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Multi-Agent Path Integral Control for
Interaction-Aware Motion Planning in Urban Canals

Lucas Streichenberg1,2,∗, Elia Trevisan1,∗, Jen Jen Chung2,3, Roland Siegwart2 and Javier Alonso-Mora1

Abstract— Autonomous vehicles that operate in urban envi-
ronments shall comply with existing rules and reason about
the interactions with other decision-making agents. In this
paper, we introduce a decentralized and communication-free
interaction-aware motion planner and apply it to Autonomous
Surface Vessels (ASVs) in urban canals. We build upon a
sampling-based method, namely Model Predictive Path Integral
control (MPPI), and employ it to, in each time instance,
compute both a collision-free trajectory for the vehicle and
a prediction of other agents’ trajectories, thus modeling inter-
actions. To improve the method’s efficiency in multi-agent sce-
narios, we introduce a two-stage sample evaluation strategy and
define an appropriate cost function to achieve rule compliance.
We evaluate this decentralized approach in simulations with
multiple vessels in real scenarios extracted from Amsterdam’s
canals, showing superior performance than a state-of-the-
art trajectory optimization framework and robustness when
encountering different types of agents.

I. INTRODUCTION

With rising population density, cities are forced to enhance
their mobility and transportation strategies. The City of
Amsterdam aims to reduce the load on road infrastructure
by transporting goods and people on the urban waterways
[1]. This presents a great opportunity to operate Autonomous
Surface Vessels (ASVs) such as Roboat [2] in urban canals.
However, this is a very technically challenging task due to
the complex and dynamic nature of the environment. Narrow
canals, complex dynamics, static obstacles, and human-
piloted vessels must be dealt with while obeying existing
canal regulations [3]. Model Predictive Path Integral Control
(MPPI) [4] offers a parallelizable sampling-based framework
for solving motion planning tasks with such complex dynam-
ics and discontinuous costs as those exhibited in our domain.
Unlike methods based on constrained optimization, which
need to rely on convex approximations of the free space
and on inflating the ego and obstacle agents into ellipsoidal
shapes for collision avoidance [5], MPPI can account for
the exact and potentially non-convex shape of both static
and dynamic obstacles. This promises to be a significant ad-
vantage in tight interaction-rich environments. Still, another
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Fig. 1: An ASV running our method (orange) encounters a non-
communicating vessel (blue). At each time step, the ASV is given its current
position and a global path (dashed green line). Based on this, the ASV sets
a local goal (purple circle) in front of itself on the global path. The ASV is
also given the position and velocity of the non-communicating vessel. With
these, the ASV estimates the local goal of the non-communicating vessel
(red star) assuming constant velocity. Then, the ASV plans input sequences
over a defined horizon resulting in trajectories for both vessels.

important aspect of achieving safe and efficient navigation
in crowded spaces is accounting for cooperation [6]. For
these reasons, we propose a method to decentralize MPPI
in order to navigate among non-communicating agents while
providing interaction awareness and generating cooperative
motion plans. We introduce awareness of navigation rules
through discontinuous costs. Moreover, the proposed method
can run in real-time thanks to our two-stage sample evalua-
tion strategy and CPU parallelization.

A. Related Work
Cooperative and interactive motion planning for robotics

is a challenging problem with a vast literature [7].
The most well-known examples for planning in dy-

namic environments are the Dynamic Window Approach
(DWA) [8], Reciprocal Velocity Obstacle (RVO) [9],
its extension Optimal Reciprocal Collision Avoidance
(ORCA) [10], and Artificial Potential Fields (APF) [11],
[12]. While these methods are highly efficient, they often
lead to reactive behaviors.

Model-free reinforcement learning algorithms have been
successfully trained in simulation with hand-crafted reward
functions to navigate among human crowds [13], [14], but
generalization and collision avoidance are not guaranteed.

