10.

11.

Stellingen behorende bij het proefschrift

Acoustoelastic Stress Evaluation in Metal Plate
using Absolute Shear and Longitudinal Time-of-Flight Data

. Looptijdmetingen volgens de Cross correlation methode zijn gebaseerd op de veronder-

stelling dat storende factoren een gelijkmatige invioed hebben over de hele duur van de
betrokken ultrasone golfvormen. Bij gebruik van een visceuze koppellaag is deze ver-

onderstelling in strijd met de werkelijkheid.
[Dit proefschrift, sectie 5.5.6.]

. Ondanks het feit dat een directe mechanische koppeling vereist is, zijn piézo-elektrische

transducers bij uitstek geschikt voor nauwkeurige ultrasone metingen.
[Dit proefschrift.]

. De naam Méér-dan-consumentengids suggereert een gedrag bij college lopende studenten

wat slechts zelden wordt waargenomen.

. Een computerprogramma is een produkt waarin de fouten gratis worden meegeleverd,

terwijl betaald moet worden om deze te laten verwijderen.

. Hoewel volgens het promotiereglement van de TU-Delft (artikel 10, 1° lid) een promo-

vendus geacht wordt zelfstandig onderzoek te verrichten of daaraan een essentiéle bij-
drage te leveren, blijkt dit in toenemende mate niet het geval te zijn.

. Vanwege hun reputatie zou het politici verboden moeten worden zich met politiek bezig

te houden.

. De meest effectieve manier om een goede hardloopprestatie te leveren is te zorgen voor

gewichtsvermindering.

. De opiumwet veroorzaakt een onveilig gevoel bij de burger en een enorme verspilling van

belastinggeld.

. Stellingen bij een proefschrift bieden de promovendus de mogelijkheid zijn frustraties te

uiten.

Een meer sociaal gedrag van de automobilist wordt bevorderd door de gevolgen van zijn
handelen sterker terug te koppelen. Dit kan worden bereikt door de bestuurder zelf een
vast deel te laten leveren van de benodigde voortbewegingsenergie.

Bij het ontwerpen van verkeersdrempels in de bebouwde kom wordt ten onrechte niet uit-

gegaan van de dynamische eigenschappen van een BMW bij 80 Km/uur.

November 1994 Michael Janssen
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order to perform these experiments.
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A link with reality was established through experimental work on pipeline steel for N.V.
Nederlandse Gasunie. This project was initiated thanks to Mr Jan Spiekhout. My meetings
with him were both stimulating and informative.

Anton Wachters proved many times to be a valuable discussion partner. During the final
stages in the preparation of this thesis he significantly minimized the number of errors and
cryptic passages, thanks to his desire to reduce problems to a basic and comprehensible level.
Mrs Hazel Wachters substantially improved on my use of the English language, which is of
undoubted benefit to the reader.

1 am grateful to all those, including persons inadvertently not mentioned above, who in
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Bakker for providing the opportunity for me to complete the research in the way it was car-
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Notation

Throughout this thesis vector and tensor quantities are represented either by underlined

symbols or in index notation. In the latter notation summation is implied over indices re-

peated in one term. Indices may take the values 1, 2 and 3, unless stated otherwise, and are

denoted by the letters i, j,k,l, m,nand p, q, , s.

The following symbols are used:

4y
A

Ciikl» Cijkimn
GG
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ij

o]

£ nin 0

Ko

]

Q5 Immie o

Axis intersection of linear regression line

Transducer area

Scalar amplitude in Fresnel-Kirchhoff diffraction formula

Scalar amplitude at aperture in Fresnel-Kirchhoff diffraction formula

Element ij of matrix relating mechanical and electrical quantities in the model
transducer

Slope of linear regression line

Subscript indicating backing layer

Element ij of matrix relating mechanical quantities in the coupling layer
Phase velocity

Subscript indicating coupling layer

2™ 3" order elastic stiffness constants

Spring moduli of viscoelastic constitutive model

Element ij of matrix relating the transducer electrode voltage and current
density to the transmitted and received wave amplitudes

Stiffness tensor

Stiffness tensor for constant electric field

Complex stiffness tensor for an attenuating medium
Disc diameter

Thickness of layer x

Element ij of matrix relating the conditions at the transducer electrode and the
transmitted wave amplitude to the driving voltage and the received wave
amplitudes

Electric displacement

Piezoelectric stress constant

Piezoelectric stress tensor

Young's modulus

Electric field

Coefficient relating applied stress to plane stress component T;
Alternative Christoffel tensor (Eq. 2.8)

Xi
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Thickness of viscous fluid layer between transducer and specimen
See Equation 5.43 or 5.51 for arc or strip diffraction respectively
Discrete average values for h (Eq. 5.55)

Frequency-dependent transfer function

Transfer function of layer x

Transfer function relating amplitudes at the transmitter and a point on the re-
ceiver

The Fourier transform of h to frequency domain (Eq. 5.52)
The discrete Fourier transform of h, to frequency domain
Impulse applied to transducer

See Equation 5.45

Transducer electrode current

Integrand of J

Fracture parameter

Transducer electrode current density

Wave number

Wave number in layer x

Acoustoelastic tensor relating applied stress to acoustic data obtained with
shear waves

Stress intensity factor, fracture toughness

Tensor relating G and T

Subscript indicating protective layer

Distance of flight

Subscript indicating propagation medium

Acoustoelastic tensor relating absolute stress levels to acoustic data
Number of subtransducers

Tensor relating R and T

Back-face echo number

Unit vector along wave propagation

Unit vector normal to surface

Number of sample points in time domain used for model calculations
Pressure in fluid

See Figure 5.8

Subscript indicating piezoelectric plate

Compressive force per unit thickness

Tensor containing acoustic data relating to shear waves

Radius in polar coordinates

Length of wave ray in diffraction calculation

Transducer radius
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Reflection coefficient of stress wave travelling in medium x against interface
with medium y

Tensor containing acoustic data relating to both shear and longitudinal waves
Reference values for absolute stress evaluations

Arc length

Arbitrary signals

Elastic compliance constants

Surface enclosing an observation point P in Fresnel-Kirchhoff diffraction
formula

Strain tensor

Time

Time of flight

Measure of average shear wave time of flight
Nominal time of flight

Shear times of flight

Longitudinal time of flight
Experimental/normalized time of flight
Temperature

Yield strength, tensile strength

Transmission coefficient of stress wave travelling from medium x into me-
diumy

Stress applied to uniaxial tensile specimen
Uniaxial stress

Experimental/normalizing temperature
Traction vector

Stress tensor

Cauchy stress tensor

2™ Piola-Kirchhoff stress tensor
Displacement

Static displacement

Velocity

Velocity

Transducer electrode voltage

Transducer electrode voltage for 1% and 2™ back-face echo respectively
Source voltage driving the transducer

Time derivatives of the amplified start and stop echo signals at their first zero
crossings

Infinitesimal dynamic displacement
Strain-energy density

Stress amplitude of wave



Xiv Notation

Wepia» Weee  Stress amplitudes of echoes against a coupled/free back face
W, W, Stress amplitude of wave received from/transmitted into propagation medium
W,y Traction force exerted by layer x onto layer y
W, Wy, W Stress amplitude of incident/reflected/transmitted wave
W, W, Stress amplitude of wave received from/transmitted into propagation medium,
averaged over the transducer area
W:, W, Stress amplitude of wave travelling through layer x in positive/negative thick-
ness direction
w Displacement amplitude vector of wave
X, X, X coordinate of the receiving/transmitting subtransducer
X Rectangular set of coordinates
Coordinates of a material point in the initial state
Coordinate in the transmitter plane in the diffraction calculation
X Coordinates of a material point in the natural state
Yo ¥ Y coordinate of a point on the receiving/transmitting subtransducer
9,, 9: Y coordinate of positive end of the receiving/transmitting subtransducer
Y Coordinate in the transmitter plane in the diffraction calculation
z Distance between transmitter and receiver in the diffraction calculation
Specific wave impedance
Coordinate normal to transmitter plane in the diffraction calculation
Z Electrical impedance of voltage source driving the transducer
Z Specific wave impedance in layer x
o Polarization of shear wave associated with time of flight t, relative to positive
X,-axis
Attenuation coefficient
Coefficient of linear expansion
B Time-of-flight temperature coefficient
B, Shear time-of-flight temperature coefficient
B, Longitudinal time-of-flight temperature coefficient
Y Loading direction relative to positive X,-axis
r Integration contour for J
r Christoffel tensor
) Elongation measured during tensile test
ox Width of subtransducer
) Kronecker delta
At Error in time of flight
Sample time interval used for model calculations
| AT Temperature change
‘ AS Aperture area in Fresnel-Kirchhoff diffraction formula
l AV, Error in trigger level
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Absolute coordinate differences between points on transmitting and receiving
subtransducers

Permittivity constant for constant strain

Permittivity tensor for constant strain

Viscosity coefficient

Viscosity coefficients of viscoelastic constitutive model
Transducer polarization angle

Angle between wave ray and aperture or transmitter normal
Tensor giving a general relation between G and T
Lamé constant

Wavelength

Lamé constant

Poisson’s ratio

3™ order stiffness constants for isotropic material
Integration variable for strip diffraction calculation
Mass density

Tensor containing acoustic data relating to shear waves
Increase from nominal time of flight

Series of discrete time intervals used for convolution in the diffraction calcu-
lation

Angle in polar coordinates
See Figure 5.8
Electric potential

Parameters describing the magnitude of the acoustoelastic effect relative to the
material orthotropy

See Equation 5.48

Angular frequency

Series of equidistant frequencies for which model calculations are performed
Nyquist critical frequency

Rotation tensor

Superscript indicating material in the undeformed or natural state
Superscript indicating material in the final state

Superscript indicating material adjacent to piezoelectric material

Superscript indicating a rotated coordinate system

Superscript indicating a rotated coordinate system

Superscript indicating m™ subtransducer



Chapter 1

Introduction

Stress evaluation in solids plays an important role in engineering. Many experimental
techniques have therefore been developed, ranging from the destructive holedrilling method
to a large number of non-destructive methods based on X-ray or neutron diffraction, photoe-
lasticity, the determination of magnetic properties and ultrasonic measurements. Each of
these techniques has its own possibilities and limitations, related to factors such as the type
of material and the type and distribution of the stress to be evaluated. For this reason the
various techniques do not necessarily have to compete with one other but often prove to be
complementary.

The subject of this thesis is stress evaluation in metal using ultrasonic waves. The measure-
ments are based on a phenomenon known as acoustoelasticity, i.e. the dependence of wave

propagation on the state of deformation or stress in the material.

Chapter 1 begins with a brief description of the principle of ultrasonic stress measure-
ments, including references relating to the historical development. This is followed by an
outline of the approach underlying the experimental technique to be presented. The final
section sets out the scope of the thesis.



2 Introduction

1.1 The evolution of ultrasonic stress evaluation

Acoustoelasticity

The acoustoelastic effect depends on the elastic properties of the material. The constitutive
relation between stress and strain, which is expressed by Hooke’s law, is usually assumed to
be linear for metals. When regarded more closely, however, this relation is found to deviate
slightly from linearity. Consequently the propagation of waves, being a function of the elastic
properties of the medium, will depend on the presence of stress. In addition, small mass
density changes, which occur under the influence of stress, will also have an effect on wave
propagation.

For metals the acoustoelastic effect is small. For example, aluminium and steel exhibit ve-
locity changes of approximately 1 % and 0.2 % respectively at uniaxial stresses equal to the

yield strength.

Wave types

Acoustoelastic stress evaluations can be based on bulk longitudinal and shear waves or on
surface waves. Each wave type provides some kind of information concerning the stress state
along the wave path. This work is focused exclusively on the use of bulk waves.

References 18 and 32 describe the use of longitudinal waves in order to evaluate the first
stress invariant (i.e. the sum of normal or principal stresses) in two-dimensional specimens.
This method is based on the determination of the longitudinal wave speed change caused by
the introduction of stress in the specimen. Consequently, only the magnitude of applied stress

invariants can be measured.

In spite of the experimental difficulties which have to be overcome, shear waves are widely
used, owing to the fact that they give considerably more information concerning stress. This
can be clearly illustrated in the case of an isotropic material. A stress present in such a mate-
rial will generally induce a small anisotropy [52]. Consider a shear wave propagating along
one of the principal stress directions. The wave is subject to the effect of birefringence: the
arbitrarily polarized wave is split into two orthogonally polarized shear waves travelling at
(slightly) different speeds. They are polarized along the remaining two principal directions
and their speed changes are related to the magnitude of these principal stresses.

Material anisotropy

A complicating factor, however, is the presence of even a slight elastic anisotropy in the
material. This will almost inevitably be present due to of texture formed during the fabrica-
tion process. In many cases (e.g. rolled material) the elastic properties are adequately de-
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scribed if orthotropy is assumed, i.e. a set of three orthogonal axes of twofold symmetry.
When propagating along such an orthotropic symmetry axis, a shear wave will show bire-
fringence even in a situation without stress. Furthermore, polarization directions will gener-

ally not coincide with principal stress directions [21].

A quantity frequently used when dealing with shear wave stress measurements is the
difference between the velocities of the two birefringent components expressed as a fraction
of the average velocity. The use of this quantity, which will be referred to as the birefrin-
gence, is clearly advantageous. Measurements can be performed by using the interference
between the two birefringent shear wave components, which travel at slightly different
speeds [4, 20]. This technique, which bears some resemblance to photoelastic experiments
[9], requires much less of the measuring system. Furthermore, the birefringence is independ-
ent of the specimen thickness and is less sensitive to influences of temperature and trans-

ducer-specimen coupling.

Hsu [14] investigated the velocity changes in specimens loaded in compression approxi-
mately along one of the orthotropic axes. Although his velocity measurements did not have a
very high absolute accuracy, the birefringence was found to be proportional to the difference
between the applied principal stresses. He suggested that for this loading situation the initial
birefringence and the stress-induced birefringence were additive.

Arbitrary principal stress directions

A more general case arises when the principal stress directions normal to the direction of
wave propagation do not coincide with orthotropic axes. A rotation of the polarization direc-
tions can be observed. Furthermore, the birefringence will not change proportionally to the
magnitude of the principal stress difference. Iwashimizu and Kubomura [21] developed a
theory which enabled the initial birefringence to be taken into account for materials with only
a slight elastic orthotropy. Applied principal stress differences and directions could be
evaluated from birefringence and polarization data through one acoustoelastic constant. Ref-

erence 20 contains some experimental results.

Okada [40] presented a theory in which orthotropy is assumed not only for the elastic prop-
erties of the material but also for its acoustoelastic properties. Consequently, in order to
couple birefringence and polarization direction to principal stress difference and direction,
three constants are needed. Based on this theory, reference 7 shows an experimentally de-
termined distribution of shear stress around a crack tip in an aluminium 2024-T351 plate as
caused by loading the specimen.



4 Introduction

1.2 Stress evaluation using absolute time-of-flight data

For the evaluation of the three components of a two-dimensional stress tensor, i.e. two
normal stresses and a shear stress in specimens in, for example, a plane stress state, addi-
tional information is needed besides that provided by the birefringence. This information
can, for example, be obtained by using the equations for stress equilibrium [41]. However,
the applicability of this method is limited to certain cases only.

Clearly the information which is potentially available when using shear waves is reduced
significantly by exclusively determining the birefringence. The use of the absolute time-of-
flight data of the two birefringent components would obviously be an improvement. By this
means shear waves provide three quantities, namely two times of flight and a polarization di-
rection. In principle this information should suffice for the evaluation of all components of a
two-dimensional stress tensor. In order to relate these stress'components to shear wave data,
five constants are needed for an orthotropic material.

Stress evaluation of this kind is of a relative nature, since the change in shear wave
data is measured as caused by loading a specimen mechanically. In other words, only applied
stresses can be determined this way. This is because absolute time-of-flight values have no
significance without corresponding reference values, measured, for example, in an unstressed
specimen. It should also be noted the reference times of flight have to be measured at exactly
the same location on the specimen, as it is impossible to determine the distance of flight with
an accuracy matching the smallness of the acoustoelastic effect.!

An alternative approach, which is adopted in the present work, is to determine additionally
the time of flight of a longitudinal wave. The extra information thus provided enables the
measurement to become independent of the specimen thickness. Reference values can now
be expressed exclusively in terms of the elastic constants of the material and should therefore
in principle be valid at all specimen locations. This leads potentially to a technique for
evaluating absolute stress levels.

The use of absolute time-of-flight data does, however, pose some serious experimental
problems, such as the poor reproducibility of the transducer-specimen coupling [14, 37] and
the influences of temperature on time of flight [37]. The experimental set-up must be able to
solve these problems adequately before meaningful stress evaluations can be performed.

L' This is one of the advantages of measuring only the birefringence, as the specimen thickness does not affect
this quantity.
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1.3 Scope of the thesis

Chapter 2 sets out the theory pertaining to acoustoelastic stress evaluation using bulk
waves. Relations are established between stress and measurable acoustic data. These rela-
tions are worked out both for relative stress evaluations using shear waves and for absolute
stress evaluations using both shear and longitudinal waves.

Chapter 3 describes an experimental technique designed for simultaneous measurements
with shear and longitudinal waves. Special attention is given to distorting influences such as
the transducer-specimen coupling, transducer misalignment, signal noise and specimen tem-
perature. The electrical conditions necessary for accurate time-of-flight measurements are
also discussed.

A number of acoustoelastic experiments performed on different metals are described in
Chapter 4. Besides the calibration of the acoustoelastic tensors, they include the determina-
tion of the plane stress field around the crack tip in a compact tension specimen. Using these
results, the J fracture parameter is numerically integrated.

A model for the pulse-echo method is proposed in Chapter 5. In this model the transducer
and the transducer-specimen coupling play an important role. Wave diffraction in the speci-
men is also incorporated, as it affects the ultrasonic waveforms. Using the model, a variety of
factors which affect ultrasonic measurements are assessed by means of numerical calcula-

tions.

Finally Chapter 6 establishes the relationships between the results of the preceding chapters.
It also includes a number of points concerning the application of the acoustoelastic stress

evaluation technique.



Chapter 2

Acoustoelastic Stress Evaluation using Ultrasonic Bulk Waves

2.1 Introduction

The first major chapter in this thesis will deal with the theory of acoustoelasticity and
the description derived from this theory for ultrasonic stress evaluation using bulk waves.

Using the Christoffel equation for waves propagating in a stressed medium, an alterna-
tive eigenvalue equation may be formulated in terms of the distance of flight and mass den-
sity in the unstressed material and the time of flight. The alternative Christoffel tensor in this
equation can be related to measurable acoustic quantities for the specific case of wave propa-
gation along a direction of both principal stress and orthotropic symmetry. On the other hand,
this same tensor can also be expressed as a linear function of stress. These two relations
make it possible to obtain information concerning the stress state by means of acoustic

measurements.

Applied stresses may consequently be evaluated by measuring shear wave data at the same
location before and after the application of stress. The evaluation of absolute stress levels re-
quires some kind of reference in unstressed material. For this purpose the additional infor-
mation provided by longitudinal waves can be used.

In this chapter expressions are derived for these two types of stress evaluation. The
material behaviour is described in the form of two-dimensional acoustoelastic tensors. A
method to obtain numerical values for these tensors by means of calibration, is also dis-

cussed.
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2.2 The acoustoelastic effect for bulk waves

2.2.1 Bulk waves in deformed elastic material

In order to describe the acoustoelastic effect, an elastic material is considered which is
subject to a small but finite static deformation. The propagation of acoustic bulk waves in
this material is determined by the equation of motion for an infinitesimal dynamic displace-
ment superimposed on the static displacement. Following Tokuoka and Iwashimizu [52], a
wave equation is derived for this case in Appendix 2A:

dw,  o'w,
Coa+ i, 5 =P 37 @D

where C = stiffness tensor dependent on the strain-energy function of the mate-
rial and the static deformation
T = stress tensor in the deformed state
& = Kronecker delta
w = infinitesimal dynamic displacement
x = rectangular material coordinates
p = mass density in the deformed state
t = time

A solution is now sought for the dynamic displacement w in the form of a plane wave
with angular frequency @ travelling along the propagation direction indicated by the unit

vector n:
w, = W@~ knx) (2.2)

where W = displacement amplitude vector
k = wave number = zn/wavelength

Substituting this solution in the wave equation (Eq. 2.1) and defining a so-called Christoffel

tensor I according to":

Ty = (Cyga + TySionym, (2.3)

leads to the Christoffe] equation [1]:

' In the absence of static deformation/stress this definition reduces to the usual ¢, [1], where ¢ are the
2-order elastic constants.
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Ty Wy = pe’W; (2.4)
where ¢ = phase velocity = /)

The solution to this eigenvalue problem consists of three eigenvalues pc2 with corre-
sponding eigenvectors W. The eigenvectors represent the possible polarization directions,
i.e. directions of particle displacement, for plane waves propagating along n. These direc-

tions can be shown to form an orthogonal set.!

In general, no closed-form solutions can be obtained for this eigenvalue problem. However,
numerical solutions can be calculated in a straightforward manner.

In Appendix 2B the stiffness tensor C is written in terms of the 2™ and 3"-order elas-
tic stiffness constants of the material and the displacement gradients in the deformed state,
assuming the latter to be small compared with unity. The I tensor can now be expressed as a
function of these quantities, together with the stress tensor T in the deformed state and the

wave propagation direction n (Eq. 2.3).

2.2.2 Wave propagation along an orthotropic symmetry direction

A more specific case arises when the elastic properties exhibit some form of symmetry.
Due to previous processing, polycrystalline materials generally show a non-homogeneously
distributed crystal orientation. Commonly, when caused by rolling or drawing, this texture
has an orthorhombic symmetry, i.e. an orthogonal set of 2-fold symmetry axes exists. Such a

symmetry will be assumed for the elastic constants, i.e. the material is said to be orthotropic.

Without loss of generality, the x; coordinate axes are chosen to coincide with the or-
thotropic symmetry axes. Owing to the 2-fold symmetry of the elastic properties of the ma-
terial, any coordinate transformation corresponding to a rotation through 180° about one of
the x;-axes must leave the 2" and 3"-order elastic constants unchanged. It can be shown

that as a result of this all constants with an odd number of indices 1, 2 or 3 will vanish.

By making the additional assumption that the plane waves propagate along one of the sym-
metry directions, say the x,-axis (n, = n, = 0; ny = 1), Equation 2.3 is reduced to:

Ty = Cias + T30y (2.5)

The components of I’ can now be concisely expressed in terms of elastic stiffness constants,

strain, rotation and stress. These expressions are given in Appendix 2C.

I' This stems from the fact that the Christoffel tensor ' (Eq. 2.3) is a real and symmetric tensor. Consequently,
its eigenvalues and eigenvectors must also be real. It can be shown [13] that T is positive definite, ie ri,-P;Pj 2
0 for any vector p. The eigenvalues are therefore positive, leading to real values for the phase velocity c.
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2.3 Acoustoelastic measurements based on time of flight and polarization direction

Experiments using ultrasonic waves propagating through elastic material yield time-of-
flight values rather than phase velocities. In general, the distance of flight of a wave is not
available with an accuracy that would permit the calculation of absolute velocities on which
an acoustoelastic stress evaluation could be based. This calls for an approach which focuses

on the time of flight.

2.3.1 Accounting for distance of flight and mass density

First of all, the phase velocity ¢ in the Christoffel equation (Eq. 2.4) is replaced by the
time of flight t and the distance of flight L. These quantities are related to each other
through:!

c =% (2.6)

In this context the distance of flight L is measured along the wave propagation direction in-
dicated by the unit vector n, i.e. normal to the planes of equal phase.!

Both the distance of flight L and the mass density p are deformation-dependent. It therefore
seems convenient to rewrite the Christoffel equation in terms of distance of flight and mass
density in the undeformed state. For the propagation direction under consideration here (x5-
axis), the relation:

2 2 _\o

L @
pci=ps = Ltzel(l — S, +255,) @7

where ° = superscript indicating the undeformed state
S = infinitesimal strain tensor (Eq. 2B.2)
Sum=3S11+ 55+ S5

results in the alternative eigenvalue equation:

L2 0
Gika = L_t‘ZQLWl (2.8)

where G, = [ (1 + S, — 2S33)

I Time of flight can be measured using wave pulses or, in the case of a dispersive medium, using a continuous

sinusoidal wave.
I This definition also holds in an anisotropic medium, in which the direction of power flow of the wave does
not necessarily coincide with its propagation direction n [1].
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Substituting the expressions for the Christoffel tensor I (Appendix 2C) in the defini-
tion of G and neglecting the second-order terms in strain, stress and rotation leads to the fol-

lowing set of expressions:

Gy =313+ (2€13331C1313108 11 + C131322522 + Ci31333533 + T

Gyz = C3p3p + Caz3a11S 11 + (2€32377C323222)5 52 + C323233533 + T
Gi3 = C3333 + C333311511 + Ca33322522 + (2C333371C333333)S33 + T
Giy = Gy3 = (26333233+C3333C330012C3232) 35 + (Co233H2C303Ca333) B,
Gi3=Gyy = (2C3313131Ca333+C3311+2C1313)8 13 + (C3333—Ca311—2C1313) Dy

Gy =Gy, = (2133201 %C32327C1313)5 + (€1313Co323)00 (2.9)

d I
where ¢y = 2"-order elastic stiffness constants

c = 3" order elastic stiffness constants

ijklmn
® = infinitesimal rotation tensor (Eq. 2C.2)

It should be noted that the terms containing the rotation @ will vanish for isotropic material,
as in this case the following isotropy conditions must hold:

Cpa33 + 2C3237 = Ci333

Ca311 + 2€4313 = Ca333

C1313 = Ca323 (2.10)

2.3.2 Relating the G-tensor to stress

As the ultimate aim is to measure the stress T, the strain tensor S in the above G-tensor
expression has to be eliminated by means of a strain-stress relation. For this purpose the
additional assumption is made that the elastic constitutive relation of the material is almost
linear, i.e. the contribution of the 3" order elastic constants is small compared with that of
the 2"-order constants. The G-tensor can then be written as a linear function of the stress T:

G;j = Cizjz + K Tig + @y-term (2.11)

where i = 4™-order tensor dependent on the 2™ and 3™-order elastic constants

of the material

Owing to the symmetry of G and T, it is clear that K = Kjiy = Ky = Ky Therefore, instead
of the full index notation used up till now, the Voig? notation may be applied [1], where pairs
of indices ij (lower case) are contracted to indices I (upper case) according to Table 2.1.
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Table 2.1 Full and Voigt index notation.

Full index ij] 11 22 33 32,23 13,31 21,12
VoigtindexI| 1 2 3 4 5 6

Using this notation, the x-tensor can be expressed in the more illustrative matrix notation.
The form of this matrix is typical for an orthotropic material (see also Appendix 2C) and
reads:

[ Ky Kz Ky O
Ky Kp K3 O
K3 Kpp Kyz 0
0 0 0 xy
0 0 0 0 kg5 O

kyl = 2.12)

o O O o

0
0
0
0

0 0 0 0 0 Ky

where K;; = Ky x 1 forJ =123
Kyg X 2 for 1 =4.5,6

A tedious derivation for the purpose of expressing the x-components in terms of the
2. and 3™-order elastic constants of the orthotropic material will not be made here. The
main reason for this is that using these constants would have very limited practical applica-
tion. In particular the 3™ order elastic constants which would be available for a given mate-
rial show a wide spread. It is therefore more efficient to quantify the acoustoelastic effect
represented by k through calibration. In this respect, the approach is analogous to that fol-
lowed by Okada [40].

Fixing one principal strain direction

The situation becomes more simple by assuming that the x,-axis, which is already an or-
thotropic symmetry axis and the wave propagation direction, is also one of the principal
strain directions. In Equation 2.9 the components with indices 23, 32, 31 and 13 will become
zero for the S-tensor and, in the absence of rigid body rotations, for the @-tensor too. As a re-

sult the corresponding G-components will vanish.

G,, is now the only remaining component that depends on the rotation, i.e. ©,,. In Appendix
2D it is argued that, regardless of the magnitude of the orthotropy of the material, the influ-
ence of this rotation component on the quantities actually measured, t; and , is negligible.
Therefore, for the purpose of relating these acoustic quantities to stress, the rotation is dis-

carded all together.

The relevant components of the G-tensor can now be expressed as:
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G, Css Ky Kz K3 0 T,
G, Cyq Ky Ky Ky O T,
- . 1 (2.13)
G, C33 Ky K3 K3 0 T,
G, 0 0 0 0 xedLT,

Although the x-tensor is determined by calibration, the components mentioned in this equa-
tion are expressed in Appendix 2E in terms of elastic constants for isotropic material. These
expressions can be useful in calculating the approximate acoustoelastic behaviour for a given
material from 2"- and 3"-order stiffness constants provided in literature.

2.3.3 Relating the G-tensor to acoustic data

Analogous to solving Christoffel Equation 2.4, the eigenvalue problem formulated by

2 .
Equation 2.8 leads to eigenvalues T P)oltf with corresponding eigenvectors W®, These
vectors represent an orthogonal set of possible polarization directions of plane waves travel-

ling along the x;-direction.

It should be borne in mind that components G,;, G;,, Gs; and G;3 vanish owing to the as-
sumption of a principal strain direction along x,. One eigenvalue, say (sz)oltg, is now evi-
dently equal to component G,,, while the corresponding eigenvector W is fixed parallel to
the x,-axis. This solution represents a pure mode longitudinal wave, the particle displace-
ment being exactly along the propagation direction. As they form an orthogonal set, the re-
maining eigenvectors W and W® must lie in the X,-X, plane, indicating mutually perpen-
dicular polarization directions of two pure mode shear wave solutions. The related eigenval-

ues are:

Z )
Lp) SutGn i\/(Gn = Gy,)" +4G),
7 = >
ti2

(2.14)

Shear wave birefringence

The above results will, in their general form, i.e. unequal shear wave times of flight (Eq.
2.14), give rise to a phenomenon called shear wave birefringence. Consider a material inter-
face parallel to the x,-x, plane, as shown in Figure 2.1. If an arbitrarily polarized shear wave
is emitted into the material at normal incidence, it will be split up into two shear wave com-
ponents polarized along W and W, The amplitudes of these birefringent components de-
pend on their respective polarization directions relative to that of the incident wave. In order
to quantify the two perpendicular polarization directions, a single angle o can be used, de-
fined as the angle between the x,-axis and the polarization direction W of the wave asso-
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inciden
shear wavi

Fig. 2.1 Shear wave birefringence in stressed material.

ciated with time of flight t,. If a rotation from the x,-axis to W is anticlockwise, as seen
from the positive x,-axis, the polarization angle o is assumed to be positive (as shown in Fig.
2.1).

The components of G defined relative to axes parallel to its eigenvectors W® are ex-
pressed by a diagonal matrix with eigenvalues (LZP)OItf as diagonal elements G;;. The G-
components relative to the x;-axes follow from a coordinate transformation of this diagonal
matrix corresponding to a rotation about the x,-axis through an angle of —ct. Thus the G-
tensor in matrix representation reads:

2 .2
cos’0L  sin“o 1 1
+" 3 3 — 73 sing.coso 0
( t% t% ) (t% t;) SINQL COS
— (12 1 in” %o
[Gyl=(@L'py (lz —3) sino.coso. (sz ¢, sl 0 (2.15)
tt 6 t t
1
L 0 0 3
t3 .
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2.4 Two-dimensional stress evaluation

First of all the assumption is made that the magnitude of the acoustoelastic effect is

small, such that:
K Ty << Ci353 fori=j (2.16)

Stresses will therefore induce only small relative changes in time of flight, a condition which
is generally met.

Since the wave propagation is along the x;-axis, a stress field can only be evaluated if
it is not a function of x,. Furthermore, from the assumptions made about the x;-axis coincid-
ing both with a principal strain and an orthotropic symmetry direction, it follows that x, must
also be a direction of principal stress (T;3). In the two-dimensional stress field that results
from these restrictions, component T, is either constant or can be written as a linear combi-
nation of T, and T,,. Thus the stress field is completely determined by components T, T,,
and T,,. Typical examples are plane stress (T;3 = 0) and plane strain (S, = 0) conditions.

From this point on, therefore, T;, can and will be eliminated. In view of this, the symbolic
indices i will take only the values 1 and 2 and consequently the Voigt indices I will take only
the values 1, 2 and 6.

With regard to Equation 2.15, the problem remains that the deformation-independent
term (sz)o generally cannot be determined accurately enough. The error should be negligi-
ble compared with the magnitude of the acoustoelastic effect, which is itself assumed small.

The problem is dealt with in two ways:

¢ Relative stress evaluation
For acoustic measurements which use waves travelling through the same material, the
term (sz)° will also be the same. This knowledge can be used to evaluate stress
changes by measuring at one place before and after the occurrence of these changes.

e Absolute stress evaluation
The term (sz)" is eliminated altogether by using the time-of-flight ratio of shear and

longitudinal waves.

2.4.1 Relative stress evaluation using shear waves

Relative evaluation of a two-dimensional stress tensor can in principle be achieved by
using shear waves only. This is because shear wave measurements yield three quantities (t;,
t, and 0)) equalling the number of stress components to be determined. The G-components in
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Equation 2.13 which relate to shear wave propagation, i.e. G, G, and Gg, are therefore con-
sidered now and the acoustoelastic effect of T, is incorporated in the T,; and T,, terms:

dT;,
Gj=ciy+ (Kijkl + Kija3 Ty, )Tkl = gz + KT (2.17)

where K = two-dimensional 4" order tensor dependent on the elastic properties
of the material and the type of two-dimensional stress field

In Equation 2.15 the G-tensor is related to acoustic quantities. At this point it is convenient
to split up the two-dimensional part of this expression into the term (sz)° and a symmetric
two-dimensional 2™-order tensor . This tensor contains only the acoustic data relating to
shear waves and, using Equation 2.15, is implicitly defined as:

2 0,
G=LP)Ty (2.18)

The changes AG;; are now considered between two measurements using waves travelling
through exactly the same material. Consequently the term (sz)0 will be common to both
measurements and from Equations 2.17 and 2.18 it follows that:

L2p)°At; = Ky ATy, (2.19)

As a result any relative error in the term (L2p)° will introduce an equal relative error in the
stress tensor change to be evaluated. The accuracy required is therefore significantly lower.

In practice it is more appropriate to express (sz)° in terms of time of flight and elastic
stiffness constants. For this purpose the time of flight T is introduced according to:

L

11
= '/Z(t_z +3) (2.20)
1

t

This is a measure of the average shear wave time of flight at the material location under
consideration'. By considering the sum of G, and G,, in Equations 2.9 and 2.15 for material

in the undeformed/unstressed state, it follows that:"
(sz)o =Ci33+ 33232)&2)0 =Yy(Ci33+ Cszsz)fz (2.21)

The last step involves the use of a value for T at an arbitrary stress level™ as an approxima-
tion in order to evaluate (sz)°. This is permissible in view of (i) the above arguments con-

Ui t, and t, do not differ too much, T can in fact be considered as the average shear wave time of flight.

U In fact if T,, is unequal to zero, depending on the type of stress field, its value should be added to the stiff-
ness constants in Equation 2.21. However, in practice this value can and will be neglected.

m Obviously calculations must be performed with a fixed i-value for a particular material location.
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cerning the accuracy required for (sz)° and (ii) the assumed smallness of the acoustoelastic
effect (Eq. 2.16). In cases where no measurements are available in unstressed material, this is
obviously more practicable.

Substitution of (sz)" from Equation 2.21 in Equation 2.19, results in:
y(Cia3 + C3232)f2m7ij =K;ju ATy (2.22)

Inverting this equation leads to an explicit expression for the stress tensor change:

AT = Ky AQy (2.23)

where k = two-dimensional 4™-order tensor dependent on the elastic properties
of the material and the type of two-dimensional stress field
Q = t°7 = 2™-order tensor containing acoustic data relating to shear waves

The matrix representation in Voigt notation of k, denoted as [k;;], is related to the inverse of

the matrix [K;;] and reads:
[ STRSPIL

[kyl = V51313 + Cop)[Kyl ' =| Kot kpp 0 (2.24)
0 0 ke

where for K, k:
component IJ = component ijkl X 1 for I = 1,2
component ijkl X2 forJ =6

From this it is clear that k can only exist if the matrix [K;] has a non-zero determinant. The
k-tensor has five independent components for the orthotropic case considered here. It should
be noted that for material which exhibits so-called transverse isotropy in the X,-x, plane this
number is reduced to only two. For such material the elastic constants are unaffected when
defined relative to coordinate axes rotated about the x,-axis through an arbitrary angle. It can
be proved that the following extra relations must then hold:

kyj =ky
ky =k,
kes = ki1 =Ky (2.25)

Furthermore, using the definition of the 2™ _order acoustic data tensor Q as contained in

Equation 2.23 and that of the T-tensor (Eq. 2.18), the change in Q can be expressed as:
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- — 3 L2 =
cos 0. sin‘C
Ql 2 + 2
t) t
sin’.  cos’o.
A Q2 =f2A 2 + 2 (2_26)
t t
1 1y .
Qs (t_2 - 'tg) sina.cosat

2.4.2 Absolute stress evaluation using shear and longitudinal waves

In order to describe absolute stress evaluation, a symmetric two-dimensional 2" order

tensor R is defined containing both shear and longitudinal acoustic data:

R, = 61; (2.27)

1 y

According to Equation 2.15 the components of this acoustic data tensor will equal the ratios
Gij/G33, independently of the term (sz)". The dependence of R on the two-dimensional
stress tensor is derived using Equations 2.13 and 2.17 in order to expand Gi; and G;; respec-

tively:
R, gL Ciziz + Ky T
"Gy T,
C3333 + (Kazma + Kangr == )Ty,
~Ci3]3 {K, l33(1c . )} _
C3333 03333 ijkl 33k T K3333 BT ”
Cizj3
- MyaT 228
Ci333 ijkl * ki ( )

where M = two-dimensional 4®_order tensor dependent on the elastic properties
of the material and the type of two-dimensional stress field

The approximation made can be motivated by the assumed smallness of the acoustoelastic

effect.

