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The general problem of optimum shapes arising in a wide variety of
free-surface flows can be characterized mathematically by a new class of
variational problems in which the Euler equation is a set of dual integral
equations which are generally nonlinear, and singular, of the Cauchy type.
Several approximate methods are discussed, including linearization of the
integral equations, the Rayleigh-Ritz method, and the thin-wing type theory.
These methods are applied here to consider the following physical problems:

The optimum shape of a two-dimensional plate planing on
the water surface, producing the maximum hydrodynamic lift;

the two-dimensional body profile of minimum pressure
drag in symmetric cavity flows;

the cavitating hydrofoil having the minimum drag for
prescribed lift.

Approximate solutions of these problems are discussed under a set of ad-
ditional isoperitnetric constraints and some physically desirable end conditions.
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1. Introduction

The general problem of optimum shapes of bodies in free-surface flows
is of practical as well as theoretical interest. In applications of naval hydro-
dynamics these problems often arise when attempts are made to improve the
hydromechanical efficiency and performance of lifting and propulsive devices,
or to achieve higher speeds of operation of certain vehicles. Some examples
of problems that fall under this general class are illustrated in Fig. 1. The
first example is to evaluate the optimum profile of a two-dimensional plate
planing on a water surface without spray formation, and producing the maxi-
mum hydrodynamic lift under the isoperimetric constraints of fixed chord
length Î and fixed wetted arc-length S of the plate. The second example
depicts the problem of determining the shape of a symmetric two-dimensional
plate so that the pressure drag of this plate in an infinite cavity flow is a
minimum, again with fixed base-chord Î and wetted arc-length S . The third
is an example concerning the general lifting cavity flow past an optimum hydro-
foil having the minimum drag for prescribed lift, incidence angle a., chord
length I and the wetted arc-length S . In these problems the gravitational
and viscous effects may be neglected as a first approximation for operations
at high Froude numbers. Physically, there is no definite rule for choosing
the side constraints and isoperimetric conditions, but the existence and the
characteristic behavior of the solution can depend decisively on what con-
straints and conditions are chosen. Mathematically, it has been observed in
a series of recent studies that the determination of the optimum hydromechanical
shape of a body in these free-surface flows invariably results in a new class
of variational problems. Only a very few special cases from this general class
of problems have been solved, the optimum lifting-line solution of Prandtl
being an outstanding example.

There are several essential differences between the classical theory
and this new class of variational problems. First of all, the unknown argument
functions of the functional under extremization are related, not by differential
equations as in the classical calculus of variations, but by a singular integral
equation of the Cauchy type. Consequently, the 'Euler equation" which results
from the consideration of the first variation of the functional in this new class
is also a singular integral equation which is, in general, nonlinear. This is
in sharp contrast to the Euler differential equation in classical theory. Another
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characteristic feature of these new problems is that while regular behavior of
solution at the limits of the integral equation may be required on physical
grounds, the mathematical conditions which insure such behavior generally
involve functional equations which are difficult, and sometimes just impos-
sible, to satisfy.

Because of these difficulties and the fact that no general techniques are
known for solving nonlinear singular integral equations, development of this
new class of variational problems seems to require a strong effort. Attempts
are made here to present some general results of the current study. Some

necessary conditions for the existence of an optimum solution are derived
from a consideration of the first and second variations of the functional in
question. To solve the resulting nonlinear, singular integral equation several
approximate methods are discussed. One method is by linearization of the
integral equation, giving a final set of dual singular integral equations of the
Cauchy type. When the variable coefficients of this system of integral equations
satisfy a certain relationship, this set of dual integral equations can be solved
analytically in a closed form; the results of this special case provide analytical
expressions which can be extensively investigated to determine the behavior
of a solution near the end points. Another approximate method is the Rayleigh-
Ritz expansion; it has the advantages of retaining the nonlinear effects to a
certain extent, of incorporating the required behavior of the solution near the
end points into the discretized expansion of the solution, but the method is
generally not convergent. A third approach depends on a thin wing type theory
to describe the flow at the very beginning, a variational calculation is then
made on an approximate expression of the physical quantities of interest.
These mathematical methods will be discussed and then applied to three prob-
lems described earlier. While the results to be presented should be considered
as still preliminary, since exact solutions to these problems have not yet been
found, it is hoped that this paper will succeed in stimulating further interest
in the development of the general theory, and, in turn, aid in the resolution of
many hydromechanic problems of great importance.

