the iterative A* method reaches the

target in 96 tiles.

64 | P a g e

Figure 4.10, result scenario 1 with weights used in table 4.1. SEA*: 57 steps & iterative A*: 96 steps.

The weights of the coffee machines are now dominant over the other points of interest. Figure 4.11

presents the case where the Geolab, the study room of geomatics students, has a higher weight

than the coffee machines. Both methods reach the target in this case in 96 tiles.

Figure 4.11, result scenario 1 with the Geolab with the highest weight assigned. SEA*: 96 steps & iterative A*:

96 steps.

65 | P a g e

Figure 4.12, result scenario 1 with equal weights for all points of interest. SEA*: 67 steps & iterative A*: 96
steps.

When there are no predefined weights per point of interest, every point has the same weight. At each

time the closest point of interest in the direction the target is navigating is used as the prediction

point, see figure 4.12. The result for the SEA* method is that the user reaches the target in 67 steps.

The iterative A* method reaches the target in 96 steps.

The situation where the user predefined the weights correctly is the fastest method (figure 4.10).

However, when the user predefines a high weight to a point of interest where the target does not

navigate to, this point becomes the leading factor for the SEA* method. Because this point is further

away from the target then from the user, the user navigate directly to the target. In this case both

methods behave as the iterative A* method.

When there are no predefined weights the closest point of interest to the target is used as the

prediction point. This scenario is slower than a situation where the weights are predefined correctly.

On the other side, no predefined weights are faster than the situation where the user gives a high

weight to a point of interest the target is not navigating to.

In all the three variations of this scenario the user reaches the target. This is important, because both

approaches must always be effective.

66 | P a g e

4.2.2 Scenario 2: Target leaves the building during closing hours

The second scenario presents the architecture building just before closing hours. Everyone is asked to

leave the building. The building closes from Monday to Thursday on 22:00. From 21:45 only the exits

of the building are points of interests for people in the building. Therefore these points have a higher

weight than all the other points. The outdoor exits and the indoor exit on the east are the only

locations where a person can leave the building. Therefore only these are considered in the model.

The target is moving from the Geolab to the exit on the west side of the building. The user is currently

in the lobby. The initialization of this scenario is depicted in figure 4.13.

Figure 4.13, scenario 2 initialization of the target and the user.

The result of this scenario where the weights of the possible exits are higher than the other points

are depicted in figure 4.14. The SEA* method navigates to the prediction, which is in this case the

exit door, and reaches the target in 37 steps. The iterative A* method navigates towards the target

and reaches the target in 74 steps.

67 | P a g e

Figure 4.14, result scenario 2 with higher weights for the exit doors. SEA*: 37 steps & iterative A*: 74 steps.

Figure 4.15, result scenario 2 with the same weights for all points of interest. SEA*: 50 steps & iterative A*: 74
steps.

Figure 4.15 shows the behavior of the model where all the weights of the points of interest are the

same. In this case the SEA* method first navigates to points of interest that are closer by the target

68 | P a g e

and then navigates towards the exit doors. The SEA* method reaches the target in 50 steps, while the

iterative A* method reaches the target in 74 steps. Therefore this method is faster than the iterative

A* method, but slower than the situation where correct weights are given (figure 4.14).

To not limit the results for only one specified path, multiple locations of the user are tested to show

the behavior of the both presented methods. The path of the target is the same as shown in figure

4.13. Figures 4.16 to 4.18 present the results of both methods with different beginning points for the

user.

The first position of the user is depicted in figure 4.16, this is the beginning of the light green line

towards the target. The position of the user is in between the target and the destination of the target.

Both methods navigate directly to the target. The SEA* method navigates to the target, because the

length of the path to the prediction is smaller than the length of the target to the prediction. Also they

are on the same quadrant of the prediction. Both methods take the same path, overlapping paths in

the figure, and reach the target in 11 steps.

The second position of the user is a position where the target is approached from the left (figure 4.17).

In this situation the SEA* method is navigating to the prediction and reaches the target in 39 steps.

This is slightly faster than the iterative A* algorithm, which reaches the target in 40 steps. First both

paths are parallel approaching the target, then the SEA* method navigates to the prediction, the exit

door, while the iterative A* method exactly follows the target.

The third position of the user is a position where the target is approached from the right (figure 4.18).

Because the prediction and the target are both in the same direction, both methods behave the same.

Both methods reach the target in 53 steps.

All these locations of the user have (almost) equal behavior and both methods determine a path of

the same length. Both methods are reaching the target in all these situations, which means that both

methods are effective.

69 | P a g e

Figure 4.16, result scenario 2 where the user is between the target and the destination of the target. SEA*: 11
steps & iterative A*: 11 steps.

Figure 4.17, result scenario 2 where the user is approaching the path of the target from the left. SEA*: 39 steps
& iterative A*: 40 steps.

70 | P a g e

Figure 4.18, result scenario 2 where the user is approaching the path of the target from the right. SEA*: 53
steps & iterative A*: 53 steps.

4.2.3 Scenario 3: Student has a lecture on the first floor.
The third scenario is a student that is in a lecture room and his next lecture is on the first floor. The

lecture room the student is currently in is on the ground floor. The student navigates therefore to one

of the staircases to reach the first floor. This initialization is shown in figure 4.19. The user of the

system is in this case getting a coffee in the corridor on the left. In the preprocessing phase it is

possible to obtain the schedule of the student the user wants to follow. If the user knows this student

first has a lecture on the ground floor and afterwards a lecture on the first floor, staircases and the

elevator are assigned a higher weight than the other points of interest.

Figure 4.19, scenario 3 initialization of the target and the user.

71 | P a g e

Therefore the elevator and the staircases are the prediction points if the target is moving in these

directions. The result of both methods are shown in figure 4.20. The SEA* method first navigates

towards the target and then uses the staircase as the prediction point. This is because the target is

moving towards the staircase and the elevator in the top right corner. The SEA* method reaches the

target in 69 steps and takes a shortcut compared to the iterative A* implementation, that reaches the

target in 81 steps.

In a situation where there are assigned no weights, the user is using the closest point of interest of

the target as the prediction point. The result of this scenario without assigning weights is shown in

figure 4.21. Both methods have the same behavior and reach the target in 81 steps. However, the

SEA* method navigates to predictions close by the target and the iterative A* method navigates to

the target directly. Because the weights of the points of interest are all equal no big shortcuts can be

made.