Inverting this equation, while assuming that the matrix [My;] has a non-zero determi-

nant, gives T explicitly:

Sz
T; = my(Ry — ?333) (2.29)
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where m = two-dimensional 4"-order tensor dependent on the elastic properties
of the material and the type of two-dimensional stress field

The matrix representation in Voigt notation [my;] will be:
m;; m; 0
[my] = [My]" =| My myp O (2.30)
0 0 mg

where for M, m:
component IJ = component ijkl x 1 for ] = 1,2
component ijkl X 2 forJ =6

The number of independent m components is reduced to two for material which is trans-
versely isotropic in the x,-x, plane owing to extra relations analogous to those for k (Eq.
2.25).

Finally, for the sake of completeness, the 2"_order tensor R is expressed in terms of the
shear and longitudinal acoustic data (Egs. 2.18 and 2.27):

—R 7 ™ cos’o sin‘a |
1 2t 2
t t
.2 2
sin"ol  cos o
R [=¢| 5+ (2.31)
t t
1 15 .
R (-2 - —2) sino coso
I I SR 3 -

2.4.3 Calibration

As already stated, quantifying the acoustoelastic effect for a given material is most
conveniently effected by calibrating the k and/or m-tensor. An obvious way of doing this is
to measure acoustic data before and after introducing a two-dimensional stress T in the ma-
terial.!

Given the form of k and m (Eqgs. 2.24 and 2.30), a calibration of the components with Voigt
indices 11, 12, 21 and 22 requires that changes in R, and R, are induced for at least two dif-
ferent combinations of AQ, and AQ, respectively. Furthermore, with regard to the compo-
nents kg and meg, a non-zero AQ; or change in Ry must be effected. To summarize, a com-
plete calibration can be performed by introducing at least two different combinations of two-

I' For example by inducing a plane stress or a plane strain state.
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dimensional stress components in the material, including at least one non-zero shear stress.

With regard to the stress evaluation using both shear and longitudinal waves, the terms
Citi3/cyy34 (in full notation) also need to be known. Measuring the R-tensor through un-
stressed material will yield these ratios (Eq. 2.28):

Cin:

j’; =R} 2.32)
It can be seen from Equation 2.29 that these are in fact reference values, as the measured
data are considered relative to them. High accuracy is therefore required and in order to be
able to evaluate stresses in an absolute sense the ratios of elastic stiffness constants in Equa-
tion 2.32 must be reproduced exactly from one material location to another.

Up till now all tensor quantities have been defined relative to axes which coincide with
the orthotropic symmetry axes of the material. In practice, however, it may be difficult to
indicate these symmetry axes beforehand. This situation arises if, for example, the rolling di-
rection of the material is not accurately known. If the x,- and x,-axes are not paralle] to
symmetry axes, those components of the k or m-tensors which should be zero according to
Equations 2.24 and 2.30 will be calibrated as non-zero.! Moreover, a rotation of the set of
coordinate axes through 180° about either the x;- or x,-axis would in this case affect the
calibrated values of all tensor components. In such cases it is therefore convenient to define
the calibrated acoustoelastic tensor(s) relative to the orthotropic symmetry axes afterwards.

I Note that such a calibration would involve at least three different combinations of stress components to be
induced.
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2.5 Conclusion

In this chapter discussion of the theory underlying acoustoelastic stress evaluation was

followed by a description of two types of stress evaluation.

The evaluation relates to two-dimensional stress fields, e.g. emanating from plane
stress or plane strain states. Applied stresses can be evaluated by measuring the change in
shear wave data at one location before and after the application of stress. On the other hand,
absolute stress levels can in principle be determined by measuring both shear and longitudi-
nal data only through stressed material.

It was found that regardless of the magnitude of the orthotropy of the material, the ef-
fect of rotation on the acoustic data, and therefore on the stress to be evaluated, can be ne-

glected.

The relation between acoustic data and stress levels can be concisely expressed in the
form of acoustoelastic tensors. For absolute stress evaluation reference values for unstressed
material must also be available. These tensors and reference values can be determined by

means of two uniaxial tensile tests on specimens with conveniently chosen orientations.
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Appendix 2A Wave equation in deformed elastic material

Three different states are considered:

o the natural state, in which the material is not deformed and no stresses are present. The
position of a material point is denoted by the vector X;

o the initial state, in which the material is subject to a static displacement field u. The
position of a point is denoted by x = X + u;

¢ the final state, arising after an infinitesimal dynamic displacement field w has been su-
perimposed on the static displacement field of the material in the initial state. The po-
sition of a point is denoted by x'=x + w.

The material under consideration is assumed to be Green-elastic or hyperelastic. This
type of elastic behaviour is characterized by the existence of a so-called strain-energy func-
tion for the material [35, 39]. Before considering the stress in the final state and deriving the
wave equation for w, hyperelastic material is discussed briefly.

Hyperelastic material

Consider the energy quantities used in the following to be defined per unit undeformed vol-
ume. When a volume element in the material is reversibly deformed, this is accompanied by
a change of the internal energy W equal to:

dW = TdS + T;dS; A1)

where T = absolute temperature
S = entropy
T = Kirchhoff (or 2™ Piola-Kirchhoff) stress tensor

S = Lagrangian strain tensor
The symmetric 2" order Lagrangian strain tensor S is defined as:

ox, ox,
Sij = llz(a_xi-az - Sij) (2A.2)

where §; = Kronecker delta, which equals 1 for i = j and 0 otherwise

Discussion of the Kirchhoff stress tensor T is beyond the scope of this work. Reference is
made to [35]. The essence is that this symmetric tensor and the Lagrangian strain tensor S are
conjugate, which means that the expression T‘ideij yields the work done by stress during de-

formation.
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In Equation 2A.1 the internal energy is written as a function of strain and entropy. The
Kirchhoff stress can be expressed as the partial derivative at constant entropy of the internal

~ (oW
Ty = (B_S,l (2A3)

Thus, by postulating a strain-energy function that expresses W as a function of strain only,

energy W with respect to strain:

while assuming adiabatic deformation!, a constitutive relation between stress and strain is
established for the material. This function, W(S), is the strain-energy per unit undeformed
volume under adiabatic conditions and will from this point on be referred to as the strain-en-
ergy density W.

(Cauchy) stress tensor

The stress associated with the small dynamic displacement w is more conveniently expressed
by means of the symmetric 2"order Cauchy stress tensor T. This is because the tensor rep-
resents the traction forces per unit deformed area, i.e. using the initial coordinates x. It is re-
lated to the Kirchhoff stress tensor through [13, 35]:

T,=2—"—-1F, 2A4)

where p°, p = mass density in natural and initial state respectively
Thus the (Cauchy) stress in terms of the strain-energy density W reads:

Jx; Ox;
S M i 4

i p° X, 9X, 38y, (24.5)

Stress in the final state
The change in the strain tensor when going from the initial to the final state is conveniently
written as:!
ox, 0x, Ox, Ox,_  0X, aw dx, Ox, oW,
88, =8) -8y =13 3% ~3x, 3%, ~ 3%, X, ~ 3K, 3K, I, (2A6)

using the symmetry S;; = S;. In this and the following expressions the second- and higher-
order terms of the infinitesimal displacement w are neglected. The stress in the final state

' The ultimate aim is to derive a wave equation for evaluating wave propagation in deformed elastic material.
Deformation associated with all but very low frequency waves may be assumed to be adiabatic.
I primed quantities refer to material in the final state.
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follows from Eq. 2A.5 and 2A.6:

T .& ax ax aw’
ij p an aXl aSkl
ox; dw;  0x;
=L By (— (= Y
=15 )G, * x)Gx + axl)(askl as,das 35,95, 0Sm) =
aw,, ow; aw, oW,
=Tij(1—§;:)+T,maT+Tmax cijk,a—x’ (2A.7)

o ox; dx; dx, % Pw

where Cyy = p° 87 -EK 53(_ 87 asmas,s

Wave equation
In the absence of body forces the equilibrium in the static initial state is described by:

E)Tij
i 0 (2A.8)

i

and the motion in the dynamic final state by:

;.  dw,
Using:
oT;; 0w, dT;
3 (3, - 3%, )ox, (2A.10)
and, from Eq. 2A.7:
' 2 2
T aTu( ow, - owy, aT,ma_wL T awj
ox,  ox,\  ax, ligx,0X ax ax, ™dx ax
aT,,, ow; o*w,
_J__
ax + TJ"‘E)x 8x
ow,
*3x, (clel ax,) (2A.11)

it follows that:
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aT; O w, T, ow, azwj o’w,
ox; =_Tijaxj8x + ox; ox,, +T"“ax X, j"’ax.axm+
ow,  dTy Bw

* (cka o, )~ ax (2A.12)

Since the 1% and 3™ terms and also the 2™ and 6™ terms will vanish, the equation of motion
in the final state (Eq. 2A.9) leads to the wave equation:

o*w; ow,. o'W

Tigwox, ax, ax (Cukl ox, )=p37 P (2A.13)

If a homogeneous static deformation is assumed, this can be rewritten as:

o'w,  ow;
(Cipa + ls,k)——ax w=Por (2A.14)
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Appendix 2B C-tensor components for slightly deformed material
In Appendix 2A the C-tensor is defined as:

p 9% 9% 9%, Ix PPw

Ciu = 553X, 3K, 3K, IX, 35,035, (@B.)

If the displacement gradient aﬂ/ax is assumed to be small compared with unity, second- and
higher-order terms in aﬂ/ax can be neglected. The strain S may then be alternatively defined

as an infinitesimal strain tensor:
l.li ]
S; = 1/2(53(; + 5)?‘) (2B2)

and the strain-energy density W may be written as a cubic polynomial function of this strain

tensor:
Cijki
W) = Jk—s + 58S m (2B.3)
where €, Cijamn = 2™., 3" order elastic stiffness constants

The second derivative of the strain-energy density in Equation 2B.1 can thus be ex-

pressed as:
aZ
asijaskl = Ciju + C|_|klmnsmn (2B.4)

Using this and the relations:

- (2B.5)

e Y '

an | 8Xj

;)o‘o =1-Spm (2B.6)

where S, = S;; + S5 + 553

the C-tensor (Eq. 2B.1) may be approximated by:

dy; oy ou, du,

Cija = Cija(! — Spm) + CijitmnSmn + cmjklg)a + Cimua_); + Cijmlﬁl; + Cijkmaxm (2B.7)
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Appendix 2C Christoffel tensor for wave propagation along an orthotropic symmetry
direction

Let the orthotropic symmetry axes of the material coincide with the x;-axes. For this

case all elastic constants ¢y, and ¢ with an odd number of indices 1, 2 or 3 are zero.! The

jjkimn
Christoffel tensor I for wave propagation along the x,-direction (Eq. 2.3) is now expanded
using the C-tensor expression derived in Appendix 2B:

Ty =cia3(l = S + CuaianS1y + C13132292 + Ci3133383 +

+ €335 +C1a13833 +C1313S 1 + €338+ Ty =

= C1313(1=S i #2511+2533) + 131311811 + Cra1322522 + C131333533 + Tas

Likewise:

Ty = Cap3p(1=Symt282542833) + C3230115 11 + 323200522 + C323033533 + T3

Iy = C3333(1=Smmt4S833) + C333311S 11 + C33332252 + Ca33333533 + T
T3 =Tp=  (20335035+C33331 3300+ 200353, + | (C223312C3535C1333) 0y,
Ti3=T3 = (20333137C3333+C31172C1312)8 13+ (Ca333Ca311~2C1313) @3
Fy=Tp= (2¢133221%C3230+C1313)8; + (C1313C2323)y (2C.1)
_ du; dy
where @; = component of the infinitesimal rotation tensor = 1/2(5‘)’(; - 53(‘1) (2C.2)

! Defining these constants relative to a set of axes rotated 180° about either symmetry axis will prove this.
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Appendix 2D Influence of rotation on measured data

In orthotropic material the rotation component ®,; will contribute to the value of G,
(Eq. 2.9).! The extent to which this affects the outcome of acoustoelastic measurements is
determined by the influence on the measured quantities which depend on G,,, namely polari-
zation angle o and times of flight t; and t,.

From Equations 2.14 and 2.15 respectively it can be seen that:

2 .0
2 t3 =G||+Gzzi\/(Gn‘Gzz)2+4G221 (2D.1)
] 2D.2
tan2oe="~"_ ~ R
Gy - G, (@b2)

Parameters ; are now defined. These are a measure of the magnitude of the acoustoelastic
effect relative to that of the orthotropy of the material:

AGyS.D

= 2D.3
€1313 ~ Ca232 ( )

ij

where AG;(S,T) is the change in G;; caused by the presence of stress and strain, thus exclud-
ing rotation. Using Equation 2.9, the expressions 2D.1 and 2D.2 may be rewritten as:

2.\0
2 t12 = (C313 + C3p32) + (€313 — C3232) X
2
x {1 + X 21+ 2002 + (X2 + 4000} (2D4)
2(Yg + ®)
fan20 = @D.5)

(1 + %1y = X20)

Now consider two cases:

¢ Slightly orthotropic material
The orthotropy is of the order of the acoustoelastic effect, i.. the X-parameter is typi-
cally near unity in stressed material. Therefore, as the rotation @,; << 1, it is negligible
when compared with %,;. As a result t,, t, and o can be considered to be rotation-inde-

pendent.

I In isotropic material @, plays no part at all.
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e Largely orthotropic material
This case is characterized by y; << 1. In the expression for t, , (Eq. 2D.4), the terms
which are second-order in ;; and/or @,; may be neglected, leading to:
2 O

2£L—9Lt122 = (€313 + C3230) + C1313 = Cams L X + %22 E (U401~ } (2D.6)

Thus, time of flight is virtually independent of ,,.
The polarization angle oo may be approximated by:

tan200 = 2(x; + y,) (2D.7)

and has a near-zero value. Although the relative error in ¢ can be large, the absolute er-
ror is only equal to the rotation angle ®,,, which is assumed to be small. In practice,
experimental errors will be dominant.
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Appendix 2E Acoustoelastic behaviour for isotropic material

Firstly, to comply with the expression for the G-tensor (Eq. 2.9), the elastic behaviour
of an isotropic material must be defined in terms of 2" and 3"-order stiffness constants. The
2™_order constants Cijia can be expressed in terms of the Lamé constants Aand p:

Cijia = M0 + 1By, 8+, 8y) (2E.1)
where & = Kronecker delta

In this isotropic case the 3™.order constants Cijimn €an be represented by 3 constants. One
way of doing this is by using the constants v,, v, and v, defined according to [53]:

Cijitmn = V198O +
V{8 BumBin*+BinBim) + Bi(Birein+inBim) + Bia BB+ 8850 }+
V3 { 81 (B;aO1+ 85, 81m) + 81(8in B+ 8, 8xm) +
+ 81 BimBnt 8 Oum) + 8 (Birn B+ 8inSi) } (2E.2)

Using Equation 2.9, while discarding the rotation and substituting the strain components
with the isotropic form of Hooke’s law, the following expressions are obtained for all x-com-

ponents mentioned in Equation 2.13:

1
Ky = Kpp = Kp3 = Kp3 = m{ A2U+V;) + p2p+v,+2vy) }
1
Kip =Ky = (3_;‘4_'2‘1_)“{"7»(“"'2"3) +1v, }

1
Ky = Kyp = m{ A2V, +4V;) + WV +2vy) )

1
Kyy = m{ A(AHOPHAV,+8V5) + W6+ +2V,+8Vy) }

ptv,
n

Kgs = (2E.3)



Chapter 3

An Experimental Technique

3.1 Introduction

In Chapter 2 a theoretical basis is formulated for ultrasonic stress evaluation. It requires
the measurement of time of flight and polarization direction of birefringent shear wave com-
ponents and optionally also that of the longitudinal time of flight. In this chapter an experi-
mental technique is described implementing this method with the aim of measuring absolute
stress levels by the use of both wave types. The technique permits reproducible and semi-
automated measurements on two-dimensional (plate-shaped) specimens.

The experimental technique is intended for use on steel, which compared with a metal such
as aluminium is known to have a small acoustoelastic effect [42] in combination with a high
acoustic impedance. This means that while on the one hand the ultrasonic signal-to-noise ra-
tio is reduced, on the other hand accurate measurements are required in order to perform a
meaningful stress evaluation. The experimental accuracy must therefore be high.

The first section of the chapter explains the principle underlying the technique. Subsequently
the factors which influence experimental accuracy are considered. They are illustrated by
means of various measurements, most of which involve steel specimens. Finally, the actual
set-up is described.

It should be noted that the theory contained in Chapter 2 applies to two-dimensional
stress fields. As the experimental technique will be used on plates, a plane stress state is as-
sumed, as would result from in-plane loading of the plate, i.e. zero stress in the plate thick-
ness direction. The wave propagation direction is necessarily in the thickness direction.

31
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3.2 Experimental principle

Any experimental method for acoustoelastic stress evaluation must provide sufficient
accuracy to accommodate the typically small magnitude of acoustoelastic material response.
It is clear that for a measurement based on both shear and longitudinal waves this accuracy is
greatly reduced if the outcome is not determined by wave propagation through exactly the
same stressed material. In addition, influences which affect both wave types, for example
those related to material temperature and the acoustic coupling between transducer and
specimen, will have more effect if they are not common to both. On these grounds, and also
in order to facilitate and speed up measurements, a set-up was developed using a single
transducer capable of transmitting and receiving both shear and longitudinal waves.

3.2.1 The pulse-echo method

A well-established method for measuring the time of flight of ultrasonic waves travel-
ling in the thickness direction of a plate is the pulse-echo technique (Fig. 3.1). A short elec-
trical pulse is supplied to an ultrasonic transducer, causing this to emit a wave pulse through

an acoustic coupling medium into the specimen at normal incidence.

As the plate surface opposite to the transducer is assumed to be stress-free, a transmitted
wave pulse will reflect totally, i.e. with a 180° phase shift in stress amplitude. The echo of
the transmitted pulse can thus be received by the same transducer. The conditions on the
transducer side of the plate are generally such that an echo is partially reflected here too.
Consequently, the wave pulse will travel several times through the thickness of the specimen,
showing a gradual decrease in amplitude. The transducer is thus able to receive a series of

successive back-face echoes (Fig. 3.2).

This received signal is amplified, after which it can be electronically processed in order to

. to signal
- .
puiser > receiver processing

ultrasonic
transducer

Fig. 3.1 Experimental principle of pulse-echo method
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evaluate quantities such as time of flight and polarization direction. The time interval be-
tween two consecutive back-face echoes is taken to be the wave time of flight corresponding
to a distance of flight of twice the plate thickness. The advantage of this approach is that the
unavoidable time delays occurring in the transducer, coupling medium and electronic cir-

cuitry are common to all echoes and are therefore automatically compensated for.

back-face echoes

__ 1 ——= Amplitude

! v —=Time

time of flight

\j

Fig. 3.2 Time of flight measured by the pulse-echo method

3.2.2 The ultrasonic transducer

Piezoelectric transducers

Ultrasonic waves can be generated in a variety of ways. Although there are certain inherent
disadvantages, transducers based on the piezoelectric effect are most frequently used for this
purpose. Typically the transducer consists of a thin disc of piezoelectric material coated on
both surfaces with electrically conductive layers, which act as electrodes. One of the disc sur-
faces is coupled acoustically to the medium in which waves are to be transmitted or from
which they are to be received. The other surface may be attached to a backing material in or-
der to obtain specific transducer characteristics. The electrodes are used to induce an electric
field in the disc, which will consequently show a mechanical reaction in the form of a
changing stress field. Alternatively, any changes in the mechanical strain of the disc will in-
duce an electric charge on the electrodes. Appendix 5B contains an extensive description of

wave excitation and detection in a piezoelectric transducer.

Piezoelectric material properties determine the nature of the electromechanical cou-
pling and thus also that of the acoustic waves which can be transmitted and received by a
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transducer. These properties can be described by means of piezoelectric constitutive equa-
tions, which may take the form of [1]:

s
D, =g&E; +¢;S; 3.1)

E
T;=CyS; - e]jEj 3.2)

where D = electric displacement vector
E = electric field vector
T = stress tensor
S = strain tensor
e= 3 order piezoelectric stress tensor
CF = stiffness tensor for constant electric field

&% = 2" order permittivity tensor for constant strain

Here the Voigt notation is used for those indices which are upper case (see Table 2. DL

An ultrasonic transducer can be built with a single crystal of a suitable piezoelectric
material, quartz for example. In order to obtain a strong electromechanical coupling specific
sintered ceramics can be used, of which Lead Zirconate Titanate (PZT) is a typical example
[22, 33]. After pressing and sintering, the piezoelectric properties are introduced separately
by poling. The material is polarized at a high temperature in a strong electric field, after
which it is cooled below a characteristic temperature (Curie temperature). By this means pie-
zoelectric properties are obtained which are isotropic in the plane normal to the poling axis.
It follows that the components of the e-tensor are insensitive to any coordinate transforma-
tion consisting of a rotation about this axis. Thus, defined on a rectangular set of axes x; with
X5 as the poling axis, the matrix representation of the e-tensor can be derived as:

0 0 0 0 ¢5 0
[e,J=| O O 0 e 00 (3.3)

€€ ¢; 0 0 0

Obviously the orientation of the poling axis (x;) relative to the disc geometry also de-
termines the nature of the electromechanical coupling. It is customary to specify this orienta-
tion as the direction normal to the cut used. Commonly implemented cuts are:

e The Z-cut
The x, poling axis is orientated normal to the disc surface. In a thin disc, i.e. with a
thickness which is small compared with the diameter, it may be assumed that the elec-

I' For the 3"-order piezoelectric stress tensor g, it can be shown that e;=¢ [1].
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tric field E caused by applying a voltage across the electrodes is directed in the thick-
ness direction, i.e. E; = E, = 0 and E; # 0. From the form of the e-tensor (Eq. 3.3) it
follows that only normal stress components will be excited (T, = T,, T,). Alternatively,
only normal strain components (S, S, and S;) will induce an electric displacement
component D, and hence an electric charge on the electrodes. This type of transducer is
therefore used in a thickness extensional mode for transmitting and receiving longi-
tudinal waves.

e The X-cut
In this case the x,-axis is the normal direction and the poling axis (x,) lies in the plane
of the disc. It is convenient to define an ¢'-tensor relative to a coordinate system X;.
This system is obtained by rotating the x;-axes through 90° about the x,-axis in order to
orientate the xj-axis normal to the disc. This leads to:

er1ere 0 0 0
ejl=| O 0 0 0 0 e (3.4)
0 0 0 0 e5 O

The electromechanical coupling is limited to mechanical components Ts and Sj
through component eys. This cut is used in a thickness shear mode as a transmit-
ter/receiver of shear waves. The shear waves excited are linearly polarized in the x;
poling direction (x;). Furthermore, this type of transducer has a maximum sensitivity

for receiving such waves but is insensitive to shear waves polarized in the x;-direction

(x,).

Transducer characteristics

Consider a transducer consisting of a piezoelectric disc with a backing medium attached on
one side and a wave propagation medium on the other. When this transducer is electrically
driven, plane waves are excited at both disc interfaces [33] which propagate into the disc and
the surrounding media. Their stress amplitudes are proportional to':

Z L. .

Z+7 for waves propagating into the disc 3.5
ZI

7+7 for waves propagating from the disc 3.6)

where Z, Z' = specific wave impedance in disc and adjacent medium respectively.

The specific impedance of a plane wave is dealt with in Appendix 3A.

' Assuming no wave conversions occur at the disc interfaces.
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In the case of a pulsed operation, as used for the pulse-echo method, the piezoelectric disc is
driven for a very short period of time by a high electric voltage. Owing to reflection at the
two interfaces, the wave pulses excited in the disc will traverse the disc thickness back and
forth a number of times. This process can be considered as a mechanical oscillation of the
disc with a basic period equal to twice the time needed for the waves to traverse the disc
thickness. The amplitude of the oscillation will then decrease as a result of:

e mechanical damping in the disc material itself;,

e clectrical damping via the electromechanical coupling in the piezoelectric disc mate-
rial, depending on the conditions on the electrical side of the transducer;

¢ wave energy which is radiated on either side of the disc into adjacent material, depend-
ing on the local transmission coefficients.

Reflection and transmission coefficients at the interfaces, which play an important role, are a
function of the specific wave impedances of the respective materials. This is described in
Appendix 3B.

It is clear that the shape of the emitted wave pulse depends on the constitution of the trans-
ducer, e.g. the properties of the materials from which it is made and its geometry, and also on
external factors such as the specific wave impedance of the propagation medium and the
conditions on the electrical side. These same factors are also relevant with regard to wave re-

ception.

Transducer characteristics range from highly damped, resulting in short pulses cover-
ing a large frequency range around a nominal value, to only slightly damped and hence nar-
row-banded. For time-of-flight measurements with the pulse-echo method short wave pulses
have distinct advantages. Echo overlap, which can occur if the pulse duration is not much
smaller than the time of flight, is avoided as much as possible. Furthermore, it is easier to
identify corresponding points within two successive back-face echoes. This will prove to be
a useful feature for the experimental technique applied here. The echoes shown in Figure 3.3
are typical for highly damped transducers.

Shear-longitudinal transducer

As stated at the beginning of this chapter, the transducer must be capable of transmitting and
receiving both shear and longitudinal waves. One way to achieve this is by stacking discs of
piezoelectric material with different cuts on top of each other [54]. Longitudinal and shear
waves can thus be transmitted and received independently. It is even possible to simultane-
ously use shear waves polarized normal to each other [8]. A disadvantage of these stacked
transducers, however, is that the characteristics of the individual discs will necessarily differ.
An alternative is the use of a transducer composed of a piezoelectric disc surrounded by a
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Fig. 3.3 First shear and second longitudinal back-face echo in 15 mm structural steel using a 45° ro-
tated Z-cut PZT transducer

piezoelectric ring for transmitting and receiving shear and longitudinal waves respectively. In
this case, however, it is to be expected that the two wave types will not propagate through
exactly the same material, owing to differences in the shape of the emitted wave bundles.

The solution for this experimental set-up is sought in a transducer with only a single
piezoelectric disc. It was specially designed by Panametrics and has reference number
X1013. To accommodate both wave types yet another cut is used rather than the Z- or X-cuts
described previously. When the disc thickness direction is at an angle of 45° with respect to
the x, poling axis, a rotated Z-cut, the electromechanical coupling will include both normal
and shear stresses and strains [31]. This can be deduced from the e"-tensor, defined on axes
x! resulting from a 45° rotation of the original coordinate system about the x,-axis:

0 0 0 0 efefs
fejl=| esiessenesy 0 0 G.7
e e ey ey 0 0
This transducer type is used in a mixed thickness elongation and thickness shear mode. Emit-

ted shear waves are polarized in the x}-direction and these waves can also be received, but

the transducer is not capable of receiving shear waves polarized in the x}-direction (x,).

For the rotated Z-cut two plane waves will be induced in the disc simultaneously,
namely a quasi-shear and a quasi-longitudinal type'. As these waves have different propaga-

! They are not pure mode waves owing to elastic material anisotropy and piezoelectric coupling [1].
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tion velocities, the excited oscillation will comprise thickness elongation and thickness shear
with unequal periods. The longitudinal wave pulse will therefore have a higher frequency
than the shear wave pulse, a phenomenon which is clearly illustrated by Figure 3.3. Partially
overlapping shear and longitudinal wave echoes are shown with nominal frequencies of 5
and 10 MHz respectively, transmitted and received with the rotated Z-cut PZT transducer.

In one respect this frequency difference can be regarded as favourable for the proposed
stress evaluation technique. The reason for this is that the propagation velocity ratio of shear
and longitudinal waves in the propagation medium, i.e. stressed steel, will roughly equal that
in the piezoelectric ceramic and therefore their wavelengths will not differ very much. Con-
sequently, the shape of the transmitted wave bundle for the two wave types will be roughly
similar, as this feature depends on wavelength rather than frequency [33].

It should be noted that the fact that shear and longitudinal waves are necessarily ex-
cited simultaneously by this type of transducer is a disadvantage. Overlap of echoes for the
two wave types (Fig. 3.3) can hinder measurements, as will be discussed below.

3.2.3 Measuring acoustic data

The quantities relevant to the method of acoustoelastic stress evaluation considered
here are times of flight for shear and longitudinal waves and the shear wave polarization di-
rection. They are measured by the pulse-echo method using the combined shear-longitudinal
transducer described above.

Time of flight
Several procedures have been proposed for measuring time of flight by the pulse-echo
method with a single transmitting and receiving transducer:

e The sing-around method [9, 33]
Initially the transducer is excited by a pulse, after which one back-face echo, selected
from the received series, is used to trigger successive pulses. The period of the pulse
repetition rate is taken as a measure of the time of flight in the specimen.

This method can easily be automated but a systematic error is inherent, as time delays
occurring in electronic circuitry, transducer and coupling are also included in the result.
Considering the accuracy and reproducibility required for time-of-flight measurements,
the sing-around method is obviously not suitable for this purpose.

® The pulse-echo-overlap method [14, 43]
A separate oscillator is used to trigger both the time base of an oscilloscope and, after
frequency division, a pulse generator. The pulses excite the transducer and the received
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echoes are displayed on the oscilloscope. A particular pair of echoes is selected by in-
tensifying them on the display by means of a strobe technique. The oscillator frequency
is then adjusted until the echoes overlap exactly, after which the time of flight between
them can be read off as the reciprocal of this frequency.

The fact that the echoes can be selected arbitrarily makes this method more flexible
than the sing-around method. However, as overlap must be established before each
measurement, this method relies on having echoes with similar waveforms. Moreover,
for this same reason, measurements cannot easily be automated - an experimental as-

pect which will prove to be indispensable.

o The phase-slope & cross-correlation methods [17]

The relevant echoes are digitized, each in its own time window, and subsequently
transformed to the frequency domain by means of a discrete Fourier transform algo-
rithm. With the phase-slope method a range is chosen around the nominal frequency,
where the derivative d(')/dm of the phase angle 6 with respect to the angular frequency
o is approximately constant for the signals. These slopes represent the time delays of
the echoes within their respective time windows. The time of flight between the echoes
then follows by taking into account the time delay between the two windows.

The cross-correlation method is based on calculating the cross correlation of the two
echoes [5]. This function of time can be obtained by multiplying the complex conju-
gate of the Fourier transform of the first echo by the Fourier transform of the second
echo and subsequently transforming this back to the time domain. The position of the
maximum for this function directly gives the difference in the time delays for the ech-
oes within their respective time windows. Again, the time of flight follows by consider-
ing the delay between the two time windows.

A disadvantage of the phase-slope technique is that it requires the selection of a suit-
able frequency range on more or less arbitrary grounds. The cross-correlation technique
is reported to give good results on highly attenuating and/or dispersive materials',
where the echoes have a low signal-to-noise ratio and are distorted [34]. However, as
will be argued in Section 5.5.6, this method is not suitable for the purpose of acquiring

accurate data for the acoustoelastic experiments under consideration.

o The direct-pulse-interval method [55]
A characteristic point is chosen in the echoes between which the time of flight is to be
evaluated, e.g. a zero crossing or an extreme value. The time of flight is then measured
directly using an electronic counter-timer triggered at these points to start and stop a
time interval measurement. Basically, the resolution in time is determined by the inter-

I Dispersive materials exhibit frequency-dependent propagation properties.
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nal clock period of the counter-timer, but it can be enhanced significantly by perform-

ing a large number of measurements and averaging the result.

Once the appropriate trigger conditions are set, the direct-pulse-interval method needs
no further manual adjustments and will follow time-of-flight changes immediately. As
was the case for the pulse-echo-overlap method, erroneous results can occur if the
shapes of the “start” and “stop” echoes are not similar.

For this experimental set-up the direct-pulse-interval technique is used to measure the
time of flight. The first zero crossings in the respective echoes are chosen as the trigger
points to start and stop the time interval measurement. Zero crossings provide easily recog-
nizable points within each echo and their level is not influenced by wave attenuation.

Differences in shape between the start and stop echoes are caused by distortion of the wave
pulse. At the applied nominal frequencies of 5 and 10 MHz it is not to be expected that dis-
persion of the wave, while propagating in steel, will make a significant contribution. Another
more likely source for distortion, however, is the occurrence of additional reflections in the
transducer and/or coupling medium. Typically this has the effect of wave energy shifting to
later parts of the pulse, since these reflections travel over longer distances. Therefore, of the
zero crossings available, the first will be the least influenced by such wave distortion. This
subject is discussed further when dealing with the influence of the transducer-specimen

coupling.

It should be noted that whatever method is used for time-of-flight evaluation, the re-
sults will inherently be influenced by diffraction effects [43]. The reason for this is that a
wave source with finite dimensions, such as a transducer, cannot produce a homogeneous
field of plane waves in a specimen. These effects, which in general cannot be ignored on the
scale of stress-induced time-of-flight changes, will be studied in Chapter 5.

Time of flight is preferably determined between the first and the second back-face
echo, as these signals have the largest amplitude. However, as a combined shear-longitudinal
transducer is used, echoes of the two wave types can overlap, depending on the propagation
properties of the stressed material. If such overlap includes the first zero crossing of an echo,
it will not then be available for time-of-flight measurements.

Figure 3.4 schematically illustrates this phenomenon for two materials, namely structural
steel and aluminium alloy 2024-T351. The series of back-face echoes are shown as they
would be received by the combined transducer after travelling through 10 mm thick speci-
mens of these materials. The delays occurring in transducer and coupling layer during
transmission and reception, which are estimated to be about 340 ns and 170 ns for shear and
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Fig. 3.4 Schematic representation of series of back-face echoes in 10 mm thick structural steel and alu-
minium 2024-T351 specimens using the combined shear-longitudinal transducer.

longitudinal waves respectively', have been taken into account. The echoes are denoted as L
and S for longitudinal and shear waves respectively, followed by the echo number, i.. the
number of round trips through the specimen.

It is clear that the shear wave time of flight in steel can be determined between the 1* and 2™

echo. For the measurement of the longitudinal time of flight the 2™ echo is unavailable, ow-

T This estimate is based on the position of shear and longitudinal echoes with respect to each other, together
with the presumption that delays are related to wave propagation and thus have a shear-to-longitudinal ratio
of roughly 2.
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ing to overlap by the 1* shear echo. Consequently, the 3" echo must be used instead to func-
tion as stop echo. The aluminium alloy, however, has a longitudinal-to-shear velocity ratio
which is slightly greater than 2. Only longitudinal echoes can therefore be used for time-of-
flight evaluation, as the first zero crossings of all shear wave echoes are overlapped.

Echo overlap will decrease with increasing distance of flight. For aluminium, however, this
will provide a solution only in extreme cases, such as very thick specimens or high echo
numbers. In this context it is obvious that short pulses are advantageous.

Shear wave birefringence

The shear wave emitted by the transducer is linearly polarized in what will be referred to as
the transducer polarization direction. When the wave enters stressed material the effect of
shear wave birefringence will generally occur, i.e. two orthogonally polarized shear waves
will be induced, propagating at different speeds (Fig. 2.1). The amplitude of a birefringent
wave component depends on the angle between its polarization direction and that of the
transducer. From equating the boundary conditions at the material interface, it follows that
the amplitude is proportional to the cosine of this angle, i.e. a maximum value for coinciding
polarization directions and zero for the normal case.

The transducer, acting as a receiver for shear waves, will show a sensitivity which is also
proportional to the cosine of the angle between the shear wave and transducer polarization
directions. Consequently, in a pulse-echo configuration, a birefringent shear wave compo-
nent will make a contribution to the signal ultimately received proportional to the square of
the cosine of the angle between wave and transducer polarization directions. Using this
knowledge, the received shear wave signal s(t) for an arbitrary transducer polarization di-
rection can be written as a linear combination of s,(t) and s,(t), the signals for the respective
transducer polarization directions which coincide with those of the two birefringent shear

wave componems:
s(t) = 5,(t) cos’(ct — 8) + s,(t) sin’(0. - 0) (3.8)

where o. = polarization direction of wave component associated with s, relative
to x;-axis
6 = transducer polarization direction relative to x,-axis

Similar equations form the basis of acoustoelastic techniques which are aimed at determining
the fractional velocity difference of birefringent wave components (birefringence) (4, 20].

Acoustoelastic stress evaluation requires measurements using both birefringent com-
ponents. As shear waves may be polarized in any direction, it follows from Equation 3.8 that
the transducer polarization direction must be variable. This is achieved by rotating the trans-
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ducer about its axis. The time of flight of a birefringent shear wave component is then
evaluated by aligning the transducer polarization direction with that of the particular wave,
leading to extinction of the other component.

Shear wave polarization

It is clear from Equation 3.8 that a shear polarization direction can be determined as the
transducer polarization direction for a maximum echo amplitude. The measurement involves
scanning the echo amplitude with a rotating transducer in a range which includes the pre-
sumable maximum. However, for transducer orientations on either side of the maximum, the
other shear wave component will have a non-zero amplitude. As the two shear echoes will
generally show some overlap, interference may occur. This can be avoided by using only the

first birefringent component to arrive in order to evaluate the polarization direction.

In spite of this, a problem may still arise if the echoes of the two birefringent shear
wave components show only a small difference in the time of arrival. For differences consid-
erably less than a quarter of the shear wave period, e.g. 50 ns in the case of a 5 MHz shear
wave, the amplitude variations will be too small to be useful. In this case, however, the com-
posite echo formed by the two almost completely overlapping shear wave components will
resemble that of a single shear wave with a time of flight dependent on the transducer polari-

zation direction.