2. General mathematical theory

To present a unified discussion of the general class of optimum hydro-
mechanical shapes of bodies in plane free-surface flows, including the three
examples (i) - (iii) depicted in Fig. I, we assume the flow to be inviscid,
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irrotational, and incompressible, taking as known that the physical plane
z x + iy and the potential plane f =ç + i41 correspond conformally to the
upper half of the parametric = + i, plane by the mapping that can be
signified symbolically as

f = + i4i= v(T3;c1, . . . c) , (1)

where y is an analytic function of t and may involve geometric parameters
c1, . . c, so that the wetted body surface corresponds to r = 0+,

I
<i,

and the free surface, to , = 0, j > L. Specific forms of the function v(,)

will be given later, but our purpose at this time is merely to illustrate the type

of nonlinear variational problem that arises.

Description of the flow is effected by giving the parametric expres-
s ions f f(r) and w =

-log(df/dz) = T+ iO (2)

being the logarithmic hodograph. The boundary conditions for w may be
specified either as a Dirichlet problem, by giving

7+ = Rew(+i0) _(F() (given for j <1)
-t O (j j> 1)

or as a Riemanri-Hilbert problem,

0 w(+i0) = (j 1<1) (4a)

= Re w(+i0) O (lj>l) 4b)

The formulation of the w problem is completed by specifying a condition at
the point of infinity, say

w-' O , (IzI -'ce) (5)

and by prescribing a set of end conditions, which are generally on F (e), as

F(± 1) = O , (6)

or similar ones. The end conditions are usually required on physical grounds
in order that the fluid pressure is well behaved at the end points = ± 1, at

which the free boundary meets the wetted body surface.

The solution to the Dirichiet problem (3), (5), (6), i. e.
i

= Ç flt)dt
j t-i,

r'(l) = O , (7)

i

and the solution to the Riemann-Hilbert problem (4), (5), (6), given by

(3)
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1

(t)dt-Ç(2 1)2
21

-1 (l-t )(t-)
i

Ç p(t)dt
J
-i (1-t )2

=0 (8b)

(8a)

are equivalent to each other, as can be readily shown. Here, the function
(21) is one-valued in the t-plane cut from r, = -1 to ( 1. On the body
surface, we deduce from (7), by applying the Plemelj formulas,that

= iÇ
r(t)d -H[r] (I<1) (9)

i

where the integral with symbol C signifies its Cauchy principal value, and also
defines the finite Hilbert transform of F (t), as denoted by H[r j.

From this parametric description of the flow we derive the physical
plane by quadrature

z() Ç e' - d (10)

With the solution (7) - (10) in hand, we see that the chord Î, wetted arc-length
S, angle of attack a, as well as the drag D, lift L, etc. can all be expres-
sed as integral functionals with argurrent functions F () and 3(), which are
further related by (9).

3. The variational calculation

The general optimum problem considered here is the minimization of a
physical quantity which may be expressed as a functional of the form

c] =Ç F(F()),; c1 . c)d (li)

under M isoperimetric constraints

12[r, f3;c1, , ;c1, . . .c)d A (12)

where AÎs are constants, 1,2, . . . M.

The original problem is equivalent to the minimization of a new functional



I[F, ; c1, . . c]_ (I - A1) (13)

where Xs are undetermined Lagrange multipliers.

