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Abstract

Breast cancer is the most common malignant tumor among women today. Available
techniques for treating breast cancer often introduce strong side effects. The non-invasive
electromagnetic ablation of breast tumors has a lot of potential, because it can provide a
quick treatment modality without introducing harmful side effects.

In this project we assess the feasibility of non-invasive electromagnetic ablation of
female breast tumors. The two main challenges in this project are

1. The computation of electromagnetic fields inside the female breast.

2. The focussing of power such that the power dissipated in the tumor is maximized
while the power dissipated in healthy tissue is minimized.

In our investigation we simulate a two-dimensional configuration with a circular array
of line-sources operating at a single-frequency within the range of 1 to 10 GHz. The
electromagnetic fields are computed using a discretized EFIE method, after which we
evaluate three algorithms that focus the dissipated power in order to gain insight in the
potential of this treatment modality.
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Chapter 1

Introduction

This thesis concerns a non-invasive treatment modality for treating breast cancer using
focused electromagnetic waves. In this introductory chapter we will discuss the back-
ground and context of this thesis. After a general introduction, we will successively pay
attention to the problem statement, our notation conventions and, finally, to the outline
of this thesis.

1.1 Breast cancer treatment

Breast cancer is the most common malignant tumor among women today. Within the
European Union, every 7.5 minutes a woman dies from this disease [39]. Following lung
cancer, it is the second leading cause of death due to cancer for women. Among women
of the age 35–55, this disease forms the leading cause of death. One out of eight women
is expected to be affected by this type of cancer during her life.

Breast cancer is a disease which causes cells in the breast to change and grow in an
uncontrolled manner. The cancer cells eventually form a lump or mass called a ‘tumor’.
The breast is made up of glands for milk production and ducts that connect these glands to
the nipple. The remainder of the breast is made up of adipose (fatty) and fibroconnective
tissue. This is illustrated in Fig. 1.1. Most breast tumors originate in the ducts and glands
of the breast.

Available techniques for treating breast cancer often introduce strong side effects. The
most common treatment is surgical treatment like mastectomy, a radical approach which
comes down to removing the entire breast, or lumpectomy, where only part of the breast
is removed. Ablative therapies that cause cellular damage are also common, like radiation
therapy and chemotherapy. A treatment modality that has received a lot of attention in
the past, is thermal therapy. The thermal treatment of cancer has a lot of potential, since
it can offer a non-invasive treatment with low side effects. Therefore, further development
of this approach deserves attention.
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Fig. 1.1: The anatomy of the breast

In the thermal treatment of cancer, the tissue temperature is raised in order to kill
the malignant tissue. Among thermal therapies we can make a clear distinction between
hyperthermia and thermal ablation, which differ in the temperature elevation that is
applied to the tissue. Hence, these two approaches are based on different biological damage
processes.

Hyperthermia therapy aims on maintaining a moderate temperature elevation for a
longer period of time [42]. This type of treatment applies temperatures between 42 and 47
degrees, for which it known that cellular damage increases exponentially with treatment
time and temperature [16]. The tumor is more sensitive for this excess heat due to its
chaotic vascular structure [45]. Hyperthermia has also shown to increase the effectiveness
of chemo- or radiation therapy [21]. Hyperthermia treatment is typically performed in
multiple sessions spread over several weeks, with each session lasting 30 minutes to hours.
This makes this type of treatment very costly. Furthermore, the acquired thermotolerance
of the tissue reduces the effectiveness of subsequent treatment sessions [36].

In thermal ablation, or local hyperthermia, the goal is to obtain the highest possible
temperature in the tumor for only a short period of time in order to irreversibly destruct
the tumor tissue. At temperatures from approximately 50

a

C up to 100
a

C, protein
coagulation causes almost immediate irreversible cell death. Higher temperatures cause
tissue boiling, tissue water vaporization and eventually carbonization of the tissue [13].

Thermal ablation can be applied using various techniques which can be categorized
into minimally-invasive, like radiofrequency ablation and microwave ablation where an
electrode is inserted in the tumor tissue [13, 40], and non-invasive, like focused microwave
ablation or high intensity focused ultrasound where electromagnetic or acoustic energy
is focused at the tumor tissue. Comparison studies show that electromagnetic heating is
much more efficient than acoustic heating [3]. Therefore, this approach may offer a non-
invasive, quick and power-efficient technique for the treatment of female breast cancer.
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1.2 Problem statement

The challenge in focused microwave ablation is to avoid heating the healthy tissue while
heating the tumor. The relatively high conductivity of tumor tissue increases the local
heating potential, thus high temperature gradients can be obtained. However, healthy
glandular tissue and skin tissue also possess a high conductivity, which implies that sec-
ondary (unwanted) hot spots may appear there. Hot spots in the healthy tissue result in
undesired side effects like extra pain, burns and blisters. Also, these hot spots deteriorate
the system efficiency.

Several techniques that focus electromagnetic energy at a tumor have been developed
in the past. The ability of magnetic materials and nanoparticles to locally absorb elec-
tromagnetic energy and convert this energy into heat is exploited in [17] and [18]. In [14]
simulation results show that a slab of metamaterial can be used to focus the electromag-
netic field of an external electromagnetic source.

A more flexible approach for focusing electromagnetic energy is the use of a phased
array system. The resulting power distribution can be steered by adjusting the amplitude
and phase of each array element. This type of applicator has already been used in elec-
tromagnetic systems at radiofrequencies (e.g. 10-1000 MHz) [9, 38, 41] and in acoustic
systems [3, 20]. It is shown in [10, 11] that a phased array can be used to adaptively
steer nulls at preassigned areas of the target body, while heating the part that contains
the tumor. However, thermal ablation is not possible at these frequencies since the focal
spot includes a large part of the body.

From antenna theory we know that, for a fixed antenna size, the main beamwidth is
proportional to the wavelength. In other words, using a higher frequency could increase
the ability of a phased array system to selectively heat the tumor. It is derived in [9] that
the focal spot size of a ring array antenna equals half the wavelength in the target body.
In focused microwave ablation, this would imply that frequencies between 1 and 10 GHz
can induce a focal spot size in the range of centimeters to millimeters.

However, increasing the frequency deteriorates the transmission of power into the
breast [9]. Also, the heterogeneous structures will cause the wavefields to be scattered
in a more diffuse manner. Due to internal reflections, resonances and standing wave
phenomena, additional hot spots may be induced. These effects imply the need for an
accurate propagation model in order to assess the feasibility of focused microwave ablation
of female breast cancer.

Next to computing the fields, we need a method for finding the controls that optimize
the resulting power distribution in the breast. Several methods have been developed in the
past for optimizing the heating pattern in hyperthermia. Simple methods exist like the
target center position method [3] or conjugate field matching [33, 34], in which the only
objective is to obtain constructive interference at one point in the target body. These
methods do not concern covering the whole tumor and they do not concern reducing
power dissipation in the surrounding healthy tissue. Therefore, these methods are not
appropriate for focused microwave ablation.
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Fig. 1.2: A focused microwave ablation system for the treatment of breast cancer

More sophisticated also exist like adaptive nulling [9, 10] or temperature based opti-
mization [26]. The latter two methods are not useful in this feasibility study since our
only objective is to obtain the most localized temperature distribution, and therefore the
most localized power distribution.

A common problem encountered in array pattern synthesis is that of conflicting ob-
jectives [2]. For example, increasing the dissipated power in the focus will inherently
increase the power dissipated in the healthy tissue. This has also been proven by [23].
Also, increasing the amount of destructive interference in the healthy tissue will degrade
the power distribution in the target area. Thus, for optimizing the power distribution is
the breast, an algorithm needs to be devised in such a way that it handles the conflicting
objectives of thermal ablation in a correct manner.

1.3 Project goal

The goal of this project is to assess the feasibility of non-invasive electromagnetic ablation
of female breast tumors by designing an algorithm that optimizes the power distribution.
We propose using a hemispherical antenna array configuration operating at a single-
frequency between 1 and 10 GHz. The patient will be prone positioned, i.e. laying face-
down, on a treatment table and the hemispherical antenna array encloses the breast from
below. The space in between the breast and the applicator is filled with a bolus in order
to improve the coupling between the applicator and the breast. This configuration is
illustrated in Fig. 1.2.

For our investigation, we will simulate a two-dimensional configuration with line
sources surrounding a transverse section of the breast. After computing the electro-
magnetic fields, we evaluate the focusing ability of three focusing algorithms.

We assume that an electromagnetic model of the patient’s breast is available. This
model could for instance be obtained through magnetic resonance imaging or even better,
microwave imaging using the same array configuration [28]. The latter can improve the
system a lot since errors due to mismatches in the propagation model could then auto-
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matically be corrected. However, since this research is limited to a feasibility study, we
assume that the propagation models are known in advance.

For modeling the temperature increase in thermal ablation we assume that the in-
fluence of thermal conduction, perfusion and metabolic heating can be neglected. Thus,
the local temperature increase is proportional to the dissipated power and the treatment
duration. We thus only need to obtain a localized dissipated power pattern in order to
assess the feasibility of focused microwave ablation. A justification of this approach can
be found in Appendix A, where also a quantative goal of the system is formulated.

It is known that the skin tissue has a high conductivity and, hence, it will be inevitable
that the surface of the breast is also heated during the treatment. We follow the approach
suggested in [7] and assume that the breast is superficially cooled by the bolus material
beforehand. Therefore, we will not consider reducing the power dissipation in the skin as
an objective in this study.

We assume that the electromagnetic behaviour of the breast tissue is linear, dispersive,
isotropic and time-invariant. We also assume that the tissue properties are independent
of the temperature. A temperature dependency of the electromagnetic properties of liver
tissue has been shown in [29]. Although the heterogeneous structure remains approxi-
mately the same, there are still some changes in permittivity and conductivity values.
Therefore, this assumption does not impede on the feasibility of thermal ablation, but
the thermal dependence will eventually have to be taken into account in order to prevent
defocusing of the field during the treatment.

1.4 Notation conventions

In this section we will define some of the notation conventions that will be used throughout
this thesis.

• Symbols that denote a variable are written in ‘italic’ font. Symbols that represent
a constant are written in ‘roman’ font, except for the greek symbols that represent
a constant.

• Scalar quantities are put in a ‘plain’ typeset. Vector valued quantities will be rep-
resented by a symbol with a bold typeset.

• The location of a point in space will be represented by its position vector x =
i1x1 + i2x2 + i3x3 with three spatial coordinates indicating the position of the point
with respect to the origin O of a right-handed, orthogonal, Cartesian reference frame
consisting of three base vectors {i1, i2, i3} that are each of unit length. The spatial
differentiation operator ∇ is defined as ∇ = i1∂1 + i2∂2 + i3∂3.

• Time instants are represented by the time coordinate t.
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1.5 Thesis outline

The outline of this thesis is as follows;

Chapter 2: Basic electromagnetic equations

In Chapter 2, we present the mathematical and physical fundaments for electro-
magnetic wave phenomena. From the local form of Maxwell’s equations we derive
a pair of coupled integral equations from which the field in inhomogeneous media
can be evaluated.

Chapter 3: General configuration

Chapter 3 covers the general configuration that is used to support our investigation.
First we describe the two-dimensional configuration that is used in this investigation.
Then we present the model that is used to describe the interaction between the
breast and the electromagnetic field.

Chapter 4: The forward scattering problem

This chapter describes the method that is used to compute the electromagnetic
fields in inhomogeneous media. After presenting the Electric Field Integral Equation
(EFIE), we describe the discretization of the computational domain. Chapter 4 is
concluded by describing the conjugate gradient method for computing the electric
field in the breast model.

Chapter 5: Power optimization

The theoretical part of this thesis is completed by presenting three algorithms that
optimize the power distribution inside the breast. First we derive an eigenvalue
method that maximizes the average power dissipated in the tumor. A similar eigen-
value method results from maximizing this quantity with respect to the average
power dissipated in the healthy tissue. We conclude Chapter 5 by presenting a con-
jugate gradient scheme that optimizes a given power dissipation pattern in order to
suppress undesired hot spots.

Chapter 6: Numerical simulations and results

In this chapter we present numerical simulations by which we determine remaining
system parameters and the results obtained with the various power optimization
methods. Through these results we evaluate the feasibility of non-invasive electro-
magnetic ablation of female breast tumors.

Chapter 7: Conclusions and recommendations

Chapter 7 completes this thesis by presenting the conclusions that can be drawn from
this research, together with a number of recommendations for future development.



Chapter 2

Basic electromagnetic equations

This chapter covers the basic electromagnetic equations which form the basis for any elec-
tromagnetic analysis. We will start with presenting the local form of Maxwell’s equations
for the electromagnetic field in matter. From these equations we aim to analytically derive
a system of coupled integral equations from which the field in an inhomogeneous medium
can be evaluated. More background on the equations that govern the electromagnetic
field can be found in [19].

2.1 Time domain Maxwell’s equations

As a starting point for the description of electromagnetic waves we take the local form of
Mawell’s equations in matter. In vector notation, these are given by

−∇× H + J
con + ∂tD = −J

ext (2.1)

∇× E + ∂tB = −K
ext (2.2)

where E is the electric field strength, H is the magnetic field strength, D denotes the
electric flux density and B denotes the magnetic flux density. The quantities ∂tD and ∂tB

are also known as the volume density of the electric and magnetic displacement current,
respectively. The volume density of the electric conduction current is represented by Jcon.

The symbols Jext and Kext represent the volume densities of the external electric
and magnetic current. These current densities describe the sources that generate the
electromagnetic field, they are given and are field-independent.

The electromagnetic field quantities are numerically represented according to the In-
ternational Systems of Units (SI). These are given in Table 2.1.

13
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Table 2.1: Electromagnetic field quantities and their SI-units

Symbol Unit Quantity

E V/m electric field strength

H A/m magnetic field strength

D C/m2 electric flux density

B T magnetic flux density

J A/m2 electric current density

K V/m2 magnetic current density

2.1.1 Compatibility relations

Supplementary relations are obtained when we apply the divergence operator (∇·) to
Eqs. (2.1) and (2.2). This yields

∇·Jcon + ∂t∇·D = −∇·Jext (2.3)

∂t∇·B = −∇·Kext . (2.4)

These equations are known as the compatibility relations and form necessary conditions
for solutions of Maxwell’s equations to exist.

2.1.2 Constitutive relations

The constitutive relations describe the macroscopic reaction of matter to an electromag-
netic field. They relate the electric conduction current and the electric and magnetic
flux densities {Jcon,D,B} to the fields {E,H}. The constitutive parameters and con-
stants that are involved in these relations are given in Table 2.2. In our general form of
Maxwell’s equations we consider linear, time-invariant, causal, locally reacting, relaxating,
dispersive, isotropic, and inhomogeneous media.

The constitutive relations are defined through relaxation functions, which describe the
impulse response of the medium. These functions allow us to write the reaction of the
medium to a field quantity as a convolution. For example, the electric conduction current
J con is related to the electric field strength E through a convolution with the relaxation
function of conduction κ(c). This is written as

J
con(x, t) =

∞̂

−∞

κ(c)(x, t − t′)E(x, t′)dt′ = κ(c)(x, t)
t
∗ E(x, t) . (2.5)

Causality of the medium implies that at a certain instant t, the quantities {J con,D,B}
depend on the values of {E,H} at instants up till t, only. Thus, we should actually
consider the convolution integral for values of t′ up till t, only. This is enforced by



15

Table 2.2: Constitutive parameters and their SI-units

Symbol Unit Quantity

κ(c) S/(m·s) relaxation function of conductivity

σ̂ S/m conductivity

κ(e) F/(m·s) relaxation function of permittivity

ε̂ F/m permittivity

κ(m) H/(m·s) relaxation function of permeability

µ̂ H/m permeability

Numerical values

c0 = 299792458 m/s; µ0 = 4π × 10−7 H/m;

ε0 = (µ0c
2
0 )−1 ≈ 8.8541878 × 10−12 F/m

requiring that κ(c)(x, t) satisfies

κ(c)(x, t) = κ(c)(x, t)H(t) (2.6)

where

H(t) =







0 ∀ t < 0
1
2

∀ t = 0

1 ∀ t > 0

(2.7)

is the Heaviside step function.

Now, by imposing the causality condition of Eq. (2.6) on all relaxation functions, the
constitutive relations are written as

J
con(x, t) = κ(c)(x, t)

t
∗ E(x, t) (2.8)

D(x, t) = κ(e)(x, t)
t
∗ E(x, t) (2.9)

B(x, t) = κ(m)(x, t)
t
∗ H(x, t) . (2.10)

2.2 Frequency domain Maxwell’s equations

Maxwell’s equations in the time domain can be simplified with no (or minimal) loss of
generality using analytical techniques. In most problems, one is interested in the behavior
of a time-invariant configuration with linear and causal media. In these cases, one can
advantageously describe the problem via its Laplace domain representation, which is ob-
tained by applying the Laplace transform with respect to time. From this representation,
we can easily go to the frequency domain representation of Maxwell’s equations.
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2.2.1 The Laplace domain

In the Laplace domain representation, the dependence on the time coordinate is trans-
formed into the dependence on the complex parameter s. Also, temporal differentiation
∂t is transformed into a multiplication by s and convolutions in the time domain are
transformed into multiplications.

