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Abstract

The IoT contains billions of interconnected devices and is only growing
larger by the day. These devices often need to operate for years while keeping
mobile objects, such as animals or vehicles, connected to a larger system.
Therefore they will be battery-powered, energy efficient and, their position
will be tracked. Therefore, connecting these devices requires low-power,
long-range communication that can also be used for localisation. Because of
the scale of the IoT industry, manufacturing and infrastructure costs need
to be considered. The low cost, long range and energy efficiency that is
required exempts many wireless communication and localisation solutions
such as WiFi, GPS and Bluetooth because they are not as suitable as Low-
Power Wide-Area Networks (LPWAN’s). LoRa is a LPWAN technology
that is both Long-Range and cost effective. Therefore, the objective of this
thesis is to use a LoRa network for our localisation algorithms.

In this work we show that signal strength data becomes turbulent when
communicating over a large, urban area. Therefore we evaluate Time Dif-
ference of Arrival (TDoA)-based localisation algorithms, including a novel
area-based algorithm that we developed. We evaluate the localisation al-
gorithms on a proprietary LoRa network which also provides a localisation
service that we use as a benchmark. We evaluate the performance of the
algorithms over a large, mostly urban, region of The Netherlands. Using mo-
bile LoRa devices, we show that for 80% of cases, our proposed algorithm
has a position error less than 925m. We also show that the other localisation
methods, including the proprietary localisation service, have a larger max-
imum position error for the same portion of cases. This work contributes
a localisation algorithm that can compete against proprietary geolocation
services, such as Sigfox and KPN’s services, in many applications.
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Preface

Localisation has been an important field of study for thousands of years,
since sailors needed to find their position on the ocean. In the beginning,
stars and landmarks were used for positioning, calculating angles and dis-
tances by hand. Technology has opened many possibilities in this field, with
processors and wireless technologies allowing us to almost instantly calculate
our position and communicate it to others. In modern times, technology has
advanced even further allowing these processors and communication mod-
ules to become embedded in increasingly smaller devices. This has given
birth to the IoT.

I enjoy IoT projects because of their variety in both technology and ap-
plication. When I spoke to Marco Zúñiga about the thesis topics he was
offering, this topic grabbed my attention not only because it was an IoT-
related project but also because I could make use of KPN’s LoRa network.
For me this was an opportunity to test my skills in the real-world, instead
of attempting to simulate reality in a lab or a small field. The advantage
of this was that I could use the full range of LoRa which was not done in
related works.

There are many people who have helped me during this thesis. Firstly, I
would like to thank Marco for his enthusiasm, support and guidance that
he provided during my thesis. Secondly, I would like to thank Fernando
for finding me a position at The Things Conference and giving his insights
on LoRa. Thirdly, I would like to thank Ioannis for all his help and time,
without which this project would have taken far longer. I would like to thank
the VLC research group for their advice and support whenever I presented
my latest work. I would also like to thank my friends whom have helped
me to expand my comfort zone and, who gave balance to my academic and
social lives. Finally, I would like to thank my family for all their love and
support which has been a cornerstone in my development as an engineer.

David Bissett

Delft, The Netherlands
1st October 2018
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Chapter 1

Introduction

1.1 Motivation

These days, hardly a day goes by where we don’t encounter electronics,
whether it be to pay for groceries or hailing a taxi from your phone. This
convenience of using electronics has created a large demand for electronic
gadgets, making the Internet of Things (IoT) a large area of interest. Some
have even predicted that over 20 billion devices will be connected by the
year 2020 [22, 37]. An added feature for many of these devices is that they
can be tracked. Although this feature is worrisome to many people, it has a
multitude of applications where it proves to be quite useful. This could be
tracking a rhino to prevent poachers [3], tracking a weather station floating
in the ocean [8] or, just tracking your pizza while a teenager delivers it
on their bike. For many of these cases the devices will run on a battery
requiring a lifetime of several years, possibly in a remote location requiring
nearby infrastructure. As with everything, cost can become an issue; more so
when a device is being mass-produced, with manufacturers aiming between
three to five euros per device [24]. Some of the present day solutions for IoT
localisation utilise GPS, Wi-Fi, Bluetooth or a combination of these and
other technologies. However, when looking at what is needed for many IoT
applications, these solutions are often suboptimal.

GPS can be useful for localisation in remote regions as satellites commu-
nicate directly to the device, avoiding the need for nearby infrastructure.
However, the power and cost associated with a GPS can be disadvantage-
ous for an IoT device going to market [27]. In most cases, the device will
also need an extra module for communication. This is not a problem for
Wi-Fi and Bluetooth which can also perform well for localisation in certain
environments. They are mostly used for localisation in a smaller area be-
cause the range of Wi-Fi is typically only around 100m [14], and Bluetooth
even less [32]. Therefore a dense network of access points will be required
for these technologies to cover a large region, greatly increasing the cost of
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deployment.
Power consumption, cost and range are where LoRa has its advantage

over other technologies. LoRa is a low power, long range, wireless com-
munication technology that is also cheap to implement [24]. Due to these
useful properties, LoRa has gained popularity in the world of IoT [37]. It
would therefore be desirable to localise devices with the LoRa signals that
are being used for communication.

1.2 Problem Statement

Much research has already been done on localisation schemes that use wire-
less communication. But as mentioned in our motivation, there are some
disadvantages for many of these solutions. LoRa does not have the same
weaknesses. Thus, we would like to build upon current wireless localisation
algorithms, but instead; use LoRa technology.

To create a more general localisation solution for IoT devices it will be
beneficial to create an algorithm that does not require any information from
extra sensors such as accelerometers for example, as unnecessary sensors
can mean unnecessary power consumption. Continuing with this theme, it
is also better not to temporally synchronise the device with the receivers.
This requires regular communication and thus, more energy.

In order to satisfy these constraints we have chosen to use a Time Differ-
ence of Arrival (TDoA) based approach. We formulate our main research
objective to be as follows:

Develop and implement a localisation algorithm for a LoRaWAN, based
on the TDoA of LoRa transmissions.

In order to test the performance of our algorithm on a LoRaWAN, our
experiment needs to cover an area large enough to experience the effects of
long range communication. Therefore we use a proprietary LoRa network
with nationwide coverage to gather data.

1.3 Contributions

By taking inspiration from various localisation techniques for our algorithm,
we have been able to observe the advantages and disadvantages of these
different methods. My key contributions are:

• Evaluation of area-based techniques to limit the effect of measurement
error on TDoA position estimation.

• Development of a novel TDoA-based localisation algorithm that is
resistant to TDoA measurement error.
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Other works on localisation of LoRa devices work in small areas, avoiding
the challenging characteristics of long-range signals for positioning. In this
thesis we use a nationwide LoRa network for our experiments to fully ob-
serve the difficulties associated with LoRa’s long range and test how various
localisation algorithms will perform with these challenges.

1.4 Plan of Development

In Chapter 2 a few related works, relevant to this thesis, will be presented.
We will then give background information explaining the basics of LoRa,
as well as background information for localisation techniques used in this
thesis. Chapter 3 will then describe the setup that was used during exper-
iments followed by Chapter 4 which will present the different localisation
algorithms that were used and give a comparison between them. Finally we
will present our conclusions in Chapter 5 along with some ideas for possible
future research.
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Chapter 2

Background and Related
Work

This chapter will give background information regarding the topics covered
in this thesis as well as presenting some works related to localisation of IoT
devices. Section 2.1 will discuss some related works, followed by Section 2.2
giving information about LoRa wireless communication technology1. Sec-
tion 2.3 discusses some localisation techniques that will be used in this thesis
and finally, Section 2.4 will explain some necessary geodetic techniques.

2.1 Related Work

2.1.1 GPS Localisation

For localisation of IoT devices, the state of the art technology, in terms
of accuracy, is GPS. In most modern Global Positioning System (GPS)
modules, an accuracy of less than 10m can be observed in an open outdoor
environment [6], with many even achieving centimetre-level accuracy [42].
Based on this, and GPS’s extensive coverage, it can be quite an attractive
solution for IoT localisation. On the negative side, GPS has the disadvantage
of having a higher power consumption, as mentioned in Chapter 1. Using
GPS for localisation consumes more than 10 times the energy of LoRa, when
localisation packets are sent at the same rate. The difference can even be
up to 20 times, if LoRa is configured in an efficient way [20,34,35]. What’s
more, is that in addition to a GPS module, a device will also require an extra
module for communication. With this in mind, it would be more appealing
to use a Low-Power Wide-Area Network (LPWAN) for both communication
and localisation.

1Seeing as all the experiments were carried out in the Netherlands, only the EU spe-
cifications will be covered in this section.
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2.1.2 Localisation Using RSSI in a LPWAN

Two technologies that can be used in a LPWAN are LoRa and, one of
its competitors, called Sigfox. Sigfox is a proprietary, Ultra Narrowband
(UNB), wireless communication technology owned by a company of the same
name. Sigfox, like LoRa, is aimed at IoT devices thus, one of the services
Sigfox offers is geolocation. The localisation algorithm that they use is tri-
lateration with RSSI ranging, which we will briefly describe in Section 2.3.
To improve their results, Sigfox are using machine learning techniques. Des-
pite their efforts, they are still only able to locate devices with an accuracy
of between 1-10km for up to 80% of cases for static devices [4]. For a higher
precision (<500m), they use information from nearby Wi-Fi sources which
is compared to crowd-sourced data. This requires having a Wi-Fi module in
addition to using Sigfox and counteracts the advantages of using a LPWAN
for both communication and localisation.

