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Preface

This report is the outcome of a study initiated by the Tunnel Technology Depart-
ment of the Royal Institute of Engineers in The Netherlands and carried out by the
study group on Groundwater Infiltration with Bored Wells.

Composition of the study group

M.C. Brandes? Chief Engineer, Nationaal Institute for Water Supply;
Chairman

H. Abbenhuis Engineer, Department of Public Works, Locks and Weirs
Division; secretary

J. Bardet Chief Engineer, Water Works Division, Amsterdam
Public Works Department

D. Cense BV Grondboorbedrijf J. Mos, Rhoon; Pipelayers and
Drilling Contractors Federation representative

H. Haitjema Lecturer, Geotechnology Department, Delft University of
Technology

T.N. Olsthoorn Geohydrologist, Testing and Research Institute of the
Netherlands (KIWA), Rijswijk

J.H. van Zutphen Adviser, Geotechnology Engineering Bureau, Rotterdam

Municipal Public Works Department

Mr. E. Horvat, an original member of the group, was replaced by Mr. J.H. van
Zutphen (from the same organization). Upon taking up an appointment abroad
before the study group had completed its work, Mr. H. Haitjema was replaced by
Mr. H.J. Luger, also from the Geotechnology Department.

The report appeared in Dutch in November 1978 under the title ‘Retourbemaling’,
and is obtainable from the Tunnel Technology Division of the Royal Institute of
Engineers. The present publication in the series ‘Rijkswaterstaat Communications’
has been revised on the basis of data obtained from the De Bilt groundwater
recharge test project.




1 Summary and conclusions

The installation of groundwater control systems when large building structures are

being constructed can have undesirable consequences in the immediate vicinity (e.g.

damage to buildings and vegetation). In some areas of the Netherlands restrictions

exist on the amount of abstracted groundwater (if any) which may be discharged

into surface waters. In such cases one solution consists of returning the water to the

aquifer by bored wells (i.e. groundwater recharge). A number of groundwater

recharge schemes in the Netherlands ran into problems, for which reason the

Tunnel Technology Department appointed a study group on ‘Groundwater Infil-

tration with Bored Wells’ with the following terms of reference.

a. compilation of a survey of past groundwater recharge schemes in the Nether-
lands;

b. examination of the circumstances in which groundwater recharge is feasible in
practice;

¢. formulation of the requirements which a groundwater recharge system should
satisfy.

For the first of these a survey was carried out which produced detailed particulars on
all major recharge schemes in the Netherlands up to the end of 1977. This amounted
to a total of 18 projects, the operating results of which are shown in Table 1. The
projects to which the numbers used throughout this report refer are listed on p. 6,
together with a general description of each project. The location of these projects in
the Netherlands is shown in Figure 1.

Generally speaking the groundwater recharge projects in the Netherlands have
been successful. The table below indicates that even large recharge projects can
yield good resuits:

Project no. of recharge actual dis- length of
wells charge (m3/h) pipeline

system (m)
9 102 850 2000
14 427 320 750
16 83 800 480
17 17 530 1200
18 468 3000 3600

Clogging of the infiltration wells caused serious problems in only four of the 18
projects.
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In three of the four cases the cause of the problem was the release of methane gas
from the pumped-up water. Experience has shown that this form of obstruction can
be prevented by the installation of effective degasification equipment or by main-
taining the water under pressure.

In one case the clogging was caused by the flocculation of ferrous hydroxides
resulting from the mixture of two different types of water. This can only occur in
phreatic conditions, i.e. in the absence of a covering clay or peat layer. These
circumstances were encountered only in project 8.

Clogging up by iron deposits can also occur as a result of the aeration of drainage
water in the pumping wells or pipeline system. Although this is a fairly common
phenomenon it does not generally result in major problems since the effects can be
dealt with by careful groundwater infiltration procedures.

Since the survey was carried out further experience has been accumulated in the
field of phreatic conditions in which clogging up by iron deposits did not occur, in
this case because of the absence of iron-bearing groundwater in the layer in ques-
tion.

To sum up the experience in the Netherlands, it may be said that groundwater
infiltration can always be successfully carried out given the presence of covering
clay or peat layers (with anaerobic groundwater, i.e. iron-bearing but free of oxy-
gen).
This is also true in phreatic conditions if the water-bearing layer contains only
aerobic groundwater (i.e. groundwater which is oxygen-bearing and hence free of
iron). Reservations apply only in the case of an unconfined aquifer containing both
aerobic and anaerobic water. The study group came to the conclusion, however, that
recharge should also be possible in these circumstances provided that a number of
supplementary measures were taken. A pilot groundwater infiltration project near
the unsuccessful project no. 8 provided confirmation for this view.
The study group was unable to provide any general answer as to the economic
feasibility of groundwater infiltration by bored wells. In order to conduct a cost
comparison with other possible techniques (e.g. steel sheet-piling with underwater
concreting, chemical injection or pneumatic caissons) one would have to have a
general indication of the cost of installing and running a groundwater dewatering
and infiltration system. No such general indication can be provided, however, since
costs depend so heavily on the highly variable circumstances in which the work is to
be carried out. Costs must therefore be worked out on an ad hoc basis. Chapter 8
contains a survey of hydrological calculation methods while Chapter 9 examines the
factors that affect costs. It would, however, appear from the comparisons of the
various techniques that groundwater recharge is often the cheapest.
As regards the execution of groundwater recharge there are two main systems:
a. the classical system with ‘large’ wells with a borehole diameter of approx. 0.5 m,
constructed by means of reverse rotary drilling;




b. the system favoured in the last few years of a larger number of ‘small’ wells with
a borehole diaeter of approx. 0.25 m. and constructed by jetting.

In geohydrological respects the two systems come to the same thing. The system of

small wells affords somewhat greater operational reliability and can in certain

circumstances be cheaper to instal and maintain.

It is important for proper research to be conducted before a groundwater recharge

system is commenced. The study group concluded that guidelines needed to be laid

down in this respect. Simple gas and filter tests can be conducted to establish
whether clogging by gas bubbles or iron flocculation is likely. A pilot or test
recharging scheme on a practical scale is generally essential.

Installation and operational requirements are summarized in Chapter 7. These

requirements are largely based on four simple precepts:

a. the pumped-up water should not be subject to aeration at any stage of the
system;

b. no part of the system should be subject to underpressure;

c. the water may not contain gas bubbles; |

d. the pressure on the infiltration wells should not exceed approx. 1.5 m H,O above
ground level.

Further research is required into the following subjects:

a. effective means of degasifying methane-bearing groundwater;

b. means of preventing the flocculation of ferrous hydroxides in unconfined aqui-
fers (such research has now been carried out in the pilot test undertaken after the
failure of project 8);

¢. means of combatting flooding in infiltration wells;

d. refinement of the gas and filter tests.




2 Introduction

In most parts of the Netherlands the groundwater table is not far below ground
level. The foundations of many building structures go below the water table, for
which reason dewatering is required.

The lowering of the phreatic surface or of water tension at greater depths achieved
in this manner is not confined to the excavation itself but has a perceptible effect in
a wider area, the range depending on such factors as the actual reduction of
groundwater in the excavation and soil properties.

One of the consequences of dewatering is an increase in the granular tension in the
soil. This can in turn lead to soil settlement and damage to building or engineering
works which have their foundations in or on these layers.

In the case of a high groundwater table, a lowering of the level will directly reduce
the amount of water available for trees and other vegetation. This could for example
lead to a drop in agricultural yields.

Apart from these possible consequences it is becoming increasingly difficult in
practice to obtain a licence in the Netherlands to discharge groundwater into surface
waters.

These three factors have given rise to the concept of returning the pumped-up water
to the ground at the points where it is required, thus bringing the groundwater table
back to the same or an acceptable level. This principle has been applied in the
United States for some time; it is discussed for example in a journal article of 1956
(1) concerning groundwater recharge in a New York excavation. This project
prompted the designers of the 1J tunnel near Amsterdam to try this technique in the
Netherlands in the same year, the first example of a major recharge system in the
Netherlands. Since that time over twenty small and large groundwater recharge
systems have been installed in the Netherlands, including a number of pilot sche-
mes.

Although a number of problems have been encountered the results have in general
been satisfactory. Partly in response to the difficulties that were encountered, the
Tunnel Technology Department of the Royal Institute of Engineers decided to set
up a study group into ‘Groundwater Infiltration with Bored Wells’. The group
comprised representatives from the National Institute for Water Supply, the Testing
and Research Institute of the Netherlands, the Delft University of Technology, the
Public Works Department of Amsterdam, the Rotterdam Municipal Public Works
Department, the Public Works Department and welldrilling contractors in the
Netherlands. The study group’s terms of reference were:

a. to compile a survey of past groundwater infiltration schemes in the Netherlands;
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b. to examine the circumstances in which groundwater infiltration was feasible in
practice;

¢. to formulate the requirements which a groundwater recharge system should
satisfy.

The survey was compiled on the basis of a questionnaire sent to both the commis-

sioning body and the contractor of each of the completed projects.

The replies received to the questionnaire also enabled the second and third aspects

of the group’s terms of reference to be carried out. As will be evident from the list of

projects covered, the group confined itself not only to Dutch construction projects

but also to those projects in which groundwater was reinjected near the spot where it

had been obtained. The injection of cooling water or supplementation of ground-

water for drinking water purposes therefore fell outside the scope of the study.

The study group expresses its gratitude to all those who cooperated in completing

the detailed questionnaire.
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3 Analysis of survey results

3.1 Introduction

As noted in the introduction to this report, a survey has been carried out in an effort
to assemble all the available data in the Netherlands on the subject of groundwater
infiltration schemes. This was done by means of a questionnaire drawn up by the
study group which was designed to elicit information to provide a comprehensive
picture of the installation and operation of such schemes. The questionnaire was
sent to both the commissioning party and the contractor of all the known recharge
projects at that time. In all 21 questionnaires were sent out, including two to projects
which turned out not to have been implemented. Of the remaining 19, 18 ques-
tionnaires were returned almost entirely completed. Given the highly detailed
nature of the questionnaire, this was a very high response rate.
Regrettably the nature of the questions sometimes meant that the replies did not
contain all the data required.
Questionnaires were returned in respect of the following projects:
Tunnel at Zwijndrecht
Hospital at Leiden
1J tunnel near Amsterdam, excavation C
1J tunnel near Amsterdam, excavation E
1J tunnel near Amsterdam, excavation F
1J tunnel near Amsterdam, building dock
Utrecht power station
Underpass at De Bilt

9. Station building at Schiphol Airport near Amsterdam
10. “Westraven’ office block, Utrecht
I1. Pilot groundwater recharge scheme for tunnel at Vlake

12. Pilot groundwater recharge scheme for Rotterdam metropolitan railway

13. Margriet tunnel at Uitwellingerga
14. Intersection at Maarssenbroek

15. Willem Dreeslaan office block, Utrecht

16. Metropolitan railway, Chris Bennekerslaan, Rotterdam

17. Sewerage treatment plant, Utrecht
18. Botlek tunnel, Rotterdam
The locations are shown in Fig. 1.
The information obtained is shown in tabular form at the end of this chapter in
Table 3. Answers to questions that were not clear have been omitted.

PR R WD -
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Figure 1 Location of projects.
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The results are shown in summary form in Table 1, which may be said to include a//
major groundwater recharge projects to have been carried out in the Netherlands.
Serious difficulties were encountered in only a few of the projects. These were:

no. of design length of
recharge discharge transmission
wells (m3/h) pipelines (m)
1 3 120 350
3 33 320 1200
8 52 1900 ¢.500
13 6 90 none

It should however be noted that, despite the problems encountered at excavation C,
the groundwater infiltration systems used in the construction of the IJ tunnel
(projects 3-6) eventually functioned as planned. In the case of project 13 the
problems were finally resolved by the introduction of certain technical modifica-
tions.

An analysis of the results obtained from the survey is provided below. Certain major
features of the survey are first of all discussed, followed by a more detailed exami-
nation of the four problem cases referred to above.

3.2 General particulars

Leaving aside the two pilot schemes, a prior pumping trial to ascertain the required
number of wells was carried out in ten of the 16 projects (i.e. 62%). A groundwater
recharge trial was carried out in only nine cases (56%), viz. projects 3,4, 5,7, 9, 10,
13,16 and 17. It may be noted that the difficult projects (1 and 8) were among those
in which no recharge trial was carried out.

In 11 of the projects (69%) the object of groundwater recharge was the protection of
buildings, parks and the like. In three instances (19%) a groundwater recharge
system was adopted on account of prohibitions or restrictions on the discharge of the
water obtained as a result of dewatering. In once case (13) a trial was conducted
while dewatering was already in progress. The projects generally achieved their
object: 10 were successful (62%), while the remaining 6 (or 38%) were partly effec-
tive. No instances were reported of total failure by a project to achieve its object.

3.3 Data on the groundwater control system

Data on the dewatering system are of relevance in that the cause of clogging in
recharging wells can usually be traced to earlier stages of the groundwater control

13




Table I Results of groundwater recharge schemes in the Netherlands
Project Commence- Duration  Clogging  Cause Recharge  Pumping Regeneration Operation  Aims
No ment date  (months) wells regularity of re- achieved?
(type) 4 x per frequency method effect charge
schemes
1 1955 ? yes gas? large — ? pumping  mod. poor/mod  partly
2 1960 >12 little unkn. large — 2m. pumping  ? good,later  partly
less so
3 1963 23 yes gas?/Fe large - ?(4) acid poor mod./poor yes
4 1962 26 no . large (2) - - - — good yes
5 1963 c.14 no . large (2) — — — - good partly
6 1962 30 yes unkn. large - ? acid poor ? partly
7 1967 c 1 . little iron large — limited pumping  ? good yes
8 1968 24 yes iron large - 1 m. acid bad poor partly
9 1972 20 little iron large month 1yr. syringe good good yes
10 1974 7 yes iron large 3 wks — — — good yes
11 1974 3% no (1) . large — — — — good (1) n.a.
12 1974 c 1 no . small - - — — good n.a.
13 1974 21 yes gas Ig. (2)3) - 3m. misc. bad bad.later  partly
good (5)
14 1975 24 little debris small — 8 m. airlift good good yes
15 1975 5 yes iron large 2 wks — - — good yes
16 1975 12 little debris small — limited airlift good good yes
17 1975 12 little iron large — limited pumping  bad good yes
18 1976 18 little . small — limited airlift good good yes

%)

clogging in the beginning caused by fault in pumping well
water from a deeper stratum

combined pumping and injection wells

acid treatment to begin with; later stopped

after construction modifications (well R1)




system rather than to the recharging wells themselves. The key question is whether

the water pumped up in the course of dewatering comes into contact with air or

oxygen, thereby causing iron precipitation. As may be seen from Table 1 iron

deposits are the most common cause of clogging in recharge systems.

Water can become aerated in the pumping wells in the dewatering process in two

ways:

a. the water level in the well drops to (or near to) the intake opening of the
submersible pump, in which case the pump may suck in air.

b. the water level drops below the top of the well filter; this produces a seepage zone
in which water is subject to free fall in the filter and is intensively aerated.

It is not possible to determine from the results of the survey in which cases aeration
occurred in the pumping well, but it is not uncommon for submersible pumps to
suck in air, and this will no doubt have been a factor in some of the cases.

The data on the dewatering systems are summarized in Table 2. A number of points
should be made on these data.

In a number of cases the pump was suspended in the filter (i.e. projects 3, 14, 15, 16
and 17). This reduces the risk of air being sucked in but also creates the risk of setting
up a seepage zone.

Project 8 forms an exception in that it was the only project in which there was a lack
of a covering, relatively impermeable layer (e.g. clay or peat). This was probably a
major reason for the difficulties encountered in this project.

No direct conclusions can be drawn from the drilling technique used or from the
method of well construction. In most cases reverse rotary drills or flushing augers
were used, the latter sometimes with the addition of clay. This may have been a
factor in the clogging of the recharging wells. This does not, however, apply in the
two cases where bailers were used (projects 1 and 3). The fact that problems should
have been encountered with these two projects is probably due to other causes, in
that these were carried out in the early stages when very little experience had been
accumulated in the field of groundwater infiltration with bored wells.

Similarly there are no indications that the materials used in well construction
affected the results of the recharge systems. The use of steel in corrosive ground-
water (projects 6 and 8) could lead to corrosion and clogging of the recharging wells,
but this applies more to pipelines (section 3.4) than to wells. At the present time
wells are almost always installed by suction drilling, synthetic materials being used
to finish them off and for the pipelines, with good results.

Finally Table 2 shows pump delivery per metre of filter length (Q/1). This value
generally lies between 2 and 12 m3/h.m. The survey results did not provide any
evidence to suggest that the actual rate of discharge from pumping wells was related
to the effectiveness of the recharge system.
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= Table 2 Data on the groundwater control systems.

Proj. Comm. Duration Covering Drilling Screen Pump Q/1 Operation Aims
no. date (mnths) layer techn. ) of rech. achieved?
mat. diam. depth depth m3/h system
mm. m. m.
1 1955 ? yes bailing steel 150 13-24 10 35-115 3-10 poor/med.  partly
2 1960 >12 yes rev.rot. wood 220 17-25 18 60 1.5 good later partly
less so
3 1963 23 yes bailing wood 150 24-34 35 25-30 2.5-3 mod/poor  yes
4 1962 26 yes ? ? ? ? ? ? ? good yes
5 1963 c.14 yes flushing wood 150 19-28 ? 20-50 2-45 good partly
6 1962 30 yes ? ? ? ? ? ? ? ? partly
7 1967 [ yes rev.rot. pvc 300 15-25 ? 120 12 good yes
8 1968 24 no flushing steel 300 12.5-22.5 12 45-110  4.5-11 poor partly
9 1972 20 yes rev.rot. pve 315 15.5-31.5 13.5 100 6 good yes
10 1974 7 yes rev.rot. pve 300 15-25 ? 120 12 good yes
11 1974 3% yes ? pve 250 25-35 ? 40 4 good (1) n.a.
12 1974 [ yes rev.rot. pve 240 18-27 18 60 6.5 good n.a.
13 1974 21 yes rev.rot. pve 300 35-45 38 15 L5 poor,later partly
good (5)
14 1975 24 yes rev.rot. pve 300 15-25 18 50-100 5-10 good yes
15 1975 5 yes jetting pve 250 8-15 13 60 8.5 good yes
16 1975 12 yes rev.rot. pve 200 14-24 19 20-90 2-9 good yes
17 1975 12 yes rev.rot. pve 300 15-30 28 150 10 good yes
18 1976 18 yes rev.rot. pve 212 24-34 24 70 7 good yes

(I) Q/1 = discharge per m filter length (m3/h.m.)