Take E(x, t) as an example of an electromagnetic quantity that is causally related to
a source which is switched on at instant t0. The Laplace transform with respect to time
of E(x, t) is then defined as

Ê(x, s) = Lt{E(x, t)} =

∞̂

t0

E(x, t)e−stdt , for Re{s} > s0 ≥ 0 (2.11)

where s denotes the complex Laplace transform parameter and Ê is an analytic function,
i.e. differentiable with respect to s, in the right half of the complex s-plane for Re{s} >
s0 ≥ 0.

When a solution has been found in the Laplace domain, one can obtain the solution in
the time domain by using the inverse Laplace transform. However, we are not interested
in the transient behavior of the fields but rather in the steady state behavior of single-
frequency sinusoidally varying or harmonic wave fields. This information can be retrieved
without the need for applying the inverse Laplace transform, namely through a frequency
domain analysis.

Frequency domain analysis

In a frequency domain analysis all field quantities depend sinusoidally on time with a
common angular frequency ω = 2πf where f is the common frequency. It is related to
the Laplace domain representation by considering the limiting case with

s = lim
δ↓0

(δ + jω) = jω (2.12)

in which j is the imaginary unit (j2 = −1).

In the frequency domain analysis, a time-dependent quantity like E(x, t) is represented
by a time-independent complex phasor Ê(x, ω) and a common time factor ejωt. The time
domain quantity can be retrieved from its complex counterpart through

E(x, t) = Re
{

Ê(x, ω)ejωt
}

. (2.13)
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2.2.2 Transforming Maxwell’s equations

After applying the Laplace transform with respect to time on Eqs. (2.1) and (2.2), and
applying the limiting case where s = jω, we arrive at

−∇× Ĥ + Ĵ
con + jωD̂ = −Ĵ

ext (2.14)

∇× Ê + jωB̂ = −K̂
ext . (2.15)

The constitutive relations can also be transformed to the frequency domain resulting in

Ĵ
con(x, ω) = σ̂(x, ω)Ê(x, ω) (2.16)

D̂(x, ω) = ε̂(x, ω)Ê(x, ω) (2.17)

B̂(x, ω) = µ̂(x, ω)Ĥ(x, ω) (2.18)

where the scalar functions σ̂, ε̂ and µ̂ are the frequency domain representations of the
relaxation functions of conductivity, permittivity and permeability, respectively.

By substituting Eqs. (2.16)–(2.18) in Eqs. (2.14) and (2.15), we can rewrite them as

−∇× Ĥ + η̂Ê = −Ĵ
ext (2.19)

∇× Ê + ζ̂Ĥ = −K̂
ext (2.20)

in which

η̂(x, ω) = σ̂(x, ω) + jωε̂(x, ω) (2.21)

ζ̂(x, ω) = jωµ̂(x, ω) (2.22)

are the transverse admittance and the longitudinal impedance per unit length, respec-
tively.

The compatibility relations are transformed to the frequency domain as well by ap-
plying the Laplace transform and taking s = jω. Then by inserting Eqs. (2.16)–(2.18),
(2.21) and (2.22) in Eqs. (2.3) and (2.4), we write the compatibility relations as

∇·η̂Ê = −∇·Ĵext (2.23)

∇·ζ̂Ĥ = −∇·K̂ext . (2.24)

2.2.3 Electromagnetic power flow

Understanding the principles of electromagnetic power flow is essential for designing a
tumor ablation system, since it is fundamental to its operation. The electromagnetic
power flow is described by the Poynting vector

S = E × H (2.25)
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which measures the local and instantaneous power flow density. This quantity forms the
basis for the equation describing the electromagnetic power balance.

By performing a frequency domain analysis of the electromagnetic power flow, using
the phasor representation of Eq. (2.13) for E and H, we can obtain the time average
value of the Poynting vector as

〈S〉 = 1
2
Re

{

Ê × Ĥ
∗
}

(2.26)

where the asterisk * denotes the complex conjugate and the brackets 〈·〉 denote time
average.

By multiplying the complex conjugate of Eq. (2.19) by Ê· and Eq. (2.20) by Ĥ∗·,
adding both results and using the vector identity ∇·(Ê×Ĥ∗) = Ĥ∗·(∇×Ê)−Ê·(∇×Ĥ∗),
we obtain after taking half of the real part

∇·〈S〉 + 1
2
Re

{
η̂
}
Ê ·Ê∗ + 1

2
Re

{
ζ̂
}
Ĥ ·Ĥ∗ = −1

2
Re

{

Ê ·Ĵext∗ + Ĥ
∗ ·K̂ext

}

. (2.27)

The right hand side of 2.27 can be interpreted as the time average value of the source
power density, whose action has been described through the external electric and magnetic
current densities. The first term on the left hand side, ∇·〈S〉, describes the time average
divergence of the Poynting vector. The remaining terms on the left hand side represent
the time average value of dissipated power density, Pdiss, which is irreversibly converted
into heat. We thus write

Pdiss = 1
2
Re

{
η̂
}
Ê ·Ê∗ + 1

2
Re

{
ζ̂
}
Ĥ ·Ĥ∗ . (2.28)

2.3 Contrast source formulation

In order to construct a system of equations from which the field in an inhomogeneous
configuration can be evaluated, we will reformulate the problem. This will result in having
two sets of equations concerning fields in a homogeneous medium where one of them has
unknown sources. First, we will describe the general configuration of an electromagnetic
scattering problem.

In general, we consider the inhomogeneities of the medium to be confined to a bounded
domain, denoted as the object domain D. This object domain is embedded in an un-
bounded homogeneous background medium Db, characterized by the medium parameters
η̂b(ω) and ζ̂b(ω). When we removed the object from D, a homogeneous background
medium would remain. In our configuration, the constitutive parameters are functions of
x and ω within D and are functions of ω outside D. The sources are located in the source
domain S, which is located in Db and exterior to D.

We can form an additional set of Maxwell’s equations that define the so-called incident
fields {Êinc, Ĥ inc}. These fields would be present if the object was absent, thus D would be
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Fig. 2.1: The general scattering configuration

homogeneously filled with the background medium. Since the sources remain unchanged,
we can write Maxwell’s equations for this configuration as

−∇× Ĥ
inc + η̂bÊ

inc = −Ĵ
ext (2.29)

∇× Ê
inc + ζ̂bĤ

inc = −K̂
ext . (2.30)

By subtracting Eq. (2.29) from Eq. (2.19) and Eq. (2.30) from Eq. (2.20), we obtain
a new set of equations

−∇× Ĥ
sct + η̂bÊ

sct = −χ̂eÊ (2.31)

∇× Ê
sct + ζ̂bĤ

sct = −χ̂mĤ (2.32)

where we have introduced the scattered fields through the relations

Ê = Ê
inc + Ê

sct (2.33)

Ĥ = Ĥ
inc + Ĥ

sct (2.34)

and the electric and magnetic contrast with respect to the background as

χ̂e(x, ω) = η̂(x, ω) − η̂b(ω) (2.35)

χ̂m(x, ω) = ζ̂(x, ω) − ζ̂b(ω) . (2.36)

An interesting feature of Eqs. (2.29)–(2.32) is that their left hand side describes the
propagation of an electromagnetic wave in a homogeneous medium. So, both the incident
and the scattered fields have now been formulated in such a way that the differential
equation acts only in the background medium. Together, they constitute the total field.
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The terms that are found on the right-hand side of Eqs. (2.31) and (2.32) can be
interpreted as source contributions and are denoted as contrast source densities since
they are the result of the total field acting on the electromagnetic contrast. The total
field is the superposition of the incident and the (unknown) scattered fields, hence the
contrast source densities form additional unknowns in the contrast source formulation.

2.4 Homogeneous case

We can derive an analytical solution for Maxwell’s equations when homogeneous media are
considered. This solution is needed in order to solve our two sets of equations Eqs. (2.29)–
(2.32). In the homogeneous case the medium parameters η̂ and ζ̂ do not depend on x

and are thus functions of ω only. We can write these dependencies explicitly as

−∇× Ĥ(x, ω) + η̂(ω)Ê(x, ω) = −Ĵ(x, ω) (2.37)

∇× Ê(x, ω) + ζ̂(ω)Ĥ(x, ω) = −K̂(x, ω) . (2.38)

2.4.1 The angular wave vector domain

The dimensionality of the equations considering homogeneous media can be reduced by
applying a spatial Fourier transform. This transformation transforms the dependence
on the position x into a dependence on the transform parameter k = i1k1 + i2k2 +
i3k3 denoted as the angular wave vector. By applying the spatial Fourier transform,
spatial derivatives (∇) are transformed into multiplications by jk and spatial convolutions
are transformed into multiplications. This technique is very useful in particular in the
homogeneous configuration.

In general, when considering a d-dimensional space, i.e. where x ∈ R
d, the spatial

Fourier transform of Ê(x, ω) is defined as

Ẽ(k, ω) = Fx{Ê(x, ω)} =

ˆ

x∈Rd

Ê(x, ω)e−jk·xdx ∀ k ∈ R
d (2.39)

where it is necessary for the convergence of the integral that E(x, ω) is absolutely inte-
grable with respect to x. This is in general the case since field amplitudes go to zero when
|x| → ∞.

To recover Ê(x, ω) in the spatial domain we apply the d-dimensional inverse spatial
Fourier transform which is defined as

Ê(x, ω) = Fk

−1{Ẽ(k, ω)} =
1

(2π)d

ˆ

k∈Rd

Ẽ(k, ω)ejk·xdk . (2.40)
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2.4.2 Angular wave vector domain solution

We will now apply the 3-dimensional spatial Fourier transform to the frequency domain
Maxwell’s equations for homogeneous media, Eqs. (2.37) and (2.38), to arrive at

−jk × H̃ + η̂Ẽ = −J̃ (2.41)

jk × Ẽ + ζ̂H̃ = −K̃ (2.42)

and the compatibility relations are transformed accordingly into

k·η̂Ẽ = −k·J̃ (2.43)

k·ζ̂H̃ = −k·K̃ . (2.44)

This transformation brings the equations down to two coupled linear algebraic prob-
lems with complex functions in the angular wave vector domain. Now we can derive an
analytical solution to the general form of Maxwell’s equations and express the unknown
fields Ẽ and H̃ via the current densities J̃ and K̃.

To solve 2.41 and 2.42, we rewrite them as

Ẽ =
j

η̂
k × H̃ −

1

η̂
J̃ (2.45)

H̃ = −
j

ζ̂
k × Ẽ −

1

ζ̂
K̃ . (2.46)

After substituting Eq. (2.46) in Eq. (2.45) and vice versa, multiplying both by η̂ζ̂ = −k̂2

and using the property k × k × V = k(k·V ) − (k·k)V , we obtain
(
k·k − k̂2 − kk·

)
Ẽ = −ζ̂J̃ − jk × K̃ (2.47)

(
k·k − k̂2 − kk·

)
H̃ = −η̂K̃ + jk × J̃ (2.48)

where k̂ is the complex wavenumber with Im{k̂} ≤ 0. We note that we write
(
kk·

)
Ẽ =

k
(
k·Ẽ

)
for improved readability.

Now, with the compatibility relations Eqs. (2.43) and (2.44) we can rewrite Eqs. (2.47)
and (2.48) as

(
k·k − k̂2

)
Ẽ =

(
k̂2 − kk·

)1

η̂
J̃ − jk × K̃ (2.49)

(
k·k − k̂2

)
H̃ =

(
k̂2 − kk·

)1

ζ̂
K̃ + jk × J̃ . (2.50)

The expression in front of Ẽ and H̃ is a scalar, nonzero factor. Hence, we can divide by
it in order to obtain

Ẽ =
1

k·k − k̂2

[(
k̂2 − kk·

)1

η̂
J̃ − jk × K̃

]

(2.51)

H̃ =
1

k·k − k̂2

[(
k̂2 − kk·

)1

ζ̂
K̃ + jk × J̃

]

. (2.52)



22

2.4.3 Frequency domain solution

Now we have found the expressions for the fields in the angular wave vector domain, we
need to perform an inverse spatial Fourier transform on Eqs. (2.51) and (2.52) in order to
obtain the expressions for the fields in the frequency domain. First we will simplify the
angular wave vector domain solution, by introducing the following functions

Ã(k, ω) =
1

η̂(ω)
g̃(k, ω)J̃(k, ω) (2.53)

F̃ (k, ω) =
1

ζ̂(ω)
g̃(k, ω)K̃(k, ω) (2.54)

that are also known as the vector potentials in the angular wave vector domain. In these
expressions we have also introduced the Green’s function g̃ in the angular wave vector
domain

g̃(k, ω) =
1

k·k − k̂2
(2.55)

which is in fact the point-source solution of the inhomogeneous helmholtz equation.

With the normalized vector potentials we can write Eqs. (2.51) and (2.52) as

Ẽ =
(
k̂2 − kk·

)
Ã − jζ̂k × F̃ (2.56)

H̃ =
(
k̂2 − kk·

)
F̃ + jη̂k × Ã . (2.57)

These expressions are transformed back to the frequency domain by applying Fk

−1 defined
in Eq. (2.40). By recognizing the ∇ as the inverse transform of jk, this gives us

Ê =
(
k̂2 + ∇∇·

)
Â − ζ̂∇× F̂ (2.58)

Ĥ =
(
k̂2 + ∇∇·

)
F̂ + η̂∇× Â (2.59)

where we again write
(
∇∇·

)
Â = ∇

(
∇·Â

)
for improved readability.

Finally, we note that the inverse Fourier transform of the normalized vector potentials
results in spatial convolutions

Â(x, ω) =
1

η̂(ω)

ˆ

x
′∈R3

ĝ(x − x
′, ω)Ĵ(x′, ω)dV (2.60)

F̂ (x, ω) =
1

ζ̂(ω)

ˆ

x
′∈R3

ĝ(x − x
′, ω)K̂(x′, ω)dV (2.61)

where ĝ is Green’s function in the frequency domain, for which the actual expression is
irrelevant at this point.
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2.5 Integral equations for the electromagnetic field

Finally, we construct a system of integral equations from which the total electromagnetic
field can be evaluated. Since the problem of solving Maxwell’s equations for the field
in an inhomogeneous configuration has been brought down to two problems concerning
fields propagating in a homogeneous background medium, we can now use the solution
found in the homogeneous case to formulate the integral representation for the total
electromagnetic field.

The incident fields can be solved from Eqs. (2.29) and (2.30) using the solution of the
homogeneous case, Eqs. (2.58) and (2.59), which yields

Ê
inc =

(
k̂2

b + ∇∇·
)
Â

inc − ζ̂b∇× F̂
inc (2.62)

Ĥ
inc =

(
k̂2

b + ∇∇·
)
F̂

inc + η̂b∇× Â
inc (2.63)

where k̂b is the complex wavenumber in the background medium with Im{k̂b} ≤ 0 and

Â
inc(x, ω) =

1

η̂b(ω)

ˆ

x
′∈S

ĝ(x − x
′, ω)Ĵext(x′, ω)dV (2.64)

F̂
inc(x, ω) =

1

ζ̂b(ω)

ˆ

x
′∈S

ĝ(x − x
′, ω)K̂ext(x′, ω)dV (2.65)

denote the vector potentials for the incident fields.

The solution for the scattered fields can be described in the same way, by considering
the unknown contrast source densities as source contributions. However, we will skip this
step here, and proceed to the integral equations for the electromagnetic field. Since the
total field is the sum of the known incident field and the scattered field, we can write

Ê
inc = Ê − Ê

sct (2.66)

Ĥ
inc = Ĥ − Ĥ

sct . (2.67)

By substituting the solution for the scattered field, we find the integral equations for the
electromagnetic field as

Ê
inc = Ê −

(
k̂2

b + ∇∇·
)
Â

sct + ζ̂b∇× F̂
sct (2.68)

Ĥ
inc = Ĥ −

(
k̂2

b + ∇∇·
)
F̂

sct − η̂b∇× Â
sct (2.69)

in which the vector potentials for the scattered fields are expressed as

Â
sct(x, ω) =

1

η̂b(ω)

ˆ

x
′∈D

ĝ(x − x
′, ω)χ̂e(x

′, ω)Ê(x′, ω)dV (2.70)

F̂
sct(x, ω) =

1

ζ̂b(ω)

ˆ

x
′∈D

ĝ(x − x
′, ω)χ̂m(x′, ω)Ĥ(x′, ω)dV . (2.71)
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We notice that the vector potentials for the scattered fields depend on the total fields.
Since these fields are unknown and appear under the integral sign, Eqs. (2.68) and (2.69)
must be treated as integral equations. The integral equations are coupled since Ê and Ĥ

are both unknown and appear in both equations.