The results of Sigfox have been improved upon by a few other researchers
using machine learning. One of the improved techniques was presented
in [33]. In this paper, a position accuracy of less than 50m is achieved
for 100% of their cases although, this figure can be misleading. In their
algorithm they already know the location of the device to within a radius
of 200m. They then only need to consider this small area when performing
localisation with Sigfox. Considering that the range of Sigfox can be up to
40km [33], it seems that this is an underutilisation of the technology and,
will not face the same difficulties associated with long range communication.
This is also seen in [21], where LoRa is used for positioning, using RSSI.
They achieve an accuracy of less than 20m. However, in these experiments
an area of only 64x110m was considered.

Sigfox and LoRa are both capable of communication over tens of kilo-
metres so, by only considering localisation over small areas as these works
do, localisation becomes easier and the long range characteristics of these
technologies are not observed. In this thesis we wish to truly test localisa-
tion algorithms, experiencing the challenges of long-range technology. Fortu-
nately, there are a few proprietary LoRa networks with nation-wide coverage
that have been established recently.

2.1.3 Proprietary LoRa Geolocation

Since the invention of LoRa, many companies have started adopting it into
their repertoire of technologies. Telecommunications operators in France,
Switzerland and even KPN here in The Netherlands are among those already
deploying LoRa networks, adapting their existing infrastructure [12]. KPN
is even offering a localisation service using their LoRa network, boasting an
accuracy of less than 100m for 90% of their location estimations for sta-
tionary devices [1]. After doing a lot more research on KPN’s geolocation
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service, not much was discovered except that they use a localisation tech-
nique called TDoA. This revealed to us a problem with proprietary solutions
as well as an opportunity for research. The problem being, that proprietary
solutions remain closed source and can only be used in a black-box manner,
with companies naturally withholding detailed information. Therefore, us-
ing a proprietary LoRa network, we shall develop our localisation algorithm
more openly in order to benefit the scientific community. To the best of our
knowledge there is not yet a localisation algorithm that has been published,
that has been implemented and tested on a nation-wide LoRa network. For
this thesis, we have access to KPN’s geolocation service for our LoRa nodes.
Thus, we will use it as a comparison for our localisation algorithm through-
out this report.

Before we cover various localisation algorithms it would be best to have a
basic understanding of LoRa as this will influence our choice of techniques
for localisation.

2.2 LoRa Wireless Communication

LoRa wireless communication is made up of LoRa’s physical layer and the
LoRaWAN protocol. LoRa modulation is a patented technology that was
acquired by Semtech. Therefore the amount of public documentation on
LoRa modulation is limited. Nevertheless, this section will give a description
of LoRa and LoRaWAN to the best of our knowledge, with a focus on
features that will affect localisation.

2.2.1 LoRa

LoRa is a wireless modulation scheme, implemented at the physical layer
(PHY), that can be used for Long-Range, wireless communication. The
term LoRa is officially only to describe the LoRa PHY. However, in this
thesis the term LoRa will be used to refer to the technology as a whole, as
is commonly done in related works.

LoRa modulation is built upon Chirp Spread Spectrum (CSS) modulation,
making it more robust to noise and interference. CSS works by continuously
varying the frequency of the signal either up or down (up-chirp or down-
chirp). This is done at a fixed rate known as the chirp rate. An illustration
of an up-chirp can be seen in Figure 2.1.

The Doppler effect and multipath interference can change the frequency
or timing of a signal. Because the chirp rate is fixed, there is a direct rela-
tionship between frequency and time in CSS modulation; a useful property
that LoRa takes advantage of to help mitigate this kind of interference [36].

To improve upon CSS, LoRa modulation utilises various techniques to
increase its resilience against noise and interference [19]. One of these meth-
ods involves encoding symbols during LoRa modulation. The number of
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Figure 2.1: Illustration of an up-chirp in CSS modulation.

bits used to encode each symbol is equal to what is called the Spreading
Factor (SF). The SF used by a LoRa device can be any discrete number
from 7 to 12. A higher SF makes the signal more robust to noise, allowing it
reach more receivers that are further away. Having more receivers improves
the accuracy of localisation [21], making the SF an important parameter to
consider when developing a localisation algorithm.

Using a SF of 12, LoRa can achieve a range of up to 30km in open,
outdoor environments [29]. Some experiments have even found that LoRa
signals can be received at distances of a few hundred kilometres, with the
record standing at a distance of 702.7 km for a successfully received LoRa
transmission [39]. Intuition would then conclude that a SF of 12 should
always be used. However, a SF of 12 also has the slowest data rate. A
slower data rate means that a device will need to be on air for a longer time
to transmit the same amount of information. This has the disadvantage
of creating more interference for other devices using a similar frequency,
as well as creating unnecessary traffic for LoRa networks. For this reason,
many network operators strongly encourage the use of an adaptive data rate
(ADR) [28]. When ADR is enabled a device will use the lowest possible SF
that can still achieve a stable connection [31]. This results in each LoRa
transmission being received by a minimal number of gateways which can
be detrimental for localisation. To understand more about the interaction
between LoRa devices and the gateways it’s best to look at the LoRaWAN
protocol.

2.2.2 LoRaWAN Protocol

LoRaWAN is a specification, developed by the LoRa Alliance, that defines
the communication protocol and network architecture used by LoRa. The
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LoRaWAN protocol is implemented on top of the LoRa PHY which is ag-
nostic to protocols implemented on top of the physical layer. LoRaWAN
covers many topics including security, amongst others, but for understand-
ing the topics presented in this thesis it is only necessary to explain the
network architecture. If we look at the network topology used in a LoR-
aWAN, illustrated in Figure 2.2, we can get a better understanding of how
LoRa devices interact with the network.

Node

Node

Node

Node

Network
Server

Gateway

Gateway

Application
Server

Application
Server

Application
Server

Figure 2.2: Network topology defined by LoRaWAN.

The different colours of the end nodes in this figure are used to distinguish
between each individual node and, to link the nodes with their respective
communication channels. Starting at the end of the network, on the left of
Figure 2.2, the nodes are connected directly to the gateways via LoRa. The
end nodes are not assigned a specific gateway. Rather, a transmission sent
by a node is received by all the gateways that are able to receive it. When
a gateway receives a transmission, it immediately gives it a timestamp as
well as recording the Received Signal Strength Indicator (RSSI) and the
Signal to Noise Ratio (SNR). The data from the transmission, along with
the meta-data recorded by the gateway, is then sent to the network server.
For localisation, this meta-data is very important, which will become clear
in the next chapter. From the network server, the data is then sent to the
appropriate application server. This is where the data from the end devices
can be processed, for example, to perform localisation. However, in our case
we download our data and process it offline.

If an application server needs to send a message to the LoRa device, the
message will first be queued at the network server and then forwarded to
the LoRa device during its next receive window. This is dependent on the
mode of operation of the LoRa device. In [23], the LoRa Alliance lists three
modes of operation for a LoRa enabled device. These modes are denoted A,
B, and C and are defined as part of the LoRaWAN protocol. Mode A is the
simplest mode and forms a basis for the other two modes. Therefore, when
creating a generalised localisation algorithm for LoRa, only mode A needs
to be considered.

Mode A is supported by all devices and, it is the most energy efficient of
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the three modes. In mode A, a device only transmits a signal when it has
data that it needs to send, much like the ALOHA protocol. After the device
sends a signal to the network, it then opens two receive windows. Once
both receive windows are closed, the server has to wait until the device’s
next transmission to send a message back to the device [23].

Even though this mode allows devices to be more energy efficient, it has
consequences that make certain tasks more difficult. For example, in a po-
sitioning algorithm, if localisation was not possible for a certain signal, it
would be difficult to request a new transmission. Another task that be-
comes difficult is time synchronisation. Even though this is already energy
intensive for an IoT application, it becomes infeasible using mode A. There-
fore, a localisation algorithm that requires a device to be synchronised with
the network would not be practical. To understand a bit more about the
requirements and methodology behind different localisation techniques we
provide relevant explanations in the next chapter.

2.3 Localisation

Localisation is an ancient practice with early navigators using stars and
landmarks to find their way thousands of years ago. These days navigation
techniques remain relatively similar, replacing stars and landmarks with
satellites and radio towers. Of course, there are also many new techniques
that have been developed over time. This section will describe some of the
basic principles of localisation as well as some fundamental techniques.

2.3.1 Localisation Basics

In order to locate a device we first need some points of reference with known
locations which we call anchor points. Using these anchor points, there
are three popular techniques that can be used to locate a device. These
techniques are triangulation, trilateration and multilateration.

In triangulation, the location of a device can be estimated using the geo-
metry of a triangle that is formed between two anchor points and the device.
The geometry of the triangle can be calculated using the Angle of Arrival
(AoA) of a transmission from the anchors to the device, or vice versa. How-
ever, using AoA measurements is not suitable for LoRa’s long range because
the errors become larger the further away a device is from the anchor points.

The next technique to consider is Trilateration, which has already been
used in research on localisation for LoRa devices [21,40]. Trilateration uses
the distance between a device and each anchor point. The distance from a
device can be estimated in two ways: using Time of Arrival (ToA) measure-
ments or, RSSI ranging.

In the ToA method, the time of transmission must be known, requiring the
device to be synchronised with the network and to use a precise clock. This
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requires extra communication overhead and, extra cost; not ideal for cheap,
battery-powered devices. Therefore, ToA will not be considered further.

RSSI ranging has already been used for trilateration in LoRa networks
thus, it would be remiss not to discuss it in this report.

2.3.2 RSSI Ranging

The basic principle behind using the Received Signal Strength Indicator
(RSSI) for ranging is to use the signal power that is lost between trans-
mission and reception to calculate the distance covered by the signal. The
signal power that is lost over the communication medium is known as the
path loss. The path loss can be determined from what is called the link
budget, a summary of all gains and losses from the transmitter, through all
transmission mediums, to the receiver. This can be characterised in a simple
manner with the equation [36]:

PRx = PTx +GRx +GTx − LPL (2.1)

where PRx is the signal power at the receiver, in dB, where we can substi-
tute the value of RSSI. PTx is the signal power at the transmitter and, GRx
and GTx are the gains of the antennae used by the receiver and transmitter
respectively. Once we have substituted RSSI into (2.1) to calculate the path
loss, we need to relate it to distance in order to calculate how far the signal
travelled.