In order to assess this effect, a calculation is performed based on Equation 3.8. The 5

< 90° >

fast components

Time of flight

slow components

time-of-flight
differences [ns]

T T T

Transducer polarization direction

Fig. 3.5 Calculated time of flight as a function of transducer polarization direction for an echo com-
posed of birefringent components of a 5 MHz shear wave pulse with increasing time-of-flight
differences.
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MHz shear wave echo, shown in the first part of Figure 3.3, is used for both s,(t) and s,(t),
the signals for the transducer polarization directions which coincide with those of the two
shear wave components. The shape of the first and second composite back-face echoes are
calculated as a function of the transducer polarization direction for time-of-flight differences
varying from 5 to 45 ns. The positions of the first zero crossings within these echoes deter-
mine the time of flight which would be found using the measuring technique described
above. Figure 3.5 shows the calculated values as a function of the transducer polarization di-

rection.

Up to time-of-flight differences of 25 ns the shear polarization of the components can be
found in a straightforward manner as the directions for which time of flight takes an extreme
value. For larger differences the extremes become less pronounced. They are eventually ac-
companied by other extremes, a situation which makes an accurate evaluation difficult. Ow-
ing to the asymmetry of the waveform relative to the first zero crossing, this effect is found

to be more manifest for the faster shear wave component.

To summarize, the criterion most suitable for determining the shear wave polarization
direction depends on the time-of-flight difference between the birefringent components rela-
tive to the period of the wave pulse. For small and large differences respectively optimal ac-
curacy is obtained by measuring the transducer polarization direction for either a maximum
time-of-flight value of the composite shear wave echo or the maximum amplitude of the
fastest birefringent component. In both cases the polarization of the other component must be

assumed to be normal to the direction found.

3.2.4 Transducer-specimen coupling

The transmission and reception of ultrasonic waves by a piezoelectric transducer re-
quires the transfer of mechanical energy to and from the stressed material. In this particular
case both shear and longitudinal waves must be accommodated simultaneously. A number of

options are available in order to create an acoustic coupling of this kind:

¢ Fixed bond
Creating a fixed bond between transducer and specimen [43] is a possible method but
it is not a very practical, as the transducer polarization must be variable.

e Pressure coupling
Acoustic coupling is achieved by attaching the transducer to a metal coupling piece
which is pressed onto the specimen [9]. However, the interface pressure required for an
effective coupling (=140 MPa) is so high that the stress state in the specimen is likely
to be influenced. Furthermore, the coupling cannot be maintained while varying the

transducer polarization.
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Fig. 3.6 Results from measurements in a 15.4 mm thick structural steel specimen as a function of coup-
ling layer thickness, showing the amplitude and change in time of arrival of the first longit-
udinal and shear wave echoes.

¢ Fluid coupling medium
For longitudinal waves, water and light oil are most frequently used as coupling media.
However, in order to couple shear waves, the fluid must also allow shear stresses to
build up. This is possible at ultrasonic frequencies if the viscosity is sufficiently high.
Such fluids are therefore widely used for shear wave measurements. One advantage is
that the coupling function is maintained during slow transducer rotation [14].

Obviously, from an experimental viewpoint, a viscous fluid is the most suitable cou-
pling medium and this is therefore what was used for the experimental set-up. The fluid is
manufactured by Panametrics and designated as Shear Wave Couplant. The composition is
unknown.

The propagation of longitudinal waves through the couplant does not present any
problems, as only hydrostatic stresses are involved and these can build up in any fluid. Shear
wave propagation, however, depends on viscous behaviour and is therefore inherently also a
function of frequency. In order to gain a rough impression' of the ultrasonic properties of the
couplant, measurements were performed using the combined shear-longitudinal transducer,
i.e. with 5 MHz shear and 10 MHz longitudinal wave pulses.

The experiments were performed on a steel specimen, varying the coupling layer thickness
from 100 to 500 pm. The time of arrival of the first longitudinal and shear wave back-face

T Rough in the sense that dispersion in the couplant is neglected.
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Fig. 3.7 Estimated longitudinal and shear wave phase velocities and attenuation coefficients in shear
wave couplant as a function of temperature.

echoes was determined relative to the pulse exciting the transducer. This quantity includes
the time needed for the waves to traverse the coupling layer twice. The amplitude of the first
maximum of the first back-face echoes was also measured, as it is a measure of wave at-
tenuation in the couplant. The results, shown in Figure 3.6, have no accuracy in an absolute
sense, but their dependence on the coupling layer thickness gives an indication of the phase
velocity and attenuation coefficient! in the shear wave couplant.

It was found, however, that temperature has a significant influence on the properties of the
couplant. In order to assess this effect the time of arrival and amplitude were recorded for a
fixed layer thickness of 110 wm while increasing the temperature from 20.5 to 24.5 °C. By
correcting the time-of-arrival data for time-of-flight changes in the steel specimen (see be-
low) and attributing all other changes to the couplant, estimates for the velocity and attenua-
tion coefficient are calculated as a function of temperature. The results, shown in Figure 3.7,
indicate an increase in the wave attenuation with temperature, especially for shear waves. At
the same time the phase velocities exhibit a slight decrease.

To summarize, it may be concluded that the shear wave couplant can effectively couple
transducer and specimen for both shear and longitudinal waves, provided that only a thin
layer is used. The coupling characteristics will, however, be temperature-dependent.

I The attenuation coefficient o. describes an exponential amplitude decrease proportional to e, where x is
the distance of flight.
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3.3 Distorting influences

Before describing the actual set-up, certain factors which influence the results of the
acoustoelastic experiments under consideration will be considered. These factors played an
important role in the development of the technique. Experimental data will be presented to
illustrate the distorting influences.

3.3.1 Transducer-specimen coupling

There are many examples in literature indicating that the transducer-specimen coupling
is the weak link in time-of-flight measurements using a piezoelectric transducer (3, 7, 14].
This was probably the main reason for considering alternative transducer types which do not
need to be in direct mechanical contact with the specimen in order to function correctly, e.g.
transducers based on electro-magnetic principles (EMAT). It is the lack of reproducibility
which creates the problems, especially if the time-of-flight data obtained are required to have
a high and virtually absolute accuracy, as is the case here.

Wave distortion

A reproducible coupling can be obtained by allowing waves to travel longer distances in the
coupling medium before entering the specimen, for example when an immersion technique
in a water bath is used [16, 32]. Time of flight can then be determined as the time interval
between echoes from the front and back face of the specimen. During their travel through the
coupling medium both these signals will be distorted due to dispersion and diffraction ef-
fects. The reflections occurring at the front and back faces are also (unequal) functions of the
acoustic properties of the fluid. Nevertheless, there is no reason for these effects not to be re-
producible, provided that the transducer-specimen distance and the acoustic behaviour of the
couplant (generally related to temperature) are kept constant. One problem, however, is that
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Fig. 3.8 Reflections within a thin coupling layer while entering the specimen (a), reflecting against the
couplant from the specimen (b) and leaving the specimen (c).
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the immersion technique is limited to longitudinal waves, as shear waves will be attenuated
too much in the couplant due to the large distance of flight. Moreover, this technique is not
always a very practicable solution.

A completely different situation arises when thin coupling layers' are used and the time
of flight is measured between successive back-face echoes. Waves which are transmitted
through or reflected against the couplant will be reflected within the layer a number of times,
as is shown schematically in Figure 3.8. For both shear and longitudinal waves the specific
wave impedance in the fluid couplant is considerably lower than in either transducer or
specimen. Consequently, the extra reflections within the layer will be numerous and without
phase reversal, as they involve a reflection coefficient near unity (Appendix 3B). They have
the effect of shifting wave energy to later parts of the waveform. Together with dispersion in
the viscous coupling fluid, the extra reflections give rise to waveform distortion in a manner
which is obviously a function of the coupling layer thickness.

There are a number of reasons why the wave emitted by the transducer is distorted before it

is ultimately received in the form of back-face echoes:

e transmission through the coupling layer on entering and leaving the specimen. The in-

fluence is common to all echoes;

e diffraction in the specimen, which being a function of the distance of flight, distorts
each back-face echo differently;

e reflection against the coupling layer." Each echo is affected differently, since the num-

ber of times this reflection occurs depends on the echo number.

Clearly the last two phenomena lead to dissimilar back-face echoes. The presence of the
coupling-related influences will therefore cause these different shapes to be different func-
tions of layer thickness. Consequently time-of-flight evaluations will be reproducible only if
this thickness is controlled.

Layer thickness

In order to obtain a reproducible coupling layer, it is common practice to press the transducer
onto the specimen surface using a constant pressure [6, 7, 8, 15]. Furthermore, after position-
ing the transducer, some time is allowed for the viscous couplant to squeeze out between
transducer and specimen before the actual measurements are performed.

In Appendix 3C the case is considered of a circular transducer which is pressed onto a speci-

I In this context thin refers to the situation in which time of flight through the coupling layer is small compared

with the pulse length.
I 1, should be noted that as it is receiving an echo at the same moment, the transducer will act as a transmitter

and so contribute to distortion of later echoes as well.
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men with a viscous fluid in between. The layer thickness h is derived as:

37nR*
h=\/"p (3.9)

where 1 = viscosity coefficient of couplant
R = transducer radius

1= impulse exerted on transducer, equal to the time integral of the ap-
plied force (JF(t)dt)

assuming the initial layer thickness, i.e. before applying any pressure, to be much larger than
the ultimate values. Rotation of the transducer about its axis does not influence the thickness
obtained.
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Fig. 3.9 Calculated coupling layer thickness as a function of applied impulse for a 9 mm diameter
transducer and couplant viscosity coefficients ranging from 1000 to 100000 Pa-s.

This equation expresses that as a result of applying a constant pressure, the layer thickness
will be reduced continuously at a decreasing velocity, depending on the transducer radius,
fluid viscosity and applied force. Figure 3.9 illustrates this for a transducer in a 9 mm diame-
ter casing. This value and a couplant viscosity coefficient of 10 000 Pas are typical for the
set-up under consideration. It is found that for this case an impulse of about 23 000 N-s is
needed to obtain a layer thickness of 20 pm. At an applied pressure of 0.69 MPa, for exam-
ple, this would take almost 9 minutes [15]. Although the thickness will only decrease slowly
at this point, time-of-flight evaluation will continue to be influenced until the pressure is re-
moved. An alternative approach would be to release the pressure after a certain thickness is

obtained, using some mechanical means. However, considering the thinness of a typical layer
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and therefore the accuracy required, this solution will be difficult to realize.

Effect of thickness on time of flight

The way in which the coupling layer thickness influences time-of-flight evaluation was de-
termined experimentally. Using the combined shear-longitudinal transducer in a pulse-echo
configuration, the time of flight was measured through a 15 mm thick structural steel speci-
men. The layer thickness varied between 20 and 200 pum. Thinner layers could not be
achieved with the set-up used, while thicker layers would lead to an unacceptably high at-
tenuation. The results, which are presented in Figure 3.10, show that from 20 pm onwards
the time of flight increases with thickness for both wave types. Above a certain limit thick-
ness, approximately 80 um for shear waves and 90 pm for longitudinal waves, the time of
flight is found to be no longer influenced.
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Fig. 3.10 Measured shear and longitudinal wave times of flight in a 15 mm thick structural steel speci-
men as a function of coupling layer thickness.

A highly probable explanation for this limit thickness is based on the fact that reflections
within the couplant, which are a cause of time-of-flight dependence, are delayed propor-
tionally to the layer thickness. If this delay is large enough, waves are distorted only after the
first zero crossing and the time-of-flight evaluation is then no longer affected.

The observed time-of-flight dependence below the limit thickness can be qualitatively ex-
plained by considering an important difference between successive echoes, namely the dis-
tortion introduced during reflection from the specimen against the coupling layer. For this
purpose an approximate calculation was performed. It is based on the 5 MHz shear wave
echo shown in the first part of Figure 3.3. In this calculation the waveform is assumed to rep-
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Fig. 3.11 Calculated distortion of the second back-face echo of a 5 MHz shear wave pulse in steel
caused by reflection against the coupling layer, for increasing layer thicknesses.

resent the second echo in a steel specimen in a situation in which there is no coupling layer
to reflect against, i.e. a free surface corresponding to a reflection coefficient of —1. The nec-
essary reflection and transmission coefficients are derived from the specific shear wave im-
pedances in steel, couplant! and transducer, which are taken to be 25.3, 1.8 and 18 MPa-/p,
respectively. For the phase velocity and attenuation coefficient in the couplant the respective
values of 1250 M/g and 5000 m” are used, which are estimates based on experiments (see
Figs. 3.6 and 3.7). Finally, the transducer is considered as a passive element, i.e. no re-trans-

mission of received echoes is assumed to occur.

Figure 3.11 shows the calculated distortion of the first and most relevant part of the wave-
form for layer thicknesses varying from 20 to 100 pm. As time of flight is measured using
the first available zero crossing in the echoes, it is obvious that the thickness dependence
does at least qualitatively correspond to that found experimentally. It therefore seems likely
that the effect of the coupling layer thickness on time-of-flight evaluation (Fig. 3.10) is
mainly due to distortion introduced during reflection of the wave from the specimen against
the coupling layer.

Increased layer thickness
It may be concluded from the above that as far as time-of-flight evaluation is concerned a
layer thickness above the limit value is the most favourable for obtaining a reproducible

L' In fact, the attenuation of the coupling fluid calls for a description using a complex impedance. For the sake
of simplicity a real impedance is assumed here and a full treatment is postponed until Chapter 5.
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coupling. A layer thickness of 100 pm was therefore chosen, which is just above the limiting
value for both shear and longitudinal waves.

A clear disadvantage of an increased thickness is the higher attenuation of the signal.
For example, based on an attenuation coefficient of 5000 m™, the amplitude of a shear wave
after traversing the coupling layer twice is reduced 2.2 times as much for a thickness of 100
um compared with a thickness of 20 pm. This amplitude ratio will even be somewhat higher
if the reflections within the coupling layer are taken into account; these tend to increase the
amplitude, due to the fact that reflection coefficients are near unity. For thinner layers this ef-
fect is more pronounced, since then these extra reflections are less attenuated and less de-
layed. The signal-to-noise ratio will not decrease by the same amount, however, since to a
large extent this is determined by spurious echoes in the signal received by the transducer
and these will also be attenuated.

It should be noted that an increased layer thickness does not guarantee a reproducible
coupling. As discussed earlier, the back-face echoes inherently have unequal shapes and
therefore unequal frequency spectra. Dispersion, i.e. frequency-dependent propagation, in the
couplant will therefore affect successive echoes differently. This effect is amplified as layers
become thicker and thickness variations may still influence time-of-flight evaluation. This
subject will be considered further in Chapter 5, where a calculation model for the current

pulse-echo technique is worked out.

Transducer rotation

It is essential that ultrasonic measurements can be performed as a function of the transducer
polarization direction. Quantities such as time of flight and echo amplitude are scanned, i.e.
measured while rotating the transducer. Obviously the characteristic of the transducer-
specimen coupling must remain as constant as possible during such a scan. As an example
the results are presented of both amplitude and time-of-flight scans measured on a low-
textured structural steel. The scans were recorded in both rotation directions using a trans-
ducer rotation velocity of 2 °/s. The coupling layer thickness was 100 pum.

The results of the echo amplitude scans, shown in Figure 3.12, indicate differences of up to
2.5 % between the two rotation directions. Since these amplitude variations do not always
occur in the same manner, it is thought that they are related to a non-homogeneous coupling
fluid and/or fluctuations in the electronic circuitry driving the transducer.

Experiments show that the received echo amplitude can become somewhat time-dependent
when transducer rotation has just begun or finished, especially in the case of thin coupling
layers. It is believed that this effect is caused by temperature changes in the couplant, com-
bined with the fact that attenuation in the shear wave couplant increases with temperature.
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Fig. 3.12 Scans of longitudinal and shear wave echo amplitude in 2 29 mm thick structural steel speci-
men made in both rotation directions. The first positive peak value in each first back-face echo
is measured.

Temperature changes can be induced by the mechanical work involved in rotating the trans-
ducer, which is dissipated in the viscous fluid. These changes become more pronounced for
thinner layers, since (i) more mechanical work is done and (ii) the fluid volume dissipating
this work is smaller. In order to avoid this influence, scans are performed in such a way that a
virtually stationary situation is achieved during the relevant part of the scans.

Figure 3.13 gives the results for the longitudinal and shear wave time-of-flight scans. They
show that the time-of-flight values do not deviate by more than 0.1 ns and 0.2 ns from each
other for longitudinal and shear waves respectively. Apparently the relative amplitude varia-
tions which occur during a scan are not accompanied by comparable time-of-flight varia-
tions. The unequal extreme values for the shear time of flight and the varying longitudinal
time of flight are attributed to transducer misalignment, an aspect which is discussed below.

It should be noted that no significant differences were found between values measured
while rotating at 2 °/s and those determined statically. However, the use of significantly
higher scan speeds can cause deviating results, especially for thin coupling layers. The expla-
nation for this is thought to be related to non-parallelism of the transducer and specimen sur-
faces. While rotating, the viscous couplant will be compressed on one side of the transducer
and expanded on the other. During compression the fluid is partly squeezed out between the
surfaces, due to the high pressure occurring. The supply of fluid needed for expansion, how-
ever, cannot take place at the same speed, since only atmospheric pressure is available in or-
der to achieve this. As a result cavities can be formed in the fluid, resulting in loss of the
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Fig. 3.13 Longitudinal and shear time-of-flight scans made in both rotation directions and measured
through a 29 mm thick structural steel specimen.

coupling function. Observations using a transparent specimen, where on one side of the
transducer a colour change in a thin couplant layer (20 um) could be detected during rotation,

confirm this explanation.

As is argued below, a slight tilt of the transducer is difficult to avoid in practice. As a result
the present set-up, in which the layer thickness is mechanically fixed, is not very suitable for
thin layers in combination with the high viscosity couplant. For larger thicknesses, however,
this phenomenon does not play an important role.

3.3.2 Transducer misalignment

In a conventional configuration, where a direct-contact transducer is placed on a
specimen using a low viscosity fluid as a couplant, parallelism of the transducer and speci-
men surfaces is ensured. Correct alignment of the transducer axis with the specimen normal
is no longer guaranteed when a high viscosity shear wave couplant is used. For example, if a
constant pressure is applied to position the transducer, the pressure in the coupling fluid has a
maximum value at the centre and decreases to zero towards the edge (Appendix 3C). There-
fore, depending on both the construction and the stiffness of the mechanical set-up used for
positioning the transducer, misalignment can occur. With an increased layer thickness, as is
the case here, pressure is zero in the couplant and misalignment is entirely determined by the

accuracy of the positioning construction.

Misalignment of the transducer will cause distortion of the ultrasonic waves for two
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Fig. 3.14 Shear and longitudinal echo peak amplitude as a function of transducer polarization direction
for a highly textured pipeline steel (10.26 mm thickness), showing the influence of transducer
misalignment.

reasons:
e The coupling layer thickness varies over the transducer surface.

e After traversing the specimen a number of times a shift of the wave bundle occurs
relative to the receiving transducer.

Refraction at the couplant-specimen interface also plays an important role in the latter effect.
According to Snell's law [1], the angle of refraction at the interface between two media de-
pends on the respective phase velocities. Generally the phase velocity in the coupling fluid is
lower than in the specimen, leading to a wave bundle in the specimen, which is more tilted
than the transducer. For example, based on the experimentally obtained velocities given
previously for the couplant (Fig. 3.7), the ratio of these angles is 2.5 and 2 respectively for
shear and longitudinal wave bundles emitted in steel.

Wave distortion, as caused by transducer misalignment, is likely to affect both time-of-
flight and amplitude measurements. Misalignment can also be a function of transducer orien-
tation. To understand this, the misalignment of a rotatable transducer can be divided into two
parts:

« the angle between the transducer and the rotation axes;
¢ the angle between the rotation axis and the specimen normal.

When both of these kinds of misalignment occur simultaneously, the resultant distorting ef-
fect is dependent on the transducer orientation. This will particularly affect shear wave po-
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larization measurements when they are based on the determination of amplitude maxima.
The wave amplitude will vary not only because of shear wave birefringence but also due to a
changing misalignment.

Figure 3.14 shows an example of an amplitude scan for a highly textured steel, measured
with the combined shear-longitudinal transducer. The maximum of the amplitudes for the
first echoes of the two birefringent shear wave components is plotted as a function of trans-
ducer polarization direction. The angles for a maximum value, which are a measure of the
polarization directions of the two shear wave components, are also indicated in the graph. In
addition, the amplitude of the first longitudinal echo is shown. It is estimated that during the
measurement the transducer axis was tilted 0.5° relative to the rotation axis and that this axis
in turn was tilted 0.2° relative to the specimen surface normal.

The fact that the longitudinal amplitude varies with a period of 360° is attributed to trans-
ducer misalignment. This same variation also seems to be part of the shear amplitude. The
graph clearly shows the effect which this has on the position of the shear wave amplitude
maxima. These should be 90° apart, but are now shifted 1 to 2° at angles where there is an
amplitude gradient. Two amplitude maxima originating from the same shear wave compo-
nent but 180° apart will be shifted in opposite directions. The error introduced by misalign-
ment can therefore be minimized by normalizing these maxima so that they are exactly 180°
apart.

An example of the effect of misalignment on time-of-flight measurements has already
been given in Figure 3.13. The influence of a tilted transducer on both amplitude and time-
of-flight measurements is considered further in Chapter 5.

3.3.3 Signal noise

Obviously noise in the received transducer signal can affect measurements. As far as
random noise is concerned, the influence will be very small. This is because the ultrasonic
signal is repetitive, which enables averaging to take place, thereby cancelling all random
noise. It is found, however, that the transducer itself also produces a small background sig-
nal, which decreases in amplitude from the exciting pulse onwards. This is probably caused
by echoes occurring within the transducer, e.g. the backing medium. Acoustic coupling re-
duces the amplitude of the background signal.

Measured from the start of the exciting pulse, the influence of the pulse becomes negligible
at about 3 ps, after which the peak amplitude of the background signal is no more than 0.13
mV. An exception is formed by the time range between 5.5 and 8 Us, where peaks of up to
0.38 mV occur. These values were observed while coupling the transducer via a 100 um
couplant layer to a thick steel specimen, i.e. the first (longitudinal) back-face echo only oc-
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curred after about 10 is.

The background signal will not greatly affect the evaluation of stress-induced time-of-flight
changes, since these changes are small relative to the period of the signal. However, the ab-
solute value of measured time-of-flight data can deviate somewhat. It is estimated that the
maximum effect is approximately 1 ns for shear waves and 0.2 ns for longitudinal waves. It
would be possible to compensate for this error by measuring the background signal sepa-
rately and correcting time-of-flight data, dependent on the position of start and stop echoes

relative to the background.
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Fig. 3.15 Magnified view of the ultrasonic signal measured with the combined shear-longitudinal trans-
ducer through a 15 mm thick structural steel specimen. Small additional echoes are shown, at-
tributed to mode conversion of the wave during reflections, due to the finite dimensions of the

wave beam.

It is noteworthy in this context that the background signal would seem to be larger at
first sight. Figure 3.15 shows a magnified view of the first 20 us of the ultrasonic signal as
measured through a 15 mm thick structural steel specimen. Between the longitudinal and
shear echoes small perturbations can be observed with peak amplitudes up to 0.9 mV. How-
ever, their positions correspond exactly to wave components which have been converted
from longitudinal to shear or vice versa during reflections. For example, if a small part of the
longitudinal wave emitted by the transducer is reflected as a shear wave at the back face of
the specimen, it would arrive exactly in-between the 1** longitudinal and the 1% shear echo.
This echo is denoted as "Is" in Figure 3.15. Likewise, the positions of other echoes resulting

from mode conversion are indicated, together with multiple reflections.

For plane waves at normal incidence, mode conversion cannot be expected. However, the
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term plane wave is a simplification of reality, as the transducer and therefore the wave beam
transmitted by it, have finite dimensions. This same phenomenon could also occur when us-
ing a shear or a longitudinal transducer. However, as the transducer is only sensitive then to
one or the other wave mode, it would not be noticeable. For structural steel the longitudinal
to shear velocity ratio is such (1.82) that the extra echoes do not interfere with the regular
ones. This would only be the case for ratios of 5/3, 7/3 or 3.

3.3.4 Temperature

Experiments reveal that in metals such as steel and aluminium the time of flight of ul-
trasonic waves depends on temperature. As an example, Figure 3.16 shows this dependence
for structural steel over a small temperature range. It can be seen that variations of only 1 °C
cause significant time-of-flight changes when compared with those induced by stress.
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Fig. 3.16 Temperature dependence of shear and longitudinal time of flight measured in a 15 mm thick
structural steel specimen.

Some influence of temperature is to be expected through thermal expansion, as this affects
both mass density and distance of flight. Let the time of flight t be determined by the distance
of flight L, mass density p and some elastic stiffness C, according to:

2
Lp (3.10)

The effect of linear expansion on the relative time-of-flight change At/t can now be written

as:
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i 3.11)

where o = coefficient of linear expansion
AT = temperature change

However, for structural steel, which has an expansion coefficient of 12.10° K‘l, this would
lead to dependence opposite to that found experimentally and with a much smaller magni-
tude. It must be concluded, therefore, that the elastic properties of the material are a function
of temperature.

As the temperature influence on time of flight is linear in nature, at least in the small
range shown in Figure 3.16, it seems appropriate to use a linear coefficient to describe it. All
times of flight determined experimentally can then be normalized to one temperature using:

' =t{1+B(T" - T9} (3.12)

where t°, t* = experimental and normalized times of flight respectively
T®, T" = experimental and normalizing temperatures respectively
B = temperature coefficient for time of flight

For example, the data presented in Figure 3.16 for a structural steel lead to coefficients 3 of
170-10° K" and 130-10™° K™ for shear and longitudinal waves respectively.

The question arises as to whether this temperature dependence is affected by stress.
Reference [6] describes measurements of temperature-induced velocity changes as a function
of applied uniaxial stress in a structural steel. The propagation direction of the shear and
longitudinal waves was perpendicular to the stress. Expressed in terms of the temperature
coefficient B, the dependence of a uniaxial stress T, Was found to be:

B =+135+0.070-T ;s ------------ fOr shear waves polarized parallel to stress

B =+135-0.065-T

umiaxial *+eeererrees for shear waves polarized normal to stress

B =+110+0.065-T for longitudinal waves

uniaxial **eeeeere et

where P and T,,;,,;.; are expressed in K ™' and MPa respectively. Even for stresses of several
hundreds of MPa it would only involve a correction of a correction. Therefore no stress de-
pendence is assumed and Equation 3.12 is used.
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3.4 Experimental set-up
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Fig. 3.17 Overview of the experimental set-up for acoustoelastic stress measurements.

In Figure 3.17 an overview is shown of the experimental set-up used for acoustoelastic

stress evaluations. It consists of the following items:
e a specially designed transducer holder for positioning and rotating the transducer;

e a Panametrics 5052UA ultrasonic analyzer, used for driving the transducer, amplifying

the received signal and measuring peak amplitudes;

e a Tektronix 7904 oscilloscope (500 MHz), equipped with two 7B92A dual time bases
and a 7A26 vertical amplifier, to observe the ultrasonic signal and set the trigger levels;

e a Tektronix DC5009 counter-timer for accurately determining time intervals;

e a personal computer, fitted with a Scientific Solutions IEEE488 interface board and a
Data Translation DT2805 analog and digital I/O board, for performing control tasks
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and acquiring data;

e a computer interface to provide trigger and arm signals and drive the stepper motor in
the transducer holder.

The set-up is described in detail in the following. Certain aspects of accuracy not discussed
above will also be discussed, as they are closely linked to the actual set-up.

3.4.1 Transducer holder

Based on the foregoing discussion of the experimental principle and the distorting in-
fluences, the construction used for positioning the transducer on the specimen surface should
have the following features:

e A certain gap must be maintained between transducer and specimen surfaces, i.e. ap-
proximately 100 wm for the current transducer type and shear wave couplant.

o It must be possible to rotate the transducer about its axis at a controllable speed and to
measure its polarization direction accurately.

e The transducer and rotation axes and also the rotation axis and the specimen normal
must be correctly aligned.

In addition to these requirements, it is convenient if during a measurement the transducer can

have a fixed position on either a horizontal or a vertical specimen surface.

In order to achieve all this a transducer holder was specially designed. A drawing of

the holder is shown in Figure 3.18. The holder rests on the specimen (9) on three steel legs
(8) forming an equilateral triangle with the transducer (1) in the centre. These legs are
mounted on a ring (3), which can be rotated relative to the holder by using a very fine thread.
By this means it is possible to adjust the transducer-specimen distance with a resolution of
10 pm.
Rotation of the transducer is performed using a stepper motor (7) in conjunction with a gear
box (6), ultimately providing a step size of 1/g°. The construction of the gear box is such that
all clearance is eliminated. The transducer orientation is therefore determined exactly by the
position of the motor and is thus known to within 1/g° by simply counting all steps made
from a particular calibrated position onwards.

The transducer itself is held by a separate fixture, which in turn is mounted in the holder by
three pairs of small screws (2) 120° apart. The screws are used to ensure the correct align-
ment of the transducer axis with respect to the rotation axis. The extent to which these axes
are aligned can be accurately checked by observing an optical reflection on the transducer
surface during rotation. It should be noted that the alignment of the rotation axis relative to
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Fig. 3.18 Sketch of transducer holder, showing transducer (1), screws for adjusting transducer alignment
(2), ring for adjusting transducer-specimen distance (3), counterweight (4), mounting bar (5),
gear box (6), stepper motor (7), positioning legs (8) and specimen 9).

the specimen normal is inherently determined by the accuracy with which the holder as a
whole has been made.

The design of the holder is such that the three legs are uniformly pressed by its weight onto
either a horizontal or a vertical surface. This is achieved by (i) the location of the centre of
gravity of the holder, which is largely determined by a counterweight (4) and (ii) the various
centres of rotation in the connection between the holder and the mounting bar (5). The
mounting bar itself is perpendicularly joined to another bar in such a way that the holder can
be moved manually over the specimen surface. Its position can be read to within 0.1 mm.

As mentioned earlier, the relation between transducer polarization direction and step-
per motor position must be calibrated. For this purpose a plate-shaped specimen is used con-
sisting of a material which exhibits a measurable but not necessarily known shear wave bire-
fringence. First the stepper motor position is determined for which the transducer polariza-
tion coincides with that of one of the two shear wave components. Next the specimen is
turned about some arbitrary axis in the plane of the plate. The transducer is then placed on
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the opposite side at exactly the same location and the stepper motor position is again deter-
mined for coincidence with the polarization direction of the same shear wave component.
Averaging these two stepper motor positions yields the position for which the transducer
polarization is either parallel to or normal to the axis used for turning the specimen. The
ambiguity can often be eliminated, since the polarization direction of the transducer is ap-
proximately indicated on the casing. If there is no such indication, known time-of-flight val-
ues for certain shear wave components can also resolve the ambiguity.

3.4.2 Electronic circuitry

Pulser-receiver

+350 V

390K

. high pass
attennator| amplifier ilter

Ce
_
—2
Al i (0 to 68 dB) (20 or 40 dB (1l 1;1-::2;0 output
= lipping
2 Ry o
triggering transducer diodes

Fig. 3.19 Outline of the electronic circuitry of the pulser-receiver.

Figure 3.19 contains a schematic layout of the electronic circuitry of the pulser-receiver,
forming part of the ultrasonic analyzer. It is used for exciting the transducer and receiving the
resulting series of back-face echoes. A pulse is generated by triggering a thyristor, which in a
very short time becomes conductive and so induces a high negative voltage across the trans-
ducer terminals. This voltage goes back to zero, as the energy capacitor (C,) discharges
through the transducer and the damping resistor (Ry) in parallel, producing a pulse with short
rise and fall times. Pulses can be generated with a repetition rate which is adjustable from
100 to 5000 Hz.

The capacitance C, and the resistance R can be varied from 300 to 1800 pF and 10 to 500 Q
respectively. Increasing either of them causes the pulse to have a larger amplitude and width.
Obviously the pulse shape is also determined by the transducer itself and its mechanical load.
According to the specifications of the transducer, the peak voltage should not exceed 2 V per
um thickness of the piezoelectric disc', and therefore a value of 300 pF is consistently used

' In addition, the polarity should always be such that the voltage of the electrode between the piezoelectric disc
and the backing medium becomes negative with respect to the grounded electrode on the side of the propa-
gation medium.
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Fig. 3.20 Pulser output for various R -values, C, = 300 pF and no transducer attached.

for C,. In Figure 3.20 the pulse shape is shown as it is produced by the pulser for C, = 300
pF, various R;-values and no transducer attached.

During wave reception the damping resistor also plays an important role. It forms the
electrical load for the transducer and therefore partly determines the transducer characteris-
tics. After an adjustable attenuation the received signal is clipped in order to prevent the high
voltage from the pulser from reaching the amplifier. The amplifier has a bandwidth of 40 or
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Fig. 3.21 Calculated receiver output just after the occurrence of the exciting pulse for different lower
cut-off frequencies. The voltage scale refers to the receiver input.
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35 MHz for low or high amplification respectively. Finally, a high-pass filter provides an
adjustable lower cut-off frequency.

This filter frequency must be chosen with care, as it can influence time-of-flight measure-
ments significantly. Despite the fact that the signal is clipped, the amplifier will be driven
into saturation by the pulse exciting the transducer. In this case the output voltage of the
amplifier is typically —0.7 V during 1 ps, after which it gradually recovers'. The resulting
output of the high-pass filter strongly depends on its setting.

Figure 3.21 shows the receiver output signal as calculated for various cut-off frequencies, as-
suming a pulse repetition rate of 5 KHz. The output signal is converted to an equivalent input
voltage in order to facilitate comparisons. The series of back-face echoes received by the
transducer are superimposed on the signal shown. It is obvious that successive echoes are
offset differently, especially for cut-off frequencies of 30 and 100 KHz. As time of flight is
measured using zero crossings, erroneous data will result. A setting of 1 KHz reduces this ef-
fect but has the disadvantage of decreasing the signal-to-noise ratio. When a cut-off fre-
quency of 300 KHz is used, the offset is minimized for echoes which occur at least 4 ps after
the exciting pulse. A higher setting would noticeably affect the shape of the 5 MHz shear

wave echo.

Time-of-flight evaluation

Signals relevant to the time-of-flight measurement technique are shown in Figure 3.22. The
signal designations refer to Figure 3.17. The pulser in the ultrasonic analyzer excites the
transducer at a repetition rate of 5 KHz and simultaneously generates a synchronization
pulse. This pulse triggers main time base B of the oscilloscope, which is set to run until after
the last relevant back-face echo is received. The sweep signal of this time base (1 in Fig.
3.17) is led to two voltage comparators in the computer interface. Each of these compares the
signal with an analog DC signal, which is controlled by a digital-to-analog converter in the
personal computer. The output of the two comparators is then added and used to trigger main
time base A (). Using appropriate settings for the two analog signals, the main time base A
starts running just before the occurrence of both the start and stop echoes in the ultrasonic
signal.!

Delayed time base A is triggered by the first zero crossing with a negative slope in these two
echoes, and the oscilloscope will therefore display the signals on top of each other. More-
over, part of the echo before the trigger points is also visible, as the signal is delayed by
propagation through the cable and the vertical amplifier. The gate signal of time base A m
consists of two short pulses and is led to the counter-timer. Using a period measuring mode

1 This behaviour was observed using 10 dB attenuation and 40 dB amplification.
I This requires that the total duration of the sweep is less than the time of flight to be measured.
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the wave time of flight is found as the time interval between the leading flanks. The com-
puter interface also provides a signal (" ) to disarm the counter-timer during the stop echo,
in order to prevent it from measuring the complement of the desired time-of-flight value.

41\ ultrasonic analyzer

synchronization
start echo stop echo
A A~ A ultrasonic analyzer
v output

/\— time base B sweep
j ‘ f l computer interface

trigger output

time base A sweep

L time base A gate

computer interface
arm output

time of flight measured

Fig. 3.22 Various signals during time-of-flight determination.

The whole path from the transducer to the counter-timer is the same for both the start
and stop signals. This means that factors which could affect a time-of-flight reading, such as
differences in trigger level, cable length and propagation delay in the electronic circuitry, are
eliminated. The accuracy is now mainly determined by:

e The trigger level of delayed time base A
As this level applies to both start and stop echo, the exact trigger point is visible on the
oscilloscope display as the intersection of two negative slopes. Using a fast sweep rate
for the delayed time base, i.e. 2 or 5 ns per division, the trigger level can easily be set
to zero within £5 mV. The time-of-flight error At caused by a trigger level error AV,
depends on the time derivatives V,,, and V,,, of the amplified start and stop echo sig-
nals at their first zero crossings, according to:

At=( ! —-—1—)AVmg (3.13)

Vstop Vstzm
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The attenuation and amplification of the receiver is adjusted in such a way during
measurements that the available output range of the amplifier (0.6 V) is used to the
maximum extent possible. Clipping of the signal at any point in the echoes is avoided,
as this can cause distortion of the waveform. Thus typical V.- and \'/swp—values for
the amplified signal from the combined shear-longitudinal transducer are —13 and -7
mVy,  respectively for the shear echoes (1" and 2") and 50 and —15 MV/ ¢ respec-
tively for the longitudinal echoes (1% and 3"). The error in the time-of-flight determi-
nation due to the imprecision in the trigger level is therefore approximately 0.3 ns for
shear waves and 0.2 ns for longitudinal waves.

e The counter-timer
The counter-timer has an internal clock frequency of 100 MHz, which means that the
accuracy with which a time interval can be determined, the so-called single shot reso-
lution, is 10 ns. Fortunately, the ultrasonic signal is repetitive, so that a large number of
measurements can easily be performed. The counter-timer has a special feature which
prevents the internal clock from running synchronously with the measured signal. Con-
sequently, the error in the results will be random and it is possible to increase accuracy
significantly by averaging. Averaging over n results will yield a resolution of 107, ns.
With a 5 KHz repetition rate for the ultrasonic signal an accuracy of 0.1 ns can be

achieved by measuring over 2 seconds.