The integral equations for the electromagnetic field presented in this paragraph form
the starting point for computing the total electromagnetic field in inhomogeneous media.
This problem, often referred to as the forward problem, can be solved numerically, which
we will in Chapter 4. First, we will discuss the numerical configuration more elaborately.



Chapter 3

General configuration

In this chapter we present the general configuration that is used to support our inves-
tigation. First we will describe the two-dimensional configuration that is investigated.
Subsequently we will present the model that is used to describe the interaction between
the breast and the electromagnetic field.

3.1 Two-dimensional configuration

In this investigation we will use a two-dimensional configuration to model the ablation
treatment. In this two-dimensional configuration, we assume that the medium parameters
and the sources are independent of one spatial coordinate, say x3. This approach will
reduce the computational effort, but will still provide us a relevant indication on the
feasibility of the treatment.

A two-dimensional model for the ablation system is obtained by selecting one trans-
verse section and extending it to infinity in the x3-direction. This corresponds to a frontal
section of the breast which is encircled by a circular array of equally spaced sources, as
shown in Fig. 3.1. In view of the general scattering configuration we extent the bolus
to infinity in all directions. In other words, the background domain Db in the scattering
configuration represents the bolus.

3.1.1 Two-dimensional electromagnetic equations

We shall now reformulate the electromagnetic equations in such that they describe the
electromagnetic field in the two-dimensional configuration. Since there is no spatial vari-
ation in the x3-direction, this yields ∂3 = 0 and ∇ = i1∂1 + i2∂2. The relevant position
variable will now be defined in the transverse plane as x = i1x1 + i2x2. The relevant an-
gular wave vector will also be redefined in the two-dimensional space, i.e. k = i1k1 + i2k2.
We can now use all equations presented in Chapter 2 keeping these changes in mind.

25
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Fig. 3.1: The two-dimensional configuration

3.1.2 Polarization

In the two-dimensional formulation, the electromagnetic field decouples into two indepen-
dent polarization states. The first concerns Transverse Electric (TE-) polarized waves and
the second Transverse Magnetic (TM-) polarized waves. The decoupling of the electromag-
netic field can be observed by substituting ∂3 = 0 in Eqs. (2.62)–(2.63) and Eqs. (2.68)–
(2.69). By doing so we end up with two independent sets of equations which represent
the TE- and TM-polarizations.

TE-polarized waves are defined as having {Ĥ1, Ĥ2, Ê3}(x1, x2) 6= 0, i.e. the electric field
is directed perpendicular to the direction of the power flow. By looking at the equations
for the incident fields (Eqs. (2.62)–(2.65)), we see that this type of waves can be excited
by the electric current density Ĵext

3 and the magnetic current densities K̂ext
1 and K̂ext

2 .

TM-polarized waves form the complement of TE-polarized waves. In other words, for
this type of polarization {Ê1, Ê2, Ĥ3}(x1, x2) 6= 0 holds. TM-polarized waves can originate
from the magnetic current density K̂ext

3 and the electric current densities Ĵext
1 and Ĵext

2 .

In our investigation we will only consider TM-polarized waves. This type of waves
can be launched by for example a hollow waveguide or a horn antenna. In the two-
dimensional case, one could imagine measuring this wave field on the corresponding plane,
and extending the measured field to infinity in the x3-direction. As a result, the dissipated
power is determined by the electric field components {Ê1, Ê2}.
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3.1.3 Source formulation

In the investigated configuration the sources are independent of x3. In this respect, a
convenient source model that launches TM-polarized waves is the magnetic current line
source. We note that magnetic currents cannot be generated in practice. However, a
magnetic current line source forms an appropriate array element in this study.

A line source has a current distribution which is located at a point on the transverse
plane and stretches out to infinity in the x3-direction. For a line source excited with unit
amplitude and zero phase, this yields the following expression for the magnetic current
density

K̂
ext(x) = δ(x − xs)i3 (3.1)

where xs denotes the location of the line source within the source domain S ⊂ R
2. We

see that the expression does not depend on x3, hence it stretches out to infinity in this
direction.

By substituting the expression for the magnetic current density in Eqs. (2.62)–(2.65)
and setting Ĵext = 0, we find the following expressions for the incident fields

Ê
inc(x) = −∇ĝ(x − xs) × i3 (3.2)

Ĥ
inc(x) = −jωε̂bĝ(x − xs)i3 (3.3)

in which ĝ is the two-dimensional Green’s function.

The expression for the two-dimensional Green’s function is found by applying a two-
dimensional inverse Fourier transform to Eq. (2.55), with k̂ = k̂b, which results in

ĝ(x − xs) = −
j

4
H

(2)
0 (k̂b|x − xs|) (3.4)

where k̂b(ω) = ω
√

µ0ε0ε̂r,b(ω) with Im{k̂b} ≤ 0 denotes the wavenumber is the back-
ground medium. More details on the derivation of the Green’s function can be found in
Appendix B.

The gradient of the Green’s function is found to be

∇ĝ(x − xs) =
j

4
k̂bH

(2)
1 (k̂b|x − xs|)

x − xs

|x − xs|
(3.5)

where we have used elementary differentiation rules together with the formulas for the
derivatives of the Hankel function [1], which provides the relation

d

dz
H(2)

n (z) =
n

z
H(2)

n (z) − H
(2)
n+1(z) . (3.6)

Now we have described all aspects of the two-dimensional configuration, except for
the breast model. This will be treated in the next section.
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3.2 Breast model

In order to simulate the propagation of electromagnetic waves inside the female breast,
we need a model that describes the interaction between the electromagnetic field and the
breast. This interaction is described through the constitutive parameters σ̂, ε̂ and µ̂. We
also need to model the heterogeneous structure of the breast.

3.2.1 Complex relative permittivity

Before we present the model for the material properties, we will define the complex rel-
ative permittivity. In the frequency domain analysis of the electromagnetic fields, the
conductivity σ̂ can be incorporated in the permittivity ε̂. This leads to the definition of
the complex relative permittivity.

In Chapter 2 we introduced the transverse admittance, Eq. (2.21), repeated here for
convenience

η̂(x, ω) = σ̂(x, ω) + jωε̂(x, ω) . (3.7)

We redefine the transverse admittance as

η̂(x, ω) = jωε0ε̂r(x, ω) (3.8)

where ε0 is the permittivity of free space, as given in Table 2.2. From this redefinition
the complex relative permittivity ε̂r follows as

ε̂r(x, ω) = ε′r(x, ω) − jε′′r (x, ω)

=
ε̂(x, ω)

ε0

− j
σ̂(x, ω)

ωε0

. (3.9)

The complex relative permittivity data is often presented by mapping the complex val-
ued permittivity and conductivity functions into real valued relative permittivity and con-
ductivity functions. These are written as εr(x, ω) = ε′r(x, ω) and σeff(x, ω) = ωε0ε

′′
r (x, ω).

Using this model for the media, we can express the dissipated power (Eq. (2.28)) as

Pdiss = 1
2
σeffÊ ·Ê∗ . (3.10)

3.2.2 Material properties

Now we will describe the electromagnetic properties of breast tissue and bolus material.
It is generally known that biological tissues possess no magnetic properties at microwave
frequencies, i.e. µ̂ = µ0. It is also generally known that these media possess dispersive
properties and exhibit losses. Breast tissues are therefore completely characterized by
their permittivity ε̂ and conductivity σ̂, or complex relative permittivity ε̂r.
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Table 3.1: Cole-Cole parameters for two median dielectric properties curves

ε∞ ∆ε τ (ps) α σs (S/m)

glandular/fibroconnective 7.821 41.48 10.66 0.047 0.713

adipose 3.140 1.708 14.65 0.061 0.036

Breast tissue

In 2007, a large scale study has been performed on the frequency dependent dielectric
properties of different types of breast tissue [30, 31]. The permittivity data was obtained
by measuring the complex reflection coefficient from 0.5 GHz to 20 GHz with a small
open-ended, hermetically sealed, coaxial probe connected to a vector network analyzer.
The tissue composition of the probing volume was estimated using histological techniques.
Finally, a statistical model was constructed for the different types of breast tissue.

A total of 807 ultrawideband (0.5-20 GHz) measurements have been performed on tis-
sue samples obtained from reduction surgeries and cancer surgeries on 289 patients. After
excluding erroneous data, for example data which is not consistent with the Kramers-
Kronig relations (see, for instance [19]), 509 measurements have been used to fit a single-
pole Cole-Cole constitutive relaxation model.

The single-pole Cole-Cole model is defined as

ε̂r(x, ω) = ε∞ +
∆ε

1 + (jωτ)1−α
+

σs

jωε0

(3.11)

where ε∞, ∆ε, τ , α and σs are parameters that are used to fit the model to the measured
data. The Cole-Cole parameters corresponding to the median dielectric properties of
different breast tissues are given in Table 3.1. The relative permittivity and effective
conductivity curves corresponding to these parameters are shown in Fig. 3.2.

As we can see from Fig. 3.2, the dielectric permittivity of the breast tissue shows a
decreasing trend with frequency while the effective conductivity generally increases with
frequency. Furthermore, it is clear that glandular and fibroconnective tissues exhibit
higher permittivity and effective conductivity values than adipose tissues. We note that
malignant tissue, which is not presented here, exhibits a slightly higher permittivity values
than glandular and fibroconnective tissues.

Bolus material

We assume that the bolus, or background, surrounding the breast consists of non-magnetic
material, hence µ̂ = µ0 holds for all x. We also assume that the bolus medium is non-
conducting, in the effective sense, since that would introduce extra attenuation and cause
the bolus to heat up which is undesirable in view of its function of cooling the skin. It
then follows that the permittivity of the bolus ε̂b(ω) = ε0εr,b(ω) is a real valued function.
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Fig. 3.2: The median dielectric permittivity and effective conductivity for (a) glandu-
lar/fibroconnective tissue and (b) adipose tissue

In this research we assume that the material properties of the bolus can be chosen in
order to improve the coupling between the system and the breast. We note that intro-
ducing losses in the bolus conductivity can improve the coupling even further. However,
the contrast in permittivity is much higher so matching this quantity is more important
than matching the conductivity of the bolus. In Chapter 6 we will determine the optimal
value of the bolus permittivity through a number of simulations.

3.2.3 Structural model

In 2008 Zastrow et al. constructed a set of three-dimensional numerical (healthy) breast
models with different degrees of heterogeneity1 [43]. The models were constructed by
mapping three-dimensional T1-weighted MRI data onto the permittivity model of breast
tissue as given in [30, 31]. For this procedure a piecewise linear map was used with seven
linear sections. A skin layer of 1.5 mm was synthetically added to the model, because it
was not imaged with a high fidelity. The model parameters corresponding to this type of
tissue are given in [44]. Also, the chest wall with a layer of fat and muscle is synthetically
introduced in the model. All models have a discretization step size of 0.5 mm.

From the model database we select one model of the class ‘Scattered Fibroglandular’,
namely Breast ID #010204 which consists of 251-by-253-by-258 discretization cell in the
x1-, x2- and x3-direction respectively. A two-dimensional breast model is obtained by
selecting slice number 130 in the x3-direction. The dielectric properties of this slice are
illustrated in Fig. 3.3 for f = 5 GHz. As one can see, several lumps of conductive tissue
are scattered throughout the breast, posing some difficulties for the focusing algorithm in
order not to suppress unwanted hot spots in the healthy tissue.

1This set is freely accessible via http://uwcem.ece.wisc.edu/MRIdatabase/index.html.

http://uwcem.ece.wisc.edu/MRIdatabase/index.html
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Fig. 3.3: Dielectric permittivity (a) and effective conductivity (b) of a transverse section
of the numerical breast model for f = 5 GHz

We note that these models do not include tumors. One could superimpose synthetic
tumors onto these models, by locally replacing a lump of tissue parameters with those of
malignant tissue. However, we will assume that the tumor possesses no different dielectric
properties than glandular or fibroconnective tissues, and thus simply assign a lump with
a high conductivity as ‘tumor’. This approach actually forms a worst-case scenario for a
hyperthermia system, since tumor tissue has an approximately 10% higher conductivity
than healthy glandular or fibroconnective tissues [31]. This property would actually im-
prove the local heating potential. However, in view of the feasibility of the treatment this
in not a significant difference and can therefore be neglected.

We have selected three ‘tumors’ denoted as tumor A, tumor B and tumor C as indicated
in Fig. 3.4a. The selection of the tumors has been done by considering the conductivity
pattern for f = 5 GHz and selecting a lump of tissue which has a conductivity higher
than 1.7 S/m. The remaining tissue is then classified as ‘healthy’ except for the skin layer
and, of course, the selected tumor. This results in a decomposition as shown in Fig. 3.4b.

Finally, we notice that the investigated configuration has been covered. We have
discussed the two-dimensional model that is representative for the proposed configuration,
together with a realistic breast model that describes the electromagnetic properties of the
female breast. This concludes the set-up for computing the fields, which will be discussed
in the next chapter.
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Fig. 3.4: Three ‘tumors’ selected in the healthy breast model (a) and the resulting domain
decomposition (b)



Chapter 4

The forward scattering problem

The forward scattering problem assumes the incident field Einc and material contrast χ
to be known, and has the goal to obtain the total field inside the computational domain
D. The exact solution to the forward scattering problem can only be obtained in some
specific configurations. In a realistic scattering scenario one can at most approximate the
total field inside the domain of computation. Hence, using an iterative approach is likely
to be most fruitful. The conjugate gradient scheme that we will use here is known as a
simple, stable and efficient iterative method for solving dielectric scattering problems.

In the beginning of this chapter we will present the integral equation governing our
forward scattering problem. Then we will treat the discretization of the computational
domain and write the forward scattering problem in operator notation. We will close this
chapter by describing the conjugate gradient method for solving the forward scattering
problem. More information on the conjugate gradient method can be found in [46, 47].

From this point on, we will drop the ˆnotation, ω dependencies and the sct superscripts
for improved readability.

4.1 The electric field integral equation

We will first simplify the integral equations for the electromagnetic field in Eqs. (2.68)
and (2.69). Since the material in our configuration shows no contrast in its magnetic
properties, which implies χm = 0 and F = 0, the set of coupled integral equations
uncouples and one only needs to solve

E
inc = E − (k2

b + ∇∇·)A (4.1)

also known as the Electric Field Integral Equation (EFIE), where kb is the complex
wavenumber in the background medium with Im{kb} ≤ 0. The vector potential A is
defined as

A(x) =

ˆ

x
′∈D

g(x − x
′)χ(x′)E(x′)dV (4.2)
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where χ denotes the relative electric contrast with respect to the background as

χ(x) =
ε(x) − εb

εb

(4.3)

and g denotes the Green’s function which is expressed as

g(x) = −
j

4
H

(2)
0 (kb|x|) . (4.4)

More details on the derivation of the two-dimensional Green’s function can be found in
Appendix B.

Once the electric field has been found, the magnetic field can be directly computed as

H = H
inc + jωεb∇× A (4.5)

however, we do not need to compute this quantity in our investigation.

We note that the Green’s function that appears in the integrand of the vector po-
tential A is singular for x = x′. This singularity poses a challenge when evaluating the
convolution integral. This challenge will be dealt with later in this chapter.

Before discussing the discretization procedure, we will first rewrite the EFIE in terms
of its components

Einc
κ = Eκ − k2

bAκ − Bκ , for κ ∈ {1, 2} (4.6)

where Aκ is the vector potential and Bκ is the gradient divergence operator acting on the
vector potential, i.e.

Bκ = ∂κ[∂1A1 + ∂2A2] , for κ ∈ {1, 2} . (4.7)

4.2 Discretization

In order to numerically solve the EFIE we need to reduce the problem to a finite-
dimensional approximation of the problem, which can then be solved on a computer.
This process is called discretization.

First we assume that the computational domain D is bounded along the x1- and x2-
direction. We then divide this domain in rectangular subdomains Dm,n that have a yet
unspecified size of ∆x1 in the x1-direction and ∆x2 in the x2-direction. While doing this,
we extend the computational domain such that the final discretized domain is rectangular
in shape. The number of partitions in the x1-direction is then denoted by M and the
number of partitions in the x2-direction is denoted by N . We can write D as the union
of all subdomains, viz.