We next seek the necessary conditions of optimality. Let F () denote

the required optimal function which, together with its conjugate function

3() given by (9), minimizes I[r, f3]. We further let óI1) denote an admis-

sible variation of I1), which is Hlder continuous, satisfies the isoperimetrc

constraints (12) and the end conditions (6). The corresponding variation in

is found from (9) as
= -H[ór] (j <1) (14)

The variation of the functional I due to the variations 6F and 613 is

AI = I[r+or, 13+613; C +ÔCJ - I[r, 13;c] t15)

where óc' s are variations of parameters c. For su.fficiently small 6F j,

613j and jôc I.
expansion of the above intgrand in Taylor's series yields
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where the first variation öl and the second variation 621 are

i i

61 =' [Fr6r+Fpö13]d+ óc
Ç (DF/ac )dn

-1 -1

I
i

621
=

Ç [Frr (on2+zFr13oro13 + F(o13)2]d+5c6c Ç 82F
mj ac 8cn m

-1
-1

+ cross product term between öc and 6F or 613 ,
(18)

in which the subindices denote partial differentiation. The variations

aI, ói . . depend on 6F as well as on F. For I to be minimum, we

must have
öi[r,or] = O ,

(19)

o2I[r, 6F] o ,
(20)

in which 13 and 613 are understood to be related to F and 6F by (9) and (14).

Relation (19) assures I to be extremal, and with the inequality (20), I is

therefore a minimum.

Now, substituting (14) in (17) reduces it to

(16)

(17)

d



first integrand must all vanish, hence
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=1Fr+HF 6r()d+ &F/3Cnd (17)

after inter-changing the order of integration, which is permissible under cer-
tain integrability conditions (see Tricorni 1957, § 4. 3) which will be tacitly
assumedto hold. Since the variations óF() and óc are independent and
arbitrary, the last integral in (17)' and the factor in the parenthesis of the

i

F(fl) )) = -H[FJ = - ! Ç
F(flt), (t),t)

1T) t-

1

c )/ac.d= O (j=1, . . .n) , (21)
n j

dt . (22)

By substituting (14) in (24a), interchanging the order of integration according to

1

The nonlinear integral equation (22) combines with (9) to give a pair of singular
integral equations for the extremal solutions. This is one necessary condition
for I[r] to be extremal; it is analogous to the Euler differential equation in

the classical theory. Presumably, calculation of the extremal solution r'()
from (22) and (9) can be carried out with X1, ? regarded as parameters,
which are determined in turn by applying the M constraint equations (12).

While we recognize the lack of a general technique for solving the system of
nonlinear integral equations (9) and (22), we also notice the difficulty of satisfy-
ing the end conditions (6), as has been experienced in many different problems

investigated recently. The last difficulty may be attributed to the known be-
havior of a Cauchy integral near its end points which severely limits the type
of analytic properties that can be possessed by an admissible function F()
and its conjugate function (E,).

Supposing that these equations can be solved for F(;c1, c2, . . c),
we proceed to ascertain the condition under which this extremal solution actual-.
ly provides a minimum of I[F]. From the second variation ó21 we find it is

necessary to have

(a2F/ac2)d>o (23)

-1

FFóF)2+2FrpóróP +F(ó)2}d o (2 4a)
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g()(óF)2d +

i i

! (' C h(t)-h()
lT j j t-

-1 -1

whe re

g( = F h() Fr + H[FF1
If we suppose that Frç. Fr F are 1-ilder continuous, and consider a
special choice of 6F which vanishes for - >, bounded (jór
and is of one sign for - <e, where is any interior point of (-1, 1),
then it can be shown that the first term on the left side of (24b) predominates,
hence a necessary condition for (24b) to hold true is the inequality g() O,

or

Frr+FO (j<1) . (24c)

This condition is analogous to the Legendre condition in the classical theory.

The preceding illustrates the method of solution of the extremum prob-
lem by singular integral equations. We should reiterate that the integral equa-
tions are nonlinear unless F is quadratic in F and . No general methods
have been developed for the exact solution of nonlinear singular integral equa-
tions. Further, it may not always be possible to satisfy the condition F(± 1) = O,
which are required on physical grounds. With these difficulties in mind, we
proceed to discuss some approximate methods of solution.