Theoretically, as a wireless signal propagates through free space, the path
loss increases proportionally to the square of the distance it travels from the
point of transmission [15]. In reality, this is not usually the case as there
are many sources of interference, especially in urban areas. In this case,
it is more appropriate to estimate distance using the log-distance path loss
formula [10]:

LPL(d) = LPL(d0) + 10γlog

(
d

d0

)
+Xσ (2.2)

where LPL(d) is the path loss, in dB, at distance d, LPL(d0) is the path
loss at a reference distance d0, γ is the path loss exponent and, Xσ is the loss
from shadow fading with a zero mean Gaussian distribution and a standard
deviation of σ.

Substituting the path loss into (2.2) and rearranging the formula, we
can solve for the distance d. But first, we need to obtain values for γ
and, LPL(d0). This can be done using empirical measurements. In [29],
Petäjäjärvi et al. found that γ = 2.32 and LPL(d0) = 128.95dB in the city
of Oulu, in Finland. However, in [18], Jörke et al. found that γ = 2.65 and
LPL(d0) = 132.25dB in the city of Dortmund, in Germany. The discrepancy
in these values was due to different building densities for Oulu and Dortmund
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[18]. Therefore, we cannot assume a general value for γ or LPL(d0) and will
have to estimate these values using our own measurements.

Works that have located LoRa devices with RSSI either used a small
area [21] or, work in open, rural areas with minimal interference [3, 40].
However, obstacles in an environment severely increase the variability of
RSSI measurements, relating to distance variability of up to 5km [18] or
more [29]. Therefore, in Chapter 4 we will only show the variability of RSSI
ranging in a large urban environment and will not be using it for localisation.
A more promising technique is TDoA localisation which we will explain in
the next section.

2.3.3 TDoA

As mentioned in Section 2.3.1, there is a third common method of localisa-
tion called multilateration. This method does not require the exact distance
from a device to each anchor point but rather, only the differences in dis-
tance from each gateway to the device. The difference in distances can be
calculated with the Time Difference of Arrival (TDoA) of a signal from a
device to the anchor points or vice versa. Because of this, it is often referred
to as TDoA localisation.

TDoA is a popular technique for localisation as it does not require the
transmitter to be synchronised with the receivers. This is because TDoA
only requires the differences between the timestamps of a transmission. If we
recall from Section 2.2.2, these timestamps are given at each gateway when
receiving a transmission. Because TDoA does not require a timestamp from
the device, the receivers only need to be synchronised with each other. An
explanation of how to use TDoA for localisation will be given below.

Let us say that when a LoRa signal is transmitted from a device, it is
received by n gateways. These gateways will be our anchor points because
we know their locations. Each gateway will be at a slightly different distance
to the device therefore, they will receive the LoRa transmission at different
instances in time.

Because TDoA uses the difference in time, there is one measurement for
each possible pair of gateways. The total number of possible pairs, for a
certain transmission, is then given by the binomial coefficient:

(
n
2

)
. For

each of these gateway pairs, the Time Difference of Arrival (TDoA) can be
represented by ∆ti,j = tj − ti, where 1 ≤ i < j ≤ n and, ti and tj are the
timestamps for gateways i and j.

Theoretically, by using the time differences from all the possible gateway
pairs, we can then calculate the position of the transmitter if the signal was
received by at least three gateways. The differences in the two timestamps
for a gateway pair, ∆ti,j , shall be referred to as the TDoA measurement.
The distance that can be calculated from the TDoA measurement will be
referred to as the TDoA distance. This distance can be calculated using the
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common velocity formula and solving ∆di,j = c∆ti,j where c is the speed of
light through air.

Using a TDoA measurement, we can create a hyperbola consisting of all
the possible points of where the node could be, i.e. points with a constant
TDoA measurement for a given gateway pair. Gustafsson and Gunnarsson
give a derivation of the equation for such a hyperbola in [16] which will be
explained in this section.

To compute the hyperbola, we have to assume that the two gateways in
a pair are situated on the x-axis, equidistant from the y-axis. Let us define
the distance between the two gateways as D. Therefore the gateways lie at
x = D/2 and x = −D/2. The hyperbola can then be represented by all the
possible points (x, y) calculated with the equation shown below.

x2

∆d2/4
− y2

D2/4−∆d2/4
= 1 (2.3)

Where ∆d is the difference in distance calculated from the respective
TDoA measurement.

To calculate the asymptote of the hyperbola, we solve for y, in (2.3), for
when x� ∆d2/4 and y � D2/4−∆d2/4:

y = ±

√
D2/4−∆d2/4

∆d2/4
x (2.4)

The derivation of (2.3) and (2.4) from [16] has been added to Appendix
A.

It should be noted that the

(
x
y

)
coordinates used for drawing a hyperbola

are only “local coordinates” that are specific to a pair of gateways. This
means that they need to be mapped onto the 2D representation of the Earth,
called the “global coordinates” [16]. Only then can each hyperbola be related
to one another. Converting from local coordinates to global coordinates
simply involves a rotation and then a translation of the two-dimensional
plane. This is expressed as follows [16]:(

X
Y

)
=

(
X0

Y0

)
+

(
cos(α) −sin(α)
sin(α cos(α)

)(
x
y

)
(2.5)

where

(
x
y

)
are the local coordinates to be converted,

(
X
Y

)
are the resulting

global coordinates and,

(
X0

Y0

)
is the midpoint between the two gateways.

Lastly, α = arctan
(
Yi−Yj
Xi−Xj

)
represents the angle formed between the two

gateways and the global x-axis. Using (2.5), we can represent the hyperbolic
function of a TDoA measurement in global coordinates. An example is
shown in Figure 2.3(a).
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(a) (b)

Figure 2.3: Hyperbola representing all the possible node positions for a
single, ideal, TDoA measurement (left). Hyperbolae from multiple, ideal,
gateway pairs’ TDoA measurements intersecting at the node’s position
(right).

In Figure 2.3 the black dots represent LoRa gateways, and the red dot
represents the node’s actual position, in global coordinates. On the right-
hand side we can see how the TDoA measurements from other gateway pairs
(not shown) generate more hyperbolae. As we can see in Figure 2.3(b),
the hyperbolae intersect at different points but the single point where all
hyperbolae intersect each other indicates the node’s position. This example
of TDoA describes an ideal situation but in reality error arises from TDoA
measurement uncertainty [16]. In Chapter 4 we will cover this in more detail.

2.4 Geodesy for Localisation

In order to implement the localisation algorithms from Section 2.3, it’s easi-
est to work in two dimensions. Therefore in Section 2.4.1 we describe a
method of map projection which is used to represent the Earth’s surface
as a two-dimensional (2D) plane. We will then present a technique in Sec-
tion 2.4.2 to find the distance between two points on the Earth, which can
be used to validate the 2D coordinate system that is used.

2.4.1 Equidistant Cylindrical Projection

To represent the Earth’s surface as a 2D plane, a map projection technique
needs to be used. Because the Earth is an ellipsoid and not flat, projecting
the Earth’s surface onto a 2D plane introduces distortions. Each method
of projection typically tries to preserve certain geographical features. Sim-
ultaneously, other features become distorted. We present two examples in
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Figure 2.4.2

(a) (b)

Figure 2.4: Illustration of sinusoidal projection (left) and equidistant cyl-
indrical projection (right).

On the left of this figure we see sinusoidal projection which preserves area
and, also preserves distances along the lines of latitude. However, it distorts
the lines of longitude [38]. On the right we see an example of cylindrical
projection. In this thesis, we will only consider cylindrical projections that
use the Earth’s poles as bounds for the y-axis in the 2D plane, as shown on
the right of Figure 2.4. This is because, in this type of projection, the lines
of latitude and longitude remain parallel with the x and y axes respectively.
Therefore, we will not have to compensate for any curve in the axes when
mapping out various geographical positions or plotting hyperbolae.

The most common cylindrical projection is Mercator projection, which
is used in most school text books and is even used by Google Maps [2,
38]. Mercator projection not only stretches lines of latitude to keep them
the same length but, it also stretches the lines of longitude to preserve
angles for navigation. The distortion that this introduces would complicate
localisation and, its projection formulae are more computationally expensive
than other cylindrical projections. Therefore, we will not be considering it
further.

A much simpler method is the Equidistant Cylindrical projection, shown
in Figure 2.4. This technique was credited to Marinus of Tyre circa A.D. 100.
Almost 2000 years later, it is still used by a few well known organisations
such as NASA and the US Geological Survey [26, 38]. This technique pro-
jects lines of latitude and longitude as equidistant, straight lines, resembling
a Cartesian plane and, preserving distances along the lines of longitude.
The equations that are used to convert a location’s geodetic coordinates
to Cartesian coordinates (i.e. latitude and longitude to x and y) are as
follows [38]:

x = R (λ− λ0) cos φ1 (2.6)

y = R (φ− φ1) (2.7)

2The Basemap toolkit from Matplotlib for Python was used to draw these maps. The
data outlining land masses are from openstreetmap and were downloaded from [25]
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where R is the radius of the Earth and, φ and λ are the latitude and
longitude respectively. λ0 is known as the central meridian, which is the line
of longitude that will be used as the y-axis. φ1 is known as the standard
parallel, which is the line of latitude that will be used as the x-axis. The
standard parallel is used as the reference distance thus, it is true to scale
and has no distortions along its length [38]. All other lines of latitude are
projected to the same length, stretching if nearer the poles and shrinking
if nearer the equator. Therefore, the standard parallel needs to be chosen
near the centre of the region being considered for localisation to minimise
distortion.