D =
M⋃

m=1

N⋃

n=1

Dm,n (4.8)
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Fig. 4.1: The computational domain D divided into rectangular subdomains Dm,n

where
Dm,n = {x ∈ R

2 : |x1 − x1;m| < ∆x1

2

|x2 − x2;n | < ∆x2

2
}

m = 1, . . . ,M, n = 1, . . . , N

(4.9)

denotes the subdomain with center point xm,n, defined as

xm,n = i1x1;m + i2x2;n (4.10)

of which the x1- and x2-coordinates are

x1;m = x1;0 + (m − 1
2
)∆x1 , m = 1, . . . ,M (4.11)

x2;n = x2;0 + (n − 1
2
)∆x2 , n = 1, . . . , N (4.12)

where x1;0 represents the lower x1-bound of the computational domain D, and x2;0 rep-
resents its lower x2-bound. In our case, we will simply set x1;0 = x2;0 = 0. The resulting
discretized domain is illustrated in Fig. 4.1.

Because of the spatial differentiations that appear in Eq. (4.7) we choose to have the
boundary of D lying completely outside the object. In other words, we have

χ1,n = χM,n = 0 ∀ n (4.13)

χm,1 = χm,N = 0 ∀ m . (4.14)

Now that we have discretized our computational domain, we can discretize the physical
quantities related to our configuration. The first physical quantity that we discretize is
the contrast χ. Within each subdomain Dm,n, we replace χ by its value at the center
point xm,n and, hence, this is referred to as the midpoint approximation. The resulting
discrete contrast is written as χm,n.
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In the same way we discretize the following quantities

Eκ;m,n = Eκ(xm,n) (4.15)

Einc
κ;m,n = Einc

κ (xm,n) (4.16)

Aκ;m,n = Aκ(xm,n) (4.17)

Bκ;m,n = Bκ(xm,n) (4.18)

of which the latter two will be described in the following two subsections. With these
definitions we can write the EFIE, Eq. (4.6), in discretized and component-wise form as

Einc
κ;m,n = Eκ;m,n − k2

bAκ;m,n − Bκ;m,n , for κ ∈ {1, 2} . (4.19)

It’s worth dedicating a final note to the size of the subdomains, or discretization
step size. It is common to relate this size to the wavelength. This idea originates from
Shannon’s theorem which states that at least two samples per period or wavelength are
necessary in order to detect the corresponding frequency. This detection limit is however
not sufficient for approximating a function. It is therefore more common to use approxi-
mately six to ten subdomains per wavelength [35]. In Chapter 6 we investigate the effect
of three discretization step sizes.

4.2.1 The gradient divergence term

The first term of the EFIE that we will discretize is Bκ given in Eq. (4.20). We discretize
it using the finite difference approximation of partial derivatives, viz.

Bκ;m,n =
2∑

ν=1

M+1∑

p=0

N+1∑

q=0

a(κ,ν)
m,n,p,qAν;p,q , for κ ∈ {1, 2} (4.20)

where

a(1,1)
m,n,p,q =

(δp,m+1 − 2δp,m + δp,m−1)δq,n

(∆x1)2
(4.21)

a(1,2)
m,n,p,q = a(2,1)

m,n,p,q

=
(δp,m−1 − δp,m+1)(δq,n−1 − δq,n+1)

4∆x1∆x2

(4.22)

a(2,2)
m,n,p,q =

(δq,n+1 − 2δq,n + δq,n−1)δp,m

(∆x2)2
(4.23)

in which

δm,n =

{
1 ∀ m = n

0 ∀ m 6= n
(4.24)

defines the Kronecker delta function.
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We can write Bκ;m,n directly as

B1;m,n =
A1;m−1,n − 2A1;m,n + A1;m+1,n

(∆x1)2

+
A2;m−1,n−1 − A2;m−1,n+1 − A2;m+1,n−1 + A2;m+1,n+1

4∆x1∆x2

(4.25)

B2;m,n =
A2;m,n−1 − 2A2;m,n + A2;m,n+1

(∆x2)2

+
A1;m−1,n−1 − A1;m+1,n−1 − A1;m−1,n+1 + A1;m+1,n+1

4∆x1∆x2

. (4.26)

This result has been justified by Kooij and van den Berg [25], who obtained the same
results via Galerkin’s method.

4.2.2 The vector potential term

Now the only step left is the discretization of the vector potential Aκ in Eq. (4.2). This
step poses a specific challenge because of the singularity of the Green’s function at x′ =
xm,n. We deal with this singularity by replacing the vector potential with its weak form,
that is its mean value over a circular domain with center point xm,n and radius 1

2
∆x =

1
2
min(∆x1, ∆x2).

We first write the weak form of the vector potential Aκ;m,n as

Aκ;m,n =
4

π(∆x)2

ˆ

|x′′| < 1

2
∆x

Aκ(xm,n + x
′′)dV

=

ˆ

x
′∈D

[

4

π(∆x)2

ˆ

|x′′| < 1

2
∆x

g(xm,n − x
′ + x

′′)dV

]

χ(x′)Eκ(x
′)dV (4.27)

≈ ∆x1∆x2

M∑

m′=1

N∑

n′=1

G(xm,n − xm′,n′)χ(xm′,n′)Eκ(xm′,n′)dV (4.28)

where we have applied a midpoint approximation on the convolution integral and we
see that by interchanging the integration order, this weakening procedure is actually
transferred onto the Green’s function. What remains is computing its weak form G, i.e.
the bracketed part of Eq. (4.27) with x′ = xm′,n′, which is described in more detail in
Appendix C. The result of this computation is given by

G(xm,n − xm′,n′) =







−
j

kb∆x

[

H
(2)
1 (1

2
kb∆x) −

4j

πkb∆x

]

∀ xm,n = xm′,n′

−
j

kb∆x
J1(

1
2
kb∆x)H

(2)
0 (kb|xm,n − xm′,n′|) ∀ xm,n 6= xm′,n′ .

(4.29)
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After dealing with this singularity we write the discrete vector potential as

Aκ;m,n = ∆x1∆x2

M∑

m′=1

N∑

n′=1

Gm−m′,n−n′χm′,n′Eκ;m′,n′ , for κ ∈ {1, 2} (4.30)

where we have used the notation

Gm−m′,n−n′ = G(xm,n − xm′,n′) . (4.31)

We note that Eq. (4.30) is a discrete convolution in m′ and n′, which can be efficiently
computed by using a Fast Fourier Transform (FFT) routine. More information on this
procedure can be found in [46].

4.3 Operator notation

Before we proceed with the conjugate gradient method for solving the discretized EFIE,
we will need to define some of its components. Among these are the operator, the inner
product and norm on the computational domain D, and the definition of the adjoint
operator.

4.3.1 The operator L

From the discretization of the vector potential Aκ and its gradient divergence term Bκ we
see that the EFIE forms a linear system of equations for Eκ;m,n. The behaviour of this
system of equations can be described by the operator L acting upon E as

(LE)κ;m,n = Eκ;m,n − k2
bAκ;m,n − Bκ;m,n (4.32)

where κ ∈ {1, 2}, m = 1, . . . ,M and n = 1, . . . , N .

We can thus write the EFIE as

Einc
κ;m,n = (LE)κ;m,n (4.33)

or in vector notation
E

inc = LE ∀ x ∈ D . (4.34)

4.3.2 Inner products and norms

Before we can define the adjoint operator, we need to define the L2-inner product and the
L2-norm. For complex scalar quantities u and v, the inner product is written as

〈u , v〉 = uv (4.35)
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where the bar denotes complex conjugation. The squared norm for a complex scalar
quantity is related to the inner product as

‖u‖2 = 〈u , u〉 = |u|2 . (4.36)

For complex scalar functions of x, the L2-inner product on the computational domain
D is defined as

〈u , v〉D =

ˆ

x∈D

〈u(x) , v(x)〉dV =

ˆ

x∈D

u(x)v(x)dV (4.37)

for continuous functions and

〈u , v〉D = ∆x1∆x2

M∑

m=1

N∑

n=1

um,nvm,n (4.38)

for discretized functions. For both types of functions the squared L2-norm is related to
L2-inner product by

‖u‖2
D = 〈u , u〉D . (4.39)

Vectorial quantities

For complex vectorial quantities in C
2, the inner product is defined as

〈u ,v〉 = u·v =
2∑

κ=1

uκvκ (4.40)

and the squared norm as

‖u‖2 = 〈u ,u〉 . (4.41)

For complex vectorial functions of x, the L2-inner product on the computational do-
main D is defined as

〈u ,v〉D =

ˆ

x∈D

〈u(x) ,v(x)〉dV =

ˆ

x∈D

2∑

κ=1

uκ(x)vκ(x)dV (4.42)

for continuous functions and

〈u ,v〉D = ∆x1∆x2

2∑

κ=1

M∑

m=1

N∑

n=1

uκ;m,nvκ;m,n (4.43)

for discretized functions. For both the squared norm is written as

‖u‖2
D = 〈u ,u〉D . (4.44)



40

4.3.3 The adjoint operator L⋆

The adjoint operator L⋆ is defined through the relation

〈r ,LE〉D = 〈L⋆
r ,E〉D . (4.45)

By substituting Eq. (4.32) in the left hand side of the latter equation and rearranging
the summations of the inner product, the adjoint operator can be found as

(L⋆
r)κ;p,q = rκ;p,q − ∆x1∆x2 χp,q

M+1∑

p′=0

N+1∑

q′=0

Gp−p′,q−q′Fκ;p′,q′ (4.46)

for κ ∈ {1, 2}, p = 1, . . . ,M and q = 1, . . . , N , in which

Fκ;p,q = k2
brκ;p,q +

2∑

ν=1

M∑

m=1

N∑

n=1

a(κ,ν)
m,n,p,qrν;m,n (4.47)

where the definition of a
(κ,ν)
m,n,p,q can be found in Eqs. (4.21)–(4.23).

Since p′ ranges from 0 to M + 1 and q′ from 0 to N + 1, and the support of a
(κ,ν)
m,n,p,q

equals three, we need to set

rκ;p,q = 0 , for p = −1, 0,M + 1,M + 2 ∀ q (4.48)

rκ;p,q = 0 , for q = −1, 0, N + 1, N + 2 ∀ p (4.49)

for κ ∈ {1, 2} in order to obtain this expression for the adjoint operator. We note that
the adjoint operator L⋆ contains spatial convolutions just like the operator L, which can
be efficiently computed with the Fast Fourier Transform (FFT) routine.

4.4 The conjugate gradient method

We will now describe the components of the conjugate gradient method. The starting
point for this method is the EFIE. For a line-source indexed by s = 1, . . . , S, we will
write the incident field as Einc

s . The field resulting from Einc
s is then denoted as Es. Since

Maxwell’s equations are linear and the electromagnetic field is additive, we have S linearly
independent equations that need to be evaluated on the computational domain, viz.

E
inc
s = LEs , for s = 1, . . . , S . (4.50)

The total field with simultaneous illumination is then written as

E =
S∑

s=1

Es , for s = 1, . . . , S . (4.51)

We could also sum all incident fields and then perform the conjugate gradient method in
order to approximate the total field, but we choose this approach in view of the focussing
algorithm. This way, the computation of the electromagnetic fields and the optimization
of source amplitudes and phases are completely separated routines.
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4.4.1 Local and global residual errors

The local residual errors rs are defined as the difference between the left- and right-hand
side of Eq. (4.1) and can be written as

rs = E
inc
s − LEs , for s = 1, . . . , S . (4.52)

The local residual errors are vector valued functions of x, and thus represents a mul-
titude of residual errors. These can be compressed into one global error per source using
the square norm on the computational domain as defined in Eq. (4.44). By normalizing
this global squared error we construct the cost functional as

FD;s(Es) =
‖rs‖

2
D

‖Einc
s ‖2

D

=
‖Einc

s − LEs‖
2
D

‖Einc
s ‖2

D

, for s = 1, . . . , S (4.53)

where we have

FD;s(0) = 1 and FD;s(E
exact
s ) = 0 , for s = 1, . . . , S . (4.54)

We also introduce a global cost functional which indicates the total convergence of the
scheme:

FD(Es) =

S∑

s=1

‖rs‖
2
D

S∑

s=1

‖Einc
s ‖2

D

=

S∑

s=1

‖Einc
s − LEs‖

2
D

S∑

s=1

‖Einc
s ‖2

D

. (4.55)

4.4.2 Minimizing the cost functional

The conjugate gradient method consists of an algorithm that iteratively updates the
electric field such that the values of the cost functionals FD;s decrease. Consequently, the
global cost functional FD also decreases. By doing so, a sequence of the electric fields
{Es,n} for n = 0, 1, 2, . . . is constructed where n denotes the iteration number. This
sequence is constructed in the following manner.

Starting value for n = 0

The algorithm needs to be equipped with an initial guess for the electric fields in order to
build the sequence of updates. As a starting point one can take an approximation of the
electric field, or an arbitrary field like the incident electric field or simply a zero valued
electric field. We choose the latter option and write

Es,0 = 0 , for s = 1, . . . , S (4.56)

which yields the initial local residual error

rs,0 = E
inc
s , for s = 1, . . . , S . (4.57)
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Updating the electric fields

We update the total electric field for source s as

Es,n = Es,n−1 + αs,nes,n ∀ n ≥ 1 (4.58)

where αs,n is a scalar valued weighting parameter and the update direction es,n is a vector
valued function of x.

By iteratively updating the electric fields, the sequence of local residual errors is found
to be

rs,n = rs,n−1 − αs,nLes,n , for s = 1, . . . , S (4.59)

and hence, the cost functionals in the nth iteration can be written as

FD;s,n(Es,n) = ηD;s‖rs,n‖
2
D , for s = 1, . . . , S (4.60)

where

ηD;s =
(
‖Einc

s ‖2
D

)−1
, for s = 1, . . . , S (4.61)

denotes the normalization factor.

Convergence

It has been noted in [22] that for the forward scattering problem the conjugate gradient
method always converges to the global minimum of the cost functional, which is in our
case Eexact

s . This property assures that the algorithm is stable. We note that, due to
the finite number of iterations, residual errors in the total field will always remain. In
other words, Eexact

s can’t be obtained. However, we can choose to continue improving the
electric fields until a satisfactory quality is reached.

When all cost functionals have reduced to a satisfactory small value, depending on the
desired quality of our approximation, the algorithm is said to have reached convergence
or has converged. We will take the global cost functional as a measure for the overall
quality of the approximation. We consider a normalized global squared error of 1·10−10

to be satisfactory. We also limit the number of iterations to 2048 such that the method
quits the process in case the convergence rate is very low.

4.4.3 Update direction

A self evident candidate for the update direction es,n for source s is the negative gradient
of the cost functional FD;s with respect to the changes in the electric field Es, evaluated in
Es,n−1. It provides the direction in which the decrease of the cost functional is maximal.
Hence, the cost functional is guaranteed to decrease when a small step is taken in this
direction.
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In order to find an expression for the gradient of the cost functional, we linearly
parameterize the electric fields as Es = Es,n−1 + τes,n and we differentiate with respect
to τ . This is written as

∂es,n =
∂

∂τ
FD;s,n−1(Es,n−1 + τes,n) . (4.62)

The gradient can be computed via the Fréchet derivative, which is implicitly defined
through the following relation [2]

lim
‖h‖D→0

FD;s(Es,n−1 + h) −FD;s(Es,n−1) − Re〈∂es,n ,h〉D = 0 . (4.63)

After substituting h = τes,n and taking the limit τ → 0 instead, we find the relation

Re〈∂es,n ,es,n〉D = lim
τ→0

FD;s(Es,n−1 + τes,n) −FD;s(Es,n−1)

τ

= ηD;s lim
τ→0

‖rs,n−1 − τLes,n‖
2
D − ‖rs,n−1‖

2
D

τ

= ηD;s lim
τ→0

−2τRe〈rs,n−1 ,Les,n〉D + τ 2‖Les,n‖
2
D

τ

= −2ηD;sRe〈L⋆
rs,n−1 ,es,n〉D (4.64)

from which we see that we can recognize the gradient of the cost functional from Eq. (4.64)
as

∂es,n = −L⋆
rs,n−1 (4.65)

where we have excluded the scalar factors, since we will scale the update direction by αs,n

later on.

Taking the negative gradient as an update direction is known as the gradient descent
method, or steepest descent method. These update directions can be improved however
by taking the conjugate gradient direction, given by

es,n =

{

−∂es,n ∀ n = 1

−∂es,n + γs,nes,n−1 ∀ n > 1
(4.66)

with

γs,n =







〈∂es,n , ∂es,n − ∂es,n−1〉D
‖∂es,n−1‖

2
D

[Polak-Ribière]

‖∂es,n‖
2
D

‖∂es,n−1‖
2
D

[Fletcher-Reeves] .