Amplitude evaluation

The ultrasonic analyzer also offers the possibility of determining the amplitude of a back-
face echo. For this purpose the receiver output is lead through a gate module, which lets
through only that part of the signal which falls within a certain time window. The gated sig-
nal is then used as input for a peak detector, which produces a signal proportional to the
positive or negative peak amplitude in the selected window. The peak detector requires a
number of pulse periods before reaching its final output value. After 10 pulses the output is

reset to zero.

The position of the time window is roughly controlled by a trigger pulse coming from the
computer interface. A specific echo can thus be selected for amplitude measurement. Fur-
thermore, the width and also the position can be finely adjusted by hand. In this way it is
possible to determine the peak amplitude either of the echo as a whole or of individual peaks.

3.4.3 Controlling computer

It is clear that performing an acoustoelastic experiment requires virtually simultaneous

control over several features and the acquisition of different data. For this purpose a MSDOS-
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based personal computer is used, fitted with the appropriate boards and running a dedicated
program.

Hardware
A GPB interface board provides:

e Communication to and from the counter-timer
A General Purpose Interface Bus (GPIB, according to standard IEEE-488), connects the
computer to the counter-timer. Through this digital bus all settings, such as measuring
mode and trigger levels, are controlled and the acquired time-interval data are read.

A board for analog and digital /O permits:

¢ Stepper motor control
Using 4 bits of a digital output port, each step made by the two-phase stepper motor
originates from the computer. In this way motor position and speed are fully controlled.

o Echo selection for time-of-flight and amplitude measurement
Two digital-to-analog converters (0 to +5 V; 12 bits) provide analog signals which are
used in the computer interface to produce trigger pulses for main time base A and the
gate module in the ultrasonic analyzer.

o Peak amplitude measurement
An analog-to-digital converter (1 V; 12 bits) is used to read the peak voltage deter-
mined by the ultrasonic analyzer.

e Temperature measurement
Using a calibrated copper-constantan thermocouple mounted on the specimen, the tem-
perature is measured to within 0.2 °C. This is achieved by means of an analog-to-
digital converter (20 mV; 12 bits), which successively measures the thermocouple
voltage, the output of a cold junction compensation circuit and a short-circuited input.
The latter signal is used to compensate drift in the DC-amplifier of the converter. Fi-
nally, averaging is performed in order to achieve the accuracy mentioned above.

Software

A program called ACOELA was written in Pascal' to form the heart of ACOustoELAstic experi-

ments. The main features are:

o The use of a parameter set
The program uses a modifiable set of parameters including relevant echo numbers,
nominal time-of-flight values, a transducer angle calibration value, the quantity to be

I A few small and time-critical sections were directly written in machine code.
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scanned (time of flight or amplitude) and the scan speed.

o Trigger calibration
In order to achieve sufficient accuracy, the trigger control requires calibration, i.e. the
relation must be established between the analog output voltage of the computer and the
location of the trigger pulse relative to the synchronization pulse from the ultrasonic
analyzer. The program does this by using the counter-timer in order to determine this
position for a low and a high analog output voltage and then calculating a linear fit.

e Scanning
A scan is recorded by driving the stepper motor at a constant speed using the internal
clock of the computer. The relevant quantity, i.e. time of flight or echo amplitude, is
measured simultaneously and the results are immediately displayed in a graph.

For time-of-flight scans the number of averages performed by the counter-timer is ad-
justed in such a way as to obtain one value per 2° transducer rotation. In the case of
amplitude scans one measurement is performed after every step made by the motor.
Optionally, both shear and longitudinal echo amplitudes can be measured by selecting
each echo alternately. It should be noted that owing to the way in which the peak detec-
tor functions, determining an amplitude value typically involves taking 10 measure-
ments at intervals equal to the pulse period and thus using the maximum result.

e Actual data measurement
The following procedure is used:

1) For determination of the shear polarization angle the program allows a range to
be manually selected (£15° to $+45°) around a maximum in the amplitude or
time-of-flight scan, The polarization angle is then calculated as the maximum of
a parabolic fit. This method reduces the influence of experimental noise.

2) The transducer polarization is aligned with one of the birefringent shear wave
components.

3) The time of flight is determined.

4) The current specimen temperature is determined.

5) Points 2 to 4 are repeated for the other shear wave component.

6) Points 3 and 4 are repeated for the longitudinal wave.

7) Additional data is recorded, such as applied load and/or transducer position.
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3.5 Conclusion

This chapter dealt with an experimental technique designed for the evaluation of abso-
lute stress levels in steel specimens. After an outline of the principle, possible disturbing in-
fluences and the actual set-up were described.

The use of a single transducer for emitting and receiving shear and longitudinal waves
simultaneously was found to be practicable for steel specimens. The times of flight of the
two wave types and the shear wave polarization can be determined through the same material
at virtually the same moment. This means that measurement accuracy is increased consid-

erably.

Experiments showed that below a certain limit value the thickness of the viscous
coupling layer between transducer and specimen strongly affects the time of flight measured
by the pulse-echo method. It is concluded, therefore, that conventional practice, in which the
transducer is pressed onto the specimen surface, inevitably leads to deviating time-of-flight
data. Reproducible measurements can be performed only by sufficiently increasing the thick-
ness of the coupling layer. Additional advantages of a thicker layer are (i) the possibility of
proceeding with the acoustic measurements almost immediately after positioning the trans-
ducer and (ii) the fact that transducer rotation has only a very limited effect on the trans-

ducer-specimen coupling.

Transducer misalignment was found to affect both time-of-flight and echo amplitude meas-
urements. This means that the determination of shear wave polarization, when based on
amplitude maxima, may also be affected. Correct transducer alignment must be considered

essential.

The effect of temperature on time of flight can be reduced by monitoring the specimen
temperature during acoustic measurements. Times of flight are corrected afterwards using
linear temperature coefficients. These coefficients may be assumed to be independent of

stress.

The transducer holder, specially designed for this stress measurement technique,
permits the required accurate transducer positioning. Using the holder in combination with
the ultrasonic equipment, the controlling computer and the software, semi-automated meas-
urements can be performed in a relatively short time (= 3 min.).
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Appendix 3A Specific impedance of a plane wave

The stress field T;(x) for a harmonic plane wave with angular frequency ®, wave num-
ber k and travelling in the direction of unit vector n, is proportional to:

Ty+ ei((x)t —knyx,) (3A.1)
and therefore:

oT;  kn, oT.

P (3A2)

j
The equation of motion in the absence of body forces reads:

daT;; oy,

—=p=3 3A.3
an p atl ( )
where u = particle displacement

p = mass density

By substitution of Equation 3A.2 in 3A.3 and subsequent integration with respect to time, a
relation is found between the negative traction force acting on a plane normal to the wave
propagation direction ~T;;n; and the corresponding particle velocity aui/at:

dy,

~Tyn = Z5, (3A.4)

p®

where Z = specific wave impedance = -

The specific wave impedance is a scalar quantity and can also be written as the product of
mass density and phase velocity, since this latter quantity is equal to /.
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Appendix 3B Reflection and transmission at an interface for a normally incident plane

wave

The reflection and transmission of acoustic waves at an interface between two rigidly
bonded materials is determined by the mechanical boundary conditions, i.e. continuity across
the interface of (i) the traction force acting on the interface plane and (ii) the particle veloc-
ity.

Consider a plane harmonic wave propagating in medium 1 at normal incidence towards an
interface with medium 2. Assume also that one of the wave solutions for propagation normal
to the interface in medium 2 has the same polarization, i.e. direction of particle velocity. The
boundary conditions can now be satisfied by assuming that the incident wave induces a re-
flected and a transmitted wave travelling normal to the interface into media 1 and 2 respec-

tively with the same polarization as the incident wave.

The stress amplitude of an acoustic plane wave may be defined as the magnitude of the
traction force acting on a plane normal to the propagation direction. Denoting the stress
amplitudes at the interface of the incident, reflected and transmitted waves as W), Wy and
W respectively, the first of the above boundary conditions implies:

Using the specific wave impedance to relate the particle velocity to the traction force acting

on the plane normal to the wave propagation direction (Appendix 3A), the second boundary

condition leads to:

W W Wy

77~ Z, (3B.2)

where Z,,Z, = specific wave impedance in media 1 and 2 respectively

From these equations the stress reflection and transmission coefficients, R, and T,,, can be

computed as:
WR Zz_Zx
Ri2=W, =747, (3B.3)
W, 2
1 (3B.4)

e W, "7z
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Appendix 3C Thickness of viscous coupling laver as a function of impulse applied to
the transducer

Consider an incompressible Newtonian fluid' with a constant viscosity coefficient 1
between two smooth but not necessarily flat surfaces moving at velocities u and v respec-
tively. A rectangular coordinate system is chosen with the x,-x, plane virtually parallel to the
surfaces. The pressure field in the fluid, p(x,,X,), can be described using the Reynolds equa-
tion [38]:

d 9 3p.
o Bx,) ot axz)

du+vy)  d(utvy)
6n{ ax, (u, v1)+ ax, (uz—v2)+n ax, o -2(us—vy } (3C.1)

where h = distance between surfaces

This equation is derived excluding inertia forces and assuming that (i) pressure is not a func-
tion of x5, (ii) fluid flow in the x,-direction is negligible and (iii) no slip flow occurs, i.e. the
fluid adjacent to the surfaces has the same velocity as the surfaces.

The Reynolds equation is now applied to the situation of a couplant between the flat
and parallel surfaces of a specimen and a circular transducer, i.e. ah/axl = ah/ax2 =0and his
only a function of time t. The specimen velocity u is taken to be zero and a transition is made

to cylindrical coordinates by substituting x, = rcos@ and x, = rsing:

& 19° I, dh
b 5}22 rar+Za—}1} 6n { + (v+ (;’)+2;1; (3C.2)

where v,,v,, = radial and tangential transducer surface velocities respectively

It is assumed that the transducer is not translated in the x,-x, plane and therefore v, is zero
and p and v,, are independent of ¢. Thus:

) 12ncdh (3C.3)

ar( K dt

It should be noted that rotation of the transducer about its axis is still permitted.

Integrating twice with respect to r and using the boundary conditions:

I In a fluid of this kind shear stress is equal to the product of a viscosity coefficient and the shear deformation
rate.
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%E = | R forr=0! (3C.4%Y
P =0, forr=R (3C.4"

where R = transducer radius

yields an expression for the pressure as a function of r:

(I') __ﬂgr_:_ldh (3C.5)

The force F, used to press the transducer onto the specimen, must be in equilibrium

with the couplant pressure averaged over the transducer area:

R* dh
F(t) = f 2rep(r)dr _—;?3— o (C.6)

0

If the coupling layer thickness is hy at time ty, an impulse defined as:

I= [F(tdt (3C.7)
to

exerted on the transducer will cause the layer thickness to become:

(3C.8)

I 1t follows from the rotation symmetry that the fluid will not flow at the centre of the transducer and hence no
pressure gradient can be present there.



Chapter 4

Acoustoelastic Experiments

4.1 Introduction

Chapter 2 contains a theoretical treatise of a method for acoustoelastic stress evaluation
using shear and optionally longitudinal bulk waves. Chapter 3 describes an experimental
technique which implements this method. Acoustoelastic experiments played an important
role during the development of both the theory and the experimental set-up. The present
chapter deals with these experiments and their results. The greater part of the work presented
in this chapter is also published in references [23] to [29].

The experiments were performed using plate-shaped specimens taken from rolled
plate. The specimens are loaded only in the plane of the plate, allowing a plane stress state to
be assumed in all cases. In principle all tensor quantities are defined relative to a set of co-
ordinate axes x;, which will be referred to as the material axes.! The x,- and x;-axes are cho-
sen parallel to the rolling direction and normal to the plate respectively. The material axes
may therefore be expected to coincide with the orthotropic symmetry axes of the material.

Four different metals are investigated, namely:
¢ aluminium alloy 2024-T351
e two hot-rolled structural steel qualities
¢ hot-rolled/cold-deformed pipeline steel

For all materials the experiments include the calibration of their acoustoelastic behaviour,
i.e. the effect of stress on the acoustic quantities measured.

The experiments on the aluminium alloy were the first to be carried out. A considerably less
advanced set-up is used compared with the set-up described in Chapter 3. Nevertheless, the
results are believed to be a good illustration of the theory. Additional experiments performed
on aluminium specimens include a disc loaded diametrically in several directions under
compression and a compact-tension specimen in which the two-dimensional plane stress
field is determined around the crack tip. Based on the latter results, a numerical integration of
the J-integral fracture parameter is performed along several contours.

All experiments on steel specimens were performed using the set-up described in Chapter 3.

I The stress data evaluated in the aluminium compact tension specimen are defined otherwise.
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The two structural steel qualities have comparable specifications, but originate from different
manufacturers. The results of the calibration experiments can therefore provide information
concerning the reproducibility of elastic and acoustoelastic material behaviour. These aspects
are essential for the determination of stress in an absolute sense. The cold-deformed pipeline
steel has a large texture and residual stresses are present in the material. Both these phenom-
ena can be expected to affect acoustoelastic stress measurements, and are therefore investi-

gated.

It should be noted that, unless stated otherwise, the Voigt notation will be used
throughout this chapter. Therefore, in the two-dimensional case considered here the indices

may take the values 1, 2 and 6.
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4.2 Acoustoelastic calibration

In the description contained in Chapter 2 acoustoelastic material behaviour is repre-
sented by the k- or m-tensor (Eqs. 2.23 and 2.29 respectively). It was concluded in Section
2.4.3 that a complete calibration of either of these tensors requires at least two different
combinations of the two-dimensional stress components T}, T, and T to be introduced in the
material, including at least one non-zero shear stress.

Uniaxial tensile specimens are used for this purpose, as they allow the generation of a well-
defined stress state. By varying the orientation with which these specimens are cut from the
plate, different stress component combinations are obtained. Although two orientations
would suffice, calibrations are performed using three specimens with tensile directions
making an angle of 0°, 45° or 90° relative to the x, material axis. The reason for this is that
k- or m-tensor components with indices 11, 12, 21 and 22 are most accurately determined
using the 0° and 90° orientations. For the components kg or my4 the 45° orientation permits
the most accurate determination. Furthermore, the use of three orientations provides a means

of checking the consistency of both the acoustoelastic theory and the experimental results.

In the actual calibration, acoustic data is evaluated at the centre of each specimen. First
the unloaded values are determined. Then the tensile load is increased slightly and the next
measurement is performed. This is repeated until the tensile stress has reached a substantial
amount (= 60%) of the yield strength of the material.

For the purpose of the calculations, all acoustic data are expressed in terms of the Q- or
R-data tensor (Egs. 2.26 and 2.31). The three components of these tensors are then correlated
to the applied uniaxial stress by means of linear regression. The results are in the form of:

b
AQy = byl ppiiea or  Ry=ay+bTypiea “.1%)

where a;, by = axis intersection and slope respectively of the linear regression line

Furthermore, the plane stress components in the tensile specimens can be related to the ap-
plied stress through:

T, =fT

applied (42)
where f, = factor depending on the orientation of the tensile specimen

Substitution of the above equations in Equation 2.23 and the differential form of Equation

2.29 respectively leads to:

f, = kyb, or f, = myb, 4.3")
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Using the results of all tensile tests, three sets of three equations can be formulated. Number-
ing the tests from 1 to 3, such a set is in the form of:

19 =i 1=y

P = kyb? or 2 = mb{® (4.4™)
3 3 3) 3

ﬁ)=kub§) t(1 =mub§)

The solutions to these sets of equations are the desired k- and m-tensor components.

For absolute stress evaluation using both shear and longitudinal waves the reference values
R (defined in Eq. 2.32 in full index notation) also need to be determined. By assuming the
material to be free from residual stresses, these values are found as the intersection of the re-
gression lines with the line of zero applied load, i.e. the coefficients a; in Equation 4. 1°
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4.3 Aluminium
4.3.1 Introduction

Material

As stated in the introduction to this chapter, the initial measurements were performed on
aluminium. The reason for this is that aluminium is known to have a high acoustoelastic ef-
fect relative to other metals which are important in engineering [9, 18, 48]. At the same time
the specific wave impedance is fairly low. These circumstances clearly facilitate acoustoe-

lastic stress measurements.

Table 4.1 Chemical composition of the aluminium alloy 2024-T351 [Wt%].

Cu Mg Mn Fe Si Zn Cr Al
4.4 136 067 026 008 007 001 balance

All experiments were performed on specimens taken from a 6 mm thick rolled plate of the
aluminium alloy 2024-T351. The surface of the rolled plate was not machined in any way as
the roughness was found not to have any effect on ultrasonic measurements. Tables 4.1 and
4.2 summarize the chemical composition of the material and its mechanical properties re-

spectively.

Table 4.2 Mechanical properties of the aluminium alloy 2024-T351.

Yield strength T, 395 MPa
Tensile strength T, 500 MPa
Elongation & 17 %
Young’s modulus E 73.7 GPa
Poisson’s ratio v 0.34
Fracture toughness K. 40 MP&‘\/;I

The temperature coefficients B (Eq. 3.12) for shear and longitudinal waves travelling in the
thickness direction of the aluminium 2024-T351 plate were measured separately. The results

are summarized in Table 4.3.

Table 4.3 Time-of-flight temperature coefficients for aluminium 2024-T351.

Shear wave B, | +360-10° K™
Longitudinal wave B, | +160-10° X'

Experimental conditions
The set-up used for the experiments involves a relatively simple transducer holder for which
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the transducer polarization angle is set by hand with an estimated accuracy of 1°. The holder
does, however, allow a fixed transducer-specimen distance to be maintained, in view of the
increased coupling layer thickness required. The electronics relevant to the pulse-echo
method, i.e. the pulser-receiver and the part of the set-up used for time interval determina-
tion, is the same as or comparable with that used in the set-up described in Chapter 3.

A combined shear-longitudinal transducer was not available at the time of these meas-
urements. It would not have offered any advantage in any case, owing to the echo overlap
occurring in aluminium. Separate transducers were therefore used for shear and longitudinal

waves, namely a:

e 20 MHz, 6.3 mm diameter, 4 us delay line, shear wave transducer (Panametrics, refer-
ence number V222).

e 25 MHz, 6.3 mm diameter, longitudinal wave transducer (Panametrics, reference
number V324).

In principle the shear wave polarization is determined as the maximum of the shear echo
amplitude as a function of the transducer orientation. Time of flight is used as the criterion
only when the times of flight of the birefringent shear wave components are approximately
the same (analogous to the procedure discussed in Section 3.2.3 for 5 MHz shear waves).

All experiments were carried out in a conditioned environment of 21 °C. For those meas-
urements involving data acquisition at successively increased load levels the specimen tem-
perature was not determined explicitly. During the more lengthy experiment with the com-
pact-tension specimen, however, the temperature was recorded and the time of flight cor-

rected afterwards.

Reference [24] contains more specific information relating to the experimental conditions.

4.3.2 Acoustoelastic behaviour

Figure 4.1 shows the geometry of the tensile specimens used for the calibration of the
acoustoelastic behaviour. The three specimens, cut from the plate with orientations of 0°, 45°
and 90° relative to the material x,-axis, were tested on a 20 KN hand-driven mechanical
testing machine at intervals of 2 KN (27.8 MPa) up to a load of 16 KN (222 MPa).

60
g i S
‘_..__—\!'
W w o
| ||®
r=8 N
114 6
140

Fig. 4.1 Geometry of the aluminium 2024-T351 tensile specimens used for calibration.
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Fig. 4.2 Shear (t, and t,) and longitudinal (t,) time of flight and the polarization angle o as a function of
the uniaxial tensile stress applied in aluminium 2024-T351 specimens. The loading directions
relative to the material x,-axis are: 0 = 0°, x = 45°, +=90°,
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Figure 4.2 gives an overview of the experimental results. First of all it is found the initial
times of flight vary somewhat from one specimen to another. However, the differences be-
tween the shear times of flight t, and t, are roughly equal (11 to 11.6 ns), a result which is
also described in references [7, 20, 40). Furthermore, the ratio between the shear and longi-
tudinal values is almost the same. This aspect will be discussed further during the treatment
of the results obtained from the experiment on the aluminium compact-tension specimen.

For all specimens there is a linear decrease in the longitudinal time of flight (t,) as a function
of the applied stress. For the 90° specimen the shear wave times of flight t; and t, also show
a linear change, while the polarization angle remains constant. For the 0° specimen the time-
of-flight changes are initially linear and opposite to those for the 90° specimen. At a stress
level of 60 MPa they become almost equal and the polarization is suddenly rotated through
90°. At higher loads the times of flight show a linear dependence in the same direction as for
the 90° specimen. Finally, for the 45° specimen, there is a gradual rotation of the polarization
such that the birefringent wave with the largest time of flight (t,) turns towards the tensile
loading direction. The times of flight themselves clearly do not have a linear dependence on
the stress applied.

Acoustoelastic tensors

Figure 4.3 shows the calculated changes of the tensor components Q;, Q, and Q, as a func-
tion of the applied stress. The calculated values for the R-tensor components are shown
analogously in Figure 4.4. In all cases a linear dependence is found, which was already sug-
gested by Equations 2.23 and 2.29. The results of the linear regression calculations are indi-
cated by the lines drawn in the two graphs. The resulting plane stress k- and m-tensors for
this aluminivm alloy, expressed in GPa, are (using the form of Egs. 2.24 and 2.30 resp.):

[ -21.5(0.9) -11.6(1.0) 0.0(1.4) 7]
kyl=] -11.4(1.0) -263(1.2) 05(1.7) 4.5)

L 00007 0.6(1.0) —14.8(0.9)

[ —45.6(0.7) -03(0.8) -0.4(3.0) ]

my]=| 17(08) -542(10) 16(3.7) (4.6)

L 08(11.0) -17Q2.0) -60.7(3.4)

The numbers between brackets are estimates for the standard deviation. They are based on
estimated experimental errors of 0.5 ns in the shear time of flight, 0.1 ns in the longitudinal
time of flight and 2° in the polarization angle. Moreover, a variation in the specimen tem-
perature of +0.2 °C is assumed during the tensile experiments, which has an effect on the
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Fig. 4.3 Calculated changes in the Q-tensor components as a function of the stress applied in alumin-
ium 2024-T351 specimens. The loading directions relative to the material x,-axis are: o = 0°,
X = 45°, + = 90°. The lines indicate the results of linear regression calculations.

measured time of flight. The standard deviation estimates are determined by calculating the
k- and m-tensors a large number of times (e.g. 10 000) using experimental data to which

noise with a normal distribution is added. The standard deviation of the normal distribution

is equal to the errors assumed above.

The reference values R calculated for the three tensile specimens are summarized in
Table 4.4.
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Discussion
It is seen that the form of the k- and m-tensors agrees with that suggested theoretically for an
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Fig. 4.4 Calculated R-tensor components as a function of the stress applied in aluminium 2024-T351

specimens. The loading directions relative to the material x -axis are: o = 0°, x = 45°, +=90°.
The lines indicate the results of linear regression calculations.

orthotropic material, i.e. vanishing tensor components 16, 26, 61 and 62 (Eqs. 2.24 and

2.30). Furthermore, the difference between components 11 and 22 indicates that the material
is not isotropic as far as its acoustoelastic behaviour is concerned. It is noteworthy that com-

ponents m,; and m,, are close to zero. As can be deduced from Equation 2.29, this implies

that the data tensor components R, and R, are almost uniquely determined by the stresses T,

and T, respectively.
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Table 4.4 Reference values R] for the aluminium 2024-T351 tensile specimens [-].

Specimen 0° 45° 90°
R} 0.24577 (0.00004)  0.24593 (0.00005)  0.24601 (0.00004)
R} 0.24441 (0.00004)  0.24443 (0.00005)  0.24451 (0.00004)
R¢ 0.00005 (0.00003)  0.00000 (0.00003) —0.00007 (0.00006)

Analysis shows that tensor components 11, 12, 21 and 22 are mostly affected by errors in
time of flight, components 61 and 62 by errors in the polarization angle and components 16
by both guantities. The results show that experimental errors propagate particularly strongly
into the values for components 16 and 26. The reason for this is that when a shear stress is
induced in a tensile specimen, normal stresses are also inevitably introduced. Hence changes
in AQ4 or Ry will always be accompanied by changes in AQ, and AQ, or R, and R,. This
lowers the accuracy with which the relations between AQq or Rg and the normal stresses T,
and T, can be established. An alternative would be setting components 16 and 26 at zero by

presuming material orthotropy.

A first estimate for the accuracy of absolute stress evaluations can be deduced from the
spread in the reference values between the specimens (Table 4.4). Using the largest occurring
variation in R‘I’ together with the calibrated m-tensor, equivalent stresses are calculated which
would give rise to equal changes in the acoustic data tensor R. The results in MPa are:

T, 11
T, |=| 3 4.7)
Ts 7

These values are small relative to the yield strength for aluminium 2024-T351 (395 MPa).

4.3.3 Disc under diametrical compression

In reference [51] an elastic solution is given for the (plane) stress tensor in the centre of
a disc compressed diametrically. For a disc with diameter d loaded by a force P per unit disc
thickness at an angle Yy relative to the x,-axis, this solution reads:

o~ P
.2 24X
T, (2sin“y—6cos Y)Ttd
T, |=| (2cos’y—6sin® )L 4.8
2 |=| @cos’y—6sinn 5 48)
T 8 H __PL
R L ~8 sinycosy 4
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Thus compressing a disc in different directions in-

duces several combinations of the stress components.

A test of this kind therefore provides a means of ana-

lysing the applicability of the acoustoelastic stress

measurement technique. An additional advantage is
that all measurements can be performed on the same

material location, reducing errors caused by reposi-

tioning the transducer. Only shear waves are used in

this experiment, limiting the measurement to applied

stresses.

Q

!

Fig. 4.5 Geometry of the aluminium
2024-T351 disc.

6

Figure 4.5 gives the geometry of the specimen used for this experiment. The Q-tensor was
measured in the unloaded state and during compressive loading by 15 KN in 8 arbitrary di-
rections. No larger force is used, in order to avoid excessive plastic deformation at the con-

tact areas. This would result in loading conditions which deviate too much from those as-

sumed when deriving the elastic solution.
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Fig. 4.6 Evaluated vs. theoretical stress components for an aluminium 2024-T351 disc compressed by
15 KN in various directions (0=T,, +=T,, x=T).
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Fig. 4.7 Geometry of aluminium 2024-T351 compact-tension specimen. The grid of measuring loca-
tions is indicated by + signs.

The stresses at the centre are calculated using the k-tensor given in Equation 4.5. Figure 4.6
indicates the correlation between evaluated and theoretical stress components. The results
show deviations for the evaluated stress components of at most 8, 16 and 5 MPa for T, T,
and T, respectively. These values may be considered small relative to the yield strength of
this material.

4.3.4 Stress field in a compact-tension specimen

Figure 4.7 shows the geometry of the compact-tension (CT) specimen in which the
plane stress field is evaluated. The measurements are performed on a grid of 12 x 12 points
(10 mm apart) arranged symmetrically around the crack tip. First all shear and longitudinal
data are gathered in the unloaded specimen. Figure 4.8 gives an impression of the variation
of time of flight, corrected for temperature, over the scanned area of the unloaded specimen.
The contour lines are calculated using linear interpolation of the data at the measuring points.

Next the specimen is subjected to a constant load of 8200 N and all measurements are re-
peated. At this load the stress intensity factor K| is equal to 39.9 MPavVm [50], which is close
to the fracture toughness for this alloy. According to Irwin’s analysis [11], the plastic zone at
the crack tip will have a diameter of 3.1 mm.! Therefore, considering the 6.3 mm diameter
transducers used, the material behaviour can be assumed to be elastic at all measuring loca-

tions.

' The stress intensity factor mentioned is in fact corrected for this crack tip plasticity, i.e. it is calculated with a
crack length extended by half the plastic zone diameter.



88 Acoustoelastic Experiments

Fig. 4.8 Variation of shear (t, and t,) and longitudi-  Fig. 4.9 Distribution of applied plane stress compo-
nal (t,) time of flight [ns] over the scanned nents [MPa] in an aluminium CT specimen,
area of the aluminium CT specimen. evaluated with shear waves only.
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Fig. 4.10 Distribution of absolute plane stress com-  Fig. 4.11 Distribution of plane stress components
ponents [MPa] in an aluminium CT [MPa] in an aluminium CT specimen, cal-
specimen, evaluated with shear and longi- culated by the finite element method.
tudinal waves.
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Again the applied stresses are calculated, using the k-tensor given in Equation 4.5. The
results are plotted in Figure 4.9. As is customary in fracture mechanics, the stresses are de-
fined relative to a set of coordinate axes with the x,- and x,-axes respectively parallel to and
normal to the crack. In order to draw the contour lines the additional knowledge is used that
T, and T, become zero along the crack edges.

The m-tensor of Equation 4.6 is used to calculate absolute stress levels. However, instead of
using the reference values R} determined for the tensile specimens (Table 4.4), the data
available at the 12 x 12 points in the unloaded CT specimen are used. Averaging over these
data can be expected to yield a more reliable value and also to provide information concern-
ing the reproducibility. Obviously the assumption is made that the unloaded specimen is
stress-free. Table 4.5 summarizes the results, including the standard deviation found. The
stress components calculated using these reference values are shown in Figure 4.10.

Table 4.5 Averaged reference values R} for the aluminium 2024-T351 CT specimen [-}.

R} 0.24612 (0.00010)
R; 0.24458 (0.00011)
R¢ -0.00001 (0.00004)

In order to make an assessment of the errors involved in the acoustoelastic stress field
evaluation, an incremental elastic-plastic finite element analysis is performed. A plane stress
situation is presumed in this calculation. The elastic properties of the aluminium alloy are
characterized by its Young’s modulus and Poisson’s ratio (Table 4.2), while a model for
plastic behaviour is used based on a uniaxial stress-strain curve. The results are contained in
Figure 4.11.

Discussion

Roughly speaking, the shapes of the three types of stress contours, i.e. the experimentally-
determined applied and absolute stresses and the calculated stresses, compare well. For the
normal stress components differences of 20 MPa can be found in a few areas, but at most
places the agreement is better. The asymmetry of the experimental normal stress data is of

the same magnitude.

For the shear stress plots the differences are considerably smaller. This is not surprising, as
shear stress data are evaluated from the difference between the shear wave times of flight, i.e.
the birefringence.! Consequently factors such as acoustic coupling, temperature and specimen
thickness hardly influence the measurement. Experimental and calculated values agree to
within about 10 MPa. The most significant deviations occur in the areas along diagonal lines

' This can be deduced from the definition of components Qg and R (Eqgs. 2.26 and 2.31) and the form of the
k- and m-tensors for orthotropic material.
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through the crack tip at angles of 45 and 135°. This is probably due to averaging of the
measured data over the transducer diameter. A systematic error is introduced proportional to
the second derivative of stress, a quantity which is relatively large in these areas.

The (anti-)symmetry of the experimentally-determined shear stresses appears to be slightly
disturbed by a systematic positive error. It is suspected that it is caused by a slight rotation of
the transducer with respect to its holder, resulting in a shift in the polarization angle meas-
urement during the experiment.

The results for the absolute stress levels, evaluated with both shear and longitudinal
waves, seem to be more symmetric and in better agreement with the finite element results.
This is in spite of the fact that the shear and longitudinal data are obtained separately, reduc-
ing the potential advantages of simultaneous measurements (see Chapter 3). A possible ex-
planation is the fact that the shear wave data leading to the applied stresses are also obtained
separately, namely before and after loading the specimen. The absolute stresses, however,
follow exclusively from loaded specimen data in combination with the averaged reference

values R]. In this way fewer experimental errors propagate into the final results.

It is noteworthy that the spread in the R{-values over the scanned area (Table 4.5) is roughly
the same or smaller than that measured between the tensile specimens. The reference values
will not therefore give rise to errors in the absolute stress levels larger than those mentioned
in Equation 4.7.

The times of flight in the unloaded specimen (Fig. 4.8) confirm the tendency found for
the tensile specimens: the difference between the times of flight for the birefringent shear
wave components is approzimately constant. The same is true for the ratio between shear and
longitudinal times of flight. These findings indicate that the time-of-flight variations are
mainly due to differences in specimen thickness. Over the scanned area in the CT specimen
the differences would amount to 40 um on a nominal thickness of 6 mm. Despite the limited

accuracy of the micrometer, such differences were actually found in the specimen.

A consequence of the thickness variations is the occurrence of relatively high time-of-flight
gradients of up to 0.4 and 0.2 1S/, for shear and longitudinal waves respectively. It is clear
that an accurate positioning of the transducer is required in order to minimize errors.

4.3.5 Evaluation of the J-integral fracture parameter

The J-integral fracture parameter is usually evaluated by energetic principles, i.e. the
determination of load versus load displacement. In view of the availability of the complete
plane stress field around the crack tip, another method presents itself: the numerical integra-
tion of J along a contour around the crack tip. The numerical integration provides not only an
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alternative method for determining J, but also a means of further checking the consistency of
the stress data evaluated.

Numerical J-integration

The J-integral is defined in Appendix 4A. Integrating along a contour I" surrounding the
crack tip, starting at the lower and ending at the upper crack surface, will yield a J-value in-
dependent of the exact path. This feature generally permits I' to be chosen outside a possible
plastic zone at the crack tip. Material behaviour is then linear-elastic along the whole of T, in
which case the strain-energy density, the traction vector and the displacement gradient can be
expressed in terms of stress components and the rotation component ;. Assuming a plane
stress state, Equation 4A.10 gives the resulting expression for the integrand of J.

For the numerical integration the contour T" is chosen through points at which stress data is
evaluated. The J-integrand is determined at all evaluation points along I" and the trapezoidal
rule is used to calculate J. In order to extend the integration to the actual crack surfaces, the
integrand at these surfaces is also required.! This quantity follows from Equation 4A.10 by
substituting zero for T, and T, and using the value at the nearest evaluation point as an es-
timate for T,. The results will show the possible effect of this estimate.

The contour will necessarily have an angular shape. Since the direction of the contour is dif-
ferent before and after a corner point, the J-integrand is double-valued there. For the integra-

tion the average is used.

The rotation or rather the rotation change from one location to another can be ex-
pressed in terms of stress gradients. Equation 4A.13 does this for a plane stress state. Theor-
etically, knowing only the rotation change and not the absolute value would suffice for inte-
grating J. However, due to experimental errors in the stress data, an estimate for the absolute
rotation level will increase accuracy. Based on the symmetry of the specimen, the rotation
may be assumed to be zero ahead of the crack along the centre line of the specimen. Using
forward integration [19] starting at the centre line (Eq. 4A.14), the rotation @, can be de-

termined at other locations.

The rotation values at the contour points could be calculated by integrating along several dif-
ferent paths. However, it is convenient if J-evaluation can be based on a smaller number of
stress measurements than the 12 x 12 available. The forward integration is therefore per-
formed along the contour itself, after which the values are shifted in such a way that the rota-
tion is zero at the intersection with the centre line of the specimen. Consequently the only
stress data needed are those on and directly beside the contour. A slight complication arises

' The crack surfaces do not extend parallel to the x,-axis up to the crack tip. The integrand at the width transi-
tion is roughly equal to —T§/7_E (Eq. 4A.10), leading to an error smaller than 0.01 N/om.
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at the points beside the crack surfaces, as the derivative aTllax2 cannot be estimated there.
This is circumvented by making the contour approach the crack surfaces perpendicularly,
eliminating the need for this derivative. The derivatives aT;)/ax2 and aTs/ax2 are estimated
using the knowledge that T, and T become zero at the crack surfaces.

Results and discussion

Integration is performed along five contours, as shown in Figure 4.12. The integration direc-
tion is also indicated. Four of the contours (A to D) surround the crack tip at increasing dis-
tances, providing a means of checking the path independence of J. Contour E is closed and
should theoretically yield a zero J-value.

Oyoywy»
o]

Fig. 4.12 The four contours around the crack tip (A to D) and the closed contour (E) considered for nu-
merical J-integration.

In Figure 4.13 the rctation values ey, calculated from the applied stresses, are plotted
as a function of the arc length s for all contours. The results derived from the absolute
stresses are approximately analogous and are therefore omitted. As is to be expected, the ro-
tations are positive in the lower half and negative in the upper half of the specimen. The
asymmetry is less than approximately 10 %.

Near the crack surfaces the rotations are roughly equal (=5.5 %o). This indicates that the
crack surfaces remain straight in the loaded specimen. During the experiment the crack
mouth opening displacement was determined to be about 1.5 mm. Using the rotation differ-
ence between the two crack surfaces (11 %o), a hinge point can be calculated at 25 mm before
the crack tip. The stress field does indeed show that the strain in the x,-direction is near zero

at this point.

Figure 4.14 shows the integrand values I}, again calculated from the applied stresses, as
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a function of the arc length s. The discontinuities at the corer points are clearly visible. The
asymmetry is somewhat larger than for the rotations, especially for the contours near the
crack tip. This is probably due to the larger stress gradients there. It is to be expected, there-
fore, that contour A is the most error-prone.

The integrand values at the crack surfaces may deviate, owing to the estimate for T, made
there. From the plots it is clear that the effect on the total integrated area leading to J cannot

possibly be significant.

The integrated J-values are summarized in Table 4.6. The values for the contours sur-
rounding the crack tip agree to within 13 and 11 % for the applied and absolute stress fields
respectively. The closed contour J-values are respectively 1.6 and 0.6 % of the nominal J-
value. The results based on the absolute stress field seem to be somewhat more accurate.

Two estimates for J are also given in the table. The first is based on the finite-element calcu-
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Fig. 4.13 The rotation u, calculated from the applied stresses, as a function of the arc length s for the
five contours considered.
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lations used to calculate the plane stress field, while for the second estimate linear-elastic
fracture mechanics is used. This value is based on the stress intensity factor K, which, as
was mentioned previously, is equal to 39.9 MPavm for the present geometry and load. The J-
estimate is then calculated using:
K2
=t
I= E 4.9)
The average J-values over contours A to D based on applied and absolute stresses are 22.3
and 21.8 N/, ) respectively. These values are both very close to the fracture mechanics es-
timate. The reason why the finite-element estimate turns out to be somewhat lower is not
known.