Game theoretic approaches have been implemented in the
context of autonomous cars to perform lane changes [15],
merging [16] and to solve unsignalized intersections [17].
However, they rely on a coarse discretization of the action
space and do not scale well with the number of agents.
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Model Predictive Control (MPC) based on trajectory opti-
mization is a popular approach when it comes to local motion
planning. In a multi-agent setting, however, the actions of
the other agents are required to proceed with the motion
planning of the ego-agent. In [18] a distributed MPC was
developed for motion planning with multiple drones relying
on ideal communication. A way to avoid communication is
to estimate each agent’s state and predict their future motion
using, for example, a constant velocity model [5], [19] or
learning-based techniques [20]. However, as long as we first
predict and then plan, large parts of the state-space can be
perceived as unsafe by the motion planner [21]. This can be
overcome by modeling interaction, such that the ego-agent is
aware that its actions can influence the actions of the other
agents around it. Unfortunately, accounting for such a model
while planning with constrained optimization techniques can
become computationally expensive [22].

In contrast to optimization-based methods, MPPI solves
for the best control trajectory at each step by forward
simulating the behavior of the full system. To achieve this,
MPPI uses a parallelizable sampling-based framework [23]
to rollout simulations, allowing it to find an approximate
solution to non-linear, non-convex, discontinuous Stochas-
tic Optimal Control (SOC) problems [4], [24]. Compared
to other SOC methods such as iterative Linear Quadratic
Gaussian (iLQG) [25] or Differential Dynamic Programming
(DDP) [26], MPPI does not require linearization of the
system dynamics or quadratic approximation of the cost
function. This makes MPPI particularly well-suited to our
target task of ASV navigation in urban canals since the
regulation-based interactions explicitly give rise to non-
differentiable costs. Moreover, MPPI’s fast parallelizable
computations could solve interaction-aware motion planning
problems while still running in real-time. When deployed to
centralized multi-agent systems, however, the classic MPPI
approach shows a significant increase in the number of
samples required with an increasing number of agents [27].

B. Contributions

We propose an interaction-aware motion planning method
based on MPPI which can generate cooperative plans in
environments with non-communicating agents accounting for
the full dynamics of the system and the exact shapes of the
obstacles. To summarize our contributions:

• We propose a decentralized architecture that can operate
with limited or no communication under the assumption
that other agents’ states can be sensed exactly and that
all the agents in the environment behave rationally.

• To reduce the number of samples required to plan for
multi-agent systems, we propose a two-stage sample
evaluation technique that improves sample efficiency.

• We formulate the objectives of the navigation task into
an appropriate cost function to achieve rule compliance.

To demonstrate the performance of our method, we compare
it to a state-of-the-art regulations-aware optimization-based
MPC [5] in several simulated experiments set up in real
sections of Amsterdam’s canals. The proposed decentralized

MPPI is also compared to the centralized version in environ-
ments with crowds of up to four interacting vessels. Finally,
we demonstrate the robustness of the algorithm in scenarios
where a human-driven vessel does not behave rationally and
provide insights into the computation times.

II. PRELIMINARIES

We start by describing the basic MPPI algorithm. Then,
since MPPI relies on a model of the system to perform the
simulated rollouts, we also define the relevant dynamics that
describe the behavior of our multi-ASV system.

A. MPPI Algorithm
The presented work is based on the MPPI derivations

by [24]. With this method, we can solve SOC problems for
discrete-time dynamical systems of the form,

qt+1 = F(qt, ũt), ũt ∼ N (ut,Σ), (1)

with state q, time step t, nonlinear state transition function F
and noisy input ũ with variance Σ and mean u, where u is
the input we command to the system. The algorithm samples
K input sequences Ũk, k ∈ [1,K] from a distribution
N (ut, νΣ) (with scaling parameter ν) [28] and simulates
them into K state trajectories Qk over a horizon T as,

Qk =
[
q0, F(q0, ũk,0), . . . , F(qk,T−1, ũk,T−1)

]
. (2)

Each sample is rated by computing the total cost Sk, which
includes a stage cost and a terminal cost. Importance sam-
pling weights wk are then computed based on the cost of the
sample k minus the minimum sampled cost Smin as,

wk =
1

η
exp

(
−1
λ

(Sk − Smin)

)
,

K−1∑
k=0

wk = 1, (3)

with normalization factor η and tuning parameter λ. The
resulting control input sequence U∗, which approximates the
optimal control input sequence, is computed with,

U∗ =

K−1∑
k=0

wkŨk. (4)

Then, the first input u∗
0 of the computed sequence U∗ is

applied to the system.

