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A B S T R A C T

Water storage and diversion capacity of reservoirs in the Nile Basin are benefited for
various purposes including agricultural irrigation and hydroenergy production. Filling
and operation of the recently constructed Grand Ethiopian Renaissance Dam (GERD)
have been subject to heated debate for its implications on downstream countries Sudan
and Egypt. In this study, we investigated trade-offs between the objectives of the three
countries by formulating the problem as many objective optimisation. To this end, we
built a simulation model conforming to the evolutionary multi-objective direct policy
search (EMODPS) framework. Based on the optimisation results, we discovered two
scenarios under which trade-offs exhibit diverging patterns. Our findings suggest that
1) aggressive filling strategies create evident trade-offs between the hydroenergy genera-
tion objective of Ethiopia and consumptive uses of Sudan and Egypt, 2) growing demand
in the long-term brings the dilemma of maintaining dams operational versus satisfying
the demand and 3) increased demand pressure reinforces trade-offs between Egypt’s ag-
gregate deficit minimisation and Ethiopia’s hydropower maximisation objectives. Our
results highlight the potential of compromise policies in managing the objectives of all
stakeholders without imposing heavy sacrifices. These policies represent an opportu-
nity for cooperative operation of the dams through which multiple challenges facing
the basin can be addressed.
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1 I N T R O D U C T I O N

In response to growing multi-sector demand for water worldwide, river basins are
increasingly controlled by the construction of new dams (Zarfl et al., 2014). The posi-
tive trend is expected to remain strong in the coming century too (Giuliani et al., 2021;
World Bank, 2010). This development is a reflection of the notion that dams are well es-
tablished means of controlling water availability in river basins. However, construction
of a new dam is usually a costly infrastructure investment (Ansar et al., 2014). Moreover,
solely having dams is not sufficient to address water related challenges in a river basin.
Operating a dam or a system of dams by deciding on how much and when to release
water is a pivotal policy problem as the water storage and diversion capacity of reser-
voirs are benefited for agricultural irrigation, hydroenergy production, flood protection
and more (Giuliani et al., 2014; Hakimi-Asiabar et al., 2010).

Challenges of operating reservoir systems are not limited to the multi-sector nature of
the demand. In the context of large river basins, it is likely that different administrative
zones, be it province, state or country, compete over the right to exploit the resource,
particularly for consumptive uses (Keskinen et al., 2016; Liu et al., 2011). Moreover,
growing populations and economic activity all over the world lead to increases in the
quantity of water demanded to an extent that challenges the renewal rate of the essential
resource (Kasprzyk et al., 2009; Liu et al., 2011). Not only the demand side puts pressure
on the water balance but also the uncertainty of the supply has grown significantly with
the influence of climate change on the occurrence of extreme rainfall and evaporation
events (Giuliani et al., 2014; Kasprzyk et al., 2009; Williams, 2009).

1.1 the nile river basin

The Nile, as famously known for giving birth to one of the earliest human civilisations, is
a major river located in northeast Africa (Dumont, 2009; NBI, 2022). Its basin is a highly
critical resource for the region; it plays a key role in supplying the riparian countries
with water to be used for several purposes including hydropower generation, munici-
pal, industrial and agricultural consumption (NBI, 2022). Spreading over 10 countries as
a major watershed, the basin is an area where debates over the right to use Nile’s water
have been taking place for years (Swain, 2002). With more than a dozen of reservoirs
scattered in Egypt, Sudan and Ethiopia (NBI, 2022), political tensions have been palpa-
ble especially in the eastern part of the Nile Basin (Swain, 2002). Despite being the most
downstream country with respect to its riparian position, Egypt has been the country



that exploited the Nile water the most to date (NBI, 2022; Amer, 2015). However, this
hegemony has been increasingly challenged by Ethiopia especially with their unilateral
action to start the project of Grand Ethiopian Renaissance Dam (GERD) in 2011 (Sharaky
et al., 2019; Pemunta et al., 2021).

While Ethiopia communicate that the main ambition behind the GERD project is to
unlock hydropower potential of Ethiopian highlands (Soliman et al., 2016), therefore
blocking the flow of water will be of no interest to them, downstream countries Sudan
and Egypt tend to view it as a threat to their water security and independence (Amer,
2015; Pemunta et al., 2021). One particular concern of the downstream water users is
the filling period of the GERD’s large reservoir. Negotiations to reach a consensus over
a filling scenario remain in a state of deadlock with increased tension between parties
(Pemunta et al., 2021).

In addition to the political and technical complexities brought by the GERD to the
management of the Nile system, the river is famously known for the adverse effects
of water inflow variability (Abu-Zeid and Biswas, 1991). Experience of drought and
flood events is commonplace (Taye et al., 2015). Moreover, increasing populations and
economic production in the basin signal to a rise of the demand for water (NBI, 2022).
Therefore, designing operating policies for reservoirs in the basin is a multi-faceted
problem that needs the consideration of physical infrastructure, geopolitics as well as
socioeconomic and hydro-climatic uncertainties.

1.2 research objective

The main objective of this study is to examine alternative policies that govern the release
operations of the reservoirs in the Nile Basin. One driver of this ambition is the current
political debate over the water use of upstream and downstream countries. High-level
impression from the problem situation implies a trade-off between the existence of the
GERD and consumptive water needs of Egypt and Sudan. Nonetheless, it is worth
questioning whether this stems from a legitimate trade-off or the political will of na-
tional authorities for water independence and security. Moreover, if such trade-offs
exist, would it be possible to use modelling and optimisation approaches to formulate
effective control policies which minimise potential damage to all stakeholders? Finally,
given the ambition to improve operational policies, how can the implications of major
uncertainties on trade-offs be captured?

1.3 literature review

We reviewed relevant scientific literature on three branches. Firstly, state-of-the-art the-
ory on optimal reservoir control methods was compiled to support the selection of meth-
ods. Moreover, we examined the literature that addresses the integration of uncertainty
considerations. Finally, previous reservoir management studies conducted on the Nile
Basin were synthesised to diagnose the status of the knowledge base. Several key con-
cepts will be defined throughout this section. Once a key concept is mentioned for the
first time, it will be written in italic letters.

3



1.3.1 Optimal Reservoir Control

A pronounced observation from the reservoir control literature is that there is an evo-
lution from traditional exact approaches towards simulation-based heuristic methods.
Irrespective of the solution method, model formulations mostly build upon mass-balance
equations which specify the mathematical relationship between reservoir storage vol-
umes across consecutive time indices (Giuliani et al., 2021). An essential element of
that relationship is the release decisions from reservoir(s) which is what the operators
seek to optimize. During the last few decades prior to the millennium, the traditional
approach to make release decisions was using rule curves i.e., rules that indicate the
ideal amount of water storage depending on the period of a year (Giuliani et al., 2014).
A common approach to find the optimal operation strategy back then was to adopt the
linear programming family methods with assumed baseline conditions for future values
(Zatarain Salazar et al., 2016).

Approaching 2000s, literature grew into a direction that tackles the inflexibility of rule
curves in responding to the dynamics of a system. Oliveira and Loucks (1997) developed
a framework by applying a genetic search algorithm to find optimal release decisions,
conditioned on more information than mere storage levels. The key to the success of
this approach was the idea to specify the input-output relation of a policy function in
a parametric manner. Scholars have increasingly used exact methods such as stochastic
dynamic programming (SDP) to optimise those policy function parameters with respect
to the particular objectives of a problem (Giuliani et al., 2021). Nonetheless, it was later
acknowledged that SDP-based methods have major limitations especially when they
are applied on multi-reservoir, multi-objective systems. Attempting to scale up either
of the two increases computational burden exorbitantly, hence rendering the approach
infeasible quickly (Giuliani et al., 2015). Moreover, multi-objective characteristic of a
problem requires a-priori specification of the relative importance of different objectives
(Zatarain Salazar et al., 2016), which is not only a challenge for the decision-makers
(Giuliani et al., 2014) but also a major source of uncertainty on its own (Walker et al.,
2013).

To cope with the discussed challenges, researchers came up with alternative prob-
lem formulations. Koutsoyiannis and Economou (2003) championed the parametrization-
simulation-optimization (PSO) approach which differs from the previous methods in the
sense that it utilises systematic simulation runs as the engine for optimisation, instead
of an exact algorithm. It was shown that the new approach had considerable compu-
tational advantages without solution inferiority (Koutsoyiannis and Economou, 2003).
Later, the field borrowed the term direct policy search (DPS) from the general control
theory literature and used it as a replacement for PSO (Zatarain Salazar et al., 2016).
Building on top of that, advances in the machine learning theory inspired the water
management field to use evolutionary algorithms, which brought the advantages associ-
ated with the state of the art machine learning knowledge (Maier et al., 2014). Finally,
Giuliani et al. (2015) formalized the framework of evolutionary multi-objective direct policy
search (EMODPS) by coupling the DPS approach with multi-objective evolutionary algo-
rithms. These theoretical foundations paved the way for real-life case study applications
with the EMODPS methodology.



1.3.2 Dealing with Uncertainty

In the context of policy analysis, a rigorous analysis and classification of different types
of uncertainties was made by Walker et al. (2013). This work, building on top of the
XLRM framework of Lempert et al. (2003), identified four possible locations where the
uncertainties exist in any system. Considering the illustration of the XLRM framework
given in figure 1.1, Walker et al. (2013) assert that uncertainty can be about external
factors (X) and relationships in system (R) which combine and lead to uncertainty in the
outcomes of interest (M). Moreover, relative importance placed on different performance
metrics by stakeholders of a problem adds to the uncertainty space.

Figure 1.1 Illustration of the XLRM framework. Taken from Kwakkel (2017).

In essence, a core idea of many-objective optimisation approaches is to deal with this
last uncertainty type. Irrespective of the exact solution algorithm or heuristic, the out-
put of such a procedure is a set of solutions that constitute a Pareto-optimal front with
regard to the objectives of the problem. Essentially, it is a set of solution alternatives
where the decision maker can improve the system performance with respect to an ob-
jective only at the cost of another (Deb et al., 2002). This approach escapes from a-priori
prioritisation among performance metrics by first incorporating multiple rival framings
of stakeholder objectives into the problem formulation (Quinn et al., 2017), and then
evaluating potential trade-offs after the optimisation procedure (Reed et al., 2013).

There are several frameworks developed to support decision making under deep un-
certainty (DMDU) (Marchau et al., 2019). Robust decision making (RDM), introduced
by Lempert et al. (2003), has become a prominent paradigm in the domain of water
management. This family of methods is based on the philosophy of stress-testing pol-
icy alternatives under plausible divergent future states of the world (SOWs). Taking
a step further from solely re-evaluating known policies, Kasprzyk et al. (2013) gener-
ated policy alternatives through many-objective evolutionary algorithms and coupled
many-objective optimisation with RDM. This methodology which is referred to as many-
objective robust decision making (MORDM), has been widely applied in water research
since then (Amaranto et al., 2022; Bertoni et al., 2019; Herman et al., 2015).
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1.3.3 Studies on the Nile

There have been previous studies which applied optimisation for reservoir operations
on the Nile Basin. Even the highly cited initial paper that introduced the application of
SDP to the domain used the data of High Aswan Dam (HAD) as the test case (Stedinger
et al., 1984). There are other studies which also used reservoirs in the Nile Basin as test
cases for methodological contributions without much reflection on the implications for
the real problem in the region (Sangiorgio and Guariso, 2018; Stamou and Rutschmann,
2018; Guariso and Sangiorgio, 2020). Yet, the number of studies that adopt reservoir
modelling with more policy analytic focus started to increase after the initiation of the
GERD project in 2011.

Initial filling of the GERD has been a subject that received ample scholarly atten-
tion. Researchers emphasised various risks associated with filling (Basheer et al., 2020;
Wheeler et al., 2020; Wheeler and Caplan, 2020). Basheer et al. (2020) took the problem
from a technical design perspective and reflected on the implications of engineering
constraints on release capacity. On the other hand, with the motive of finding cooper-
ative optimal filling strategies, Wheeler et al. (2016) modelled a large part of the basin
to include the operations of 9 dams including the GERD. In a later study, Wheeler et al.
(2020) applied a similar modelling approach and concluded that with high levels of co-
operation, risk of water shortages downstream during the filling is minimal.

There have been more studies that showed the merits of cooperation while operat-
ing the reservoirs in the basin. Verhagen et al. (2021) adopted a comprehensive water-
energy-food nexus modelling approach to find optimal reservoir control policies under
varying levels of cooperation among countries. This study also made a quantification
of trade-offs between hydropower and agricultural irrigation within each of the three
Eastern Nile countries. Wheeler et al. (2018) had the most similar research endeavour
with respect to the objectives of this thesis project. The authors used many-objective
optimisation of reservoir release decisions to support stakeholder negotiations for basin-
wide cooperative management. Assuming the GERD is already filled, they limited the
optimisation on the parameters of pre-defined release rules for the GERD and the HAD.

1.3.4 Knowledge Gap

Based on this literature review, we identified a selection of points as currently missing.
Firstly, none of the previous studies that considered the GERD in reservoir operations
optimisation explored practical implications of the policy alternatives. Therefore, no
clear links have been established between objective trade-offs and the dynamics of the
physical system variables. Secondly, cooperative management setups for reservoir oper-
ations including the GERD were explored previously; nonetheless, none of those studies
generated adaptive policies to the best of our knowledge. Finally, despite pressing un-
certain factors, the discussion over how management strategies would play out with
different future SOWs is underdeveloped. Current literature on the Nile Basin has nei-
ther looked into the robustness of policy alternatives nor investigated the stability of
trade-offs with respect to different future scenarios.



1.4 research question

Considering the initial research objective and the identified gaps in the literature, the
main research question of this thesis project was formulated as:

“How can the trade-offs between different water uses in the Eastern Nile Basin be
explored under changing socioeconomic and hydro-climatic uncertainties adopting

many-objective optimisation approach?”

The main goal of this project is to devise a procedure to identify trade-offs yielded by
different candidate operational policies after optimising them for the objectives of stake-
holders. These candidate policies constitute a set to be experimented under different
SOWs.