The sensitivity of the integrated J-value for the absolute rotation level along the contour,
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Fig. 4.14 The J-integrand I, calculated from the applied stresses, as a function of the arc length s for the
five contours considered.
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dJ/dm, is also indicated in Table 4.6. This quantity is a measure of the experimental errors in
T, and T, along the contour (Appendix 4A). For the worst case, i.e. the calculation using
applied stresses along contour B, the sensitivity amounts to 0.95 N/ mm per %o rotation. The
overall tendency is a lower sensitivity for the results based on absolute stresses. Again this

suggests a lower error level in these data.

Table 4.6 Results of J-integration along several contours together with estimates using the finite-element

method and linear-elastic fracture mechanics.

Source Contours Estimates

stress field]| A B C D E FEM LEFM
applied | 20.8 21.8 23.6 22.8 0.36

TN 20.6 21.6
/oml absolute | 20.6 21.7 21.9 229 0.14
lied | 4290 -950 =520 -730 -230

Vg N 0 - -
absolute | -20 —470 -180 -330 -280
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4.4 Structural steels
4.4.1 Introduction

Material

The experiments are performed on specimens taken out of hot-rolled steel plate. This mate-
rial typically shows only a slight texture. Two steel qualities are used, originating from dif-
ferent manufacturers but having more or less similar specifications:

A) T St E355 according to standard DIN 17102.
B) Fe E355-KT according to Euronorm 113-72.

Henceforth these qualities will be denoted as steels A and B. They are in the form of plate
hot-rolled to a thickness of 22 and 30 mm respectively and then normalized. The chemical
composition is summarized in Table 4.7, while the mechanical properties, measured by ten-
sile tests in the plane of the plate normal to the rolling direction, are given in Table 4.8.

Table 4.7 Chemical composition of the structural steel qualities [Wt%].

Steel| C Si Mn P S Al C Cu

A [|0.17 035 134 0.014 0.003 0.035 0.04 0.02
B |0.19 040 130 0.014 0.007 0.048 0.036 0.018

Mo N Nb Ce Ni Ti Vv Fe

0.02 0.007 0030 - 0.2 001 0.01 bal
0.002 0.005 0.029 0.014 0.025 - — bal.
Table 4.8 Mechanical properties of the structural steel qualities.
Steel A B
Yield strength T, 377-417 367 - 395 MPa
Tensile strength T, 541 - 571 534 - 572 MPa
Elongation (I-5D) & 27-36 22-32 %

The separately measured time-of-flight temperature coefficients B can be found in Table 4.9.!

Table 4.9 Time-of-flight temperature coefficients for the structural steel qualities.

Steel A B
Shear wave B, +180-10° +170-107° K
Longitudinal wave f; +125-10°° +130-10° K™’

! The experimental results for steel B are shown in Figure 3.16.
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Experimental conditions
All experiments on the structural steel qualities are carried out with the set-up described in
Chapter 3, which uses the combined shear-longitudinal transducer.

Preliminary measurements through 15.0 mm thick specimens of both steel qualities re-
veal nominal time-of-flight values of 5070 and 9250 ns for the longitudinal and shear waves
respectively. The birefringent shear wave components differ by only 2 to 4 ns.

As discussed in Section 3.2.3, the 2™ longitudinal echo is not available, owing to overlap
with the 1% shear echo (Fig. 3.4), and the 1% and the 3" longitudinal echoes are used for the
measurements. Given the small time-of-flight difference between the birefringent shear com-
ponents relative to the wave period of 200 ns, the polarization measurements are based ex-
clusively on the determination of shear time-of-flight maxima as a function of the transducer

orientation.

4.4.2 Acoustoelastic behaviour

In order to calibrate the acoustoelastic effect, three tensile specimens are cut from each
steel plate. Their tensile directions are at angles of 0, 90 and —45° (steel A) and +45° (steel B)
relative to the material x,-axis. The 15 mm specimen thickness originates from the centre
part of the plate thickness. Figure 4.15 shows an outline of the specimen geometry.

- ‘ 75
8 il a
N |
™ D -
=8 I
120 15
150

Fig. 4.15 Geometry of the structural steel tensile specimens used for calibrations.

The tensile tests were performed on a 100 KN electromechanical testing machine. Acoustic
data were obtained at load intervals of 5 KN (22.2 MPa) up to a load of 55 KN (244 MPa).

Figure 4.17 gives as an illustration the results of the tests on steel B in terms of shear and
longitudinal time of flight and polarization angle as a function of the applied uniaxial tensile
stress. It should be noted that the data measured at zero applied stress were obtained sepa-
rately from the tensile tests, using a different orientation of the transducer holder relative to
the specimens. This fact, combined with a certain transducer misalignment, causes these val-
ues to deviate somewhat, and they were therefore discarded for the purpose of calibration.

The results as far as the shear waves are concerned are clearly illustrated by Figure
4.16. The development of the shear wave time-of-flight scans with the applied load is shown
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Fig. 4.16 Time-of-flight scans at increasing levels of applied uniaxial tensile stress, ranging from 0 to
244 MPa, for the specimen of structural steel quality B orientated 45° relative to the material
x,-axis. The shear wave time-of-flight and polarization changes are indicated separately.

for the tensile specimen of steel B with an orientation of 45°. The time-of-flight and polari-
zation changes are indicated separately in the plot as lines which connect the extreme values
of the scanned time of flight. It is interesting to note that, given the magnitude of the shear
wave birefringence, i.e. the time-of-flight difference between the two shear wave compo-
nents, the shape of the scans is similar to the calculated results shown in Figure 3.5.

In the unloaded state the birefringent wave components show a time-of-flight difference of
3.5 ns, and are polarized at angles of —10 and +80° respectively. The application of load
causes the polarization of the slower shear wave component to rotate towards the tensile di-
rection. Furthermore, the time of flight of this wave increases, while that of the other compo-
nent decreases somewhat. At maximum load the times of flight differ by about 18 ns, and the
waves are almost polarized in the tensile direction (+45°) and normal to this.

As for the longitudinal time of flight shown in Figure 4.17, all specimens show an al-
most equal linear decrease as a function of the applied tensile load.

Acoustoelastic m-tensor !

The R-tensor is calculated from the experimental data. Linear regression is used to correlate
the components of the tensor to the applied stress, the results being shown in Figure 4.18 for
steel quality B. These slopes lead to the calibrated values for the acoustoelastic m-tensor for

the two structural steel qualities. In GPa, the results are:

I' The acoustoelastic k-tensor is not considered for the structural steel qualities.
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Fig. 4.17 Shear (t, and t,) and longitudinal (t,) times of flight and the polarization angle o as a function
of the uniaxial tensile stress applied in specimens of structural steel quality B. The loading di-
rections relative to the material x,-axis are: 0 = 0°, x =45°, +=90°.
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Table 4.10 Reference values R‘; for the tensile specimens of the two structural steel qualities [-].

Specimen 0° +45° 90°
R} 0.30106 (0.00003) 0.30116 (0.00003)  0.30117 (0.00003)
Steela R, 0.30102 (0.00003)  0.30099 (0.00003)  0.30102 (0.00003)
Re 0.00004 (0.00002)  0.00005 (0.00001)  0.00001 (0.00002)
R} 0.30128 (0.00003)  0.30135 (0.00003)  0.30137 (0.00003)
SteelB R, 0.30117 (0.00003)  0.30112 (0.00003)  0.30102 (0.00003)
Re 0.00001 (0.00002) —0.00005 (0.00001)  0.00001 (0.00003)
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Fig. 4.18 Calculated R-tensor components as a function of the stress applied in specimens of structural
steel type B. The loading directions relative to the material x-axis are: 0 = 0°, x = 45°, + =
90°. The lines indicate the results of linear regression calculations.



102 Acoustoelastic Experiments

F =207 (8) +4( 8 -27(28) T
Steel quality A: [m] = 0(8) -208(8 -15(28) (4.10%
N 4(9) —4(10) -239(20) J

F_199(7)  —2(8)  13(26)
Steel quality B: [mg]=| 16(7) —214(8)  2(27) @.10%
| o) -1(12) —228(19)

The experimental error estimates used in order to calculate the standard deviation shown
between brackets are 1 in 20 000 for the times of flight, 0.2 °C for the specimen temperature
and 3° for the shear wave polarization.

It should be noted that the experimental uncertainty in the polarization angle actually de-
pends on the magnitude of the shear wave birefringence. For differences of 2 ns and 20 ns,
for example, the error in the polarization angle will be about 20 and 1° respectively. How-
ever, the propagation of this error into the calculated R-tensor and consequently into the cali-
brated m-tensor values is such that this variation will be compensated for: the polarization
angle becomes less important as the birefringence decreases.

The reference values R, calculated for all six specimens by extrapolating the regres-
sion lines to zero load, are summarized in Table 4.10.

Discussion

Acoustoelastic material behaviour

With regard to the calibrated values for the m-tensor (Eq. 4.10), the following can be noted:
e The m-tensor values for the two steel qualities do not differ significantly.

o The components mg, My, Mg, and mg, do not deviate significantly from zero, which is
in agreement with Equations 2.24 and 2.30 for an orthotropic material.

o The differences between the components m;; and m,,, those between m,, and m;, and
the values for my, are such that the two steel qualities may be considered transversely
isotropic in the x,-x, plane as far as their acoustoelastic behaviour is concerned

(analogous to Eq. 2.25).

e Components m,, and m;, are close to zero, implying that R, and R, are almost
uniquely determined by the normal stresses T, and T, respectively (see Eq. 2.29).

All experimental results indicate that the two steel qualities have approximately similar
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elastic and acoustoelastic properties. The only significant distinction is the magnitude of the
elastic anjsotropy, which is expressed by the difference between R} and R; in Table 4.10 and
is slightly larger for steel B. The fact that this similarity occurs in spite of the difference in
origin leads to the expectation that the material behaviour will be sufficiently reproducible to
enable stress evaluation in an absolute sense.

Error analysis

The points mentioned in the discussion of the calibration results for the aluminium alloy
2024-T351, concerning the propagation of experimental errors into the various components
of the acoustoelastic tensor, also apply to these results.

When evaluating stress changes, the resolution which can be achieved is determined by
the errors in the experimental data in combination with the magnitude of the acoustoelastic
effect, i.e. in this case the value for the m-tensor. Based on the experimental uncertainties as-

sumed previously, the accuracy is estimated to be:
e 115 MPa for normal stresses.
e * 7 MPa for shear stress.

The accuracy with which absolute stress levels can be evaluated also depends on the repro-
ducibility of the reference values RY for the material. An impression of this can be obtained
by analysing the reference values determined for the steel specimens (Table 4.10). The larg-
est variation is translated into stress levels which introduce an equal effect on the acoustic
data tensor R. Expressed in MPa, these equivalent stresses are:

T, [ 22 T, [ 18
Steel quality A: | T {=] 6 Steel quality B: | T, | = 30 @11
1] |12 T, L14

These values can be understood as a first estimate for the absolute accuracy of the stress
measurements. However, the spread in the reference values R‘I’ could also be attributed to the
presence of residual stresses, induced, for example, during the rolling process or the machin-

ing of the specimen. More specific research would be required to clarify this aspect.

1t should be noted that residual stresses can erroneously affect the measurements. In the
theory underlying these measurements a plane stress situation is assumed, meaning that only
the in-plane stress components are non-zero and not a function of the thickness coordinate. It

is not known to what extent this may be of influence.
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4.5 Pipeline steel

4.5.1 Introduction

Material
The pipeline steel investigated is a quality denoted as Ste 415.7 TM according to standard
DIN 17172.

This steel is produced by a basic oxygen process and is continuously cast in the form of a
195 mm thick slab. It is then transformed to plate by a thermomechanical rolling process. In
this process the material is heated to 1100-1200 °C, after which prerolling is performed in
line with and normal to the casting direction. The final plate thickness (16.3 mm) is obtained
by temperature-controlled rolling at 700-870 °C. Forming at this low temperature range pre-
vents re-crystallisation of the austenite, resulting in grain elongation. Material strength and
toughness properties are thus improved.

Subsequently a so-called U-O-E process is used to transform the plate to pipeline. Roughly
described, the process consists of successively forming the plate in a "U" and "O" shape,
welding the longitudinal seam and mechanically Expanding the pipeline (= 1%) to obtain the
desired geometry. All deformation in this process is applied at ambient temperature and will
thus induce texture and residual stresses. The final product is a longitudinally welded pipe-
line with an outer diameter of 1067 mm and a wall thickness of 16.1 mm.

The chemical composition of the pipeline steel, the mechanical properties measured by ten-
sile tests in the tangential pipeline direction and the experimentally determined time-of-flight
temperature coefficients f§ are summarized in Tables 4.11, 4.12 and 4.13 respectively.

Table 4.11 Chemical composition of the pipeline steel (Wt%].

C Si Mn P S Al Cr Cu
009 026 144 0.018 0.003 0.045 0.07 0.03

Mo N Nb N Ti v Fe
0.02 0.006 0.027 0.06 0.003 0.00 bal.

Table 4.12 Mechanical properties of the pipeline steel.

Yield strength T, 453 - 480 MPa
Tensile strength T, 560 - 585 MPa
Elongation (I-5D) & 23-25 %
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Fig. 4.19 Geometry of the section taken from the pipeline, showing the axis along which all acoustic
measurements are performed. The positions are also indicated from which the tensile speci-
mens are cut out during the course of the experiments.
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Table 4.13 Time-of-flight temperature coefficients for the pipeline steel.

Shear wave B, | +160-10° K
Longitudinal wave B, +125-10° K™

Experimental conditions
A section is taken out of the pipeline exactly opposite the welding seam. The dimensions are

shown in Figure 4.19.

Positioning of the transducer, using the holder designed for these experiments (Fig. 3.18), re-
quires a flat specimen area. In order to provide this the outer surface of the pipeline section is
machined to a depth of 5.1 mm, thus creating a 147 mm wide flat area. This width, larger
than would be strictly necessary for positioning purposes (= 60 mm), is chosen in order to be
able to cut out a tensile specimen orientated perpendicular to the pipeline axis. The inner sur-
face of the section is also flattened in order to obtain parallelism. Consequently only 10.26
mm thickness remains, which originates roughly from the inner part of the original 16.1 mm
wall thickness. Although the measurements will probably be influenced by removing the
material, it is expected that a qualitative impression of the ultrasonic properties and acoustoe-
lastic behaviour of the material can still be gained.

In Figure 4.19 it can also be seen that the contours of the flat outer surface of the pipeline
section are curved. This is attributed to the presence of residual stresses in the original pipe-
line. Cutting out the section and removing material from the inner and outer surfaces evi-

dently caused the section to bend.

For the ultrasonic measurements wave propagation along a texture symmetry axis is
presumed, which in this case is the direction of the pipeline radius. Measurements are there-
fore only meaningful if performed at locations on the machined surface of the pipeline sec-
tion where the radius coincides with the surface normal. These locations form a line parallel
to the pipeline axis and will be denoted as the section axis. In this case the material axes x;
are defined such that x; is along the section axis, as the processing history makes it likely
that this is a symmetry axis for the material texture.

All experiments use the set-up described in Chapter 3. Preliminary measurements
through the machined pipeline section reveal nominal time-of-flight values of 3500, 6060
and 6430 ns for the longitudinal and the birefringent shear wave components respectively.
Due to overlap the 2n longitudinal echo is not available for time-of-flight measurements and
the 3™ echo is used instead. Given the large shear wave birefringence, the polarization meas-
urements are based on the amplitude maxima of the fastest component as a function of the

transducer polarization.
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Fig. 4.20 Distribution of shear (t, and t,) and longitudinal (t,) time of flight and the polarization angle o

along the axis of the pipeline section.
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4.5.2 Scan over pipeline section

Before cutting tensile specimens from the pipeline section, measurements are per-
formed along the entire section axis in order to gain an impression of the distribution of the
acoustic data t,, t,, t; and o. Figure 4.20 gives the results.

They show the following significant features:

o Along the whole scan the polarization angle o is very consistently almost zero. This
means that the shear waves are polarized parallel to and normal to the pipeline axis.

e The shear wave polarized in the direction of the pipeline axis shows a relatively large
time-of-flight variation (t,), while the value for the other shear component (t,) is much
more constant.

¢ The longitudinal time of flight (t,) varies only slightly.

The observed constant shear polarization confirms the assumption that the pipeline axis is a
symmetry direction for texture. As for the variation in time of flight, two phenomena could
be responsible:

e Residual stresses

It is to be expected that cold deformation, by converting a flat plate to a cylindrical
shape followed by expanding, generates residual stresses which vary through the wall
thickness of the pipeline. Cutting a section from the pipeline and machining the sur-
faces may result in a stress redistribution, which could be the origin of the varying
times of flight. Taking out tensile specimens could cause further stress changes, as one
of the in-plane dimensions is reduced to a small value. It is therefore interesting to
compare acoustic data measured at the specimen centres before and after cutting. Since
the measuring conditions before and after the cutting process are not exactly the same,
only a rough comparison can be made, with an accuracy of about 2 ns. Table 4.14
summarizes the results.

Table 4.14 Acoustic data before and after cutting out tensile specimens.

Specimen t, [ns] t, [ns] t, [ns] o[°]
o before | 6063 6430 3498 -1.3
after | 6063 6430 3499 -1.1
45 before | 6053 6432 3497 -14
after | 6053 6433 3497 04
90° before | 6062 6430 3496 -1.6
after | 6064 6431 3497 -0.5

It is easily seen that no significant changes have occurred. This means that residual
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stresses are a less likely cause for the observed time-of-flight distribution.

e Material heterogeneity

As mentioned above, the pipeline section was bent as a result of stress relaxation. The
material along the section axis will therefore originate from differing positions relative
to the original pipeline surfaces. During pipeline manufacturing the nature of the ap-
plied deformation is such that the material texture is not evenly distributed through the
wall thickness. The material along the section axis may therefore have varying acoustic
properties. An indication that this has indeed contributed to the observed time-of-flight
distribution is the fact that minimum values for t;, occur approximately at the location
where the width of the machined plane is at a maximum, i.e. X, = 110 mm.

4.5.3 Acoustoelastic behaviour

Three tensile specimens were cut from the pipeline section with orientations of 0, 45
and 90° relative to the pipeline (section) axis. They have the same geometry as the structural
steel specimens (Fig. 4.15), except for their thickness, which now equals that of the pipeline
section (10.26 mm). The specimen centres, where the acoustic measurements are performed,
coincide with the section axis. The exact locations are indicated in Figure 4.19.

Uniaxial tensile tests were performed on these specimens using a 100 KN electromechanical
testing machine. Acoustic data were obtained at intervals of 5 KN (32.5 MPa) up to a maxi-
mum load of 45 KN (293 MPa).

Figure 4.21 gives the resulting acoustic data t;, t,, t; and ¢ as a function of the applied tensile
stress. As was the case with the experiments on structural steel, the data measured at zero
applied stress are obtained separately from the tensile tests, using a different orientation of
the transducer holder relative to the specimens. These slightly deviating values will again be
discarded for the purpose of the acoustoelastic calibration.

The results show the following:

e Shear wave polarization
For the tensile directions 0° and 90° this is not affected by the applied stress. Such a re-
sponse is to be expected, as the shear stress defined on the x;-axes remains zero during
load application. For the 45° specimen a rotation of about —1.5° can be detected.

o Shear time of flight
The stress-induced changes range from a linear increase for waves polarized in the
tensile direction to a slight linear decrease when polarized normal to this direction.

¢ Longitudinal time of flight
A linear decrease can be observed for all three specimens.
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Fig. 4.21 Shear (t, and t,) and longitudinal (t,) times of flight and the polarization angle « as a function
of the applied uniaxial tensile stress in pipeline steel specimens. The loading directions relative
to the pipeline axis are: 0 = 0°, x = 45°, + = 90°.
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Acoustoelastic m-tensor

The R-tensor is calculated from the experimental data. These values, together with linear re-
gression lines, are plotted in Figure 4.22. Expressed in GPa, the acoustoelastic m-tensor cal-
culated from the regressicn slopes is found to be:

-107 ( 2) 20( 4 -1(9
[my] = 18(4) -197(7) -2 (16) 4.12)
-2(13) =5(28) -165(80)

The standard deviation shown between brackets is calculated using estimated experimental
errors of 1 in 20 000 for time of flight, 0.2 °C for the specimen temperature and 0.25° for the
shear wave polarization. The latter value is derived from the standard deviation found for the
polarization data obtained during the scan over the pipeline section (Fig. 4.20). It is a signi-
ficantly smaller value than used for both the aluminium and the structural steel measure-
ments. This can be attributed to (i) the different measuring method, i.e. determining ampli-
tude instead of time-of-flight maxima, and (ii) the extremely large birefringence.

It is obvious from Figure 4.22 that the determination of the reference values R}, which would
complete the acoustoelastic calibration, does not lead to a location-independent value for the
material of the pipeline section.

Discussion

Acoustoelastic material behaviour
The calibrated m-tensor (Eq. 4.12) gives rise to the following remarks:

¢ The components m,, My, Mg, and mg, do not deviate significantly from zero, which
suggests that the material is orthotropic as far as the acoustoelastic behaviour is con-
cerned.

o The difference between m,, and m,, indicates that the material is largely anisotropic
with respect to the acoustoelastic effect. The values are such that normal stresses in the
axial direction can be measured with a considerably higher sensitivity than circumfer-
ential stresses. The ratio is about 1.8 to 1.

o The reliability of the value for my is low, due to the very small rotation of the shear
wave polarization induced by shear stresses. The elastic properties of the material are
such that a shear wave birefringency of about 6% is induced, with polarization direc-
tions parallel to and normal to the pipeline axis (Fig. 4.21). As this relative difference
is much larger than the magnitude of the acoustoelastic effect, shear stresses can only
induce very small rotations of the polarization. This is confirmed by the results of the
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45° orientated tensile specimen, where roughly speaking a shear stress of 150 MPa
causes a rotation of 1.5°. Consequently the sensitivity for measuring shear stresses is
very low.

1t is clear that the acoustoelastic properties of the pipeline steel are strongly influenced by the
large elastic anisotropy caused by the cold deformation during the forming process and that
this becomes particularly manifest in the stress-measuring sensitivity.

This investigation is concerned with steel from longitudinally welded pipeline. The

-0.0020
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Fig. 4.22 Calculated R-tensor components as a function of the stress applied in pipeline steel specimens.
The loading directions relative to the pipeline axis are: 0 = 0°, x = 45°, + = 90°. The lines in-
dicate the results of linear regression calculations.
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pipeline axis can be expected to be an orthotropic symmetry direction, based on both the hot-
rolling process and the subsequent cold forming. The magnitude of the anisotropy is such,
however, that the cold deformation can be considered to be the dominant factor. This means
that the findings above could to some extent also be applicable to spirally welded pipeline,
where the rolling direction does not coincide with the pipeline axis.

Error analysis
Based on the calibrated mi-tensor, the resolution when evaluating normal stress changes is
estimated to be:

e + 7 MPa for axial stresses.
e 113 MPa for circumferential stresses.

The resolution for shear stress depends almost entirely on the accuracy of the polarization
measurement. As for this material these measurements are based on the determination of
amplitude maxima, the ourcome can be affected by transducer misalignment. The amplitude
scan in Figure 3.14 clearly illustrates that errors of up to 2° can be introduced. As is argued
in Section 3.3.2, this influence will be reduced by determining two successive maxima of the
same shear wave component and normalizing them so they are 180° apart.! If the transducer
alignment is also improved, the resolution of the polarization measurement could eventually
reach an estimated value of about 0.25°. A rough evaluation of shear stress would then be
possible, but it is questionable whether transducer positioning with such accuracy can be
achieved in practice.

Measuring absolute stress levels seems to be impossible, in view of the fact that the
reference values R} are not reproducible along the pipeline section. However, the results also
show that material heterogeneity in the thickness direction plays a major part in this. In order
to evaluate properly the reproducibility of the reference values, measurements at different lo-
cations on a pipeline through a well-defined part of the wall thickness would be required.

It should be noted that although residual stresses are not thought to be the cause for the ob-
served variations in acoustic data, they can still influence the stress measurements. On
grounds of symmetry it is likely that in spite of the cold deformation applied during the pipe-
line forming process the x, thickness direction remains a principal stress direction. However,
the in-plane residual stress components T,, T, and T¢ will probably be some function of x,.
This does not agree with the plane stress situation assumed in the theory underlying the
measurement. It is not known what the effect of this through-thickness variation is.

U This procedure is not followed in the experiments presented here. A systematic error may therefore be pres-
ent in the polarization data.
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Experimental aspects

The transducer holder used here (Fig. 3.18) is designed for a flat surface with a minimum di-
ameter of 60 mm. Measurements on the surface of an actual pipeline obviously require some
solutions. One possibility would be creating a flat surface. For example, the present pipeline
with its 1067 mm outer diameter would only show a decrease in wall thickness of 0.84 mm.
An alternative solution is to design a holder specially for cylindrical surfaces, capable of
maintaining a constant couple layer thickness together with an exact alignment of the trans-
ducer axis and the pipeline radius. It is not known however what effect the pipeline curvature
or the condition of the inner and outer surfaces would have on the measurement.
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4.6 Conclusion

A number of acoustoelastic experiments have been presented in this chapter. They
were performed on different metals with a wide range of both acoustic and acoustoelastic

properties.

In all cases it may be concluded that the signal-to-noise ratio obtained for longitudinal
and shear waves was adequate for accurate evaluation of time of flight and amplitude. The
experiments performed with the set-up described in Chapter 3 show an estimated time-of-
flight evaluation error of | in 20000.

The acoustoelastic behaviour of the materials is found to be strongly affected by the
magnitude of the elastic anisotropy. The two hot-rolled structural steel qualities are almost
(transversely) isotropic with regard to both elastic and acoustoelastic behaviour. The alumin-
ium alloy under investigation shows some elastic anisotropy (0.3 % birefringence) in combi-
nation with a significant acoustoelastic anisotropy (20 %). The pipeline steel is largely ani-
sotropic (6 % birefringenice), while the acoustoelastic effect is about 1.8 times higher for
normal stresses in the axial direction compared with the circumferential direction. The
magnitude of the elastic anisotropy also determines the extent to which the shear polarization
direction rotates under the influence of shear siresses. In the largely anisotropic pipeline steel
this rotation is barely measurable.

The magnitude of the acoustoelastic behaviour itself, calibrated for the different metals in
the form of k- and m-tensors, can be compared with values provided in literature. In refer-
ence [48], 2" and 3"-order elastic constants can be found which have been determined for a
number of approximately isotropic aluminium and steel qualities. These constants can be
substituted in the expressions given in Appendix 2E for x-tensor components. Substituting
these components in Equations 2.17 and 2.28, while assuming plane stress, and inverting the
results obtained (Egs. 2.24 and 2.30) leads to the k- and m-tensors respectively for these iso-
tropic metals. In Table 4.15 tensor values are summarized for an aluminium and a steel qual-

Table 4.15 Isotropic k- ard m-tensors [GPa], calculated from 2". and 3"-order elastic constants [48].

-165 62 00 -398 19 00
Aluminium 28 ky=| —62-165 00 | [myl=| 19-398 00
(993 % Al) 0.0 00 -102 0.0 00 —41.6

223 15 0

Steel Hecla 37 [my] = 15 =223 0

(0.4 % C;0.3 % Si;0.8 % Mn) 0 0-238
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ity. They are selected so that their 2™order elastic constants approximately agree with those
found for the aluminium and structural steel qualities investigated here.

The tensors for aluminium show the same form as those calibrated (Eqs. 4.5 and 4.6), but the
absolute values for the various components are somewhat smaller (20 - 30 %). The values for
steel are extremely close to those calibrated (Eq. 4.10®). It should be noted that the steel
qualities investigated here may also be considered isotropic.

It is concluded that the actual stress measurements performed in the experiments with
the aluminium disc and CT specimen were successful. All three plane stress components are
determined with an error level which is small compared with the yield strength of the mate-
rial. Based on these stress values, it was also found to be possible to numerically integrate
the J fracture parameter along different contours, achieving good reproducibility and good
agreement with estimates obtained both from the finite-element method and linear-elastic
fracture mechanics.

The results for the stress field in the CT specimen determined using both shear and
longitudinal waves show that absolute stress levels can also be determined. Obviously the
reference values should be reproducible from one location to another. The results for the
structural steel specimens are an indication that this is indeed is a realistic assumption. In
particular this is confirmed by the correspondence between the reference values of the two
steel qualities from different manufacturers.

Measurements using both shear and longitudinal waves reduce the effect which temperature
has on the ultimate results. The time-of-flight temperature coefficients P are such that the in-
fluences on the two wave types partially cancel each other out in the calculation of the
acoustic data tensor R.
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Appendix 4A The J-integral: numerical integration through elastic material

Definition of J X,
Consider an arbitrarily-shaped two- ?
dimensional body containing a crack,
as shown in Figure 4A.1. An orthogo-
nal set of axes x; is defined, with the
x,- and x,-axes respectively parallel
and normal to the crack. All relevant
quantities are assumed to be inde-

. -
pendent of the x;-coordinate. Non- X3

linear elastic material behaviour is  Fig. 4A.1 Cracked two-dimensional non-linear elastic body.
used as a model for possible plasticity. This is known as the deformation theory of plasticity.
A restriction is that no unloading may occur in any part of the body, as plastic deformation is
irreversible. Under these assumptions Rice [46] defined the J-integral as:'

J=[(Wn —T%)ds 4A.1)
= 17 igx, -
r
where T = any contour surrounding the crack tip s

'me

W = strain-energy density, defined as W(S)) = fTudSlJ
T;; = stress tensor component
Sj; = strain tensor component
T; = component of traction vector on I', i.e. T; = Ty
u; = displacement component
n, = component of outward directed unit vector normal to I’
s = arc length along I (positive when measured anticlockwise)

Integrating through linear elastic material
Using the infinitesimal forms of the strain and rotation tensors S and o

oy dy duy; Jdy; b
Sij:%(ax t3) and /z(ax 3, “4A.2%)

the integrand of J, denoted as I, can be rewritten as:

1 fn order to avoid confusion between components of the traction vector T, and components of the stress tensor
T;» the full index notation is used here instead of the Voigt notation.
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L=n, fT S;; — Tyni(S;; + o (4A.3)

If the integration contour I is chosen in linear elastic material, the strain can be expressed in
terms of stress components using the compliance constants s:

S = ST (4A4)

leading to:
L = Y0, 8,34 T Ty — Tyny(80 Tig + @4y) (4A.5)
From the two-dimensional nature of the problem, it follows that:
n,=0  and @y, = Sy, (4A.6™)
and from the definition of the @-tensor:
@, =0 (4A.6°)
Applying Equations 4A.6 to the integrand I, yields:

L= anm('/’Sijleij = SiyaTit = S3aTar) +
- 0, Ty(SimaTi2 = S3aT3) +

- 0)21 (Tz[ﬂ] + T22n2) (4A.7)

In isotropic material the non-zero compliance constants are (i # j):

1 =V 1+v abe
Siiii = | Siy = g Sifij = Sijji T o (4A.877)
where E = Young’s modulus
v = Poisson’s ratio
Substitution yields:
n
L= El{'/z( Tyt Tas= Tiy) = VI Tay + (14V)( T3 T3) } +
0,
~F Ta(Ty#Tp~VTs) +
- @y (Tyn, + Tyon,) (4A.9)

Assumption of a plane stress field, i.e. T3 = Ty; = 0, leads to an expression for I; in terms of

stress components and the rotation component ®,,:
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1
L= E{ Yo To=Topny = T (Ty+Tpn, } — @ (T +Ty0y) (4A.10)

The term between brackets multiplying ®,, is equal to component T, of the traction vector.
As the body is in equilibrium and T, is zero along the crack surfaces, this term should inte-
grate to zero along I'. Corsequently a constant part of @,; should not contribute to J and only
the change of ®,; along I" would need to be considered.

Determining the rotation component
Consider the rotation component @,, as a function of x, and x,. The change d®,, between
two neighbouring points can be written as [19]:

do, 9, —ax am“dx (4A.11)
1= x, 1t x, 12 .
Using:

doy 35y 38y, dwy _ 3y 35,

— - —_— . ab.
d9x, 9%, 0%, ane x, T ok, E)xl (4A.127)

and again substituting stress components by means of the compliance tensor s leads to the

following expression for the change dw,, in the case of a plane stress state:

3T, T, oT oy ATy AT
dey, = E[{(1+v) a_ x’z‘ 22}dx1 {(1+v)a21 azf “}dxz] (4A.13)

As stated above, calculating the rotation change would suffice to numerically integrate J.
However, experimental errors in T,, and T, will inevitably cause some dependence of J on
the absolute rotation value. Accuracy will benefit if an estimate of the absolute rotation value
is made, If the rotation @, is known at a point x$,x3, the rotation at an arbitrary point can be

calculated according to:

xl’xz

@y (X1,Xp) = 0 (X7,X3) + J’dwz, (4A.14)

0 g0
XX,



Chapter 5

A Model for the Pulse-Echo Method

5.1 Introduction

Chapter 3 contains an extensive description of an experimental technique for acousto-
elastic stress measurements. Several factors which affect experimental accuracy were dis-
cussed in that chapter. The present chapter is concerned with developing a model for the
pulse-echo method and using this model to calculate results for a number of relevant parame-
ter sets. Part of the work presented in this chapter has been published in reference [30].

Objectives

Although a number of distorting effects have already been assessed experimentally, the out-
come of model calculaticns is expected to provide additional information. The main incen-
tive, however, is the fact that more insight is required into the pulse-echo technique based on
a piezoelectric transducer. This is due to the particular emphasis placed on accuracy owing to
the smallness of the acoustoelastic effect and the desire to obtain absolute time-of-flight data.
Moreover, the technique proposed in Chapter 3 uses a relatively thick and dispersive cou-
pling layer, a situation which clearly differs from normal practice. The consequences of this
with regard to the pulse-echo measurement need to be evaluated. One of the objectives is
therefore also to compare the use of thick coupling layers with that of thin layers.

Summarized, the objectives of the work presented in this chapter are to analyse the effect of:
o diffraction in the specimen
¢ the coupling layer
e electrical settings
on time-of-flight measurements and of:
e transducer misalignment

on both time-of-flight and polarization measurements.

Approach

The model will not refer exactly to the set-up described in Chapter 3. One of the reasons for
this is that the properties of the electronic circuitry, the transducer and the coupling fluid are
only partly known. It is believed, however, that the approximate model presented here is
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adequate as far as the specified objectives are concerned. Consequently the results of the cal-
culations need not be limited to this specific set-up, but may apply to a whole range of pulse-
echo configurations, depending on the parameters used.

A simple one-dimensional model is adopted for the piezoelectric transducer. The
model may represent either a shear or a longitudinal transducer type.! The model transducer
is either driven by a voltage source with a given impedance or terminated by this impedance,
depending on whether the transducer is transmitting or receiving. The couplant is added to
the one-dimensional model as an extra layer. The ultrasonic properties of the fluid, which are
essential to the calculation, are based on experimental results. Diffraction in the specimen is
also taken into account; it is treated separately, as it requires a three-dimensional approach.

Calculations are performed using two different models. The first one is for a perfectly
aligned circular transducer, in which rotation symmetry is used to advantage. In the second a
tilted transducer is simulated by dividing the circular transducer into a number of strip-
shaped subtransducers electrically connected in parallel. These subtransducers are coupled to
the specimen through layers with varying thicknesses.

' Developing a model for a combined shear-longitudinal transducer would complicate matters significantly.
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5.2 Description

As mentioned in the introduction, the calculation is divided into two parts, namely (i) a
one-dimensional model covering pulser-receiver, transducer and coupling layer and (ii) a
model for diffraction in the specimen. This division is not coincidental, but is dictated by the
nature of the problem. The elements which make up the first part must be solved simultane-
ously, since the properties of each influence the behaviour of the others. This is not the case
for diffraction in the specimen, which in principle can be considered as a system with an in-
dependent input and output. In spite of this the pulser, transducer and coupling layer are first
discussed separately and are not combined till later to form one system with a single input
and output. This approach will prove more suitable for dealing with a tilted transducer.

Developing a model for the pulser-receiver/transducer/couplant combination could
mean numerically solving a set of differential equations thus interrelating the various electri-
cal and mechanical quantities and their time derivatives. However, such an approach in the
time domain would significantly complicate the treatment of the viscous couplant, in view of
its frequency-dependent properties.! For this reason, and also because it is more convenient,
all calculations will be parformed in the frequency domain, using the Fourier transform
(Appendix 5A). Time-varying quantities such as wave stresses, voltages and currents will be
considered as complex functions of frequency, with modulus and argument representing their
amplitude and phase respectively.

At this point it is important to define the nature of the systems to which the calculation
will be applied. In this context a system is considered to be any element, which transforms an
input signal to an output signal. Simple examples in the electrical area are resistors and ca-
pacitors, where voltage and current are the input and output signals or vice versa. Mechanical
examples are (i) the constitutive behaviour of a material, with stress and strain as the input
and output, and (ii) wave propagation, where the wave introduced into a medium is the input
and the wave delayed and attenuated after propagation is the output.

It is now assumed that the input signals s,(t) and s;(t) cause the responses s,(t) and s)(t) re-
spectively, all being functions of time t. The systems considered here are said to be:

e Linear, in the sense that an input signal s,(t) + s;(t) causes a response s,(t) + s,(t) for
any s, (t) and s;(t).

e Time-invariant, in the sense that an input signal s,(t + 7) causes a response s,(t + 7) for

any s,(t) and T.