Now what happens if the same weights are used, but the target first wants a coffee and navigates to

the closest coffee machine? The results are depicted in figures 4.22 and 4.23. Figure 4.22 shows the

situation with higher weights for the stairs and the elevator. The SEA* method takes a shortcut, but

this shortcut was not totally correct. Therefore the SEA* method does not perform optimal and

reaches the target in 74 steps, while the iterative A* method reaches the target in 69 steps. This

proves that taking a big shortcut is not always the best option. Figure 4.23 is the result of navigating

to the coffee machine, with equal weights for all points of interest. Both methods behave the same

and reach the target in 69 steps. In this specific situation it is not always better to take a shortcut. The

prediction must be known in advance and if the target is navigating to this prediction the SEA* method

is always better. However, navigating to a slightly different point of interest, like the coffee machine,

can give undesirable behavior. In both scenarios both methods always reach the target.

72 | P a g e

Figure 4.20, result scenario 3 with higher weights for the stairs and elevator. SEA*: 69 steps & iterative A*: 81
steps.

Figure 4.21, result scenario 3 with the same weights for all points of interest. SEA*: 81 steps & iterative A*: 81
steps.

73 | P a g e

Figure 4.22, result scenario 3, navigating to the coffee machine, with higher weights for the stairs and elevator.
SEA*: 74 steps & iterative A*: 69 steps.

Figure 4.23, result scenario 3, navigating to the coffee machine, with the same weights for all points of
interest. SEA*: 69 steps & iterative A*: 69 steps.

74 | P a g e

4.2.4 Scenario 4: Visitors visit an event
The fourth scenario analyses the models in case of an event. An event is held in the lobby, which is

located around the point of interest that represents the event. The event is known in advance and a

visitor that want to visit the event and has no further points of interest is likely to navigate to the

event. In this case the weight of the point of interest that represents the location of the event is higher

than all other points of interest, the other points of interest are all equal. The user wants to navigate

to this visitor of the event. This situation is initialized as shown in figure 4.24.

Figure 4.24, scenario 4 initialization of the target and the user.

The point of interest, that represents the location of the event, is used to the prediction point if the

target is navigating in this direction. Figure 4.25 shows the result when the event has a higher weight

than the other points of interest. The SEA* method first navigates to the target directly, but when the

target moves towards the event, the user navigates to the prediction of the target. In this case the

user reaches the target in 44 steps. The iterative A* method follows the target and reaches the target

in 51 steps. Navigating to the prediction is in this case faster than navigating directly to the target.

Figure 4.26 shows the result of the same scenario, but now uses equal weights for all the points of

interest. First the SEA* method navigates towards the points of interest close by the target and then

navigates to the event point, which is the closest point of interest at that moment in time. The target

is reached in 45 steps, while the iterative A* algorithm reaches the target again in 51 steps. In both

75 | P a g e

situations the targets are reached for all methods. In this case there is (almost) no difference in the

behavior of the situation with weights and the situation without weights.

Figure 4.25, result scenario 4 with a higher weight for the event. SEA*: 44 steps & iterative A*: 51 steps.

Figure 4.26, result scenario 4 with same weights for all points of interest. SEA*: 45 steps & iterative A*: 51

steps.

76 | P a g e

4.3 Overview of the results
This section summarizes all the results of the scenarios described in section 4.2. There are four

scenarios that discusses several cases and that are all based on real behavior of the user and the

target. Each scenario and its sub scenarios are presented in table 4.2. This table shows that, if the

user gives the highest weight to a point of interest in the neighborhood of the end destination of the

target, the SEA* method always gives a faster path than the iterative A* method. However, when

the highest weight is given to another point, the SEA* method gives the same or a slower path than

the iterative A* method. Therefore assigning points of interest and its weights must only be used

when the user is certain about where the target is moving to.

Table 4.2, summary of the results presented in section 4.2.

Scenario Dominant
weights

User
start point

Target
start point

Target
end point

SEA*
[steps]

Iterative
A*[steps]

1. Break
during a
lecture

Coffee
machines

Study room Corridor
(east)

Coffee
machine

57 96

1. Break
during a
lecture

Geolab Study room Corridor
(east)

Coffee
machine

96 96

1. Break
during a
lecture

All equal Study room Corridor
(east)

Coffee
machine

67 96

2. Closing the
building

Possible exits Lobby Geolab North-west
exit

37 74

2. Closing the
building

All equal Lobby Geolab North-west
exit

50 74

2. Closing the
building

Possible exits Corridor Geolab North-west
exit

11 11

2. Closing the
building

Possible exits Corridor (left) Geolab North-west
exit

39 40

2. Closing the
building

Possible exits Corridor
(right)

Geolab North-west
exit

53 53

3. lecture on
first floor

Stairs and
elevator

Corridor (left) Lecture
room

Stairs 69 81

3. lecture on
first floor

All equal Corridor (left) Lecture
room

Stairs 81 81

3. lecture on
first floor

Stairs and
elevator

Corridor (left) Lecture
room

Coffee
machine

74 69

3. lecture on
first floor

All equal Corridor (left) Lecture
room

Coffee
machine

69 69

4. Event Event Corridor (left) North-
west exit

Event 44 51

4. Event All equal Corridor (left) North-
west exit

Event 45 51

77 | P a g e

In the case that all the points of interest have the same weight, the nearest point of interest of the

target is used as the prediction. These scenarios provide in most cases a faster path than the iterative

A* method. It is also possible that the same path is obtained. Therefore when the user has no clue

about where the target is navigating to, it is better to use all points of interest with the same weight

and use the closest point of interest to the target as the prediction point to navigate to.

Eventually there are cases that are not presented in section 4.2, because they are hard to visualize,

but are important to notice. These scenarios are hard to visualize because there are a lot of

overlapping paths. The first case is, when a target is walking in a certain direction and suddenly turns

around and moves in the other direction. In this case the iterative A* method returns a faster path if

the SEA* method already tries to take a shortcut towards the prediction of the target. When all

weights of the points of interest are equal, this effect is smaller. The second case is, when a target is

moving and does not stop moving. In practice this is unlikely, but it could occur. Then the SEA* method

is preferred, because this method reaches the target if the shortcut is towards where the target is

actually moving. The iterative A* method will follow the target. If the target is walking around the big

lobby, in the middle of the model, this method will never reach the target. The SEA* method will

eventually reach the target. The SEA* method finds the target faster if the prediction points are

correctly defined, but also with equal weights for all points of interest this method uses shortcuts to

finally navigate to the target.