B. Vessel State and Dynamics
We define the multi-agent state similarly to [27]. The state

of agent i is defined as the concatenation of its position,
heading, and associated velocities,

qi =
[
x⊤
i v⊤

i

]⊤
=

[
xi yi ϕi ẋi ẏi ϕ̇i

]⊤
. (5)

The full system state is then formed by stacking the individ-
ual states of each of the agents in the setM = {0, 1, ...,m},

q =
[
q⊤
0 q⊤

1 . . . q⊤
m

]⊤
. (6)

The ASV we use is modeled as a nonlinear second order
system [29]–[31]. Since the vessel sails at low speeds, we
discard Coriolis and centripetal effects. Therefore,

ẋi = R (ϕi)vi,

v̇i = M−1 (Bui −D (vi)vi) ,
(7)
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Fig. 2: Overview of the framework: At every time step, each agent receives
the state of all the agents in the environment. With this, we extract a local
goal for the ego-agent (agent i in figure) from the global planner and predict
local goals for the other agents. We then solve the planning task with MPPI
as if it was centralized, planning a control input sequence and corresponding
trajectory for each agent. We then apply the first input u∗

i,0 of the sequence
to the ego-agent.

where R (ϕi) is the rotation matrix from body to inertial
frame, M is the mass matrix, Bui are the applied forces
(thrust) and D (vi) is the drag matrix.

C. Global Planning

To help navigate large maps, we provide the ego-agent
with a global path. Such a path is generated via the ROS
navigation stack with its path planning plugin [32]. Instead
of directly tracking this global path, we look for a local
goal pg on the global path at a given look-ahead distance
rpg

(Fig. 5). Compared to just rigorously tracking the global
path, this local goal approach gives the local planner more
freedom to perform collision avoidance and other maneuvers.

III. DECENTRALIZED INTERACTION-AWARE MODEL
PREDICTIVE PATH INTEGRAL CONTROL

In the following we outline the proposed architecture,
state the changes to the classic MPPI framework and present
the regulation-aware cost function along with the local goal
prediction used for the decentralized computation of the cost.

A. Approach and Architecture

Our decentralized MPPI approach relies on each agent
running its own MPPI solver for its local multi-agent system
to anticipate the actions of other agents (see Fig. 2). That is,
for agent i, the MPPI state and control output are defined as,

qi =
[
q⊤
i qi⊤

j

]⊤
,

ui =
[
u⊤
i ui⊤

j

]⊤
,
∀j ∈M \ i, (8)

where (.)
i
j signifies a variable that agent i estimates of agent

j. In the centralized case described in Section II-A, the
system state is fully observable and the inputs computed by
the central controller will be those executed by each agent.
When we move to the decentralized case, the positions and
velocities of other agents must be communicated or observed.
Furthermore, while each agent samples control actions for all
other agents in the MPPI rollouts, at execution time, there is
no guarantee that other agents will behave accordingly. To
focus on the decentralized coordination problem, we make
a few assumptions. First, we assume noise-free observations

Fig. 3: Screenshot of two agents running our decentralized method with no
communication inside our simulator. The left (blue) agent is given a local
goal (large blue ball), its state, and the state of the other (orange) agent,
based on which it predicts a local goal (small orange ball) for the obstacle
vessel. The blue agent plans a sequence of inputs for both itself and the
obstacle agent resulting in two trajectories, depicted by the blue paths. In
orange, we can see the other agent applying the same algorithm. Note that
even though we use constant velocity to predict the goal of the obstacles,
both agents plan cooperation in the collision avoidance.

of the positions and velocities of other agents, i.e. qi
j = qj .