' Similarly the diffraction calculation cannot be performed in the time domain, but this would not present any
problems, as this part of the calculation can be treated separately.
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It is possible to describe the response for these systems in the frequency domain [5, 10].
More specifically, given a harmonic input signal with angular frequency w:

s1(t) =™ G.1)
the response can always be written in the form:
5,(t) = H@)e'® (5.2)

where H(®w) = frequency response or transfer function of the system

Thus, the response of a linear and time-invariant system is again a harmonic signal with the
same frequency. The transfer function H(w), defined in Eq. 5.2, is a complex function of fre-
quency. Its modulus is the ratio of the input and output signal amplitudes, and its argument is
the phase difference between these signals.

In short, the calculations involve the evaluation of a number of transfer functions for
the pulser-receiver/transducer/coupling combination and for the diffraction phenomenon.
Using the waveform generated by the pulser, the waveforms received in a pulse-echo con-
figuration are then determined.

5.2.1 Pulser-receiver

The model for the pulser-receiver will not be based on the electronic circuitry which
was schematically shown in Figure 3.19. The reason is the presence of a thyristor in the
pulser part, a device which has a response which is far from linear. It is possible, however, to
create a model for the pulser in the time domain, although calculation based on such a model
cannot be coupled to the calculations for the transducer and coupling layer, as these are per-
formed in the frequency domain.

Z I

The pulser output shown in Figure 3.20 in fact results from
calculations in the time domain.!, The model is therefore re-
duced to a simple voltage source V, with an impedance Z,
equal to that of the damping resistor (see Fig. 5.1). For the
voltage delivered by this source the results of time-domain
calculations are used. It is believed that this approach has
little effect on the ultimate result, as the thyristor will be-
come non-conductive very soon (10 ns) after the start of the pulse. From that point in time
the output impedance of the pulser is equal to the damping resistance. The actual voltage
across the electrodes of the transducer, V,, now simply depends on the current L, through

Fig. 5.1 Simplified pulser model.

' The results of these calculation agree with the manufacturer’s specifications.
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these electrodes, according to the relation:
Ve=V-Z[L (5.3)

As far as the receiver part is concerned, the same model applies, except that the source volt-
age V, is assumed to be zero. Consequently the transducer is simply terminated by the
damping resistor Z.

It is beyond the scope of this work to go into detail regarding the calculation of the
time-domain model for the pulser. The result, however, is in the form of a series of N real
numbers representing the pulser voltage V, at equidistant times, with a time interval At be-
tween consecutive values. The discrete Fourier transform (Appendix 5A) is applied to this
pulse, leading to a series of complex numbers.! They are the amplitude and phase at a series
of equidistant frequencies ,, ranging from zero to the Nyquist critical frequency, i.e.:

== forn=0.N/p 5.4)

These frequency-domain pulse data form the input for further calculations carried out at the
frequencies .

5.2.2 Transducer

The transducer model
Figure 5.2 shows the model used for the pie-

zoelectric ultrasonic transducer. At the heart ]
of the transducer is a thin plate of piezoelec- b

tric material (p). Conductive layers on both @ <
flat surfaces form the transducer electrodes. P_P*
These are assumed to be so thin that it is :

possible to neglect any influence on the Fig. 5.2 Transducer model with piezoelectric plate
propagation of elastic waves through them. (p). electrodes (e), backing medium (b),
The piezoelectric plate is sandwiched be- protective layer (1 and coupling (¢).
tween a backing medium (b) on one side, which partly determines the transducer characteris-
tic, and a protective layer (1) on the other. An acoustic coupling medium (c) is adjacent to the

protective layer.

The excitation and detection of plane waves in a piezoelectric plate surrounded by two

I A Fast Fourier Transform algorithm (FFT) is in fact used, which requires that N should be an integer power
of 2. If needed, therefore, an adequate number of zeros are added to the original pulse data.
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non-piezoelectric media is extensively treated in Appendix 5B. A one-dimensional approach
is used, i.e. all relevant quantities are assumed to be independent of coordinates in the plane
of the plate. Such an assumption is permitted only if the plate thickness is small relative to its
other dimensions [1]. It means that only plane waves travelling in the plate thickness direc-
tion are considered.

Furthermore, the equations derived are the result of a simplified analysis. The simplification
implies an electromechanical coupling involving only a single wave component. Defined on
a set of coordinate axes x; with the x;-axis parallel to the plate thickness, this coupling is
signified by components e,;; of the 3™.order piezoelectric stress tensor e. These components
form a vector parallel to the polarization direction of the coupled plane wave, the length of
which will be concisely denoted by the scalar piezoelectric stress constant e (Eq. 5B.16).

Finally, it is assumed that plane waves with the same polarization direction as the coupled
wave can propagate through the media adjacent to the piezoelectric plate. For one thing, this
means that no wave conversions occur during reflection and transmission at interfaces.
Stresses associated with plane waves in the transducer can now be denoted by scalar quanti-
ties, as they are equivalent to traction forces acting on planes normal to the plate thickness,
forces which always point in the same direction.

It will be assumed in the transducer model that waves propagating into the backing
medium will not return, either because reflections do not arrive within the time frame used
for the calculations or because they are too greatly attenuated. Therefore, waves in this me-
dium are not considered at all.

As far as the protective layer is concerned, it should be noted that the assumption made con-
cerning the thinness of the piezoelectric plate also applies here. Diffraction effects could oth-
erwise become important, and the one-dimensional description would no longer be appro-

priate.

Plane waves in the layered structure

The relevant mechanical waves which propagate through the different layers in the trans-
ducer are indicated in Figure 5.3. An arrow expresses the wave propagation direction, while
a point is used to mark the location for which the stress amplitude is defined. The arrows
without a point indicate traction forces between layers, e.g. W, is the traction force exerted
by the protective layer onto the couplant.

The various plane waves and traction forces must be related to each other. These rela-
tions are derived by considering wave propagation through the layers and reflection and
transmission at the interfaces. The propagation delay to which a plane wave is subject when a
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layer is traversed will be described using a transfer function.! For layer x with thickness d,
and a propagating wave with wave number k, the transfer function H, is defined as:

H =eikde 55)

X

Through k, this quantity is a complex function of frequency. It should be noted that plane
wave propagation in the piezoelectric plate is described by means of the stiffened Christoffel
tensor (Eq. 5B.11), i.e. the influence of electromechanical coupling is taken into account.

interface

Je.A 1ﬂwaves b
7 l '
Wy
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& e
1
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W 1 c

Fig. 5.3 Relevant electric and acoustic quantities in the transducer calculation.

Reflection and transmission of plane waves at the interfaces between the various layers is de-
scribed using the usual coefficients (Appendix 3B). It should be noted that the reflection and
transmission coefficients at the interface between the protective layer and the couplant are
complex quantities. The reason for this is that the couplant will be considered as an attenuat-
ing medium in which the specific wave impedance is therefore complex (see Appendix 5C).

Excitation and detection of plane waves

Plane waves, indicated as interface waves in Figure 5.3, are excited at each of the two inter-
faces of the piezoelectric plate. They travel into the plate and the neighbouring medium with
amplitudes proportional to the electrode current density J,, which is the electrode current I,
per unit transducer area A. As formulated in Equations 5B.25 and 5B.26, the wave ampli-
tudes are equal to:

L e
W=—iz 5], (5.6)
W =+iz =5, (5.7)

T Wave attenuation is neglected in the materials forming the transducer.
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where W, Z = stress amplitude and specific impedance of the plane wave travelling
into the piezoelectric plate
W', Z' = stress amplitude and specific impedance of the plane wave travelling
into the adjacent non-piezoelectric medium
e = piezoelectric stress constant for the plate material
= angular frequency
€’ = permittivity constant for the plate material, i.e. &,

The detection of plane waves is described in Equation 5B.30, which reads:
p)
+—5 (W + W) (5.8)

where V, = voltage across electrodes
d, = plate thickness
H,, = transfer function plate layer
W;;,W’p = stress amplitudes of plane waves travelling in the plate in positive
and negative thickness directions respectively

The transducer solution

The solution sought for the transducer model relates the electrical quantities, i.e. the elec-
trode voltage V, and the current density J,, to the traction forces, Wy, and W, which are ex-
erted on and by the coupling layer. In order to obtain this solution, the set of equations de-
scribing the whole model must be solved simultaneously. These equations relate all waves,
using the appropriate reflection and transmission coefficients and layer transfer functions.
The waves induced electrically at the plate interfaces must also be taken into account, as also
the effect which the waves travelling in the plate have on the electrical conditions. The
complete set of equations is:

e’ e(1-H)

x + -
J.= dp V. + dPZp WVP+WP)

- - L
WP = HpprWp Zp +Zb (lEs e
- . - % e

iZ, ¢
- +
W= HR,W| +HT,W, + Z +Zp0—£~gje

W; = HlRchT + wcl
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W, = HITICWT (5.9)

It is convenient to write this set of equations in matrix notation:

- —ice’ e(H,~1) e(H-1) T 7 .-
5 1 55 45— 0 o0 |V 0
P dPZP PP
iz
2. c
0 Az, o 1 -HR, 0 0 J, 0
0 2T o -HR, 1 0 -HT, | W, 0
-z, . = (5.10)
0o Z Zod -HT, O 1 -HR, [ W, 0
0 0 0 0 +HT, © W) W,

Denoting element ij of the inverted matrix as A;;, the desired solution can be written as:

v AIS A16 ch

€

5.11)

J e AZS A26 wcl

5.2.3 Coupling layer

It should first be noted that the thickness of the coupling layer is assumned to be small
relative to its other dimensions. This assumption must be made in order to be able to use a
one-dimensional approach, as was the case for the piezoelectric plate and protective layer of
the transducer.

Wave propagation in viscous fluid

The constitutive behaviour of a viscous fluid such as the shear wave couplant can be ex-
pected to depend on frequency. The propagation of waves through this medium therefore re-
quires a separate treatment. In Appendix 5C a medium is considered with a frequency-
dependent complex stiffness tensor C relating a harmonically varying stress tensor to a har-
monically varying strain tensor. Assuming an attenuated plane wave solution, an alternative
Christoffel equation is derived (Eq. 5C.6). The complex eigenvalues of this Christoffel ten-
sor are not only a measure of the phase velocity @y, but also of the attenuation coefficient c.



130 A Model for the Pulse-Echo Method

The transfer function for the coupling layer now takes the form of:
H, = ¢ k%, (5.12)

where k., 0, = wave number and attenuation coefficient of a plane wave in the coup-

lant
d, = coupling layer thickness

The coupling solution

1
If\wcl

|
MW
Y e -

C

Fig. 5.4 Waves and traction forces relevant to the coupling layer (c), which is sandwiched between the
protective layer of the transducer (I) and the propagation medium (m).

The waves travelling in positive and negative thickness directions through the coupling layer
and the traction forces acting on the two interfaces are indicated in Figure 5.4. The aim is to
establish a relation between the four traction forces, using the transfer function H, and the
various reflection and transmission coefficients. Owing to the attenuating nature of the
couplant, these coefficients will be complex. The available equations are:

w:= HcRclw: +wlc

Wcl = HcTch;
Wcm = HcTcmW:
W: = Hc mW: + Wi (5.13)
or in matrix notation:
1 0 -1 +HCRC,T wlj 0|
0 1 Y -HTy | Wq 0
= (5.14)
0 0 +HT, O W, W,
[0 0 -HR, 1 W] |V
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Denoting element ij of the inverted matrix as By, it follows that:

j9

ch B13 B14 W,

cm

(5.15)
W,

cl

B,; By f W,

mc

5.2.4 Operation of a coupled transducer

The problem of a transducer connected to a pulser-receiver and acoustically coupled to a
propagation medium will be completely solved by combining the separately derived solu-
tions for pulser-receiver, transducer and coupling layer. At this point it is convenient to de-
fine the stress amplitudes of the waves transmitted into and received from the propagation
medium as W, the W, according to (see also Fig. 5.4):

Wt— Wcm+Rchr (5.16)
V‘V .1
r mc ( )

Three situations are considered, namely the cases of a:

e Transmitting transducer
The received wave amplitude is assumed to be zero and a transfer coefficient is derived
between the source voltage, delivered by the pulser, and the amplitude of the transmit-
ted wave.

o Receiving transducer
For a zero source voltage a transfer coefficient is determined between the amplitude of
the received wave and the transducer electrode voltage.

e Reflecting transducer
Again for a zero source voltage, the amplitude of the re-transmitted wave is expressed
in terms of the received wave amplitude,

As mentioned in the introduction, two different cases are considered, namely that of a per-
fectly aligned and that of a slightly tilted transducer. The solutions derived so far apply to
both, but they will be combined differently. It should be noted that the transducer is assumed
to be circular in shape.

A perfectly aligned transducer

The configuration of transducer and coupling layer is now described by combining their re-
spective solutions (Egs. 5.11 and 5.15). Simultaneously the traction forces at the interface
between couplant and propagation medium, W, and W, are expressed in terms of the



132 A Model for the Pulse-Echo Method

transmitted and received wave amplitudes W, and W_:

Ve C] 1 C12 wt
= (5.18)
Je CZl C22 Wr

C11 C12 15 A16 B13 B14
where =
Cyu Cyn Ay Ay 0 Ty

Using the relation between electrode voltage V, and current L, resulting from the pulser-
receiver model (Eq. 5.3), and writing the current I, as the product of the transducer area A
and electrode current density J, it follows that:

1 za o |wv. v,
L 0 :& J = W 5.1
Cp Ci o f (5.19)
1 -Cy
L 0 Cy Cy _J _Wt - = w'_

The solution to this set of equations expresses the electrical conditions at the transducer
electrodes and the transmitted mechanical wave as a function of the source voltage of the
pulser and the received mechanical wave. Element ij of the inverted matrix will be denoted
as Dy

Transmitting transducer

By setting the received wave amplitude W/ to zero, the wave amplitude W, of a transmitting
transducer can be expressed in terms of the source voltage V through the following transfer
coefficient:

M) oy et 5.20
Voo T CitZAC (5:20)

The transducer/coupling solution is based on a one-dimensional model. Consequently the
transmitted wave has the same amplitude over the whole of the transducer area. This may be
considered a reasonable description of reality.

Receiving transducer
For a zero source voltage V, the transfer coefficient between the received wave amplitude W,
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and the electrode voltage V, of a receiving transducer is:

Vel
Tl =D, +D (5.21)
(Wr - 127 Vi3

Strictly speaking this equation is valid only if the received wave amplitude W, is constant
over the transducer area. However, due to diffraction effects in the specimen, this cannot be
expected. For a receiving transducer this problem is approached by imagining that the trans-
ducer is divided into a number of subtransducers. These are electrically connected in parallel
and each receives a slightly different wave amplitude.! The electrode current density in a
subtransducer is proportional to the local received amplitude (Eq. 5.11). In turn the electrode
voltage V,, common to all subtransducers, is a function of the total electrode current I, (Eq.
5.3) and thus of the average current density. Therefore, in order to include the case of re-
ceived waves with varying amplitude, the transfer coefficient is described in terms of the av-

erage received wave amplitude 2

\Y ZA(C,,C,—C,Cy)
(__e_l’ =Dy, +Dy = Ar i Ui (5.22)
=0

W, C,+ZAC,,

A
A

where W, = ‘]‘JW,dA

Reflecting transducer
The wave W,, which is re-transmitted when a wave W, is received, follows from the setting
of V, to zero in Equation 5.19. Following the argumentation used above average wave ampli-

tudes can be used:
[ C‘,_+Z AC,,
1’ = D32 + D33 = —C11+Z ACZI (5.23)

However, the locai amplitude of the re-transmitted wave is not defined by this relation.
Using the transducer/coupling solution (Eq. 5.18), this amplitude can be written as:

(5.24)

¥ In order for the one-dimersional approach to remain applicable, it is required that the size of the subtrans-
ducers is large compared with the thickness of the piezoelectric plate, protective layer and coupling layer.
Consequently it must be assumed that significant changes in the received wave amplitude occur only over
distances which are large relative to these thicknesses.
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The first term in this equation is constant throughout the transducer area and can be consid-
ered to be the amplitude of a transmitted wave which is induced by electrode voltage V,,
which in turn depends on the average received wave amplitude (Eq. 5.22). This is described

W, 1
ETa == 5.25
[V=1v,=o Cu ¢2)

The second term depends on the local received amplitude and thus has the characteristics of a

by the transfer coefficient:

wave component which is simply reflected, with a reflection coefficient equal to:
W, Cp
T2 === 5.26
(wflho Cu 20

A slightly tilted transducer

In the case of a tilted transducer the coupling layer has a varying thickness over the trans-
ducer surface. As a consequence of this it is no longer possible to use the one-dimensional
approach, in which all relevant quantities are assumed independent of the coordinate in the
plane of the piezoelectric disc.

Fig. 5.5 The division of a tilted circular transducer into a number of strip-shaped subtransducers.

‘What was only an exercise of the imagination when describing a receiving transducer will be
actually implemented in the model of a slightly tilted transducer, resulting in the division of
the circular transducer into a number of subtransducers. As shown in Figure 5.5, they are
strip-shaped and orientated perpendicular to the plane through the transducer normal and the
normal on the surface of the propagation medium. The surfaces of the subtransducers are as-
sumed to be parallel to that of the propagation medium. Using this model, the one-
dimensional calculation can still be applied to each subtransducer separately. As mentioned
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Fig. 5.6 Schematic representation of the tilted transducer model with M subtransducers electricaily
connected in parallel and acoustically coupled to a propagation medium through layers with

varying thicknesses.
before (see Footnote I on p. 133), it must be assumed that the in-plane dimensions of each

subtransducer remain large compared with the thicknesses of the various layers.

Figure 5.6 shows a schematic representation of the tilted transducer model using M

subtransducers electrically connected in parallel. The relevant electrical quantities are indi-
cated, i.e. the common electrode voltage V, and the individual electrode currents, equal to
the product of the electrode areas A™ and electrode current densities Jim), with m ranging
from 1 to M. For the m™ subtransducer with its corresponding coupling layer, the relation

between the relevant electrical and mechanical quantities is written in the form of:

Vo | [ cwcp [we i
b o™ o W (27
e 21 22 r

Matrix elements Cg“) are derived as in Equation 5.18. The transducer solution (Eq. 5.11) is
common to all subtransducers and thus only needs to be evaluated once.

The relation between the electrode voltage V, and the total electrode current I, resulting

from the pulser-receiver model (Eq. 5.3), takes the form of:
V=V, - Z(AV1" + APID 4 ..+ AMID) (5.28)

A set of 2M+1 equations can now be formulated. It expresses all electrical quantities and the
amplitudes of the waves which are transmitted by each subtransducer into the propagation
medium as a function of the source voltage of the pulser and the amplitudes of the waves re-

ceived by each subtransducer:
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Element ij of the inverted matrix will be denoted as D;;.

Transmitting transducer
The transfer coefficient between the source voltage V and the amplitude W™ of the wave
transmitted by the m"™ subtransducer can be found by assuming that none of the subtransduc-
ers is receiving a wave. Thus:

W&m
[T oy = Dovpmyty -eveereesees forn=1.M (5.30)

Receiving transducer

The transfer coefficient between the amplitude Wﬁ"') received by the m™ subtransducer and
the resulting electrode voltage V, is found by setting V and all wave amplitudes received by
the other subtransducers to zero. Based on the same arguments as used for the aligned trans-
ducer, the received wave amplitude is averaged, in this case over the area of the sub-
transducer. Denoting this average amplitude as W™, the coefficient becomes:

Ve
[ m)l, " = D(])(zm) + D(l)(2m+1) ............. forn=1.M andn#m (5.31)
=0:W, =0

T

The electrode voltage V., which results when all subtransducers connected in parallel are re-
ceiving waves, follows from the inverse of Equation 5.29, i.e. it is obtained by simply adding
all individual contributions.
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Reflecting transducer

Analogous to the discussion for the aligned transducer, the amplitude of a wave re-
transmitted by the m™® receiving subtransducer is expressed in terms of the electrode voltage
V., which is induced by the waves received by the transducer as a whole. The transfer coeffi-

cient reads:
me) - (5.32)
Ve vy~ O |
The reflection of waves received by the m™ subtransducer is described in terms of a reflec-
tion coefficient:
Wf"‘) = _(_:fll_;_) (5.33)
wim) e=0 - C(lnln) .

5.2.5 Diffraction in the specimen

Waves emitted intc a specimen by an ultrasonic transducer cannot be considered as
homogeneous plane waves. The reason for this is that the transducer has finite dimensions
and that consequently the phenomenon of diffraction will occur. This can be expected to af-
fect the shape of the wave pulse and therefore also the result of time-of-flight measurements.

In the following a relation is derived between the wave amplitude transmitted into the speci-
men and the amplitude received after the plate-shaped specimen has been traversed a number
of times. As the latter amplitude varies over the area of the receiving (sub-)transducer, it will
be averaged. The final result, therefore, is in the form of a transfer function between trans-
mitted and averaged received amplitudes and can be used directly as a link between the cor-
responding transducer calculations.

First the diffraction itself is described, after which the calculation is discussed for the cases
of a perfectly aligned transducer and one which is slightly tilted.

The Kirchhoff diffraction theory

The basis for the Kirchhoff diffraction theory is the Helmholtz-Kirchhoff integral theorem
[12]. Consider a volume in which a point P is located and which is completely enclosed by a
surface S. A time-harmonic scalar wave is assumed to be present, generated outside the en-
closed volume and with a complex amplitude field A = A(x).! The theorem reads:

' The amplitude of such a wave is a scalar quantity, as is, for example, the pressure of compressional waves in
gases or non-viscous fluids.
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A@) = —IITEJ'{AV(':‘e'M) —(%e‘““) vA}nds (5.34)
S

where r = distance from point P to surface element dS
n = outwards-directed unit normal on element dS

This equation relates the wave amplitude at point P to the amplitude A and its normal deriva-
tive n-VA on the surface S.

Fig. 5.7 Opaque screen with aperture, used to derive the Fresnel-Kirchhoff diffraction formula

As illustrated by Figure 5.7, the surface S enclosing point P is now chosen to coincide with
an opaque screen in which an aperture is present. It is assumed that at the aperture the ampli-
tude of the wave emanating from some source outside S is unaffected by the presence of the
screen. At the screen itself, due to its opaqueness, both amplitude and normal derivative are
assumed to vanish. These assumptions originate from geometrical optics' and are called the
Kirchhoff boundary conditions.

In this specific case a flat aperture is considered, and for the externally generated
wavefield a plane wave is chosen with wave number k, propagating in the direction opposite
to the unit normal n at the aperture. Denoting its amplitude at the aperture as A,, the bound-
ary conditions become:

A=A, and DVA=ikA e at the aperture (5.35)

A=nVA=0.ercrirreecnciinnns at the screen (5.36)

Using the integral theorem the wave amplitude at P can now be calculated as:

' In the geometrical optics model the wavelength is assumed to be small compared with any other dimension.
Waves are considered to propagate along rays, which are straight lines in a homogeneous medium.
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AP) = -4—;5 J {A (—%—ik)%e’ikrcose - %e_ik' ikA, }ds =
AS
—ike
= ZIE J{ (%+ik)cos9 +ik }erS (5.37)

AS

where 6 = angle between the aperture normal and the ray to P
AS = aperture area

For points P at distances r much larger than the wavelength, i.e. llr << k, the Fresnel-
Kirchhoff diffraction formula is obtained, which for this case reads:

ik —ikr
AR =3 A, J‘/Z(cose +S—ds (5.38)

AS

The amplitude at P is found to be proportional to 1/, and to the so-called obliguity factor
1/,(cos8 + 1), which introduces a dependence on the inclination angle 6. It is also important
to note that a phase advance of 90° is introduced in the diffracted wave.

In order for the diffraction formula to be a good approximation, all dimensions, such as
aperture size and distance r, should be large compared with the wavelength. Furthermore,
strictly speaking the formula is only valid for scalar waves. However, it can be argued [12]
that if the different wave rays travelling from the aperture to point P make only a small angle
relative to the aperture normal (< 10 to 15°), the formula will also provide a good description
for vector waves, such as longitudinal or shear waves in a solid.

Arec diffraction

In order to treat wave diffraction for a perfectly aligned transducer, the Kirchhoff diffraction
formula (Eq. 5.38) is applied to a circular aperture coinciding with the area of a transmitting
transducer. First the transfer function is calculated between the transmitted wave amplitude,
which is assumed to be constant throughout the area of the transducer, and the amplitude at
some observation point. The resulting transfer function is then averaged over the area of a re-
ceiving transducer.
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Fig. 5.8 Relevant quantities concerning the diffraction calculation for a perfectly aligned transducer.

Transfer function from transmitter to a point

Figure 5.8 shows the geometry involved. A rectangular set of axes X,Y,Z is defined with its
origin in the centre of the circular transmitting area and the Z-axis normal to it. Consider an
observation point located at (x,0,z). The locus of points on the transmitter having the same
inclination angle 0 and distance of flight r is an arc. The radius of the arc is p and its length is

2¢p.

Instead of the area S as the integration variable in the diffraction formula, it will prove
more convenient to use the increase T from the nominal time-of-flight value. Using the phase
velocity c, this increase is defined as:

=" (5.39)
Since p =\[r* ~ 27, it follows for p > 0!
- —ron P a7 = 200 2 dr = 200 Ecdt =
ds = 2¢pdp = 2¢p 7 dt=2¢p o atdt =20¢p pcd‘t: =2¢rcdt (5.40)

Together with the relation:

' In fact, in the limit of p — 0 Equation 5.40 still holds.
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e—ikr - e—i(ﬂ/c(z +1¢) - e-—imtne—i(m' (5.41)

and ignoring the term e—iw%, which expresses the nominal time of flight, the diffraction for-
mula can be rewritten in terms of a transfer function I'-I, relating the transmitted wave ampli-
tude to the amplitude at the observation point. Denoting the transducer radius as R and con-
sidering only positive x-values', H becomes:

A = x J("“ +1) o p()x } e 7ax (5.42)

Z+1C

—o0

where p(T) = \[inc + ('cc)2

PP,X) = T vvrerrsreseesassvssessienessnins for0<p<R-x
o +p2—-R2
= arccos| ™p | forx>0 and IR-xI<p<R+x
=0 e elsewhere

Transfer function from transmitter to receiver

The receiving transducer in a pulse-echo configuration is identical to the transmitting trans-
ducer. The transfer function obtained above is therefore now averaged over an area similar to
the transmitter area but translated along the Z-axis over a distance z.I Using circular symme-
try, the resulting transfer function H is obtained as:

2n R R

1 2n .
H= R J'Jx H(x) dxdo = R Jx H(x)dx =
0 0 0

a

R

J(Z-M:c + 1) J.x ‘P{ p(1),x }dx C_im drt=
0

4-c0

_i_(‘! = —it
-ZnJh(t)e dt (5.43)

=00

where (1) = 5 (——+ 1)J o p(v),x }dx

' For reasons of symmetry negalive x-values are not considered.
T The way in which the diffraction calculation is actually implemented for the pulse-echo configuration will be
dealt with separately.
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Strip diffraction

In the model used for a slightly tilted transducer, a division was made into strip-shaped sub-
transducers (Fig. 5.5). The diffraction calculation must now be focused on these sub-
transducers, as each has its own characteristic, due to the varying coupling layer thickness.
Figure 5.9 shows the geometry involved in performing the calculation. The transmitter and
receiver areas and the set of coordinate axes are similar to those used for the calculation of
arc diffraction.

Two strips are considered, one on the transmitter and one on the receiver surface, both di-
rected parallel to the Y-axis, with their centres at X=x, and X=x, respectively. Their width,
8x, is small relative to the distance z, permitting the assumption that the inclination angle 8
and distance of flight r are independent of x within the area of the strips. First the transfer
function is derived between a transmitting strip and a point on a receiving strip. The transfer
function between two strips is then determined by averaging over the area of the receiving
strip.

Z

A lr

/S S

,,,,,, N
e / N
. / / (xr’y rvz)
I'eCClVel'f‘ b
A

(x,¥,0)

Fig. 5.9 Relevant quantities for diffraction calculation in the case of a tilted transmitter and receiver.

The division into subtransducers may conflict with an assumption made when deriving
the Kirchhoff diffraction formula, namely regarding the smallness of the wavelength com-
pared with all other dimensions. This would mean that the width of the strips cannot be taken
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too small.! However, the requirement can also be interpreted in the sense that the amplitudes
transmitted by neighbouring subtransducers may not differ too much. In other words, the
transducer tilt must remain restricted in the calculation. Apart from this, it is also to be ex-
pected that a certain minimum number of subtransducers is required, in order to avoid the
ultimate results being affected by the discrete nature of the calculation.

Transfer function from strip to point
Using the Kirchhoff diffraction formula (Eq. 5.38), the transfer function H from a transmit-
ting strip to a point on the receiving strip at Y=y, is found as:

+9.
(y,) ik o ik —ike(y,)
H(y,) = =5 | Va(cos8 + HE—ds = sxAK ym (r(y )+1) 5y W (5.44)
n'an:rg:mg _Yz

wherer—‘\j(x X) +(yt_yr) +2°
——
Yt—VR _xt

R = transmitter and receiver radius

The distance of flight r depends on the absolute coordinate difference Ay = ly, — y,| rather
than on y,. For positive y,-values? it follows that:

A S AR (¢ N for0<y, <%, (5.45%
H,) = 15490 = LT corerrererrrrrrrrnnesesseeen for0<¥,<y, (5.45%
4
1kr(Ay)
where I(€) = J(r ( Ay)+1) e d(Ay)
0

Analogous to the treatment of arc diffraction, it is convenient to use the increase 1 from
the nominal time-of-flight value (Eq. 5.39) as the integration variable in the I-function. From
the relation:

Ay = P -Ax* -2 (5.46)

where Ax = Ix, — x|

' This requirement is similar to that arising from the one-dimensional transducer model.
T 10 view of symmetry there is no need to consider negative y -values.
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it follows that for Ayz0:

ror rc

d(Ay) = ‘—dr = Ay ™ .dt= —d 5.47)

Together with Equation 5.41 and again ignoring the term e"imt“, the I-function is rewritten as:

+o0

(0.S§ _;
I(E) = 8x 4nJ(z o 1)W{ A?(r)gl it (5.48)

where Ay(t) = \[(10)* + 2z7c — AX?
YAYE) =1 e for0<Ay<§&
=0 e otherwise

1t should be noted that this integral is improper, as the integrand becomes infinite at a 7-value

corresponding to Ay=0.

Transfer function from strip to strip
The transfer function H between two strips is found by averaging I:I(yr) over the area of the

receiving strip:

A A
+y T y r
1 (- 1 (.
H=—% [Hiy)dy, =% |Hy)dy, (5.49)
2y, e
A 0
5,

A 2 2
where ¥, = \(R°=x;

Substituting the expressions for H (Egs. 5.45“") leads to:

A A
yl' yl’
1 A
H=3 3 (1690, + 163y,
' 0 0
9t+9r 9t_9r 9t+Ar
1 1
=% Jl(ﬁ)dé - |IEdE =% jl(g)dﬁ ......................................... for 9, < §q (5.50%
¥ ¥e
A A A A
b " Yo ¥

and:
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9 A A Y
l A A A A
H=9 Yty dy, + | KY-y)dy, + |y +ypdy, — | Ly,~yody, ¢ =
r »
0 0 % %
29: 9( 9r+91 9r_9t 9r+9t
1 1
=§ JI(&)dF,+ j IE)dE + fl(é)dg— I(E)dE =9— fI(E_,)dé ........ for §,<9. (5.50%
I r
5 0 2%, 0 Db

Thus for all Qt and i", the transfer function H becomes:

9t*';"r
® [ +oo
3 i@ 2 WADE}
173, ,((Z*"C D™ sy ¢ drpdss
'91‘?9,-'
A A
o2 yt+yr
Sio [z 3 1 o
- 91_ 47‘J(Z‘HC+1)AY(T) J’W{ AY(T)’g}dE,. < d’[ =
—m I9t_9rl
+o0
_iﬂ P (1
=5p [R(We Tdt (5.51)
Yoty
where hi(t) = (24 (——Z +1)——1 \y{ Ay(t) i}d&
2§zt 7 Ay(T) ’
|9t_9rl

Numerical diffraction calculation
The transfer functions for both arc and strip diffraction (Eqs. 5.43 and 5.51) are in the form:

H(o) = iz—(;:ﬁ(m) (5.52)
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400
where Fi(w) = Jﬁ(r) e % 4g

—00

ie. H(w) is equal to the product of i“’/g,t and the Fourier transform of h(t). The Fourier
transform is described briefly in Appendix 5A.

"] ¥
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Fig. 5.10 Typical examples of h(t) for arc and strip diffraction, calculated for a phase velocity of 3250
m/¢ and a 6.3 mm diameter transmitter and receiver 30 mm apart. The transmitting and re-
ceiving strips were taken as 6 and 4.5 mm long respectively (29, and 29,), displaced 3.15 mm
relative to each other (Ax) and 0.63 mm wide (8x).

In Figure 5.10 typical examples are given of h(t) for both types of diffraction calculation.
They show a discontinuity at the lower end of the non-zero range, while for strip diffraction
h in fact goes to infinity at that point. Immediately after this maximum the two functions, es-
pecially that of the strip calculation, fall steeply, after which they decrease more gradually to
zero.

Convolution
Equation 5.52 can also be regarded in terms of convolution. The convolution of two func-
tions of time f(t) and g(t) is itself a function of time and is defined as:

400
Jf(u)g(t—u)du (5.53)

—00

This convolution may be interpreted as the response to an input signal f(t) of some physical
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process having a response function g(t). The signal f(t) is smeared in time as prescribed by
the response function g(t): the value g(x) is a measure of how much of f(t) is shifted to time
=X,

The convolution theorem states that the Fourier transform of the convolution of two func-
tions is equal to the product of the transforms of the individual functions [5]. Consequently
Equation 5.52 implies that the transmitted waveform is convolved with one of the above
functions h(t). In view of their shape parts of the wave are shifted to later times, which is
obviously in accordance with physical reality.

Discrete response function

In the numerical diffraction calculation the transmitted waveform is available in the form of
samples at equidistant times, with a time interval At between consecutive values. Convolving
this waveform necessarily means shifting parts of it over discrete time intervals. For arc dif-
fraction these discrete intervals are equal to":

2 2
+4R2 —
T = KA e for0<k< VR - (5.54)

cAt

2 2
as the maximum T-value is (VZ+4R" = 2Z)/. In the case of strip diffraction a certain sub-

range applies.

The response function must be in the form of a series of values at times 7,. However, instead
of simply evaluating h(1) at 7, average values h, are used for this purpose, defined as:

Tl

- 1 |~
h,= Kt' J'h(t) dt (5.55)
)

Convolving with these average values means that the part of the waveform which is shifted
over an interval T, is equal to the average of all parts which would be shifted over intervals
between 1,—A/7 and 1,+AY) in the continuous case. It is found that when using this proce-
dure the results for the arc diffraction calculation converge at larger At-values. For the strip
diffraction calculation, applying the averaging procedure is in fact essential. Erroneous re-
sults will otherwise occur, depending on the accidental position of the singularity in h(t)
relative to the series of tiraes T,.

In the actual evaluation of the h,-values all integrals are solved by numerical integra-
tion according to the trapezoidal rule. The singularity in h(z) for strip diffraction does not

I' Here k is an index used for series of time-domain values and is not to be confused with the wave number.
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present any problems if Ay is used as the integration variable instead of 7. Using Equations
5.47 and 5.51, it follows that:

T, 4+48Y9 A A
yt+yr
B | | 2 () v avmig) e |er-
WAt |29, et Ay(r)
[
1:k_At/2 Yy yr‘
Ay(r+At) o
Yt
Ox z 11
- +1 (Ay,E)dE d(A (5.56)
29 cAt (\j AX+AY+7? J\/ AXCHAY+Z J“V y,E)dE Y)
I9 "91"
Ay(r~Bt) !

Discrete transfer function

According to Equation 5.52, the response function h(t) must be transformed to the frequency
domain in order to obtain the transfer function H(w). In this discrete case the transfer func-
tion must be available at the series of frequencies , defined in Equation 5.4. This is
achieved by padding the values h, with sufficient zeros in order to exactly match the number
of data points N in the transmitted wave. After applying the discrete Fourier transform (Eq.
5A.3%), values H,, are found, which lead to the desired series H(t,) according to:

atH =igH, (5.57)

iw, i,
H(o,) =5 fi(e) ~ 7 AtH, = iN

ZnNAt
For the second step the definition of the discrete Fourier transform is used.

At this point it is important to recall that in the diffraction calculation parts of the
transmitted waveform are delayed over time intervals within the range specified by Equation
5.54. Since, in the discrete Fourier transform, time-domain data are regarded as cyclic over
N, the tail of the waveform will affect its head, a phenomenon called spoiling [44]. In order
therefore to avoid this the wave data are padded with at least as many zeros as there are non-
zero T,-values in the time interval range.
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5.3 Calculation

5.3.1 Procedure

The procedure for evaluating the pulse-echo configuration as a whole can be divided
into a number of steps, namely the calculation of:

o The discrete Fourier transform of the pulser waveform
The pulse becomes available in the form of the sum of a series of time-harmonic sig-
nals at frequencies , (Eq. 5.4), each signal having its own amplitude and phase.

e The transducer transfer coefficients
These coefficients describe the behaviour of a transmitting, receiving and reflecting
transducer for a certain frequency. They are respectively:

W
) VE\JW , relating the transmitted stress wave amplitude W, to the pulser volt-
/W= age V. (Egs. 5.20 and 5.30 for the aligned and tilted transducer mod-
els respectively).

\ —
-) g\)\-;-l, , relating the average received wave amplitude W, to the transducer
N0 electrode voltage V, (Egs. 5.22 and 5.31 respectively).

W,
-) —V—tl'v , relating the re-transmitted wave amplitude W, to the transducer
W0 electrode voltage V, (Eqs. 5.25 and 5.32 respectively).

W,
-) '\{/'tl, , relating the re-transmitted wave amplitude W, to the local received
N wave amplitude W, (Eqs. 5.26 and 5.33 respectively). In fact this is a
reflection coefficient.