4.4 Discussion of the requirements
In this section the criteria defined in section 3.1.1 are used to discuss the results presented in this

chapter. The validation criteria are spatially logical, effective and efficient. Spatially logical means that

the model is correctly representing the reality. The method is effective if the method always finds its

target. The method is also effective if the target is reached as fast as possible, preferable faster than

the iterative A* method. The method is efficient if the user gets its directions as fast as possible.

Spatially logical: The spatial model that represents the terrain is developed manually, therefore this

model is spatially logical. The doors represent the connections between the different rooms,

corridors, lobby and stairs. Every connection that is there in reality is also present in the spatial model.

However, there is a slightly overrepresentation of the obstacles, but this does not influence the

behavior of the navigation.

78 | P a g e

Effective: The SEA* method is implemented and compared to the iterative A* method with using a

real floorplan of the faculty of architecture in Delft. The SEA* method will eventually always find the

target, in contrast to the iterative A* method, where a target that keeps moving could never be

reached. Therefore the SEA* method is more effective than the iterative A* method. Next to this

factor, the SEA* method delivers a faster path to the user if the prediction of the target is correctly

assigned. If the user assigns a higher weight to a point of interest where the target is not really

navigating to, the iterative A* algorithm could be slightly better. This could be solved by using no

weights, but the distance to the points of interest to predict where the target is going to. This

outperforms the iterative A* method, but is not always as fast as when the prediction is assigned

correctly.

Efficient: It depends on the situation which of the two methods is faster in giving directions to the

user. When the target is closer to the user, the iterative A* algorithm is most of the times faster, while

when the target is farther away from the user, the SEA* method is most of the times faster. In a real

case scenario this criteria is more important, because the user is not waiting five minutes while the

target is in the same building.

79 | P a g e

5. Implementation: Outdoor environment

This section describes the implementation of the methodology presented in chapter 3 of this thesis

research within an outdoor environment. The Global Positioning System is used to determine both

the location of the user and the position of the target. The spatial model that is used for the navigation

is obtained from Google Maps, making use of the Google Maps API. The Google Maps Distance Matrix

API is used to determine the distance from one point to another point. Further the Google Maps

Directions API is used to obtain the fastest route from one point to another point and visualizing the

route. To deal with these APIs the Google Maps JavaScript API V3 (Google, 2016) is used. Therefore

this implementation is written in JavaScript, HTML and CSS. Eventually this implementation could be

converted to a mobile application for Android.

Section 5.1 discusses the pre-processing steps and explains how the SEA* method is implemented.

The section 5.2 shows the results of the scenario analysis in the outdoor environment. An overview

of the results is given in section 5.3. Finally section 5.4 discusses the requirements that are determined

in chapter 3.

5.1 Pre-processing
This section first discusses what spatial model is used, 5.1.1. Then in section 5.1.2 the points of interest

are defined. Section 5.1.3 shows the data input that is used for the positioning of the target. Section

5.1.4 explains how the prediction of the target is implemented and determined and finally the used

path planning algorithm is discussed in section 5.1.5.

5.1.1 The spatial model
The test area used is the campus of the TU Delft, which is depicted in figure 5.1. The Google Maps API

offers a detailed map for navigating using direct GPS data or addresses. It uses a road network model,

where the nodes represent waypoints and the edges are the connections between these edges if

navigation is possible according to a preferred mode of transport. This API offers a few advantages

and disadvantages.

Advantages:

 It is possible to add points of interest to the model, using GPS locations or addresses.

 It provides a way to determine the fastest route from one point to another point.

 The API covers most countries and could be used anywhere, where Google Maps is available.

80 | P a g e

 It is possible to determine the distance between two locations.

 It is possible to visualize the map and the route the user has to take.

 The API is very efficient and effective in finding the fastest route.

 The API supports routing for walking, cycling, driving and public transport.

Disadvantages:

 Paths that are not marked as navigable in Google Maps are not used to calculate the fastest

route. There are situations where there is a sidewalk, but this is not modelled as such.

Therefore the model limits the usability in areas that are not frequently mapped. This

however should not be a problem in large cities.

 Locations are not always located at the exact same position, because the coordinates are

mapped to the nearest node in the spatial model.

Each location is mapped to the nearest node in the Google Maps model. This has both its advantages

and its disadvantages. GPS measurements that are not located at a node, but for example in the water

(see figure 5.2), are mapped to the nearest node in the model. Most of the times these represent the

correct location of the point, however this is not always the case. Figure 5.3 shows a situation where

the GPS location of a building is mapped to the nearest node. This is an important notion to add points

of interest to the model, the user has to check the exact points of interest used for the navigation.

The topology used to navigate from one point to another is obtained by accessing the Google Maps

API obtaining the route by using the walking parameter. This means that only nodes where a person

can walk are used to navigate from one point to another.

81 | P a g e

Figure 5.1, campus TU Delft as test area.

Figure 5.2, mapping GPS location (in the water) to the nearest node.

82 | P a g e

Figure 5.3, mapping GPS location (in a building) to the nearest node.

5.1.2 Adding the points of interest
To predict where the target is moving to, points of interest should be identified. A point of interest

could be any location that is interesting for the target to navigate to. The entrances of buildings are

important locations, where a person could enter a building, therefore these are used as points of

interest. Of course not every building is interesting for every person, therefore only the interesting

buildings should be used as points of interest for a specific person. Also a park, a forest, a meeting

place could be used as points of interest. Eventually routes to for example a city center could be used

to represent the points of interest which are farther away than the test area. In this example such

points are not used. The latitude and longitude GPS coordinates are used to represent the locations

of the point of interest.

83 | P a g e

The points of interest are defined as the following and are depicted in figure 5.4:

1. The faculty of Architecture and the Build Environment, represented by the three main

entrances.

2. The aula, represented by the two entrances.

3. The library, represented by the entrance.

4. The house of the target, represented by a point nearby.

5. The daycare, represented by the coordinates of the building.

6. The hockey club, represented by the coordinates of the clubhouse.

7. The faculty of Civil Engineering & Geosciences, represented by the central entrance.

8. The faculty of Electrical Engineering, Mathematics and Computer Science, represented by

the central entrance.

9. The faculty of Industrial Design Engineering, represented by the central entrance.

10. The faculty of Applied Sciences, represented by the central entrance.

11. The faculty of Mechanical, Maritime and Materials Engineering, represented by the central

entrance.

Figure 5.4, points of interest in the outdoor environment.

84 | P a g e

5.1.3 The positioning of the target
For the position of the target a GPS log is used which is obtained in and around the campus of the

University of Delft. The data consists out of a position, in latitude and longitude, per second. This data

is reduced to a position for every 10 seconds, which is shown in figure 5.5. Therefore the

implementation calculates the path that the user should take every 10 seconds.