(4.67)

Finally, we note that due to the orthogonality relation between the gradients which
is proven in [5] and gives 〈∂es,n , ∂es,p〉D = 0 for n 6= p, the Polak-Ribière and Fletcher-
Reeves conjugate gradient directions are actually identical here.
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4.4.4 Weighting parameter

Now that we have obtained the direction in which the electric field needs to be updated,
we only need to determine the magnitude of this update, which is represented by the
parameter αs,n. The optimal weight is found by minimizing the cost functional in the nth

iteration for a variation in αs,n. By substituting Eq. (4.59) in Eq. (4.60) and applying the
conditions for an extreme point

∂

∂αs,n

FD;s,n(Es,n) = 0 (4.68)

we find by using the chain rule

2〈rs,n−1 − αs,nLes,n ,−Les,n〉D = 0 (4.69)

which leads to

αs,n =
〈rs,n−1 ,Les,n〉D

‖Les,n‖2
D

=
‖∂es,n‖

2
D

‖Les,n‖2
D

. (4.70)

We conclude this subsection and chapter by noting that we have presented all elements
that constitute the conjugate gradient method for solving the forward scattering problem.
The performance of this method will be evaluated in Chapter 6. After computing the
electric fields, an optimization routine can be used to determine the excitation amplitude
and phase that optimize the power distribution for ablation of the tumor. This routine
will be covered in the next chapter.



Chapter 5

Power optimization

So far, we have discussed the computation of the electromagnetic field in a female breast.
Now, we will discuss the methods for computing the optimal phase and amplitude of each
array element such that the power dissipation is optimized for thermal ablation.

After a general introduction of optimization we will introduce two eigenvalue methods.
We conclude Chapter 5 by presenting a conjugate gradient scheme that optimizes a given
power dissipation pattern in order to suppress hot spots in the healthy tissue.

5.1 General formulation

In general, optimization problems involve the maximization or minimization of a real
valued functional , be it or not upon accounting for a number of constraints . The functional
is defined on a generic S-dimensional set of control variables denoted as a = {a1, . . . , aS}.
The set in which the optimum is searched for is referred to as the set of admissible controls
U and it is, usually, a subset of the set in which a is defined, the extent of the subset being
determined by the constraints. In the case no constraints are imposed, the optimization
problem is referred to as unconstrained optimization and U is identical with the original
S-dimensional space. With these notations, the optimization problems can be formally
expressed as

Maximize (or minimize) J (a) over a ∈ U . (5.1)

In our case, we are modeling an antenna array which consists of S line-sources and, thus,
the set U consists of the complex feeding vectors a = {a1, . . . , aS} ∈ C

S.

The problem of optimization can be formulated as the search for the control parameter
a0 ∈ U for which J (a0) is an absolute maximum (or minimum) over U . For instance in
case of a maximization problem, we can formulate the optimization problem as the search
for a0 ∈ U that satisfies

J (a0) ≥ J (a) ∀ a ∈ U . (5.2)
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D

Dh

Dt

Fig. 5.1: The general decomposition of the object domain into a tumor domain and a
healthy domain

In the formulation of the optimization problem, we will denote the subdomain that
contains cancerous tissue as Dt and the subdomain that contains healthy tissue as Dh.
These domains are located inside the object domain D and are disjoint, i.e. Dt ∩Dh = 0.
This is illustrated in Fig. 5.1.

5.2 Performance measures

The main component of an optimization method is a real valued functional the extremum
of which is being computed. For this we assign the performance functional J that will
relate the control parameter a to the performance index J (a). The functional will provide
a measure for the effectiveness of the ablation treatment.

In essence, the performance of an ablation system is measured through the temperature
distribution that is obtained. The optimization of this temperature distribution can be
translated directly into a power optimization problem, for which a justification is given
in Appendix A. This analysis gives rise to the goal expressed in Eq. (A.5), repeated here
in slightly different notation

Maximize
min

x ∈ Dt

Pdiss(x)

max
x ∈ Dh

Pdiss(x)
(5.3)

where

Pdiss(x) = 1
2
σeff(x)E(x)·E∗(x) . (5.4)
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Functionals used in optimization studies often include a certain norm to measure the
quality of the result. In the optimization problem formulated in Eq. (5.3) one might sug-
gest using an infinity norm to construct the performance functional, since it can measure
the maximum value of certain functions. Unfortunately, it is difficult to assure that an
optimization problem involving such a norm has a unique solution, if a solution exists at
all.

There are however optimization problems for which the existence and uniqueness can
be proven. This is the case in optimization problems that concern a convex subset U ,
and a strictly convex functional J [2].

We suggest using an L2-norm as introduced in Chapter 4 to measure the quality of the
result, since this norm is a strictly convex function of its input argument. The resulting
problem can be interpreted as optimizing a global quantity like the total or the average
dissipated power in a domain. Although local hotspots are not measured specifically
through this norm, they are taken into account. In the rest of this study we will therefore
consider optimizing average power densities only.

5.3 Eigenvalue methods

In this section we will discuss the first two methods that optimize the dissipated power
distribution in the breast. The two eigenvalue methods presented in this paragraph have
been introduced, though sometimes in a slightly different form, in numerous research
projects on hyperthermia [4, 6, 24, 27, 38]. Both methods can be obtained using the
Lagrange multiplier rule, which is extensively described in [2]. We will, however, derive
them in a more straightforward way, which involves only elementary algebraic steps but
essentially yields the same method.

5.3.1 Performance functionals

The main goal in ablative therapy is to maximize the power dissipation in the tumor. So,
the first candidate functional that meets this demand can be formed by simply taking
the average dissipated power in the tumor domain Dt. However, we need to constrain
the input power in this case since it is directly related to this quantity. In fact, we
should consider maximizing the focussing of the power into the tumor domain, which we
can quantify as the average dissipated power in the tumor domain relative to the input
power, which is proportional to the square norm of the feed vector a. We thus define J1

as

J1(a) =
1

At‖a‖2

ˆ

x∈Dt

σ(x)E(x)·E∗(x)dV =
1

At

〈σE,E〉Dt

‖a‖2
(5.5)
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where we used the inner product on the computational domain defined in Chapter 4, and

At =

ˆ

x∈Dt

dV (5.6)

denotes the size of the tumor. We note that this functional has the physical dimensions
of W/m3. One might hope that the power dissipated in healthy tissue would be indirectly
minimized through the norm of the feeding vector a. However, this goal is not incorpo-
rated in a very refined manner. In the second performance functional this is done more
explicitly.

The second performance functional that we will investigate is closer to what we actually
want to achieve. Next to maximizing the power dissipated in the tumor, we also need to
constrain the power dissipated in the healthy tissue. We therefore define this functional
as the ratio between the average power dissipation in the tumor tissue and the average
power dissipation in the healthy tissue, viz.

J2 =
Ah

At

〈σE,E〉Dt

〈σE,E〉Dh

. (5.7)

We note that this functional has no physical dimensions.

Now we have defined two performance functionals that will lead us to two eigenvalue
methods. In order to get there, we will present a matrix notation of the performance
functionals.

5.3.2 Matrix notation

First we will write the performance functionals in matrix notation. The total field inside
the breast is the sum of the fields excited by the sources individually, which are driven
through the complex feeding vector a. We write the total field as

E =
S∑

p=1

apEp (5.8)

where Ep denotes the field excited by the source with index p.

Using this expression for the total field, and the definition for the inner product, we
can redefine the average power dissipation in an arbitrary region D with size A as defined
in Eq. (5.6) as

1

A
〈σE,E〉D =

1

A

ˆ

x∈D

σ(x)E(x)·E∗(x)dV

=
1

A

S∑

q=1

S∑

p=1

ˆ

x∈D

a∗
qE

∗
q(x)·Ep(x)apσ(x)dV

= a
HΞD

a (5.9)
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where the H superscript denotes conjugate transposition. The elements ξDp,q of ΞD are
defined as

ξDp,q =
1

A

ˆ

x∈D

E
∗
q(x)·Ep(x)σ(x)dV =

1

A
〈σEp,Eq〉D . (5.10)

for p = 1, . . . , S and q = 1, . . . , S. We note that the diagonal elements of ΞD, e.g. ξDp,p,
represent the average dissipated power in D due to the illumination by the source p. Off-
diagonal elements, e.g. ξDp,q, can be interpreted as the average correlation in D between the
field generated by the source p and the field generated by the source q, weighted by the
conductivity profile in D. We note that ΞD is intrinsically positive definite and hermitian,
i.e. ΞD is equal to its conjugate transpose.

Using Eq. (5.9), we can write the first performance functional, Eq. (5.5), as

J1(a) =
aHΞDta

aHa
(5.11)

and the second can be written as

J2(a) =
aHΞDta

aHΞDha
. (5.12)

5.3.3 Eigenvalue problem

The performance functionals in Eqs. (5.11) and (5.12) can be maximized by setting the
following conditions for an extremum

∂J (a)

∂aq

= 0 , for q = 1, 2, . . . , S (5.13)

and
∂J (a)

∂a∗
q

= 0 , for q = 1, 2, . . . , S . (5.14)

However, since our performance functionals are real valued, we only need to set one of
these conditions.

First performance functional

We will start with our first performance functional. By applying Eq. (5.14) to Eq. (5.11)
and using standard differentiation rules, we obtain

∂J1(a)

∂a∗
q

=
1

aHa

[
S∑

p=1

ξDt

p,qap − J1(a)aq

]

= 0 . (5.15)

By assuming that aHa 6= 0 holds, we can write Eq. (5.15) in the matrix form

ΞDta = J1(a)a (5.16)
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which is easily recognized as a standard eigenvalue problem with eigenvalues J1(ap),
system matrix ΞDt and eigenvectors ap. We will refer to the eigenvalue method that
results from optimizing J1 as the ‘first eigenvalue method’.

Second performance functional

For the second functional a similar derivation gives us to the following expression

∂J2(a)

∂a∗
q

=
1

aHΞDha

[
S∑

p=1

ξDt

p,qap − J2(a)
S∑

p=1

ξDh

p,q ap

]

= 0 (5.17)

leading to

ΞDta = J2(a)ΞDha (5.18)

which we recognize as a generalized eigenvalue problem with eigenvalues J2(ap), system
matrices ΞDt and ΞDh and eigenvectors ap. We will refer to the eigenvalue method that
results from optimizing J2 as the ‘second eigenvalue method’.

Discussion

All eigenvectors are normalized such that ‖ap‖ = 1 for all p. By doing so, we can compare
different power dissipation patterns since the input power is always the same.

Also, we order the eigenvectors such that J1,2(ap) > J1,2(ap+1). For the first eigenvalue
method, the first eigenvector a1 will then yield maximal average power dissipation in the
tumor. Analogously, minimal power dissipation in the tumor is attained through the
last eigenvector aS since J1(aS) denotes the smallest eigenvalue. Since we normalize
the eigenvectors, the biggest eigenvalue represents the average power dissipated in the
tumor domain. As noted in [4], the quotient of the biggest and smallest eigenvalue can
indicate the ability of the system to heat or preserve a domain. However, since we are
not interested in preserving the tumor domain, this measure can not indicate the system
performance.

For the second eigenvalue method, the first eigenvector will maximize the ratio between
the average power dissipation in the tumor and the average power dissipation in the
healthy tissue. In the second eigenvalue method the biggest eigenvalue directly represents
the ratio between the average power dissipation in the tumor and the average power
dissipation in the healthy domain. This functional can serve as an indication for the
system performance since it resembles the main goal of thermal ablation (Eq. (5.3)).

To conclude the description of the eigenvalue methods we note that, since the resulting
eigenvalue problems concern hermitian and positive definite matrices, we can use efficient
eigenvalue solvers that are available in software libraries.
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5.4 Conjugate gradient method

We can also apply the conjugate gradient method to the power optimization problem,
which would yield an iterative method as opposed to the closed form solution of the
eigenvalue method. The conjugate gradient method has been used in hyperthermia treat-
ment techniques in the past, where it was used to optimize the temperature distribution
directly [12, 32]. In the present case, the conjugate gradient method aims at updating the
feed vector in such a way that the power distribution is improved. We will apply the same
steps as described in Chapter 4, hence, we will present the method more briefly here. For
more details on the conjugate gradient method, we refer the reader to Chapter 4.

5.4.1 Operator notation

We start by defining the basic elements of the conjugate gradient method. Among these
are the source operator S, the inner product on the source domain and the adjoint source
operator S⋆.

Source operator S

We need to describe the relation between the field and the feed vector through an operator.
We have already seen this relation in the eigenvalue method, and we will now write this
as

Sa =
S∑

s=1

asEs (5.19)

where S denotes the source operator which maps C
S onto C

κ×M×N .

Inner product on the source domain

In order to find an expression for the adjoint source operator, we need to adopt an inner
product which acts on the feed vector in the source domain S. It is given for complex
feed functions u and v by

〈u ,v〉S =

ˆ

x∈S

〈u(x) ,v(x)〉dV =

ˆ

x∈S

u(x)v(x)dV (5.20)

when u and v are continuous functions and

〈u ,v〉S =
S∑

s=1

usvs (5.21)

for the feed vector driving the line sources in our configuration. For both the squared
norm is written as

‖u‖2
S = 〈u ,u〉S . (5.22)
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Adjoint source operator S⋆

Intuitively we see that the adjoint source operator will map C
κ×M×N onto C

S. It is defined
through the relation

〈r ,Sa〉D = 〈S⋆
r ,a〉S . (5.23)

By substituting the expressions for the inner products and the source operator and
interchanging the summations we find the adjoint source operator simply as

(S⋆
r)s = ∆x1∆x2

2∑

κ=1

M∑

m=1

N∑

n=1

Eκ;m,n,srκ;m,n . (5.24)

5.4.2 Cost functional

The conjugate gradient method is introduced to improve a given power distribution. This
improvement is measured by the cost functional J3 that will be minimized here.

The basic idea behind the current approach is introduced in [2]. The power opti-
mization problem at hand consists of two conflicting objectives. The first objective is
to maximize the average power dissipated in the tumor, and the second objective is to
minimize the average power dissipated in the healthy tissue. For the thermal ablation of
the tumor it might be more important to sacrifice some power dissipated in the tumor in
order to reduce the power dissipated in the healthy tissue.

The starting point of the algorithm is a feed vector a0 that maximizes the average
power dissipated in the tumor. Then, we minimize a cost functional that consists of two
terms, namely the average power dissipated in the healthy tissue and the deviation from
a0. The latter term represents the maximization of the average power dissipated in the
tumor since this is the starting point of the algorithm. The terms are combined via a real
valued weighting parameter ν.

The cost functional is written as

J3(a) =
〈σSa ,Sa〉Dh

〈σSa0 ,Sa0〉Dh

+ ν
‖a − a0‖

2
S

‖a0‖2
S

= ηDh
‖whSa‖2

D + ηS‖a − a0‖
2
S (5.25)

where we have

J3(a0) = 1 . (5.26)

The weighting function wh is defined as

wh(x) =

{√

σ(x) ∀ x ∈ Dh

0 ∀ x /∈ Dh

(5.27)
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and the normalization constants are written as

ηDh
=

(
‖whSa0‖

2
D

)−1
(5.28)

ηS = ν
(
‖a0‖

2
S

)−1
. (5.29)

Since we are interested in the focusing of the power, i.e. the relative distribution of
power instead of the absolute power dissipation, we will apply a unit norm constraint on
the feed vector. This unit norm restricts the solution space to a unit ball in C

S.

5.4.3 Updating the feed vector

Now that we have defined the basic elements of the conjugate gradient method, we can
describe the sequence of updates that minimize the cost functional J3.

Starting vector for n = 0

As indicated before, the algorithm starts with the feed vector which maximizes the power
dissipation in the tumor, denoted by a0. This feed vector can be obtained from the
eigenvalue method applied to J1 or J2.

Update sequence

The update sequence consists of two steps. The first is the standard conjugate gradient
step and the second implements the unit norm constraint. We write the updates as

ãn = an−1 + βnθn (5.30)

where θn denotes the update direction, weighted by βn. The second step is written as

an =
ãn

‖ãn‖S
. (5.31)

We note that due to the unit norm constraint, the orthogonality between the gradients is
lost.