Once we estimate the x and y coordinates of a device, we will need to
convert back to latitude and longitude. This can be done using the inverse
equations of (2.6) and (2.7):

φ =
y

R
+ φ1 (2.8)

λ = λ0 +
x

R cos φ1
(2.9)

To quantify the position error of our algorithms we can calculate the dis-
tance between our estimation and the actual position of a device. When
working in a 2D plane it is easiest to use the Pythagorean distance formula.
However, the distortions of map projection may cause error in our experi-
ments which should be evaluated to ensure that it is within acceptable limits.
Therefore, we need a technique to find the distance between two geodetic
coordinates.

2.4.2 Great-Circle Distance

A technique often used in surveying to find the distance between two geo-
graphical locations, is the great-circle distance [38]. In this technique, the
Earth is assumed to be a sphere with a constant radius to simplify calcu-
lations. In reality the Earth is an ellipsoid, therefore this assumption will
introduce some error in the distance calculation but, this is never more than
0.5% of the actual distance [5]. To calculate the Great-Circle distance we
use the formula shown below [41].

∆d = R cos−1(sin(φ1)sin(φ2) + cos(φ1)cos(φ2)cos(λ1 − λ2)) (2.10)

where ∆d is the distance between two points on a sphere, R is the radius
of the Earth and, φ1, λ1 and φ2, λ2 represent the latitude and longitude of
the first and second point respectively.

This formula can be used for validating our position error calculations but
before that is possible, we need to collect data and perform our experiments.
The setup that we use to do this will be described in the next chapter.
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Chapter 3

System and Experimental
Setup

In this section we will describe the setup and method that we used to gather
data. In Section 3.1 we will give details about the nodes that were used to
gather data. Section 3.2 will then describe the LoRa network that was used,
which will be followed by Section 3.3 where we will explain how and where
our data was collected and how it was filtered. Finally, Section 3.4 will de-
scribe our software framework for implementing the localisation algorithms.

3.1 Mobile LoRa Nodes

As we have already mentioned, we want to test the performance of our
localisation algorithm over a large region. Within this region, we also need
data from many different locations. The only feasible way to achieve this
would be to use mobile LoRa nodes, carried by volunteers to many different
locations within The Netherlands. Fortunately, our research group already
has LoRa capable devices that can be used, and are small enough to fit
in the someone’s pocket. The devices that we are using are the TraceME
TM-901 / N1C2 from KCS shown in Figure 3.1.

It should be noted that the nodes are proprietary, limiting the configur-
ation options. The nodes send a transmission every 5 minuted when they
detect they are moving and every 15 minutes when stationary. These in-
tervals could not be changed for our devices. The LoRa module used by
the N1C2 is the SX1272 transceiver module from Semtech. According to
the N1C2 datasheet [20], it has a receive sensitivity of -137dBm. For our
experiments we use the maximum transmission power allowed in the sub-
bands that we use which is 14dBm. The frequency that we use for LoRa
communication is 868MHz. The nodes are set to use mode A because this
mode is supported by all LoRa devices and is the most energy efficient, as
we mentioned in Section 2.2.2.
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Figure 3.1: One of the mobile LoRa nodes that were carried by volunteers
to gather data.

The payload from the mobile nodes includes the GPS location of the node,
at the time of transmission. This serves as the ground-truth for validating
our localisation results. The GPS module on-board the N1C2 is the Quectel
L70 GPS module. This module has an accuracy of 2.5m CEP (Circular Error
Probability), meaning that 50% of GPS measurements are within 2.5m of
the device’s actual location. Once the transmission is sent from the LoRa
device, it is received by multiple gateways. It is then handled by the LoRa
network that we use, perhaps the most important part of our system.

3.2 LoRa Network

The most critical property of a network for localisation is the accuracy of the
synchronisation of gateways This is because it directly impacts the accuracy
of the system. An error of 1µs in a TDoA measurement relates to 300m
error. Seeing as we need such accurate synchronisation and we would like
to cover a large area, the best option is to use KPN’s LoRa network which
has timestamps on the order of nanoseconds and nation-wide coverage. To
collect the data, we usedKPN’s ThingPark R© which not only provides data,
but also the meta-data that we need for localisation. For each transmission
that was sent by our nodes, the wireless logger stores the timestamps from
each gateway that receives it (up to nine decimal places, and up to 10
gateways), the Signal-to-Noise Ratio (SNR), the Received Signal Strength
Indicator (RSSI) and, what KPN calls the Estimated Signal Power (ESP)
which will be explained in Section 4.1. The wireless logger also included the
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ID’s of the gateways that received each transmission which could then be
used to look up the gateway locations.

3.3 Data

This section will describe the method that we use to collect our data, as well
as how we select the data that is suitable for localisation.

3.3.1 Collection

As we have already mentioned, we need multiple nodes gathering data from
many locations. Therefore, we use 19 N1C2 nodes to collect data using
volunteers. Overall we collected the data and meta-data of just over 20
thousand LoRa transmissions. This was mostly collected in the cities of
Delft and Amsterdam. However, when travelling around the Netherlands,
volunteers took a node with them. The GPS locations of all the data points
have been plotted in red in Figure 3.2.

The railways of the Netherlands have been plotted in grey and we can see
that a few node trails seem to follow these tracks1. Besides these uplinks
from trains, most of the volunteers’ data are from when they were cycling,
walking, or stationary.

3.3.2 Data Selection

Once we have downloaded the data from KPN’s wireless logger, we need to
filter out data that cannot be used for localisation. Filtering is done in three
rounds, or levels, as we will refer to them.

For level 1 filtering, recall that the data for each transmission contains
the meta-data for each gateway that received it. Level 1 filtering removes
gateways from a transmission’s meta-data if the gateway did not properly
record a timestamp or, if the gateway’s location is unknown. For example,
if a transmission was received by nine gateways and we did not know the
position of one of the gateways, we would remove its meta-data from the
transmission. It would then appear as if this transmission was only received
by eight gateways. These remaining gateways will be used as anchor points
in our localisation algorithms. After level 1, we can perform level 2 filtering.
This level simply removes all transmissions that have fewer than three anchor
points.

Level 3 filtering is performed whenever TDoA measurements are used.
The need for this stems from the mathematical limits imposed by (2.3). To
obey these limits, we need to reject any TDoA distances that are larger

1The Basemap toolkit from Matplotlib for Python was used to draw this map. The data
for railways, buildings, roads and waterways are from openstreetmap and were downloaded
from [25]
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Figure 3.2: The GPS locations of all the LoRa uplinks during our experi-
ments.

than the distance between the corresponding gateways. If we think about
the limits in terms of physics the maximum TDoA distance possible is the
distance between the gateway pair. If the TDoA distance is greater than this
it means that there is error in the timestamp, likely caused by multipath,
which is undesirable. To understand level 3 filtering, let’s regard a trans-
mission as being a dataset of TDoA measurements. In this way we filter
out individual TDoA measurements that violate the mathematical limits,
without removing the meta-data for the corresponding anchor points. For
the final stage of level 3, if there are any transmissions with fewer than three
TDoA measurements, these transmissions will also be removed.

Level 1 filtering is done for every application but, on its own, is only
suitable for data analysis. Level 2 is performed for all localisation algorithms
because all of the algorithms that we test require at least three anchor points.
Level 3 filtering is done for all algorithms that require TDoA measurements.
Because our data filtering fits in these standard levels, they will form a part
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of our basic software framework, which is explained in the next section.

3.4 Software Framework

We use a software framework for the localisation implementations because
of the functions that they have in common. All of our data from KPN’s
wireless logger are downloaded as a CSV file and then processed off-line
using Python.

3.4.1 Data Mapping

For our localisation algorithms, we need to be able to plot our data in a
2D plane using Global Coordinates. Therefore, we first create functions for
parsing our data, using the pandas library. We then create functions to
implement Equidistant Cylindrical projection for mapping coordinates to
2D. Two important input parameters for the projection functions are the
standard parallel and the central meridian as they will form the origin in the
2D Cartesian plane. To improve accuracy these parameters were different
for each transmission. The values that we inputted for the standard parallel
and the central meridian was the centroid position of the gateways that
received the transmission.

The projection functions convert individual coordinates but, area-based
localisation techniques require mapping various regions. For this we used
OpenCV to represent an area as a 2D array. This was a useful way of
manipulating data as the array’s could be viewed as grey-scale images to
observe how an algorithm works. Each pixel of an image represented a
20x20m area. Therefore the size of the image was dependent on the locations
of the gateways that received the transmission. We chose to vary the size
of the image as opposed to varying the area represented by a pixel because
LoRa’s long range means that the area could be over 150km in length or
less than 5km. Therefore, if a standard image size was used, the accuracy
would either be compromised for larger regions or, unnecessarily accurate for
smaller regions which would drastically increase the algorithms’ computation
time.

The last functions that we need before we can implement our algorithms
are the data selection functions to filter our data. These functions imple-
ment the different filtering levels from Section 3.3.2. However, this does not
conclude our framework as we still have to handle the results.

3.4.2 Validation of Results

The final piece of our software framework is data validation. To do this,
we need a metric for the position error. The simplest method is using the
Pythagorean distance formula on our 2D plane. However, we need to be sure
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that there is not too much error introduced by map projection. Since KPN’s
network covers the whole of The Netherlands we will measure the distance
between (50.7504◦N, 3.3580◦E) and (53.5550◦N, 7.2278◦E), the intersections
of the most extreme lines of latitude and longitude in The Netherlands2.
Using great circle distance we calculated the distance to be 408.093km. For
our map projection, we used the mean latitude and longitude of the two
coordinates for the standard parallel and the central meridian respectively.
The distance we calculated using the Pythagorean equation is 408.215km.
Therefore the most extreme error that we can expect is only 122m, or 0.02%,
which is negligible3. Seeing as the error is so small, we will calculate position
error using the Pythagorean equation on the 2D plane.