1.4.1 Sub-questions

In addition to the main research question, four sub-questions were formulated as logical
subsequent inquiries needed to address the main question:

• SQ1: What are the key water related objectives of stakeholders in the Eastern Nile
Basin?

• SQ2: How can the system of reservoirs be modelled in order to optimise release
decisions for problem objectives?

• SQ3: What are the trade-offs revealed by Pareto-optimal policy alternatives?

• SQ4: How do trade-offs differ with respect to alternative hydrology and demand
growth scenarios?

1.5 organization of the report

This introductory chapter is followed by chapter 2 where we dive further into the prob-
lem context to identify key actors and their objectives. The methods of the study is
presented in chapter 3, which is divided into three sections. Firstly, in section 3.1, we
provide an overview of the adopted modelling approach. Following this section in 3.2,
we explain the model we built to simulate the system and obtain the outcomes of inter-
est. Lastly, in section 3.3, the experimental strategy is given. Results of the experiments
are presented in chapter 4 whereas the discussion based on these results can be found
in chapter 5. Finally in chapter 6, research questions are readdressed and the report is
concluded with policy recommendations and future work.
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2 S T U DY A R E A

Besides being the longest river in the world (Dumont, 2009), the Nile River Basin hosts
more than 257 million people whose livelihood and well-being depend directly on its
water (NBI, 2022; Williams and Talbot, 2009). The basin area is densely populated by
54% of the population of the 11 riparian countries, and corresponds to ∼10% of the
African continent (Dumont, 2009; NBI, 2022). Egypt, Sudan and Ethiopia—three coun-
tries that constitute the eastern Nile region (Arsano, 2007)—cover around two thirds of
the total basin area (NBI, 2022).

There are three main tributaries furnishing the total annual Nile flow: the White Nile,
the Blue Nile and Atbara rivers (Talbot and Williams, 2009). The White Nile, which
is the main outlet of Uganda’s Lake Victoria (NBI, 2022), provides ∼32% contribution
to the main flow (Wheeler et al., 2020). Due to the stability of its flow across seasons,
this tributary plays a critical role especially during severe drought periods (Talbot and
Williams, 2009; Wheeler et al., 2020). The Blue Nile and Atbara rivers, both originating
in Ethiopian highlands (NBI, 2022), contribute to the main flow by ∼55% and ∼13%
percent respectively (Wheeler et al., 2020). In contrast to the White Nile, flow from
these two tributaries are highly seasonal as a result of the wide variability of rainfall in
Ethiopian highlands (Sutcliffe, 2009). Figure 2.1 provides the geographical summary of
the Eastern Nile Basin.

The Blue Nile, with its considerable discharge volume and mountainous course, has
great hydropower potential (Dumont, 2009; NBI, 2022). This potential has been under-
lined for decades (Wheeler et al., 2020); nonetheless, it remains mainly untapped and
has only recently been materialized by Ethiopia (Block, 2007; Dumont, 2009). The GERD,
being constructed near Sudanese-Ethiopian border (Wheeler et al., 2020), is the most re-
markable attempt to close this gap; with its 6450 megawatt (MW) electricity generation
capacity and 74 billion cubic meters (BCM) total storage, the hydroelectric power plant
will be the largest of the continent (Pemunta et al., 2021; Wheeler et al., 2020). However,
there are arguments that sizing of the GERD has been determined over-optimistically
considering the flow regime of the Blue Nile (Kumagai, 2016).

As filling and operation of the facility will have unpredictable impacts on flow re-
ceived by downstream riparian countries, the project brought along strong opposition
from Egypt and Sudan—the former being more vocal (Falco and Fiorentino, 2022; Pe-
munta et al., 2021; Wheeler et al., 2020).
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Figure 2.1 Geographical view of the study area

2.1 actor perspective

We regard Ethiopia, Egypt and Sudan as the main actors in this study. Decision-making
authorities are bodies under national governments. They are representing the small
stakeholders’ interest within geographical border. Unsurprisingly, this set of actors are
prevalently preferred across an extensive portion of studies that focus on GERD (Abdel-
hady et al., 2015; Amer, 2015; Falco and Fiorentino, 2022; Elsayed et al., 2020; King and
Block, 2014; Pemunta et al., 2021; Wheeler et al., 2020).

2.1.1 Ethiopia

Ethiopia, much like the other two countries considered in this study, has deep histor-
ical roots in the Basin (Arsano, 2007). The Ethiopian population is largely rural with
over 80% of Ethiopians living in rural areas and agricultural with over 70% of Ethiopi-
ans being employed in agriculture (NBI, 2022). Electricity access is not an established
standard in the country; only 27% of the population is connected to the grid (NBI, 2022).
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Ethiopian government has long been demonstrating ambition towards improving
country’s water resources management, which is admitted to be a bottleneck for the
economic affluence of the country (Arsano, 2007). Nonetheless, steps taken regarding
the country’s water development challenge the status-quo and hydro-hegemony in the
basin (Arsano, 2007). Ethiopia faces strong inertia despite the fact that they hold the up-
per hand in terms of their riparian position—being located on the upstream—and have
growing exploitation potential—having increasing population and consistently demon-
strating growing GDP (World Bank, 2021).

Zeitoun and Warner (2006) argue that this inertia is due to the power relations in the
basin, which play the decisive role in determining levels of control over water resources
that riparian countries can establish. Indeed, these power relations were in effect when
the treaties of 1929 and 1959 were signed. The former agreement granted Egypt the right
to veto projects influencing their water share whereas the latter concerned allocation of
Nile water flow between Egypt and Sudan—by 75% and 25% respectively (Yalew et al.,
2021). Ethiopia contests the bindingness of these treaties underlining that they were
excluded as a party in both these settings (Arsano, 2007).

Since the late seventies, micro-dams constructed by individual farmers to control wa-
ter flow constituted an important part of the counter-hegemony strategies adopted by
Ethiopia (Berhane et al., 2016; Ibrahim, 2010; Zeitoun and Warner, 2006). These arrange-
ments gained speed around mid-nineties (Berhane et al., 2016), the times that correspond
to establishments of the Ministry of Water Resources and complementary institutions
(Arsano, 2007). Nonetheless, besides operating in an uncoordinated manner (Ibrahim,
2010), these micro-dams mainly served irrigational purposes and did not target the un-
realised hydropower potential of the country.

Initialisation of GERD’s construction in 2011, which marked the greatest challenge
against the hegemony, was a unilateral action (Pemunta et al., 2021). With the GERD,
Ethiopian authorities aim at catalysing economic growth through improved electricity
access in the country and promoted trade in the basin and beyond Pemunta et al. (2021);
Soliman et al. (2016). Government of Ethiopia communicates the expected annual hy-
droenergy generation from the GERD as 16 TWh (Wheeler et al., 2020).

2.1.2 Egypt

Across riparian countries, Egypt is an exceptional case in terms of electricity and clean
water access. Over 99% of the population, regardless of rural-urban distinction, is con-
nected to electricity and clean water networks (NBI, 2022). Egypt also marks the highest
GDP per capita among riparian countries with a score of over 3.800$—which is way
above those of Sudan (764.3$) and Ethiopia (944.0$) (World Bank, 2021).

Egyptian economy, agriculture in particular, enjoyed the country’s position as a main
beneficiary of Nile water (Arsano, 2007). Following the Egyptian-Sudanese treaty of
1959, authorities initiated construction of the HAD to further improve security of water
supply (Arsano, 2007). With the HAD, Egypt has more control over the Nile flow and
manages releases to meet the seasonal demand—which peaks in the summer (Wheeler
et al., 2016). Nevertheless, a major downside of the HAD is its large surface, which



causes on average 15 BCM water loss due to evaporation each year (Elba et al., 2014).
Diversification–and thereby strengthening–of the economy as well as import of water
intensive products are key to Egypt’s water security strategy (Allan, 2009).

Egypt argues that the GERD would cause a considerable decrease in downstream
water flow which would hinder food and energy security in the country (Falco and
Fiorentino, 2022). Egypt attempted to undercut the project through strategies varying
from lobbying financial providers (such as African Development Bank and the World
Bank) to threatening with military action (Pemunta et al., 2021). The project was still
realised with internal funding and financial support from China (Makonye, 2021; Pemu-
nta et al., 2021).

A relieving aspect of the GERD project in terms of Egpyt’s interests is the fact that
the reservoir is situated near Sudanese-Ethiopian border. This choice of location em-
phasizes that Ethiopia is committed to hydropower generation strategy instead of irri-
gation development—which would cause an increase in Ethiopia’s water withdrawal
from Blue Nile (Whittington et al., 2014). Furthermore, since the hydropower plant cre-
ates an encouraging factor for Ethiopia to increase water flow into the reservoir, down-
stream countries can benefit from internal re-direction of water (Whittington et al., 2014).
Nonetheless, there is limited discussion over this aspect in the political arena.

2.1.3 Sudan

Similar to Egypt and Ethiopia, Sudan’s economy is identified by a strong agricultural fo-
cus with around 50% of the population working in agriculture (NBI, 2022). Clean water
access in the country is around 86% and 61% in urban and rural areas respectively (NBI,
2022). Similar to Ethiopia, there is large room for improvement in electricity access in
the country with only 35% of the population having access currently (NBI, 2022).

Modern agriculture in Sudan goes back to the colonial era, 1920s (Arsano, 2007). Ir-
rigation potential of the country was first explored with the development of Gezira
irrigation scheme followed by expansions in other districts (Arsano, 2007). Considering
that agriculture is recognized as a competitive advantage for Sudan (Arsano, 2007), de-
cisions influencing the main tributary of the Nile are of crucial importance to Sudan as
they are to Egypt.

That being said, position of Sudan on the subject of the GERD is not identical to that
of Egypt. Although the Sudanese and Egyptian authorities shared a similar initial reac-
tions to the project by voicing concerns about their national and water supply security,
Sudanese opposition weakened over time (Falco and Fiorentino, 2022). Main reason for
this change was about the long-lasting battle that Sudan has been fighting against flood-
ing. Field experts and some politicians argued that regulation of highly variable Blue
Nile water flow would be beneficial for Sudan (Falco and Fiorentino, 2022).
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3 M E T H O D S

3.1 emodps methodology

Considering the evolution of reservoir control methods outlined in the literature review,
we chose EMODPS as the core methodology to formulate an optimisation model of the
Nile system. To summarise, it entails embedding a nonlinear approximating network as
a policy function into the simulation model which calculates release decisions at each
time step of a run, based on the state of the system at the particular instance. During
the optimisation, parameters of the policy function are improved at each generation of
a many objective evolutionary algorithm run (Giuliani et al., 2015). In the ideal scenario,
solution set converges to the global optimum of the problem which yields a Pareto-
optimal set of objective values. A visual summary of the EMODPS methodology built
on top of the XLRM framework is given in figure 3.1.

Policy Function

Simulation Loop

Multi-objective Evolutionary
Algorithm (MOEA)

Optimisation/Directed Search

Figure 3.1 Visual summary of the EMODPS methodology



EMODPS was chosen as the core modelling approach because of its following strengths:

• Flexibility in modelling: EMODPS leaves great flexibility in formulating and solving
many-objective problems (Zatarain Salazar et al., 2016). Since the objective value
calculations are done through running a simulation model, any extension to the
model is possible as long as an algorithmic description can be made.

• Less computational burden: Unlike the exact methods such as SDP, computational
cost of EMODPS does not grow uncontrollably with respect to increasing system
complexity and it gives an approximation of the Pareto front starting from the
first generation of solutions (Giuliani et al., 2015). Therefore, it is a good fit for a
multi-reservoir, many-objective system such as the Nile.

• Adaptive policies: Since release decisions are conditioned on the system state and
hence adaptive, final set of policy alternatives are more robust against changing
system conditions compared to the solutions obtained via the optimisation of the
equivalent open-loop problem (Giuliani et al., 2015).

Nonetheless, there are few limitations of the methodology:

• Diversity of solutions: An important concern about MOEAs is the diversity of the
solution set (Laumanns et al., 2002). The more diverse values in the objective space
yielded by the set of Pareto-optimal solutions, the more information is available to
decision-makers when making judgements on trade-offs (Wang et al., 2017). Un-
less there is a mechanism to enhance diversity, solutions found by an evolutionary
algorithm may not reflect a sufficiently wide range of objective value sets.

• Convergence to optimality: Convergence to optimality i.e., a state in the optimisation
process where no other solution can strictly dominate any of the solutions in the
final Pareto set, is never guaranteed with an evolutionary heuristic (Laumanns
et al., 2002). A common approach is to keep track of improvement with respect
to the number of function evaluations (NFEs) and end the procedure when the
progress curve gets satisfactorily stable. However, this might take too many NFEs
and hence too much computational cost.

• Too many hyper-parameters: Application of the EMODPS methodology requires de-
termining many hyper-parameters which consist of the ones that are needed to
set up the optimisation and the ones that shape the structure of the nonlinear
approximating network.

To cope with the first two limitations, we consulted on the literature that tested the per-
formance of different MOEAs regarding these concerns (Reed et al., 2013; Zatarain Salazar
et al., 2016). We chose ϵ-NSGA-II as the evolutionary algorithm to run the optimisation
(Kollat and Reed, 2005). On a different six objective case study in the reservoir control
domain, Zatarain Salazar et al. (2016) showed that ϵ-NSGA-II is among the best per-
forming algorithms with respect to search diversity and capability to escape from local
optima.

In the literature, there is little guidance regarding strategies to cope with the last
limitation. There are a few rule of thumbs mentioned on the shape of the policy function
(Amaranto et al., 2022; Giuliani et al., 2015). We based hyper-parameter assumptions on
such literature when available.
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3.1.1 Modelling the System

Among the variety of modelling approaches for water systems described by Castelletti
and Soncini-Sessa (2007), we adopted the family of mechanistic models which can be
applied when there exists theories that quantitatively explain how the physical system
works. The core mechanism in this case is the mass-balance equations which can be
formulated for a single reservoir as follows (Soncini-Sessa and Weber, 2007):

sτ+1 = sτ + Qτ+1 − Eτ+1 − Rτ+1 (3.1)

where sτ is the volume of water in the reservoir in the beginning of decision step τ,
Qτ+1 is the total inflow to the reservoir, Eτ+1 is the total net evaporation and Rτ+1 is the
total volume of water released from the reservoir between decision steps τ and τ + 1.
In this study, we selected the decision interval as a month because it is short enough
to capture seasonal aspects yet sufficiently large to feasibly run a basin-wide long-term
simulation.