All the recharge projects were carried out with water derived from pumping wells
fitted with a submersible pump. In the case of project 18 the excavations had to be
dewatered by means of vacuum pumping. The water pumped up in this manner was
not used for recharging on account of the risk of air leakages in the suction pipes and
pumps.

3.4 Data on the pipeline systems

Long pipelines can be used perfectly well provided they are kept under pressure at
all points. Air managed to get in in a few cases (projects 1, 7 and 10), presumably
because of defects. Generally speaking pressure in the pipeline system must be
restricted to 3-3.5 mwk in order to prevent excessive pressure on the recharging
wells, which might give rise to boiling. This occurs when the injection pressure is too
high and the injected water finds its way directly to the surface and boils up next to
the well shaft. This is discussed in more detail in Annex 3D.

Pressure in the pipeline system is usually regulated by means of a control manifold

known as a ‘Christmas tree’ (see photograph on p. 18). This system was used in the

case of the 1J tunnel. In the older recharge projects (nos. 1 and 2) and the experi-

mental projects (11 and 12), as well as in a number of more recent cases (projects 13,

14, 16 and 17), presure was regulated solely by means of discharge valves.

There are however two reasons against using discharge valves:

a. The drop of pressure in such valves depends on the rate of discharge. As the
recharging wells become clogged the rate of discharge and hence the pressure
drop will decline, with a consequent increase in pressure in the pipeline system. If
the rate of discharge should fall to very low levels, virtually the entire pumping
pressure will be taken by the pipeline and the valve will no longer be able to
perform its function as a pressure regulator.

b. In the case of a throttle valve, under-pressure can in certain circumstances occur
behind the valve gate, so that air can leak in past the spindle. This phenomenon is
discussed further in Annex 3A. It can mean that in a pipeline which is otherwise
under pressure, iron borne in the water will nevertheless precipitate.

The former instance is presumably what occurred in project 1. Clogging by gas
reduced the intake capacity, thereby leading to a build-up in pressure in the
recharging wells. This happened so quickly that the pressure could not be adjusted
in time and a number of the wells became subject to boiling within the space of a few
days (see also 3.5 and 3.7.1).

In a number of recent cases (12, 14 and 15) pipeline pressures of up to a maximum of
5 to 10.5 mH, O were permitted.

In the case of project 12 a number of return pits were deliberately overloaded to the
point of boiling.
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Photo 1 “Christmas tree’.
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In three of the projects the infiltration system was fed by water drawn from a deeper
sand layer. This avoided the need for long pipeline networks or expensive culverts.

3.5 Data on the recharging systems

As in the case of the pumping systems, the effectiveness of the recharging systems

did not appear to be related to the particular drilling technique or well construction

method used. In nearly all cases the wells were constructed by suction drilling or

jetting;. bailing was used only in project 1 and in the pilot projects (11 and 12). A

wooden filter screen was used in the Zwijndrecht project, but this was the only such

instance; the later projects all made use of pvc screens with graded filter material

placed between the screen and the outer borehole.

As regards the diameter of the recharging wells, two systems were employed (see

Table 1).

1. The old system with large wells (filter & 150-300 mm)

2. Since 1974 narrower wells have also been used (filter @ 50 mm), especially in
projects 12, 14, 16 and 18).

Small wells are closely spaced to form a ‘curtain’, and a large number is conse-
quently required.

Large wells are always fitted with a special falling main designed to prevent the
water from falling freely into the recharging well. These pipes used to reach to the
bottom of the filter screen, but are now of limited length. They are also often used in
the smaller wells, e.g. in project 17.

In general the recharging wells were under less load than the pumping wells. Taking
all the projects together the average discharge (or intake) per filter metre (Q/1) was
7 m3/h.m. in the case of pumping wells and 2.5 m3/h.m. in the case of recharging
wells. The averages are of course lower for the small recharging wells (c. 1 and 3
m3/h.m. respectively).

The best index of the load on a recharging well is provided by the outflow velocity of
the water (V) against the wall of the borehole. The bulk of any fines in the water
will be deposited at the point where the relatively coarse graded filter material and
the much finer sand formation meet.

For a given content of fines, the outflow velpcity against the side of the borehole
determines the speed with which a recharging well will become clogged.

Q/1

Now Vy = (m/h)

mro

where 2ry = the diameter of the borehole (m)
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Unfortunately the survey did not provide data on rg, so that outflow velocity can
only be estimated approximately.
Generally speaking 2ro, = 0.50 m for large wells and 0.25 m for small wells. Leaving
aside the atypical projects (nos. 7, 8 and 10), the following average figures apply to
large wells:

Q/1 ~ 2 m3/h.m

and Vy =~ 1.3 m/h

In the case of the small wells used for the Metropolitan Railway and the Botlek
Tunnel (16 and 17) the following apply:

Q/1 >~ 1 m3/h.m

Vu =~ 1.3m/h
With a few exceptions the outflow velocity in large and small wells would appear hm
be of the same order of magnitude.
Needless to say higher outflow velocities will not lead to more rapid clogging if the
water does not contain suspended particles. In the case of project 10, for example,
Vu >~ 5 m/h without any problems being encountered. By contrast very rapid
clogging occurred in project 8 where Vy; ~ 2.5 m/h but the water contained iron
particles.

Project Recharging wells
Number Q(m?/h) 1(m) Q/1
with large wells
1 3 20 9 22
2 4 40 15 2.7
3 33 9-12 12 0.75-1
5 4 12-15 8 1.5- 2
7 7 70 10 7
8 52 40 10 4
9 102 35 16 22
10 5 120 15 8
11 1 26 15 1.7
13 6 15 10 1.5
15 10 30 20 1.5
17 17 20-60 20 1-3
with small wells
12 15 20 9 22
14 427 0.75 4 0.2
16 83 10 10 1
18 468 6.5 6 cl

3.6 Practical operation and results

No conclusions can be drawn from the survey with regard to pressure regulation in
recharging wells. In each case a valve was installed between the pipelines and the
recharging well (or group of wells) with which the well could be regulated at the
required rate of discharge or overpressure. As discussed in 3.4, it is possible for
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pressure regulation to be affected by the rate of discharge and vice versa.

Despite precautions boiling occurred in over half the projects. It would appear that
there is a tendency to take excessive risks, or that pressure regulation could be
improved.

Once a recharging well has become subject to boiling it is virtually unusable and
beyond redemption. It is therefore relevant to examine the means by which this
condition can be avoided.

The survey question concerning the frequency of clearance pumping had been
designed to determine in which projects systematic and frequent clearance pump-
ing was treated as a routine maintenance step to avoid clogging. Only three
projects appear to have treated this operation in that spirit:

Project Frequency

9 every 4 weeks
10 every 3 weeks
15 every fortnight

From the replies to the questionnaire it is evident that ‘regular clearance pumping’
was sometimes confused with ‘regeneration by means of pumping out’. The latter is
done only when the condition of the recharge wells so demands rather than as a
routine maintenance step. An example is project 8, where monthly pumping out had
to be resorted to, even though it had little actual effect. In the case of project 18 the
frequency of pumping out was ‘variable’ and thus a matter of regeneration rather
than routine maintenance.

Operating results are shown in Table 1 and were summarized in section 1. In
compiling Table 1 the assessments were sometimes modified in line with the con-
siderations just discussed.

Apart from pilot project no. 12, which did not run for long, regeneration of more or
less clogged recharging wells proved necessary in all cases. In most instances this was
simply done by clearance pumping or by airlift. In project 9 cleaning was done once
a year by syringe injection and section-by-section clearance pumping. Hydrochloric
acid was used in a few cases: 3, 8 and 13.

In general poor results were obtained from regeneration; in many cases it was left till
too late. Unless the cause of clogging can be eliminated regeneration is likely to
produce only a short-lived improvement.

Where the routine maintenance of recharging wells not subject to rapid clogging is
concerned good results appear to be obtained by airlift. This was done in the
following projects:

Project Type of recharging well
10 large
14 small
15 large
16 small
18 small
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The introduction of air in the wells does not appear to be a disadvantage since the
pumping action is greatly stepped up at the same time.

3.7 Special cases

3.7.1 Project 1

The following emerged from an examination of data that had been kept on the

project after its conclusion.

The recharging wells had a required intake capacity of 30 to 40 m3/h and clogged

almost immediately. On the very first day intake capacity fell to below 3 m3/h at an

overpressure on the pipeline system of | m. The clogging made it difficult to regulate

the pressure on the recharging wells (see section 3.4). In response to the build-up in

pressure the wells became subject to boiling in a few days. The same occurred with

another recharging well constructed at a later stage.

Submersible pumps with a capacity of 60 and 125 m/h were used for dewatering,

but these had to be largely shut off. (One of the heavy pumps which was sucking in

air had to be replaced by a lighter one.)

Despite the fact that the pipeline system was under pressure, gas or air managed to

enter the system. Degasifying valves had to be fitted to the recharging wells since it

was thought that the pressure drop might result in the release of methane (marsh

gas).

The recharging wells were fitted with wooden screens surrounded by gauze-mesh.

The extremely fine mesh used will have contributed to the clogging by solid partic-

les.

One of the clogged wells was inspected by clearance pumping of individual sections.

Analysis of the water and sediment in each section gave rise to the following

conclusions concerning causes of clogging:

a. deposit of organic substances;

b. deposit of insoluble iron compounds resulting from the presence of traces of
oxygen;

c. growth of sulphate-reducing bacteria and the deposit of ferric sulphides;

d. release and incomplete re-solution in groundwater of dissolved methane.

Rook refers to this research in his article (2), exmphasizing the chemical and

biological processes: oxydation of iron, sulphate reduction and accumulation of

bacteria. None of these processes, however, can cause serious clogging within a few

hours. The main cause would therefore appear to have been the release of methane

as a result of the drop in water pressure from approx. 15 mwk in the water-bearing

layer to something like 3 mwk in the pipeline system. Whether such a pressure

drop leads to degasification depends on the quantity of gas dissolved in the

groundwater; unfortunately no data exist on this aspect.
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The research carried out at the time did not produce any evidence to suggest that the
organic substances and ferric sulphides had been formed by bacterial activity in the
recharging wells. Sulphate reduction is a process, that occurs naturally in the soil in
river areas and takes some time to get going. The sulphides and organic particles
therefore presumably originated in the water-bearing formation and were borne
along in the pumped-up groundwater. If this is the case they can readily be removed
by cleaning out the filter by pumping.

While it is possible that the traces of oxygen entered the system through the
regulating valves, it is more likely that they entered the water through the suction
pump of the appliance used for sampling the clogged filter section by section.

To sum up it may be said that the most likely cause of clogging was the release of
methane. Further details on gases in groundwater and the formation of gas-bubbles
in water are provided in Annexes 3B and 3C.

3.7.2 Project 3

Serious clogging arose in a prior recharge trial (1958) within two weeks. After three

months both the trial wells were wellnigh fully clogged. The deposits in the clogged

wells consisted primarily of FeS, so that sulphate reduction was once again identi-

fied as the cause. One of the wells was regenerated by acid treatment, which led to a

build-up of H,S gas (which is highly toxic, with an odour of rotten eggs).

For the same reasons as in project 1, it is unlikely that sulphate reduction was the

cause of the problems encountered in the well recharge system. From the very outset

the intake capacity of the recharging wells was much smaller than had been expec-
ted. Large quantities of combustiblegas were detected in the de-aeration process,
and this was then identified as the main cause.

So as to be absolutely sure two sets of measures were taken:

a. Each of the header mains was fitted with a large degassing tank measuring about
3m. high and 1 m. in diameter. Tall degassing pipes (up to Amsterdam Ordnance
Datum + 5 m) or degassing valves were also fitted to a number of the recharging
wells.

b. A number of the recharging wells were regenerated with hydrochloric acid in
order to combat possible sulphate reduction. The remaining wells were simply
pumped to waste in order to remove any accumulated gas (once the degassing
had been improved).

It is no longer possible (15 years later) to isolate the effects of these measures. Acid

treatment was, however, discontinued and the recharge system operated satisfacto-

rily after 9 new recharging wells had been added. The water in the system proved
moreover to contain only traces of sulphate, so that the sulphate reduction hypo-
thesis was abandoned.

Once again the conclusion in this case must be that the initial clogging of the
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recharging wells was primarily caused by the release of methane in the pumped up
water. The problems were resolved by the installation of effective degassing devices
and by reducing the capacity per well from 15 m3/h to 10 m3/h by increasing the
number of recharging wells. The precise arrangements of the degassing tanks are no
longer known.

373 Project 8

The difficulties encountered in this recharge scheme assumed such proportions that
the project must be regarded as a failure. Extensive research was carried out into the
causes, which is discussed in reference (3); this ascribes the cause of clogging in the
recharging wells to the geohydrological situation. Dewatering was conducted in an
unconfined aquifer, as a result of which both ‘shallow’ oxygen-bearing water and
‘deeper’ iron-bearing water were drawn up into the pumping wells. The mixing of
the two types of water in the wells caused the precipitation of iron deposits which
seriously clogged the recharging wells within the space of a few weeks.

This phenomenon had not been encountered in previous projects because ground-
water recharge with bored wells is generally only used in circumstances where there
are weak covering layers in which settlement could occur as groundwater is with-
drawn. Layers of this kind which are subject to settlement (e.g. clay or peat layers)
are generally relatively impermeable and thus prevent the groundwater from com-
ing into direct contact with oxygen-bearing rainwater. Project no. 8 at De Bilt was
not, however, concerned with the risk of settlement but with the prospect of damage
to parks and other facilities in the vicinity resulting from the lowering of the
water-table. The research carried out into the problems that were encountered
indicated that little could have been done to prevent clogging in these circumstances
once it had assumed serious proportions.

It may be asked whether any factors other than the above process may have
contributed significantly to the clogging. It is possible that the groundwater may
have been aerated in the pumping wells, e.g. if some of the submersible pumps
sucked in air. Alternatively aeration may have occurred as a result of leakage in the
wooden rising mains (which were constructed out of staves) or through the forma-
tion of a seepage zone (see section 3.3).

The sucking in of air by the pumps is unlikely to have been a major factor. A number
of pumps were lowered to a greater depth at an early stage, after which the water
level in the dewatering wells was kept regulated.

Aeration in a seepage zone is, however, a distinct possibility. A seepage zone can for
example be set up between the shaft of the borehole and the much coarser gravel
pack. The latter may in practice be regarded as an extension of the filter itself. In the
case of the De Bilt pumping wells the gravel pack around the wellscreen was
continued up to ground level in order to assist the dewatering of sand layers near the
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surface. It is therefore possible that aeration may have occurred in the gravel pack
above the filter.

374 Project 13

This project was based on a system of combined pumping and injection wells. Each
well contained two filter installations, one set into a deeper sand layer and the other
into a sand layer at medium depth. Groundwater was extracted from the deeper
layer by means of a submersible pump and injected at the higher level. The
advantage of this system was that it avoided the need to install a pipeline network in
the village, which might have disturbed the residents. The lay-out of these wells and
the results obtained with them are described in detail in reference (4).

It is of note that this project was preceded by a 5-month recharge trial which
operated successfully. Following the trial six combination wells were installed for
the project proper, but these malfunctioned from the very first day. Methane
escaped from the deep groundwater and clogged the injection section of the wells, so
that the injection intake had to be reduced from 15 to around 5 m3/h. It proved
possible to maintain an intake of 4 to 5 m3/h throughout the dewatering project (1%
years), but even so the recharge system fell short of expectations.

A number of tests were conducted on one of the wells in order to improve the
injection intake. A small degassing unit was fitted at the well-head, but without clear
result. Two impellers were then removed from the submersible pump with a view 1o
reducing its lift. This had been 32 mwk for an intake of 5 m3/h, although less than 10
mwk would have sufficed. Once this was done the desired intake of 15 m3/h could
be maintained without difficulty, presumably because the reduced pressure in the
rising main meant that the dissolved gas was able to escape before reaching the
degassing unit, thus forming larger bubbles which could escape more easily in the
unit than before. Following a subsequent improvement it proved possible to in-
crease the rate of intake to as much as 20 m3/h. This was done by drilling large holes
in the submersible pump rising main at the same level as the injection filter (18-27m
below ground level). This meant that the water was subject to a much lower drop in
pressure in that it no longer had to be drawn up all the way to surface level.

Once these modifications had been effected the injection intake could no longer be
regulated (apart from by discharging waste water). No further regulation was,
however, required during the remaining eight months during which the well was in
operation; nor was there any further clogging.

It is no longer possible to determine in retrospect why the prior trial was problem-
free. During the trial 25 m®/h were pumped up, of which 15 m®/h were injected. The
rest was discharged. During the project itself, however, discharge of surplus water
was difficult or impossible. One possibility is that the pressure in the rising main was
lower during the trial and that the bulk of the gas released in the pipe system was
discharged with the waste water.
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The following features are characteristic of gas clogging:

a. Clogging occurs very rapidly, in a matter of hours or at the most a day.

b. A state of equilibrium is then reached which remains unaltered; there is no
further build-up of clogging.

These characteristics enable this type of clogging to be readily identified.

For table 3 see page 27.
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Table 3 Recharge systems survey — 1.