Figure 5.5, GPS log campus TU Delft per 10 seconds.

5.1.4 The prediction of the target
To determine to which points of interest the target is navigating, the prediction of the target, the

Google Maps Distance Matrix is used to determine which points are approached by the target. Every

time when there is a new measurement the distance to each of the points of interest is calculated.

This is the distance of the fastest path from the target to each point of interest. When the distance is

85 | P a g e

smaller than the distance from the previous measurement, the target is approaching this point of

interest. All the points of interest that are approached by the target are stored. Then the closest point

of these points of interest compared to the target is used as the prediction of the target. This was

according to the indoor implementation the most promising option.

5.1.5 Path planning algorithm
The determination whether to navigate to the prediction or directly to the target is according the

algorithms 3.7 and 3.8, as presented in chapter 3. The path planning algorithm used is the Google

Maps Directions API, which uses a starting point and a destination point and a mode of navigation,

which is walking. The Google Maps Directions API provides the fastest path from the starting point to

the end point. The starting point is here the position of the user, where the end point is the current

location of the target or the prediction of the target.

5.2 Scenario analysis
This section describes several scenarios based on the GPS log as positioning of the target. Each

scenario has a different starting point of the user to navigate to the target. The results per scenario

are given, this means the path the user takes to reach the target. This path is per scenario compared

to the normal implementation of the iterative A* algorithm. Sometimes the methods have

overlapping paths, then both methods have the same behavior and one result is shown.

5.2.1 Scenario 1: Target is moving, but stops in between.

For this scenario the first part of the GPS log is used. The duration of this log is 9 minutes and 30

seconds on a bicycle. This means that the user must find the target within this timeframe using a

bicycle. The implementation uses walking as the mode for travel. Therefore the target must be found

in 16 minutes by walking, obtained by using Google maps and drawing the GPS log. This part of the

GPS log is illustrated in figure 5.6. The position of the target differs every time.

86 | P a g e

Figure 5.6, GPS log data, where the target starts at the start point, navigates to the stop point and then

continues to the end point.

There are 3 different starting positions used for the user, figure 5.7:

1. In the Mekelpark, at the other side of and closer by the point of interest.

2. In the Mekelpark, at the same side of and closer by the point of interest.

3. Christiaan Huygensweg, near the TU Delft aula, farther from the point of interest than the

target.

87 | P a g e

Figure 5.7, starting positions of the user for scenario 1.

88 | P a g e

For the first starting position the result is shown in figure 5.8. Both the implemented methods behave

the same and reach the target at the Van Embdenstraat.

Figure 5.8, 1st position: path for the SEA* method and the iterative A* method, reaching the target in 6

minutes (450 meter).

The results of the second starting position of the user are shown in figure 5.9, the SEA* method, and

figure 5.10, the iterative A* method. The SEA* method reaches the target at the Schoenmakerstraat

in 4 minutes, which is faster than the iterative A* method which reaches the target at the Van

Embdenstraat in 9 minutes.

Figure 5.9, 2nd position: path for the SEA* method, reaching the target in 4 minutes (350 meter).

89 | P a g e

Figure 5.10, 2nd position: path for the iterative A* method, reaching the target in 9 minutes (700 meter).

The results of the third starting position of the user are shown in figure 5.11, the SEA* method, and

figure 5.12, the iterative A* method. Both methods reach the target at the Van Embdenstraat in 8

minutes. This is because the target stops at this location for a while. The path that the SEA* method

takes is slightly shorter, 650 meters, compared to the iterative A* method, 700 meter.

Figure 5.11, 3rd position: path for the SEA* method, reaching the target in 8 minutes (650 meter).

90 | P a g e

Figure 5.12, 3rd position: path for the iterative A* method, reaching the target in 8 minutes (700 meter).

5.2.2 Scenario 2: Target is moving, without stopping.
For this scenario a part of the GPS log is used. The duration of this log is 4 minutes and 20 seconds on

a bicycle. This means that the user must find the target within this timeframe using a bicycle. The

implementation uses walking as the mode for travel. Therefore the target must be found in 13

minutes by walking. This part of the GPS log is illustrated in figure 5.13. The position of the user differs

every time.

Figure 5.13, GPS log data, where the target starts at the start point and navigates to the end point.

91 | P a g e

There are 3 different starting positions for the user, figure 5.14:

1. At the library, at the opposite side approaching the target.

2. The Leeghwaterstraat, approaching the target from the left.

3. Pieter Calandweg, approaching the target from the right.

Figure 5.14, starting positions of the user for scenario 2.

The results of the first starting position of the user are shown in figure 5.15, the SEA* method, and

figure 5.16, the iterative A* method. Both methods find the target in 6 minutes. The distances are

both rounded to 450 meter. However, the iterative A* method finds the target a little faster than the

SEA* method. This small difference between the two methods is negligible.

92 | P a g e

Figure 5.15, 1st position: path for the SEA* method, reaching the target in 6 minutes (450 meter).

Figure 5.16, 1st position: path for the iterative A* method, reaching the target in 6 minutes (450 meter).

93 | P a g e

The results of the second starting position of the user are shown in figure 5.17, where the SEA*

method, and the iterative A* method both reach the target in 4 minutes. Both methods have the same

behavior and the distance of the route is 350 meter.

Figure 5.17, 2nd position: path for the SEA* method and the iterative A* method, reaching the target in 4

minutes (350 meter).

The results of the third starting position of the user are shown in figure 5.18, the SEA* method, and

figure 5.19, the iterative A* method. The SEA* method reaches the target in 6 minutes, where the

iterative A* method does follow the target and not reach the target in time.

Figure 5.18, 3rd position: path for the SEA* method, reaching the target in 6 minutes (500 meter).

94 | P a g e

Figure 5.19, 3rd position: path for the iterative A* method, not reaching the target.

5.3 Overview of the results
This section summarizes all the results of the scenarios described in section 5.2. The SEA* method is

overall reaching the target faster than the iterative A* method. Also the methods are compared to

the optimal solutions. A sub-optimal path is a path that is slightly different than the optimal solution.

 Table 5.1, summary of the results presented in section 5.2.