Each element in equation 3.1 can be expressed in terms of the factors whose values
are known at the instance of calculation. Among these elements, the one that adds most
to the computational burden is the calculation of Rτ. There are two reasons behind
this. Firstly, a fresh release decision is calculated at each decision step by the policy
function. More notably, within two consecutive decision instances, releases must not
violate physical and/or normative constraints of the reservoir. This constraint check
usually requires higher time fidelity than the decision interval. Essentially, the actual
releases realised in finer time resolution are integrated over the decision interval to
calculate Rτ (Soncini-Sessa and Weber, 2007). After experimenting with alternatives, we
set the integration step to half an hour.

3.1.2 Policy Function

There are a couple of alternative functions that are frequently used as policy structure in
reservoir control domain. As the aim is to capture the most appropriate mathematical
relationship between inputs of the policy function and release decisions, a common
choice is to embed a highly flexible non-linear approximating network such as artificial
neural networks (ANNs) and radial basis functions (RBFs) (Giuliani et al., 2015). In this
study, our choice is to use a set of RBFs to parametrise the policy function because there
is evidence obtained in case studies indicating that they outperform ANNs (Giuliani
et al., 2015). Particularly, the structure adopted by Giuliani et al. (2020)—a weighted
sum of Gaussian RBFs—is used as the function that returns the release decisions such
as in equation 3.2:

uk
τ = uk

θ(z̄τ) =
n

∑
i=1

(wk
i φi(z̄τ) + αk) (3.2)

where uk
τ is the kth release decision at month τ and θ is the parameter vector for RBFs

defined as θ = |cj,i, bj,i, wk
i |. z̄τ is the input vector such that z̄t = |zτ,1, ..., zτ,m| and αk is



the constant adjustment parameter of the kth release decision. An overview of the RBF
network structure is given in figure 3.2
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Calculation in a single Gaussian RBF is done as in equation 3.3:

φi(z̄τ) = exp [−
m

∑
j=1

(zτ,j − cj,i)
2

b2
j,i

] (3.3)

where cj,i is the center and bj,i is the radius parameters corresponding to jth input and
ith RBF. An illustration of this calculation is given in figure 3.3.
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Specific inputs that pass the system state to the policy function is discussed in model
description in the following section. As can be derived from figures 3.2 and 3.3, the total
number of free parameters in a Gaussian RBF network is (2mn) + (nK) + K, where m, n,
K are the total number of inputs, RBFs and release decisions respectively.

3.2 simulation model

Given the knowledge on the study area and the abstract description of the modelling ap-
proach, the simulation model that is used to run experiments was formalised. The main
goal of this chapter is to present a reproducible and transparent model building process.
Expectation from the process of modelling is to explore the system behaviour under
varying uncertain conditions and policy alternatives. Therefore, a parametric implemen-
tation was made wherever applicable to test the model with different possibilities.

Software implementation of the model was done in the Python programming lan-
guage because of its ease of use and wide availability of supplementary packages.

3.2.1 Model Conceptualisation

3.2.1.1 Scope

The scope of the system that was modelled entails the following dimensions:

• Geographical boundaries: Among the three main tributaries of the Nile, Blue Nile is
the only one that is thoroughly modelled in this study. There are two reasons for
this choice. First, it is the tributary that contributes the most to the total flow of the
Nile by far. In addition, the GERD—one of the main motivations of this study—
is located on the Blue Nile. The White Nile and Atbara rivers are regarded as
exogenous streamflows, the dynamics of which are not calculated via simulation
but obtained as time-series inputs to the model. The most upstream element of
the system in concern is the inflow of Blue Nile to the GERD. In the farthest
downstream, we aggregate the water demand of Egypt and consider that as a
single demand zone that the HAD serves.

• Simulation horizon: We run the simulation 20 years towards the future, between
2022-2042. We argue that 20 years is the minimum time-span that both covers the
filling period of the GERD and leaves enough time to observe possible trade-offs
during its operation.

3.2.1.2 Cooperative Setup

A major assumption we made in this study concerns the cooperative setup for managing
multiple reservoirs that were governed by different national authorities in reality. What
we assume in this study is that a hypothetical central authority has full information over
the whole basin and decides on the releases from all reservoirs. This assumption gives
the currently non-existing flexibility to coordinate release decisions to the model. Since
our aim is to obtain a diverse set of solutions which includes policies that prioritise



individual parties as well as the ones that requires them to make compromises, we
decided to keep it free from the constraints of the strategic setup.

3.2.1.3 Model Components

We modelled the elements that either have an influence on the system state—which
is determined by water storage in reservoirs—or are necessary for the calculation of
problem objectives. These criteria led to the explicit modelling of four components:
reservoirs, hydropower plants, irrigation districts and catchments.

Reservoirs
Reservoirs can change the system state in three ways. Apart from having the capacity
to store and release water, considerable amount of loss occurs from their surface due to
evaporation (Elba et al., 2017). We include four reservoirs in the scope of this study.
They are the GERD, Roseires, Sennar and the HAD in the order from upstream to
downstream. Although having relatively small storage capacities, Roseires (5.9 BCM)
and Sennar (0.4 BCM) play important roles in meeting the demand of large agricultural
irrigation schemes in Sudan (Wheeler et al., 2020). The HAD, with its large storage
capacity (148 BCM), is the major water source of Egypt. Moreover, water level in the
HAD is a good indicator of downstream impacts of the GERD as commonly used in the
literature (Wheeler et al., 2018).

Hydropower Plants
Hydropower plants are modelled to calculate the amount of hydro-electric energy gen-
eration from dams. Each of the four dams in this study has the capacity to generate
hydroenergy. Particularly, electricity generation from the GERD is one major objective
from Ethiopia’s viewpoint.

Irrigation Districts
Irrigation Districts are components we use to represent any major source of irreversible
water consumption such as an agricultural irrigation scheme or an urban district with
freshwater needs. Based on the amount of demand and water availability, part of the
water flow is diverted and is lost from the system to meet the demand of an irrigation
district. Given the geographical boundaries of the system, we included five irrigation
districts located in Sudan and one aggregate irrigation district that represents the de-
mand of Egypt. Using the same demand zone aggregation as in Wheeler et al. (2016),
we incorporated the following districts: Upstream Sennar, Gezira-Managil, Downstream
Sennar, Tamaniat to Hassanab, Hassanab to Dongola, and Egypt.

Catchments
A catchment is an area where precipitation is accumulated by the natural topography
(Soncini-Sessa and Weber, 2007). Practically, it means an inflow of water to the system
and hence a gain. Apart from the points where we treated the three main tributaries
as joining to the system delineated in this study, we included five more catchments.
Detailed model schematic provided by Wheeler et al. (2018) guided that selection.
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Objectives
Based on the analysis of the study area, we identified several prominent objectives from
the perspectives of three countries. For Egypt, reliability of water supply is of funda-
mental importance; therefore, minimising demand deficits in Egypt is one of their major
objectives. Furthermore, they are concerned with the water level in the HAD particu-
larly when there is a risk that it falls below the minimum power generation elevation of
159 meters above sea level (masl) (Wheeler et al., 2018). Similar to Egypt, it is essential
to meet the demand of agricultural irrigation schemes in Sudan. Deficits of demand
districts in Sudan is aggregated to constitute another objective to be minimised. Al-
though flood risk is also a major concern for Sudan during high flow seasons (Falco and
Fiorentino, 2022), we did not consider flooding in this model. We argue that it is not
suitable to model flood events reasonably accurately with a model that has a coarse deci-
sion interval of a month. Finally, for Ethiopia we only consider maximising hydropower
generation as it is their main aim behind constructing the GERD.

3.2.1.4 Summary of the Conceptual Model

Figure 3.4 shows the topology of the model components described above. Appendix
A.1.1 provides a geographical schematic. Finally, a detailed specification of what indi-
vidual model components entail is given as a UML class diagram in appendix A.1.2.
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Figure 3.4 Topology of the conceptual model. Components of the system are emphasised. Joining to the flow, main
tributaries and other minor catchments are shown in purple colour. Water withdrawal by irrigation districts
are illustrated using dashed arrows.



3.2.2 Model Formulation

3.2.2.1 Mathematical Formulation

Here we present equations of the model to concretise the abstract formulation intro-
duced in equations 3.1-3.3 along with the formulation of objective functions.

Release decisions:

uk
τ = ∑

i
[wk

i φi(Sτ, ∑
p

Qp
τ−1, τ mod 12) + αk] (3.4)

Mass-balance equations:

sk
τ+1 = sk

τ +
∫ 1

0
f (sk

τ+t, qk
τ, ek

τ, uk
τ) dt (3.5)

In-month integration:

f =
∆sk

τ+t

∆t
= qk

τ︸︷︷︸
net inflow

− Ak(sk
τ+t)e

k
τ︸ ︷︷ ︸

evaporation

− rk(sk
τ+t, uk

τ)︸ ︷︷ ︸
actual release

(3.6)

where r is defined as follows:

rk(sk
τ+t, uk

τ) =


rk(sk

τ+t), if uk
τ > rk(sk

τ+t)

rk(sk
τ+t), if uk

τ < rk(sk
τ+t)

uk
τ, otherwise

(3.7)

in which

uk
τ : Release decision for reservoir k at month τ

wk
i : Weight of the ith radial basis function for the release of reservoir k

Sτ : Vector of all reservoir storages at the beginning of month τ

Qp
τ : Inflow rate of catchment p at month τ

αk : Constant adjustment parameter of the kth release decision
sk

τ : Storage in reservoir k at the beginning of month τ

qk
τ : Rate of net inflow incoming to reservoir k at month τ

ek
τ : Rate of evaporation occurring from the surface of reservoir k at month τ

Ak(s) : Function that calculates the surface area of reservoir k based on storage s

rk(s, u) :
Function that calculates the actual release decision of reservoir k based on
storage s and policy output u

rk(s) : Maximum possible release from reservoir k when the storage is s
rk(s) : Minimum possible release from reservoir k when the storage is s
k : Index that represents one of the four reservoirs of the problem
τ : Time index used to represent discrete months in simulation horizon
t : Time index used to represent small time steps for in-month integration
i : Index for RBFs
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Equation 3.4 shows the calculation of release decision as a weighted sum of RBFs.
It is calculated at the beginning of each month τ for each reservoir k. This equation
also shows the specific inputs given to the policy function as the state of system at a
particular instance. The first input (Sτ) is a vector which holds the storage values of all
reservoirs. The second input (∑n Qn

τ−1) is the sum of catchment inflows—total gain to
the system—in the previous month. In addition, the policy function is also informed
about the current month of the year (τ mod 12) to account for seasonal factors before
deciding on the release.

Equation 3.5 is a high-level representation of how the storage in reservoir k changes
when moving from month τ to τ + 1. As discussed in section 3.1.1, determining actual
releases requires finer time resolution. Exact evaporation and release values are calcu-
lated dynamically based on the most up-to-date storage values within a month. They are
integrated over time to calculate the total addition to or subtraction from reservoir stor-
age. Integration function ( f ) receives the most recent storage value (sk

τ+t) along with the
inputs of net inflow (qk

τ), evaporation rate (ek
τ) and release decision (uk

τ) for the month.

In equation 3.6, integration function ( f ) is further decomposed. There are three ele-
ments causing reservoir storage to change. Net inflow (qk

τ) is the water flow per second
that is received from the model components prior to the reservoir k on the model topol-
ogy. The function that converts reservoir storage to corresponding surface area (Ak(s))
is multiplied by the evaporation rate of the month (ek

τ) to calculate water loss due to
evaporation per second. Finally, calculation of the actual release with respect to the
constraints of a reservoir is shown in equation 3.7. Actual release is bounded by the
minimum and maximum possible releases given the storage in the reservoir at the time
instance.

Equations that show the input-output relations between specific model components
are given in appendix A.2.

Objective Functions
For the many-objective optimisation phase of the methodology, we operationalise six
objective functions based on the conceptual description given in section 3.2.1 and con-
sidering rival risk aversion framings (Quinn et al., 2017). The first five objectives are to
be minimised whereas the last one is to be maximised in the optimisation run.

Egypt average yearly demand deficit (minimisation) is the yearly average value of
unmet demand in Egypt expressed in BCM/year throughout the 20 years the model is
simulated. Its mathematical formulation is as follows:

1
20

240

∑
τ=1

max(0, DEgypt
τ − VEgypt

τ ) (3.8)

where DEgypt
τ is the water demand of and VEgypt

τ is the received water flow by the
irrigation district Egypt in month τ.



Egypt 90th percentile worst monthly demand deficit (minimisation) is an objective
formulated to minimise the adversity of a possible disastrous month. Among the deficit
values of all 240 months calculated as in max(0, DEgypt

τ − VEgypt
τ ), this objective function

returns the 90
th percentile when the 100

th percentile corresponds to the highest deficit
value.

HAD frequency of months below minimum power generation level (minimisation)
is an indicator of water level reliability in the HAD. It is calculated as follows:

1
240

240

∑
τ=1

HADτ (3.9)

where HADτ is an indicator variable defined as:

HADτ =

{
1, if hHAD(sτ) < 159

0, otherwise
(3.10)

where hHAD(s) is the function that calculates the water level in HAD in masl when
the storage is s.

Sudan average yearly demand deficit (minimisation) is calculated in a similar man-
ner to the same objective of Egypt. The only difference is that it is an aggregation of
deficits faced by multiple irrigation districts in Sudan.

1
20

240

∑
τ=1

∑
j∈SD

max(0, Dj
τ − V j

τ) (3.11)

where SD is the set of all irrigation districts in Sudan and j is the index for expressing
one such district.