Project no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 18
Commencement date 28.9.55 1960 April '63 June’62 Sept.’63 July’62 8567 9.1168 3.172 7474 31574 6771 Nov. 74 Feb. 75 Sept.'75 Oct.’75 10.2.75 Nov.’76
Completion date Feb. 65 July’64  May’'66 Dec.’65 12,667 15471 27873 31.10.74 18.9.74 30.7.74  Aug.’76 Feb.’77 Mar.'76 Jan.’77 52.76  June’78
Duration ? >1y. 23 mnths, 26 mnths. notcontin-2%2yrs.  Swks  >24m. 20m. Tm 3% m. clm Yyrs. >24m. S5m. >12m. lyear 18m.
uous
60 weeks
Prelim. research:
Pumping test yes/no no no yes yes yes no yes yes yes yes yes - yes no no no yes yes
— carried out by - — o) [¢)] m — v.Dijk  (2) Tjaden — ) - 2) - - — 2) Mos
Soil parameters- kD (m?/24h) +500 — 220-290 160 160 500-850 2000 1500 1475 2000 335 1000 410 1400 2000 1000 1500 1000
{m) *1000 - 1000 700 200 1200 - — 500 - 800-1600 1500 150 680 - 1500 300 2000
Est. water load
— without recharge (m3/h} - — 180 — — 820 560 700 1000 520 — — 1830 — 275 200-240 950 2320
— with recharge (m3/h) 270 — 330 - 230 820 720 1900 1200 715 - - 1500 - 350 600-1050 1050 3700
Recharge capacity (m®/h) 120 - 320 - 180 80 310 2135 1200 280 26 - 90 - 375 350-830 max 550 2735
Recharge trial yes/no no no yes yes yes no ves no yes yes n.a. na yes no no yes yes no
— carried out by - — - - - — v.Dijk - Tjaden v.Dijk - - (2) - - (5) (2) —
— clogging yes/little/  — yes little little - — no — little yes no - yes — — no yes —
no
Reports available on
- dewatering research yes/no yes no yes yes no — no yes yes - yes - yes - - no yes yes
— recharge trial yes/no no no yes yes yes - no no yes — yes yes yes - - no yes no
Reason for recharge
-~ protection of buildings + - + + + + + - - + - - - + - + - +
— discharge prohibition - + - - - - - - + - - - - - - — - -
— groundwater conservation - - - - - - - - - - - - - - - - + -
— other objectives — — — — — — — +(3) - —_ + @ + (4 + 4y — + — - -
Aims achieved? yes/partly partly partly yes, after partly partly yes parlly  yes yes yes yes partly
no enlargement  yes
Technical data Received
— well location + /- + - + — - - - + + — + + + + + + + +
— soil profile sketch +/— + — — - — — — + + - + + + + + 6) + +
— dnili description +/— + + - - - - - + - - + + + + + (6) - +
— sketch of rech. well +/— + - — — - — — — - - + — + + + (6) - +
— chemical analysis +/— + — - - — — + — + — + — + — — [(3) + +

[§)]
@
3)
4)
(5)
(6}

Provincial Public Works Dept. + National Institute for Water Supply

National Institute for Water Supply

protection of parks
trial

Rotterdam Municipal Public Works Department

see project 12
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Table 3 Recharge systems survey — 2

Project no. 1 2 3 4 5 [ 7 8 9 10 i1 12 13 14 15 16 17 18
Dewatering data 2)
System: — pressure pipe + + + + + + + + + + + n.a. + + + + +
— vacuum pipe - - - - - - - - - + - - - - - - - +
Number of pumping wells 5 5 18 8 4 39 6 28 12 - 1 6 6 40 5 48 8 52(3)
Type of pump subm. subm. subm. - - subm. subm. subm. 6 subm.  subm. subm.  subm. subm. subm. subm. subm.
Intake depth (m-g.l) 10 18 35 — - - — 12 135 subm. - 18 38 18 13 19 28 24
Capacity per well (m3/h) 35-115 60 25-30 18 20750 25/45° 120 45-110 100 - 40 60 15 50 & 100 60 20-50(4) 150 70
Well drawdown (m-g.l) max. 1450  — - ? 445 10 280 120 - 190 107 2&4 — 25 4 3
Drilling technique bailing suction bailing — flushing - suction flushing suction 5 — suction  suction  suction jetting  suction  suction suction
Drilling depth {m-gl) + 25 30 ¢.36.50 c.28 .28 - 25 28 32 suction 35 28 46 25 15 26 30 —
Rising main -~ material steel wood  steel - - - pve wood  pvc 25 pvc pve pvc pve steel pve pve pve
— diameter (mm) 150 260/220 250 - - - 300 300 3is pve 250 240 300 250 & 300 100 200 300 225
Filter screen — material steel wood  wood - wood pve steel pve 300 pve pve pve pve pve pve pve pve
— diameter (mm} 150 260/220 150 - 150 - 300 300 315 pve 250 240 300 250 & 300 250 200 300 225
— lop (m-g.l) 13 17 c24 - €19 - 15 1250 155 200 25 18 €35 15 8 24 15 24
— length (m) 1 8 c.10 - 9 10 10 16 15 10 9 c.10 10 7 10 15 10
10
Pipeline data
Length (m) 100-250 100 1200 (§H] h ~150 450 c500 2000 30 24 dna. 750 250 480 1250 3620
Pipeline pressure — max (m wk) 2 — c.25 - nil ~ 10 little 2.50 35 270 — 10.5 - 5 6 3-3.50 2.8 35
- min (m wk) 1 — — — — 0 — — 25 2 — 3 — 1 - 0.5-1 1.8 25
Regulated by: -
— valves + + - - ? - - - - + + + + - + + -
— control manifold - + + v + + + + - - - - + - - +
Could air getin -yes/no yes no - - - told.  no no + no no no no no no no no
(half-full pipeline)? extent ves
Recharge duta
Total capacity
— design (m*/h) 120 - 320 - - 80 310 1900 1200 - 90 350 375 830 550 2730
— actual (average) (m3/h) 75 120 320 50-60 45-80  30-60 310 1900 850 280 26 - 35 320 250 800/700 530 3000
No. of recharge wells 3 4 24, jater 4 3lat7 9 7 52 102 280 i 15 6 427 10 83 17 387(6)
Capacity per well: 33 5
— as a recharge well (new)  (m3/h) 3 later 20 40 9-12 12 12-15 ~7 69 40 7 26 20 5-15 0.75 30 10 20-60 6.5
* on an increase of (m) * 1 - — — - - 2.56 4 0.20 120 2.40 8 3 1 .50 — - 4
* Q specific (m®/h perm) — - - - - - 27 10 35 450 11 2 1.7 0.75 60 - - 1.6
Drilling technique bailing suction — - flushing - flushing — 26.7  bailing bailing  suction jetting - suction suction  straight
Drilling depth (m-gl) 22 — .38 — c.30 - - - - suction 35 27.50 na. 13 24 30
Rising main — material steel wood  st/pve - - - pvc pve pve 28 pvc pve pve pve - pve pve pve
— diameter (mm} 150 200/160 250 - - - 300 300 250 pve 31s 50 300 50 - 50 300 50
Filter screen — materiaal wood  wood  pvc - pve - pve Ve pve 300 pve pve pve pve pve pve pve pvc
— diameter (mm) 200x160 2007160 160 - 152« - 300 300 250 pve 315 50 300 S0 250 50 300 50
- top (m-g.l) 12 26 21.50 - 18.50 15 1250 155 300 19 19 18 9 10 14 10 23
— length (m) 9 15 cl2 — 8 - 10 10 16 10 15 c 9 4 20 10 20 6
Gravel pack (mm) 2-3 23 - - - - 152 - 1.25-1.7515 1.5-2.5 £.5-25 09-125 2-5 12-1.7 152 12-17
Falling main — length (m) 24 - 35 - 30 - + 20 6 152 10 6.6 na - 3 na.
— diameter (mm) 75 75 — - - 125 100 6 75 82 n.a. - - 100 n.a.
Did water come into yes/no no no no - prob. - to ltd. no no 100 no no no no no yes no
contact with arr? ves extent yes
() Recharge system fed by separate well in 3rd sandlayer.
(2) Extraction section of combined pumping and injection wells.
(3) Injection section of combined pumping and injection wells.
4) 6 wells at 60-90 m*/h and 42 wells at 20 m3/h.
(5) Also 886 vacuum pumping wells, water from which was not injected.

(6) Also 81 shallow wells in holocene layer.



6¢

Tabel 3 Recharge systems survey — 3.

Project no. 1 2 3 4 5 6 7 8 9 10 8] 12 13 14 15 16 17 18
Operation of
recharge wells
Well regulation for
— capacity (limits) - 0-60 per group + - - 40-60 - - 40-80  20-30  12.5-24 - 0-30 10-20 20-60 -
m*/h
— overpressure (Limits) ¢.1.30+ - 15254+ ~25+ none 3-35+ - ~4 25354+ 14-2+2-25+ 3.2-10.5- 0.5-4 0.5-1.50 — 1+ -3+ 2. -3+
m-g.l.
Regular pumping out ves/no no no no ? no no no yes yes yes no 6o no no yes na no yes
frequency approx - — - - - - - Ix/m 4 wkly Ix/3w. — n.a - - /2w - - -
Clogging yes/Lim- ves limited  ves scarcely no ves limited  yes limited  yes yes no ves limited  ves limited  limited
ited/no
data received +/— + - - - - - - - - - — + - - - + -
— likely cause various - gas/iron - unkn. iron iron iron iron 5 - gas/Fe debris  iron debris  iron -
Max. permitted (m+gl) =350 2 5 - - - 2.50 35 1 0.50 5 1 0.50-1.506 3-3.50  c¢05 3
overpressure
Wells “surcharged’ many/few/  many one several - several none several several several none  several several none none none none none
none
Regeneration yes/no ves ves ves(2) - - yes ves yes yes yes yes no yes ves yes ves ves yes
— frequency approx. 2m. - - - - notoft 1x/m * 1y
— method pumping pumping pumping — pumping pumpingflushing (3) pumping— - pumpingairlift  p'g/airlift p'g/at  pumpingairlift
- chemicals none - HCl - - HCl HC1 none - - - ves - - none -
— results good/mod./  mod - poor - - poor - poor good good - - poor good  good good  bad good
poor
Operating results - (4
— initial good/mod./  poor good mod./poorgood  good  mod./poorgood good moderate  good poor good poor moderategood good good good
poor
after |1 months mod. good moderate good  good good poor moderate good good good poor good good good good good
— after 2 months good good moderate good  good - poor - good good - poor good good good good good
— after 6 months poor mod. good good  good - poor good - - - poor good - moderategood good
- after 12 months 7 poor good good  good poor good - - - poor good - good  good  good
— after 24 months - good good - - poor good - - - good - - -
H Result of overpressure.
2) Initially. but later unnecessary.
3) Jetting technique and section-by-section pumping out.
(4) Improvements were made to well R1in Oct. 1975, after which it ran satisfactorily for 10 months
(5) Defect in pumping well



4 Circumstances in which a recharge system is practicable

The effectiveness of a groundwater infiltration system with bored wells depends
critically on the properties of the water being recharged. A recharging well acts as a
filter: suspended particles in the water are screened out, especially at the point
where the relatively coarse gravel pack meets the much finer natural sand formation
in which the well-screen has been installed. The filtration process results in the
clogging of the injection well. Glogging can also be caused by gas bubbles, which get
caught in the pores of the gravel pack and the surrounding formation, thereby
reducing the available space for the water to flow through.

Chemical reactions between the injected water and the groundwater initially sur-
rounding the recharging well are not a cause of serious clogging. This is because the
original groundwater is completely displaced by the injection water, so that the
recharging well is soon completely surrounded by injection water (5).

Instances are cited in the literature where the infiltration of fresh water in a clay-
bearing sand formation containing salt or brackish water can produce clogging
when the minerals present in the clay swell up (6).

We are not aware of any other instances of clogging caused by reaction with
particles in the water-bearing stratum. In most recharge systems the abstracted
water is returned to the aquifer from which it was withdrawn, so that interaction
with the soil is unlikely. The injection of groundwater from a different (i.e. deeper)
water-bearing stratum is inadvisable if the deeper layer contains fresh water and the
higher one brackish or salt water. This is, however, seldom the case in the Nether-
lands, since groundwater generally gets saltier as one goes deeper.

As noted in the previous chapter, only four of the groundwater recharge schemes in
the Netherlands ran into serious problems. In two of these cases the problems were
resolved after a certain interval'and the projects then ran as had been hoped. In both
cases the problems had been caused by the release of methane in the abstracted
groundwater. This was overcome in project 3 by the installation of degassing
equipment and in project 13 by keeping the injected water under pressure.

Project 1 was the first groundwater recharge scheme to be carried out in the
Netherlands. At that time the origin of the difficulties was still a matter for conjec-
ture. With the experience acquired in the meantime it is now evident that the release
of methane must also have been the major cause of the problem in this project. The
installation of effective degassing equipment would have rectified the difficulties.
The fourth case, project 8, must be regarded as an exception. It was the only
recharge system to be carried out in a water-bearing formation not covered by
relatively impermeable layers, i.e. an unconfined aquifer. As it happened the

30




pumping wells extracted two different types of groundwater, namely shallow
oxygen-bearing water and deep iron-bearing water. This led to the formation of iron
deposits in the abstracted water and to serious clogging in the recharging wells. The
conclusion should not however be drawn from this experience that a recharge
scheme carried out in phreatic groundwater will invariably result in rapid clogging
by iron deposits. No iron clogging occurred in a recent groundwater recharge
project at Zeist (which could not be included in the survey) because in this instance
the deep groundwater also proved to be aerobic (i.e. oxygen-bearing). Further

particulars are provided in Chapter 1 1.

The effect of geohydrological conditions on the effectiveness of groundwater

recharge schemes may be summarized as follows:

1. The formation from which groundwater is extracted is covered by semi-perme-
able layers (i.e. a semi-confined aquifer). The groundwater is anaerobic (i.e.
contains no oxygen). No problems likely unless the groundwater contains
significant quantities of methane. In this case the problems can be resolved by the
installation of effective degassing equipment or by keeping the water under
sufficient pressure. The study group is convinced that degassing can be effected
simply yet adequately and has set out a number of recommendations in Chapter
10 for further research in this field.

2. The formation from which groundwater is being extracted is not covered by
impermeable layers (i.e. an unconfined aquifer). In principle the groundwater
will be aerobic (i.e. oxygen-bearing), although it may become anaerobic lower
down. No problems arise if the formation contains aerobic water alone, but as
shown in project 8 serious problems arise if both kinds of water are present. The
study group considers that a recharge scheme should still be able to function
satisfactorily in these circumstances provided that a number of supplementary
measures are taken.

The pilot recharge scheme discussed in Chapter 11, which was implemented in
the immediate vicinity of project 8, provides confirmation for this view.

The economic merits of recharge must be determined from case to case and
depend on the available alternatives (e.g. steel sheet-piling with underwater
concreting, chemical injection and pneumatic caissons). In order to facilitate a
comparison between the various alternatives, Chapters 7, 8 and 9 examine the
requirements which a recharge system must satisfy; the hydrological calculations
required in the case of a dewatering/recharge system; and the factors which
affect costs. It would, however, appear from comparisons of the various
groundwater control techniques that a recharge system is often the cheapest.
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5 Injection techniques

As noted in Chapter 3 recharge systems may either make use of large wells (i.e. filter
diameter of 150-300 mm) or of small wells or wellpoints (filter diameter of 50 mm).
These are the diameters of the inner casings; if the thickness of the gravel pack (15
and 10 c¢m respectively) is added, this makes for a borehole diameter of approx. 50
cm and 25 cm respectively. These construction differences affect the relative in-
stallation and maintenance costs, but in terms of the basic objectives of a recharge
system the two systems come to the same thing. These objectives generally consist of
the full or partial restoration of groundwater levels (and hence of the pore-water
pressure in the granular structure) in places where this is required in order to avoid
damage to buildings, vegetation etc. In order to achieve this objective a certain
quantity of water per unit of length of the well curtain must be injected into the
ground. This quantity (q; i.e. m3/h.m) depends on local conditions and is
determined on the basis of hydrological calculations, of which a number of
examples are given in Chapter 8. Once the discharge per m of length (q) has been
established it makes little odds whether it is returned to the ground by means of a
few large or many small wells. This point is examined further in Annex 5A. The
individual impact of recharging wells does not extend far beyond the well curtain
itself, namely 0.5 times the well spacing. In practice the well spacing varies from 2.5
to 10 m for small wells to 10 to 25 m for large ones.

In certain circumstances it may be essential for the well curtain to be installed right
next to the object it is designed to protect. This was the case for example with project
16, where the recharging wells were set into the pavement as close as 2.5 m from the
fronts of the houses. In such cases well spacing must be kept small in order to ensure
that the foundations are evenly protected. An effective design would therefore
consist of a great many small wells each with a small discharge.

Provided there is sufficient space between the well screen and the object to be
protected, well spacing and the construction of the recharging wells are a matter of
free choice in a geohydrological sense. The actual selection will depend on practical
considerations and instaltation and maintenance costs. One factor might be that a
great many wellpoints tend to provide greater operational reliability than a small
number of large wells.

A cost comparison in Annex 5B indicates that a system with small recharging wells is
cheaper to install and run than a system with large wells. This is on the assumption
that the wellpoints can be installed by means of the rotary straight-flush method
with a jetting lance which can achieve the required drilling depth in one go. This
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effectively limits the depth to 35 m. Secondly it is assumed that the large wells have
twice the capacity of the wellpoints.

As discussed in section 3.5, the latter assumption holds good if the outflow velocity
(Vy) is the same for both types of wells. This is a reasonable basis for a cost
comparison, but in practice the difference in capacity between large and small
recharging wells can be greater than 2:1. In a particularly coarse water-bearing
formation, therefore, or in a coarse and very thick stratum, a system with large wells
can therefore be cheaper than one with wellpoints.

Hitherto wellpoints have been fitted with a filter and header pipe 50 mm in
diameter. The friction in these narrow tubes sets definite limits to the intake capacity
of the wellpoints, and also to the capacity with which they can be pumped out by
air-lifting.

A calculation method for the air-lift system is provided in Annex 5C. This reveals
that the pumping out capacity can be considerably augmented if a larger header
pipe diameter is used. The optimal solution probably consists of the largest diameter
filter and header pipe that can be achieved with jetting.
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6 Preliminary research requirements

6.1 Introduction

In theory a wide variety of physical, chemical and biochemical processes can cause
clogging in recharging wells; a good survey of these factors is provided by Rook (2).
It is not possible to tell in advance which of these processes will apply in the case of
a particular project. In the past this led to the view that the only means of
determining whether a particular project was likely to be successful or not was to
conduct a practical test. This view has undoubtedly been largely responsible for the
present state of uncertainty concerning the general applicability of recharging
systems.