Convergence

In the current optimization problem we say that the algorithm has converged when the
algorithm has reached a minimum of the cost functional. We will consider a relative
decrease of less than 1·10−5 to be sufficient for quitting the iterative process.
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5.4.4 Update direction

For constructing the update direction θn we start again by taking the negative gradient
of the cost functional J3 with respect to the changes in the feed vector a evaluated in
an−1. Using the Fréchet derivative relation and the parameterization a = an−1 + τθn, we
find the following relation for the gradient

Re〈∂θn ,θn〉S = lim
τ→0

J3(an−1 + τθn) − J3(an−1)

τ

= lim
τ→0

ηDh
‖whS(an−1 + τθn)‖2

D − ηDh
‖whSan−1‖

2
D

τ

+
ηS‖an−1 + τθn − a0‖

2
S − ηS‖an−1 − a0‖

2
S

τ

= lim
τ→0

2
ηDh

τRe〈whSan−1 , whSθn〉D + ηDh
τ 2‖whSθn‖

2
D

τ

+ 2
ηSτRe〈an−1 − a0 ,θn〉S + ηSτ 2‖θn‖

2
S

τ

= 2ηDh
Re〈whSan−1 , whSθn〉D + 2ηSRe〈an−1 − a0 ,θn〉S

= 2Re〈ηDh
S⋆w2

hSan−1 + ηS(an−1 − a0) ,θn〉S (5.32)

from which we recognize the gradient as

∂θn = ηDh
S⋆w2

hSan−1 + ηS(an−1 − a0) . (5.33)

We then write the conjugate gradient update direction as

θn =

{

−∂θn ∀ n = 1

−∂θn + γnθn−1 ∀ n > 1
(5.34)

where we use the Polak-Ribière formula for the coefficients γn, given by

γn =
〈∂θn , ∂θn − ∂θn−1〉S

‖∂θn−1‖
2
S

. (5.35)

5.4.5 Weighting parameter

We find the optimal weighting parameter by differentiating the cost functional in the nth

iteration for a variation in βn, and equating this result to zero, viz.

∂

∂βn

J3(an−1 + βnθn) = 0 . (5.36)

We obtain the following expression for the left-hand side using standard differentiation
rules

2ηDh
〈whS(an−1 + βnθn) , whSθn〉D + 2ηS〈an−1 + βnθn − a0 ,θn〉S = 0 (5.37)
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which yields

βn = −
ηDh

〈whSan−1 , whSθn〉D + ηS〈an−1 − a0 ,θn〉S
ηDh

‖whSθn‖2
D + ηS‖θn‖2

S

= −
ηDh

〈S⋆w2
hSan−1 ,θn〉S + ηS〈an−1 − a0 ,θn〉S
ηDh

‖whSθn‖2
D + ηS‖θn‖2

S

= −
〈∂θn ,θn〉S

ηDh
‖whSθn‖2

D + ηS‖θn‖2
S

. (5.38)

This subsection is concluded by noting that we have now described all elements which
constitute the conjugate gradient method for optimizing the power dissipation in the
breast. The three power optimization methods that are presented in this chapter will be
evaluated in the next chapter.





Chapter 6

Numerical simulations and results

In order to validate the methods presented in previous chapters and determine the fea-
sibility of focused microwave ablation of female breast tumors, a series of numerical ex-
periments have been performed. Through these experiments we also optimized some
unspecified system parameters, this will be done through a number of experiments with
parameter sweeps.

All methods that we evaluate have been implemented in Fortran 90. The Laboratory
of Electromagnetic Research of the Delft University of Technology supplied us the Fortran
routines for the forward solver.

We have implemented the first eigenvalue method in the Focus Pt to Pin routine,
which uses the DEVEHF routine of the IMSL library to solve the eigenvalue problem. The
conjugate gradient method has been implemented numerically without any external rou-
tines in the routine called FOCUS CG.

The routine that focuses the fields according to the second eigenvalue method is called
Focus Pt to Ph. We followed the same structure as the Matlab function eig. This
comes down to transforming the generalized eigenvalue problem into a standard eigenvalue
problem by applying a cholesky factorization for ΞDh and solving this equivalent problem
with the DEVCCG routine of the IMSL library. For the transformation we have used the
IMSL routines DLFTDH and DLINCT. The quality of the solutions has been checked through
the IMSL routines DEPIHF for the first eigenvalue method and DEPICG for the second
eigenvalue method.

The processing of the results and the generation of numerical breast models has been
done in Matlab. All computations have been done on an desktop PC with an Intel Core
Duo E8400 processor running at 3 GHz and 3 GB of memory.
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6.1 Problem indication

Before we present the results of the optimization studies, we will indicate the need for
accurate computation of the wave fields and power optimization methods through an
example of the Target Center Position (TCP) method [3]. This algorithm focuses power
at a point by compensating for the phase differences between the incident fields at the
desired point. This power optimization method does not take the scattering of the object
into account, neither does it account for the shape or the size of the tumor.

We have set up a center focused incident field, by applying the following feed vector

as = ej 2πs

S , for s = 1, . . . , S . (6.1)

This excitation yields the total incident field as shown in Fig. 6.1a. We introduced some
losses (e.g. 1·10−9 S/m) for processing ease. In this simulation we have used f = 5 GHz,
S = 32 and εr,b = 10. When introducing the breast model in the configuration, the
resulting power dissipation pattern is shown in Fig. 6.1b. The colorscale has been clipped
to the maximum inside the breast.

It is clear that the scattering of the breast alters the interference pattern. Not only has
the focal spot been lost, all healthy tissue is heated with significant hot spots occurring in
the high conducting parts of the breast, rendering this method not suitable for the thermal
ablation of breast cancer. This result indicates that the field is strongly scattered by the
breast. Thus, an accurate propagation model is important, together with an optimization
methods for focusing the scattered fields in the best way possible.

The dielectric properties of the breast model that is used in these latter simulation,
and throughout the rest of this chapter are shown in Fig. 6.2. We repeat it here, since it
provides an indication for the local heating potential of certain tissue areas. This can aid
the reader in evaluating the pictures that are presented in this chapter.

6.2 The forward scattering problem

In this section we will investigate the performance of the conjugate gradient method for
solving the forward scattering problem. We will also investigate the influence of the
gridsize, bolus permittivity εr,b, operational frequency f and number of sources S on the
performance of this algorithm and on the focusing ability of the system. The goal of
these parameter sweeps is to explore which system parameters are optimal in ablative
therapy. The focusing ability of the system is evaluated using the eigenvalue method for
J2, configured to focus the power in the tumor A shown in Fig. 3.4b.

We note that we will not consider the influence of the array radius here. Simulations
with different array radii showed that a smaller radius increases the power density in the
breast since the configuration is closer to the sources. However, it did not influence the
relative distribution of power, i.e. the focusing ability of the system.
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Fig. 6.1: Center focused field (a) and the power distribution that results from introducing
the breast (b)

x1 (cm)

x
2

(c
m

)

 

 

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

0 20 40 60

εr

(a)

x1 (cm)

x
2

(c
m

)

 

 

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

0 2 4 6

σeff (S/m)

(b)

Fig. 6.2: Dielectric permittivity (a) and effective conductivity (b) of a transverse section
of the numerical breast model for f = 5 GHz
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6.2.1 Gridsize

The first parameter that we investigate is the gridsize. In general, taking more samples
of a function will improve its approximation. This will however raise the computational
costs since there are more values that need to be computed. In order to investigate the
numerical dependence on the gridsize, we test the conjugate gradient method for solving
the forward scattering problem with three differently discretized numerical breast models.
In this part of the investigation we will set f = 5 GHz, S = 32 and εr,b = 10.

The numerical breast models that are available in the online repository have a dis-
cretization step size of 0.5 mm [43]. We downsample the chosen breast model such that
its length and width are below 75 subdomains, secondly below 100 subdomains and fi-
nally below 125 subdomains. Also, we remove a strip of the background border such that
the resulting discretized domain has a single strip of zero contrast around the domain
as required by Eqs. (4.13) and (4.14). The resulting computational domains consist of
75-by-73, 100-by-97 and 125-by-121 subdomains, respectively. For downsampling we used
the two-dimensional interpolation function interp2 of Matlab to apply a ‘nearest neigh-
bour’ interpolation method. Other methods have been considered as well but this method
preserved the ‘layer’ structure of the skin best. The resulting discretized models have a
step size of approximately 1.3 mm, 0.97 mm and 0.77 mm, respectively.

Due to the interpolation step the resulting models actually represent slightly different
breasts. Hence, comparing field related values is not a suitable way of evaluating the
numerical dependence of the conjugate gradient method. We can however compare the
convergence rates and computation time. In Fig. 6.3 the convergence of the conjugate
gradient method for the three different gridsizes is compared.

It is interesting to see that the convergence rates of the three different gridsizes are
practically the same. This is because the level of heterogeneity with respect to the wave-
length has not increased, but is just represented through more gridpoints. The differences
that do appear are likely due to interpolation differences.
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Another interesting outcome is that with these three different gridsizes the algorithm
took almost the same amount of time to reach convergence. The time needed for com-
puting the fields was 23, 24 and 25 minutes for the 75-by-73, 100-by-97 and 125-by-121
configuration, respectively. The time needed for computation is approximately the same
in these cases due to zero-padding for the FFT algorithm. This causes the arrays to be
extended to the same width and length of 2n, where n is 8 in our case. It then simply
follows that taking the biggest grid that fits a certain FFT size yields the most accurate
results without any extra computational costs. In other words, the dependence of the
computation time on the gridsize is quantized due to the use of FFT’s.

We note that when using this grid at a frequency of 10 GHz, the resolution requirement
of approximately 6 points per wavelength is satisfied for relative permittivity values up to
42, which is in fact higher than the median relative permittivity of glandular and fibro-
connective tissues. Hence, inaccuracies will be present but we consider this discretization
step size to be sufficiently accurate for constructing an approximation of the fields inside
the breast.

6.2.2 Bolus permittivity

In this part we investigate the desired permittivity value of the bolus and its influence
on the conjugate gradient method for solving the forward scattering problem. One of
the functions of the bolus material is to improve the power transmission into the breast.
Power which is reflected is not transmitted into the breast, hence the reflections originat-
ing at the skin interface reduce the power dissipated in the tumor. Another mechanism
that deteriorates the focusing ability of the system is the diffuse scattering of the electro-
magnetic fields. Thus, the bolus material should reduce both the reflections at the skin
interface, as well as the overall scattering of the wave fields inside the breast.

In order to reduce reflections we could think of matching the bolus permittivity to
that of the skin. This would reduce the initial reflection and hence this benefits the
transmission of power into the breast. However, the scattering inside the breast would
then increase. By matching to the adipose tissue we would reduce the overall contrast,
hence, the overall scattering is reduced consequently. However, power transmission into
the breast is reduced in this case. In other words, we have encountered a trade-off scenario.
In order to investigate the optimal permittivity value we have run the eigenvalue method
for J2 on tumor A with 32 sources operating at a frequency of f = 5 GHz and we test
bolus permittivities ranging from 5 to 35.

In Fig. 6.4 we illustrate the number of iterations needed for convergence together with
the value of J2(a1) for different values of εr,b. We observe that the number of iterations
is minimal for εr,b ≈ 10. This is because this bolus permittivity reduces the average
contrast on the computational domain. With respect to the focusing ability of the system
we conclude that εr,b ≈ 20 is the optimum. We note that this value might not be optimal
for all frequencies or tumors, but its influence on the system performance is low enough
to accept a potentially suboptimal bolus permittivity in other cases.
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Fig. 6.4: Iterations needed and the focusing ability of the system for different values of
the bolus permittivity at f = 5 GHz

6.2.3 Operational frequency

From antenna theory we know that the main beamwidth of an antenna, for a fixed antenna
size, is proportional to the wavelength. Thus, choosing a higher operational frequency
can increase the focusing ability of the system since the focal spot will become smaller.
We note that the decrease in tissue permittivity does not cancel this trend. However,
increasing the frequency will reduce the transmission of power into the breast. Also, we
know that the conductivity of breast tissues increases with frequency, therefore the power
transmission into the breast will decrease even further. Hence, we find ourselves again in
a trade-off scenario and we will therefore perform a frequency sweep from 1 to 10 GHz
with steps of 1 GHz in order to find the optimal operating frequency. We will apply the
results obtained in the previous optimizations, that is εr,b = 20 and the 125-by-121 grid.
We again consider the ablation of tumor A and we set S = 32.

The variation of the number of iterations needed for convergence and the value of
J2(a1) are shown in Fig. 6.5 for frequencies between 1 and 10 GHz. We observe an
increasing trend in the number of iterations needed for convergence, because this is related
to the level of heterogeneity with respect to the wavelength. We see that the optimal
frequency is around 4 and 5 GHz in this case.

The performance of the system seems to depend significantly on the frequency. The
most optimal power distributions for f = 1 GHz and f = 10 GHz are illustrated in
Fig. 6.6. Clearly, the performance of the system is unsatisfactory at these frequencies.
For f = 1 GHz, we cannot even recognize a focal spot1. For f = 10 GHz, we see that the
power transmission into the breast is very bad and most power is dissipated in between
the skin and the tumor.

1With the eigenvalue method for J1 we did observe a focal spot, however at the cost of an increased
power dissipation in the healthy tissue.
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6.2.4 Number of sources

When considering the number of sources to use in our configuration, we know on before-
hand that adding sources will in general improve the focusing abilities of the system. In
Fig. 6.7, J2(a1) is plotted for different values of S. The other parameters are again set to
the optimal values previously found, i.e. f = 4 GHz, εr,b = 20 and the 125-by-121 grid.

We see that the system performance indeed increases when we add sources but the
improvement gradually stalls at S ≈ 26. In the following investigations we choose to set
the number of sources at 32 since it simply guarantees the best system performance.

In practice, the interactions between array elements will have to be taken into account.
In that case, a smaller number of elements might be preferable in order to decrease the
mutual coupling between elements. This consideration is however not relevant here.

We note that the performance of the conjugate gradient method for solving the forward
scattering problem is not relevant since it concerns independent EFIE equations. Hence,
the individual convergence rates do not depend on the number of sources. However, the
computation time does increase approximately linearly with the number of sources.

6.3 Homogeneous configuration

In this section we will evaluate the power optimization methods presented in Chapter 5
for a homogeneous configuration in order to validate the methods and gain more insight
in their fundamental behaviour. First we test the two eigenvalue methods and then we
test the conjugate gradient method.

The computational domain in this configuration is completely filled with a relative
permittivity of 20. In order to construct nonzero system matrices for the eigenvalue prob-
lem, we have introduced some losses (e.g. 1·10−9 S/m) in the bolus material. Experiments
are time efficient in this configuration since the fields are computed in just 1 iteration of
the conjugate gradient scheme.
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We assign three focusing domains. The first is a point, or actually one subdomain.
The second is a circle with a diameter of λ/2, where λ is the wavelength in the bolus
material. The last domain to which we focus power is a square with sides of length λ.
These target domains are illustrated in Fig. 6.8. We also investigate the placement of
nulls in the surrounding area.

6.3.1 Eigenvalue method for J1

The first eigenvalue method will be investigated here. We recall that, in this case, our
only goal is to focus power in the tumor domain. Reducing hotspots is thus not considered
as a goal in this method.
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Focusing towards a single point

An initial test of the eigenvalue method for J1 is performed with the point as tumor
domain. The resulting eigenvalues are shown in Fig. 6.9. The first two eigenvalues are
approximately the same, and the other eigenvalues are very low. The first two eigenvectors
steer the power in two complementary power dissipation patterns as shown in Fig. 6.10.

Focusing towards the circular domain

The second analysis is performed on the circular domain. The resulting eigenvalues are
also shown in Fig. 6.9 and the power dissipation patterns for the two biggest eigenvalues
are presented in Fig. 6.11a and 6.11b. We observe that many eigenvalues come in pairs
with approximately the same value, for example the first two eigenvalues. We see that
the corresponding eigenvectors steer the power in complementary patterns, or modes.
Combining the power distributions resulting from these modes results in a better power
distribution. This is shown in Fig. 6.11.

Focusing towards the square domain

Now we investigate the focusing performance for the square target domain. The eigenval-
ues are shown in Fig. 6.9. In this case we see that the distribution of eigenvalues is less
steep, or in other words, there are more modes that deposit power in the square domain.
Again, we obtain complementary modes which can be combined to yield the desired pat-
tern. Combining the first three leads to the pattern shown in Fig. 6.12. In this case, we
weigh the patterns such that 50% contribution comes from the first mode and 25% comes
from the second and third mode. This smoothens the dissipation pattern.

6.3.2 Eigenvalue method for J2

The second eigenvalue method resulted from maximizing the ratio between the average
power in the tumor domain and the average power in the healthy domain. The eigenval-
ues that result from the second eigenvalue method for the tree target domains and the
healthy domain are shown in Fig. 6.13a. We observe that the eigenvalues show the same
distribution as for the first eigenvalue method, apart from a scaling factor. The resulting
power distributions or modes don’t differ much from the first eigenvalue method and are
thus not reported here. This is the case because it is simply not possible to suppress the
side lobes everywhere in the domain surrounding the tumor domain.