Sudan 90th percentile worst monthly demand deficit (minimisation) is calculated
in the same way as the same objective of Egypt.

Ethiopia yearly hydroenergy generation from GERD (maximisation)

1
20

240

∑
τ=1

PGERD
τ︸ ︷︷ ︸

power output

· d(τ mod 12) · 24︸ ︷︷ ︸
hours in month

(3.12)

PGERD
τ = min(rGERD

τ , rGERD
max ) · g · max(0, hGERD(sτ)− hGERD

turbine) · ηGERD (3.13)

in which
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rGERD
max : Flow that corresponds to the maximum rotational speed of the turbine

g : Gravitational constant
hGERD

turbine : Height of the turbines in GERD
ηGERD : Efficiency of the hydropower generation process in GERD

Objective formulations are summarised in table 3.1

Country Objective Aggregation level Unit Direction

Egypt Demand deficit Yearly average BCM/year minimise
Egypt Demand deficit 90th percentile worst month BCM/month minimise
Egypt HAD level reliability Frequency over 20 years % minimise
Sudan Demand deficit Yearly average BCM/year minimise
Sudan Demand deficit 90th percentile worst month BCM/month minimise

Ethiopia Hydroenergy generation Yearly average TWh/year maximise

Table 3.1 Overview of optimisation objectives

3.2.2.2 Algorithmic Formulation

The equations that make up the mathematical formulation were expressed in Python
programming language. Execution sequence of a single simulation run is described as
a flowchart in figure 3.5.
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Input  
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End

Start

 Is τ = 240?

End
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Calculate objective
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Start

End
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τ  + 1 

No

Initialise ModelNile
object

Evaluate objective
values based on

given input

Return objective
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Figure 3.5 Flowchart of simulation run time



3.2.3 Data Requirements

We distinguish three types of data that are required. The first category is physical system
quantities. It entails quantitative data about dam operations. Secondly, we have a set
of hydro-climatic data. It concerns the flow rate of streamflows joining the system from
catchments as well as the rates of evaporation from or precipitation to reservoirs. Finally,
we present a third category for the water demand of irrigation districts.

3.2.3.1 Physical System Quantities

Data for the following variables are needed regarding the reservoir operations. Specific
values used for each variable are given in appendix A.3.

• Storage-level-surface conversions: Although the main variable that describes the state
of a reservoir is the volume of water stored, elevation of water surface and dynamic
surface area of the reservoir are also needed for calculations. Particularly, the
former is used for the calculation of hydroenergy generation and the latter is a
multiplier for the calculation of evaporation. We use the data points given in the
supplementary material of Wheeler et al. (2016) for conversion among the three
quantities. During a simulation run, it is common that a conversion from a variable
value which does not have an exact match in the data set is needed. In such cases,
we use linear interpolation between the closest existing data points.

• Minimum and maximum release constraints: Soncini-Sessa and Weber (2007) identify
two types of release constraints: physical and normative. The former concerns
instantaneous release capacity of the dam given its elevation. For the reservoirs
in this study, only the minimum and maximum operational levels were accessible
from the literature. Based on these levels, we assumed zero or maximum possible
releases for the constraints corresponding to certain elevations. If the water level
in a dam is below minimum operational level, no release can be made until the
dam is operational again. On the contrary, to prevent undesired spillage, releases
are increased to the maximum capacity when the water level approaches the full
supply level. Normative constraints are any additional rules imposed on top of
the physical constraints. They may include minimum obligatory flows required for
environmental services (Soncini-Sessa and Weber, 2007). Due to lack of data, we
left such requirements out of the modelling scope. In addition, we did not impose
any predetermined constraints because our aim is to discover a wide policy range
and explore what release patterns they correspond to through a post-optimisation
trade-off analysis.

• Hydropower plant parameters: Variables that are used to calculate hydroenergy gen-
eration are the elevation of turbines, maximum turbine flow, plant capacity and
plant efficiency. These values are well documented for the three dams other than
the GERD. The values in Wheeler et al. (2016) were used for the three dams. Since
there is not sufficiently established data for the GERD yet, we based the choice of
values on information in the literature and our own assumptions.
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3.2.3.2 Hydroclimatic Data

• Streamflows of major tributaries: There are gauging stations at the points where the
White Nile and Atbara rivers join the Main Nile. UN Global Runoff Data Centre
provides measurements from these stations (Fekete et al., 2002). For the Mogren
gauging station which is just before the White Nile-Main Nile junction, this data
set includes summary statistics in the form of minimum, mean and maximum
flows per month between the years 1973-1982. We used this information and
assumed a separate triangular distribution for the flow variable of each month.
Likewise, we found mean and standard deviation values for the gauging station
before the Atbara-Main Nile junction. Those are used to assume a separate normal
distribution for the flow variable of each month. Finally, average monthly values
from the gauging station just before the GERD on the Blue Nile was found from El-
dardiry and Hossain (2021). To account for the volatility across simulated years, a
uniform distribution with plus and minus 30% upper and lower limit with respect
to the mean value is used to generate Blue Nile inflow data points. Summary of
the input data is given in table 3.2. Average monthly flows of the three tributaries
under baseline conditions are visualised in figure 3.6.

White Nile Atbara Blue Nile
Month min mean max mean std mean

January 735.0 1010.8 1254.0 7.7 11.6 301.6
February 624.0 776.3 1101.0 3.0 8.1 195.6

March 705.0 793.3 1015.0 0.4 1.5 152.2
April 1033.0 1160.6 1369.0 1.5 7.3 149.4
May 686.0 1045.7 1306.0 3.0 11.9 233.7
June 659.0 763.4 902.0 28.3 38.7 690.2
July 333.0 569.1 802.0 592.8 299.7 2733.5

August 300.0 535.0 1000.0 1979.0 740.5 5869.2

Table 3.2 Summary statistics used to generate streamflows of major tributaries. All values are in m3/s.
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• Streamflows of minor catchments: Wheeler et al. (2018) provided artificially generated
streamflow values for all minor inflows joining the Nile from various locations.
Under baseline conditions, the authors generated 100 sets of stochastic future data.
Depending on the seed of the simulation experiment, we used one such set for the
minor inflows that reside in the scope of this study.

• Monthly evaporation rates: Wheeler et al. (2016) provided monthly evaporation rates
per surface area for each of the four reservoirs in this study. We used the values
given in that study.

3.2.3.3 Demand

Wheeler et al. (2016) provided monthly demand figures for the irrigation districts in this
study which can be found in appendix A.4. However, those figures entail a single value
per month which would lead to static water demand over the simulated years. With the
growing population and economic activity in the basin, water demand is also expected
to rise. As we argue that growing demand is a crucial factor which has an impact on
the realisation of objectives, particularly demand deficits, we modelled demand growth
in a parametric manner. We assumed a constant water demand growth equal to the
population growth in the three countries of this study. A weighted average of population
growth in Egypt, Sudan and Ethiopia based on the NBI (2022) is calculated as 2.12%
per year. We consider this value as the baseline demand growth. Assuming that the
figures given by (Wheeler et al., 2016) are from the year of publication, we expanded the
water demand with respect to the growth rate parameter for the years in the simulation
horizon.

3.2.4 Key Assumptions

• Lag time between components: We could not find a reliable source which measures
the time it takes water to move from one model component to the other. Wheeler
et al. (2018) approximated the travel time between the GERD and the HAD as 15

to 25 days. We decided to regard every transition between two model components
to occur within the same month except for one. To account for the long distance
between the irrigation districts of Tamaniat and Hassanab, we introduced one-
month travel time between these two components.

• Filling of GERD: Although there is a lot of debate over the filling strategy of the
GERD to be adopted by Ethiopian authorities, we decided not to impose any partic-
ular filling rule on the model. Essentially, filling is achieved through not releasing
a proportion of inflow from Blue Nile. The ideal filling strategy for Ethiopia is ex-
pected to maximise the hydroenergy generated from the GERD. Since this concept
as well as the interests of the downstream countries were already formulated as
the objectives of the optimisation, various filling patterns were left to be explored
from the solution set.

• Policy function hyper-parameters: Giuliani et al. (2015) showed that the policy func-
tion which attained the highest performance had a total number of RBFs in the
proximity of (m + K), the number of inputs plus outputs of the control problem.
Amaranto et al. (2022), referring to the same study, stated the heuristic for the
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ideal number of RBFs as (m + K + 1). Following the footsteps of both studies, we
determined the number of RBFs as (m + K). Since we have six input variables in
total (storage values of four dams, total inflow of the previous month and index
of the current month) and four output variables (release decisions for each of the
four dams), this logic resulted in 10 RBFs. Following the calculation shown in
section 3.1.2, we ended up with (2 ∗ 10 ∗ 6) + (10 ∗ 4) + 4 = 164 free parameters to
be optimised.

3.3 experimental setup

3.3.1 Baseline Optimisation

After formulating the simulation model and gaining confidence in its fitness for purpose
we ran an evolutionary optimisation in the policy lever space. As explained in section
3.2.4, we have 164 parameters which constitute our decision variable space. We ran the
ϵ-NSGA-II algorithm for 50,000 NFEs and kept track of the metrics of epsilon progress
and hypervolume to test convergence. Epsilon values for all objectives can be found in
appendix A.5.

We connected our model to the open source Python library Exploratory Modelling
and Analysis (EMA) Workbench and ran its implementation of the ϵ-NSGA-II optimi-
sation algorithm (Kwakkel, 2017). A 48-CPU computing node from the Delft High Per-
formance Computing Centre was utilized to run the experiments in parallel (Delft High
Performance Computing Centre , DHPC).

3.3.2 Uncertainty Analysis

Although the model includes uncertain hydro-climatic and socioeconomic factors, to
run an optimisation, the analyst must set a value for every variable that is not included
in the optimisation search space. For this reason, the optimisation run is conditioned on
a reference scenario and hence likely to be sub-optimal under other scenarios (Watson
and Kasprzyk, 2017). Therefore, it is also possible that trade-offs found in one scenario
might not be significant if the procedure is repeated under different SOWs.

To cope with this limitation, we conducted three additional analyses building on the
results of the baseline optimisation. The core idea at the foundation of these analyses is
sampling over the uncertainty space to generate alternative SOWs and re-evaluating the
optimised solutions under each scenario. Uncertain variables considered in this study
along with their sampling ranges are presented in table 3.3.



Uncertain Variable Baseline Value Range

Yearly Demand Growth Rate 0.0212 0.01 - 0.03

Blue Nile Mean Coefficient 1 0.75 - 1.25

White Nile Mean Coefficient 1 0.75 - 1.25

Atbara Mean Coefficient 1 0.75 - 1.25

Blue Nile Deviation Coefficient 1 0.5 - 1.5
White Nile Deviation Coefficient 1 0.5 - 1.5

Atbara Deviation Coefficient 1 0.5 - 1.5

Table 3.3 Overview of uncertain variables and ranges

The baseline value for the yearly demand growth rate parameter was determined as
2.12% with respect to the population growth trend in the basin. There are agricultural
expansion projections for the Nile Basin including scenarios that correspond to 1.72%
and 1.43% yearly growth until 2050 (IWMI, 2021). Nonetheless, these scenarios are for-
mulated based on expansion of irrigation schemes and do not consider urban freshwater
needs. When the population growth is taken into account, there are projections expect-
ing Egypt and Ethiopia to be among the top eight countries where the global population
growth until 2050 is concentrated (UN, 2022). To account for both extremes, we set the
range for the yearly demand growth values as [0.01 − 0.03].

Among the seven uncertain variables, all six except for the yearly demand growth rate
parameter concerns the hydrology of the major tributaries of the Nile River. Probabil-
ity distributions that generate monthly flow values were conjectured in section 3.2.3.2.
Although parameters of these distributions were estimated based on available historical
data, they are subject to deep uncertainty. On the one hand, Nile’s well-known inter-
annual variability along with potential extreme events exacerbated by climate change
add to the uncertainty. On the other hand, water consumption in the parts of the Nile
Basin that we left out of the system scope may change. In case consumptive water uses
in Ethiopia and countries upstream the White Nile start growing, mean inflow from
major tributaries would decrease and vice versa. To incorporate alternative inflow re-
alisations, we used multiplicative adjustment factors for mean and standard deviation
of the probability distributions that generate monthly streamflows for the three main
tributaries. It was assumed that ±25% for mean and ±50% for standard deviation with
respect to the baseline values provide sufficiently wide ranges to capture possible reali-
sations.

5000 alternative SOWs were created by jointly sampling values for the uncertain vari-
ables using the Latin hypercube sampling technique due to its efficiency in covering the
uncertainty space uniformly (Helton and Davis, 2003). This sampling provided the basis
for the following analyses.

3.3.2.1 Global Sensitivity Analysis

We investigated the influence of uncertainty variables and policy selection in explaining
the variability in the outcomes of interest. To that end, we conducted a global sensitivity
analysis. Objective values were evaluated through resimulation of a set of selected poli-
cies under the SOWs obtained from Latin hypercube sampling. To obtain an estimation
of significance of each uncertainty variable as well as the policy selection, we used the
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extra trees algorithm which is based on fitting multiple regression trees (Geurts et al.,
2006). This analysis quantified the influence of each input on each outcome of interest.

3.3.2.2 Robustness of Policy Alternatives

We also explored how the performances of the selected policies change under differ-
ent SOWs. Particularly, we quantified the robustness of policy alternatives using 90th

percentile maximum regret metric (McPhail et al., 2018). Based on the regret scores of
policies, we examined possible trade-offs and synergies among objectives. In essence,
our procedure slightly diverges from the MORDM framework of Kasprzyk et al. (2013)
as we reduced the set of policy alternatives based on judgment instead of resimulating
the full Pareto-optimal set. Additionally, we used a visual approach to inspect which
policy maximises the performance of each objective in all possible regions of the uncer-
tainty space.