Scenario Starting point SEA* method Iterative A* method

1 1 6 minutes (450 meter): Optimal 6 minutes (450 meter): Optimal

1 2 4 minutes (350 meter): Optimal 9 minutes (700 meter): Not optimal

1 3 8 minutes (650 meter): Optimal 8 minutes (700 meter): Sub-Optimal

2 1 6 minutes (450 meter): Suboptimal 6 minutes (450 meter): Optimal

2 2 4 minutes (350 meter): Optimal 4 minutes (350 meter): Optimal

2 3 6 minutes (500 meter): Optimal - (target not reached)

95 | P a g e

5.4 Discussion of the requirements
In this section the criteria defined in section 3.1.1 are used to discuss the results presented in this

chapter. The validation criteria are spatially logical, effective and efficient. Spatially logical means that

the model is correctly representing the reality. The method is effective if the method always finds its

target. The method is also effective if the target is reached as fast as possible, preferable faster than

the iterative A* method. The method is efficient if the user gets its directions as fast as possible.

Spatially logical: The spatial model that is used is the Google Maps model. For the test area this model

was sufficient and well modelled. In general there are a lot of sidewalks not present in the Google

Maps model, especially in small cities. The GPS data used is mapped to the nearest node in the spatial

model. Most of the times this is the correct location, however there are cases where this gives

unwanted behavior.

Effective: The SEA* method is implemented and compared to the iterative A* method within an

outdoor environment. The SEA* method is compared to the iterative A* method beneficial in reaching

the target faster. When a person however is standing still, different GPS measurements will be

obtained, where it will look like the target slightly changed its position. To assume the target is

standing still, a buffer could be used. This is a small buffer around the last position of the target that

is retrieved, so that not by every new GPS measurement the target is approaching points of interest

far away.

Efficient: The SEA* method is efficient in a way that it calculates a new path every time a new

measurement is obtained. In the current implementation this is calculated every 10 seconds, which is

fine for human navigation. The SEA* method also works when the target gets each second a new

measurement to calculate a path. Wrong GPS measurements however, due to a limited GPS signal,

could give a wrong positioning and therefore a wrong prediction of the target.

96 | P a g e

97 | P a g e

6. Conclusions and future work

This final chapter gives a summary of all the conclusions of this thesis research. It discusses these

conclusions and presents areas that are interesting for future work. The first section, 5.1, gives

answers to the sub questions of this research, which will eventually answer the main research

question. Then these findings are discussed in section 5.2. Eventually these findings will lead to

interesting research topics, which are presented in section 5.3.

6.1 Research questions
To provide an answer to the main research question, the sub questions have to be answered.

1. What are the current limitations of the A* algorithm for navigating to a dynamic target?

To provide an answer to this first sub question a literature study is carried out. The A* algorithm is

created to navigate a user to a static destination. However, this research shows that the A* algorithm

could be used to navigate to a dynamic destination, a target. Then the A* algorithm should be

iterative, so that every time the position of the target changes a new path could be calculated. In this

way a user could navigate in real-time to a dynamic target. The iterative use of the A* algorithm is the

basis for the incremental A* algorithm, which is only a faster implementation of the iterative A*

approach. By using the iterative A* approach the user will not always navigate in the most optimal

way. This research concludes that the A* approach will result in following behavior of the target,

instead of finding the fastest path towards the moving target. The iterative A* method does not use

any prediction of the target. This following behavior could result in a long path, while shorter paths

are possible. This limitation of the iterative A* method is solved by not directly navigate to the

dynamic target itself, but to the prediction of the target. This prediction of the target is defined by the

most likely interesting point the target is navigating to. This research focusses on semantics within the

building to represent the prediction of the target, the next sub question investigate what semantics

could be used. This research proves that navigating to static points around the target, instead of

directly navigate to the target, could provide faster paths towards the target.

The A* algorithm is implemented in all common spatial models and therefore support a large variety

of models that could use the SEA* method.

98 | P a g e

2. What semantics are important for navigation to a moving target?

Semantics are used to predict where the target is moving towards. People that navigate in a building

mainly have a clear end destination. This research shows that the static environment could be used

to represent these end destinations for the target. The static environment is everything that cannot

move or be moved, which are doors, walls, rooms, windows and the floors. Also navigating to static

points is more secure than navigating to a dynamic point, because the accuracy of the position of a

dynamic point is less than the accuracy of the position of a static point. The semantics that could

predict where a person is going to is for each person different. Therefore prediction points are target

specific and defined as points of interest for the target. These points could be every static point in the

model that is interesting for the target and if the target is able to navigate to this static point. These

points could be general rooms or building entrances as shown in both implementations or could be

very specific for a certain target. Information about the target helps to define the points of interest.

External data is therefore a promising resource to define proper points of interest. There could be

other methods to determine points of interest within an environment, these methods should be

investigated. The SEA* method proposes three rules to determine the location of a point of interest.

These rules give good results in the two implementations. However, not for every building these rules

are applicable. Therefore more rules should be defined.

3. What are the improvements and limitations of the proposed method over using the iterative

A* algorithm?

The proposed SEA* method shows promising results in both the simulated indoor environment,

represented by a 2D square regular grid, as in the outdoor environment, represented by a road

network, using real GPS data.

First of all the SEA* method determines what points of interest are approached by the target, because

these are the points the target is navigating to. The indoor implementation is sub-optimal due to a

lack of knowledge to optimize the code. Here not the distance of the paths are used to determine if

the target is approaching a point of interest, but it uses a work around. Therefore the determination

of the points of interests that are approached by the target have a small error. Within the outdoor

implementation this is solved and gives the correct determination of the points of interests that are

approached by the target. Using the lengths of the path to each point of interest should therefore

99 | P a g e

also be implemented within the indoor implementation, as described in the conceptual framework.

This would improve the indoor implementation of the SEA* method.

Then the SEA* method uses two approaches to limit down the approached points of interests by the

target to only one point, the prediction of the target. The first approach is using pre-processed

probabilities, the weights, which shows promising results if these probabilities are well defined.

Otherwise these probabilities will have a negative influence on the behavior of the SEA* method. In

this case the iterative A* method is even reaching the target faster. Because it is hard to correctly

predefine the probabilities, how a user should behave, this approach is not recommended. The second

approach shows more promising results, which uses the closest point of interest that is approached

by the target as the prediction of the target. In this way the SEA* method always outperforms the

iterative A* method. Alternative methods could be used to determine the prediction of the target,

because this part is independent from the further implementation.