In order to validate the operation of the eigenvalue method for J2, we configure the
circle as the tumor domain, and the square domain as the healthy domain in which the
dissipated power is to be minimized. This yields an eigenvalue distribution which is shown
in Fig. 6.13b. The resulting power distribution is shown in Fig. 6.14.
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Fig. 6.10: First (a) and second (b) mode that focus power to the point target domain
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Fig. 6.11: Combining the first (a) and the second (b) mode improves the pattern (c)
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Fig. 6.13: The eigenvalues J2 when focused on the three target domains (a) and when
focused on the circle while preserving the square (b)
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6.3.3 Conjugate gradient method

We validate the conjugate gradient method by selecting the circle as the target domain,
and the square as the healthy domain. The starting vector is taken from the first eigen-
value method which focuses power in the circular domain. We actually take the second
eigenvector since this one creates side lobes covering the square domain. Thus, the al-
gorithm will need to suppress these side lobes with the least amount of deviation of the
initial pattern.

The resulting convergence plot is shown in Fig. 6.15. We see that a smaller value of
the weighting parameter ν lowers the minimum of the cost functional and reduces the
side lobes that cover the square domain. According to our expectations, a smaller value
of ν allows a bigger deviation from the initial dissipated power pattern.

The resulting power dissipation patterns for three values of ν are shown in Fig. 6.16.
Here, the power is plot in dB such that the differences are more clearly shown. We see
that the dissipated power in the square domain decreases with smaller values of ν. These
results show that the basic operation of this conjugate gradient scheme is correct.

So far, we have seen that the power optimization methods function correctly. Now we
can introduce realistic breast model in the configuration in order to simulate a realistic
treatment scenario.
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Fig. 6.16: Power dissipation patterns (in dB) of the conjugate gradient method for ν =
2.00 (a), ν = 1.00 (b) and ν = 0.25 (c)

6.4 Realistic breast model

Now we will investigate the performance of the three power optimization methods on a
realistic breast model. We will evaluate the power distributions when focusing towards
the three tumors shown in Fig. 3.4b. We will compare the performance of the focusing
algorithms per tumor. In these simulations we will apply the optimal system parameters
obtained in the first section of this chapter.

For further evaluating the power distribution in the breast, we will use a normalized
cumulative power histogram. It indicates what part of the healthy tissue and what part
of the tumor receives a relative amount of power or more. We normalize power densities
to the maximal power density found in the tumor domain, and areas or volumes are
normalized to the size of the corresponding domain.

An example is shown in Fig. 6.17a. The red curve in this graph shows that in 95% of
the tumor more than 30% of the maximum power density is dissipated. The blue curve
on the other hand indicates that this is also the case in 5% of the healthy tissue.

6.4.1 Tumor A

First we consider the ablation of tumor A. The eigenvalues resulting from the two eigen-
value methods are shown in Fig. 6.17b. In both methods the biggest eigenvalue distin-
guishes itself more from the other eigenvalues, as opposed to the results of the homo-
geneous configuration. This is reflected in that the other mode patterns, not reported
here, don’t contribute much to the focusing of power into the tumor. They did produce a
complementary pattern inside the tumor domain, however these modes introduced large
hotspots in the healthy region as well. We will therefore evaluate the eigenvalue methods
based on the first eigenvector alone.

The power distributions that are obtained with the two eigenvalue methods are illus-
trated in Fig. 6.19a and 6.19b. The power distributions appear to be approximately the
same. Reducing the power dissipated in the healthy tissue seems to increase the power
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Fig. 6.17: Example of a normalized cumulative power histogram (a) and the eigenvalues
resulting from the two eigenvalue methods for tumor A
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Fig. 6.18: The convergence of the conjugate gradient method for three values of ν (a)
and the normalized cumulative power histograms for the two eigenvalue methods and the
conjugate gradient method with ν = 0.25 (b) for tumor A
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dissipated in the skin, however this is not considered harmful. Although barely visible,
the eigenvalue method for J2 reduces the peak dissipated power in the healthy tissue. In
general we see that the breast is mainly illuminated by the sources that are on the left
side of the breast, i.e. that are closest to the tumor. It also appears to be difficult to heat
the right side of the tumor.

The conjugate gradient method was designed to decrease the power dissipated in the
healthy tissue, while maintaining the focus in the tumor. We will consider improving
the power dissipation pattern that was obtained through the eigenvalue method for J2.
The convergence of the conjugate gradient method with three settings of the weighting
parameter ν is plotted in Fig. 6.18a. We note that in fact, for ν = 2.00 the algorithm could
not improve the power distribution significantly. The lowest value for J3 was obtained
by allowing the biggest deviation of the original pattern, thus by setting ν = 0.25. The
corresponding power distribution is illustrated in Fig. 6.19c.

The normalized cumulative power histograms of the two eigenvalue methods and the
conjugate gradient method are shown in Fig. 6.18b. From these graphs we see that the
methods yield approximately the same result. There are minor differences that indicate
that the methods are in fact functioning correctly. For instance, although barely visible
in the graph, the second eigenvalue method and the conjugate gradient suppress the
high power dissipation in the healthy tissue which goes together with less optimal power
distribution in the tumor. In general, we see that there is simply little room left for
improvement of the power distribution obtained by the first eigenvalue method.

We note that we have experienced significant differences between the results of the
power optimization algorithms at a suboptimal frequency, for instance at f = 2 GHz. For
this frequency, the power distributions that result from the first two eigenvalue methods
are shown in Fig. 6.20. We see clearly that the second eigenvalue suppresses the hot spot in
the healthy tissue, whereas the first eigenvalue method yields a better power distribution
in the tumor domain. However, both power distributions are not localized enough to be
useful in focused microwave ablation of the breast tumor.

We conclude by evaluating the power distribution in terms of a thermal distribution, by
using the power ratio as defined in Eq. (A.5). In a realistic treatment scenario one might
choose to heat for instance 95% of the tumor to at least 50

a

C. From the cumulative power
distribution we can see that this means that 94.2% of the healthy tissue is not damaged,
i.e. kept below 43

a

C.

We note that the remaining 6% of the healthy tissue includes tissue adjacent to the
tumor as well, heating of which should actually not be considered harmful since a safety
margin is always taken into account in cancer treatment. Furthermore, it might be possible
to reduce the input power, since the thermal conduction may still yield total coverage of
the tumor site. However, this implies the need for accurate thermal simulations. In any
case, we consider the results to be sufficient for regarding the ablation of tumor A possible.
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Fig. 6.19: The most optimal power distributions in the treatment of tumor A for the two
eigenvalue methods (a,b) and the conjugate gradient method with ν = 0.25 (c)
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Fig. 6.20: At 2 GHz, the difference the first (a) and the second (b) eigenvalue method is
clearly visible for the ablation of tumor A
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Fig. 6.21: The normalized cumulative power histograms of tumor B for the two eigenvalue
methods and the conjugate gradient method with ν = 0.25

6.4.2 Tumor B

The same investigation is performed for tumor B. The eigenvalues that result from the
two eigenvalue methods appear to be distributed in the same fashion as the ones obtained
for tumor A. The conjugate gradient method also showed the same convergence behavior
as before.

The dissipated power patterns obtained with the three power optimization methods
are illustrated in Fig. 6.22. Again, we see that the three power optimization methods
yield approximately the same results. The power distributions are quite localized. Again,
we see that it is difficult to heat the ‘back’ and the interior of the tumor. It is interesting
to see that the power dissipation in the healthy tissue appears to actually increases in the
eigenvalue method for J2 and even more for the conjugate gradient method.

The corresponding normalized cumulative power histograms are shown in Fig. 6.21.
We see that reducing the power dissipated in the healthy tissue is again accompanied by
a reduction of the power dissipated in the tumor. This reduction is also visible in the
power dissipation pattern of Fig. 6.22c. From these graphs, we see again that the three
methods yield approximately the same results. Apparently, for tumor B there is little
room left for improvement as well.

We conclude again by investigating the actual temperature distribution. If we consider
heating 95% of the tumor to at least 50

a

C, then 92.5% of the healthy tissue is kept within
the range of physiologically safe temperatures.
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Fig. 6.22: The dissipated power density in the treatment of tumor B for the two eigenvalue
methods (a,b) and the conjugate gradient method with ν = 0.25 (c)
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Fig. 6.23: The normalized cumulative power histograms of tumor C for the two eigenvalue
methods and the conjugate gradient method with ν = 0.25

6.4.3 Tumor C

Finally, the ablation of tumor C is investigated. The dissipated power patterns obtained
with the three power optimization methods are illustrated in Fig. 6.24. Once again, the
three power optimization methods yield approximately the same results. The normalized
cumulative power histograms are shown in Fig. 6.23.

A more striking outcome of these simulations is the substantial increase of the power
dissipation in the healthy tissue. In fact, the power dissipated in the healthy tissue renders
the treatment of tumor C infeasible. If we would heat 95% of the tumor to more than
50

a

C, then only 80% of the healthy domain is kept below 43
a

C, an outcome which we
consider to be insufficient for the ablation of tumor C. We figure that this is due to the
deep location of the tumor. The attenuation in the breast tissue renders the suppression
of hot spots in the healthy tissue to suffer.

We recall that the result of the frequency study in the beginning of this chapter was
that the performance of the system depends strongly on the operational frequency. We also
recall that this involved a trade-off between focal spot size and power transmission into the
breast. In other words, since tumor C is located in a deeper part of the breast, we might
consider using a lower frequency for the ablation of this tumor. For tumor B we might
consider using another frequency as well. However, we expect that the optimal frequency
for tumor B is approximately the same as for tumor A since both tumors are situated at
approximately the same depth and within approximately the same surrounding.

Another frequency sweep has been performed for tumor C and also a smaller sweep
for tumor B. The resulting variation of J2(a1) for these sweeps is shown in Fig. 6.25a,
together with results for tumor A. We see that the focusing ability of the system is optimal
for tumor C at f = 2 to 3 GHz, and for tumor B at f = 4 to 5 GHz, just like tumor A.
This result indicates that for the ablation of female breast tumors, we need to consider
using different frequencies.
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Fig. 6.24: The dissipated power density in the treatment of tumor C for the two eigenvalue
methods (a,b) and the conjugate gradient method with ν = 0.25 (c)
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Fig. 6.25: The frequency-dependent focusing ability of the system for the three tumors
(a) the normalized cumulative power histograms of tumor C for f = 2 GHz

We have experienced that for the ablation of tumor C at 2 GHz, the best results of
the conjugate gradient method were obtained for ν = 1.00 as opposed to the previously
found ν = 0.25. The normalized cumulative power histograms for the two eigenvalue
methods and the conjugate gradient method, with ν = 1.00 and f = 2 GHz, are shown
in Fig. 6.25b. The normalized cumulative power histograms obtained with the first two
eigenvalue methods are shown in Fig. 6.23. The power distributions resulting from the
second eigenvalue method at f = 2 and 3 GHz are shown in Fig. 6.26.

By evaluating the cumulative power histogram for f = 2 GHz, we can conclude that it
is possible to heat 95% of the tumor to at least 50

a

C, while keeping 94.2% of the healthy
tissue within the range of physiological temperatures. This result shows that it is possible
to ablate even deep seated tumors using electromagnetic radiation.

6.5 Concluding remarks

In this chapter we have presented the results of various investigations concerning the
ablation of female breast cancer. The main result is that it is possible to ablate a tumor
that is seated at intermediate depth, using electromagnetic radiation at a frequency of
4 GHz. We have also shown that it is possible to ablate a tumor which is situated deep
in the breast, using electromagnetic radiation at a frequency of 2 GHz.

Investigations on the various focusing algorithms did not yield big differences. The
correct operation of the algorithms could still be shown nonetheless. It seemed as if the
methods are performing equally well, when a localized power distribution is feasible at
all. From this we conclude that the physical effects and system parameters play a bigger
role in the thermal ablation of breast tumors than the focusing algorithm.
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Fig. 6.26: The dissipated power density resulting from the second eigenvalue method at
f = 2 GHz (a) and f = 3 GHz (b) for tumor C

However, when undesired hot spots enter the configuration, differences between the
performance of the algorithms may become of vital importance. We have seen that by
taking the power dissipation in healthy tissue into account a lot of improvement can be
obtained, however in these cases the feasibility of breast cancer ablation should be strongly
questioned.



Chapter 7

Conclusions and recommendations

In this thesis we have assessed the feasibility of non-invasive electromagnetic ablation of
female breast tumors. We have simulated a two-dimensional configuration with a circular
array of line sources operating at a single frequency within the range of 1 to 10 GHz.
We have incorporated a realistic model of the breast that accounts for the heterogeneous
structure and the dispersive properties of the breast tissue. For computing the fields
we have used the iterative conjugate gradient method for evaluating the discretized elec-
tric field integral equation (EFIE). Using this method together with one of the power
optimization schemes, we have determined the optimal settings for the gridsize, bolus
permittivity, operational frequency and number of sources.

Three power optimization methods have been presented in this work. The first method
maximizes the power dissipated in the tumor and the second method maximizes this
quantity with respect to the power dissipated in the healthy tissue. Both methods resulted
in a closed form solution, namely that of an eigenvalue problem. The third method has
been designed to improve a given power distribution by reducing the power dissipated in
the healthy tissue while maintaining the focus in the tumor. This was done by iteratively
minimizing a cost functional.

7.1 Conclusions

In this thesis it is shown that the non-invasive electromagnetic ablation of female breast
tumors is possible. We have shown that tumors seated at intermediate depth can be
ablated using electromagnetic radiation at a frequency of 4 GHz. We have also shown that
it is possible to ablate a tumor which is situated deep in the breast, using electromagnetic
radiation at a frequency of 2 GHz.

From the preliminary investigation we have found that the numerical dependence of
the forward solver on the gridsize is quantized due to the use of the Fast Fourier Transform
algorithm for computing the convolution integrals. Using the biggest gridsize that fits a
certain FFT size yields the most accurate results without increasing the computational
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cost. We have also found that the optimal value of the bolus permittivity is located in
between the permittivity of the skin and the permittivity of the adipose tissue. Simulation
results suggest setting εr,b ≈ 20. We have also shown that using 32 sources is enough to
assure optimal performance of the system.

Simulations with a homogeneous configuration have shown that the basic operation of
the three power optimization algorithms is correct. The eigenvalue methods showed that
eigenvectors corresponding to eigenvalues with approximately the same value can yield
complementary power dissipation patterns. Combining these patterns can significantly
improve the resulting power distribution.

Simulations with a realistic breast model showed that the three focusing algorithms
do not yield significantly different results. From this we conclude that the physical effects
and system parameters play a bigger role in the thermal ablation of breast tumors than
the focusing algorithm.

However, when undesired hot spots enter the configuration, differences between the
performance of the algorithms may become of vital importance. We have seen that by
taking the power dissipation in healthy tissue into account a lot of improvement can be
obtained, however, in these cases the feasibility of breast cancer ablation should still be
strongly questioned.

7.2 Recommendations

The following follow-up research topics can be thought of:

• The investigation of different breast models deserves attention, for instance models
of the class ‘heterogeneously scattered’ and ‘very dense’. These models may yield
different results.

• We may include the dielectric properties of tumor tissue in the numerical breast
model. Since the tumor exhibits 10% higher dielectric properties, this introduces
more scattering and increases the local heating potential of the tumor.

• The investigation of the full 3D configuration or, as an intermediate step, the single-
sided illumination of a sagittal cross section of the breast in a two-dimensional
configuration can be interesting.

• Including thermal simulations to asses the damage deserves attention. The thermal
models that we used to approximate the problem did not incorporate the tissue
heterogeneity, as for the thermal parameters. Also, we note that the healthy tissue
that is heated to more then 43

a

C is not directly ablated, since tissue damage increases
exponentially with treatment time and temperature. Thus, to really assess the
induced damage, we need accurate thermal simulations as well.
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• We may investigate other cost functionals for the conjugate gradient power opti-
mization method.

• It may be interesting to investigate the ablation problem as a vector optimization
problem [2]. We can then investigate pareto optimal points of the problem.

• We may develop a conjugate gradient method that combines the computation of
the total field with the optimization of the power distribution in one scheme. The
basic idea for this is to steer the total incident field instead of one incident field
per source. This way, one only needs to evaluate one EFIE and thus reduces the
computational effort potentially with a factor of approximately 1

S
.

• We may investigate time domain optimization methods using a wideband signal. It
is expected that some improvements can be obtained using this approach.

• The design of appropriate antennas for the implementation of a focused microwave
ablation system can be done.

• Including a realistic antenna model in the investigated configuration is valuable.

• The feeding networks for phased array antennas often introduce quantized phase
and amplitude shifts. It is therefore valuable to investigate the effect of phase and
amplitude quantization on the power distribution.

• Assessing the effect of modeling errors on the power distribution deserves attention.
In a realistic scenario, one can not assume that the propagation model is free of
errors, for instance the patient could be moving or the breast model could include
imaging artefacts.

• The power optimization methods can be applied to other physical domains like high
intensity focused ultrasound.