This concludes our setup for collecting and manipulating data. Of course,
any system is not without its limitations. Therefore we need to examine all
the possible limitations that our setup could have, and how this could affect
our experiments and results.

3.5 Limitations

Due to our method of data collection, there are a few limitations that we
expect may influence the results of our experiments and, the parameters of
our algorithms. The limitations that we foresee are as follows:

• Limited rural data — Because Delft and Amsterdam are built-up
cities, most of the data collected are from urban areas. Therefore we
did not have much data from rural areas, which generally allow for
longer range and have fewer sources of interference [12].

• Few Modes of Transport — Most of the volunteers use bicycles as
a mode of transport or, they go by foot. This means that parameters
for our algorithms or, motion-models that are inferred from this data,
may not be suitable for other applications.

• Long Intervals Between Uplinks — Because of the 1% duty cycle
rule, there are long intervals between uplinks. This is a problem in-
herent to most of the sub-bands used by LoRa, which means that it
will not likely be suitable for applications that require frequent, real-
time, location information. It also means that our algorithm may not
perform as well with other wireless technologies.

• No Height Information — We do not have any height information
for our gateways and therefore our data is forced to be in a two-
dimensional plane. Adding to this, The Netherlands is very flat which

2These extreme lines of latitude and longitude were found using Google Maps.
3As we mentioned in Section 2.4.1, the standard parallel should always be near the

middle of the region being considered for localisation otherwise the error can increase to
1.3%.
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might be fortunate when working in two-dimensions, but may also
mean that our results favour our final algorithm which may perform
worse in a more mountainous region or when using aerial devices.

• Black-box Network — Using a proprietary network, although it has
many advantages, also has many disadvantages. First, although KPN
has provided us with a document containing gateway locations, not
all gateway locations are listed. Second, although KPN says their net-
work is synchronised on a nanosecond level, we do not know if the
timestamps are indeed accurate to 1ns as we do not have any specific-
ations from KPN about their time synchronisation such as jitter and
latency. Therefore, the black-box nature of the network puts us at a
disadvantage due to lack of information and no way of troubleshooting
errors within the system.

• ADR Enabled — One of the configuration limits of our nodes is that
we are not able to disable ADR. Disabling ADR is usually recommen-
ded by network providers for moving devices as it makes it difficult for
the network to assign the optimal SF [28]. If we were able to set the
SF to stay at 12 our LoRa transmissions would be received by more
gateways therefore improving our localisation results [21].
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Chapter 4

Localisation Implementations
and Comparison

This chapter covers the development of our localisation algorithm. We have
developed our final algorithm in a series of stages. At each stage we determ-
ine the results of an implementation and then try to improve on it.

To begin with, we will determine the reliability of RSSI ranging in Sec-
tion 4.1. This will be followed by Section 4.2, which describes a technique
that we developed for estimating an initial position, used as a start for
other algorithms. The first being the TDoA NLMS localisation technique
from [16] described in Section 4.3. The second being a modified version of
the APIT algorithm described in. Section 4.4. Next, in Section 4.5, we will
describe a novel localisation algorithm that we developed, called Multilateral
Dissection (MLD). In Section 4.6 we will evaluate the effectiveness of using
a device’s previous position in MLD localisation, followed by Section 4.7
in which we refine the area used by MLD, by using the asymptotes of the
TDoA hyperbola. Lastly, in Section 4.8, we give a summary of the chapter
and a comparison of all the localisation algorithms.

4.1 RSSI Ranging

LoRa localisation has only been attempted using RSSI ranging for trilatera-
tion as far as we know, besides KPN’s service. However, as we mentioned in
Section 2.1, the localisation that was performed in [21] was only done over
a small area. Therefore, in this section we wish to investigate the reliability
of RSSI ranging in a LoRa network over a much larger urban area.

A feature that peaks our interest when considering the received power
of LoRa signals is the Estimated Signal Power (ESP). ESP is a value that
KPN adds to the meta-data of a signal but we find almost no mention of it
in LoRa research, save for a few exceptions [30, 31]. Reading through these
exceptions we learnt that ESP is quite useful for RSSI ranging in LoRa
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networks. Because of the modulation that LoRa uses, LoRa signals are able
to be received below the noise floor. ESP caters for this as it represents the
RSSI value with noise taken into account. Although we can simply use the
ESP values that KPN provides, we will show how ESP relates to RSSI to
provide a deeper understanding.

First, let’s express RSSI in terms of the received signal power and the
level of noise, shown below [30]:

RSSI(Watt) = PRx(Watt) +NWatt (4.1)

If we then replace N(Watt) in terms of SNR(Watt) =
PRx(Watt)

N(Watt)
we can solve

for PRx(Watt) which is the ESP in this case. In logarithmic form, we are left
with the following formula [30]:

ESP(dBm) = RSSIdBm + SNR(dB) − 10log10
(
1 + 100.1SNR(dB)

)
(4.2)

Note that if ESP values were not given to us by KPN, we could calculate
them in this way. Once we know the ESP we can then continue with RSSI
ranging in the same manner as we described in Section 2.3.2; use the ESP
as the received signal power, PRx, in (2.1) to calculate the path loss, then
calculate distance using (2.2).

If we recall from Section 2.3.2, we need to find the path loss exponent γ
and the reference path loss LPL(d0). To estimate these values, we need to
measure the path loss at different distances. To measure this we used our
dataset with level 1 filtering. However, this filtering is not enough for ana-
lysing path loss. To control as many variables as possible, we chose a single
gateway in Delft that had received a large portion of LoRa transmissions.
If we recall from Section 2.2.1, a higher SF enables a transmission to be
received at further distances. Therefore we only selected transmissions that
used a SF of 12, for which we had the most data. This left us with 3620
path loss values and corresponding distances. These data points can be seen
in Figure 4.1.

From this plot we can see that most of the data points are within 15km.
However, there are also a few data points that exceed 100km for the same
path loss. This tells us that most of this data was affected by interference,
most likely from buildings blocking the signals’ paths. We fitted a logar-
ithmic line of best fit to our data in order to determine the parameters
for the path loss equation. From the line of best fit, we found γ = 1.25
and LPL(d0) = 155.03dB. However, this data had a weak correlation, with
r2 = 0.1149. This was expected as our experiment was performed in an
urban area. However, this means that we cannot trust the path loss para-
meters that we calculated. When we repeated this experiment for other
gateways, we were faced with the same problem, weak correlation. Therefore
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Figure 4.1: Plot of path loss (dB) vs. distance (km)

we will not pursue trilateration with RSSI ranging as a localisation solution.
Rather, we shall focus on techniques that use TDoA measurements.

4.2 Initial Position Estimate

Some of the algorithms in this chapter require an Initial Position Estimate
(IPE). Therefore, we will describe our method for estimation here to avoid
repetition.

For our IPE we do not need it to be extremely accurate as this will be
taken care of by other algorithms. The options for a rough position estimate
would be to use either a range-based localisation method, or a range-free
method. Our options for range-based techniques either involve time, which
is what we are currently attempting already with TDoA, or RSSI which is
unreliable in an urban environment as we’ve shown in the previous section.

Therefore, we investigated range-free localisation techniques. In [11] a
centroid-based algorithm is proposed. In this algorithm all the anchor points
send out a beacon containing their respective locations. The node can then
estimate its position using the following formula which calculates the mean
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x and y coordinates from all the received anchor positions:

x̂, ŷ =
x1 + ...+ xn

n
,
y1 + ...+ yn

n
(4.3)

where x̂, ŷ represent the position estimate and, n represents the number
of gateways.

Using only the mean position for an estimation would not be an optimal
solution for LoRa, as its long range can result in a very distant gateway
still receiving the transmission and, having a large influence on the centroid.
In [9], Blumenthal et al. use a weighted centroid algorithm. Their weights
were based on the Link Quality Information provided by Zigbee, which is not
available in LoRa communication. Therefore, we devise our own weighting
system.

With RSSI measurements being unreliable, we chose to use the timestamps
at each gateway to determine its weight on the centroid. Intuitively, the
earlier the timestamp, the closer the gateway should be to the node. Using
this intuition we can create a formula for weighting the position of gateway
i:

wi =
tn − ti
tn

(4.4)

where ti is the timestamp of a transmission received at gateway i and tn
is the timestamp of the last gateway to receive the transmission.

A problem with this formula is that wi −→ 0 when ti −→ tn. Therefore
an extra term is needed to give a minimum weight for each gateway. We
would like this term to be inversely proportional to n because if there are
few anchor points, each gateway’s position becomes more important. The
resulting weight formula is then:

wi =
tn − ti
tn

+
c

n
(4.5)

where c is a constant. Using this formula, we can sum all of the weighted
gateway positions to get x̂, ŷ, provided that we first normalise the weights
so that

∑n
i=1 w̃i = 1, where w̃i represents the normalised weights. Finally,

we have the following formula for an initial position estimate:(
x̂
ŷ

)
=

n∑
i=1

w̃i

(
xi
yi

)
(4.6)

We then tested the performance of this initial estimation, using our data-
set with level two filtering, leaving us with 7585 transmissions. When testing
the performance of this method, we were able to empirically determine the
value for the constant from (4.5) as c = 0.1. The median accuracy of this
algorithm is 1.24km with 80% of cases being within 2.76km of the node’s
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actual position. Considering the simplicity of this algorithm and, the fact
that Sigfox’s geolocation has an error between 1-10km for 80% of cases, we
can conclude that our algorithm performs rather well as an initial estimate.
A downfall of this method is that it will always fall within the perimeter
outlined by the anchor points because it is a centroid. Therefore it will incur
a higher error when a transmission is only received by gateways on one side
of the node. However, this algorithm is just an initial step which we will
build upon in the sections to come.