Second, we assume that all agents behave rationally and
that they are minimizing the same global cost. We later
show in our experiments that the controller is still able to
perform well when this assumption is violated. Third, in our
experiments we only consider scenarios with homogeneous
agents, meaning that they all have the same dynamics. This
third assumption is not required in general as considering
different dynamical models for different agents is possible
as long as models are known. Fig. 3 shows a simulated
encounter between two ASVs running our decentralized
algorithm without communication.

B. Two-stage Sample Evaluation

With an increasing number of agents, it is increasingly
likely for at least one agent to collide with a static obstacle
in most rollouts. In the classical implementation of MPPI,
this leads to most rollouts receiving a high cost and being
effectively rejected, resulting in a very low sample efficiency.
Therefore we propose to decouple the sampling into two
stages as shown in Algorithm 1. Control-samples Uj,k are
evaluated in parallel for every agent j ∈ M, predicting the
set of individual trajectories Qj,k with agent-centric costs
Sj,k (eq. 9). At this point all samples with cost larger than the
collision penalty Ccollision are immediately discarded (lines 3
and 4 of Algorithm 1). To build the expected number of
system samples K we sample uniformly from the remaining
non-colliding samples of each agent and unify these into
full system samples, i.e. by stacking as in eq. (6). For
each system sample Qk the complete configuration cost Sk

is evaluated by adding the stored agent-centric costs Sj,k

with any costs arising from collisions between vessels and
regulation violations (line 14, Algorithm 1).

C. Cost Formulation

The sample cost Sk,∀k ∈ [1,K] evaluation is split into
agent-centric and configuration costs. Both are considered
instantaneous costs and are evaluated for every time-step t
within the horizon T and each sample k. The agent-centric
cost Sj,k,t (in the following Sagent) is evaluated for agent j
for sample k and defined as,

Sagent = Cstatic + Crotation + Ctracking + Cspeed + Csample. (9)
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Algorithm 1: Decentralized MPPI for agent i (agent-specific
superscripts are dropped for clarity)

Require: U ▷ previous control sequence (hot start)
Require: q ▷ current system state

1: pi,g ← receiveEgoLocalGoal()
2: pj,g ← predictLocalGoal(qj) ▷ ∀ j ∈M \ i
3: for each agent j ∈M do ▷ independent rollouts
4: for each sample k do
5: Ej,k = [ϵ0, . . . , ϵT−1] ▷ ϵt ∈ N (0, νΣ)
6: Ũj,k = Uj + Ej,k
7: Qj,k ← simulateSystem(qj , Ũj,k)
8: Sj,k ← getIndividualCost(Qj,k, Ũj,k,pj,g)
9: if Sj,k > Ccollision then

10: discardSample(Qj,k, Ũj,k, Ej,k, Sj,k)

11: Uniformly sample from the remaining valid input se-
quences to rebuild K full system samples

12: for k = 1 : K do
13: Sk =

∑
j∈M Sj,k + getConfigurationCost(Qk)

14:
[
w1, . . . , wK

]
= importanceSampling(

[
S0, . . . , SK

]
)

15: return U∗ = U +
∑K

k=1 wkEk

Cstatic returns a constant penalty Ccollision if the vessel enters
occupied space and Crotation is based on a linear penalty for
rotation velocities (krot, slow for velocities ||v||2 < 0.5m/s,
krot otherwise). The tracking cost is,

Ctracking = ktracking
||pg − pt||2
||pg − pt0 ||2

, (10)

where ktracking is a scaling factor, pg is the agent’s local goal,
pt is the predicted agent position at time t and pt0

is the
vessel position at the start of the prediction horizon. Cspeed
is a constant penalty applied when the current speed is higher
than the maximum speed. The sample cost is given by,

Csample(ut, ϵt) =
1

2
γ[uT

t Σ
−1ut + 2uT

t Σ
−1ϵt], (11)

with γ as a tuning parameter. The configuration cost Sk,t

(in the following Sconfiguration) is evaluated for every timestep
t within the horizon T for every sample k and combines
dynamic collisions and regulation violations,

Sconfiguration = Cdynamic + Cregulation. (12)