3.3.2.3 Trade-offs under Alternative Scenarios

To investigate how trade-offs vary with respect to uncertain conditions, we adopted a
scenario discovery approach (Bryant and Lempert, 2010). There are several algorithmic
methods for scenario discovery in the literature (Kwakkel and Jaxa-Rozen, 2016). We
adopted a visual approach proposed by Suzuki et al. (2015). The aim is to identify the
uncertainty combinations which lead to interesting realisations of an outcome of interest
based on the inspection of a high-dimensional visual where the occurrence frequency is
colour-coded. With the guidance of this method, we selected four scenarios in addition
to the baseline scenario. We tested the full Pareto-optimal solution set obtained through
the baseline optimisation by simulating those policies under discovered scenarios and
obtaining a set of objective values for each policy-scenario combination. We reflected on
how objective trade-offs play out under those five scenarios.



4 R E S U LT S

4.1 baseline optimisation

The optimisation run under the baseline scenario resulted in 340 Pareto-optimal solution
alternatives. Convergence analysis for this optimisation run can be found in appendix
B.1.

4.1.1 Objective Trade-offs

Figure 4.1 is the parallel coordinates representation of the optimisation results. In this
figure, six specific policies were colour-coded. A policy label that starts with the word
”best” corresponds to the policy which leads to the most desirable value for the particu-
lar objective. We added two compromise solutions to the colour-coded policy set. Both
were obtained through imposing a constraint on the objective value sets. The policy
Compromise: Percentile Threshold makes all objectives attain a value that is more desir-
able than 45th percentile where the 100th percentile corresponds to the most desirable
objective value. Similarly, the policy Compromise: Absolute Threshold makes all objectives
attain a value that is higher than 0.82 on the normalised scale where the best objective
value corresponds to 1.

It is worth noting that the most desirable value for an objective can be yielded by more
than one policy alternative. This is the case for the objectives of Sudan irrigation deficit,
Sudan 90th percentile irrigation deficit and Egypt low HAD. We observed that value
ranges for Sudan’s objectives are much narrower compared to those of Egypt. A large
number of policies including the Compromise: Percentile Threshold brings zero deficit for
Sudan. For this reason, we did not include any additional policies that minimise those
objectives. A distinct policy which yields 0% for the Egypt low HAD objective was
colour-coded. Moreover, it was observed that the Best Ethiopia Hydropower policy also
achieves the 0% outcome for the HAD. This hints a synergy between two objectives.

Considering the irrigation deficit objectives of Egypt, we saw a different picture. The
Best Ethiopia Hydropower policy leads to objective values in the proximity of the worst out-
comes for the two Egypt objectives. It results in 15.8 BCM/year for average yearly and
4.2 BCM/month for 90th percentile worst month deficits, unacceptably large outcomes
from Egypt’s point of view. Likewise, policy alternatives that optimise the objectives of
Egypt have a similar effect on the hydroenergy generation objective of Ethiopia. These
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policies lead to 2.4 TWh/year less hydroenergy for Ethiopia compared to its average
realisation with the Pareto-optimal set.

Figure 4.1 Parallel coordinates plot of Pareto-optimal solutions of baseline optimisation. Minimum and maximum levels
attained by objective values are given on the ends of each parallel axis. Extremes are positioned such that an
upper value is always more desirable for each objective.

To examine the overall trade-off patterns within the full Pareto front in addition to
the differences between individual performance maximising policies, we visualised two-
way comparisons between objectives using a pair plot as shown in figure 4.2a. Each
scatter plot is fitted a regression line. The slope of this regression line informs us about
the trend between two objectives. When the angle between the regression line and the
x-axis is around 45o in the positive direction, it is an indication that there is an alignment
between two objectives i.e., policies which maximise the performance of one objective
also tend to yield desirable outcomes for the other. On the contrary, when the angle is
around −45o, it signals a trade-off in the similar manner. Table in figure 4.2b provides
the slope of the regression lines fitted for each objective pair.

Nonetheless, slope itself is not enough to draw conclusions about the significance of
such a relation. If the points are scattered dispersedly and there is no substantial accu-
mulation around the regression line, slope might be misleading. In this regard, we used
Pearson correlation coefficient to quantify the significance of the relation between two
objectives. We argue that the closer the coefficient becomes to −1 or +1, the more stable
the relation is. Pearson correlation coefficients calculated for objecive pairs can be found
in table in figure 4.2c.



(a) Pair plot for objective values. Pair-wise scatter plots are given along with a fitted regression line. Policies selected from figure 4.1 were colour-coded using
the same legend. Histogram of individual objectives are visible on the diagonal. The axes of Ethiopia Hydropower objective (maximisation) is reversed such
that all objective values get more desirable towards the left on the x-axis and bottom on the y-axis.
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The most prominent relation among all objective pairs is the alignment between the
two irrigation deficit objectives of Egypt. Tables 4.2b and 4.2c show slope and correla-
tion coefficients that are fairly close to 1. We observe a similar trend between the two
objectives of Sudan despite being not as strong as those of Egypt. This result suggests
that, under the baseline scenario, rival objective formulations from different risk aver-
sion perspectives do not lead to diverging interests.

Another pattern that is visible from figure 4.2 is that the hydroenergy generation
objective of Ethiopia overall has negative relations with irrigation deficit objectives of
Egypt and Sudan, the former being more pronounced considering the exact objective
values. Looking at the bottom-most row of figure 4.2a, a group of policies that max-
imise Ethiopia’s hydropower can be identified. Although these policies overall yield
above average irrigation deficits for Egypt and Sudan, deficit outcomes spread over a
wide range of values. This finding is emphasised by the horizontal distance between
the Compromise: Absolute Threshold (pink) and Best Ethiopia Hydropower (green) policies
on the bottom-most row. This observation hints at the possibility of finding acceptable
terms for all parties.

Although individual colour-coded policies suggest an alignment between Ethiopia
Hydropower and Egypt low HAD, these two objectives are uncorrelated when the full
Pareto-optimal set is considered. We assert that this is because these two objectives
are directly influenced by two major decision points—releases from the GERD and the
HAD—and the Pareto-approximate set flexibly represent a variety of possibilities for
both decision points. Consider the case when the GERD does not release desirably
high from Egypt’s perspective. The solution space covers both possibilities of the HAD
keeping water at the cost of irrigation deficits downstream and releasing water at the
cost of being unoperational. This phenomenon not only points to the lack of dependence
between Ethiopia Hydropower and Egypt low HAD objectives, but also signals potential
internal trade-off for Egypt. Despite not being very strong, this internal trade-off is also
visible from figure 4.2.

4.1.2 Physical System Implications

We re-ran the simulation model with all colour-coded policies under the baseline con-
ditions. To inspect the implications of these policies on the operations of the GERD,
we visualised releases from the GERD and its elevation over time. Here in figure 4.3,
to concisely illustrate the extremes and a compromise, we present the results from the
Best Egypt Irrigation, Compromise: Percentile Threshold and Best Ethiopia Hydropower poli-
cies. Using the same three policies, in figure 4.4, we show the implications on Egypt’s
irrigation demand and elevation of the HAD. Appendix B.2 includes these visuals for
the other policies.



(a) The GERD inflow versus release with
Best Egypt Irr. policy

(b) The GERD elevation with
Best Egypt Irr. policy

(c) The GERD inflow versus release with
Compromise: Percentile Threshold policy

(d) The GERD elevation with
Compromise: Percentile Threshold policy

(e) The GERD inflow versus release with
Best Ethiopia Hydropower policy

(f ) The GERD elevation with
Best Ethiopia Hydropower policy

Figure 4.3 Physical system implications of different policies on the GERD. Figures on the left summarise inflow to and
release from the GERD over the whole simulation horizon. The line graph shows the mean value correspond-
ing to the month in the x-axis over twenty years. Shaded area covers the range of values in each month.
Figures on the right show the monthly time series of reservoir elevation over the simulation horizon.
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A distinct difference among the three policies is the dynamics of the elevation of the
GERD. The Best Ethiopia Hydropower policy rapidly fills up the reservoir to the full sup-
ply level and stably maintains the level at high. On the contrary with the Best Egypt
Irrigation policy, the GERD never gets close to the full capacity. Moreover, volatility
of elevation dynamics is significantly larger in figure 4.3b compared to 4.3f. On the
other hand, Compromise: Percentile Threshold policy attains a balance both in terms
of the initial filling and over time level variance. Under this policy, filling is extended
over a duration of a few years and the GERD never reaches its full supply level. Finally,
amplitude of oscillation in the GERD’s level is in-between those of the other two policies.

The Best Egypt Irrigation policy imposes high and stable releases from the GERD be-
tween the months July and January. This release pattern supports meeting the peak
irrigation demand in Egypt over summer months. Nonetheless, releases from the GERD
do not necessarily follow the exact demand pattern because of other storage, diversion,
inflow possibilities between the GERD and Egypt. For instance, Egypt also utilises the
storage capacity of the HAD. In fact, figure 4.4b shows that with the Best Egypt Irrigation
policy, the elevation of the HAD consistently declines over time to satisfy increasing
downstream demand.

The Best Ethiopia Hydropower policy seeks for a balance between the GERD’s elevation
and release because hydroenergy generation is a multiplicative function of the two. Re-
leasing too much in a month leads to lower water levels whereas to keep higher water
levels at all costs, the GERD must reduce its release. Both these strategies result in sub-
optimal hydropower. We see from figures 4.3e and 4.3f that the Best Ethiopia Hydropower
policy matches the high release periods with Blue Nile inflow and stabilises the GERD’s
level. It is worth noting that even during the high release periods, maximum releases
stay below the turbine capacity of the GERD. Finally, the Compromise: Percentile Threshold
policy brings a balanced release over a year.

Figure 4.4a shows that the Best Egypt Irrigation policy arranges the releases so that
the flow received by Egypt closely follows up the demand pattern. On the other ex-
treme, as can be observed from figure 4.4e, the Best Ethiopia Hydropower policy ignores
the demand regime in Egypt. The Compromise: Percentile Threshold policy yields received
releases for Egypt in line with the demand seasonality although not as strictly as the Best
Egypt Irrigation does. Another point to note is that none of the three policies simultane-
ously achieve optimal system performance with respect to Egypt irrigation deficit and
low HAD objectives. From figure 4.4f, we see that the policy which disregards Egypt’s
irrigation deficit objectives leads to the HAD never falling below the power generation
level. On the other hand, the policies which incorporate concerns about demand deficits
result in low levels in the HAD towards the end of the simulation horizon inevitably
with the growing demand.

In addition, evaporation from the HAD varies according to the water level in the
reservoir. We calculated average yearly water loss due to evaporation from the HAD’s
surface as 9.2, 8.9 and 14.5 BCM/year with the policies Best Egypt Irrigation, Compromise:
Percentile Threshold and Best Ethiopia Hydropower respectively. With the same policies,
yearly average evaporation from the GERD was realised as 0.9, 1.7 and 1.8 BCM/year.



(a) Egypt demanded versus received flow with
Best Egypt Irr. policy

(b) The HAD elevation with
Best Egypt Irr. policy

(c) Egypt demanded vs. received flow with
Compromise: Percentile Threshold

(d) The HAD elevation with
Compromise: Percentile Threshold

(e) Egypt demanded vs. received flow with
Best Ethiopia Hydropower

(f ) The HAD elevation with
Best Ethiopia Hydropower

Figure 4.4 Physical system implications of different policies on Egypt. Figures on the left summarise demanded and
received water flow over the whole simulation horizon. The line graph shows the mean values corresponding
to the month in the x-axis over twenty years. Shaded area covers the range of values in each month. Figures
on the right show the monthly time series of the HAD elevation over the simulation horizon.
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The last physical system implication that we visualised is the dynamics of the water
demanded and received by the irrigation district of Gezira-Managil—the largest agricul-
tural irrigation scheme in Sudan. In figure 4.5, we chose to present these variables only
with the Best Ethiopia Hydropower policy because no other policy displays considerable
demand deficits. Resulting figures with other policies can be found in appendix B.2.

Figure 4.5 Gezira received flow versus demand with Best Ethiopia Hydropower policy

Sudan suffers from a small amount of deficit during the aggresive filling of the GERD
that the Best Ethiopia Hydropower policy prescribes. In the long run, irrigation demand
in Gezira-Managil is satisfied by a large margin as the mean lines in figure 4.5 confirm.
It is likely that the trade-off between Sudan irrigation deficit and Ethiopia Hydropower
objective discussed in section 4.1.1 stems from rapid filling strategies.

4.2 uncertainty analysis

4.2.1 Global Sensitivity Analysis

In table 4.1, we have the importance of uncertain factors in explaining the variability in
outcomes of interest. These values were calculated using the extra trees algorithm and
fitting 1000 regression trees for each objective.

Table 4.1 indicates that the selected policy is influential on the outcome for all objec-
tives, particularly for Sudan. The mean Blue Nile inflow is of utmost importance for
hydroenergy generation in Ethiopia. Likewise, average inflows of tributaries have large
impact on the elevation of the HAD, Blue Nile being the most prominent. Irrigation
deficit in Egypt is greatly influenced by the demand growth rate. Inflow deviations of
major tributaries did not turn out to be impactful for any of the objectives. This can be
attributed to high level of storage and regulation provided by the four reservoirs in the
system.



Egypt 
Irr. Deficit

Egypt 
90th Irr. 
Deficit

Egypt 
Low HAD

Sudan 
Irr. Deficit

Sudan 
90th Irr. 
Deficit

Ethiopia 
Hydropower

Policy 0.19 0.20 0.22 0.83 0.68 0.23

Atbara Deviation 0.01 0.01 0.01 0.00 0.00 0.00

Atbara Mean 0.01 0.02 0.03 0.00 0.00 0.00

Blue Nile Deviation 0.01 0.01 0.01 0.00 0.01 0.00

Blue Nile Mean 0.13 0.25 0.54 0.11 0.23 0.75

White Nile Deviation 0.01 0.01 0.01 0.00 0.00 0.00

White Nile Mean 0.06 0.11 0.16 0.00 0.00 0.01

Demand Growth 0.58 0.39 0.02 0.05 0.06 0.00

Table 4.1 Feature scores of uncertain parameters on each outcome calculated using extra trees algorithm

4.2.2 Robustness of Policies

In table 4.2, 90th percentile maximum regret scores of the policy selection are given.