The SEA* method also uses a scenario based decision in what cases the user should navigate directly

to the target or to the prediction of the target. These six cases are defined in section 3.2.5. When the

target and the user are at the opposite sides of the prediction of the target (1, 2 and 3), it is always

better to navigate first to the prediction of the target and then to the target itself. In all cases this

behavior is better than using the iterative A* method. Also in the case where both the user and target

are on the same side of the prediction of the target and the target is closer to the prediction (6), then

navigating directly to the prediction shows good results. In the cases where both the user and the

target are at the same side of the prediction of the target and the target is not closer to the prediction

(4 and 5), it is not always clear what the user should do. In an open space it is better to navigate

directly to the target, but when there are obstacles this depends on the specific situation. These cases

should be investigated and split into different cases, where the obstacles determine what path the

user should take.

The SEA* method behaves as the iterative A* algorithm when the target is standing still. Important

here is the definition on standing still, where real measurements are not always the same. Using a

regular grid this is no problem, because with an accurate positioning system the position of the user

would refer to the same location. However, when using GPS data there must be created a small buffer

to determine if the target is standing still or not. If the target is still inside this buffer within a 10

second timeframe it is likely to assume that the target is standing still. More research about the size

of this buffer must be acquired. Now this buffer is not applied and every new position of the target

100 | P a g e

will lead to a prediction of the target, as if the target moves towards this target, while the target is in

fact standing still.

The limitation of the SEA* method is that if the target is walking towards a point of interest and

suddenly walks back to where this person comes from the iterative A* method is outperforming the

SEA* method. However, the SEA* method will eventually always reach the target if the target is

moving slower or at the same speed as the user.

In the case that there are no points of interest defined, the SEA* algorithm will act as the iterative A*

method. Also when there are no points of interest defined in the direction of the target, the SEA*

algorithm will act as the iterative A* method. This is a nice back-up when no information about points

of interest are available. However, using points of interest could provide a faster path towards a

moving target.

Now that all the answers to the sub questions are provided, the main research question is answered.

The main research question for this thesis is the following:

Which defined objects could be used to estimate the predicting location of a moving person to

support navigation to a person in motion?

This research thesis proposes the SEA* method to use semantics, in the form of points of interest, to

determine the prediction of the target and uses this prediction to approach the target. Overall the

SEA* method uses the positive components of the iterative A* method, semantics and the direction

of the target to predict where the target is going to, to successfully reach the target. Points of interest,

landmarks, are critical points to check where a person is moving towards. These static locations are

promising for navigating to a person in motion. Estimating the predicting location of the target is

recommended by first limiting down the points of interest by the approaching points of interest by

the target and then using the point of interest that is the closest to the target. This process gives a

good prediction of the target in both implementations.

The SEA* approach does only need the current position of the target and does not have to store any

information about where the person has been. The target has to share its current location to a user

that wants to navigate towards him or her. Therefore the privacy of the target is intact.

101 | P a g e

6.2 Discussion
The main contribution is to provide users a framework to deal with navigating a user to a person he

needs as fast as possible and always find this person. However several assumptions and limitations

are defined. First of all the positioning of the user and the target must be accurate to use the SEA*

method. Nowadays positioning techniques are sufficient to obtain an accurate location of the user

and the target.

The framework is implemented using different spatial models in the indoor and outdoor environment.

Therefore this approach is independent of a specific spatial model and could be implemented using a

variety of spatial models. This eases the user, because the user is free to select the preferred spatial

model. However, the spatial model must support the A* algorithm, must be able to translate the

positions of the user and the target to the spatial model and must support adding points of interest

to the model. Both for a regular grid and a navigable graph, this research provides an implementation

of the SEA* method. The SEA* method is also applicable using irregular grids, a Quadtree, Octree and

voxel representation as long as there is a way to use the A* algorithm. For the implementation in 2D

this research discusses the applicability in chapter 2. For an Octree and a voxel representation the

third dimension must be taken into account, but the basic framework is provided in this research.

Therefore could be concluded that the method is scalable for many applications involving navigation

to moving targets.

The SEA* method uses the predictions of the target to approach the target in motion. However, there

is no knowledge about the path the target will take. Therefore it is not possible to determine exactly

where the target and the user could meet each other. Ideally this would be the situation, but

calculating every possibility will not be efficient. Offline methods are used to determine these paths,

but could not be used in large environments in real time to navigate to a moving person (Sun et. al.,

2010).

The speed of the target and the user have no influence on the SEA* method. The search will continue

until the user has founds its target. However, the speed of the target could support the determination

of the prediction of the target. If a target is walking faster, then points of interest near the target are

less likely to be the end destination of the target. On the other hand is a target that is slowing down

its speed, is more likely to navigate to a point of interest near the target. Although many factors could

have influence on the speed of the target, for example a large crowd will slow the target down or the

target could prefer to walk at a fast pace.

102 | P a g e

The SEA* method is highly dependent on the movement of the target. When a target is moving in a

certain direction and then turns 90 degrees and navigates in another direction. The SEA* method

should have a high frequency of the current position of the target to react to these changes. Using

points of interest near the target as the prediction will limit this effect.

Now the SEA* method only navigates one person towards another person. This method could also be

used by multiple individuals that all have to navigate to one target. Each user then needs the location

of the target and uses the SEA* method to navigate towards this target. Navigating to a person that

follows another person is also possible. The SEA* method is a good way to reach the target if there is

no knowledge about that the target is following another person. If there is knowledge about which

person the target is navigating to, this point should be used as the prediction of the target. In the case

that two people want to navigate to each other it is better to use the iterative A* method, because

this path provides the fastest path between two points. Then both users should follow this path to

eventually meet each other. Navigating multiple people, three or more, to each other is a more

complicated case. In this situation both the SEA* method and iterative A* method could give

unwanted circular behavior, where the first person is navigating towards the second person, the

second person is navigating to the third person and the third person is navigating to the first person.

Therefore these methods could not be used for this kind of navigation.

6.3 Future work
This section presents further research topics about this thesis research. Then all the results of this

future work should be used to improve this method and give more insight in navigating a person to

another person in motion.

Real-time application

The next step is to create a real-time application to test the SEA* method within the outdoor

environment. The implementation described in chapter 5, could be converted to an Android

application using Cordova. Then the GPS sensors of the Android devices will give the correct

positioning and the method could be tested. Due to defect GPS sensors in the test devices this could

not be tested within the time frame of this thesis. Also a real-time application could be made for the

indoor environment by using one of the previous discussed indoor positioning techniques.

103 | P a g e

3D application

Now that the SEA* method is applicable within the 2D environment on both a regular and irregular

grid, showing good results, the method should be extended to use it within a 3D environment. An

irregular grid, a voxel representation or an Octree are the spatial models that could be used to

represent a 3D terrain. Therefore the method should adapt to use it in a 3D environment.