Dynamic collisions are defined as those between multiple
vessels and are penalized with the same constant Ccollision
and the regulation cost Cregulation is derived from the two
main traffic rules (i) avoiding to the right in head-on en-
counters and (ii) right of way for crossing scenarios similar
to COLREGs [33]. Regulation compliance is determined by
a relative position and relative velocity check. Regarding
the position, we check if there is a vessel with significant
velocity (||v|| > 0.5m/s) on starboard side within a given
radius (Fig 4). Regarding the relative velocities, we evaluate
if another vessel approaches from the right by,

||vi × vj || < ||vi|| ||vj || sin(−
π

2
+ δ), (13)

Fig. 4: Configurations considered as regulation violations. Left: Not giving
right of way to a vessel approaching from starboard. Right: Avoiding an
oncoming vessel to the left.

Fig. 5: Left: Extraction of the local goal of the ego vessel is performed
by searching the global path backward until the goal position is within a
radius rpg from the center of the vessel. Right: Local goal prediction for
other agents is performed using a constant velocity model, then projected
into unoccupied space if the goal is in collision with static obstacles.

where δ defines the angular margin, and if the other vessel
is approaching the ego-vessel head-on via,

||vi · vj || < ||vi|| · ||vj || cos(π + δ). (14)

Therefore if we detect a vessel on starboard side and the
velocities satisfy (13), we consider the ego-agent as breaking
the right-of-way rule (Fig. 4 left). If instead, we detect a
vessel on starboard side with opposite velocity, we consider
it as passing on the right (Fig. 4 right).

D. Local Goal Prediction

The proposed decentralized version of interaction-aware
MPPI requires estimating the local goals for all non-ego
vessels (line 2, Algorithm 1). We use a constant velocity
model such that agent i estimates the goal of agent j as,

pi
j,g = ks T δT R

(
ϕi
j

)
vi
j + pi

j , (15)

with ks as a scaling factor and δT as step size. If the
predicted goal is in collision, we project back along the
vector towards pi

j and choose the first unoccupied point as
shown in Fig. 5.

IV. EXPERIMENTS

We perform extensive experiments in several maps taken
from real canal sections of Amsterdam, namely the Heren-
gracht (HG), Prinsengracht (PG), Bloemgracht (BG), and
the intersection between Bloemgracht and Lijnbaansgracht
(BGLG). In all experiments, the dimensions of both the
map and the vessel are represented faithfully. In Section IV-
A we compare our method in two-agent scenarios with an
optimization-based MPC, in Section IV-B we test our method
in interaction-rich four-agent scenarios, in Section IV-C we
demonstrate the robustness to non-rational human-driven
agents, while in Section IV-D we discuss the computation
times of the proposed method. All experiments running
MPPI use a horizon T of 100 time-steps with step-size
δT = 0.1s, input variance Σ = diag(0.5, 0.5, 0.01, 0.01) and
exploration scaling factor ν = 12. We use K = {2000, 6000}
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(a) Prinsengracht. MPPI understands that the blue vessel can safely cross in front of
the vessel with the right of way (orange) without slowing it down. RA-MPCC is not
confident and ends up blocking the way, pushing the orange vessel out of its route.

(b) Bloemgracht. The MPPI agents cooperate to perform collision avoidance, while
RA-MPCC ends up in a deadlock.

(c) Bloemgracht-Lijnbaansgracht. The MPPI agents correctly solve the crossing
according to the right of way. RA-MPCC, not understanding interactions, deems much
of the state-space as occupied therefore steering left and right. Eventually, the agent
with the right of way has to stop and pass behind, violating the navigation rules.

Fig. 6: Comparisons between the decentralized MPPI without communica-
tions and RA-MPCC. Vessels on the figures are to scale (4m long) and are
plotted every 5 seconds. Results for 100 runs are summarized in Table I.

samples for two- and four-agent scenarios, respectively. Each
version of the MPPI shown in the experiments (centralized,
decentralized, decentralized with no communications) uses
our proposed two-stage sampling technique.