Egypt 
Irr. Deficit

Egypt 
90th Irr. 
Deficit

Egypt 
Low HAD

Sudan 
Irr. Deficit

Sudan 
90th Irr. 
Deficit

Ethiopia 
Hydropower

Best Egypt Irr. 0.04 0.42 0.80 0.17 0.00 3.87

Best Egypt 90th 4.04 2.61 0.80 0.23 0.02 4.10

Best Egypt HAD 7.58 2.00 0.75 0.03 0.00 2.84

Best Ethiopia Hydropower 11.97 3.35 0.00 1.00 0.37 0.00

Compromise: Percentile 7.64 2.58 0.83 0.01 0.00 2.65

Compromise: Absolute 3.08 0.93 0.88 0.11 0.00 0.21

Table 4.2 90th percentile maximum regret scores of policies on each objective. Colour-coding was done column-wise
such that darker shades of red (blue) represent high (low) regret for an objective. All values are given in terms
of the unit of the corresponding objective.

Based on table 4.2, the Compromise: Absolute Threshold policy looks promising in the
sense that it yields low regret scores for all objectives except for the Egypt low HAD.
The only policy that minimises the regret for the Egypt low HAD objective is the Best
Ethiopia Hydropower. This policy also achieves high level of robustness with respect to
Ethiopia’s hydropower objective. An exact opposite robustness pattern was obtained
with the Best Egypt Irrigation policy. This policy is highly robust with respect to irri-
gation deficits whereas it attains poor regret scores for Egpyt low HAD and Ethiopia’s
hydropower objectives. This finding suggests a robustness trade-off between objectives
concerning maximising water level in the two major dams and minimising irrigation
demand deficits.

Figure 4.6 summarises how the best performing policies for each objective change
with respect to varying SOWs. We complied this figure in two steps:

1. Using the algorithm for the dimensional stacking analysis of EMA Workbench
(Kwakkel, 2017) as a basis, we divided the uncertainty space into segments of low,
medium and high values of four most influential uncertain variables—demand
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growth rate and mean inflows of three tributaries. This selection was guided by
the feature scores given in section 4.2.1. Three levels in four variables resulted in
34 = 81 regions in the uncertainty space.

2. For every objective, each uncertainty region was coloured based on the policy that
performs the best under the highest number of scenarios. Marker size in the region
indicates how much improvement the best performer policy makes compared to
the second best alternative on average. The region is empty if multiple policies
yield maximum performance in all scenarios.

Figure 4.6 contains the illustration for all objectives but Sudan’s 90th percentile worst
deficit which resulted in multiple best performer policies under all scenarios, therefore
an empty figure.

We see from figures 4.6a and 4.6e that two policies, the Best Egypt Irrigation and Best
Ethiopia Hydropower dominantly optimise their targeted objectives in almost all SOWs.
This observation is especially prominent in the regions corresponding to extreme stress
scenarios—low Blue Nile flow for Ethiopia, high demand growth rate and low Blue Nile
flow for Egypt.

Another interesting result appears for Egypt’s 90th percentile worst deficit objective
under highly stressed scenarios. While the two deficit objectives of Egypt are aligned
in a large portion of the uncertainty space, the top-right segment of figure 4.6b exhibits
solid performance gains by the Best Ethiopia Hydropower policy. This region of high
pressure scenarios paves the way for diverging interests between different risk aversion
levels in deficit objectives. When demand deficits are concerned, consistent mediocre
performance brought by Best Ethiopia Hydropower policy becomes more desirable for the
90th percentile objective compared to sacrificing a number of months to achieve less
overall deficit.



(a) Egypt irrigation deficit (b) Egypt 90th percentile worst deficit

(c) Egypt low HAD (d) Sudan irrigation deficit

(e) Ethiopia Hydropower

Figure 4.6 Best performers for each objective in the uncertainty space.
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4.2.3 Scenario Discovery

We performed dimensional stacking analyses for all objectives. This entails making bi-
nary classifications of experiments based on whether or not they yield outcomes in the
top or bottom 20% across all experiments. Then, partitioned regions in the uncertainty
space are colour-coded according to the proportion of cases of interest. Six objectives
and two binary classifications (top and bottom 20%) resulted in 12 dimensional stacking
plots. In figure 4.7, we present the results from two outcomes of interest: worst 20%
Egypt irrigation deficit and best 20% GERD hydroenergy generation. Plots for the rest
of the outcomes can be found in appendix B.3. We did not observe different trends in
addition to what 4.7a and 4.7b exhibit.

In figure 4.7a, colour-coding basis is the lowest 20% performance region for the yearly
irrigation deficit of Egypt. High demand growth, low Blue Nile flow and to a lesser ex-
tent low White Nile flow describes the high-density boxes. In figure 4.7b, cases in which
the performance of hydropower from the GERD is in the top 20% were categorised as
the cases of interest. All of the best hydroenergy generation cases stand in the region
where the mean flow of the Blue Nile is higher than the baseline.

In light of the graphs as well as the analyses in sections 4.2.1 and 4.2.2, we defined two
scenarios in addition to the baseline: Extreme Stress Scenario and High Blue Nile Scenario.
Parameter values for these scenarios are provided in appendix B.4. Extreme Stress Sce-
nario, in which demand growth rate is high and mean inflows of tributaries are low, is
the subspace where all objectives attained the most undesirable outcomes. Furthermore,
section 4.2.2 hints the exacerbation of trade-offs between objectives under this scenario.
High Blue Nile Scenario, is the scenario in which all uncertainty variables except for the
mean Blue Nile flow are at their baseline value. The mean flow of Blue Nile was set
at its upper limit in the considered range. In figure 4.7b, this scenario is shown to lead
Ethiopia to desirable outcomes regarding hydroenergy generation. Another motivation
was Ethiopia’s potential strategy of reducing water withdrawal from the Blue Nile in
regions upstream the GERD to achieve near full hydroenergy generation capacity as
discussed in the literature (Whittington et al., 2014).



(a) Worst 20th percentile Egypt irrigation deficit

(b) Best 20th percentile GERD hydropower generation

Figure 4.7 Dimensional stacking performed for different outcomes of interest.
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4.2.4 Trade-offs under Scenarios

Pareto-optimal policy set was re-simulated under selected scenarios. Table 4.3 pro-
vides summary statistics regarding the objective value realisations. Results of the re-
simulation under the Extreme Stress Scenario is illustrated in figure 4.8. We used the pair
plot, regression slope and correlation tables as in section 4.1.1.

Scenario Statistic Objectives

Egypt Irr.
Deficit
[BCM/
year]

Egypt
90th Irr.
Deficit
[BCM/
month]

Egypt
Low
HAD [%]

Sudan Irr.
Deficit
[BCM/
year]

Sudan
90th Irr.
Deficit
[BCM/
month]

Ethiopia
Hy-
dropower
[TWh/
year]

Baseline
mean 5.80 1.43 28 0.14 0.01 13.94

min 3.50 0.51 0 0.00 0.00 9.42

max 18.46 5.17 88 0.72 0.17 15.13

Extreme
Stress

mean 34.72 8.41 88 0.42 0.11 9.41

min 31.99 5.75 1 0.00 0.00 7.60

max 38.55 9.15 94 1.49 0.61 10.86

High Blue
Nile

mean 8.04 2.44 0 0.09 0.00 18.63

min 3.08 1.01 0 0.00 0.00 10.81

max 13.43 3.97 52 0.42 0.00 19.26

Table 4.3 Ranges of objectives achieved by optimized policy set under different scenarios

In comparison to the trade-offs under the baseline scenario, alignment between Egypt’s
two deficit objectives clearly diminishes. Interestingly, Sudan’s deficit objectives appear
even more aligned resembling the results for Egypt under the baseline given in figure
4.2. This indicates an interesting phenomenon about risk aversion levels of objective
formulations. Considering that the deficit values consistently increase with the growing
demand, the system gets pressured to a point where policies that optimise aggregate
objectives tend to sacrifice a period towards the end of the simulation horizon when
water is no longer available in accessible dams. The higher the pressure, the longer the
period of observations that are sacrificed. When the outcome that corresponds to the
90th percentile joins the set of sacrificed observations, facing consistent mediocre deficits
becomes more preferable for the 90th percentile objective. Therefore, its alignment with
the aggregate deficit objective disappears. This emphasises that such internal trade-off
conclusions are sensitive to the risk aversion level of objective formulations.

Distribution of Ethiopia’s hydroenergy generation becomes distinctly bi-modal. Poli-
cies that leads high and low hydropower are clearly separated. Group of selected poli-
cies that yield desirable outcomes under the baseline scenario remains the same. Ta-
bles 4.8b and 4.8c suggest relatively strong trade-off between Ethiopia hydropower and
Egypt irrigation deficit.

Figure 4.9 illustrates the results from the re-simulation runs that were taken under
the High Blue Nile Scenario. Expectedly, under this scenario, higher levels of energy gen-
eration from the GERD were achieved by several policy alternatives. Moreover, colour-
coding of tables 4.9b and 4.9c is lighter, indicating milder trade-offs.



(a) Pair plot for objective values

Egypt 
Irr. Deficit

Egypt 
90th Irr. Deficit

Egypt 
Low HAD

Sudan 
Irr. Deficit

Sudan 
90th Irr. Deficit

Ethiopia 
Hydropower

Egypt Irr. Deficit

Egypt 90th Irr. Deficit

Egypt Low HAD

Sudan Irr. Deficit

Sudan 90th Irr. Deficit

Ethiopia Hydropower

1.00 -0.09 -0.19 -0.01 0.08 -0.71

-0.09 1.00 0.36 -0.10 -0.08 0.36

-0.19 0.36 1.00 -0.68 -0.82 -0.07

-0.01 -0.10 -0.68 1.00 0.89 -0.05

0.08 -0.08 -0.82 0.89 1.00 0.01

-0.71 0.36 -0.07 -0.05 0.01 1.00

(b) Regression slopes between objectives

Egypt 
Irr. Deficit

Egypt 
90th Irr. Deficit

Egypt 
Low HAD

Sudan 
Irr. Deficit

Sudan 
90th Irr. Deficit

Ethiopia 
Hydropower

Egypt Irr. Deficit

Egypt 90th Irr. Deficit

Egypt Low HAD

Sudan Irr. Deficit

Sudan 90th Irr. Deficit

Ethiopia Hydropower

1.00 -0.09 -0.24 -0.01 0.05 -0.60

-0.09 1.00 0.48 -0.08 -0.06 0.16

-0.24 0.48 1.00 -0.43 -0.42 -0.02

-0.01 -0.08 -0.43 1.00 0.93 -0.02

0.05 -0.06 -0.42 0.93 1.00 0.00

-0.60 0.16 -0.02 -0.02 0.00 1.00

(c) Correlation between objectives

Figure 4.8 Overall trade-off patterns under the Extreme Stress Scenario
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(a) Pair plot for objective values

Egypt 
Irr. Deficit

Egypt 
90th Irr. Deficit

Egypt 
Low HAD

Sudan 
Irr. Deficit

Ethiopia 
Hydropower

Egypt Irr. Deficit

Egypt 90th Irr. Deficit

Egypt Low HAD

Sudan Irr. Deficit

Ethiopia Hydropower

1.00 0.92 -0.02 -0.22 -0.31

0.92 1.00 -0.01 -0.09 -0.39

-0.02 -0.01 1.00 0.76 -0.07

-0.22 -0.09 0.76 1.00 -0.17

-0.31 -0.39 -0.07 -0.17 1.00

(b) Regression slopes between objectives

Egypt 
Irr. Deficit

Egypt 
90th Irr. Deficit

Egypt 
Low HAD

Sudan 
Irr. Deficit

Ethiopia 
Hydropower

Egypt Irr. Deficit

Egypt 90th Irr. Deficit

Egypt Low HAD

Sudan Irr. Deficit

Ethiopia Hydropower

1.00 0.98 -0.05 -0.18 -0.37

0.98 1.00 -0.01 -0.07 -0.43

-0.05 -0.01 1.00 0.21 -0.03

-0.18 -0.07 0.21 1.00 -0.26

-0.37 -0.43 -0.03 -0.26 1.00

(c) Correlation between objectives

Figure 4.9 Overall trade-off patterns under the High Blue Nile Scenario



5 D I S C U S S I O N

5.1 practical implications

5.1.1 Fillings and Operations of the GERD

In view of the individual performance maximising policies for each objective under the
baseline scenario, we found evident trade-offs between the hydroenergy generation ob-
jective of Ethiopia and consumptive uses of Egypt as well as Sudan. Physical system
implications of candidate policies revealed that a major cause behind this trade-off is
filling strategies for the GERD prescribed by alternative policies. One extreme is the
aggressive filling of the GERD to an extent that leads to the blockage of the Blue Nile
flow for multiple years, hence water shortages downstream. On the other extreme, the
GERD never fills up near its full supply level and generates mediocre levels of hydroen-
ergy. Having said that, there is a wide range of alternative solutions between these two
extremes. The compromise solutions that we analysed are promising in the sense that
they imply slower cooperative filling approaches. In that regard, our results support the
agreed annual release solution proposed by Wheeler et al. (2016).

The average annual hydroenergy production that we calculated for the GERD under
the baseline conditions varies between 9.4 and 15.1 TWh, averaging 13.9 TWh. This
average is similar to the findings of earlier studies (Abdelazim et al., 2020; Eldardiry
and Hossain, 2021). Yet, it is significantly below the 16 TWh ambition that the Ethiopian
government has announced (Wheeler et al., 2020). This signifies that unless mean inflow
from the Blue Nile increases substantially, large hydropower capacity of the GERD will
be underutilised.