This concludes our thesis on the feasibility of non-invasive electromagnetic ablation of
female breast cancer. We hope that the research described in this thesis contributes to
the further development of this modality for treating breast cancer.
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Appendix A

Tissue thermodynamics

This appendix treats the relationship between electromagnetic energy dissipation and the
resulting tissue temperature. This relation would give us an indication on the amount of
power needed to achieve coagulative necrosis in the tumor tissue. It would also set the
maximal level of power dissipation allowed in the healthy tissue in order not to cause any
cell damage.

The transfer of heat in tissue can be modeled by the bioheat equation of Pennes, which
accounts for heat conduction, blood perfusion and metabolic heat production. It is given
by

ρc
∂T

∂t
= ∇ · k∇T + Qm + Pdiss − wbcb(T − Tb) (A.1)

in which ρ represents the tissue density, c is the specific heat, the variable T denotes the
temperature, t stands for the time-instant, k is the thermal conductivity of the tissue,
Qm represents metabolic heat production, Pdiss denotes the dissipated electromagnetic
power, wb represents the blood perfusion rate, cb the specific heat of the blood and Tb

denotes the blood temperature. The solution to this differential equation describes the
resulting temperature distribution during treatment, and can give an indication for the
power needed to obtain coagulative necrosis in the tumor tissue. The relevant tissue
parameters are given in Table A.1 [8].

Several clinical studies have compared the influence of blood perfusion and heat con-
duction on the resulting temperature distribution in radiofrequency ablation and mi-
crowave ablation [37, 40]. These investigations show that in microwave tumor ablation
the final temperature in the tumor is less affected by blood perfusion and thermal con-

Table A.1: Thermal parameters for breast tissue and tumor tissue

Media ρ [kg m−3] c [J kg−1 K−1] k [W m−1 K−1] Qm [W m−3] wbcb [W m−3 K−1 ]

Tumor 1182 3049 0.496 5500 5350

Breast 1069 2279 0.306 350 2229
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duction due to the short treatment time. It has been shown that the tissue temperature
depends mostly on the locally dissipated power, even when the heated tissue is close to
large vasculature structures.

For investigating the power needed to raise the tumor temperature to 50
a

C, we will
first assume that the heat conduction and blood perfusion is of negligible influence on
the obtained temperature. We will also assume that metabolic heating is of an insignifi-
cant influence on the resulting temperature distribution. Removing these terms reduces
Eq. (A.1) to

ρc
∂T

∂t
= Pdiss (A.2)

Solving this differential equation yields

T (tf) = T (t0) +
1

ρc

tf
ˆ

t0

Pdiss(t)dt (A.3)

where t0 and tf represent the starting end ending instant, respectively. Since the dissipated
power is approximately constant during the treatment, we can derive the following relation
between the dissipated power and the temperature increase

∆T =
1

ρc
Pdiss∆t (A.4)

where ∆t = tf − t0 represents the treatment duration and ∆T = T (tf) − T (t0) denotes
the local temperature increase.

First we will consider the tumor tissue. If we assume T (t0) = 37
a

C, T (tf) ≥ 50
a

C
and a treatment duration of 10 seconds, then we would need to obtain a dissipated power
density of at least 4.7·106 W/m3 in order to induce coagulative necrosis. So to ablate a
tumor of 1 cm3 in size within 10 seconds, we would need to dissipate at least 4.7 W in
the tumor. This is a feasible number considering the use an antenna array.

While heating the tumor tissue, we will need to constrain the dissipated power density
in the healthy tissue in order to prevent irreversible damage there. By setting T (tf) ≤
43

a

C we find the maximal dissipated power density in healthy tissue to be 1.5·106 W/m3.

To review our simplification of the bioheat equation, we will compare the dissipated
power density Pdiss with the other terms that prevail in the right hand side of Eq. A.1. It
turns out that when we fill in the relevant parameters, the other terms that contribute to
the differential equation are orders of magnitude smaller than the source term. Eq. (A.4)
is therefore a valid approximation of the Pennes bioheat equation.

With the simplified bioheat equation we can derive a quantative goal which needs to
be satisfied by an ablation system. Essentially, we want to achieve a minimal temperature
of 50

a

C in the tumor tissue together with a maximal temperature of 43
a

C in the healthy
tissue. Since the temperature increases linearly with the dissipated power density, we can
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form a quantative goal in terms of the minimal dissipated power density in the tumor
tissue and the maximal dissipated power density in the healthy tissue. This results in

min Pdiss,t

max Pdiss,h

≤
ρtct∆Tt

ρhch∆Th

= 3.2 (A.5)

where the subscripts t and h denote the tumor tissue and healthy tissue, respectively.
This number can be used as a figure of merit and can serve as a quantified goal for the
focusing algorithm.





Appendix B

Two-dimensional Green’s function

In this appendix we will derive the Green’s function in the two-dimensional spatial domain.
In Chapter 2 we obtained an expression for the Green’s function in the angular wave vector
domain, Eq. (2.55), repeated here for convenience

g̃(k, ω) =
1

k·k − k̂2
b

(B.1)

where k∈R
2 and k̂b denotes the complex wavenumber in the background medium. Since

we consider a non-magnetic background medium, we have k̂b(ω) = ω
√

µ0ε̂b(ω). This

leaves two possible solutions for k̂b depending on how one defines the square root. By
defining the Laplace transform for Re{s} ≥ 0 we also have the condition Im{ε̂b(ω)} ≤ 0.
We then simply choose to take the principal square root with −π < arg{ε̂b} ≤ π which
results in Im{k̂b} ≤ 0.

We can now start our derivation by applying the two-dimensional inverse spatial
Fourier transform to g̃

ĝ(x, ω) = Fk

−1{g̃(k, ω)} =
1

(2π)2

ˆ

k∈R2

g̃(k, ω)ejk·xdA . (B.2)

By using the parameterization k = i1κ cos θ+i2κ sin θ and x = i1r cos φ+i2r sin φ, where
κ = |k| and r = |x|, we see that we can rewrite Eq. (B.2) as

ĝ(x, ω) =
1

(2π)2

2π
ˆ

0

∞̂

0

1

κ2 − k̂2
b

ejκr cos(θ−φ)κdκdθ

=
1

(2π)2

2π
ˆ

0

∞̂

0

κ

κ2 − k̂2
b

ejκr cos θdκdθ

=
1

2π

∞̂

0

κ

κ2 − k̂2
b

J0(κr)dκ (B.3)
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which is in fact a Hankel transform of order zero. In order to arrive at this expression
we have recognized the integral representation of the Bessel function of the first kind and
order zero, which is defined for complex arguments as

J0(z) =
1

2π

2π
ˆ

0

ejz cos θdθ . (B.4)

Using the expressions for the Hankel functions of the first and second kind

H(1)
n (z) = Jn(z) + jYn(z) (B.5)

H(2)
n (z) = Jn(z) − jYn(z) (B.6)

we can write
J0(z) = 1

2
(H

(1)
0 (z) + H

(2)
0 (z)) . (B.7)

After substituting this expression in Eq. (B.3) we arrive at

ĝ(x, ω) =
1

4π

∞̂

0

κ

κ2 − k̂2
b

[

H
(1)
0 (κr) + H

(2)
0 (κr)

]

dκ . (B.8)

Hankel functions are known to be multiple valued functions having κr = 0 as a branch
point. By designating the branch cut at (−∞, 0) in the complex κ-plane, we can use the
following relation along the lower side of the interval (0,∞) [15]

H
(1)
0 (z) = −H

(2)
0 (ze−jπ)

= −H
(2)
0 (−z) (B.9)

which is inserted in Eq. (B.8) as follows

ĝ(x, ω) =
1

4π

∞̂

0

κ

κ2 − k̂2
b

[

H
(2)
0 (κr) − H

(2)
0 (−κr)

]

dκ

= −

∞̂

−∞

1

4π

κ

κ2 − k̂2
b

H
(2)
0 (κr)

︸ ︷︷ ︸

f(κ)

dκ . (B.10)

We need to formulate the latter integral as a principal value integral since the integrand
f(κ) is not defined at κ = 0.

We compute Eq. (B.10) analytically based on a contour integration technique. We
note that the integrand f(κ) has two poles at κ = ±k̂b. Since we defined the complex
wavenumber with Im{k̂b} ≤ 0, we find k̂b in the lower half-plane. One specific problem
arises when the complex wavenumber is purely real, for instance in case of a lossless
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Im{κ}

Re{κ}Obranch cut

C1 C2
C3

C4

× k̂b

×−k̂b

Fig. B.1: Integration contour C in the complex κ-plane

background medium. This case introduces two poles on the integration path, where one
of them is actually on the branch cut, which will make this derivation rather tedious. We
will therefore assume that our background medium exhibits infinitesimal losses, and thus
Im{k̂b} < 0 holds.

We choose to integrate along a contour C in the lower half of the complex κ-plane,
which is the union of C1, C2, C3 and C4 as shown in Fig. B.1. In order to keep the integrand
analytic and single valued, the contour may not intersect the branch cut. Hence, C1 runs
just below the branch cut and C2 encircles the branch point κ = 0 tightly.

By performing the contour integration along the contour C in the complex κ-plane,
bearing in mind that this contour encircles the pole k̂b in a clockwise direction, we can
now apply the theorem of residues

ˆ

C

f(κ)dκ = −2πj Res
[

f(κ); κ = k̂b

]

. (B.11)

Since the integrand f(κ) is continuous on C, the contour along C1 and C3 will give us
the integral that we want to evaluate, Eq. (B.10). Hence, we only need to evaluate the
integrals along C2 and C4 and the residual in order to obtain our result.

At contour C2, κ circumvents the origin tightly from below in counterclockwise di-
rection. In order to evaluate this integral, we parameterize κ in polar coordinates as
κ = ǫejφ with ǫ↓0. We then use the limiting form of the Hankel function H

(2)
0 (z) for small
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arguments [1] in order to obtain

lim
ǫ↓0

&

|κ|=ǫ

f(κ)dκ =
1

4π
lim
ǫ↓0

0
ˆ

−π

ǫejφ

ǫ2ej2φ − k̂2
b

H
(2)
0 (rǫejφ)dφ

=
−1

4πk̂2
b

lim
ǫ↓0

ǫ

0
ˆ

−π

ejφ

[

1 − j
2

π

{

ln

(
rǫejφ

2

)

+ γ

}]

dφ

=
−1

4πk̂2
b

lim
ǫ↓0

ǫ

0
ˆ

−π

ejφ

[

1 − j
2

π

{

ln ǫ + ln

(
rejφ

2

)

+ γ

}]

dφ

=
1

4πk̂2
b

lim
ǫ↓0

ǫ

0
ˆ

−π

ejφ

[

j
2

π
ln ǫ

]

dφ

=
1

π2k̂2
b

lim
ǫ↓0

ǫ ln ǫ

= 0 (B.12)

with γ denoting Euler’s constant. We have evaluated the resulting limit using l’Hôpital’s
rule as follows

lim
ǫ↓0

ǫ ln ǫ = lim
ǫ↓0

ln ǫ

1/ǫ
= lim

ǫ↓0

1/ǫ

−1/ǫ2
= − lim

ǫ↓0
ǫ = 0 . (B.13)

In order to evaluate the integral over C4, we parameterize κ in polar coordinates as
κ = Rejφ with R →∞ and use the asymptotic form of the Hankel function H

(2)
0 (κ) for

large arguments [1], given by

H
(2)
0 (κ) ∼

√

2

πκ
e−j(κ−π

4
) . (B.14)

Since the integrand goes to zero on C4, the integral over C4 also vanishes.

Now, since the contributions of the integrals over C2 and C4 are zero, the result of
Eq. (B.10) is equal to Eq. (B.11), and we have thus found the Green’s function in the
frequency domain as

ĝ(x, ω) = −2πj Res

[

1

4π

κ

(κ + k̂b)(κ − k̂b)
H

(2)
0 (κr); κ = k̂b

]

= −
j

4
H

(2)
0 (k̂b|x|) . (B.15)

We note that since Im{k̂b} < 0, the Green’s function will decay to zero when |x| → ∞
and thus this solution is physically correct. This is even the case when we consider
a lossless background with Im{k̂b} = 0. Hence, we assume this solution is valid for
Im{k̂b} ≤ 0.



Appendix C

Weak form of the Green’s function

In the discretization of the EFIE we have encountered a specific challenge, namely the
weakening of the two-dimensional Green’s function g. In this appendix we will describe
how weak form of the Green’s function is obtained.

In the weakening procedure we replace g by its mean value over a circular domain
with center point xm,n − xm′,n′ = x and radius 1

2
∆x = 1

2
min(∆x1, ∆x2), after which the

weak form of the Green’s function is denoted by G, viz.

G(x) =
4

π(∆x)2

ˆ

|x′′| < 1

2
∆x

g(x + x
′′)dV

= −
j

π(∆x)2

ˆ

|x′′| < 1

2
∆x

H
(2)
0 (kb|x + x

′′|)dV . (C.1)

By using the summation theorem for Bessel functions [15] we can rewrite the Hankel
function that appears in the integrand as

H
(2)
0 (kb|x + x

′′|) =







∞∑

k=−∞

Jk(kb|x|)H
(2)
k (kb|x

′′|)ejkφ ∀ |x′′| ≥ |x|

∞∑

k=−∞

Jk(kb|x
′′|)H

(2)
k (kb|x|)e

jkφ ∀ |x′′| ≤ |x|

(C.2)

where φ denotes the angle between x and x′′ as depicted in Fig. C.1.

Singular case

In the singular case we have x = 0. Since the Hankel function H
(2)
0 (|x+x′′|) is not defined

at |x + x′′| = 0, we will have to formulate the integral as a limit where x → 0. With this

97



98

x1

x2

O

∆x1

∆x2

x

x′′

φ

Fig. C.1: Weakening configuration

limit, one part of the integration interval will satisfy |x′′| ≤ |x| and the other part will
satisfy |x′′| ≥ |x|. We will thus have to split the integral and use both cases of Eq. (C.2).

By using polar coordinates with |x′′| = r and |x| = ǫ, and noting that the terms with
k 6= 0 drop out due to the integration over φ, we can rewrite Eq. (C.1) as

G(0) = lim
ǫ→0

−
2j

(∆x)2

[

H
(2)
0 (kbǫ)

ǫ
ˆ

0

J0(kbr)rdr + J0(kbǫ)

1
2
∆x
ˆ

ǫ

H
(2)
0 (kbr)rdr

]

. (C.3)

By using the formulas for derivatives [1], which gives us the relation znC
(2)
n−1(z) =

d
dz

[znC
(2)
n (z)] where Cn denotes the Bessel function Jn or the Hankel function H

(1,2)
n , and

the Wronskian relation Jn+1(z)Yn(z) − Jn(z)Yn+1(z) = 2/πz, we find the following

G(0) = lim
ǫ→0

−
2j

(∆x)2

[
1

kb

H
(2)
0 (kbǫ)

[

rJ1(kbr)
]r=ǫ

r=0
+

1

kb

J0(kbǫ)
[

rH
(2)
1 (kbr)

]r=
1
2
∆x

r=ǫ

]

= lim
ǫ→0

−
2j

(∆x)2

[ 1
2
∆x

kb

J0(kbǫ)H
(2)
1 (1

2
kb∆x) −

2j

πk2
b

]

= −
j

kb∆x

[

H
(2)
1 (1

2
kb∆x) −

4j

πkb∆x

]

(C.4)

where we have used the series expansion of J0(kbr) [1] in order to evaluate the limit.



99

5 10

0.

0.4

0.6

0.8

x1 (cm)

 

 

Re

Re

{

{

g

{

{

G

2

�−0.4

�−0.2

0

�−10 �−5 0

(a)

5 10

0.2

0.4

0.6

0.8

x1 (cm)

 

 

Im

Im

{

{

G

{

{

g

�−0.4

�−0.2

0

�−10 �−5 0

(b)

Fig. C.2: The real (a) and imaginary (b) part of the Green’s function and it’s weak form

Regular case

In the regular case we will always find that |x′′| ≤ |x|. We will thus only need the first
expression of Eq. (C.2). Now, by using polar coordinates with |x′′| = r and the formulas
for derivatives, we obtain

G(x) = −
2j

(∆x)2
H

(2)
0 (kb|x|)

1
2
∆x
ˆ

0

J0(kbr)rdr

= −
2j

kb(∆x)2
H

(2)
0 (kb|x|)

[

rJ1(kbr)
]r=

1
2
∆x

r=0

= −
j

kb∆x
J1(

1
2
kb∆x)H

(2)
0 (kb|x|) . (C.5)

We conclude this appendix by illustrating what the weak form of the two-dimensional
Green’s function looks like. For this we simulate a lossless, non-magnetic background with
εr,b = 10 at f = 1 GHz. We discretize a domain of 20-by-20 cm in 31-by-31 subdomains.
The real and imaginary part of the Green’s function and it’s weak form are plotted along
the x1-axis in Fig. C.2.