A. Comparison with Optimization-based MPC

We compare our method to a state-of-the-art optimization-
based decentralized motion planner designed for ASVs in
urban canals, namely the Regulations Aware Model Pre-
dictive Contouring Controller (RA-MPCC) [5]. The three
scenarios on which we compare are an unprotected left turn
(Fig. 6a), a head-on encounter (Fig. 6b) and a crossing
(Fig. 6c). These three scenarios were then run 100 times
with randomized initial conditions and global goals using
the proposed centralized, decentralized, and decentralized
with no communication MPPI as well as the RA-MPCC. For
all controller types, the randomization was kept equal (i.e.
same random seed). Table I summarizes the results, where
we compare the number of runs that ended successfully,
in a deadlock, or in a collision. Of the runs that ended
successfully, we report the number of rule violations. We also
report the average time to complete the scenario, defined as
the moment in which all agents reach their goal, and the total
average distance, which is the sum of the average distances
traveled by all agents.

All controllers were encouraged through the cost function
to keep a velocity around the speed limit (around 1.7m/s).
From the table, however, it stands out that the RA-MPCC
navigates much slower and therefore has much longer arrival
times. This is both because of how its cost function is
defined, but also because the RA-MPCC has to plan within
convex obstacle-free areas, which can sometimes be quite
small and slow down the pace. Instead, MPPI considers the
exact occupancy map without any need for pre-processing.

While it is easy to give a discontinuous penalty to the
MPPI whenever a sample violates a navigation rule, the RA-
MPCC has to use continuous cost functions to encourage rule
compliance. This, however, inadvertently introduces repul-
sive forces between the two agents, which then tend to push
each other into corners, which is the main cause of deadlocks
in the Prinsengracht and the Bloemgracht-Lijnbaansgracht
scenarios. In the Bloemgracht head-on encounter, the RA-
MPCC gets to its destination only about half of the time.
Given that the RA-MPCC has to inflate the ego-agent in
a set of circles, the obstacle agent into an ellipsoid, and
the static obstacle map has to be pre-processed into convex
regions, there is barely enough space to pass in the most
narrow section of the canal. This, combined with the lack of
understanding that the two agents can cooperate to solve the
maneuver, leads to a large number of deadlocks.

Collisions with the RA-MPCC instead happen for two
reasons. Number one, the method first approximates the
static obstacle with polygons, which are then decomposed
into convex shapes, to which we can then find linear con-
straints by solving a quadratic program. However, there is
no guarantee that the polygons contain all of the original
obstacle. Safety margins are added, but margins too large
means that some narrow canals are simply impossible to
navigate. Number two, the optimization can often just fail,
especially in more difficult and risky situations. When this
happens, the algorithm just applies zero input, and if the boat
has enough momentum it can drift into a collision.

Moreover, while our interaction-aware MPPI could plan
with a horizon of 100 steps, the RA-MPPC could only plan
20 steps to meet the 10Hz control loop.

TABLE I: Results for 100 runs of the experiments seen in Fig. 6 with
randomized initial conditions and goals.

Method
Successes- Rule Average Total
Deadlocks- Violations Time Average
Collisions Distance

PG

Centralized 100 - 0 - 0 2 24.65s 82.15m
Dec. Comm. 100 - 0 - 0 2 24.64s 82.14m
Dec. No Comm. 100 - 0 - 0 2 25.12s 82.54m
RA-MPCC 95 - 5 - 0 5 51.81s 73.20m

B
G

Centralized 100 - 0 - 0 0 22.23s 74.93m
Dec. Comm. 100 - 0 - 0 0 22.24s 74.79m
Dec. No Comm. 100 - 0 - 0 0 22.18s 75.01m
RA-MPCC 52 - 37 - 11 4 55.93s 67.64m

B
G

L
G

Centralized 100 - 0 - 0 2 28.47s 87.24m
Dec. Comm. 100 - 0 - 0 2 28.83s 88.26m
Dec. No Comm. 100 - 0 - 0 2 29.01s 88.30m
RA-MPCC 74 - 23 - 3 38 54.46s 84.20m
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Fig. 7: Navigation among four autonomous vessels running decentralized MPPI without communication. Left: Narrow intersection with a bridge in
Herengracht. Middle: Wide intersection with bridges in Prinsengracht. Right: Very narrow intersection in Bloemgracht. Vessels are plotted every 6 seconds.