5.1.2 Challenge of Demand Growth

While filling of the GERD stands as a reason for trade-offs in the near future, another
clash of interests occurs towards the end of the simulation horizon due to inevitable wa-
ter shortage concerns with increasing demand. This brings up the fundamental trade-off
between keeping dams operational and effective versus satisfying growing consumptive
demand. Under every scenario tested in this analysis, the selection of adaptive pol-
icy alternatives exhibit such trade-offs in varying degrees. Being the country with the
highest water consumption in the basin, Egypt is expected to face this major challenge.
Although the nature of demand deficit varies according to the risk aversion and time
aggregation logic of objective formulations, achieving zero deficit is not possible given
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overall water balance of the Nile system. Acquiring more storage capacity by means
of dam construction is not a systemic solution for the water shortage problem. Further-
more, it brings the additional issue of water loss due to evaporation which is particularly
prominent in the case of the HAD.

5.1.3 Impacts on Sudan

In almost all of the experiments we conducted, the aggregate water demand in Sudan is
satisfied with little or no deficit. One reason behind this observation can be that Sudan
is located in the junction of all main tributaries; therefore, the water flow in the country
is significantly higher compared to the average water demand. Unless aggressive filling
of the GERD imposes complete blockage of the Blue Nile flow, Sudan’s irrigation objec-
tives are fulfilled.

Lastly, even though flood protection objective was left beyond the scope of our mod-
elling, discrepancy between received flow and demand hints at flood risk which is in-
deed relevant for Sudan.

5.1.4 Room for Cooperation

Our results highlight the potential of compromise policies in managing the objectives of
all stakeholders without imposing heavy sacrifices. Besides performing well under the
baseline scenario, these compromise policies achieve high robustness scores for multiple
objectives under varying socioeconomic and hydro-climatic conditions. They represent
an opportunity for cooperative operating of the dams in the basin through which ad-
ditional benefits are to be obtained. One such benefit can be about high evaporation
losses from the HAD. The GERD, due to the more favourable bathymetric and climatic
characteristics of the reservoir, experiences lower evaporation losses compared to the
HAD. The more the water storage is concentrated upstream, the less amount of water is
lost due to evaporation.

Our experiments in the uncertainty space suggest that under highly stressed scenar-
ios, policies that target a specific objective tend to achieve more improvement for their
objective compared to alternative policies. This implies that it could get more diffi-
cult to create space for negotiation when the pressure from external factors rises. On
the contrary, magnitude of trade-offs becomes milder under the HighBlueNileScenario.
Favourable hydrology of the Blue Nile flow can reduce the tension between parties.

5.2 limitations

5.2.1 Conceptual Limitations

To keep our scope focused, we examined the trade-offs between six objectives from the
perspectives of the three countries. Nonetheless, the Nile River basin covers a larger
area than our system scope and communities within the borders of 11 countries depend
on the Nile’s flow. Therefore, there are many stakeholder activities and interests that



we did not incorporate in our study. For instance, water diversion in the rest of the
basin was only superficially modelled as adjustable parameters of inflow distributions.
A more comprehensive scope would let us model the system more accurately.

Moreover, we formulated the objectives as aggregated within a country and from
a utilitarian perspective. Therefore, even within the current system scope, there are
stakeholder interests that were not taken into account. People and ecosystems that
depend on the environmental services provided by the Nile are not represented. An
example is the flood-recession agriculture in Sudan, which is expected to be hit by the
regulated release regime by the GERD (Taye et al., 2016). Due to lack of reliable data,
we could not consider such interests. Expanding the objective set would enable a richer
trade-off analysis.

5.2.2 Methodological Limitations

Trusting in the adaptive quality of Pareto-optimal policy alternatives and considering the
computational cost, we performed optimisation only under the baseline scenario. Still,
policy functions may have biases towards system conditions under which they were
trained. Extending the analysis with an approach similar to multi-scenario MORDM
(Watson and Kasprzyk, 2017) could yield sharper trade-offs under discovered scenarios.

Simplifications made to cope with the lack of available data cause few limitations to
the model. For instance, yearly demand growth was assumed to be proportional to pop-
ulation growth and same for Egypt and Sudan. Streamflows of major tributaries were
generated following simple probability distribution assumptions. These assumptions
overlook characteristics of the hydro-climatic data such as autocorrelation and cyclic
behaviour in the form of flood and drought periods. With detailed time-series data,
statistical models could be fitted to better capture characteristics of these variables.
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6 C O N C L U S I O N

6.1 addressing the research question

In this study, we set out to answer the question “How can the trade-offs between different wa-
ter uses in the Eastern Nile Basin be explored under changing socioeconomic and hydro-climatic
uncertainties adopting many-objective optimisation approach?”. To that end, we developed a
simulation model of the Nile system and coupled it with a many-objective optimisation
algorithm. We selected a set of policies from the Pareto-front generated by the optimi-
sation and carried out simulations under varying uncertain scenarios. There are four
sub-questions that led us in addressing the main research question. Here, we briefly
present the answers to those questions.

SQ1: What are the key water related objectives of stakeholders in the Eastern Nile
Basin?

The Nile is at the centre of the life for all three countries considered in this study.
Egypt depends on Nile’s flow to fulfill almost all their fresh water need which includes
urban consumption and agricultural irrigation. The HAD, a large dam located in Egypt,
grants Egyptian authorities means to regulate water flow to meet the demand. Elevation
of the HAD is not only regarded as an indicator of water security in the country but also
determines hydropower generation. Similar to Egypt, agriculture has a major share in
Sudan’s economy. Several Sudanese irrigation schemes scattered across the basin with-
draw water from the Nile system. Ethiopia differs from these two countries with regard
to their interaction with the Nile. Being motivated by the suitable topography and poor
electricity access in the country, Ethiopia recently started to exploit their hydroenergy
potential. The GERD has been an emblematic of this ambition.

SQ2: How can the system of reservoirs be modelled in order to optimise release
decisions for problem objectives?

A simulation model of a multi-reservoir system can be built around the mechanism
of mass-balance equations. This mechanism is a specification of the mathematical rela-
tionship between consecutive reservoir storages over time. Topology of the system in
concern is represented through integrating components such as reservoirs, hydropower
plants, irrigation districts and catchments. By inserting a flexible policy function in the
simulation model, release decisions can be conditioned on dynamic system information.
Parameters for the policy function can be optimised by MOEAs with respect to problem
objectives. This complete procedure corresponds to the EMODPS methodology.



SQ3: What are the trade-offs revealed by Pareto-optimal policy alternatives?
Prominent trade-offs exist between Ethiopia’s hydropower maximisation and deficit

minimisation objectives of Egypt and Sudan. There are two major drivers of these trade-
offs. On the one hand, potential aggressive filling of the GERD by Ethiopia at the cost
of blocking the flow downstream clashes with the interests of Egypt and Sudan in the
short-term. On the other hand, growing demand in the long-term brings the dilemma
of maintaining dams operational versus satisfying the demand. This dilemma poses a
common challenge for both the GERD and the HAD.

SQ4: How do trade-offs differ with respect to alternative hydrology and demand
growth scenarios?

Extreme stress scenarios, in which the rate of demand growth is high and average
inflows are low, reinforce the trade-offs between Egypt’s aggregate deficit minimisation
and Ethiopia’s hydropower maximisation. Under such scenarios, the cost of not priori-
tising their objectives rise for the parties. Therefore, the room for negotiation becomes
smaller. Furthermore, clashing interests also occur between different risk aversion fram-
ings for the objectives of the same country. On the contrary, tension between objectives
decrease when the system conditions evolve in a favourable direction.

6.2 policy recommendation

Trans-boundary collaboration is needed for addressing multiple challenges in the basin.
The first and the most urgent challenge is filling of the GERD. The dam is already oper-
ational and Ethiopian authorities desire to boost hydroenergy generation without losing
any time. However, there is no settlement among the three countries concerning the fill-
ing scheme and duration. This contributes to the escalation of tension among parties—
between Egypt and Ethiopia in particular. If Ethiopia chooses to quickly fill the dam
by ignoring downstream interests, both Sudan and Egypt can face dire consequences
which would hinder the trust in the basin and damage the cooperation potential in the
future. Therefore, a peaceful compromise solution is needed. It is possible to find alter-
natives which require parties to make minor sacrifices for the good of all. Parties should
make binding agreements to delineate the exact strategy concerning filling duration and
scheme. This strategy should be adaptive, accounting for dynamic hydro-climatic con-
ditions.

Another serious challenge facing Egypt particularly is the growing water demand. A
status-quo strategy cannot respond to this challenge sustainably. With the current de-
mand growth trends, overall water balance in the Nile system gets tilted in the shortage
direction within the following two decades. To both keep the HAD operational and
minimise deficits, Egypt has to stabilise their demand. Consider two distinct strategies
when the risk of shortage is on the horizon. The first option is to use all available storage
to release water as much as it is pulled by the demand. This strategy leads to decreasing
water availability and eventually drastic shortages. The second option is to maintain
some buffer water supply in the reservoirs with the sight of future risks. This strategy
accepts an amount of deficit consistently. Comparing these alternatives, the second one
can provide more incentive for the water consuming social system to adapt to the ”new

49



normal” through behavioural changes.

Basin-wide cooperation can be effective also to cope with this challenge. Moving wa-
ter intensive agricultural products from Egypt to the water-rich upstream countries can
be beneficial for all parties. This way, the water is concentrated more in the regions
with lower evaporation rates and is kept in the system to a larger degree. This change
necessitates higher levels of trust which can be facilitated through efficient trade agree-
ments. Egypt can further specialise in its industrial production capabilities and play a
pioneering role in producing win-win opportunities for the whole basin.

Sudan has interest alignments with both Egypt and Ethiopia. On one hand, they share
concerns with Egypt regarding the GERD’s filling. On the other hand, regulation of the
Blue Nile flow by the GERD reduces flood risk. The ruling out of cooperation potential
by the escalation between Egypt and Ethiopia is therefore not desirable for Sudan. Hav-
ing a common ground with both of the strained parties, they can play a mediator role in
bolstering cooperation. Sudan can formulate and propose trade deals with Egypt for the
readjustment of water intensive economic activities. Moreover, given their strategic geo-
graphical position, they can take part in the transmission of hydro-electricity generated
in Ethiopia, facilitating their export. It is worth noting that with the growing demand
pressure, the zero-sum characteristic of the strategic setup in the basin becomes more
prominent. Therefore, the quicker the mediating action is taken, the more likely it is to
achieve cooperative solutions.

Lastly, it is not feasible to sustainably operate the GERD at its full design capacity.
High hydroenergy ambitions of Ethiopian authorities can be achieved only if the aver-
age flow reaching the GERD increases. The average flow depends on two factors. One
is the Blue Nile flow and essentially rainfall in Ethiopian highlands, which is bounded
by natural constraints. The second is water withdrawal from the flow in Ethiopia prior
to the GERD. There are speculations about Ethiopia’s intentions of reducing water with-
drawal to adopt a full capacity hydroenergy strategy. Although reduced diversion de-
creases overall tension among parties considering growing demand, it would encourage
water-intensive activities in downstream instead of upstream. Concerning the overall
water balance in the system, this strategy does not fit well with a cooperative economic
arrangement.

6.3 future research

The Nile River Basin is not limited to the countries and objectives considered in this
study. Problem framings that are formulated to include different stakeholder interests
could bring broader perspective to academic and political discussion. Future research
can begin with incorporating the elements of environmental services and flood risk mit-
igation. Moreover, our study adopted a utilitarian approach in formulating stakeholder
objectives. Different ethical theories would provide more insight into the distribution of
benefits and damages across disaggregate units of communities.

We investigated the system in a full cooperation setup in this study. This choice was to
ensure that the trade-offs are caused by the system description rather than the indepen-



dent individual management strategies of the national authorities For future research,
alternative cooperation settings can be formulated reflecting on the strategic structure
of the political arena.

On a more methodological point, we did not experiment with alternative sets of vari-
ables that pass the dynamic system information to adaptive policies. Expanding the
input set with demand prediction could increase flexibility of the policy function in
capturing water shortage dilemmas.
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A A P P E N D I C E S : M E T H O D S

a.1 conceptual model

a.1.1 Model Components in Geographical Context

        

     

     

                                                        

                                                             
                                        

         
            

              

            

Figure A.1 Geographical schematic of the scope
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a.1.2 Component Specification

Each component type corresponds to a class in the Python implementation of the model.
In addition, there are three more classes that represent the features and methods of the
model, policy and RBF classes.