The survey discussed in Chapter 3 provides for the first time an overview of the
problems encountered in practice. It is evident that in practice clogging is the result
of only two factors: degassing and the formation of iron deposits. In most cases it
should now be possible to install a recharge system in such a way as to prevent
clogging, or at least to keep it within manageable bounds.

At the same time the study group continues to regard a preliminary test as essential
if failures are to be avoided, and has decided to specify certain guidelines for such
trials. The accent of such trials is, however, rather different from what it used to be.
As a first step a number of simple, qualitative tests are carried out to check whether
degassing or the formation of iron deposits could occur, with the design of the
recharge system being adjusted accordingly. The selected design is then tested on a
practical scale. If clogging should still occur a test is carried out to see whether the
wells can be regenerated by clearance pumping, and how frequently this would have
to be done.

A satisfactory design for a recharge system can only be drawn up if the soil contents
have been accurately established. This may be done by means of a pumping test (or
pilot dewatering). The preliminary research thus consists of three phases which can
be combined with one another.

With regard to the research design it should be borne in mind that the causes of
clogging are related to the properties of the water being returned to the aquifer and
not to the properties of the soil or the groundwater at the site of the recharging well.
It is therefore important that the tests be carried out with groundwater pumped up
at the site of the future excavation. If the recharge system is to be fed with
groundwater from a deeper water-bearing formation, tests should be conducted
with the same water as that which would be used in the actual project.
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6.2 Pumping test

No general guidelines can be laid down for carrying out pumping tests; the design
will depend on the geohydrological conditions and the required degree of accuracy
of the results. In most cases one pumping well will be required at the site of the
future excavation, with at least two and often more than 10 observation wells. The
latter can be sited so as to account for any objects in the vicinity which might be
liable to damage. If two different water-bearing formations are to be dewatered a
separate pumping test will have to be carried out in each.

The length of the pumping test may vary from a few hours to as much as ten days. In
many cases the pumping test will be followed by a stop test in which the restoration
of the groundwater level is measured. In the event of two water-bearing strata the
whole programme may take one to two months, or even longer in tidal areas.

The pumping well will generally provide the water for the remaining research as
well. For this reason the depth, filter length and other construction aspects should
correspond as closely as possible with those of the final pumping wells.

6.3 Gas test and filter test

These two tests are designed to provide a rapid and simple indication of whether
iron or gas clogging is likely to occur or not. The tests do not establish the actual
speed with which clogging will occur but provide an indication as to whether any
special anti-clogging measures are required in the recharge system. Such measures
can then be incorporated in the recharge test.

This type of preliminary research is new but the study group considers it should be
carried out for each new project so that the recharge system can be adjusted in line
with local conditions. These tests can be carried out during the pumping test or (in
the absence of such a test) during pumping trials on one of the dewatering wells. The
sampled water must however be the same as that to be injected during the actual
recharge process. If the injection water is to be taken from a deeper water-bearing
layer a special pumping well will have to be installed for extracting the same water.
This well will in any case be required for the third phase, i.e. the recharge test.
Detailed accounts of the gas and filter tests are contained in Annexes 6A and 6B.

6.4 Recharge test

A trial on a practical scale is generally essential for the success of a recharge scheme.
Detailed data required for the design of the installation can be obtained while any
special arrangements (e.g. degassing equipment) can be tested.

In most cases it will not be possible for normal operating conditions to be
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reproduced completely in a trial. During the actual project the recharging wells will
operate in conditions in which the dewatering of the excavation will have resulted in
a substantial drop in the groundwater level. A similar drop cannot effectively be
achieved by a single pumping well during a trial. This means that the recharging
well or wells can only be tested in conditions of lower underpressure than will in fact
obtain during the project proper, in that the piezometric level in the well must, in
view of the risk of boiling, remain confined to approx. 1.5 m above ground level. The
injection intake obtained in a trial will therefore generally be lower than that
achieved in practice.

In an effort to overcome this limitation, several of the recharge tests in the survey
were based on a system of three wells. The wells were placed at the corners of an
equilateral triangle with sides 6 m in length. One of the wells was used as a pumping
well and the other two as recharging wells. This arrangement was used in projects
3-6, but suffers from the disadvantage that before long the same water is pumped
round and round, so that the gas content (and other factors) no longer correspond
with the true situation. As an additional complication, an abnormally high velocity
of flow is built up underground between the pumping well and the recharging wells,
so that fines can be transported from the soil. This can in turn produce a kind of
clogging in the recharging wells which would not occur at normal flow velocities.
A recharging trial should be primarily designed to ensure that the quality of the
abstracted water is as close as possible to that in the project itself. This means that
the spacing between the pumping well and the recharging well or wells must not be
much less than that in the real situation.

The inability completely to reproduce operating conditions in a trial also makes it
impossible to determine with any accuracy the speed with which clogging will occur.
One can only obtain a general impression of the frequency with which the recharg-
ing wells have to be cleaned by pumping out. It is however also important to obtain
an impression of the effect of pumping out and of the discharge required for that
process. In doing so various methods of pumping out can be compared.

The test installation should comply with the requirements laid down in Chapter 7
for recharging systems as such. If so indicated by the gas and filter tests, arrange-
ments may have to be made to prevent clogging by gas or iron deposits. As noted
earlier, the pumping well should be located on the same site as that from which the
water for the final recharge system will be withdrawn. The pumping and recharging
wells should be constructed along the same lines as the final wells and the spacing
between them should not be too small.

The duration of the trial must be geared to the actual recharge project. In the case of
a lengthy project (e.g. two years), the trial should last for between two and three
months if the results are to be extrapolated with any degree of reliability. In the case
of a short project a trial of a few weeks will suffice.

Precise measurements will be required, if the results are to be extrapolated, in order
to detect any tendency towards gradual clogging. The piezometric level must be

36




known in the recharging well itself and at a distance of several metres away. The
difference provides a measure of well resistance, which is independent of all sorts of
disruptive external factors. Resistance co-varies with the injection intake, for which
reason it must be measured accurately for each recharging well.
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7 Installation and operational requirements

7.1 Introduction

A number of simple rules must be observed if a recharge system is to run effectively.
The most important of these is that the pumped up water should not be aerated at
any point in the system. Even the smallest air leaks will eventually result in clogging
by iron deposits, which leads to the second rule, that underpressure must not be
allowed to occur at any point of the system. As a third rule the water must not
contain any gas bubbles since these cause an almost immediate reduction in
capacity, while as a fourth rule the pressure in the recharging wells may not exceed
1.5 m above ground level on account of the risk of boiling.

Although the main rules are simple, a great many details must be taken account of in
practice. A summary of these details is given below; for safety’s sake it has been
assumed that all the conceivable problems could occur simultaneously. This will not
of course always be the case, so that in certain circumstances it will be possible for
some of the requirements to be relaxed. This applies especially to the exceptional
case in which the groundwater contains no dissolved iron whatever.

7.2 Requirements with respect to the dewatering wells

1. Little or no clay or bentonite should be used in the drilling fluid.

2. The rising main must be leak-proof (i.e. no wooden pipes).

3. The top of the filter screen must always be well below the level to which the
water-table has been drawn down.

4. Any impermeable layers above the gravel pack must be carefully sealed off
with clay.

5. In the case of phreatic water the gravel pack may not be continued up to

ground level. The borehole should instead be filled with impermeable

material from a height of 1 m above the filter.

The pump must be a submersible one.

The pump must be installed at sufficient depth to prevent it from taking in air.

An inner dipping tube is required for monitoring water levels.

The well must be properly pumped out until the water is free of sand.

In phreatic water it may be necessary to pump up oxygen-bearing water and

deep iron-bearing water separately. The practical means of doing so is a

subject for further research. Allowance may have to be made for the need to

install large and small pumps in each well.

S oo~
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7.3 Requirements with respect to the pipeline and regulating systems

1.

10.

12.

74

The diameter of the pipelines should be on the generous side; the flow velocity
should preferably be less than 1 m/s.

The pipeline material must be corrosion-proof; steel pipes must be internally
bitumenized. Plastic pipes should be used for preference.

Pipelines should be under pressure at every point of the system.

Where roadways have to be crossed the pipeline should not be built over the
top but installed underneath.

It should be possible to check the pressure in the system easily by means of
transparent standpipes and manometers etc.

Gate valves should not be used for discharge regulation.

Pressure on the rising main should be confined to approx. 3 m above ground
level. As a safety precaution a control manifold (or ‘Christmas tree’) should be
installed at the selected pressure height.

A device for allowing the released gas to escape should be installed at a point
beyond the regulating valves that are used to reduce the pressure in the
submersible pumps to approx. 3 m above ground level. The technical
specifications of such devices are a subject for further research.

Pressure in the recharging wells must not be allowed to rise to more than
approx. 1.5 m above ground level. This should be something that can be
readily checked (see point 7.4.7).

Each recharging well or group of recharging wells should be fitted with a
regulating valve and a Woltman water meter.

Regulation of the recharging wells should not however be allowed to result in
a substantial drop in pressure, since this would give rise to degassing,.

The entire system should be drained and de-aerated before being
commissioned. This will require appropriate discharge valves and vent taps.

Requirements with respect to the recharging wells

Little or no clay or bentonite should be used in the drilling fluid.

The top of the filter should be at least 10 m below ground level, and preferably
more.

The grain size of the gravel pack should be as coarse as possible consistent
with the safe pumping out of the well for cleaning purposes.

The remainder of the borehole above the gravel pack should be filled in with
impermeable material (e.g. a clay-sand or clay-cement mixture). Any clay
layers should be sealed off with clay.

The length of the filter should be related to the discharge capacity in such a
way that the outflow velocity of the injection water against the side of the
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6.2.

6.3.

10.

borehole is no more than 1.5 m/h. The lower the velocity the slower any
clogging will take place.
The injection water should not be allowed to fall freely in the recharging well.

. In large diameter wells a falling main should be installed terminating well

below the lowest water level. If the water level in the well is below ground
level, the pipe should be fitted at the foot with a restriction designed to prevent
underpressure in the pipeline.

A fall pipe may also be inserted in small-diameter wells (i.e. wellpoint cur-
tains). In order to prevent undesired frictional losses the diameter and length
of the falling main should be geared to the well discharge capacity. This is
explained in Annex 5A by means of an illustrative calculation

In wellpoints without falling mains, a sufficient volume of water must be
added to ensure overpressure in the system. If the supply of water should be
inadequate a number of wells will have to be shut off.

It must be possible for each recharging well to be deaerated. It should also be
possible to conduct a simple check to ensure the injection pressure does not
exceed approx. 1.5 m above ground level. One means consists of fitting a
transparent standpipe or hose to the well-head to a height of about 2 m.

If the water level in the well is below the well-head an internal access tube will
be required for checking purposes.

Before being commissioned, each recharging well should be thoroughly
pumped to waste.

Once the recharge system is in operation it should remain possible for in-
dividual wells to be easily and if necessary frequently pumped clean. Facilities
for this purpose should either be fitted in each well or be capable of being
added later, e.g. suction pipes, an air-lift system or a submersible pump.

7.5 Operational requirements

Many of the installation requirements have little point unless certain operational
requirements are observed.

1.
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The system should be drained down and de-aerated before being placed in

commission.

The system should be brought into commission gradually; maximum over-

pressure on the recharging wells should preferably be achieved in stages.

Over-pressure (or the water level in the well) and the injection intake should

be checked daily.

Recharging wells should be pumped out in good time and preferably

regularly. The following guidelines could be applied:

— all recharging wells to be pumped out once or twice after being brought
into commission.



— pumping out to be conducted before the over-pressure (or water level in
the well) has risen by 1 m.

A rise in over-pressure may only be regulated by reducing the injection intake

as an emergency measure. The sole remedy is clearance pumping,

The water level in the pumping wells should be checked regularly (e.g. once a

week).

If water is injected which is not obtained from the dewatering of the exca-

vation but from a deeper layer (or elsewhere), some form of automatic safety

mechanism will be required enabling the recharge system to cut out the

moment the dewatering system should stop.
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8 Hydrological design calculation

8.1 Introduction

Apart from the technical arrangement of the pumping and recharging wells and
connecting pipeline system, the number, capacity and location of such wells must be
determined when designing a groundwater control system. In most cases hydro-
logical calculations will have to be made for this purpose.

In the case of a dewatering system without recharge it will often be sufficient for a
rough estimate to be made of the water load, on which the number, capacity and
siting of the wells can then be based. The required drop in the groundwater level is
then checked at a number of ‘critical’ points in the excavation by means of
aggregating the influence of the selected well configuration.

If the solution is not satisfactory the configuration can then be adjusted and a new
calculation carried cut. An experienced hydraulic engineer can generally arrive at a
satisfactory design fairly quickly by means of this trial and error approach.

If, however, the circumstances are more complicated — e.g. if recharge is required —
the positioning and capacity of the pumping and recharging wells will be less
clear-cut. In this case the trial and error method can easily become cumbersome and
fail to produce the optimal result. In a recharge system, withdrawal and return
infiltration are closely interrelated, for which reason a method should be used in
which both the positioning and capacity of pumping and recharging wells may be
derived directly by calculation.

The working group made a special study of a number of these ‘direct’ solutions. The
latter may be divided into the following categories:

1. Analytical calculations without computer.

2. Analogue models.

3. Computer models.

The various methods are briefly discussed and compared in this chapter. A more
detailed description of the methods is provided in Annexes 8A to 8F. To facilitate
comparison Annexes 8A to 8F are all based on the same imaginary recharging
project.
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8.2 The test problem

In order to enable a quantitative comparison to be drawn between the various
methods, the latter have each been applied to the same problem (hereafter referred
to as the test problem). This test problem consists of an arbitrarily selected situation
containing the sorts of elements that often arise in practice and that make the
application of a more straight-forward approach very difficult if not impossible. The
test case thus consists of an elongated excavation which cannot readily be
represented diagrammatically in circular form, together with an ‘object’ (or build-
ing, as it is frequently referred to in the Annexes) at a short distance from the
excavation which requires careful protection (see Figure 2). Since groundwater
infiltration with bored wells is generally the obvious solution in those conditions
where there are thick clay or peat layers near the surface which might otherwise be
subject to settlement upon dewatering, the test problem has similarly assumed that
the water-bearing stratum directly beneath the covering clay layers forms a semi-
confined aquifer. The methods can, however, equally as well be applied to other
circumstances. With regard to soil parameters, values have been selected which are
representative of those encountered in the west of the Netherlands, while the
water-bearing layer has been assumed to extend infinitely (i.e. several km) in all

directions.
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Figure 2 Ground plan of the test case.

8.3 Analytical calculations without computer

If the excavation and object to be protected are small in relation to the distance
between them, the siting of the pumping and recharging wells is not critical. In these
circumstances a calculation of the total withdrawal discharge and infiltration intake
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will suffice. This has been worked out for the test problem in Annex 8A, the
calculation coming down to the solution of two equations with two unknowns,
which can be done by hand. In most cases, however, the excavation and object will
be closely spaced in relation to their size. In these circumstances it may well be
possible to apply the trial and error technique, especially if an effective
diagrammatic representation can be made of the object to be protected.

However, once a recharge problem has been reduced to a simplified diagrammatic
form, it will often be possible for the siting and capacity of pumping and recharging
wells to be solved ‘by hand’. A number of mathematical examples are provided in
Annex 8B in which well capacity has been calculated along ‘impact boundaries’.
These calculations are based on complex potential theory (i.e. computation using
complex numbers) and the method of conformal representation. It is assumed for
purposes of calculation that no increases or decreases in the water table are allowed
to occur beyond a given line or lines as a result of the groundwater control system.
The Annex explains how the calculated discharge profile may be regarded as a
configuration of wellpoints with a given, constant capacity. The method of con-
formal representation similarly enables discharge profiles to be calculated for
numerous other, complicated zones of influence. The calculations are valid for both
a confined aquifer and phreatic water, and often provide a good approximation in
the case of semi-confined aquifers.

8.4 Analog models

Another means of solving groundwater flow problems consists of using analog
models. A well-known example is based on the use of carbonized paper. Carbonized
paper is paper covered with a thin layer of conductive material with a constant
specific resistance in all directions. This paper is conceived as a model for a water-
bearing soil layer. In this model variations in the piezometric level of groundwater
take the form of potential variations in the paper, which give rise to an electric
current. Lines connecting points in the ground where there is an equal piezometric
level are represented on the carbonized paper by lines of equal electrical potential.
The fact that both the excavation and the object to be protected by recharging have
a constant if differing potential (i.e. piezometric level) renders the use of carbonized
paper particularly simple. After it has been ensured that the perimeters of the
excavation and the recharge scheme outlines on the paper are freely conductive, a
potential difference is introduced by means of a power source. This now enables
equipotential lines to be traced with a voltmeter. The discharge and intake dis-
tribution around the excavation and the recharge scheme may now be determined
by drawing a so-called quadrangular network. The test problem has been solved in
this manner in Annex 8C. In this case, however, the flow lines were determined by
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means of the so-called inverse problem, in which flow lines are converted into
measurable equipotential lines, which can then be solved along the lines described
above.

Both the anaytical calculations (8.3) and this analog model can be carried out with
relatively simple mathematical and technical materials. The designer must however
have a sound (theoretical) knowledge of groundwater mechanics. The analog
method only provides an accurate representation in the case of confined aquifers
and phreatic water. As shown in Annex 8C, however, excellent approximations for
semi-confined aquifers can often be obtained with this method as well.

8.5 Computer models

Both general and more complicated problems can be solved by computer.
Computers can however only be used effectively if the person designing the
groundwater control scheme is able to assess and check the computer results.

8.5.1 Finite element method

A well-known numerical method for solving groundwater flow problems is the
‘finite element’ method. In this method the area to be analysed is divided into a large
number of triangular elements (or subregions). For each corner of each element (i.e.
at the nodal points of the element network) the piezometric level is calculated on the
basis of the piezometric level and abstraction or infiltration of water at other nodal
points. It is possible to formulate the problem in such a way that the required
abstraction or infiltration levels at points where the piezometric level has been laid
down (e.g. around the excavation and in the recharging wells) are taken as computer
output. In this way the finite element method provides a direct calculation of the
discharge profile around the excavation and the object to be protected.