4. Linearized singular integral equation

The least difficult case of the extremal problems in this general class
is when the fundamental function F[F , 3j is quadratic in F and 3, that is

F(r, , ; c.) = aF2+2b F c + 2bF+ 2q (25)

in which the coefficients a, b, . . . q are known functions of and may
depend on the parameters c1, . . . c. It should be stressed that the above
quadratic form of F can generally be used as a first approximation of an
originally nonlinear problem in which F is transcendental or contains higher
order terms than the quadratic. With this approximation the integral equation
(22) is then linear in I' and , and reads

af +bf3 -- p = - H[bF+c+q] (I<l) , (26)

-7-

the Poincar-Bertrand formula (Muskhelishvili, 1953) wherever applicable,
it can be shown that (24a) can also be written as

6r(t)óF()dtd O (24b)
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which combines with (9) to provide a set of two linear integral equations, both
of the Cauchy type. The necessary condition (24c), obtained from the considera-
tion of the second variation, now becomes

a(e) + c() O (l <1) (27)

For the present linear problem (regarding the integral equations) two
powerful analytical methods become immediately useful. First, the coupled
linear integral equations (9) and (26) can always be reduced to a single
Fredhoim integral equation of the second kind. When the coefficients a(e),
b() and c() of the quadratic terms satisfy a certain relationship, the
method of singular integral equations can be effected to yield an analytical
solution in a closed form.

(4i) Fredhoim integral equation

By substituting (9) in (26), we readily obtain

a()F(j-b(jH[F] +H[bFJ - H[c(t)H[r' j) = - H[qj -p()
Upon using the Poincar-Bertrand formula (with appropriate assumptions)
for the last term on the left side of the above equation, there results

{a(U +c( F() +Ç K(t,)Ç(t)dt - H[qj - p() (28a)

where
1

i b(t)-b() +

-2-
c(s)dsK(t,) = -

Tr t- (s-t)(s-)
lT

-1

(28b)

This is a Fredholm integra.i equation of the second kind, with a regular sym-
metric kernel, for which a well-developed theory is available.

(4ji) Singular integral equation method

When the coefficients a, b, c, satisfy the following relationship

a(a) 4 c() >0 , b() = b (ac) , b const (29)

the system of equations (26) and (9) can be reduced in succession to a single
integral equation, each time for a single variable, and these equations are of
the Carleman type, which can be solved by known methods (see Muskhelishvili
1953), yielding the final solution in a closed form.

In the first step we multiply (9) by b0, and subtracting it from (26),



giving

where

a ( ) = H [± cJ + W( )

= a2 c
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= -H[q] - p()

After this Carleman equation for is solved, a second Carleman equation
results immediately upon elimination o between the expression for
and (9). The details of this analysis are given by Wu and Whitney (1971).
These analytical solutions are of great interest, since in their construction
there are definite, but generally very limited degrees of freedom for choosìng

the strength of the singularity, or the order of zero, of the solution F () and

() at the end points = ± 1. It is in this manner that the analytical behavior
of the solution r() and 3() can be explicitly and thoroughly examined.
This procedure will be demonstrated later by examples.

5. The Rayleigh-Ritz method

The central idea of this method, as in classical theory, consists in
expansion of r() and () in a finite Fourier series

Fm() => sinkO ( = cos O , O O<) (3 la)

k cas kO (31b)

This expansion is noted to satisfy (9) automatically. The functional i[r, ]

is now an ordinary function of the Fourier coefficients

TT

l[F, ;c1, . . . c] F(r, m' cos &,c1 . . . c)sin OdO
o

= 'i' 'im' l? . . . c) (32)

For I to be extremum, we require that

(k = 1, . m) , (33)

al/ac. = O (j 1, . . . n) . (34)

These (m+n) equations together with M constraint equations (12) determine

= o

and
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the m coefficients y1, . y, n parameters c1, . . . c, and M
multipliers X1, . . . X. It should be pointed out, however, that the co-
efficients Wyk'S and parameters c's generally appear in the expression for

c.) in a nonlinear or transcendental form, making their determination,
by algebraic, numerical means or otherwise, extremely difficult even when
their number is moderately small, such as three or more.

The preceding general theory will be further discussed and clarified
with several specific examples in the presentation of this study.
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