TABLE II: Results for 20 runs of the experiments seen in Fig. 7 with
randomized initial conditions and goals.

Method
Successes- Rule Average Total
Deadlocks- Violations Time Average
Collisions Distance

H
G

Centralized 20 - 0 - 0 0 24.46 204.42
Dec. Comm. 20 - 0 - 0 0 26.82 214.64
Dec. No Comm. 20 - 0 - 0 3 33.18 225.48

PG

Centralized 20 - 0 - 0 0 23.24 214.92
Dec. Comm. 20 - 0 - 0 0 23.82 216.99
Dec. No Comm. 20 - 0 - 0 0 23.43 214.71

B
G

L
G Centralized 20 - 0 - 0 1 18.36 143.14

Dec. Comm. 20 - 0 - 0 2 20.87 149.78
Dec. No Comm. 19 - 0 - 1 0 20.13 144.86

B. Navigation in Crowded Environments

The proposed method is also capable of resolving sce-
narios with more than two agents. In Table II we show
the results for 20 runs in crowded environments with four
agents. The experiments are run in the maps shown in Fig. 7,
where the vessels are exposed to many encounters in very
narrow spaces. The results show that the centralized and
decentralized method with shared local goals (with commu-
nication) can resolve the task successfully while behaving co-
operatively. The decentralized version of our approach with
no communication (thus predicting goals for other vessels)
incurs in a collision in the tight Bloemgracht’s intersection.
With the four agents so close to each other, the vessels
need to perform large avoidance maneuvers. This causes
the estimated local goals and corresponding predictions to
diverge drastically from the ground truth. However, similarly
to the results in Table I, decentralization has little effect on
arrival time, total distance, and rule violations.

C. Navigation among Human-piloted Vessels

As long as the human-piloted agent behaves rationally, the
resulting trajectories are very similar to the ones presented in
Fig. 6, where all agents are autonomous. Therefore, in Fig. 8
we demonstrate how the proposed decentralized MPPI with
no communication can cope with irrational agents.

D. Computational Complexity

As previously found in the literature [27], we confirm that
MPPI scales linearly with an increasing number of agents
(with constant sample number K). Table III shows that the
algorithm runs at about 10Hz with two agents, therefore in

Fig. 8: Qualitative robustness evaluation for non-cooperative vessels. Left:
The joystick-driven vessel (blue) avoids to the wrong side. The MPPI vessel
(orange) avoids collisions by coming to a complete stop, then continues
to the left. Right: The joystick-driven vessel (blue) blocks the MPPI,
disregarding right of way. The MPPI agent (orange) avoids collisions, comes
to a stop, then continues on its way. Vessels are plotted every 4 seconds.

real-time, and down to less than 4Hz with five agents. We
want to stress that this was achieved with parallelization
of the sampling procedure over the CPU (Intel® Xeon®
W-2123 CPU @ 3.60GHz × 8, 64 GB). Parallelizing this
algorithm on a GPU would be highly beneficial, allowing
for real-time control of several agents [27].

TABLE III: Average computation time tc and standard deviation σt,c for
increasing number of agents

Number of agents 2 3 4 5

tc (ms) 90.7 137.2 182.9 209.9
σtc (ms) 6.7 8.9 17.5 26.0

V. CONCLUSIONS

Within this work, we developed an MPPI controller for
decentralized interaction-aware navigation in urban canals.
In multiple sets of randomized scenarios, we demonstrate
that our method outperforms a state-of-the-art MPC in terms
of success rate, deadlocks, collisions, rule violations, and
arrival times. In extensive experiments among several ra-
tional autonomous agents and case studies with potentially
non-cooperative human drivers, we show robust operation
while providing insights into the limitations of the approach.
We display that decentralizing the MPPI does not sacrifice
performance. Moreover, we demonstrate that the method
would be able to run in real-time with multiple agents. In the
future, however, a GPU implementation would vastly reduce
the computation time. Moreover, the sampling distribution
can be improved, thus requiring fewer samples to obtain a
good approximation of the optimal control.
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