The particular strength of the element method is that it enables even quite complex
problems to be solved without difficulty, e.g. problems with complicated types of
excavations and/or objects and complicated boundary conditions such as canals
and rivers and decreasing or variable geotechnical parameters.

The element method can also be used to solve semi-confined aquifer problems, as
done in Annex 8D for the test problem. One disadvantage of the finite element
method is that it often requires a computer with a large memory and that even so the
remaining memory capacity will set limits to the density of the element network,
allowing more detailed analysis only in certain locations. For this reason it may be
necessary for the element network to be wholly or partially fed into the computer
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point by point for the design calculation of each new dewatering scheme. This
renders programming rather clumsy and time-consuming,.

8.5.2 Well method

The well method (thus named by the authors themselves) is an analytical method in
which the discharge levels for previously sited pumping and recharging wells are
calculated on the basis of achieving the required piezometric level at a number of
selected points. This method thus provides a direct calculation of the required
discharge and intake levels in existing wells, rather than the discharge profile. It is
therefore desirable for their positions to be chosen as carefully as possible be-
forehand. If the choice is a poor one the calculation will have to be repeated with
fresh well positions. The well method requires a much smaller memory capacity
than the finite element method (or the finite difference method). The programme
can also be more readily adjusted for new problems.

Since the method is analytical, extremely detailed calculations can if necessary be
made. On the other hand, constant geotechnical parameters have to be assumed.
The method may also be applied to semi-confined aquifers by replacing the for-
mulas for confined aquifers by those for semi-confined aquifers. In Annex 8E the
test problem has been solved for both confined and semi-confined aquifers.

8.5.3 Line sources method

Generally speaking the design calculation of a dewatering and/or recharge system is
concerned with abstraction or infiltration levels next to the excavation or object to
be protected. Instead of discretizing this discharge profile over a series of points
around the respective perimeters (i.e. the finite element and well methods) a
superior approach may consist of the selection of line segments each with a constant
specific discharge. In those places where the largest discharge variations are anti-
cipated, a greater number of (i.e. smaller) line sources or sinks are selected around
the perimeter than elsewhere. It is also possible to select linear specific discharges
along the line segments if a more accurate discharge profile is required. Greater
accuracy can however also be achieved by selecting a greater number of line
segments with constant specific discharges.

The test problem has been analysed by this method in Annex 8F. The line sinks and
line sources each have a constant specific discharge, the levels being calculated by
computer. If the pumping and recharging wells are assumed to have a certain
constant discharge, the (discretized) discharge profile arrived at may be regarded as
a distribution of pumping and recharging wells.
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Like the well method, the line sources method is an analytical one, so that the
remarks at the end of the previous section also apply in its case. The line sources
method has not so far been adapted for use in the case of semi-confined aquifers,
although in the authors’ view this should be possible. In comparison with the well
method it is easier to incorporate boundaries; this can moreover be done in a more
realistic manner. Individual wells can also be added in this method, which therefore
lends itself to being combined with the well method.

8.6 Comparison of results obtained by various methods for the test problem

In the interests of quantitative comparison the various techniques were applied to a
test problem (see Annexes 8A and 8C-8F, where these methods are set out in greater
detail). By way of comparison the results have been listed in the table below,
showing total water abstraction from the excavation and total injection in the
vicinity of the object to be protected:

Table 4 Total discharges in m3/d obtained by various methods

Method Annex Notes Abstraction (m3/d) Infiltration (m3/d)
1) general 8A 3) 39570 23330
2) carbonized paper 8C 2) 39300 22500
3) finite element 8D b 3) 41740 23670
4) well method 8E 2) 39000 22770
S) - 8E 3) 39610 23700
6) line sources 8F 2) 35950 23400

Notes: 1) Excavation width: 80 instead of 100 m.
2) Confined aquifer.
3) Semi-confined aquifer.

There is a close degree of correspondence between the results obtained by the
various methods. The differences are attributable to variations in the way in which
the problem was schematized. A certain amount of schematic variation is inherent
in the use of the various techniques, but some of the variation is the result of the
personal insights or preferences of those tackling the problem.

With respect to the schematization, only methods (1), (3) and (5) took the supply
from the covering layer into account (i.e. a semi-confined aquifer). This was not
done in method (6), although it should be possible.

Only method (2) is restricted in aplication to either confined or unconfined aquifers.
Given the results obtained in the case of the test problem, it would appear that in
certain cases (see Annexes 8C, 8E and 8F) the supply from the semi-permeable layer
can be disregarded without adverse consequences.
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In the case of method (2) irregularities in the carbonized paper can affect the results.
It should also be noted that the results of all the methods discussed above (with the
exception of (1)) provide the discharge profile along the perimeters of the exca-
vation and the object to be protected, from which the optimal well distribution
along those perimeters can then be directly derived. Method (1), however, does not
provide information on this aspect, so that one of the more sophisticated methods
has to be made use of in order to determine the optimal siting of the wells.

8.7 Conclusions

All the hydrological calculation methods described above are practical in nature
and will if properly applied lead to a sound hydrological design for a recharge
system.

Space does not permit an exhaustive examination of all the available and effective
techniques.

The choice of technique will depend on the complexity of the problem and the aids
at the designer’s disposal. Three different computer-based techniques have been
described in the report, of which the last (the line sources method) is possibly the
most versatile.

A particularly effective approach consisted of first of all calculating the discharge
profile required to obtain a given piezomatic level along the perimeters of the
excavation and the recharge system. This then enabled the locations and discharge
levels of individual pumping and recharging wells to be selected, if necessary, on
other than purely hydrological grounds. The advantages of the finite element
method over the more common analytical methods (namely the ability to deal with
soil discontinuities and complex boundary conditions) are not fundamental in
nature. As shown in the annexes, complex boundary conditions can also be in-
troduced in most of the other methods. Soil discontinuities are in fact encountered
only rarely in practice. Complex boundary conditions can moreover be introduced
- in the gallery abstraction method by means of ‘dipole allocations’. The advantage of
an analytical approach over a numerical method such as the finite element tech-
nique is that calculations need be carried out only for those points of the area in
which one is interested rather than for all the points of the network. Nor therefore
does accuracy depend on the fineness of the network and hence on the size of the
computer (i.e. application of networks with variable mesh width). Analytical
methods such as the gallery abstraction technique are therefore powerful aids,
which can also be combined with the use of the increasingly widespread mini
computer.
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9 Cost factors in a recharge project

The capacity and geographical size, and hence the costs, of a recharge project

depend on:
a) its objectives, e.g. maintenance of groundwater levels or discharge prohibitions;

b)

and
local circumstances.

Point b) covers the location of the dewatering scheme and the site at which the
recharge water is to be injected, together with the geological and hydrological
properties of the sand layer to be recharged.

The cost of the recharge system will depend on:

1

1.1

1.3
1.4
1.5

3.2
33

5.1
5.2
53
5.4

The local terrain and the existence of any external constraints with regard to
the activities to be carried out, such as:

The accessibility of the project site.

The location of boreholes, i.e. proximity to buildings, and whether located in
open country, roads or pavements.

The piezometric level in relation to the drilling method used.

The site at which working water can be obtained.

The geological soil profile. Soil composition determines the type of drilling
technique to be used.

The need or lack of need to dig in feed lines and recharging wells.

Condition in which the site must be left upon completion of the project.

The size and scale of the project in relation to the length of the pipeline
system.

The quantity of recharge water to be injected. This determines:

The number of rechargingwells required (once the type of well has been
decided upon).

The diameters of the feed lines.

Dimensions of water meters and valves etc.

The required number of special extraction wells or additional pumping wells
needed to supply the injection system.

Operational requirements such as:

The number of observation wells required for recording groundwater levels.
The method of discharge measurement.

Monitoring of groundwater levels and processing of data obtained in 5.1.
Monitoring of the actual operation of the scheme and processing of data
obtained in 5.2.
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5.5
5.6

6.1
6.2
6.3
6.4
6.5
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Project regulation.

Safety aspects, such as the installation of back-up charging wells and use of
feed lines with surplus capacity.

Maintenance, especially ‘clearance’ pumping of recharging wells.
Operational duration of the project.

This determines:

The size of the total rental charge for the installation.

The level of monitoring and regulation costs.

Maintenance costs.

The level of likely repair costs, e.g. for wear and tear, clogging and corrosion.
Energy requirements.

The cost-increasing factors will to some extent be offset by a reduction in
discharge costs if the groundwater abstracted in the dewatering system is
wholly or partly re-injected in recharging wells.

For a comparison of the cost of ordinary recharging wells with a wellpoint
‘curtain’ see Annex 5B.




10 Recommendations for further research

A number of problems emerged from the survey of the recharge projects conducted
to date in the Netherlands which stand in need of further research. The study group
has made a start on a number of these points. An indication is provided below of the
areas already covered and of those where the study group considers further research
to be required.

10.1 Research into gas clogging

The major cause of gas clogging is in all probability the formation of gas bubbles in
the abstracted groundwater. As may be seen in Annex 3B, methane is commonly
found in groundwater in the west and north of the Netherlands. The groundwater
also contains other dissolved gases, small quantities of which are carried along by
the released methane, but which do not readily escape from the water. The question
as to whether other gases such as nitrogen and carbon dioxide are released from
groundwater in sufficient quantity to cause clogging in the recharging wells is
difficult to answer, but is of little practical import. The degree of clogging does not
depend on the nature of the gas but on the quantity released in the water being
pumped up. The latter may be determined in each individual case by means of the
gas test referred to in section 6.3, and which is discussed in more detail in Annex 6A.
For degassing to be carried out effectively the bubbles must have sufficient time to
grow to the point at which they can escape easily. The rate of growth of a gas bubble
in water is discussed in Annex 3C.

The degassing appliances used in past projects to control gas clogging have not been
particularly effective. The study group believes that the development of an effective
degasser would be a major contribution towards improving the reliability of
recharge schemes. For this reason the group sought the advice of an expert from the
Delft University of Technology, Mr. J.A. Wesselingh, whose initial assessment is
contained in Annex 10A. Further research on'a practical scale is required in order to
arrive at a satisfactory design.

Other but less important aspects for further research include:

1. clogging mechanisms and means of controlling them;
2. the elimination of gas from clogged formations.
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10.2 Research into iron clogging

In principle there are two possible solutions to iron clogging which is caused by the

mixing of ‘shallow’ oxygen-bearing groundwater and ’deep’ iron-bearing water as

occurred in project 8:

1. separate abstraction of the two types of water;

2. very frequent clearance pumping of the recharging wells (e.g. once a day) to
prevent clogging from assuming serious proportions.

In the long run, frequent clearance pumping is unlikely to be sufficient, for which
reason the study group would give priority to further research into the first of the
two solutions listed above. An experiment carried out in the vicinity of project 8
along these lines is described in detail in Chapter 11. The need for further research
will depend on the results of this experiment, which will form the subject of a
separate publication.

10.3 Research into boiling

The material used for back-filling the borehole of a recharging well has a bearing on
the risk of boiling, as discussed in Annex 3D. In this respect clay is an unsuitable
filler and sand or even concrete are to be preferred. It would be desirable to
investigate whether higher injection pressures could be achieved than at present
with other filler materials. Such research would be required to furnish recommen-
dations concerning back-filling and guidelines on permissible injection pressures.

10.4 Execution of gas and filter tests

The study group attaches considerable importance to the identification of simple
means for obtaining an early indication of the risk of clogging in recharging wells.
Timely action can often avoid failures. Research in this field has led to the gas and
filter tests referred to in section 6.3, and which are discussed in more detail in
Annexes 6A and 6B. Both tests have produced satisfactory results.

Further research is, however, required into the best means of carrying out these tests,
while it would also be useful to have a set of operating instructions. The tests also
need (where possible) further application in practice.

The filter test was for example used in the later recharging experiment conducted in
the vicinity of project 8.
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11 Recharging experiment near project 8

The results of the various recharging projects carried out to date in the Netherlands
were analysed in Chapter 3. It was seen that the recharging scheme in project 8 was
the sole instance of an outright failure.

This also proved to be the sole project in which there was an absence of semi-
pervious upper layers, i.e. an unconfined aquifer in which phreatic water was being
pumped up. Despite the success of many other recharge projects, the poor results
obtained in the case of this underpass have — in our view unfairly — adversely
affected the reputation of recharge schemes as an effective aid in construction work
below groundwater level.

Possible causes of the difficulties encountered at the time include the following:

1. oxygen-bearing upper water resulting from the direct contact between the
oxygen-bearing rainwater and the groundwater;

2. the fact that the gravel packs in the pumping wells was continued through to

ground level, thus providing a possible source of aeration;

direct aeration because the submersible pumps drew in air;

aeration through leaks in the joints of the wooden rising mains;

dissolved gas;

transported sand.

Sk w

It may be noted that the two last reasons are unlikely to apply in this particular
instance since the phenomena normally encountered in such cases (e.g. very rapid
clogging by gas, as in project 1, and the presence of transported sand) were not in
evidence. Since it should be possible to carry out a successful recharge scheme in an
unconfined aquifer given our present knowledge and the current state of the art, a
design for such a recharge facility was drawn up which took account of the possible
causes of failure noted above.

Financial contributions from a number of the organizations participating in the
study group made it possible for this installation to be tested in practical
circumstances in the form of a recharge experiment lasting over a year in the
immediate vicinity of project 8.

The installation consists of a pumping well with a tapping capacity of approximately
100 m3/h, a pipeline system and ten injection wells approximately 2.5 m apart.
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The pumping well consists of:

a. a borehole of approx. 600 mm in diameter constructed to a depth of 30 m below
ground level by means of the reverse rotary method;

b. a p.v.c. rising main with glued joints and an inner diameter of 300 mm,;

c. a filter, the top set at 15 m below ground level and the bottom at 30 m below
ground level;

d. a 1.5-2.5 mm gravel pack exending to 13 m below ground level;

e. the remainder of the back-filling consists of and sand/clay/cement mixture
extending to the surface;

f. the following are fitted in the rising main:
1 submersible pump with a capacity of 40 m3/h, with the intake at 15 m below
ground level;
1 submersible pump with a capacity of 100 m3/h, with the intake at 20 m below
ground level (the two pumps being independently regulable); 1 access tube with
a screen from ground level to 30 m below ground level.

— an observation piezometer at a distance of approx. 1 m from the pumping well
with a screen extending to a depth of 3 to 4 m below the water table;

— the well is pumped to waste until it is free from sand.

Two independently regulable pumps are used for eliminating the upper oxygen-

bearing layer of groundwater and the lower iron-bearing layer of groundwater.

Only the deep water is injected; the upper water is discharged in a nearby ditch.

The pipeline system consists of:

. plastic pipes with an inner diameter of 200 mm leading to the injection wells;

. avalve, manometer and water meter near the pumping well;

a discharge facility near the injection wells;

. two valves, a water meter and manometer for each injection well;

a plastic pipeline system with an inner diameter of 100 mm for discharging the
upper water;

a plastic pipeline system with an inner diameter of 150 mm for discharging dirty
water during the air-lifting of wells;

g. a ‘Christmas tree’ fitted to the pipeline leading to the injection wells.

o a0 o

g

The injection wells consist of:

a. ajetted 300 mm diameter borehole constructed to a depth of 30 m below ground
level;

b. a p.v.c. rising main with glued joints with an inner diameter of 70 mm (7 wells)
and 150 mm (3 wells);
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c. ascreen running from 22 to 30 m below ground level with the same diameter as
the rising main;

d. a p.v.c. falling main with an inner diameter of 1'4”, the bottom set at 29 m below
ground level;

e. a 1.2-1.7 mm gravel pack;

f. 3 wells have been filled with 2 m of cement/sand above the filter; for the rest they
have been back-filled with borehole material;

g. 4 wells have been completely back-filled with borehole material above the filter;

h. a ‘tell-tale’ tube has been fitted to the falling main for checking the water level in
the well.

In addition a reference well was installed half-way between the pumping well and

the infiltration curtain, consisting of:

a. a borehole approx. 500 mm in diameter constructed to a depth of 30 m below
ground level by means of reverse rotary drilling;

b. a p.v.c. pumping filter with an inner diameter of 150 mm running from 2 to 30 m
below ground level;

c. ap.v.c. observation filter with an inner diameter-of 50 mm, running from 2 to 30
m below ground level;

d. the two filters set 15 cm apart, the gap being maintained by spacers;

a 1.5-2.5 mm gravel pack with a minimum thickness of 5 cm;

f. a water gauge indicator fitted to the well.

o

The borehole material was used to establish the soil profile, while the well itself was
used for water level and oxygen and iron content measurements.

Since this project is to form the subject of a special report, a general account of the
results must suffice at this stage.

The local situation is shown in Fig. 3 (p. 56). The preliminary research indicated
that, contrary to expectations, the shallow groundwater did not contain any
measurable quantities of oxygen, but this situation altered once the pumping well
went into operation. The localized drawdown of the water table caused the in-
filtration of oxygen-bearing groundwater from a nearby brook, thereby reproducing
in the test the situation of two different types of groundwater on top of one another.
The oxygen-bearing brook water (B) is shown above the iron-bearing groundwater
(A) on the left of Fig. 4 (p. 56).

The recharge system commenced operation on 7 August 1979 and, apart from a few
teething problems, functioned satisfactorily until the end of December. The deep
groundwater (A) was pumped up by means of the lower submersible pump and
injected in the recharging wells.

The shallow groundwater (B) was dealt with by the upper pump and discharged

55



some distance away in a ditch. The optimal operating conditions proved to be 70
m3/h for the lower pump and 30 m?/h for the upper pump. This system of separate
abstraction fully measured up to expectations: the water returned to the recharging
wells was free from oxygen and also contained virtually no suspended particles (as
indicated for example by the filter test).

{ recharging wells
1 10
’ Jef well
meadow I
} . .pumping well
I obs,well

Figure 3 Local situation.

pw — pumping well
ow — observation well
rw — recharging well

Figure 4 Diagram of water types.