In the tilted transducer model each subtransducer is treated separately. Therefore, in
this case transducer behaviour is described by four M-dimensional transducer transfer

vectors, where M is the number of subtransducers.
The coefficients or vectors are determined for each frequency @,

o The diffraction transfer coefficients
These coefficients give the ratio of the average received wave amplitude after diffrac-
tion, W, and the transmitted wave amplitude W, They are calculated for each fre-
quency ®, and, in view of the pulse-echo configuration, for two different cases,
namely:

W,
-) [’%l , for diffraction over twice the specimen thickness d,;,, corresponding
"/2=28, 14 the distance travelled by the first back-face echo.
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50
W,
-) (‘;Trl , for diffraction over four times the specimen thickness d,,, cor-
t j7—,
=4d, responding to the distance travelled by the second back-face echo.

Thus reflection at the free specimen back face is assumed not to affect the diffraction
phenomenon, apart of course from a change of sign for the stress wave amplitude.

In the tilted transducer model each combination of a transmitting and a receiving sub-
transducer is considered separately. This leads for each frequency and diffraction dis-
tance to an MXM diffraction transfer matrix, element ij of which represents the transfer
coefficient between the j"‘ transmitting and the i® receiving subtransducer.!

o The first back-face echo
The transducer electrode voltage for this echo, V, ;, follows straightforwardly from the
pulser voltage V.. This relation can be written for the aligned transducer model as:

V., = %) (% = wv (5.58)
ol T (W =0 W, 24, v, =0 s .

For the tilted model the relation is roughly comparable: the transfer coefficients for the
transmitting and receiving transducers are replaced by the corresponding vectors, while
the diffraction transfer coefficient is replaced by the MxM transfer matrix,

o The second back-face echo
This case is more complicated, as the second echo reflects twice not only against the
free back face of the specimen but also against the transducer-couplant combination at
the moment the first back-face echo is being received. The second echo is divided into
two parts, namely:

-) a fraction which is reflected back into the specimen by the transducer-couplant
combination and which is calculated using the reflection coefficient
(W:/wr)vezo. For the diffraction a transmitter-receiver distance of four times the
specimen thickness is assumed.

-) a fraction which is re-transmitted by the transducer while receiving the first back-
face echo. This is calculated using the electrode voltage V,; and the transfer co-
efficient (Wt/Ve)\NFo. As the amplitude of this wave part is constant over the
transducer area, the diffraction is calculated for a distance of only twice the

specimen thickness.

The electrode voltage V,, for the second back-face echo in the aligned transducer

model thus amounts to:

I Using symmetry arguments the number of calculations needed can be reduced considerably.
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var(w), ®) F ) ]

TA=0 "V EN=0 " z=dd, \ " s =0
Ve Wr Wt
AR A WA

In order to calculate V, for the tilted transducer model, the transducer transfer coeffi-

cients in the above relation, with the exception of the reflection coefficient
(w‘/W,)VfO’ are replaced by the corresponding vectors. Moreover, the diffraction
transfer coefficient in the second term is replaced by the appropriate diffraction transfer
matrix. In the first term, however, the diffraction transfer coefficient together with the
reflection coefficient are replaced by a single MxM matrix. Element ij of this matrix
represents the transfer coefficient between the j'h transmitting and the i" receiving sub-
transducer, taking into account the wave reflection from the specimen against couplant
and transducer. On geometrical grounds, therefore, this element is equal to the product
of element ij of the diffraction transfer matrix and the reflection coefficient
(wt/Wr)V;O at a location half-way between the i" and the jth subtransducer. If the dif-
ference i — j is ever, the reflection coefficient of subtransducer (H‘j)/z is used, while
otherwise the average is taken of the coefficients of subtransducers (itj-1)/p and
(i+j+1)y,

o The discrete Fourier transform to the echo waveforms
If the two series of fime-harmonic waves constituting the 1% and 2™ back-face echoes
are transformed back to the time domain, the echo waveforms become available.
Quantities such as echo amplitude and time of flight can now be determined.

5.3.2 Implementation

In order to perform the model calculations a computer program called TRANAL
(TRANsducer ANalysis) was developed. It was written in Pascal and runs on a MSDOS-based
personal computer. In this program all model parameters can be interactively set, different
types of calculations can be performed and calculated waveforms are displayed in a graph.
Parameter sets and waveforms can be loaded from or saved to file.

To ensure the correctness of the results produced by the program, the results were compared
with the outcome of time-domain calculations. These were performed for a configuration
which was comparable apart from the couplant, which necessarily had to be non-dispersive.
A comparison was also made with the results of an analytical calculation for a simple piezo-
electric transducer [10]. For a zero tilt angle the analysis of the tilted transducer was verified
by comparing it with the straightforward analysis.
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It is important to choose a suitable time interval for the calculations. On the one hand
the interval must be small enough to yield sufficient accuracy. This will be the case if the
highest frequency components expected to be present in the calculated back-face echoes fall
well below the Nyquist frequency, i.e. 1/p for a time interval At (Appendix 5A).

On the other hand the time interval cannot be unrestrictedly small. The reason for this is that
due to limitations of the program language used the number of data points per waveform is
limited to 4096. A small time interval would therefore imply that the waveforms are not cal-
culated for their complete duration. The problem which then occurs is related to the fact that
in discrete Fourier analysis the time-domain signal is regarded as cyclic over the total time
span of the signal. Thus the pulse exciting the transducer would seem to have such a high
repetition rate that the waveforms partially overlap. Therefore, in order to ensure an accurate
calculation the back-face echoes are always included in their entirety and the time interval is

chosen accordingly.

In the analysis of the tilted transducer it is necessary to choose the number of subtrans-
ducers required for an accurate calculation. This is done empirically, i.e. when a further in-
crease in this number does not significantly affect the outcome, it is assumed to be suffi-

ciently large.
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5.4 Parameters

As stated in the introduction, the model is not intended as a calculated imitation of the
set-up described in Chapter 3. However, the parameters used for the model will be based on
actual properties, as far as they are known. They will be completed with estimated and ex-
perimentally determined values.

For the pulser-receiver a pulse waveform will be calculated for a variable value of the damp-
ing resistance. The properties of the transducer and couplant require a more detailed discus-
sion and will be treated bzlow. Finally, for the propagation medium a structural steel is cho-
sen with phase velocities for bulk shear and longitudinal waves of 3250 and 5920 M/ re-
spectively. It is assumed that in this medium ultrasonic waves at the frequencies considered
here (see below) are not subject to attenuation.

5.4.1 Transducer

A distinct difference compared with the experimental set-up is the fact that the model relates
to a single-mode transducer instead of the combined shear-longitudinal transducer described
in Section 3.2.2. In order to be able to assess experimental effects for both wave types, the
calculations will be performed for both a shear and a longitudinal transducer.

The circular model transducer has a diameter of 6.3 mm (1/4"). Further relevant details are:!

e Piezoelectric disc
The disc is made of the sintered ceramic Lead Zirconate Titanate (PZT). As already
described in Section 3.2.2, the piezoelectric properties are introduced by polarizing the
material using a strong electric field. Longitudinal or shear wave transducers are ob-
tained by using a Z-cut or X-cut disc respectively, i.e. discs cut with the poling axis
normal to or in the plane of the disc. The PZT ceramic is available in a range of types,
each having its own specific properties. For the model transducer a type is chosen
which is denoted as PZT-2 in reference [2).I The properties of this material, in as far as
they are relevant to the model, are given in Table 5.1. All tensor quantities are written
in the Voigt notation (see Table 2.1) and defined on a set of axes with X, as the poling

axis.

The model parameters related to the piezoelectric disc are summarized in Table 5.2. In
order to facilitate comparisons with the experimental set-up, the disc thickness is cho-
sen in such a way that the nominal shear and longitudinal transducer frequencies be-

I These details are partly based on information supplied by transducer manufacturer Panametrics.

I The choice of the PZT type is also suggested by the result of a low frequency (1 KHz) capacitance measure-
ment on a 5 MHz shear wave transducer (Panametrics V1542), which can be related to the transducer capaci-
tance at constant stress, equzl to A(£f+e 12 5/C555)/dp.
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come 5 and 10 MHz respectively. The thickness is derived from the phase velocity in
the thickness direction c,,. It is assumed that the nominal transducer frequency is equal
to this velocity divided by twice the disc thickness.

Table 5.1 Relevant properties of the piezoelectric ceramic PZT-2 [2].

Mass density p (Ke/ 21l 7600

C
Piezoelectric stress € Ml 98
components es [ 9.0

S F,
Permittivity & [PH/ml| 4462

components & [PF/]| 2302
CE 222

Stiffness 55 [GPal .
components Caz; [GPa]| 113

Table 5.2 Parameters related to the piezoelectric disc.

Model parameter Shear Longitudinal
Piezoelectric stress
e S [l —€,5=-9.8 €3, =9.0
Permittivity ¢ [PF/ ] & = 4462 e =2302
constant
2 2
. m e 15 £ 53
Phase velocity c, [m/] (Css¥ e )/p =2399 (Cyt 5] )/p =4416
Specific wave o _ o _
impedance Z, [MPa-%/] p K, =182 py =336
oy @y
Disc thickness d, ]l 1 g_-llf)%-lo“ =240 | 1, Iall—(gg-loﬁ =221

¢ Backing medium
In the transducer model, the only parameter related to the backing medium is the spe-
cific wave impedance Z,, a value which largely determines the damping characteristic
of the transducer. The value used in the model calculation for this impedance is chosen
by considering the ratio of the first maximum and first minimum in the echo ampli-
tude. Since the transducer is driven by a short pulse, these extreme amplitudes can be
directly related to the waves which are excited at the interfaces of the piezoelectric disc

' The actual sign of e depends on the poling direction in the PZT, but does not affect the results of the model
calculations.
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with the protective layer and the backing medium respectively and travel towards the
propagation mediurn. Using Equations 5B.25 and 5B.26 it can be argued that the ratio
of their amplitudes is a function of the ratio of the wave impedances in the backing
medium and the piezoelectric disc.

By comparing calculated with experimentally obtained waveforms and adjusting the
backing impedance until the amplitude ratio approximately corresponded, the values
were obtained which are given in Table 5.3. It should be noted that it is common prac-
tice to use a backing impedance roughly equalling 0.7 times the impedance in the pie-
zoelectric disc, in order to acquire a broad bandwidth transducer. It can be shown that
for this value the bandwidth is least affected by a low impedance at the front of the
transducer, for example caused by a coupling layer [47].

Table 5.3 Parameter related to the backing medium.

Model parameter Shear Longitudinal
Specific wave
impedance Z, [MPaS/ ;] 10 23

e Protective layer
For this layer aluminium oxide (Al,0,) is chosen, a material with a high wear resis-
tance. The relevant properties are given in Table 5.4. The stiffness components are de-
fined relative to a coordinate system in which the x,-axis is normal to the plane of the
protective layer and the x,-axis is parallel to the shear wave polarization direction.

Table 5.4 Relevant properties of the wear-resistant ceramic ALO, [1].

Mass density p [Xe/2l] 3986

Stiffness 55 [GPa]] 145

components Cy [GPa]| 494

The model parameters for the protective layer are listed in Table 5.5.

Table 5.5 Parameters related to the protective layer.

Model parameter Shear Longitudinal
Phase velocity c, (/] Css/y = 6030 A\ /Caalp =11130
Specifi

pes I‘)g&”aﬁ‘ég Z, [MPaS/y] pCss = 24.0 A\JPCy; = 44.4
Layer thickness d, [um] 127
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Fig. 5.11 A typical exa.mpLg of echo waveform distortion caused by applying shear wave couplant to the
back face. The 3" echo is shown for a 5 MHz shear wave in a 6 mm thick aluminium (Al 2024-
T351) specimen.

5.4.2 Coupling fluid

The viscous nature of the couplant, which allows shear waves to propagate in it, also
causes this medium to be attenuating and to have a frequency-dependent phase velocity and
attenuation coefficient (Appendix 5C). As described in Section 3.2.4, the wave propagation
properties of the couplant have been determined experimentally. However, the results give
only a rough impression, as they do not give any insight into the frequency dependence. Nev-
ertheless, this information is believed to be essential for the model.

Reflection measurements

The frequency dependence of the wave propagation properties of the couplant were investi-
gated through reflection experiments. In brief, the experiments entail the determination of the
reflection coefficient for longitudinal and shear waves travelling in a specimen towards an
interface with the couplant. The specific wave impedance in the couplant can be calculated
from these values, leading to the desired phase velocity and attenuation coefficient for the
couplant. Wave pulses, which inherently contain components over a wide frequency range,
are used for the measurement. Therefore, using the Fourier transform, the above calculations
can be performed as a function of frequency.

The experiments are carried out using a plate-shaped aluminium specimen! for which

I Aluminium is used owing to its relatively low specific wave impedance, which increases accuracy.



5.4 Parameters 157

the wave propagation properties are known. First, using a longitudinal or a shear wave trans-
ducer, an echo is produced for a free specimen back face. The waveform is stored using a
digital oscilloscope, which enables computerized signal processing. The waveform is re-
corded relative to some arbitrary but stable trigger point in the pulse exciting the transducer.

Next, while ensuring that the transducer/coupling configuration and the triggering of the
oscilloscope remain unchanged, the measurement is repeated for a back face on which a
thick layer of shear wave couplant has been applied.! Since the reflection coefficient has now
changed relative to that of a free surface, the waveform will be affected. Figure 5.11 shows a
typical example of the two resulting waveforms.

Finally, using the discrete Fourier transform, the two waveforms are transformed to the fre-
quency domain. The reflection coefficient from the aluminium specimen against the
couplant, R, can be calculated for each frequency component using the complex ampli-
tudes for the free and coupled situations, Wy, and W 4 respectively, according to:

nwld
Rmc=-‘\/iﬁi; (5.60)

where n = echo number

The minus sign originates from the reflection coefficient for a free surface (—1). The specific
wave impedance in the couplant, Z_, follows from solving the expression for the reflection
coefficient as a function of the wave impedance on either side of an interface (Eq. 3B.3):

4R,

Z=Zn T g

(5.61)

where Z , = specific wave impedance in aluminium specimen

The phase velocity ¢, and the attenuation coefficient o, are found by using Equation 5C.10:

_o_ &l 5.62

%=k, p.re(Z)) (5:62)
@p, im(Z,)

0, =‘T|2-— (5.63)

where re(Z), im(Z,) = real and imaginary part of Z,

I The couplant layer thickness must be sufficient to ensure that no reflections from within the layer will over-
lap with the back-face echo itself. For this purpose 1 mm suffices.



158

A Model for the Pulse-Echo Method

_, 15000
g
=, 12500 |5Msthcar pu]seI
% 10000
8
o 7500
S o
g 5000* —
2 x—"C
g 2500 ¥ X
2 /g |
0
1000 | o
!;l + ¢ ; + r
=
E 900 (@] +/_+/+ x & + q\_
+ 6 % t X
2 800 1 x X
o] o]
S 700
g 0l T
600 +
£
500 # — —
0 1 2 3 4 5 6 7 8
Frequency [MHz]
__ 3000 —~—
g .
=, 2500 10 MHz longitudinal pulsel
& 2000 +
8
2 1500
.8 +
= 1000
2
S 500
< 0 ) +
3500 1
= +
& 3000 - ., + o o
b M ~ Q O
2 2500 1 +1
g
[ ]
2000 o 1st echo
-
1500 .
0 2 4 6 8 10 12 14 16
Frequency [MHz]

Figs. 5.12 & 5.13 Results of reflection measurements using shear and longitudinal wave pulses in a 6 mm thick

Al12024-T351 specimen. The solid lines indicate fits using a viscoelastic model.
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Figures 5.12 and 5.13 give the results of reflection measurements using shear and longitudi-
nal wave pulses with nominal frequencies of 5 and 10 MHz respectively.! These values cor-
respond to those used in the experimental set-up and therefore give information concerning
the most relevant frequency ranges. A mass density p, of 1470 K8/,;3 is used for the calcula-
tions, the value measured for the shear wave couplant used in the experimental set-up.

The graphs indicate that the phase velocity shows only a slight increase with frequency,
whereas the attenuation increases more rapidly. It is interesting to make a comparison be-
tween these results and the order of magnitude of the directly measured velocity and attenua-
tion, as presented in Figure 3.7. The overall agreement seems reasonable. Only the phase ve-
locities for the two wave types, as resulting from the reflection experiments, seem to be
somewhat lower. A definite explanation for this difference cannot be given.

It should be noted that frequency components at the lower and higher ends of the ranges have
only a small amplitude. Consequently the experimental error will be significantly larger
there. Another weak point in the reflection experiment stems from the fact that the calcula-
tion of the reflection coefficient involves the determination of the phase difference between
frequency components of the waves, one reflected against a free back face and the other
against a coupled back face. Even a small drift in the triggering of the digital oscilloscope or
a slight change in the transducer-specimen coupling causes large errors in this phase calcula-
tion, especially for the higher frequency components.

The results obtained from the reflection measurements now need to be incorporated

into the model calculations. The most straightforward way in which to do this is to directly
fit a particular function to the phase velocity and attenuation coefficient data, e.g. using poly-
nominals. It is found that by so doing, however, erroneous results in the calculations can
easily occur. For example, it is then found possible for wave energy to be shifted to earlier
times after passing through a layer of couplant. Obviously this does not agree with physical
reality.
An alternative approach is therefore used, in which the constitutive behaviour of the couplant
is described using a certain model. Fitting the parameters of this model to the experimental
results will ensure that the behaviour of the couplant introduced into the calculations is
physically realizable.

Newtonian fluid
As far as shear waves in a. viscous fluid are concerned, the simplest model arises when shear
stress is equal to the product of a viscosity coefficient 1| and the rate of shear deformation. In

1 The longitudinal pulses originate frogl the combined shear/longitudinal transducer used for the experimental
set-up. Owing to echo overlap the 2" longitudinal back-face echo could not be used.
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this Newtonian fluid [45] the stiffness component relevant for shear wave propagation, Cu
(= Cys = Cy), is equal to:"

Ca =iam (5.64)

From the Christoffel equation for attenuated plane waves (Eq. 5C.6) the following dispersion
relation for shear waves is derived:!

ion(k — o) = pw’ (5.65)

oy |22
k—a—’\/; (5.66)

and consequently the phase velocity ¢ is:

c=p =" ,_2%311 (5.67)

Solving this for k and ¢ leads to:™
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Fig. 5.14 Attenuation coefficient and phase velocity as a function of viscosity for 5 MHz shear waves in
a Newtonian fluid with a mass density of 1470 Kg&/ys’.

I The complex stiffness tensor C is defined in Appendix 5C.

I Eor this derivation a shear wave is considered propagating in the x,-direction and polarized in the x;-
direction. However, Equation 5.65 is valid for an arbitrary shear wave as the fluid may be assumed to be iso-
tropic.

I There are also imaginary roots for k and o, but after substituting these in the attenuated plane wave solution
(Eq. 5C.4), they are found to represent the same displacement field.



5.4 Parameters 161

Both damping and phase velocity are found to be proportional to the square root of fre-
quency.

Figure 5.14 illustrates the influence of the viscosity coefficient for a fluid with a mass density
of 1470 Kg/ms. Recalling the experimental results shown in Figures 5.12 and 5.13 and as-
suming a typical couplant viscosity of 10 000 Pa-s, it is obvious that these values do not
agree. It must therefore be concluded that a Newtonian fluid model is too simple a de-
scription for the propertics of the couplant, at least as far as shear wave propagation is con-
cerned.

Viscoelastic model for the constitutive behaviour

In order to describe the constitutive behaviour of attenuating media a number of viscoelastic
models have been proposed in literature. A viscoelastic model consists of a combination of
elastic springs and viscous dash pots. The force and displacement that would be involved in
actual elements are replaced by stress and strain, as then a particular frequency-dependent
complex stiffness can be obtained which determines the constitutive behaviour of a medium.
The stiffness of a spring is determined by an elastic modulus C, while the stiffness of a dash
pot with viscosity 1) is equal to iwn. Typical examples are the Maxwell and the Voigt-Kelvin
models in which one elastic and one viscous element are connected in series and in parallel
respectively [36, 49].

For the shear wave couplant a constitutive
model is adopted as shown in Figure 5.15. It is
formed by two elastic and two viscous ele-

ments and actually consists of two Voigt-Kel-

m N2

vin models placed in serics. The model has no
Fig. 5.15 Viscoelastic model for the constitutive be-

haviour of the couplant, i.e. the relation be-
chosen because it can adequately describe the tween stress T and strain S. It is used to
describe both shear (x = 4) and longitudi-
nal (x = 1) wave propagation.

theoretical basis whatsoever, but is merely

results of the reflection measurements pre-
sented above.

Obviously the model must have different values for the modulus or viscosity of the various
elements where shear or longitudinal wave propagation is concerned. It should be noted that

Table 5.6 Parameters of the viscoelastic model for describing the constitutive behaviour
of the couplant relevant to shear and longitudinal wave propagation.

Model parameter Shear Longitudinal
C, [MPa] 375 22100
™ [Pas] 140 2220
C, [MPa] 1250 12200
1, [Pas] 9.1 13.2
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to comply with the fluid nature of the couplant, an extra viscous element needs to be placed
in series in the case of shear wave propagation. This element would represent the viscosity at
frequencies approaching zero. It is found, however, that such an element does not affect the
constitutive behaviour in the frequency range relevant to the shear wave transducer. It is
therefore omitted.

The values for the spring and dash pot elements in the viscoelastic model for the con-
stitutive behaviour of the couplant (Fig. 5.15) are determined by fitting them to the results of
the reflection measurements. In view of the limited experimental accuracy, data points are
used only in the lower and middle frequency ranges, i.e. from approximately 1 to 7 MHz and
2 to 14 MHz for shear and longitudinal waves respectively. The resulting fits are indicated as
solid lines in Figures 5.12 and 5.13, while Table 5.6 summarizes the corresponding moduli

and viscosities.
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5.5 Results

5.5.1 Typical back-face echoes

Before analysing the effect which certain parameters have on the outcome of pulse-
echo measurements, calculation results will be presented for a configuration typical of the
experimental set-up described in Chapter 3. In concrete terms this includes a damping resis-
tance of 50 €2 for the pulser receiver, a coupling layer thickness of 100 pm and a 15 mm
thick structural steel specimen. The pulse data used for the calculations are plotted in Figure
3.20 and have a time interval of 4 ns between consecutive values.

Figures 5.16 and 5.17 show the resulting first and second back-face echoes for the shear and
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Figs. 5.16 & 5.17 Calculated first and second shear and longitudinal back-face echoes in 15 mm structural
steel for a coupling layer of 100 pum and a damping resistance of 50 .
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longitudinal cases. The position which the waveforms have on the time axis is relative to the
exciting pulse while ignoring the nominal time of flight, i.e. two or four times the specimen
thickness divided by the phase velocity. The major part of the remaining offset is due to the
time needed for the waves to traverse the protective layer of the transducer and the coupling
layer during transmitting and receiving.

Although the model calculation cannot be expected to yield waveforms which closely
match those of the experimental set-up, it is still interesting to make a comparison. Figures
5.18 and 5.19 show the echoes obtained with the combined shear-longitudinal transducer for
the typical experimental conditions mentioned above.

The most striking difference is the magnitude of the wave amplitude, which is considerably
smaller for the measured echoes. A possible reason for this is that, compared with a single-
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Figs. 5.18 & 5.19 First and second shear and longitudinal back-face echoes in 15 mm structural steel for a cou-
pling layer of 100 um and a damping resistance of 50 Q, measured with a combined shear-
longitudinal transducer.
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mode shear or longitudinal transducer, the waves transmitted by a combined transducer have
a smaller amplitude and that this type is also a less sensitive receiver. Furthermore, with re-
gard to the longitudinal transducer in particular, a probable reason is the fact that electrome-
chanical coupling includes normal stresses not only in the disc thickness direction. From the
form of the e-tensor (Eq. 3.3) it can be seen that normal stresses in the plane of the disc are
also coupled. It may be expected, therefore, that the occurrence of radial oscillations reduces
the efficiency of a longitudinal piezoelectric transducer [47]. It is assumed that this will not
qualitatively affect the calculation results.

The shapes of the shear wave echoes compare reasonably well. However, for the longitudinal
case the rails of the echoes are distinctly different. The calculated echoes show a long tail in
the form of a damped oscillation with a period of about 70 ns. Based on an average phase
velocity in the couplant of 2800 ™/g and a layer thickness of 100 um, this period is found to
correspond to the time needed for longitudinal waves to traverse the couplant layer twice. It
must be concluded, therefore, that the calculated tail is due to resonance in this layer, en-
hanced by the large differences between the specific wave impedance in the couplant on the
one hand and that in the adjacent media on the other hand. Such resonance has also been ob-
served experimentally, but not nearly to the same extent. It is suspected that in practice it is
easily obscured by transducer misalignment. In the analysis of a tilted transducer it will be
seen that resonance in the coupling layer is dramatically decreased by even a small tilt angle.

It should be noted that the resonance phenomenon also occurs with shear waves. However, it
is to be expected that this is not distinctly visible for a coupling layer of 100 pum thickness.
The reason for this is that the damping in the couplant is much larger for this wave type and
the period of the resonance is approximately equal to that of the transducer itself (200 ns).

5.5.2 Diffraction

Waves travelling through the specimen from transmitter to receiver are subject to the
diffraction phenomenon. Shear wave diffraction in steel is considered as an example, using a
6.3 mm diameter transducer as transmitter and receiver. The modulus of the diffraction trans-
fer function is plotted in Figure 5.20, calculated as a function of frequency for different dis-
tances of flight. In Figure 5.21 the same is done for the phase advance, i.e. the phase of the
diffraction transfer function excluding the nominal phase change to which a wave is subject
when travelling over the diffraction distance. The first graph shows that diffraction causes
low frequency components to become relatively more attenuated, especially for larger dis-
tances. It can be seen from the second graph that phase advances always occur and that they
increase with the diffraction distance.

It should be noted that for diffraction distances z which are large compared with the trans-
ducer radius R the modulus and phase advance can be expressed as a unique function of the



166

A Model for the Pulse-Echo Method

08

S
o

Modulus [-]
=
NN

0.2

diffraction distance [mm]'

~
(¥
s

[=.3
[=]
n

Phase advance [°]
3 &

—
(V]
'

— T T T T T =T — —

2 4 6 8 10

Idiffraction distance [mm].

Frequency [MHz]

240
120

60

30
15

T T T T T T —

2 4 6 8 10
Frequency [MHz]

Figs. 5.20 & 5.21 Calculated modulus and phase advance of the diffraction transfer function for shear

waves travelling in structural steel using a 6.3 mm diameter transmitter and receiver.

dimensionless parameter Z'7~/R2, where A is the wavelength in the specimen. The curves
shown in Figures 5.20 and 5.21 would then almost coincide. This is not done, however, as
one of the purposes of the model calculation is to assess subtle time-of-flight effects.

In a pulse-echo configuration the time of flight is determined as the interval between
successive back-face echoes. As these echoes are diffracted over unequal distances, they are
subject to different phase advances. For example, if a simple sinusoidal waveform is used,
the time of flight measured will always be smaller than the nominal value, i.e. the transmit-
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ter-receiver distance divided by the phase velocity [43]. Wave pulses contain a range of fre-
quency components. The frequency-dependent attenuation and phase shift cause the trans-
mitted waveform to be distorted. More precisely, due to the unequal diffraction distances,
successive back-face echoes will be distorted differently. Therefore, the time of flight meas-
ured using the first zero crossings in the first and second back-face echo will inherently de-
viate from the nominal value. Examples can be seen in Figures 5.16 and 5.17, where the first
zero crossings in the echoes do not coincide. This will be further discussed below.

5.5.3 Coupling layer thickness

As already described in Section 3.3.1, the coupling layer thickness has a dramatic in-
fluence on the outcome of time-of-flight measurements using the pulse-echo method. It is an
obvious consequence, therefore, to focus the model calculations on this aspect. In this con-
text the time interval between the first zero crossings in the calculated waveforms is inter-
preted as the deviation of an experimentally determined time of flight from the nominal
value.

Figures 5.22 and 5.23 show the outcome of calculations for shear and longitudinal
waves respectively travelling in structural steel specimens of different thicknesses. The re-
sults can be directly compared with the experimentally observed time-of-flight dependences
shown in Figure 3.10. The overall agreement seems reasonable, although the time-of-flight
deviations tend to be somewhat more pronounced in the calculated results.

For coupling thicknesses below what was referred to as a limit thickness in Section
3.3.1, i.e. about 80 and 90 um for shear and longitudinal waves respectively, time of flight is
affected strongly. The explanation for these marked changes is believed to be related to re-
flections within the coupling layer. This has already been extensively discussed in Section
3.3.1. It was suggested that the distortion introduced during reflection of the second back-
face echo from the specimen against the combination of transducer and coupling layer is the
main cause for the thickness-dependence of time of flight below the limit thickness.! This
suggestion can be partly confirmed by considering the effect of replacing this reflection by a
reflection against a free surface. Figure 5.24 shows the results calculated for shear waves in a
15 mm steel specimen. They show that for reflection against a free surface the time-of-flight
deviation is significantly smaller. The difference is especially large for the smaller layer
thicknesses, where the attenuation in the coupling layer is low.

Above the limit value for the coupling layer thickness, there are no notable changes in
the longitudinal case. For shear waves on the other hand, time of flight shows a slight de-

¥ In this context the term reflection also implies the re-transmission of a wave by the receiving transducer.
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Figs. 5.22 & 5.23 Calculated deviation from the nominal shear and longitudinal times of flight in structural
steel specimens with different thicknesses, as a function of the coupling layer thickness.

crease with layer thickness. This effect becomes less as the specimen becomes thicker. In the
experimental results for shear waves (Fig. 3.10) a very slight decrease can also be observed,
but it is questionable whether this is significant bearing in mind the limitations of the ex-
perimental accuracy.

Time-of-flight changes above the limit thickness cannot possibly be caused by reflections

within the coupling layer. It is believed that the dispersive nature of the viscous couplant in
combination with differences between the frequency spectra of the first and second back-face
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Fig. 5.24 The shear time-of-flight deviation as a function of the coupling layer thickness in a2 15 mm
steel specimen, calculated for the normal situation, where during its flight the second back-
face echo reflects either against the transducer/coupling combination or against a free surface.

echoes are responsible. As a consequence, the shape of the two echoes will depend differ-
ently on the layer thickness and, since time of flight is determined between the first zero
crossings in the echoes, an effect on the time of flight is to be expected. This is further dis-
cussed below.

The fact that the longitudinal time of flight is affected much less than the shear time of flight
can be explained from the propagation properties of the couplant, which are clearly less dis-
persive in the longitudinal case (Figs. 5.12 and 5.13).

Finally, it should be noted that at very small thicknesses the time-of-flight deviation is
determined mainly by the impedance of the protective layer relative to that of the propagation
medium. In the case considered here, there is little difference between these values, causing
the first part of the second back-face echo to have a very small amplitude. This results in de-
viations as large as —70 and —35 ns for shear and longitudinal waves respectively at zero

coupling layer thickness.

The combined effect of couplant attenuation and diffraction in the case of thick coupling
layers

Extra calculations are performed, in particular for shear waves, in order to gain more insight
into time-of-flight effects in the case of thick coupling layers. Above the limit thickness the
first part of a back-face echo (including the first zero crossing) can be considered as being
part of a wave which is not reflected within the coupling layer at all. Therefore, changes in
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Fig. 5.25 Calculated modulus of the transfer function for shear wave propagation in the couplant.

the measured time of flight above the limit thickness can best be assessed by observing the
distortion to which such a wave is subject.

First the modulus of the transfer function for wave propagation through the couplant is calcu-
lated. In Figure 5.25 the result is plotted for wave propagation distances of 200 and 400 pum,
corresponding to the distances which the above wave travels in the couplant at layer thick-
nesses of 100 and 200 pm respectively. The graph shows a modulus which rapidly decreases
with frequency.

Using this, together with the modulus of the diffraction transfer function (Fig. 5.20), the
transfer function between the wave amplitudes transmitted into and received from the coup-
lant are calculated as if no reflections occur in the coupling layer. For the first back-face echo
this amounts to diffraction over twice the specimen thickness and wave propagation over
twice the coupling thickness, taking into account the transmission coefficients from the
couplant to the specimen and vice versa. For the second back-face echo the diffraction dis-
tance is four times the specimen thickness, and reflection from the specimen against the
couplant is also considered. In Figure 5.26 the moduli of the resulting transfer functions are
shown for four specimen thicknesses and two coupling layer thicknesses.

The model broad-band shear wave transducer has a nominal frequency of 5 MHz.
However, in combination with these transfer functions most of the energy in the back-face
echoes will be concentrated between 3 and 5 MHz for a 100 pm coupling layer and between
2 and 4 MHz for a 200 um coupling layer. Clearly this shift to lower frequencies is due to
attenuation in the couplant (Fig. 5.25).
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Fig. 5.26 Calculated moduli of the transfer functions between the shear wave amplitudes transmitted
into and received from the couplant for the 1" and 2™ back-face echoes. The results from Fig-
ures 5.20 and 5.25 have been used, together with the appropriate reflection and transmission
coefficients. The assumption is made that no reflections occur within the coupling layer.

For thick specimens (30 and 60 mm) and in the relevant frequency range, the moduli of the
transfer functions for the first and second back-face echoes are roughly congruent. Fur-
thermore, as a consequence of increasing the coupling layer thickness from 100 to 200 [m,
the moduli are found to clecrease proportionally. Although only the moduli of the transfer
functions are considered and not the phase, the results suggest that the two back-face echoes
are congruent and subject to a similar distortion when changing the coupling layer thickness.
The situation is completely different for thin specimens. It is obvious from Figure 5.26 that
the two echoes do not have the same shape and that they are also affected differently by the
coupling layer thickness.

These findings agree with the results shown in Figure 5.22 for cases above the limit thick-
ness, namely that the time of flight measured is affected by the coupling layer thickness only
in the case of thin specimens (7.5 and 15 mm). The cause of this is diffraction in the speci-
men. Increasing the coupling layer thickness particularly attenuates the high-frequency com-
ponents in the back-face echoes. By itself, this will not influence time-of-flight measure-
ments, as the echoes are aitenuated equally. However, in a thin specimen the back-face ech-
oes are shaped differently, due to diffraction. This can be seen by comparing the diffraction
transfer functions for 15 and 30 mm distances (Fig. 5.20) applying to the first and second
echoes respectively in a 7.5 mm specimen. In a thick specimen, on the other hand, diffraction
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will not change the shape of the echoes, but only their amplitude. The diffraction transfer
functions for 120 and 240 mm distances indicate this for a 60 mm specimen.

5.5.4 Electrical settings

Section 3.4.2 contains a description of the electronic circuitry for the pulser-receiver
used in the experimental set-up in combination with the piezoelectric transducer (see Fig.
3.19). The electrical settings of the pulser-receiver include the energy capacitance, damping
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Figs. 5.27 & 5.28 Shear and longitudinal time-of-flight deviation in a 15 mm steel specimen, calculated as a
function of the coupling layer thickness for different values of the damping resistance.
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resistance, amplifier bandwidth and lower cut-off frequency. Changing one of these can ei-
ther lead to a differently shaped pulse exciting the transducer or may distort the signal re-
ceived by the transducer. Additionally, when the value of the damping resistor is changed,
the operation of the transducer itself is affected, due to the different impedance terminating
the transducer electrodes. In all cases the output signal ultimately available, which represents
the series of back-face echoes, is distorted. This distortion is common to all back-face ech-
oes. However, as the transfer function from transmitting to receiving transducer differs for
each echo, each will be affected differently. It is to be expected therefore that the time of
flight measured between the first and second echo is influenced by the electrical settings.

In the present calculations the attention is focused on the influence of the damping re-
sistance. This quantity was introduced into the model through the source impedance Z of the
pulser in combination with the corresponding waveform for the source voltage V. The time
of flight is calculated as a function of the coupling layer thickness for shear and longitudinal
waves in a 15 mm steel specimen using different values for the damping resistance. The re-
sults are plotted in Figures 5.27 and 5.28.

The most striking aspect of the results is the fact that time of flight is influenced much
more significantly by the damping resistance if the coupling layer thickness is below the
limit value. In the foregoing discussion concerning the influence of the coupling layer thick-
ness below the limit value, it was concluded that the extra reflection to which the second
back-face echo is subject is an important cause of the marked effect on time of flight. Due to
this reflection, the waveforms of the two echoes will differ to a greater extent. As a conse-
quence wave distortion, such as is induced by changing the damping resistance, can have
more effect on the time of flight.

Above the limit thickness the damping resistance is found to have a somewhat larger influ-
ence on the shear time of flight than on the longitudinal time of flight. An explanation for
this cannot be given.

It should be noted that the limit coupling thickness itself will also be affected by the
damping resistance. Increasing the damping resistance widens the pulse exciting the trans-
ducer, and consequently delays the first zero crossing in the back-face echoes. For example,
the limit thickness for longitudinal waves is increased from 90 to about 110 pm when
changing the damping resistance from 50 to 100 Q.

5.5.5 Transducer misalignment

The analysis of a tilted transducer is performed by dividing the transducer into 16 sub-
transducers. The effect of the tilt angle on time of flight and echo amplitude are considered.
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However, it is interesting to first note the effect of tilt on the waveform of back-face echoes.
Figures 5.29 and 5.30 show the first shear and longitudinal back-face echoes in a 15 mm
steel specimen for increasing transducer tilt angles. It can be observed that in both cases the
echo amplitude decreases with the tilt angle. At the same time it is found that high frequen-
cies are attenuated more than proportionally. This seems reasonable, in view of the increas-
ing differences in distance of flight occurring at larger tilt angles.

The graph in Figure 5.30 also illustrates the suppression of the resonance tail in longitudinal
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echoes, shown in Fig. 5.17 for perfect alignment, by transducer tilt.