Prediction of the target

Now the prediction of the target is defined by using the movement and points of interest. Other

factors, like the speed of the target, could estimate a better prediction. Newly methods to define the

prediction of the target could be used to enhance the SEA* method.

Extract points of interest

Now the points of interests are picked manually, with knowledge about the test areas. New rules

should be examined to extract points of interest from the map data, both manually as automatic. For

example the Google Maps places API could be used to define important places, for example shops,

parking spots or churches (Google Places API, 2016).

Redefine cases when to navigate to the target

In the cases where both the user and the target are at the same side of the prediction of the target

and the target is not closer to the prediction, it is not always clear what the user should do. In an open

space it is better to navigate directly to the target, but when there are obstacles this depends on the

specific situation. These cases should be investigated and split into different cases, where the

obstacles determine what path the user should take. Here a check is needed what path the target

will take to get to the prediction of the target and if there are obstacles in between the user and the

target.

Using a visibility analysis

For now the user reaches the target, when both are on the same location, or within a minimal distance

of each other. A visibility graph could give useful insight in whether the user and target could see each

other. In an open place the user could see the target and just walk towards the target. However, in

crowded places this has not always to be the case. Then the vision could be blocked by other people

or dynamic obstacles. Therefore a good visibility analysis could support the SEA* method. A visibility

graph could be used to give the user a signal that the target could be in the vision range, so that the

user should pay extra attention.

104 | P a g e

105 | P a g e

Bibliography

Adalja, D., M. (2013). A Comparative Analysis on indoor positioning Techniques and Systems,

 International Journal of Engineering Research and Applications (IJERA), Vol. 3, Issue 2, March

 - April 2013, pp.1790-1796.

Alfgoor, Z. A., Sunar, M., S., and Kolivand, H. (2015). A Comprehensive Study on Pathfinding

 Techniques for Robotics and Video Games, International Journal of Computer Games

 Technology, Volume 2015 (2015), Article ID 736138, 11 pages.

ArcGIS (2016). Rasterizing features for 3D. http://desktop.arcgis.com/en/arcmap/latest/extensions

 /3d-analyst/rasterizing-features-for-3d.htm, seen on 26-04-2016.

Baier, J., A., Botea, A., Harabor, D., and Hernandez, C. (2015). Fast algorithm for catching a prey

 quickly in known and partially known game maps. IEEE Transactions on Computational

 Intelligence and AI in Games, 7(2), 193-199. doi:10.1109/TCIAIG.2014.2337889.

Bandi, S. & Thalmann, D. (1998). Space discretization for efficient human navigation. Computer

 Graphics Forum 17(3): 195-206.

Berg, de M., Cheong, O., Kreveld, M., Overmars, M. (2008). Computational geometry: algorithms

 and applications, chapter 15. Berlin: Springer, 3rd edition, 323–333.

Black, P. E. (2004). Euclidean distance, in Dictionary of Algorithms and Data Structures [online],

 Vreda Pieterse and Paul E. Black, eds. 17 December 2004. (Accessed 25-04-2016) Available

 from: http://www.nist.gov/dads/HTML/euclidndstnc.html.

Black, P. E. (2006). Manhattan distance, in Dictionary of Algorithms and Data Structures [online],

 Vreda Pieterse and Paul E. Black, eds. 31 May 2006. (Accessed 25-04-2016) Available from:

 http://www.nist.gov/dads/HTML/manhattanDistance.html.

Boguslawski, P., Gold, C. (2009). Construction operators for modelling 3D objects and dual

 navigation structures (2009) Lecture Notes in Geoinformation and Cartography, pp. 47-59.

Brown, G., Nagel, C., Zlatanova, S., Kolbe, T.H. (2013). Modelling 3D topographic space against

 indoor navigation requirements (2013) Lecture Notes in Geoinformation and Cartography,

 pp. 1-22.

Camebridge Dictionaries Online (2016). Landmark, Camebridge Dictionaries Online

 http://dictionary.cambridge.org/dictionary/english/landmark, seen on 25-04-2016.

Chartand, G. (1984). Introductory Graph Theory, Dover Books on Mathematics, Dover Publications.

 ISBN-13: 978-0486247755.

Deo, N. and Pang C. (1984). Shortest-path algorithms: Taxonomy and Annotation. Networks 14,

 275–323, 1984.

106 | P a g e

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik

 1: 269–271, doi: 10.1007/BF01386390.

Eranki, R. (2002). Pathfinding using A* (A-Star), http://web.mit.edu/eranki/www/tutorials/search/,

 seen on 06-01-2016.

European GNSS Agency (2013). GNSS Market Report, issue 3, 2013.

Fallah, N., Apostolopoulos, I., Bekris, K., and Folmer, E. (2013). Indoor Human Navigation Systems: A

 Survey, Interacting with Computers (2013), doi: 10.1093/iwc/iws010.

Fleischmann, P. (1999). DISSERTATION: Mesh Generation for Technology CAD in Three Dimensions,

 obtained from http://www.iue.tuwien.ac.at/phd/fleischmann/diss.html, seen on

 17-06-2016.

Garmin (2016). Garmin DriveSmart. https://buy.garmin.com/nl-NL/NL/cOnTheRoad-cAutomotive-

 p1.html. Seen on 24-05-2016.

Girard, G., Côté, S., Zlatanova, S., Barette, Y., St-Pierre, J., van Oosterom, P. (2011). Indoor

 pedestrian navigation using foot-mounted IMU and portable ultrasound range sensors

 (2011) Sensors, 11 (8), pp. 7606-7624.

Goetz, M. and Zipf, A. (2011). Extending openstreetmap to indoor environments: bringing

 volunteered geographic information to the next level, Proceedings of the Urban and

 Regional Data Management: Udms Annual 2011, pp. 47–58, 2011.

Google (2016). Google Maps JavaScript API V3 Reference,

 https://developers.google.com/maps/documentation/javascript/3.exp/reference, seen on

 03-02-2016.

Google Places API (2016). https://developers.google.com/places/supported_types#table1, seen on

 15-06-2016.

Hall, E., T. (1969). The hidden dimension (Vol. 1990). New York: Anchor Books.

Hart, P. E., Nilsson, N. J. & Raphael, B. (1968). A formal basis for the heuristic determination of

 minimum cost paths, IEEE transactions of systems science and cybernetics, vol. ssc-4, no. 2,

 July 1986.

Infsoft (2016). Indoor navigation products. http://www.infsoft.com/products. Seen on 24-05-2016.