4.3 TDoA with Normalized Least Mean Squares

Using TDoA measurements is a popular technique for localisation using wire-
less signals. However, as we mentioned in Section 2.3.3, TDoA measurement
error is detrimental to the performance of localisation. To account for errors
in the recorded timestamps, we decided to implement the Non-linear Least
Mean Squares (NLMS) algorithm with Stochastic Gradient Descent (SGD)
which was proposed by Gustafsson and Gunnarsson in [16].

To explain their method, let’s first declare some definitions. If a node at
position (X,Y ), in global coordinates, sends a transmission that is received
by n gateways, then for each unique pair of gateways, at positions (Xi, Yi)
and (Xj , Yj), there is an ideal TDoA distance, h(X,Y ;Xi, Yi, Xj , Yj).

We can then define a non-linear system of equations;

∆di,j = h(X,Y ;Xi, Yi, Xj , Yj), 1 ≤ i < j ≤ n (4.7)

where ∆di,j is the TDoA distance computed from the transmission’s timestamps
at gateways i and j.

From this, the non-linear least squares estimate of (X,Y ) is given as [16]:

(X̂, Ŷ ) = arg min
(X,Y )

∑
i<j

(∆di,j − h(X,Y ;Xi, Yi, Xj , Yj))
2 (4.8)

Gustafsson and Gunnarsson’s preferred approach to solve this problem
was to use SGD with a normalised LMS step size [16]. Ideally, this approach
should iteratively estimate positions closer and closer to the node’s location
until it has found a position where the LMS error is at a minimum. To
represent position, let P = (X,Y ) for simplicity’s sake. A formula can then
be written that will iteratively minimise the error from (4.8) [16].

Pm+1 = Pm − µm h′P (Pm) (∆d− h(Pm)) (4.9)

where µm is the normalised LMS step size. In this equation ∆d = (∆d1,2, . . . ,∆dn−1,n)T .
Likewise, h(P ) is related to this, following from (4.7). Lastly, h′P (P ) is the
derivative of h(P ). For the first position, when m = 0, we used our initial
position estimate from (4.6).
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The formula for the normalised LMS step size, µm, taken from [16] is as
follows:

µm =
µ

(h′P (Pm))Th′(Pm)
(4.10)

where µ is the LMS step size. When choosing a step-size, there is a
trade-off between computation time and error. The smaller the step-size,
the smaller the final estimation error will be but, the longer it will take to
converge on a final estimation [7]. We heuristically determined that µ = 0.01
gave us the best trade-off between speed and accuracy for localisation.

To evaluate this algorithm we used our dataset with level three filtering,
leaving us with 6790 transmissions which we could use for testing. From
the results it appears that this algorithm performed rather poorly, worse
in fact than our initial estimate algorithm. The median position error of
this algorithm was 3.16km with 80% of cases being within 17.88km of the
device’s actual location. After further investigation we found that a large
portion of the transmissions had TDoA measurement errors that caused
(4.9) to iteratively estimate positions further and further away from the
device, finally converging at a distant, local, minimum error. An example
can be seen in Figure 4.2.
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Figure 4.2: A plot showing the trace of estimations from SGD moving away
from the node’s location and finding a distant local minimum error.

The poor performance of this algorithm did not reflect the results from
[16] which found the node’s true position most of the time. However, the
experiments done by Gustafsson and Gunnarsson were done in simulation
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and using a zero-mean Gaussian distribution to simulate measurement error.
In reality, the device will not have line-of-sight with the gateways for most
transmissions. Therefore only reflections from multipath will be received at
the gateways, producing errors that are not zero-mean Gaussian. Without
a zero-mean distribution, (4.8) will result in large errors [13]. Therefore,
this algorithm is not suitable on its own and we need a way of containing
SGD to keep estimations within a certain area. Thus, we investigated an
area-based localisation approach which we will describe in the next section.

4.4 Modified APIT

Here we present an area-based localisation algorithm and then explain how
we modify it to suit our application. In [17], He et al. propose an algorithm
for finding a region where a node is likely to reside, called APIT. For their
research, APIT was developed to solve the problem of node localisation
within a dense Wireless Sensor Network (WSN). In their WSN there are
also many anchor nodes. To obtain the most likely area, triangles are drawn
between each possible anchor trio. This is illustrated in Figure 4.3. The
possibility of the node being within each triangle is then tested.

(a) (b)

Figure 4.3: Start forming triangles between 3 anchors (left) and repeat for
all possible trios of anchor nodes (right).

In order to check if a node is within a triangle, He et al. proposed the
Point-In-Triangulation (PIT) test. To explain the PIT test, consider three
gateways, A, B and, C. The test determines if a node M lies within ∆ABC,
where ∆ in this case indicates a triangle. The result is based on two premises:

Premise 1 considers when M is within ∆ABC. It states that if M is shifted
in any direction, its new position will be closer to one of the anchors but
further from the other two, or vice versa. This is provided that M remains
within ∆ABC.
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Premise 2 considers when M is outside of ∆ABC. If M is to be shifted,
there must exist a direction in which its new position will be either further
from or closer to all three anchor points. This is provided that its new pos-
ition will still be outside of ∆ABC.

He et al. prove these premises mathematically but, they found it was not
practically feasible. Therefore, they devised an Approximate PIT (APIT)
test. In the APIT test, He et al. exploit the high density of their WSN using
peer-to-peer communication. They define the “Approximate P.I.T Test:
If no neighbour of M is further from/closer to all three anchors A, B, and
C simultaneously, M assumes that it is inside triangle ∆ABC. Otherwise,
M assumes it resides outside this triangle.” [17].

In standard LoRa networks, peer-to-peer communication is not possible
and, we do not have a dense deployment of nodes. Therefore, we need to
invent our own APIT test. For our APIT test, we simply check if the IPE
from Section 4.2 falls within the triangle.

In [17], for each triangle, a positive or negative weight is added depending
on if the test is passed or failed respectively. In our implementation, we
only add a weight if the test is passed, i.e. it contains the IPE. The weights
for all the triangles are then aggregated. Afterwards the Highest Weighted
Area (HWA) is most likely to contain the node. The number of triangles
that need to be tested is determined by

(
n
3

)
where n is the number of anchor

points. Therefore, we know that ten triangles need to be tested for the
example given in Figure 4.3(b). The aggregation of weights can be better
understood in a visual manner, illustrated in Figure 4.4.
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Figure 4.4: Illustration of weights being added for APIT tests, with ∆ABE
having having being tested first (left), then ∆CDE (centre), repeating until
all triangles are tested (right).

The weights in this figure are represented as a shade of red, and the IPE
as the green dot near anchor C. If we test ∆ABE, we see that it contains
the IPE. Therefore we add a weight to it, likewise with ∆CDE. Note that
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Figure 4.4(b) would not change if we also tested ∆ACD because this triangle
does not contain the green dot and therefore does not add a weight. We can
see from the aggregated result in Figure 4.4(c) that the HWA contains the
initial position estimate but, we still need to find the node’s position.

We add an additional step to our modified APIT implementation in which
we perform SGD to minimise the NLMS error. However, we constrain the
position estimates to within the HWA. For the initial position of stochastic
gradient descent we use the centroid of the HWA. The centroid being the
mean x and y coordinates of all the points within the HWA.

To evaluate the performance of this algorithm we use level 3 filtering on
our dataset, leaving us with 6790 transmissions. In Table 4.1 we can see the
results which we also compare to the results of KPN’s geolocation service
for the same data points.

IPE NLMS Mod. APIT KPN

median position error (km) 1.24 3.16 1.62 0.17

80th percentile error (km) 2.76 17.88 3.72 1.56

Table 4.1: Comparison of the median and 80th percentile position errors for
IPE, NLMS, Modified APIT and, KPN’s geolocation service.

As we can see from the table, the median position error was 1.62km and
the 80th percentile was 3.72km. This is a great improvement from the
previous section, showing that the area constraints had the desired affect.
However, this method suffers two weaknesses that are inherent to APIT [17].
First, when the node lies near a triangle border, the IPE could be in the
wrong triangle. Second, when a node lies outside the area demarcated by the
outermost gateways, its location will not be found because triangles cannot
be formed outside this area. In both cases the HWA will not contain the
node, resulting in large error.

We found that the node’s position actually falls outside the gateways’
perimeter 36% of the time, a significant amount. This is because of nearby
buildings blocking the signals’ paths in certain directions. Looking at its
weaknesses, it seems the problem inherent in APIT is that the boundaries
of the triangles are defined by the gateway positions with nothing to cater for
when a node is near the boundary. Therefore, we need an algorithm that uses
TDoA measurements to define the border of the highest weighted area so
that the node can be located outside the gateway perimeter and, so that the
node is less likely to lie on a boundary line, to cater for measurement error.
This leads to the development of our localisation algorithm, Multilateral
Dissection.
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4.5 Multilateral Dissection

This algorithm is based on TDoA, but is a much simpler method that uses
an area-based approach. We call our method Multilateral Dissection, abbre-
viated to the acronym MLD.

4.5.1 TDoA Measurement Uncertainty

When considering a hyperbola that represents points with a constant TDoA,
we notice that a change in the TDoA measurement affects the turning point
of the hyperbola linearly, whereas the error has a pseudo-quadratic effect
further along the curve from the turning point.

Let’s consider (2.3). After rearranging the equation and setting y = 0 we
can see the linear relationship between x and the TDoA distance.

x = ∆d/2 (4.11)

We can also illustrate the effect of uncertainty visually, if we draw a
hyperbola for a certain TDoA (blue) and show the effect of ±10% error
in the TDoA measurement (red). See Figure 4.5.
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Figure 4.5: Plot showing the effect of 10% TDoA measurement uncertainty.