Reservoir

+ name: str
+ evap_rates: np.array
+ rating_curve: np.array
+ level_to_storage_rel: np.array
+ level_to_surface_rel: np.array
+ initial_storage: float
+ storage_vector: np.array
+ level_vector: np.array
+ release_vector: np.array
+ hydropower_plants: list
+ actual_hydropower_production: np.array
+ filling_schedule: np.array

+ integration()
+ storage_to_level(): float
+ level_to_storage(): float
+ level_to_surface(): float
+ level_to_minmax(): float

ModelNile

+ reservoirs: dict
+ catchments: dict
+ irr_districts: dict
+ policies: list
+ release_policy: Policy
+ sim_horizon: int
+ init_month: int
+ nu_of_days_per_month: np.array
+ total_env_deficit: np.array
+ total_irr_deficit: np.array
+ total_hydro_deficit: np.array

+ evaluate()
+ simulate(): np.array
+ squared_deficit_from_target(): float
+ squared_deficit_normalised(): float
+ read_settings_file()
+ reset_parameters()

IrrigationDistrict

+ name: str
+ demand: np.array
+ received_flow: np.array
+ deficit: np.array

Catchment

+ name: str
+ inflow: np.array

HydropowerPlant

+ reservoir: Reservoir
+ identifier: str
+ release_share: float
+ efficiency: float
+ max_turbine_flow: float
+ head_start_level: float
+ max_capacity: float

+ calculate_hydropower_production()

Policy

+ approximator_names: list
+ functions: dict
+ all_parameters: np.array

+ add_policy_function()
+ assign_free_parameters()
+ get_total_parameter_count()

1

1..4 1

1

1 1..6

1..8

1

RBF

+ n_inputs: int
+ n_outputs: int
+ RBF_count: int
+ lin_param: np.array
+ param: list

+ set_parameters()
+ clear_parameters
+ get_output()
+ get_free_parameter_number()

1

1

1 1

Figure A.2 UML class diagram representation of model objects



a.2 specific model equations

a.2.1 GERD Inflow

qGERD
τ = Q̂BlueNile

τ (A.1)

where Q̂BlueNile
τ is the average secondly flow from Blue Nile.

a.2.2 Roseires Inflow

qRoseires
τ = R̂GERD

τ + Q̂Catch1
τ (A.2)

where R̂GERD
τ is the actual average secondly release from GERD and Q̂Catch1

τ is the
sum of average secondly flows from catchments that join the flow between GERD and
Roseires.

a.2.3 Upstream Sennar Received Flow

vUSSennar
τ = R̂Roseires

τ + Q̂Catch2
τ (A.3)

where R̂Roseires
τ is the actual average secondly release from Roseires and Q̂Catch2

τ is the
sum of average secondly flows from catchments that join the flow between Roseires and
Abu Na’ama.

a.2.4 Sennar Inflow

qSennar
τ = max(0, vUSSennar

τ − dUSSennar
τ ) + Q̂Catch3

τ (A.4)

where max(0, vUSSennar
τ − dUSSennar

τ ) is the leftover flow from Upstream Sennar and
Q̂Catch3

τ is the sum of average secondly flows from catchments that join the flow between
Suki and Sennar.

a.2.5 Gezira Received Flow

vGezira
τ = R̂Sennar

τ (A.5)

where R̂Sennar
τ is the actual average secondly flow released from Sennar.

a.2.6 Downstream Sennar Received Flow

vDSSennar
τ = max(0, vGezira

τ − dGezira
τ ) + Q̂Dinder

τ + Q̂Rahad
τ (A.6)

where max(0, vGezira
τ − dGezira

τ ) is the leftover flow from Gezira and Q̂Dinder
τ and Q̂Rahad

τ

are the average secondly flows from Dinder and Rahad tributaries respectively.

a.2.7 Taminiat Received Flow

vTaminiat
τ = max(0, vDSSennar

τ − dDSSennar
τ ) + Q̂WhiteNile

τ (A.7)
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where max(0, vDSSennar
τ − dDSSennar

τ ) is the leftover flow from Downstream Sennar and
Q̂WhiteNile

τ is the average secondly flow from White Nile.

a.2.8 Hassanab Received Flow

vHassanab
τ = max(0, vTaminiat

τ−1 − dTaminiat
τ−1 ) + Q̂Atbara

τ (A.8)

where max(0, vTaminiat
τ−1 − dTaminiat

τ−1 ) is the leftover flow from Taminiat in previous month
and Q̂Atbara

τ is the average secondly flow from Atbara. vTaminiat
0 − dTaminiat

0 is assumed to
be 934.2 m3/s, which is the average of the latest five years available at the Dongola
gauging station (Fekete et al., 2002).

a.2.9 HAD Inflow

qHAD
τ = max(0, vHassanab

τ − dHassanab
τ ) (A.9)

where max(0, vHassanab
τ − dHassanab

τ−1 ) is the leftover flow from Hassanab.

a.2.10 Egypt Received Flow

vEgypt
τ = R̂HAD

τ (A.10)

where R̂HAD
τ is the actual average secondly flow released from HAD.



a.3 reservoir data

a.3.1 Hyro-power Generation Data

Reservoir Variable Value Reference

GERD

Initial Storage (m3) 15 BCM
Barnes (2022); Rédaction
AfricaNews (2021)

Max Turbine Flow (m) 4320 Abdelazim et al. (2020)
Efficiency (%) 93% Abdelazim et al. (2020)

Head Start Level (m) 507

Eldardiry and Hossain
(2021)

Max Capacity (MW) 6000 Wheeler et al. (2016)

Roseires

Initial Storage (m3) 4.57 BCM Assumption
Max Turbine Flow (m) 1031.65 Wheeler et al. (2016)
Efficiency (%) 80% Assumption
Head Start Level (m) 467 Wheeler et al. (2016)
Max Capacity (MW) 280 Wheeler et al. (2016)

Sennar

Initial Storage (m3) 0.43 BCM Assumption
Max Turbine Flow (m) 117 Wheeler et al. (2016)
Efficiency (%) 80% Assumption
Head Start Level (m) 417.2 Wheeler et al. (2016)
Max Capacity (MW) 15 Wheeler et al. (2016)

HAD

Initial Storage (m3) 137 BCM Assumption
Max Turbine Flow (m) 4211 Wheeler et al. (2016)
Efficiency (%) 90% Assumption
Head Start Level (m) 147 Wheeler et al. (2016)
Max Capacity (MW) 2100 Wheeler et al. (2016)

Table A.1 Overview of hydropower generation data

Three reservoirs other than the GERD were assumed to be 75% full from the start.
Initial storage level of the GERD as of the simulation starting date (January 2022) is
controversial. We assumed an initial storage of 15 BCM which corresponds to 590 masl,
minimum operational level of the GERD.
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a.3.2 Elevation-Area-Storage Curves

GERD Roseires Sennar HAD

Level
(m)

Stor-
age
(BCM)

Sur-
face
(km2)

Level
(m)

Stor-
age
(BCM)

Sur-
face
(km2)

Level
(m)

Stor-
age
(BCM)

Sur-
face
(km2)

Level
(m)

Stor-
age
(BCM)

Sur-
face
(km2)

500 0 3 465 0 5 411 0 0 110 0 0

510 0.01 11 467 0.027 10 412 0.001 0.9 120 5.2 450

520 0.02 29 467.7 0.046 13 412.6 0.002 2.1 125 7.8 600

530 0.05 61 468 0.056 15 413 0.002 3.2 130 11.3 749

540 0.75 111 470 0.156 33 413.6 0.005 5.7 135 15.6 988

550 2 180 472 0.321 58 414 0.007 7.8 140 21.2 1242

560 3 272 473 0.429 74 414.6 0.013 11.7 145 28.3 1589

570 6 387 475 0.699 111 415 0.018 15.6 150 37.2 1962

580 9.8 531 477 1.044 156 415.6 0.028 20.8 155 48.1 2414

590 15 703 478 1.246 181 416 0.037 25.3 160 61.5 2950

600 21.5 905 480 1.708 238 416.6 0.054 33 165 77.9 3581

610 31 1133 482 2.29 302 417 0.068 38.8 170 97.6 4308

620 42.5 1380 483 2.645 335 417.6 0.094 48.6 175 121 5168

630 57 1638 485 3.461 403 418 0.114 55.8 180 150 6118

640 74 1904 487 4.415 466 418.6 0.151 67.8 183 169 6752

Table A.2 Elevation-Area-Storage curves for reservoirs



a.3.3 Evaporation Rates

GERD Roseires Sennar HAD
Jan 13.50 17.98 17.98 10.38

Feb 13.60 18.48 18.48 13.00

Mar 17.10 22.66 22.66 20.30

Apr 15.70 22.11 22.11 25.20

May 10.60 18.91 18.91 31.71

Jun 4.20 6.27 6.27 32.49

Jul -0.40 -2.79 -2.79 32.40

Aug 0.10 -2.60 -2.60 31.50

Sept 1.40 1.95 1.95 27.00

Oct 9.10 12.49 12.49 21.51

Nov 11.40 15.69 15.69 14.01

Dec 11.50 16.74 16.74 10.60

Table A.3 Evaporation rates for reservoirs per month of the year (cm)
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a.3.4 Minimum and Maximum Release Constraints

a.3.4.1 GERD

Level (masl) 590 591 630 640

Min. release (m3/s) 0 0 0 4000

Max. release (m3/s) 0 10000 10000 10000

Table A.4 Minimum and maximum release for the GERD

a.3.4.2 Roseires

Level (masl) 467 475 481 490

Min. release (m3/s) 0 0 1000 4000

Max. release (m3/s) 0 10000 10000 10000

Table A.5 Minimum and maximum release for the Roseires

a.3.4.3 Sennar

Level (masl) 417.2 418 420 421.7
Min. release (m3/s) 0 0 0 4000

Max. release (m3/s) 0 6000 6000 10000

Table A.6 Minimum and maximum release for the Sennar

a.3.4.4 HAD

Level (masl) 147 148 175 182

Min. release (m3/s) 0 0 1000 4000

Max. release (m3/s) 0 4000 4000 4000

Table A.7 Minimum and maximum release for the HAD



a.4 district demand data

Upstream
Sennar

Gezira
Down-
stream
Sennar

Taminiat
Hassanab
to Dongola

Egypt

Jan 67.58 319.59 7.47 18.67 28.38 1310.48

Feb 66.14 328.21 8.27 12.81 19.84 1620.37

Mar 44.80 155.32 10.45 5.23 8.21 1635.30

Apr 34.72 26.62 11.57 4.63 6.94 1589.51

May 35.10 51.52 12.32 7.09 10.83 1896.65

Jun 77.16 254.24 12.73 14.66 22.38 2438.27

Jul 97.45 349.84 8.96 13.44 20.16 2523.89

Aug 93.71 176.97 7.09 10.83 16.05 2202.81

Sept 132.33 361.88 10.42 20.45 30.48 1601.08

Oct 148.22 388.29 11.20 25.01 37.71 1452.36

Nov 141.98 357.25 10.03 25.85 38.97 1481.48

Dec 82.89 344.24 7.09 23.15 35.10 1355.29

Table A.8 District demand data
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a.5 epsilon values

We had determined the epsilon value for each objective by doing several trial simulations
and observing the range of objective values.

Objective Epsilon

Egypt average yearly demand deficit 0.1
Egypt 90th percentile worst demand deficit 0.01

Egypt HAD level reliability 0.01

Sudan average yearly demand deficit 0.1
Sudan 90th percentile worst demand deficit 0.01

Ethiopia hydro-energy generation 0.1

Table A.9 Epsilon values used in the optimisation for each objective



B A P P E N D I C E S : R E S U LT S

b.1 convergence analysis

While the ϵ-progress curve on the left shows that there is still room for improvement,
the hypervolume graph on the right seems to be in a stabilising trend. Given the time
and computational constraints of the project, we deemed the status of convergence as
sufficient with 50, 000 NFEs.

Figure B.1 ϵ-progress and hypervolume convergence
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b.2 physical system implications

In this section, we present physical system changes imposed by policies—particularly
those that were not explicitly discussed in 4.1.2.



(a) The GERD inflow versus release with
Best Egypt 90th Percentile policy

(b) The GERD elevation with
Best Egypt 90th Percentile policy

(c) The GERD inflow versus release with
Compromise: Absolute Threshold policy

(d) The GERD elevation with
Absolute: Percentile Threshold policy

(e) The GERD inflow versus release with
Best Egypt Low HAD policy

(f ) The GERD elevation with
Best Egypt Low HAD policy

Figure B.2 Physical system implications of different policies on the GERD. Figures on the left summarise inflow to and
release from the GERD over the whole simulation horizon. Shaded area covers the range of values in each
month. Figures on the right show the monthly time series of reservoir elevation over the simulation horizon.
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(a) Egypt demanded versus received flow with
Best Egypt 90th Percentile policy

(b) The HAD elevation with
Best Egypt 90th Percentile policy

(c) Egypt demanded vs. received flow with
Compromise: Absolute Threshold

(d) The HAD elevation with
Compromise: Absolute Threshold

(e) Egypt demanded vs. received flow with
Best Egypt Low HAD

(f ) The HAD elevation with
Best Egypt Low HAD

Figure B.3 Physical system implications of different policies on Egypt. Figures on the left summarise demanded and
received water flow over the whole simulation horizon. The line graph shows the mean values corresponding
to the month in the x-axis over twenty years. Shaded area covers the range of values in each month. Figures
on the right show the monthly time series of the HAD elevation over the simulation horizon.



(a) Best Egypt Irr. (b) Best Egypt 90th

(c) Best Egypt HAD (d) Best Ethiopia Hydropower

(e) Compromise: Percentile Threshold (f ) Compromise: Absolute Threshold

Figure B.4 Gezira received flow versus demand with all policies.
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b.3 dimensional stacking

(a) Worst 20th percentile Egypt irrigation deficit (b) Best 20th percentile Egypt irrigation deficit

(c) Worst 20th percentile Egypt 90th percentile worst deficit (d) Best 20th percentile Egypt 90th percentile worst deficit

Figure B.5 Dimensional stacking for Egypt’s irrigation deficits.



(a) Worst 20th percentile Sudan irrigation deficit (b) Best 20th percentile Sudan irrigation deficit

(c) Worst 20th percentile Sudan 90th percentile worst deficit (d) Best 20th percentile Sudan 90th percentile worst deficit

Figure B.6 Dimensional stacking for Sudan’s irrigation deficits.
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(a) Worst 20th percentile Low HAD (b) Best 20th percentile Low HAD

(c) Worst 20th percentile Ethiopia Hydropower (d) Best 20th percentile Ethiopia Hydropower

Figure B.7 Dimensional stacking for reservoir related objectives.



b.4 scenario descriptions

Scenario Description

Baseline

• Yearly Demand Growth Rate : 0.0212

• Blue Nile Mean Coefficient : 1

• White Nile Mean Coefficient : 1

• Atbara Mean Coefficient : 1

• Blue Nile Deviation Coefficient : 1

• White Nile Deviation Coefficient : 1

• Atbara Deviation Coefficient : 1

Extreme Stress

• Yearly Demand Growth Rate : 0.03

• Blue Nile Mean Coefficient : 0.75

• White Nile Mean Coefficient : 0.75

• Atbara Mean Coefficient : 0.75

• Blue Nile Deviation Coefficient : 1

• White Nile Deviation Coefficient : 1

• Atbara Deviation Coefficient : 1

High Blue Nile

• Yearly Demand Growth Rate : 0.0212

• Blue Nile Mean Coefficient : 1.25

• White Nile Mean Coefficient : 1

• Atbara Mean Coefficient : 1

• Blue Nile Deviation Coefficient : 1

• White Nile Deviation Coefficient : 1

• Atbara Deviation Coefficient : 1

Table B.1 Description of selected scenarios
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