Ishida, T., and Korf, R. E. (1991). Moving Target Search. In Proceedings of IJCAI, 204–210.

Koenig, S., and Likhachev, M., Liu, Y. and Furcy, D. (2004). Incremental Heuristic Search in Artificial

 Intelligence. Artificial Intelligence Magazine, 25(2), 99-112, 2004.

Koenig, S., and Likhachev, M. (2005). Fast replanning for navigation in unknown terrain. Transaction

 on robotics, 21(3), 354-363)

107 | P a g e

Koenig, S., and Likhachev M., and Sun, X. (2007). Speeding up moving-target search. In proceedings

 of AAMAS, 1136–1143.

Korf, R., E. (1990). Real-time heuristic search. Artificial Intelligence, vol. 42, no. 2-3, 189–211.

Kresse, W. and Danko, D. M. (2012). Springer handbook Geographical information, Springer Berlin

 Heidelberg 2012, DOI 10.1007/978-3-540-72680-7.

Kuffner, J.J. (1998). Goal-directed navigation for animated characters using real-time path planning

 and control (1998) Lecture Notes in Computer Science, 1537, pp. 171-186.

Lee, J. (2004). A spatial access-oriented implementation of a 3-D GIS topological data model for

 urban entities (2004) GeoInformatica, 8 (3), pp. 237-264.

Li, X., Claramunt, C. and Ray, C. (2010). A grid graph-based model for the analysis of 2D indoor

 spaces, in Elsevier Computers, Environment and Urban Systems, Volume 34, Issue 6,

 November 2010, Pages 532–540.

Liu, L., Zlatanova, S. (2012). A semantic data model for indoor navigation (2012) Proceedings of the

 4th ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, ISA 2012, pp. 1-8.

Lorenz, B. Ohlbach, H.J. & Stoffel, E.P. (2006). A Hybrid Spatial Model for Representing Indoor

 Environments. In Proceedings of W2GIS (LNCS 4295): 102-112. Hong Kong, China.

Ma, T., Yan, Q., Liu, W., Guan, D. and Lee, S. (2011). “Grid task scheduling: algorithm review,” IETE

 Technical Review, vol. 28, no. 2, pp. 158–167, 2011.

MarketsandMarkets (2011). Global GPS Market: Products (Marine, Aviation, Automotive,

 Outdoor/fitness & GPS Enabled Smart Phones), Applications (Navigation, Machine Control,

 & Logistics Tracking) & Geography (2011 - 2016). November 2011, SE 1089.

MarketsandMarkets (2014). Indoor Location Market by Solution (Tag-based, RF-based, Sensor-

 based), by Application (Indoor Maps & Navigation, Indoor Location-based Analytics, Tracking

 & Tracing, Monitoring & Emergency Management), by Service, by Vertical, & by Region -

 Global Forecast Up to 2019. November 2014, TC 2878.

Math.NET (2016). Math.NET Numerics, distance metrics.

 http://numerics.mathdotnet.com/Distance.html. Seen on 11-04-2016.

Nagy, B. (2003). Shortest paths in triangular grids with neighbourhood sequences, Journal of

 Computing and Information Technology, 11(2), (2003) 111–122.

Nussbaum, D., and Ÿorükcü, A. (2015). Moving Target search with subgoal graphs. Proceedings of

 the Eighth International Symposium on Combinatorial Search.

Patel, A. (2006). Thoughts on grids, http://www-cs-students.stanford.edu/~amitp/game-

 programming/grids/, seen on 11-04-2016.

108 | P a g e

Patel, A. (2006). A*’s Use of the Heuristic,

 http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html, seen on 11-04-

 2016.

Rabin, S., & Sturtevant, N. R. (2013). Pathfinding architecture optimization. Game AI Pro: Collected

 Wisdom of Game AI Professionals, 241-252.

Samet, H. (1988). An overview of quadtrees, octrees, and related hierarchical data structures.

 Theoretical Foundations of Computer Graphics and CAD, pp. 51–68, Springer, 1988.

Skantrae (2016). http://www.skantrae.com/service_center/veelgestelde_vragen/

 standaard_deurmaten, seen on 15-06-2016.

Stentz, A. (1994). Optimal and efficient path planning for partially-known environments. In

 proceedings of the International conference on robotics and automation, 3310-2217.

Stentz, A. (1995). The focused D* algorithm for real-time replanning. In proceedings of IJCAI, 1652-

 1659.

Sun, X., Koenig, S., and Yeoh, W. (2008). Generalized Adaptive A*. In proceedings of AAMAS, 469-

 476.

Sun, X., Yeoh, W., and Koenig, S. (2009). Efficient incremental search for moving target search. In

 Proceedings of IJCAI, pages 615–620, 2009.

Sun, X., Yeoh, W., and Koenig, S. (2010). Generalized Fringe-Retrieving A*: Faster moving-target

 search on state lattices. In Proceedings of AAMAS.

Sun, X., Yeoh, W., and Koenig, S. (2010). Moving target d* lite. In Proceedings of the 9th

 International Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume

 1, 67–74.

TomTom (2016). Navigatie app, sneller naar je bestemming.

 https://www.tomtom.com/nl_nl/drive/sat-nav-app/go-mobile/. Seen on 24-04-2016.

Trovato, K., and Dorst, L. (2002). Differential A*. IEEE Transactions on knowledge and data

 engineering, 14(6), 1218-1229).

Trudeau, R. J. (1994). Introduction to Graph Theory, Dover Books on Mathematics, Dover

 Publications; 2nd edition (February 9, 1994). ISBN-13: 978-0486678702.

Undeger, C., and Polat, F. (2007). Real-time edge follow: a real-time path search approach. IEEE

 Transactions on systems, man, and cybernetics —part C: applications and reviews, Vol. 37,

 No. 5.

Uras, T., Koenig, S., and Herńandez, C. (2013). Subgoal graphs for optimal pathfinding in eight-

 neighbor grids. In Twenty-Third International Conference on Automated Planning and

 Scheduling, 224–232.

109 | P a g e

Worboys, M., Modeling indoor space, in Proceedings of the 3rd ACM SIGSPATIAL International

 Workshop on Indoor Spatial Awareness, pp. 1–6, ACM, 2011.

Zlatanova, S., Sithole, G., Nakagawa, M., Zhu, Q., (2013). Problems in indoor mapping and modelling,

 Acquisition and Modelling of Indoor and Enclosed Environments 2013, Cape Town, South

 Africa, 11-13 December 2013, ISPRS Archives Volume XL-4/W4, 2013.