Despite the satisfactory operation of the system the recharging wells eventually
began to get clogged. The wells were pumped out three times by means of air-lift in
the period to the end of December, but it then proved necessary for this operation to
be carried out more frequently and even for hydrochloric acid to be used in
regeneration. Despite the precautions taken to prevent the entry of oxygen into the
system the sludge brought up when the wells were pumped out turned out to contain
ferric hydroxides. After several months of research the clogging was traced to the
serious pollution of the groundwater with nitrate from a farm on the opposite side of
the brook. The nitrate-bearing water (D in Fig. 4) was sucked in by the pumping
well and, mixed with other types of water, pumped up by both pumps. In April 1980
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the nitrate content of the infiltration water was over 2 mg NO,-/1. In normal
circumstances bivalent iron in groundwater is not oxydized by nitrate. This can only
happen given the intervention of nitrate-reducing iron bacteria which convert
nitrate into nitrogen. The nitrogen thus released is then used in the oxydation of
iron. The research indicated that this double conversion was taking place in the
immediate vicinity of the recharging wells: as close as 2.5 m to the wells the injected
water was free from nitrate. The injection water flowed back towards the pumping
well (C in Fig. 4) to form as it were an underground bubble of iron-bearing but
nitrate-free water.

In order to demonstrate that nitrate was the cause of the clogging, a final experiment
was conducted in which nitrate-free water was pumped up out of this bubble in
recharging well 2 and directly injected into recharging well 3, while the remaining
wells were supplied as usual with water from the pumping well. This test ran for five
weeks, during which time well 3 showed no signs whatever of clogging, while the
other wells continued to clog up as before.

This kind of clogging may be prevented in practice by siting the recharging wells in
a ring around the excavation, thereby screening the pumping wells from outside
pollution. The same water is then pumped round and round within the circle as
occurred in the experiment with wells 2 and 3. It should also be noted that the nitrate
pollution encountered at the test site was an exception. A value of 94 mg NO,-/1
was recorded in the groundwater at a depth of 5 m in the meadows to the west of the
brook. An extremely high level of this kind is only encountered in the vicinity of a
major source of pollution.

Despite the clogging of the recharging wells it proved possible to keep the recharge
system going by frequent clearance pumping by means of chasing and air-lifting. If
the intake capacity of the wells should drop excessively they can if necessary be
regenerated with hydrochloric acid. The recharge system remained in operation
(with certain gaps) until 3 October 1980. In all some 360,000 m? of water were
injected in the recharging wells.
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pipeline corss-section (m?)

cross-section of throttled valve (m?)
contraction coefficient

average velocity of flow in a cross-section (m/s)
discharge (m3/s)

pressure (N/m?)

water density (kg/m?)

acceleration of gravity (N/kg) or (m/s?)

energy loss across the valve (m)

maximum drop of the pressure head in relation to the pressure head before

the valve (m)

power (N)

mass (kg)

time (s)

pressure head (p/g) (m)
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Annex 3A  Under-pressure in valves

Introduction

The lowest pressure in a partially throttled valve may be calculated in accordance
with the principles of elementary hydraulic mechanics. In this respect the valve may

be regarded as a caliber plate of cross-section a (m?) placed in the pipeline.

2

V729
- K I
V2 o
H Ah 5L
by max 29 h
v 3
= i

@
Q — = &A VP1 af VM VPB

1 Assumptions

The following laws may be applied:
a. Continuity:
Q=v A=vya
b. The flow from (1) to (2) may be derived by Bernouilli’s equation:

v2 Pl v,2 p2
2g g 2g g

(H

@

¢. Velocity comparison for the flow from 2 to 3, with the pressure in the vertical
cross-section at the point of maximum constriction being assumed to take a

hydrostatic course.
Kdt = d(mv) (P,-P;) A = pQ (v-v,)
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2 Solution

Pi
Writing — = h;, it follows:
Pg
(2) and (1) give:
A v2
hy-hy, = § (-1} ~ 4)
pa 2g
(3) and (1) give:
A v
hy-hy =2{1 — —) &)
pa  2g
(4) and (5):
A v2
h1'h3 = (——1PF - (6)
na 2

alternatively one may write:

h;-h; = AH
so that
A | AH
- 1= — 7
pa v2/2g @
(7) and (5) gives:
V2
h,=h; -2+ AH. — )
2

The occurrence of under-pressure in a valve can be readily calculated by means of
equation (8).

3 Examples

1. Beyond a valve h; = 1.5 min a pipeline at ground level.
AH amounts to 0.5 m and v = 1 m/s:
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Applying (8) it follows that:

hy =15-2+05%x1/20 = 1.18 m

The valve is thus not subject to under-pressure.

2. Pipeline at ground level; v = 1 m/s; AH = 28 m;
h, (pressure head before the valve) = 30 m.
h, = (30-28) —2 /28 X1/20 = 2 —2.37 = —0.37m
In this case there is a limited amount of underpressure. This may be prevented by
limiting the pressure drop to 27.5 m, with a negligible effect on the discharge:
h, = (30-27.5) —2 /275X 1/20 = 2.5 -2.35 = +0.15 m.
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Annex 3B  Gases in groundwater

Groundwater is fed by rainwater and from surface waters such as ditches, polder
catchwater basins, brooks and rivers which manage to infiltrate at relatively high
points of the water table. Being in direct contact with the atmosphere the infiltrating
water contains various dissolved gases found in the atmosphere. According to
Henry’s Law the quantity of dissolved gas is proportional to the partial pressure of
the gas in the atmosphere and the absorption coefficient:

¢ = ap. €))

where ¢ = concentration of the dissolved gas (mg/1)
a = absorption coefficient (mg/1 per atmosphere of partial pressure)
p = partial pressure of the gas (atm).

This formula enables the average concentration of dissolved gases in infiltrating
water in normal circumstances to be calculated (disregarding any pollution).

Although infiltrating rainwater or surface water contains virtually no methane, this
gas has been included in the above table since it can be a significant component of
groundwater.

The concentrations of the dissolved gases alter during the infiltration process as a
result of biochemical processes. These processes are primarily confined to upper soil
layers, the most important being the oxydation of organic materials present in the
soil. This generally uses up the oxygen present, thereby producing considerable
quantities of new CO,. In certain (i.e. anaerobic) conditions, significant quantities of
methane can be formed through fermentation processes. There can also be an
increase in nitrogen levels, but not generally to the same extent.

The solubility of gases in water varies in proportion to the pressure; this in turn
varies directly with the depth of the groundwater. In the lower-lying areas of the
Netherlands the water-bearing sand layers are generally covered by clay and peat
layers of low permeability. In general the absolute water pressure in sand layers is
higher than 2 atm, so that the groundwater in those layers is under-saturated in
respect of the dissolved gases, unless significant quantities of new gas have been
formed during the infiltration process. This applies particularly to CO, and CH,
and, in certain circumstances, to N,.

The saturation concentration (c,) of a gas in water which is not in direct contact with
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the atmosphere (or with another gas phase) corresponds to equation (1):

¢y, =ah
where h represents the absolute pressure (atm). In the case of groundwater sealed off
from the atmosphere, ¢, may be obtained directly from Table 1.

Table 1 Principal gases in rainwater and infiltrating surface waters.

Gas Partial pressure Absorption Concentration
(atm) coefficient (mg/1)
(at 10°C)
nitrogen (N,) 0.7808 232 18.1
methane (CH,) - 29.9 -
oxygen (O,) 0.2095 54.3 114
carbon dioxide (CO,) 0.0003 2345 0.7

Only the CO, content is measured in normal groundwater analysis. This may vary
from a few mg/l to several hundred mg/l, thus indicating that groundwater is
always heavily under-saturated with CO,. Oxygen analysis is also occasionally
carried out; this has indicated that the groundwater in the low-lying areas of the
Netherlands generally contains no O,, while the higher, sandy areas contain no
more than 10 mg/1. Groundwater is thus also always undersaturated in respect of
oxygen.

Virtually no data exist on the content of nitrogen and methane as dissolved gases.
The groundwater in the polder areas of the Netherlands is, however, known
frequently to contain significant quantities of methane. As ‘marsh gas’, methane
used to be tapped on a fairly large scale from groundwater for domestic use on
farms.

Around 1941 there were some 5,000 gas wells operating in the deep polders of North
and South Holland (1, 2 and 3); they may still be seen in many places today.

Figure 1 Diagram of a gas well.
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A gas well is a well the screen of which is set into a coarse sandy layer beneath
covering clay layers. The depth may vary from 10 to 40 m. Gas wells were often
sited immediately next to the ditch surrounding a polder, the top of the main being
set at 5 to 10 cm above polder level. If the piezometric level of the groundwater is
higher than the top of the tube, the groundwater will well up, bringing gas up with it,
which can then be caught in a tank or reservoir.

The gas yield is generally 1 m3 for every 10-15 m? of water, while the average water
yield is in the order of 4 m3/h.

Gas wells are found only in deep polders because the groundwater is allowed to well
up by itself. In less deep polders the groundwater would have to be pumped up,
where upon the process would no longer pay. The presence of methane is not,
therefore, restricted to deep polders. The groundwater must, however, be located in
an area where the formation of methane is possible, i.e. in conditions where there is
a total absence of oxygen and sufficient organic material in the ground in the
infiltration area.

At a depth of 20 m the groundwater pressure is around 3 atm, giving a CH,
saturation concentration of 3 X 29.9 = 90 mg/l. Once the water reaches the surface
the pressure declines to 1 atm and the saturation concentration to approximately 30
mg/l (see Table 2). This means that 60 mg CH,/1 of water will be released from
groundwater abstracted from a depth of 20 m; this corresponds with 60 X 0.00145
= 0.09 1 gas/1 of water or 11 gas from 11.5 | water. These figures correspond closely
with the average gas well yields referred to earlier, so that it may be assumed that the
‘groundwater in deep waters often has a high methane saturation concentration.

It is even possible for the groundwater to be locally over-saturated with methane,
thereby producing an underground gas phase. If a water layer of this kind should be
drilled into an eruption of methane will follow (1).

Table 2 Saturation concentration of gases in groundwater (10°C and at 1 atm pressure).

Gas ¢, (mg/1)
nitrogen (N,) 232
methane (CH,) 29.9
oxygen (O,) 54.3
carbon dioxide (CO,) 2345

As soon as gas bubbles have formed in the water rising to the surface a gas phase is
produced consisting initially of methane alone. This permits other gases to escape as
well, until the partial pressure in the bubbles has been brought into equilibrium with
the concentration in the water in accordance with equation 1. The process is known
as ‘scrubbing’ and is often applied in the chemical industry in order to eliminate
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gases from liquids. Due to the entrainment of other gases the quantity of pure
methane which can escape is somewhat reduced. The proportions of the various
gases released in groundwater may be seen from the average composition of marsh
gas abstracted from polders in the Netherlands (1).

Table 3 Average composition of marsh gas.

Gas %
methane (CH,) 79-86
carbon dioxide (CO,) 9-12
nitrogen (N,) 4-10

When it leaves the gas tank as shown in Fig. 1, the water still contains some 30
mg/CH,/1. Once the water is discharged into a ditch it comes into contact with the
open air and the remaining gas will escape until the concentration is brought into
equilibrium with the partial methane pressure in the atmosphere, which is virtually
nil. This method of extracting gas is not therefore particularly efficient since
approximately a third of the gas in the groundwater is lost.

In a recharge scheme the abstracted groundwater is under a pressure of
approximately 1.2 atm in the pipeline system (i.e. 2 m H,O over-pressure in relation
to the atmosphere) and is sealed off from the open air. It may therefore be expected
that the quantity and composition of the gas released in a recharge scheme in the
right circumstances will broadly correspond with the quantity and composition of
marsh gas.

It is conceivable that groundwater may contain sufficient dissolved nitrogen in
certain localities for this gas to escape in the same way as it is pumped up, especially
since its saturation concentration is somewhat lower than that of methane (Table 2).
On the other hand, the quantities of new nitrogen formed in the ground are unlikely
to be great (5). The study group did not look into this possibility because it was
primarily concerned with the fact that degassing can be a significant factor in
recharging schemes, rather than with the actual gases released in that process.
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Symbols

D = diameter of air bubble (m)
k = Botlzmann’s constant (J/mol.k)
Y = Henry’s constant (mol/J)
T = absolute temperature (K)
Po = hydrostatic pressure at which liquid is exactly

saturated with the gas (N/m?)
Pg = gas pressure in bubble (hydrostatic pressure) (N/m?)
B = gas/liquid diffusion coefficient = 2,109 at 20°C (m2/s)
\ = bubble velocity in relation to liquid (m/s)
t = time
v = kinematic viscosity of liquid (m?/s)
g = strength of gravitational field (N/kg)
kyT' = 0.017 at 20°C (dimensionless)
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Annex 3C Rate of growth of gas bubbles in water

Introduction

Clogging of the recharging wells occurred in four of the twenty or so recharge
projects examined in the Netherlands. In three of these four cases the cause was
methane gas bubbles (see also Chapter 3).

The presence of methane in the groundwater to be abstracted can therefore be of
considerable significance for a recharge scheme.

The presence of gases in groundwater and their physical behaviour are described in
Annex 3B. This Annex examines the consequences of the physical behaviour of gas
for the design of a recharge scheme.

Mechanics of clogging by released gas

The amount of dissolved gas that water can contain varies directly with pressure. At
a depth of several dozen metres below the water table, groundwater is subject to a
hydrostatic pressure of several atmospheres. As borne out in practice, this means
that deep groundwater is able to contain more gas than shallow groundwater.

As groundwater is brought to the surface the hydrostatic pressure drops, so that the
water can become over-saturated with gas. If this happens the gas will then separate
from the liquid in the form of bubbles.

If these bubbles are carried along by injection water into the recharging well this will
produce an accumulation of gas in the gravel pack. This in turn leads to clogging
because gas bubbles can only be re-dissolved with great difficulty once they have
formed, for the following reasons:

1. As a bubbles grows its surface area (through which gas transmission takes place)
declines in relation to its content.

2. This effect is accentuated in that small bubbles join to form larger ones.

3. A considerable amount of time is available for the gas bubbles to be released and
to grow, viz. in the pumping well and in the pipeline system (which is generally
subject to only low pressure in a recharge system) until it reaches the recharging
well.

4. Part of the gas will accumulate in the upper reaches of the gravel pack sur-
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rounding the recharging well, where the pressure is relatively low and the rate of
solution consequently very slow.

5. The difference in the velocity of the water and the gas is a significant factor for
the rate of growth of bubbles. In the pumping well and the pipeline system the
velocity of the bubbles in relation to the velocity of flow of the water is the
decisive factor; in the gravel pack surrounding the recharging well, where the gas
is trapped, the velocity of flow through the filter material is decisive.

At approx. 0.001 m/s the latter is considerably smaller than the former, which
measures 0.01 to 1 m/s.

From this summary it may be seen that the conditions for the release of dissolved gas
in a recharge scheme are much more favourable than those for the re-absorption of
any bubbles once formed.

Rate of growth of a single gas bubble

The key to tackling the problem of gass clogging lies in an understanding of the rate
of growth of gas bubbles. A model for this process has been worked out by
Kranenburg in ref. (1). Kranenburg has calculated the quantity of gas that will
diffuse out of an ideal, non-viscous liquid into a spherical bubble while the bubble
moves through this liquid at a constant velocity. Kranenburg arrives at the following
equation:

P"pg
Pg

D =23 [kyT (

)\/B_Vf]2/3

For an explanation of the symbols see the list at the end of the Annex.

The velocity v of the bubble in relation to the liquid is a determining factor. In the
case of bubbles of between 1 and 10 mm the velocity of flow is between 0.3 and 0.4
m/s. In the case of very small bubbles the following applies:

V= iD2 (vD < v)
18v

It should be noted that, as the formula indicates, time is required for the bubbles to
reach a certain dimension. The drop of pressure in the throat of a throttled valve
thus has little effect on the escape of gases. Moreover, the pressure in the throat of a
valve is not a great deal lower than that immediately after the valve (see Annex 3A).
Of much greater importance are the drop in hydrostatic pressure and the compa-
ratively long period which the water spends under low pressure in the pipeline
system.
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Example

Groundwater is pumped up and returned to an infiltration well 300 m away. The
pressure head in the pipeline system, which is installed on the surface, is 5 m above
ground level. The groundwater becomes saturated with methane once the pressure
head drops to 10 m H,O. Once saturation point has been reached the water remains
in the rising main of the abstraction well for a further 10 seconds. The average
pressure during this 10-second period is 7.5 m H,O. The velocity of flow in the
pipeline is 1 m/s.

If the average velocity of flow of the gas bubbles this formed in relation to the water
is put at 0.01 m/s, the size of a single growing bubble may now be calculated.

At the top of the rising main of the pumping well D = 0.1 mm, while at the end of
the pipeline before entry into the recharging well D = 1.8 mm.

From this it will be evident that gas and liquid separation does not occur to a marked
degree until the water reaches the pipeline system. '

Consequences

In practice gas will collect in the upper part of the pipeline, so that a gas layer will
develop on the top of the water. It should therefore be a straightforward matter to
tap the gas from the pipeline. The pipeline must however be horizontal, preferably
rising slightly before the recharging wells so that it can be tapped more easily.

If the water passes through the pipeline system too quickly for the gas to escape
properly, a special degassing unit will be needed. Once again this should preferably
be positioned as close as possible to the recharging wells and at a higher point. Finer
points of such installations are taken up in Annex 10A.
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Annex 3D Boiling in recharging wells

1 Introduction

Boiling (sometimes called piping) means that the infiltration water forces its way
directly up to the surface. This occurs if the injection pressure is too high, i.e. if the
well is surcharged.

If the injection pressure is too high the ground will fissure or the material with which
the borehole has been backfilled will be pressed aside. The water thus acts as a
wedge which opens up the fissure as it goes along.

In loose formations (i.e. clay, peat, sand and gravel) this phenomenon will occur
wherever the water pressure exceeds soil pressure (although a certain degree of
over-pressure may be required in order to open up the particular formation).

Fissuring will occur when grain pressure drops to zero as a result of excessive
injection pressure. Grain pressure in the soil is not generally uniform in all direc-
tions. The critical point is where grain pressure is smallest, where the soil will
fracture (Fig. 1) at right angles to the direction of weakness (Fig. 1).

{east principal
stress

Figure 1  Stress element and preferred plane of fracture.