From this we clearly see that measurement uncertainty in the timestamps
has a more drastic effect further away from the turning point. One aspect
that we can be fairly certain of is the direction of the curve. We know which
gateway the hyperbola will curve towards because we know which gateway
received the transmission first. When there is a TDoA measurement of
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approximately zero, we cannot be sure which way the hyperbola will curve.
Because these hyperbolae are so greatly affected by uncertainty we exclude
their TDoA measurements, in addition to level 3 filtering.

4.5.2 Bisection of Environment

If we know which way the hyperbola will curve, we can bisect our environ-
ment into where the curve will, and will not be. Furthermore, from (4.11)
we know that the hyperbola will have a turning point at ∆d/2 where the en-
vironment will be bisected. 1 We will explain how each TDoA measurement
dissects the environment using vector calculus.

To start the bisection, we need to consider a pair of anchor points in a
two-dimensional plane. Let the position of an anchor, in global coordinates,

be represented by
⇀
P = (X,Y ) where ⇀ over a variable indicates that it is a

vector.

The two anchor points are then at positions
⇀
P i and

⇀
P j where 1 ≤ i < j ≤

n. We then define
⇀
D =

⇀
P j −

⇀
P i where

⇀
D represents the displacement from

anchor i to anchor j.
To find the point where the bisection will be, i.e. the turning point of the

hyperbola, we move ∆d/2 from the midpoint between the anchor pair, to-
wards the anchor with the earliest timestamp. This is shown mathematically
by the following vector addition.

⇀
P b =

⇀
P i +

1−∆d

2D

⇀
D (4.12)

where D is the scalar magnitude of
⇀
D and

⇀
P b is the point where the line of

bisection would intersect the line between the two anchor points. Note that
the sign of ∆d must be kept from the calculation of ∆d = c∆t as it indicates
which anchor point is closer.

A line is then drawn through
⇀
P b, perpendicular to

⇀
D, dividing the envir-

onment into two parts. The result can be seen in Figure 4.6.

In this figure the green line represents
⇀
D. We can also see the red line

dividing the environment into where we expect to find the hyperbola and
where we do not. The side with the closest anchor point then gets a weight
added to it, represented by the shade of red. If an equal weight is added
for each anchor pair the shaded areas start to overlap, forming the highest
weighted area where the node is most likely to be. An example of this has
been shown in Figure 4.7.

The black dots in this figure are the anchor positions, and we can see that
the node (cyan coloured dot) falls within the area with the highest weight
(darkest shade of red).

1Due to measurement error we cannot be completely sure exactly where around ∆d/2
the hyperbola will fall. We will address this issue later in this section.
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Figure 4.6: Plot showing how the environment is bisected, illustrated by
the red line. Shown in (b) is the weight added to the side containing the
hyperbola, represented by the shaded area and, (c) illustrates the gap left
between the hyperbola and bisection line, to cater for measurement error.

However, due to TDoA measurement uncertainty, a node may not always
be within the highest weighted area (HWA). If the node’s position falls
close to the turning point of a hyperbola, it can sometimes find itself on the
incorrect side of a bisection, as the error in it’s TDoA measurement causes
the hyperbola to be shifted, shown in Figure 4.5. For this reason we have to
leave some space between the hyperbola and the bisection line as we show
in Figure 4.6(c). The size of the gap was determined empirically, comparing
the difference in distances between the node’s position and the centroid of
the HWA. The performance of MLD with different gap sizes is presented in
Table 4.2.

From Table 4.2 we can see that a gap size of 500m had the lowest position
error for MLD. Therefore this gap size will be used during implementation.
An interesting result from Table 4.2 is that the mean position error of MLD
is better than that of KPN. A reason that MLD’s mean position error is kept
relatively low is because it’s an area-based technique. Therefore, as we know
from Section 4.4, the position estimations, as well as their error, are always
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Figure 4.7: Plot showing an example of the aggregated weights for all the
receiver pairs of a transmission.

gap size (m) 100 500 1000 1500 2000 KPN

mean position error (m) 2416 2348 2358 2406 2464 6008

median position error (m) 700 661 721 825 948 174

Table 4.2: Comparison of the mean and median position errors for different
gap sizes using MLD and, for KPN’s geolocation service.

contained, whereas other techniques are more vulnerable to extreme meas-
urement error. Another reason that MLD is not as susceptible to extreme
measurement error comes from its use of weighting and bisection. When
there is an extreme measurement error, the line of bisection will most likely
not be very near the node’s position. Let’s contemplate this graphically.
When a bisection line is far away from the node and its weight is added,
it will shade in an area from the bisection line covering a very large area
around the node or, it will shade an area far away from the node, depending
on the direction of the TDoA hyperbola. By shading a very large area, the
added shade of red will contribute to such a large region that it effectively
cancels itself out. When a faraway region is shaded in the opposite direc-
tion, it doesn’t contribute to shaping the HWA. In this manner, many of
the extreme measurement errors are ignored.
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From Table 4.2 we can also see that the median error was 661m for MLD
with a gap size of 500m which, although much lower than our initial estimate
algorithm, still has room for improvement when compared to KPN’s median
error. The 80th percentile is 1.74km for MLD with a gap size of 500m
whereas KPN’s is only 1.56km.

4.5.3 MLD with SGD

To improve our results, we evaluated the performance of using Stochastic
Gradient Descent with Non-linear Least Mean Squares constrained by the
HWA from Multilateral Dissection. The initial position for SGD was set as
the centroid of the HWA. We used level 3 filtering on our dataset to evaluate
this method. The parameters used for SGD were the same as in Section 4.3.

The results of using SGD with MLD were actually not an improvement.
The median position error was 715m and the 80th percentile was 1.81km.
As we mentioned, MLD tends to be slightly oblivious to large measurement
errors. However, when using SGD these measurement errors come back into
effect as they will contribute to the LMS error, degrading the algorithms
performance. With SGD having failed to improve the results of MLD we
conclude that not much more can be improved upon for the core of MLD.
Thus we have finished developing the MLD localisation algorithm and, have
found its optimal parameters for this dataset. The optimal settings were to
use a 500m gap size and simply use the centroid of the HWA to estimate
position. With MLD’s development completed, we must find a new approach
to improve results.

4.6 MLD with Memory

Another well-known localisation technique is dead-reckoning. In this tech-
nique, the initial node position is known but, as soon as the node starts
moving the position is estimated only using information about the node’s
movement. In a similar manner, if we have the last known location of a
node, we can reduce the likely area that should contain the node, to be a
circle around its previous position. The radius of this circle can be determ-
ined by the maximum distance that we expect a node to travel, regardless
of time. For example, if we consider a person living in Delft, and quite some
time has passed without a transmission being sent for whatever reason. It is
a fair assumption that the person is still in Delft, i.e. a certain radius from
their last position.

To get the maximum expected distance we examined our data with level
1 filtering. We analysed the displacement of each of our nodes between
consecutive transmissions. From this analysis we found that in 96% of the
cases, a node had moved less than 1km. In the 4% that move more than
1km, it is often the case that many packets have been dropped, which is
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the case whenever the battery of a mobile node dies. The small amount
of movement between packets could also be due to some of the limitations
discussed in Section 3.5. Whatever the case may be, we will use 1km as the
maximum radius that a node could have moved from its previous location.

To combine this with MLD, we perform the MLD algorithm as normal
to find the HWA and we then plot a circle around the previous position
estimate. Where the two overlap is the new, smaller HWA. In Figure 4.8
this can be seen more clearly.
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Figure 4.8: A weighted circle (shaded red) is added to Figure 4.7.

Here we can see the circle around the previous position estimate cutting
through the HWA. When implementing this algorithm, there could be a case
where the HWA does not intersect the circle. In this case, we could either
use the HWA or the previous position estimate. Due to the fact that most
nodes move very little between transmissions, we have chosen to use the
previous position estimate in cases where there is no overlap. However, if
there is no overlap for the next localisation as well, we then assume that the
node has in fact moved more than 1km from the previous position. In this
case we will use standard MLD without memory for this estimation. We
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do this to ensure that an estimate does not get left behind if the node has
moved. For the subsequent transmissions we continue using the algorithm
with memory.

We evaluated this algorithm using our dataset with level 3 filtering. How-
ever, in this case we had to sort the data, making sure that a node’s transmis-
sions were grouped together and, were in chronological order. The median
position error of this algorithm was 500m with 80% of cases having an ac-
curacy of less than 925m. We feel that this is a great improvement because
if we compare this to KPN’s geolocation service for the same transmissions,
although their median error is lower, KPN only achieves an 80th percentile
of 1558m. We will show the CDF’s for our results in Section 4.8 at the end
of this chapter.

Inspired by these results, we decided to attempt one last adaptation of
our MLD algorithm to improve our results further.

4.7 Asymptotic Division

Seeing as the idea behind MLD is to find a general area where we expect to
find the node, we thought that we can refine this area while still allowing for
measurement uncertainty. To do this, we use the asymptotes of the TDoA
hyperbolae so that each weight added by a TDoA measurement is more
conical as opposed to a flat area as it was in Section 4.5. The asymptotic
dissection is illustrated in Figure 4.9.

There are two things that we should notice when looking at this figure.
Firstly, the asymptotes don’t come to a point but are actually cut off by the
same bisection line that was used in standard MLD. This was done so that
the weighted area remains as small as possible. The gap-size for this line is
still 500m. The second point to notice is that the asymptotes, represented by
the dashed line, slightly diverge from the hyperbola instead of the hyperbola
tending towards the asymptote. This is because the asymptote relates to a
TDoA measurement that is 10% less than the actual measurement. This is
to cater for measurement uncertainty. Note that the asymptotes do not have
an added gap as the bisection line does. The 10% uncertainty is simply added
into (2.4) when plotting the asymptotes of the hyperbola. The uncertainty
value of 10% was determined empirically.