Effect on time of flight

The shear and longitudinal time of flight in a 15 mm thick structural steel specimen is calcu-
lated as a function of the transducer tilt angle. In Figures 5.31 and 5.32 the results are shown
for four different coupling layer thicknesses. The lines are plotted from zero to the maximum

tilt angle possible for the respective layer thicknesses. As was discussed in the description of

the model, it is questionable whether the results are valid up to this point. However, as the
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results at small tilt angles are the most relevant, no attempt will be made to assess the maxi-
mum allowable tilt angle.

It is obvious that the time of flight for thin coupling layers is affected more by a given
transducer tilt than the time of flight for thicker layers. A straightforward explanation cannot
be given. It is a fact that the relative differences in the coupling layer thickness over the
transducer area are larger for thinner layers. Moreover, as shown in the Figures 5.22 and
5.23, the effect on the time of flight is much larger for small thicknesses.

The results in Figures 5.31 and 5.32 also show that for shear waves and a 100 pum thick
coupling layer, changes in the time of flight remain less than 0.2 ns for tilt angles up to 1°. In
the longitudinal case the time-of-flight change is larger, namely 0.6 ns at 0.5° tilt. A possible
explanation for this increased effect is related to the diffraction phenomenon. The high-
frequency wave components in particular exhibit a strong directional sensitivity when being
transmitted. Furthermore, in the longitudinal case these wave components are attenuated
much less by the couplant than in the shear case. It seems likely, therefore, that transducer
tilt, which involves an offset of the transmitted wave beam relative to the receiver, will more
significantly influence the received longitudinal waveform.

The results presented above are for a 15 mm thick steel specimen. In Figures 5.33 and
5.34 the results are plotted for different specimen thicknesses and a 100 um coupling layer
thickness. It can be seen that the influence of transducer tilt on time of flight is not signifi-
cantly affected by the specimen thickness.

Effect on echo amplitude

Transducer tilt also affects the amplitude of back-face echoes. This aspect is relevant when
determining the polarization direction of birefringent shear wave components by measuring
the amplitude as a function of the transducer orientation. In order to assess this, the ampli-
tudes of the echoes are considered as already calculated for the case of a tilted transducer. In
particular, the value of the first peak (a maximum) in each first back-face echo is determined.

In Figures 5.35 and 5.36, the amplitude change in the shear and longitudinal echoes re-
spectively is plotted as a function of the transducer tilt angle for different coupling layer
thicknesses. For shear waves it is found that the echo amplitude using thin coupling layers
increases with the tilt angle, while a decrease can be observed for thick layers. This decrease
is 1.9 dB at 0.5° tilt. In the longitudinal case the effects are less pronounced. For thick layers
the amplitude decreases by only 0.8 dB at 0.5° tilt, while for thin layers there is either no
amplitude increase or only a slight increase.

In the first example it seems obvious that a transducer tilt would cause a decrease in echo
amplitude, due to the offset of the reflected wave beam relative to the receiving transducer.
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There is no argument available to explain the amplitude increases found for thin coupling
layers. They could perhaps be related to the interaction between the coupling layer and the
transducer, which in such cases will be stronger.

As was the case with the effect of transducer tilt on time of flight, the effect on amplitude is
not significantly different for other specimen thicknesses.

As was discussed in Section 3.3.2, the echo amplitudes shown in Figure 3.14 are af-
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fected by transducer misalignment. The amplitude variation between the polarization direc-
tions for maximum and minimum transducer tilt is about 0.8 dB for both shear and longitu-
dinal echoes. Based on the estimated transducer misalignment, i.e. 0.5 * 0.2°, the results of
the model calculations would suggest amplitude changes of 2.8 and 1.1 dB for shear and
longitudinal waves respectively. Thus, for shear waves, the calculated changes are found to
be significantly larger. This cannot be explained, although it is noted that only a rough esti-
mate is made of the transducer misalignment. Moreover, the model configuration can hardly
be assumed to be an exact copy of the experimental set-up.

5.5.6 Cross-correlation method

In Section 3.2.3, several techniques for determining the time of flight were reviewed.
Among these techniques the cross-correlation method was mentioned [17]. Here this method
is applied to the results of the model calculations, i.e. the first and second shear and longitu-
dinal back-face echoes in a 15 mm thick steel specimen evaluated as a function of the cou-
pling layer thickness. These results are already in a form in which each echo is available in
its own time window. By calculating the cross-correlation or correlation of these waveforms
[5, 44] and determining the maximum of this function of time, the deviation from the nomi-
nal time-of-flight value is found.

Figure 5.37 shows the outcome of these calculations. It may be compared with the
time-of-flight deviation as it was calculated using the first zero crossings (Figs. 5.22 and
5.23). It is obvious that the time of flight remains dependent on the coupling layer thickness
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Fig. 5.37 Shear and longitudinal time-of-flight deviation in a 15 mm steel specimen as a function of the
coupling layer thickness, determined by applying the cross-correlation method to the back-face
echoes calculated by the model.
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over the whole range considered.

When using the cross-correlation method, there is no limit layer thickness, i.e. a thickness
value above which the extra reflections within the couplant no longer play a role. Increasing
the coupling layer thickness only shifts the effect of reflections to later times within each
back-face echo. It is clear that the influence of reflections is not spread evenly over the echo
waveform. However, the correlation function is calculated over the whole of the waveforms
of the first two back-face echoes. This suggests that the correlation function is dependent on
the coupling layer thickness, even at large values. This appears to explain the time-of-flight
deviation calculated according to the cross-correlation method.

1t should be noted that for large coupling layer thicknesses time of flight is affected less in
the case of shear waves than in the case of longitudinal waves. This may be due to the high
attenuation for shear waves in the couplant, causing the amplitude of reflections to become
relatively small.
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5.6 _Conclusion

In this chapter a model is described for the pulse-echo method. The model is approxi-
mately based on the experimental set-up for acoustoelastic stress measurements as described
in Chapter 3. Model calculations for single-mode shear and longitudinal transducers yield
echo waveforms that compare reasonably well with those measured using the combined
shear-longitudinal transducer of the set-up. The echo amplitude, however, is found to be
smaller.

Based on these calculations, several factors were considered which affect the results of a
pulse-echo measurement. Besides the piezoelectric transducer itself, the factors include dif-
fraction in the specimen, the viscous coupling layer, electrical conditions, and transducer
misalignment. Relevant results were presented, as calculated using the model.

The most important aspect of the pulse-echo method is the time of flight measured. In
the present method time of flight is determined between the first zero crossings in the first
two back-face echoes. The model calculations showed that this measured time of flight in-
herently deviates from the nominal value, owing to diffraction in the specimen. Another im-
portant source of deviations was found to be the extra reflection of the second back-face echo
against the combination of transducer and coupling layer. The results indicated that this plays
a particularly important role when thin coupling layers are used, as in conventional practice.
Attenuation is then low, and multiple reflections occur within the coupling layer. Above a
certain limit layer thickness, these reflections are delayed beyond the first zero crossings in
the echoes and no longer affect the measured time of flight. However, the calculations re-
vealed that the combined effect of dispersion in the couplant and diffraction in the specimen
can still slightly affect the time of flight. This was particularly found for shear waves, which
are subject to more dispersion in the couplant than longitudinal waves, and for thin speci-
mens, in which diffraction causes more differences between the echo waveforms.

It is clear that time-of-flight deviations will inevitably occur. From the point of view of re-
producibility, however, the dependence on the coupling layer thickness is of much more im-
portance, since in practice this quantity cannot be well controlled. This thickness determines
both the delay of reflections within the layer and the level of dispersion for waves passing
through it. The importance of the limit layer thickness lies in the fact that below this value
the two phenomena affect successive back-face echoes in different ways, leading to large
time-of-flight deviations. In contrast to this, above the limit value only dispersion is relevant,
acting equally on all echoes. A significantly smaller influence on time of flight is the result.

As far as the electrical settings are concerned, the calculation results indicated a much
larger effect on time of flight for coupling layers below the limit thickness. The distortion
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caused by changing electrical settings has more effect below this value, owing to larger
waveform differences in successive back-face echoes. In general it may be concluded that re-
ducing such differences will improve the reproducibility of the pulse-echo measurements.
Thus, in this case also, the use of thick coupling layers for time-of-flight measurements is to
be preferred.

The results with respect to a tilted transducer demonstrated a decrease in the echo
amplitude with an emphasis on high-frequency components. The calculated decrease in the
echo peak amplitude was somewhat higher than that found experimentally. The effect on the
measured time of flight was smaller for a thick coupling layer (100 pum) than for thinner lay-
ers. The consequences which this has in an actual set-up depend on the mechanical construc-
tion used to position the transducer.

There are several aspects of the model described in this chapter for which simplifica-
tions have been introduced in order to permit or facilitate calculations. The pulser is reduced
to a simple voltage source with given impedance; for the transducer a one-dimensional
model is used; the ultrasonic properties of the couplant were quantified by means of a viscoe-
lastic model. It is justifiable to question the applicability of the model to an actual pulse-echo
set-up, such as the one described in Chapter 3. In the present chapter, where possible, the
calculated results were compared with those obtained experimentally, e.g. the echo wave-
forms, the measured time of flight as a function of the coupling layer thickness and the echo
amplitude for a tilted transducer. Based on these comparisons, it is believed that the model
provides an appropriate description of an experimental pulse-echo set-up.
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Appendix 5A The Fourier transform

A quantity which plays a role in a particular physical process can be expressed in two
different ways, namely:

¢ in the time domain, by describing the value of the quantity as a function of time t, e.g.
A(t).
¢ in the frequency domain, by describing the amplitude and phase of the quantity as a

function of (angular) frequency  in the form of a complex function F(w).

Each of these functions contains all information concerning the behaviour of the physical
quantity in the process. The functions are related to each other through the Fourier transform
equations [5):!

oo

F(o) = Jf(t)e_imdt (A1

—o0

+oo
1 .
fV) =5 F(@)e'™do (5A.1%

It should be noted that negative frequencies are also included.

Not every function has a Fourier transform. However, functions which represent physi-
cally possible signals, i.e. which are an accurate description of the behaviour of a physical
quantity, can always be transformed.

The discrete Fourier transform
Consider a physical signal, the value of which is sampled at an even number of equidistant

time values, i.e.:
fe =), fork=0,1,2,...N~1 (5A.2)
where f, = signal value
t, = kAt

At = time interval
N = number of sampled points

The frequency for which exactly two samples are taken per cycle is called the Nyquist criti-

1A number of alternative formulations for the transform equations are also in use.
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cal frequency o, and is equal to /5. Higher frequency components cannot be shown to be
present in the signal. Therefore, the Fourier transform of the discrete samples will yield only
values in the frequency domain ranging from —@, to +@,.

By approximating the continuous Fourier transform equations given above, the discrete
Fourier transform equations can be found [44]:

N-1
F,= 3, fe kN (5A.3%
k=0
N-1
f =N Fe N (5A.3%
n=0
where F, = ﬁF((nn)
2nn
@ = NAt

The N discrete samples in the time domain, f,, are transformed to N discrete samples in the
frequency domain, F,, and vice versa. It can be seen from the equations that in both domains
the samples are periodic with a period N. It is important to realize that transforming a series
of time-domain samples inherently assumes that the signal extends periodically outside the
sampled range, with a period equal to the sample length N-At.

1t would seem that the frequencies , extend to twice the Nyquist frequency. However, ow-
ing to the periodicity, the samples with indexes ranging from N/2 to N-1 are equal to those
with indexes between _N/Z to —1 and thus correspond to the negative frequency range.

If the samples in the time domain are real numbers, which is most often the case with a
physical signal, the transformed samples for negative frequencies are the complex conjugate
of the samples for the opposite positive frequencies. Consequently, the transform is com-
pletely described by specifying only F, to Fy,,. In fact the samples F; and, due to the perio-
dicity, Fyy, must be real numbers.

A convenient technique to calculate the discrete Fourier transform is the so-called Fast
Fourier Transform [44]. A straightforward evaluation requires a calculation time propor-
tional to N, whereas for the FFT algorithm, it is proportional only to N log,N. FFT works
out much faster, especially for large N-values. One disadvantage, however, is that it requires
N to be an integer power of 2.
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Appendix SB Wave excitation and detection in a piezoelectric plate

Introduction

Consider an electrically insulating material exhibiting piezoelectric behaviour defined by the
constitutive equations:

D, = E; + e;,Sjc (5B.1)
T; = CinaSua — exiBx (5B.2)

where D = electric displacement vector
E = electric field vector
T = stress tensor

= strain tensor

3".order piezoelectric stress tensor
= stiffness tensor for constant electric field

I, Iqu o 2 |

= 2™ order permittivity tensor for constant strain

For the description of acoustic wave propagation in this material it is convenient to use a
quasi-static approximation [1, 10]. By this means the electromagnetic part of the electric
field is neglected and E can be exclusively expressed as the negative gradient of the electric
potential ¢:

__ 9
Ei==% (5B.3)

Furthermore, as an insulator is being considered here, no free charge is available, and the di-
vergence of the electric displacement field is zero:

aD,
ax; =0 (5B.4)

Plane wave propagation in piezoelectric material
Using the equation of motion in the absence of body forces:

dT; oy,

a_xj = Y (5B.5)

where u = particle displacement
p = mass density
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and the definition of the infinitesimal strain tensor:

dy; dy
Sy = "2(a_xj+a_xi (5B.6)

the expressions 5B.1 to 5B.4 lead to the following wave equations:

. o’u, 3% _ oy,
gy 3x, * Cigx,dx; = P or?

C (5B.7)

A Puy
S. -
aijaxiaxj - eijkaxiaxj =0

(5B.8)

At this point harmonic plane wave solutions are assumed for the displacement u and the
electric potential ¢. They have an angular frequency ®, wave number k and a propagation di-
rection along the unit vector n. Their fields are thus proportional to:

ei((m - knjxj)
After substitution, the wave equations lead to:

2
[0)
Cgkl“jnl“k + e 0 = Y (5B.9)

ginnd - egnnu, =0 (5B.10)

By eliminating the potential ¢, while using the symmetry e;; = ey, the following eigenvalue
equation is found:

(1)2

Ty =p 3y (5B.11)
€N e N
where T = (Cﬁu + _mLs'%kl_‘l)njnl
Epqllplly

In fact this is the Christoffel equation for plane waves in a piezoelectric material. The
Christoffel tensor L is piezoelectrically stiffened, depending on the propagation direction n.
As in the non-piezoelectric case, the eigenvectors and corresponding eigenvalues of I re-
spectively define the particle displacement directions u and phase velocities W of plane
wave solutions. The terms between brackets in the definition of I are also referred to as stiff-
ened elastic constants, although they are not real elastic constants, as they are dependent on n
and only applicable to plane waves.
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Piezoelectric plate

Consider the configuration shown in Figure 5B.1. Two non-piezoelectric media are attached
to a piezoelectric plate having flat and parallel surfaces with area A. Electrically conductive
layers are present at the interfaces. These act as electrodes and are sufficiently thin to permit
their influence on elastic wave propagation to be ignored. The thickness d of the plate, which
is in the x,-direction, is taken small relative to its other dimensions. It is assumed for this ge-
ometry that deviating effects at the plate edge are negligible and that only the dependence on
X4 needs to be considered for the relevant field quantities:

¢ Electric potential ¢
Since the electric field is written as the gradient of the potential (Eq. 5B.3), the com-
ponents E, and E, vanish.

e Electric displacement D
Component D, is constant throughout the plate, owing to zero divergence (Eq. 5B.4).

o Stress T
Only stress components T;; are relevant when considering elastic waves (Eq. 5B.5).

e Particle displacement u
Only displacement gradient components aui/ax , are non-zero.

non-piezoelectric medium
S ~E
eg.Cp
JA
> X;=-d
V4\ piezoelectric plate —
& X;=0 X
J B CI
A
non-piezoelectric medium X3

Fig. 5B.1 Piezoelectric plate with electrodes, sandwiched between two non-piezoelectric media.

For the piezoelectric plate configuration, the voltage across the electrodes, V., can be
related to the electric field in the plate. As the gradient of the potential (Eq. 5B.3) is now
identical to component E,, this voltage follows from:

—d 0
Vo= [Byx)dxs = [Eq(x))dxs (5B.12)
Y —d

The current density at the inner electrode surfaces can be related to the electric displacement
in the plate. The electrical boundary conditions require that the component normal to the
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electrode/plate interfaces, i.e. Ds, is continuous.! Therefore the electrode current density J,
must be:

aD,

J=3 (5B.13)

The first constitutive equation (Eq. 5B.1) is now reduced to what is relevant to the present
configuration:

s uy

When reducing the second constitutive equation (Eq. 5B.2), it is convenient to simultane-
ously eliminate the position-dependent electric field component E; by substituting the ex-
pression above. This leads to:
€33€33, 00 i3

To=(Cas =3 oz, =5 Ds (5B.15)
According to this description of the stress field in the plate, one part is proportional to dis-
placement gradients a“i/ax3 through the stiffened elastic constants (Eq. 5B.11) for plane
wave propagation in the x,-direction. It thus represents the stress field caused by such waves.
The other part of the stress field is proportional to electric displacement component D; and is
therefore constant throughout the plate.

Simplified analysis

Generally, in an elastic medium, three plane waves can propagate in a given direction. These
waves are polarized normal to each other along the eigenvector solutions of the Christoffel
equation (e.g. Eq. 5B.11). The assumption is now made that the electromechanical coupling
only includes one of the three wave solutions travelling in the thickness direction of the
plate. This situation will arise if the vector formed by components ey;; coincides with the
polarization direction of that particular wave. The remaining two waves are then polarized
normal to this vector and consequently their traction forces cannot be induced electrically
(Eq. 5B.15)." Moreover, as the second term in Equation 5B.14 vanishes for these waves, they
do not affect the field quantities D and E.

A second assumption is also made at this point, namely that the elastic properties of the two

I Another requirement arising from the electrical boundary conditions is continuity of the tangential compo-
nent of the electric field. As E is directed normal to the plate/electrode interfaces, fulfilment of this require-
ment will be guaranteed if the electrode material is assumed to be a perfect conductor.

I The polarization of a plane wave indicates not only the direction of particle displacement but also that of the
traction vector acting on a plane normal to the propagation direction (see Appendix 3A).
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adjacent non-piezoelectric media allow plane waves to travel in the x;-direction with the

same polarization direction as the coupled wave in the plate.

There is no fundamental argument for making these two assumption, but they do sim-
plify the present analysis significantly. They also allow for a more concise notation using
scalar quantities only. Let the unit vector p be directed parallel to the polarization of the
coupled wave and thus, owing to the assumptions made, also parallel to the vector formed by
components €4;;. By defining:!

X=Xy Pi€ = €33

E=E, piu =y

D =D, pT =T

=g, (5B.16)

Equations 5B.14 and 5B.15 can be written as:

Ju

D =esE+ea—x (5B.17)
du e

where C = eigenvalue of the piezoelectrically stiffened Christoffel tensor associ-
ated with the plane wave solution under consideration (Eq. 5B.11)

This is a linear and time-invariant set of equations, allowing all field variables, i.e. E, D, T
and u, to be thought of as time-harmonic functions proportional to the same term ¢! There-
fore, from now on these variables can be conveniently represented as complex quantities,
with an amplitude and phase equal to their modulus and argument respectively, while ignor-
ing the term e, Equations 5B.12 and 5B.13 permit the same notation for the electrical
quantities V,, and J..

Plane wave excitation

In order to describe the excitation of plane waves, the mechanical conditions at the bounda-
ries between the piezoelectric plate and the surrounding non-piezoelectric materials must be
considered. For two rigidly bonded materials the traction force acting on the interface plane
and the particle velocity must be continuous. For the one-dimensional plate configuration
(Fig. 5B.1) these conditions read:

T=T (5B.19)

' The base of the natural logarithm and the piezoelectric stress constant e defined here can be distinguished by
the way they appear in formulas.
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3= (5B.20)

where plane and primed quantities refer to piezoelectric and non-piezoelectric material re-
spectively. If a stress field' is electrically induced in the plate (Eq. 5B.18), plane waves must
be excited at its interfaces in order to maintain these boundary conditions. In view of the as-
sumptions made above, only a single wave is excited on either side of each interface.

Consider an interface located at x = &, where harmonic plane waves are excited which travel
into the piezoelectric and non-piezoelectric material. Their stress amplitudes, defined at the
interface, are denoted as W and W' respectively. In the absence of waves from other sources,
the stress fields in the two materials take the form of:

Tx) = WelkE =8 —:—SD (5B21)
T(x) = W eFKE =9 (5B.22)

The signs in the wave functions depend on the orientation of the two materials relative to the
x-axis. The first boundary condition (Eq. 5B.19) yields:

W- 51) =W (5B.23)

Using the specific wave impedances in the two media, Z and Z', to relate the particle veloci-
ties of the waves to the traction forces W and W' acting on the interface plane (see Appendix
3A), the second boundary condition (Eq. 5B.20) leads to:"

o ——
77tz

(5B.24)
By solving these equations, the amplitudes are obtained of the two stress waves excited at the
two plate interfaces. As the electric displacement D is considered a time-harmonic function,
the electrode current density J, is equal to ioD (Eq. 5B.13) and thus:

Z e
W=—-i—""35] 5B.25
"2z 0 ( )

Z e
S G 5B.2
w +lZ+Z' mesl" ( 6)

' In this context stress is equivalent to a traction force acting on a plane normal to the x-axis .

I The wave impedance in the plate is calculated using the phase velocity wk following from the appropriate
eigenvalue C of the piezoelectrically stiffened Christoffel tensor (see Eqs. 5B.11 and 5B.18), i.e. Z = ptWk =
\lpC.
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Plane wave detection

Plane waves propagating in the thickness direction of the piezoelectric plate influence the
electrical conditions at the terminals. This effect can be evaluated by integrating the expres-
sion for the electric displacement D (Eq. 5B.17) over the plate thickness and subsequently
differentiating it with respect to time. This leads to:

J = i-d@[ssve +e{u(0) - u(-d)}] (5B.27)

In this expression the mechanical influence is represented by the displacement difference
between the two plate surfaces. Let the displacement field in the plate be caused by two har-
monic plane waves with wave number k, travelling in positive and negative x-directions. De-
fining their stress amplitudes as W* and W™ at x =—d and x = 0 respectively, the stress field
associated with these waves can be written as:

T(x) = Welk* 4 whe kx+d) (5B.28)

which, according to Equation 3A.4, corresponds to a displacement field:
i —ik(x+d) ikx
ux =z (W' -we') (5B.29)

where Z = specific wave impedance in the piezoelectric plate

Substitution of u(x) in Equation 5B.27 yields:

iwe’
d

I = 5V + 5 (W + W1 K9 (5B.30)
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Appendix 5C Plane wave propagation in an attenuating medium

Christoffel equation

Consider a material with a constitutive behaviour which is linear and time-invariant, in the
sense that if either stress or strain varies harmonically the other quantity will also do so, both
quantities with the same frequency but not necessarily the same phase. Such constitutive be-
haviour offers a means of describing the dissipation of wave energy by the medium. For this
purpose a complex stiffness tensor C is implicitly defined as:

T, = CuSu (5C.1)

where Tj;, S;; = stress and strain tensors respectively, proportional to the time-har-

monic function '*

It should be noted that the constitutive behaviour of this material is described completely
only if this stiffness tensor is known for all frequencies. In general therefore C must be con-
sidered a (complex) function of frequency.

Based on the equation of motion in the absence of body forces:

2
o

axj = p'&; (5C.2)

where u = complex displacement
p = mass density of medium

the following wave equation can be formulated:

. du, dy
Cijni xx, =Pz (5C.3)
At this point a solution is sought in the form of an attenuated plane wave propagating along

the unit vector n with a displacement proportional to:

u, + & O el Kayg) it — k- io)n;x;} (5C.4)

where o = attenuation coefficient
k = wave number

By defining a complex Christoffel tensor I, according to:
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Ty =Cony (5C.5)

the following Christoffel equation can be formulated:

2

0. .
P k—io?™

~

Thu, = (5C.6)
This eigenvalue equation describes the propagation of attenuated plane waves along n in a
medium with a complex stiffness C. In general three wave solutions follow in terms of three
eigenvalues with corresponding eigenvectors. The eigenvalues are equal to szl(k(i)_ia(i))z,
where i = 1...3, and determine the phase velocities and attenuation coefficients of the wave
solutions. The eigenvectors u®? indicate the corresponding polarization directions.

Specific wave impedance
The stress associated with the attenuated plane wave solution 5C.4 is found by substitution in
Equation 5C.1:

. oy o
Ty= Cijkl'a_;l' = ~i(k = 10)Cyynyuy (5C.7)

leading to a traction force acting on planes normal to the propagation direction of:

2

. NS . . . _pw
Tyn; = =ik — i) Cygnynyuy, = —i(k — i) =—i k- io%

(5C.8)
This expression is derived using the Christoffel Equation 5C.6. Since the particle velocity

can be written as:
ay
3{ =imy, (5C.9)

the specific wave impedance Z for an attenuated plane wave, defined as minus the ratio of

the above traction force T;n; and particle velocity a“i/at, is equal to:

__PO
Z=r—— (5C.10)

Thus, for cases where the attenuation coefficient o is non-zero, the specific wave impedance
becomes a complex quantity.



Chapter 6

Conclusion

The subject of this thesis is ultrasonic stress measurements. A wide range of topics
have been touched upon: the theory of acoustoelasticity; the obstacles to be overcome when
performing the ultrasonic experiments; the experimental results; model calculations relating
to the ultrasonic technique. The conclusions drawn here place these aspects in a broader

context.

Acoustoelastic stress evaluation

In view of the experimental results described in Chapter 4, it is concluded that the theoretical
description given in Chapter 2 is adequate. For materials with a texture-induced anisotropy
ranging from negligibly small (aluminium) to extremely large (pipeline steel), the results can
be well described by means of the tensor formulation presented. It is also believed that the
concept of describing acoustoelastic material behaviour by means of a tensor quantity is ex-
tremely concise and that it is closely linked to the way in which elastic properties, for exam-
ple, are described.

The results of the model calculations presented in Chapter 5 show that diffraction inherently
causes deviating time-of-flight results, depending on specimen thickness and type of trans-
ducer (size and frequency characteristic). Consequently the reference values used for evaluat-
ing absolute stress levels will also be affected. They must therefore be used with care when
the values are obtained under conditions different from those occurring during the actual
stress measurement. The calculation model might make it possible to correct for this effect.

Experimental technique

The experimental results (Chapter 4) have shown that the fechnique itself, as outlined in
Chapter 3, satisfies the requirements for acoustoelastic stress evaluation in steel using abso-
lute shear and longitudinal time-of-flight data. Furthermore, the reproducibility of this type
of measurement technique, using a coupling layer with increased thickness, was confirmed
by the resuits of the model calculations.

Application
The following points may be noted concerning the application of the acoustoelastic stress
evaluation technique described in this thesis:

o Applied stress evaluation, using shear waves only, can provide an additional tool for

195
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performing various mechanical experiments under laboratory conditions. This includes
cases where it is necessary to reposition the ultrasonic transducer between measure-
ments. A clear example is the evaluation of the J-integral fracture parameter as de-
scribed in Section 4.3.5.

e Absolute stress evaluation, using the combined shear-longitudinal transducer, is highly
promising for steel plate. For other alloys, such as aluminium, a different type of trans-
ducer may be required in order to avoid overlap of the echoes from the two wave types.

e In the case of structural parts, stress evaluation is particularly favourable if the elastic
and acoustoelastic properties are homogeneous over large plate areas. A typical exam-
ple would be the aluminium plate used in aircraft construction.
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Summary

The propagation of acoustic waves through a material subject to elastic deformation is
determined by the wave equation for an infinitesimal dynamic displacement superimposed
on a finite static displacement. Based on this equation, a relation is established between
acoustic data obtained using shear and longitudinal bulk waves and the components of a two-
dimensional stress field.

Using this relation, applied stress levels may be evaluated by measuring the time of flight
and polarization direction of birefringent shear wave components before and after the appli-
cation of a load. Absolute stress levels may be evaluated by the additional measurement of
the longitudinal time of flight, using reference values obtained in material which is free of
stress.

The acoustoelastic behaviour of the material is expressed in the form of a two-dimensional
tensor, which can be quantified by performing uniaxial tensile tests in at least two well-
chosen directions.

An ultrasonic technique is developed based on the pulse-echo method and using a pie-
zoelectric transducer capable of transmitting and receiving shear and longitudinal waves si-
multaneously. In actual practice the transducer-specimen coupling, consisting of a viscous
fluid in order to accommodate shear waves, proves to be a weak link. It is found here that the
use of a sufficiently thick layer improves the reproducibility of time-of-flight measurements
to better than 1 part in 20 000, even after repositioning the transducer.

In the experimental technique a specially designed holder permits accurate positioning of the
transducer on the specimen surface. Using a stepper motor, the transducer polarization direc-
tion can be set with a resolution of 1/g°. During measurements a computer acquires time of
flight, echo amplitude and specimen temperature and simultaneously controls back-face echo
selection and stepper motor position.

Experiments are performed on aluminium alloy 2024-T351, two structural steel quali-
ties and a pipeline steel. The results indicate that the acoustoelastic effect is considerably
smaller in steel than in aluminium. Moreover, it is found that there is a relation between the
elastic and acoustoelastic anisotropy. On the one hand the acoustoelastic behaviour of the
hot-rolled structural steel qualities is found to be isotropic; in the cold-deformed pipeline
steel, on the other hand, stresses in the axial direction induce an effect which is 1.8 times
higher compared with stresses in the circumferential direction.

A number of stress evaluations were performed on aluminium. First a disc was compressed
diametrically in various directions. The ultrasonically determined stress components in the
centre of the disc correlate well with the elastic solution available. Following this, the plane
stress field around the crack tip of a compact-tension specimen was determined, employing
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both the relative and the absolute evaluation method. Using these stress values, the J fracture
parameter was numerically integrated along several contours surrounding the crack tip. The
results are reproducible and in good agreement with estimates from both linear elastic frac-
ture mechanics and the finite-element method.

Measurements on the two structural steel qualities, with comparable composition but origi-
nating from different manufacturers, suggest almost identical acoustoelastic behaviour. This
reproducibility suggests that absolute stress evaluation in this material is within reach. In the
pipeline steel the large elastic anisotropy will in practice prevent shear stresses from being
evaluated with an acceptable accuracy. On the other hand, it is possible to determine normal
stresses in the axial and circumferential directions.

A computer model is developed in order to assess the factors affecting pulse-echo
measurements. The piezoelectric transducer, the transducer-specimen coupling provided by a
viscous fluid, and wave diffraction in the specimen are important elements in this model. In
view of possible transducer misalignment, the case of a slightly tilted transducer is also con-
sidered. The ultrasonic properties of the viscous couplant, which are essential for the model
calculations, are determined in separate experiments.

The calculation results show that, depending on specimen thickness, transducer size and fre-
quency, diffraction in the specimen inherently causes the time of flight to deviate from the
nominal value. This aspect needs to be considered when reference values are used which
have been obtained under different diffraction conditions.

For thin coupling layers the time of flight is found to be affected even by slight variations in
the layer thickness, as was already suggested by experimental results. Moreover, the electri-
cal conditions relating to the transducer and transducer misalignment are found to have more
effect on the measured time of flight. These results show the inadequacy of conventional
practice, in which the transducer is positioned on the specimen surface using a constant pres-
sure, thus leading to a continuously decreasing coupling layer thickness.

On the basis of the test results, the overall conclusion is that the method for acousto-
elastic stress evaluation described in this thesis can be well applied using the experimental
technique developed and that the method yields good results for a variety of metals. The
model calculations support the alternative approach of using an intentionally thick layer of
viscous fluid for the acoustic coupling of the piezoelectric transducer and the specimen.



Samenvatting

De voortplanting van akoestische golven door een materiaal dat onderworpen is aan
een elastische vervorming wordt bepaald door de golfvergelijking voor een oneindig kleine
dynamische verplaatsing gesuperponeerd op een eindige verplaatsing. Op basis van deze ver-
gelijking is een verband afgeleid tussen akoestische gegevens verkregen met transversale en
longitudinale bulkgolven en de componenten van een tweedimensionaal spanningsveld.

Met behulp van dit verband kunnen opgelegde spanningsniveaus bepaald worden door loop-
tijden en polarisatierichtingen te meten van dubbelgebroken transversale golfcomponenten
vG6r en na het aanbrengen van een belasting. Absolute spanningsniveaus kunnen worden be-
paald door ook de longitudinale looptijd te meten en gebruik te maken van referentiewaarden
verkregen in spanningsvrij materiaal.

Het akoesto-elastisch materiaalgedrag wordt uvitgedrukt in de vorm van een tweedimensio-
nale tensor die kan worden gekwantificeerd door éénassige trekproeven uit te voeren in ten-
minste twee geschikt gekozen richtingen.

Er is een ultrasone techniek ontwikkeld die gebaseerd is op de puls-echo methode. Er
wordt gebruik gemaakt van een piézo-elektrische transducer die gelijktijdig transversale en
longitudinale golven kan uitzenden en ontvangen. Om de voortplanting van transversale gol-
ven tussen transducer en proefstuk mogelijk te maken wordt een visceuze vloeistof gebruikt.
In de praktijk blijkt deze koppeling een zwakke schakel te zijn. Onderzoek wijst uit dat een
voldoende dikke laag de reproduceerbaarheid van looptijdmetingen verhoogt tot beter dan 1
op 20 000, zelfs na herplaatsing van de transducer.

Bij deze experimentele techniek maakt een speciaal ontworpen houder nauwkeurige plaats-
ing van de transducer op het proefstukoppervlak mogelijk. Verder kan, met behulp van een
stappenmotor, de polarisatierichting van de transducer worden ingesteld met een resolutie
van 1/g°. Tijdens metingen registreert een computer de looptijd, echoamplitude en proefstuk-
temperatuur, terwijl tegelijkertijd de selectie van de juiste proefstukecho en de positie van de
stappenmotor geregeld worden.

Er zijn proeven uitgevoerd aan de aluminium legering 2024-T351, twee constructie-
staalsoorten en een pijpleidingstaal. De resultaten geven aan, dat het akoesto-elastisch effect
in staal aanzienlijk geringer is dan in aluminium. Verder is gevonden dat er een verband be-
staat tussen de elastische en akoesto-elastische anisotropie. Enerzijds blijkt het akoesto-
elastisch gedrag van de warm gewalste constructiestaalsoorten isotroop te zijn, terwijl ander-
zijds, in het koud vervormde pijpleidingstaal, spanningen in axiale richting een 1,8 maal zo
hoog effect veroorzaken als spanningen in de omtreksrichting.

Aan aluminium is een aantal spanningsmetingen uitgevoerd. Allereerst is een schijf in ver-
schillende richtingen diametraal op druk belast. De ultrasoon bepaalde spanningscomponen-
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ten in het midden van de schijf bleken goed te correleren met de beschikbare elastische op-
lossing. Vervolgens is rond de scheurtip in een “compact tension” proefstuk het vlakspan-
ningsveld bepaald met zowel de relatieve als de absolute bepalingsmethode. Met behulp van
deze spanningswaarden is de J breukparameter numeriek geintegreerd langs een aantal con-
touren rond de scheurtip. De resultaten zijn reproduceerbaar en komen goed overeen met
schattingen op basis van de lineair elastische breukmechanica en de eindige-elementen-
methode.

De metingen aan de twee constructiestalen, die een vergelijkbare samenstelling hebben maar
afkomstig zijn van verschillende fabrikanten, duiden op een bijna identiek akoesto-elastisch
gedrag. Deze reproduceerbaarheid suggereert, dat absolute spanningsbepaling in dit materiaal
tot de mogelijkheden behoort. In het pijpleidingstaal zal het, door de grote elastische aniso-
tropie, praktisch gesproken onmogelijk zijn om schuifspanningen met een aanvaardbare
nauwkeurigheid te bepalen. Normaalspanningen in axiale en omtreksrichting zijn daaren-
tegen wel goed meetbaar.

Er is een computermodel ontwikkeld om de factoren die puls-echo metingen befnvioe-

den te beoordelen. Belangrijke onderdelen van dit model zijn de piézo-elektrische transducer,
de transducer-proefstuk koppeling gevormd door een visceuze vioeistof en golfdiffractie in
het proefstuk. Om het geval van een niet goed uitgelijnde transducer te kunnen beoordelen,
wordt ook een enigszins scheve transducer beschouwd in het model. De ultrasone eigen-
schappen van de visceuze koppelvloeistof, die essentieel zijn voor de modelberekeningen,
zijn via aparte proeven bepaald.
De berekeningsresultaten laten zien, dat afhankelijk van proefstukdikte en transducertype
(afmetingen en frequentie), de looptijd afwijkt van de nominale waarde als gevolg van dif-
fractie in het proefstuk. Dit aspect moet meegenomen worden, als referentiewaarden worden
gebruikt die onder afwijkende omstandigheden bepaald zijn.

Zoals al door proefresultaten was aangegeven, blijkt bij dunne koppellagen de looptijd zelfs
door hele kleine laagdikteveranderingen beinvloed te worden. Ook blijken de omstandig-
heden aan de elektrische kant van de transducer en een onjuiste transduceruitlijning nu meer
invloed op de gemeten looptijd te hebben. Deze resultaten geven de ongeschiktheid aan van
de gangbare praktijk waarbij de transducer met een constante kracht op het
proefstukoppervlak gedrukt wordt waardoor de koppellaagdikte voortdurend afneemt.

Gebaseerd op de proefresultaten, luidt de globale conclusie dat de methode voor
akoesto-elastische spanningsmeting zoals beschreven in dit proefschrift goed toegepast kan
worden met de ontwikkelde experimentele techniek en dat de methode goede resultaten geeft
voor een verscheidenheid aan metalen. De modelberekeningen ondersteunen de alternatieve
aanpak om een met opzet dik gekozen laag visceuze vloeistof te gebruiken voor de
akoestische koppeling van de piézo-elektrische transducer en het proefstuk.