Since the horizontal grain pressure is generally the lowest in practice, this gives rise
to vertical fissures. Grain pressure gets smaller as one goes up, so that fracturing will
set in immediately above the gravel pack and seek to force its way through to the
surface. Only a small amount of over-pressure is required to produce long fissures
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Figure 2 Stresses in vicinity of a crack in a stressed elastic material when pressure acting on walls of crack
is slightly greater than stress within the material.

Figure 3.
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because the leading edge of the fracture gives rise to peak stresses (see Fig. 2). Figs.
1 and 2 have been taken from ref. (5).

Figure 3 reproduces the situation encountered in many recharging wells. Line a-a
indicates the path of vertical soil pressure. This is equal to the weight of the soil and
water above a small horizontal plane at an arbitrary spot. The line b-b indicates the
path of minimum horizontal soil pressure (= horizontal grain pressure + water
pressure) in and around the borehole. Line c-c shows the path of water pressure in
the natural undisturbed state. The difference between b-b and c-c is the minimum
grain pressure available.

The pattern of water pressure is altered as a result of groundwater injection. The
thick line d-d in the diagram represents the situation in which the horizontal grain
pressure above the gravel pack has dropped to zero. Any further increase in the
injection pressure will result in fissure formation.

From Fig. 1 it is evident that h,,, is the maximum permissible water level in the
well.

Practical experience has shown that water in a surcharged well can reach the surface
in various ways. In one well it will rise up beside the header main while in another
the water will well up as far as several meters away. Horvat and Boutsma (1967)
have described a situation in Rotterdam in which long fissures developed when
piling was being jetted into sand, the fissures connecting up the piles in a regular
pattern.

2 Impact of various factors on boiling

After the screen and rising main have been installed, a borehole is back-filled with
parent material. The compactness of such back-filling varies, as does the extent to
which it adheres to the rising main and the wall of the borehole. In all probability
the stress within the finished well will differ from that in the original situation. Fresh
clay plugs are a tricky matter, particularly if they are directly above the gravel pack
and of any length. As the borehole is back-filled the ground pressure in the clay plug
rises, but this is to a large extent absorbed by the hydraulic tension. This means that
the grain pressure required to prevent boiling is very low in a clay plug, at least
immediately after the well has been completed. This situation will improve during
the first few months after back-filling.

The Rotterdam Municipal Public Works Department has confirmed the above
experimentally by producing boiling upon subjecting new injection wells to a given
pressure. The boiling ceased when the pressure was reduced. A few months later the
same wells proved able to deal with an injection pressure higher than the initial
injection pressure.
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The permissible injection pressure is greater the larger the lowest grain pressure
immediately above the gravel pack. The grain pressure will in turn be higher:

the more carefully the borehole has been back-filled;

. the shorter the clay plugs;

the fewer the clay plugs used;

. as the clay plugs are given time to consolidate;

as the back-filled material is able to settle;

the greater the depth below surface level of the gravel pack;

the lower the equilibrium piezometric level below the surface;

. the heavier the back-filling material. )

SR Mo pe o

3 Permissible injection pressure

It will be seen from Fig. 3 that the permissible injection pressure (or head), i.e. hp,y
(mH,0), is determined by the horizontal grain pressure immediately above the
gravel pack. How large is that grain pressure?

The size of the vertical grain pressure in the initial situation may be deduced directly
from the vertical equilibrium. The size of the horizontal grain pressure is unknown.
It is, however, possible to estimate the minimum possible horizontal grain pressure
oy, at a given vertical pressure o, by means of Coulomb’s Law and Mohr’s circle of
stress. According to these theories o}, must not drop below the value at which the
circle through oy, and o, touches the containing line of rupture (or shear strength
line).

=C+THg R

Figure 4.
In the case of sand: ¢ = 30-40° C=0-001 .10°Pa
while for clay: ¢ = 20-30° C=0-0.01 .10°Pa

In practice C may be disregarded. If this is done the maximum possible relationship
between o, and o}, becomes a constant dependent on the soil type.
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1 +sing
o/0p=N< ———
l—sing

Given the above data it follows:
o =20°°N=2
¢ =30°\N=3
¢ =40°\ = 4.6

It foliows from the above that the minimum horizontal grain pessure in clay is at
least 33% of the vertical pressure while in sand it is at least 22%. By calculating the
vertical grain pressure in the original situation at the depth of the top of the gravel
pack and using the figures as derived above, the permissible injection pressure may
now be calculated. Allowance must however be made for the lower weight by
volume of clay and especially peat layers. Typical figures are:

Soil type wet density (kg/m3)
sand 2000 (dry: 1600)
clay 1500-2000
peat 1000-1200

For safety’s sake it is advisable to take the minimum values in any calculation.
General calculation:
Vertical soil pressure at depth z,: 6, = f 2o Y28z > Tg = ¢ [Zo Yz dz

If the original pore-water pressure at depthz, = u
The original vertical grain pressure at depth z,: oy, = 0, —u
The horizontal grain pressure at this depth is at least: oxp = oy, /N

Permissible increase in pore-water pressure above the original value:
Au = Oxh = Okv/)\

Examples:
from 0-5 m clay y wet = 1500 kg/m?

ydry = 1300 kg/m?
(above groundwater level)

5-15mpeat  y = 1000 kg/m3
15-20 m clay y = 1500 kg/m3
20-22msand  y = 2000 kg/m?
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Shallow groundwater level: — 2 m
original deep piezometric level + 2 m

Figure 5. Situation 1

o =g2Zpd;

o, = 10(1300.2 + 1500.3 + 1000.10 + 1500.5 + 2000.2) = 28.6.10* Pa (= 28.6
m H,0)

u = 10 (24.1000) = 24.10* Pa

o = (28.6— 24).10* = 4.6.10* Pa

Soil above backfill is sand = oy, = 0.22 8
oxn< 0.22 (4.6 .10%) = 1.0.10* Pa

In this case the permissible injection pressure is only 10* Pa (1 m H,0) above the
original value.

The permissible water level in the well is therefore 2 + 1 = 3 m above surface level.

Same situation except that there is only sand below the upper clay layer:
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og = 10 (1300.2 + 1500.3 + 2000.17

41.1. 10 Pa
u= 24 . 10 Pa
Oy = 17.1.10% Pa
UkhZ 0.22 Oy = 38. 104 Pa

Permissible injection pressure above original situation:
3.8.10* Pa (= 3.8 m H,;0).

The permissible water level in the well above ground level is therefore 2 + 3.8 = 5.8
m.

42 e -4 - — — -
0
-2 — —————

ST AN

o ., .

Cituation 2

Figure 6.

4 Summary and conclusions

Boiling occurs when a recharging well is surcharged. The condition will be improved
by reducing the injection pressure, unless substantial quantities of soil have already
been washed away between the rising main and the surrounding soil formation.
Despite the lack of certainty concerning the minimum grain pressure in the soil, the
permissible injection pressure can still be determined by means of a simple calcu-
lation. The permissible injection pressure is very low and the water level in the well
or the pipeline must remain confined to no more than a few m H,O water above
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ground level. The calculated injection pressure will however only hold good if the
borehole is carefully back-filled using as few clay plugs as possible. If clay plugs
have been used the injection pressure must initially be kept even lower in order to
give the clay plugs time to consolidate.

These consolidation problems can also be prevented by the use of clay-cement or
concrete plugs instead of the usual clay plugs.
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Annex SA Hydrological and hydraulic aspect of gallery design

1 Summary

Dewatering is often done by means of well galleries. The design of such galleries
must take into account the well spacing required in order to achieve the objective of
as uniform a drawdown as possible at previously selected points.

Since the impact of individual wells peters out at a distance of 0.5 X the distance of
the well from the remainder of the gallery, much larger spacing is (on hydrological
grounds) in fact permissible than is generally applied. In the case of galleries of a
limited length fixed well spacing is all too often rigidly adhered to. This annex takes
up both these points.

The narrow falling mains frequently used in recharging wells have a significant
effect on intake capacity and its distribution along a gallery. It was considered
desirable to demonstrate this effect, since it can if neglected have adverse con-
sequences in a recharging system. On account of the energy losses involved, it is not
advisable for intake capacity to be regulated by means of the falling mains; well
siting should instead be optimalized with the aid of hydrological calculations.

2 Comparison of a gallery of infinite length with a trench of infinite length

On the basis of symmetry considerations we may confine our attention to the
hatched area in the diagram below. It is also assumed that we are dealing either with
a confined aquifer or a semi-confined aquifer in which A> b, so that the problem
may be treated as a confined aquifer problem, which it always is in practice.
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Figure 1.
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The solution is obtained by means of complex transformation of the strip A, B, C, D,
E, F, G, while if we shift the zero point (see the second term of equation (1)), the
solution for larger values for y (the distance from the gallery) transposes into that for
a perfect trench of infinite length (equation 2).

2.1 General solution for the trajectory of the drawdown between A and G

Solution for the gallery:

£ 4 Q T(X + iy) Q
gossi ¥ o
"1 T "t Lo

In2 (1)

in which s represents the drawdown in relation to the water level in the equivalent
trench of infinite length, and the flow function.
Solution for the trench:

q Qb Q my
s= _—y= ——y= = @
2kD 2kD 2akD b

2.2 Drawdown trajectory near the gallery along characteristic flow lines

a. Path between the wells (trajectory BF)
In this case y = o, so that (1) changes to:

Q X
s= ——In(@2sin (—)) 3)
2a kD b

with as characteristic points:
— at the edge of the well (x = r, b)

Qo 2aro
s = In ( ) C))
2n kD b

— Half-way between two wells: (x = b/2)

. (0,693) &)
2a kD

— Forx=b/6:5=0 (6)
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b. Trajectory at right angles to gallery

— line through a well (x = o,z = iy)

Ty —ary
1 - - 7
n(exp ( - exp ( 5 )) Q)

2a kD

for y — o, (7) changes to (4)

— symmetry line between two wells; at right angles to well gallery:
trajectory BA and FG:

X =b/2,2 =b/2 + iy)

™ ——'TTy.
In (exp (—bl) + exp (T)) ®

S =

2a kD

for y — o, (8) transposes to (5).

2.3 Difference between the drawdown trajectory in a well gallery of infinite length
and that in an equivalent trench

Since both (1) and (2) hold in respect of the water level in the equivalent trench, (3)
must be the required solution for the trajectory BF between the wells.

In the case of the two calculated trajectories at right angles to the gallery, equation
(2) must be subtracted from (7) and (8) respectively in order to calculate the
difference. For this purpose (7) and (8) must first be rewritten:

s = In (exp (jz) (1—exp ( —2ﬂy)) =
2a kD b b
LA (- exp () (72)
2a kD b 2u kD b

(7a)—(2) yields, for the line at right angles to BF through D:

—2my
In (1 —exp (
20 kD b

As =

) ®

equally (8a) — (2), for BA and FG:

Q —2my
As = In (1 + exp ( )) (10)

2a kD
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As very rapidly approaches zero as y increases. For example if y = b/2 (i.e.
distribution of the impact of the individual wells at less than 45°), As varies only

Qo

2n kD,

between + 0.04

which is of no consequence. (This may be compared with (5)).

The conclusion thus obtained is that the influence of individual wells may be
regarded as fully elapsed at distances of more than half the well spacing from the
gallery; the latter will give the same groundwater level as a trench of equal length
which fully penetrates the water-bearing stratum and has a constant discharge per
unit length.

3 Galleries of limited length

From the above it emerged that lengthy galleries may safely be regarded as trenches.
The suggested loss of influence at an angle of less than 45° to the gallery obviously
also applies in the case of galleries of more limited length, which may thus also be
regarded as trenches. (For a quantitative analysis see (1), p. 57 ff.).

It may be shown that in the case of trenches of limited length in which there is a
constant discharge per unit length, the drawdown gets lower towards the ends of the
trench, while conversely an increasing discharge per unit length is required towards
the ends in order to achieve a constant drawdown along the trench. If a constant
drawdown is required this can in practice best be achieved by decreasing the well
spacing towards the ends of the trench in accordance with the required discharge per
unit length (1). If the original groundwater level was constant, each well would then
obtain roughly the same discharge. If, however, the piezometric level is not constant
when the wells are not being used a different distribution of the wells will be
required in order to obtain a constant drawdown along the gallery together with the
same discharge in each well. The optimal distribution of wells can often be cal-
culated by hand as discussed in Annex 8A; alternatively more complicated tech-
niques, such as those discussed in Annexes 8¢c-8f, may be used.

4 Influence on infiltration capacity of falling mains in recharging wells
It is often necessary for a recharging well to be fitted with a falling main in order to
prevent the infiltration water from falling freely into the well, which could give rise

to undesired degassing, the transportation of bubbles and aeration, and consequent
clogging up of the recharging well.

94 Annex 5A5




It is therefore important that the correct dimensions be selected for a falling main.
An excessively thin (or long) falling main will produce such frictional losses that the
well’s intake capacity will drop below the required and calculated level, while an
excessively wide main will lead to the problems noted above.

[t is sometimes claimed in practical circles that the relationship between infiltration
capacity and elevation of the groundwater level is not a linear one. This is incorrect.
The absence of a linear relationship between pressure in the infiltration system and
groundwater pressure or the infiltration capacity in the wells must be ascribed to the
above and other losses in pipelines and appendages (e.g. valves), and not to the
incidence of turbulence (or deviations from Darcy’s law) in the strata in which the
water is being injected.

In the conditions encountered in the Netherlands, turbulence could only be ex-
pected to arise — and then only in a narrow band around the wells — at intake
capacities some 10 to 100 times higher than those applied in practice.

Given a hydraulic energy head loss H in a falling main (m H,O) of length L (m),
diameter D (m) and a friction coefficient \ in which the discharge is Q (m3/h), we
obtain:

AL \% AL 2
g MV _ M Q @)
D 2g 2Dg  aD? ,
4

with N = 0.02 as a reasonable average for PVC and the usual range for Reynolds
number:

H Q2

— = 1.28 x 1010 x — (m3/h; m)
L D>

Table 1 shows various values for H/L for selected values of Q and D.

Table | Energy head loss per m of falling main (H/L) as a function of discharge Q (m3/h) and pipeline
diameter D (m) for PVC pipes.

D (m)

Q (m%/L) 0.025 0.030 0.040 0.050
5 0.33 0.13 0.03 0.01

10 131 0.53 0.12 0.04

25 8.17 328 0.78 0.26
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The mathematical example below demonstrates the importance of selecting the
correct falling main and the influence on the intake capacity of recharging wells.

—PRESSURE HEAD IN
PIPELINE=26m

L pIPELINE Loss{ Dz 392>m

-
Ul
"
Al

PRESSURE IN PIPE_
. 5./LINE SYSTEM

PRESSURE HEAD(mHz’g) ABOVE GROUD LEVEL
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N =500m
b=5m
Well losses = 0
Individual

Well elevation = 0

Figure 2 Relationship between infiltration discharge, groundwater level, pipeline pressure and selected
falling main.
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4.1 Mathematical example of falling mains in a recharging well gallery

Assume recharging well gallery of infinite length. On account of dewatering the
groundwater level has dropped from 1 m to 11 m below ground level. The available
pressure head in the pipeline, which is installed at ground level is 3 m H,O. The total
available head (H) therefore amounts to 14 m.kD = 1000 m?/day, A = 500 m. The
object of the gallery is to return the groundwater to its former level (i.e. an elevan-
tion s, of 10 m).

The required discharge per lineal metre is:

q = 25, kD = 40 m3/day.m.*
N

Spacing between the wells is 5 m.
For each well: Q = 5.40 = 200 m3/day (8.3 m3/h).
Assuming a falling main 30 m in length, the required internal diameter is 0.025 m.

Figure 2 shows the relationship between:

Q and the elevation in the groundwater level

Q and the pressure head loss in the falling main (i.e. of the pressure head in the
pipeline system proceeding down the falling main) « (imperfections in the wells
and own elevation of the wells being disregarded.

The point of intersection indicates the equilibrium situation. From this and further
calculations it emerges (see Figure) that the maximum elevation in groundwater
level that can be achieved with this falling main and preliminary head is only 5.6 m
instead of 10 m.

In order to achieve the required 10 m elevation with these wells and falling mains the
pressure head in the supply of pipelines must be increased from 3 m not to 6 m but to
26 m! It is therefore obvious that the relationship between the pressure head in the
supply pipeline and infiltration capacity is not linear (although that between in-
filtration capacity and groundwater elevation is). The required elevation can be
achieved at a head of 3 m in the supply pipeline provided that the falling mains have
an internal diameter of approximately 0.04 m. Another alternative is to reduce the
0.025 m diameter falling mains in length to 4.44 m. This solution is, however,
inadvisable, since the injection water will then fall freely into the well for some time
during the starting-up phase of the recharge system (i.e. until the groundwater level
rises to the foot of the falling main). Another disadvantage is that a short falling
main of this kind cannot be used as an air pipe for clearance pumping by air-lift.

*

In the case of a finite gallery, q must be multiplied by a factor n, n being a function of the gallery length
L and of \. See (1), pp. 57-60.
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5 Falling mains in galleries of limited length

It will be evident that, on account of their hydraulic resistance, narrow falling mains
will reduce any variations in the intake capacity of individual wells. The regulation
of discharge capacity by this means is not, however, to be recommended, in view of
the appreciable energy losses; the objective can instead be achieved by improving
the well configuration in the gallery on the basis of hydrological calculations.
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Annex 5B Practical and financial aspects of a recharging system with a
large number of small wells

1 Practical aspects

A system of this kind is based on the use of infiltration screens. In a screen the
infiltration wells are located at frequent intervals, in practice generally between 4
and 8 metres apart.

The boreholes for small wells can be drilled by the rotary straight flush method. If
this can be done with the aid of a jetting lance able to drill to the required depth in
one go, the initial drilling costs will be low. The costs rise beyond a drilling depth of
approximately 16 metres, while the method becomes totally impracticable at depths
of over 35 metres.

For drilling depths of between 16 and 35 metres the choice of drilling technique will
depend on the required number of boreholes.

In order to prevent the borehole from fouling up, clear water should if possible be
used. If this is impractical a basin should be installed enabling the abstracted
groundwater to be recycled. The basin should be sufficiently large to permit proper
settlement of suspended soil particles brought up in drilling.

One practical solution is to excavate a ditch beforehand alongside the drilling
points, the capacity of the ditch being at least two to three times as large as the
volume of soil to be extracted.