When we were determining how much uncertainty to compensate for, we
found an interesting change in performance relating to a change in uncer-
tainty. The results performance of different asymptote uncertainties is shown
in Table 4.3. Here 100% uncertainty results in the asymptotes being a flat
line again which is the same as implementing MLD normally.

As the uncertainty value was increased more and more towards making the
asymptotes a flat line, the median position error also increased. However,
the 80th percentile position error actually decreased, although this is less
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Figure 4.9: Illustration of how the asymptotes of the hyperbola are used to
divide the area.

apparent at lower uncertainties. The inverse was also true; as the uncertainty
decreased the median error decreased as well until the uncertainty reached
roughly 10%, where the median error reached its lowest point. This actually
relates somewhat to the accuracy of our TDoA measurements, as a low
uncertainty in the asymptotes will mean that the HWA will be much more
refined thus, more accurate. This is why the lower percentiles decreased in
error as the median error did. However, when there are TDoA measurements
with a larger error, these will fall outside of the asymptotes if they only
compensate for a small uncertainty. Hence, the increase in error at the
higher percentiles. This also explains why the median error increases again
at 0% uncertainty, because at this point the uncertainty compensation is so
low that even TDoA measurements with low error are likely to fall outside
of the asymptotes.

We evaluated this algorithm using the memory technique from the pre-
vious section and using level 3 filtering on our data set. The change in
performance due to the uncertainty is evident when we consider the dif-
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% uncertainty 0 10 20 30 100

median position error (m) 544 481 487 488 500

80th percentile error (m) 1224 1118 1104 1111 925

Table 4.3: Comparison of the median and 80th percentile position errors
different asymptotic uncertainty compensations.

ference in results between 100% asymptote uncertainty (standard MLD)
and 10% uncertainty. Using 10% as the final uncertainty parameter, this
algorithm has a median position error of 481m and an 80th percentile of
1118m. When comparing to 500m median error for standard MLD with
memory, we feel that the small change in performance does not compensate
for the added complexity involved in calculating the asymptotes and their
intersection points with the line of bisection, especially when it performs
worse for higher measurement uncertainty.

We do not see this as a failure but instead it gives some insight and serves
to highlight the advantages that MLD has with regards to TDoA measure-
ments with larger uncertainty. However, seeing as it is not a significant
improvement we will not consider it further. In the next section we will give
a summary of this chapter with a comparison of the different algorithms.

4.8 Comparison of Algorithms

In this section we compare the results of the different localisation implement-
ations. We will compare the performance of our initial position estimation
algorithm, the algorithm from [16] using their NLMS approach, the modi-
fied version of APIT and of course, our MLD algorithm, with and without
memory. We will also compare these to the performance of KPN. For all
implementations we used the same LoRa transmissions. Once again, the
transmissions were selected using level 3 filtering which left 6790 transmis-
sions. The results are plotted in a CDF shown in Figure 4.10.

In Figure 4.10 we can see how the algorithms progressed over the course
of development. Some localisation algorithms are not shown here. These
include, trilateration with RSSI which performed too poorly to be compar-
able, MLD using SGD which was excluded as SGD in fact decreased the
accuracy of MLD, and lastly, MLD with asymptotic division is not shown
because it did not show significant improvement.

Quite surprising from our results, was the performance of our initial po-
sition estimation algorithm, which initially was only intended to serve as a
starting point for other algorithms but, ended up performing better than
these algorithms. Looking at the area-based techniques, we see that they all
seem to perform rather well in the higher percentiles of the CDF, including
the modified version of APIT which manages to surpass KPN’s performance
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Figure 4.10: Comparison of the position error of the localisation algorithms
that were implemented.

in the 86th percentile. Our initial position algorithm also performs rather
well in the higher percentiles, the reason for which is unknown. The best
of the area-based techniques is MLD localisation with memory, which had a
median position error of 500m and approximately 82% of cases with under
1km position error, showing the effectiveness of area-based techniques for
mitigating large measurement error.
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Chapter 5

Conclusions and Future
Work

5.1 Conclusions

In this work we have implemented multiple localisation algorithms on a pro-
prietary LoRa network using mobile LoRa devices. As far as we know, no
work has been published that evaluates localisation algorithms on an LP-
WAN over such a large urban area. Research into Localisation in a LPWAN
so far, has focused on trilateration with RSSI. We have evaluated the feas-
ibility of using RSSI ranging with LoRa and determined that it is unreliable
over a large urban area, due to the increased interference.

We developed a weighted-centroid localisation algorithm that uses timestamps
for weighting. However, our main contribution is the novel Localisation tech-
nique that we invented, called Multilateral Dissection (MLD), an area-based
technique that uses TDoA measurements. Using this method and a modi-
fied version of APIT, we showed that area-based localisation algorithms can
be used to reduce the effect of large measurement error by restraining the
region where position estimations can be.

We also evaluated the performance of MLD with various adaptations. Be-
sides the standard MLD, we tested a variation that used the asymptotes of
a TDoA hyperbola which gave some interesting insights into TDoA uncer-
tainty although these will need to be investigated further. Another MLD
variation used Non-linear Least Mean Squares with Stochastic Gradient Des-
cent. MLD with SGD performed worse than standard MLD indicating that
MLD mitigates the effect of large measurement error because of its weighting
strategy.

Adding to this, we improved MLD’s accuracy with a variation that uses
the previous location estimation to refine the area where the node is likely
to be. We showed that this algorithm has a higher localisation accuracy
on a LoRa network than using Stochastic Gradient Descent with Non-linear
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Least Mean squares, which is one of the algorithms that is traditionally
used for TDoA localisation with other radio technologies. We showed that
although MLD has a higher median error than KPN’s geolocation, by using
previous position estimates, MLD has a better mean performance, with 80%
of cases being located to within 925m of the node’s location, compared to
80% of KPN’s cases being located to within 1558m.

5.2 Future Work

LoRa wireless communication technology is a proprietary technology that is
also relatively new. These two factors mean that there is still much research
that can be done, especially for localisation as there is currently a lack of
public research in this field. Although this work presents some localisation
solutions for LoRa networks there is still much research that can be done
to improve them. We propose the following topics that we feel will improve
localisation in LoRa networks:

• Multipath Detection — One of the biggest sources of error for loc-
alisation in urban environments is multipath effects. If research is
done to detect if a signal was affected by multipath and more import-
antly, how to mitigate the error from multipath, then the accuracy of
localisation will improve immensely.

• Environment Mapping — By mapping the environment, there is
so much that information that could be used. This could tie in with
the point above, to help estimate multipath, but it could also be used
to estimate the range of a signal, or at the very least it could be used
to find the most likely location that you would be based on your sur-
roundings. For example, if you were walking you most likely wouldn’t
be located in a river.

• Machine Learning — Although we were not able to properly imple-
ment any machine learning techniques in this work, there is already
some research into using machine learning for localisation in LPWANs.
However, there is not a great deal as of yet. So far the use of Support
Vector Machines has been shown to improve results and we feel that
further research into this field can improve localisation even further.

• Finger-Printing — Finger-printing is a localisation technique whereby
signal strength measurements are taken from ideally all locations where
a device needs to be localised. This is quite difficult to do on a scale
as large as LoRa is capable of but, using crowd sourcing for data col-
lection, this could be possible which is being already being realised
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by The Things Network with their TTN Mapper database. Finger-
printing may not be extremely accurate on its own but, when com-
bined with other techniques, it will most likely improve localisation
results.

• Motion Models — The memory feature that we added to MLD
improved the accuracy by a significant amount. However, this just
focused on a 1km radius around the previous position. By building
an accurate motion model, the direction and distance could be more
accurately predicted which should in turn improve the accuracy of loc-
alisation. Research into this topic would tie in well with Environment
Mapping which we mentioned earlier in this section.
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Appendix A

Derivation of TDoA
Hyperbola

To calculate the formula for the hyperbola representing all possible node
positions for a given TDoA measurement, we followed the derivation given
by Gustafsson and Gunnarsson in [16]. However, to keep the explanation
in Section 2.3.3 brief we only gave the final formulae for the hyperbolae
and asymptotes. Here, we will show how these formulae were derived by
Gustafsson and Gunnarsson in [16].

We define ∆di,j as the distance relating to the TDoA measurement via
the speed of light:

∆di,j = c(τj − τi), 1 ≤ i < j ≤ n (A.1)

where τi and τj are the timestamps at anchor point i and j respectively
and n is the number of anchor points. Each ∆di,j will relate to positions
(x,y) on a hyperbola.

Let’s use the same assumptions that we made in Section 2.3.3, where the
two anchor points corresponding to a TDoA measurement, lie on the x-axis
at x = D/2 and x = −D/2, where D is the actual distance between the two
anchor points.

We can calculate the distances between the gateways and a node’s posi-
tion (x,y) using Pythagoras’ theorem. The distances between the node and
gateways one and two respectively are calculated as follows [16]:

d2 =
√
y2 + (x+D/2)2 (A.2)

d1 =
√
y2 + (x−D/2)2 (A.3)

(A.4)

Therefore, we can form the equation for ∆d as:
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∆d = d2 − d1 = h(x, y,D) (A.5)

=
√
y2 + (x+D/2)2 −

√
y2 + (x−D/2)2 (A.6)

where h(x, y,D) is the formula for all possible node positions (x,y) for a
constant, ideal TDoA distance, where the anchor points are a distance D
apart from each other.

We can then rewrite the equation in the form of a hyperbola [16] which
we presented in Section 2.3.3:

x2

a
− y2

b
=

x2

∆d2/4
− y2

D2/4−∆d2/4
= 1 (A.7)

To find the asymptotes of this hyperbola, we can solve this equation in
terms of y for the case when x� ∆d2/4 and y � D2/4−∆d2/4 [16]:

y = ± b
a
x = ±

√
D2/4−∆d2/4

∆d2/4
x (A.8)
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