Boreholes are constructed with a diameter of 20 to 30 cm; a constant diameter can
be achieved by chasing the drill up and down several times while drilling.

When the drill is withdrawn from the borehole the latter must be carefully ‘kept full’

in the usual manner for a borehole without casing. The screen and rising main (with

a minimum diameter of 50 mm) are then lowered into the borehole. Central

positioning of the screen section can be ensured by means of centering brackets.

The screen section is then surrounded by a gravel pack graded according to the size

of the screen perforations and the soil composition.

The following points should be taken into account in fitting the screens to the

‘discharge’ system:

a. stagnation in the infiltration process must not be allowed to lead to stagnation at
the dewatering stage;

b. excessive infiltration pressure can lead to irreversible damage to the recharging
systems if the wells become subject to boiling.

Both these aspects can be safeguarded by the installation of an overflow or control
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manifold designed to discharge into surface water or into a sufficiently large sewer.
Care should, however, be taken to avoid siphoning or the sucking in of air.

The installation may be properly monitored in the following way:

a. Regular readings in observation wells.

b. Regular observations of the intake capacity per group of infiltration wells (e.g.
with the aid of water meters).

c. Regular observations of the pressure at various points in the recharging pipeline
system.

These measurements can if necessary be automated so that any manfunctioning will
be automatically registered.

The following points are important for the successful operation and ease of

maintenance of the system:

a. The system should be air-tight.

b. The screens should be properly de-aerated when first put into use and after each
stagnation.

c. The supply pipeline should be of a generous size so as to ensure constant
injection pressure.

d. Provision should exist for fitting devices to clean the screens, e.g. by means of
air-lifting.

e. It should be possible to close off the wells.

f. With a view to possible frost damage, the system should not contain pipeline
sections in which there is no flow.

2 Financial aspects

There follows a comparison of financial aspects in relation to systems in which
‘large’ wells are used. Those parts of a recharging scheme which are common to both
a large and a small well (i.e. wellpoint) system, such as the feeder pipelines and
measuring equipment, have been left out of consideration. This section instead
examines the differences between the two methods, namely installation (including
the different dimension materials used in the boreholes) and maintenance of the two
types of recharging wells.

1 Positioning of recharging wells

1.1 The drill diameter required for drilling a large well is twice that required for a
small well.

1.2 The most common drilling method for large wells is the reverse rotary, while
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for small wells or wellpoints the straight flush method is commonly used.

1.3 The diameter of the screen and header main installed in the borehole differ. In
general the filter and header main diameter used in large wells is some four
times as large as that in small wells. The volume of the gravel pack used in
large wells is at least three times as large as that required in small wells.

1.4 Maintenance of the two types of wells.

Maintenance of large wells generally consists of cleaning the screen by means of

clearance pumping, while in the case of small wells the screen is cleaned by means of

air-lift. This means that a greater number of small than large wells can be cleaned
per man-hour.

It should be noted that even if the drilling conditions are identical, the cost

variations resulting from the above factors will not always be the same from case to

case. The following example drawn from practice provides an illustration of the size
in the variations. It should, however, be interpreted with a certain amount of
caution.

a. The ratio of drilling, installation and connecting up costs for large as against
small wells is 5:1.

b. The ratio of maintenance costs of large as against small wells is 10.1.

c. The capacity of large wells is twice that of small ones. This at least proved to be
the case in a system subject to clogging up; twice as many wellpoints as large
wells were required in order to inject an equal quantity of recharge water. The
overall installation costs of large as against small wells was therefore in a 2.5:1
ratio.

Overall maintenance costs in this case for large and small wells were in the ratio
of 5:1.
If we assume that in most cases the installation of a system of large conventional
wells will amount to 25% of total installation costs, and maintenance to another 15%,
this will mean that the total costs of a recharge system using small wells will be 73%
of the total costs required in the case of large, conventional wells.
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Annex 5C Dimensions of recharging wells with a view to air-lift
clearance pumping

T.N. Olsthoorn
Computer calculations by
AN.G. de Vogel
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Symbols

om<e

g g

= energy in the injected air

gain in potential energy per second of water brought
to the surface

slippage resulting from friction between air bubbles
and water

losses due to friction between wall of pipe and air-
water mixture

kinetic energy of water leaving the well per second
power losses in appendages and bends in the dis-
charge pipe outlet

water discharge

air discharge

air discharge at the outlet (atmospheric pressure)
atmospheric pressure

absolute pressure at point of injection during air-lift-
ing

(p1—po + pyg (L — AH)

density of water

gravitational force

length of discharge pipe from injection point to top of
pipe

distance between lowered piezometric level and top of
discharge pipe

H/L (relative lift)

air volume of all bubbles during air-lifting
cross-section of discharge pipe minus air line

inside circumference of discharge pipe plus outside
circumference of air line

hydraulic diameter D = 4.F/O

bend friction coefficient before outlet

pipe wall friction coefficient

rising velocity of bubbles in relation to surrounding
water
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Annex 5C Dimensions of recharging wells with a view to airlift
clearance pumping

1 Summary

Recharging wells are generally cleaned out by the injection of compressed air at a
depth of 20-30 metres. The air bubbles present above the injection point reduce the
weight of the water in the well to such an extent that it is forced out of the well by the
deeper water, with a more or less constant air-water flow being built up. This
technique of pumping is known as air-lift. In practice the simplicity of this type of
‘pump’ often more than compensates for its lower efficiency in relation to
electrically driven pumps.

It may be noted at the outset that the force with which the air-water mixture blows
out of the well is not an indication of the extent to which the well will be cleaned.
The effectiveness of air-lift clearance pumping depends on the velocity with which
the water strikes the side of the borehole and, in some cases, the jolting effect
obtained as individual bubbles are dislodged at the point of injection. In terms of
practical relevance we may confine ourselves to the velocity of the water against the
side of the borehole.

The (filter) velocity against the side of the borehole is equal to the well intake
capacity divided by the surface area of the outside of the gravel pack, i.e. it depends
on the diameter of the discharge pipe and filter screen. On the other hand the
discharge that can be achieved by means of air-lift is, because of such factors as
friction inside the pipe, heavily dependent on the diameter of the discharge pipe (in
the case of small diameters in proportion to that diameter to the 5th power!). This
Annex accordingly concludes that with a view to air-lift clearance pumping, the
diameter of the rising main (i.e. discharge pipe) in a recharging well should be as
large as possible in relation to the borehole.

2 Calculation of an air-lift
Accurate calculation of an air-lift is based on an energy balance in which the force of
the injected compressed air is balanced against the sum of the loss items and the

increase in the kinetic and potential energy of the water.

A rigorous calculation in which Reynolds number and similar factors are taken into
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account is complicated and can only be satisfactorily carried out by computer (see
bibliography).

In praétice, however, the following formula can effectively be used for determining
whether a given compressor is large enough to pump the required quantity of water
per unit of time from a given well.

The energy balance is as follows (see also the list of symbols at the beginning of this
annex):

pl>pp+ps+pw+pk+Pb
The various items in the balance are arrived at as follows in the literature:

Injected air

Pi
Pi + Po Qlo Inp_

0

Per second of water lifted to the surface

Pp = Pwg AH Qy
Slippage
Vi
Ps = F_L(pl_Po) uF ~ ¢ (p; — po) uF

The relationship between € and u has been empirically determined (see Figure 2).

_AH
2 4 HeH

10
Anastasso-
12 poulos

10
12
216 Weber
18.23
18-23

Rautenberg

Figure 2 Relative air-

o Viptie. 1 folo (el ) bubble velocity as a
A m e — Po . . .
€ function of relative lift =
Vimimvs] H/L (from (3) 1972).

0.5 10 15 20
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Kinetic energy and discharge loss

The discharge loss is equal to a factor (depending on the form of the outlet) £ times
the kinetic energy of the water discharged. £ may be looked up in textbooks on
hydraulics (e.g. (1)).

Because it goes to waste, the kinetic energy is a loss item. Taken together:

Pw Qw

2F2

Po + Pk = €&+ Qw + Qlo)2

Pipe-wall friction

An approximation of pipe-wall friction may be obtained by taking a value for Q, in
relation to the total discharge Q,, + Q) lying between that at the air injection point

Po
Q= o Qo)
and that at the point of discharge (where Q; = Q).

The precise equation is (2):

AL Pw Qw

pw= _

D 2F2

po
Qw+QoV —Y
pl

A = f(Re and E) (). In rough terms 30 Rey 4, can be taken for Re, with Reya e

representing the Reynolds number (‘i)), (ignoring any air present).
v

3 Mathematical example

It is required to examine whether a particular compressor is able to pump up a
pre-determined amount of water from a given well.

Data

Compressor : capacity 2 Nm3/min (normal cubic metres of air per minute) Q)
= 2/60 = 0.033 m3/s
maximum pressure: 7 bars (= 7.10° Pa)
Well : PVCdischarge pipe and screen: @ 160 X 147 mm
PVC air line: @ 32 X 28 mm
foot of air line: 25 m below top of discharge pipe
pumping out of clogged well: 2 m / 25 (m3/h)
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Groundwater : groundwater state at rest: 4 m below top of discharge pipe
Required discharge: 100 m3 water/h (0.028 m3/s)
Atmospheric pressure taken as 1 bar (10° Pa).

Calculations:
1. Hydraulic diameter:
This is the diameter of a pipe with the same relationship between cross-section

and inner pipe circumference as the wet cross-section of the combination of the
discharge pipe and air line:

—-D=4

aD? D
4

F
in the case of a pipe: — = +
PP 0) 4D

ol

while for the air-lift:

F = w(0.147)> — «(0.032)?2 = 0.016 m?
O =a(0.147) —=w(0.032) = 0.562m
so that the hydraulic diameter is:

4.0.016
D= — =0115m
0.562

0,Qy  1000.0.028
W 2. (0.016)

= 54.3.103

AH = 4m + drawdown at 100m3/h =4+ 8 =12m
4. Py = po + pug (L-AH) = 10° + 10* (25-12) = 2.3.10° pa

had

ENERGY BALANCE

1. Energy injected by compressor:

pl = 10°.0.033 1n<?> = 2750 Watts

2. Required for lifting 100 m3 water/h:

pp = 1000.10.12.0.028 = 3300 Watts.
In other words pl < pj, so that this compressor could certainly not achieve a
pumping lift of 100 m3/h.

Analysis of whether same compressor can pump up 50m3 water/h

1. P remains unchanged 2750 W
2. P, becomes halved 1680 W
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3. ps: AH now becomes 4 + 8/2 = 8 m
so thate = 8/25 = 0.32 from which it follows from Fig. 2: u = 0.6 m/s.
ps = 0.32(2.3—1). 10°.0.016. 0.6 400 W
4. Bend loss and kinetic energy
For an average bend it may be assumed that £ = 0.5 so that py, + py = (0.5 + 1).

3
243.10% 0,014 + 0.033)2 = 90 W

(for concrete examples see ref. (1)).
5. Wall friction
In the case of PVC a representative value is N = 0.02

0.02.25 54.3 .10+3
P, = (0.014 + 0.033 —1)2 =150 W
0.115 2 23
Aggregated: injected air: 2750 W
Sum of losses and energy gains 2280 W

On the basis of these relatively straight forward calculations it may therefore be seen
that 50 m?® of water can be abstracted from the well with this compressor.

4 Impact of the discharge-pipe diameter on air-lift capacity

On the basis of the formulas given in (2) a computer program has been written
which, after input of the necessary data, will calculate the relationship between the
amount of water discharged and the amount of air injected. The drawdown in the
well is kept constant in the program, as would be the case if the discharge pipe were
standing in open water. The relationship between Q,, and Qo can then be
determined for a series of drawdowns.

The cluster of curves obtained in this way is therefore solely a function of the
dimensions of and frictional losses in the air-lift pipes. The actual relationship
between Q,, and Q for a given well will also be dependent on the soil properties
and degree of clogging in the well. This relationship may be obtained by determin-
ing the discharge on each curve consistent with the drawdown for which the curve
was drawn.

A number of curve clusters are shown in the following figures. The figures differ
only with respect to the hydraulic diameter of the discharge/air line combination;
both are made of PVC with a friction coefficient of 0.025.

The figures next to the individual curves indicate the groundwater level beneath the
top of the discharge pipe during pumping. The foot of the air line is set at a depth of
29 m, in line with the fact that recharging wells are commonly constructed to a depth
of 30 m.
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The last figure shows the relationship between water discharge and air injection for
wells of differing hydraulic diameter in a given formation. The curves have been
derived from the other figures by assuming that a 1 m drawdown is achieved in the
wells at a discharge of 10 m3/h and that, in the absence of pumping, the
groundwater level reaches the top of the discharge pipe.

These assumptions are not critical but have simply been taken for illustrative
purposes. The user can instead apply the actual normal groundwater level/draw-
down, provided, however, that the depth of the air line is reasonably close to 29 m as
assumed here and that the coefficient of friction within the PVC tube is similarly in
‘the order of 0.025.

5 Conclusion

The figures clearly reveal the major impact of the hydraulic diameter on the
discharge that can be achieved. The main reason for these variations are the varying
frictional losses. In terms of clearance pumping and the ability to obtain a high
discharge level, therefore, wide-diameter pipes are indicated.

wgfer
m3/h
12
2504
14
drawdown(m)
2004 16
150 1 /
100 -
hydraulic diameter=20cm
501
0 . . . r .
0 A 8 12 16 20
air m3/min

Figure3  Relationship between water and air discharges during air-lift pumping. For various draw-
downs in m, injection depth = 29 m, A = 0.025.
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Figure4 Relationship between water and air discharges during air-lift pumping. For various draw-
downs in m, injection depth = 29 m, \ = 0.025.
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Figure 5 Relationship between water and air discharges during air-lift pumping. For various draw-
downs in m, injection depth = 29 m, \ = 0.025.
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Figure 6 Relationship between water and air discharges during air-lift pumping. For various draw-
downs in m, injection depth = 29 m, A = 0.025.
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Figure 7 Relationship between water and air discharges during air-lift pumping. For given drawdowns
in m, injection depth = 29 m, \ 0.025.
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1607 AH(m)=0,1xQ,(m3/hr) p=200— 16
14,01 14
€120 1 12
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Figure 8 Relationship between water and air discharges for various hydraulic diameters of the discharge
pipe, where AH(m) = 0.1 X Q,, (m3/hr)
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Annex 6A Gas test

Introduction

As a result of the drop in pressure, degassing may occur in groundwater as it is
pumped up in a recharge scheme. Small bubbles will form in the water, which can
then cause a certain degree of clogging in the recharging wells. The aim of the gas
test is to enable an impression to be obtained quickly of the likely degree of
degassing.

Theory

The theory of bubble formation during degassing is discussed in Annexes 3C and
10A. The following data are sufficient for the design of the test.

A certain amount of time is required for the formation of gas bubbles. This depends
among other things on the drop in pressure. The pressure in the pipeline at surface
level in a recharging scheme is approximately equal to atmospheric pressure. The
time required for bubbles | mm in diameter to form is therefore:

40
t ~ — (seconds)

where p = hydrostatic pressure in the aquifer (bars).

In the case of groundwater pumped up from a depth of 10 m, the time required is
therefore t = 40 seconds. Because the time spent by the water in the pumping well
and rising main is only brief, the testing appliance must have a flow-through time of
at least 40 seconds.

Bubbles 1 mm in diameter have a rising velocity in relation to the surrounding water
of at least 0.1 m/s. Section 3 describes a véry simple test in which part of the
pumped up water is injected downwards into a | litre flask. The velocity of the water
must be regulated in such a manner that the gas bubbles can escape readily (V < 0.1
m/s).

In the case of a 11 flask a retaining period of 40 seconds implies a maximum rate of
through-flow of 1.5 1/minute.

Given a flask diameter of approx. 10 cm, the vertical velocity of the water will have
to be around 0.003 m/s if the bubbles are in fact to escape readily.
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The actual quantity of dissolved gas depends on various factors and the test outlined
in this annex is only designed to determine whether degassing is likely or not; it does
not enable any quantitative determination of the gas content of the water to be
made.

3 Implementation (see Fig. 1)
3.1 Equipment

a. 1 litre glass flask with dual inlet stopper for two hard plastic (PE) tubes of 8 4 X
6 mm, the inlet tube just penetrating the stopper and the outlet tube reaching the
bottom of the flask.

b. plastic 2 litre measuring flask.

c. connecting tubes and coupling.

pumping well

11

pump

Figure 1 Gas test design (not to scale).

3.2 Mode of operation

a. switch on pump and set discharge from tap A at 1-1.5 I/minute

. fill flask with water and seal with stopper

¢. connect inlet tube to A and allow water to flow through flask for approx. 15
minutes.

o
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Annex 6B Filter test

Introduction

In the oil industry membrane filter tests are commonly conducted in order to
examine the suitability of a particular type of water for underground injection. The
most common of these are Millipore membrane filters. These are manufactured out
of a mixture of cellulose acetate and cellulose nitrate, with pores of 0.45 um. The
extreme fineness of the pores means that all solid particles (even bacteria) in the
water are screened out. Membrane filters thus clog up much more readily than the
natural soil formation into which the water is to be injected.

There is no quantitative relationship between the speed with which a membrane
filter clogs up and that of an injection or recharging well, but experience indicates
that membrane filter tests do provide a qualitative indication of the suitability of the
water for injection purposes. Another advantage of the rapid clogging is that an
accurate reading can be quickly obtained even in the case of extremely low particle
concentrations.

The Testing and Research Institute (Waterworks Undertakings), KIWA, of Rijswijk
in the Netherlands has conducted extensive research into the best means of con-
ducting filter tests (1). This research has resulted in the definition of a membrane
filter index (MFT) (2). This index has been applied in the case of the filter test
discussed below so that the results may be directly compared with those of the
KIWA surveys.

Theory

According to Millipore the flow through a membrane filter may be described as
foilows:

Q= dav.  PA 1 1
it . (-————rf T ) Q)

where

Q = discharge (m%.s!)

V = through-flow volume (m?)
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t = time(s)
AP = pressure drop across filter (Pa)

A = through-flow surface (m?)

n = dynamic viscosity (Pa.s)

ry = membrane filter resistance (m1)
r. = resistance of filterbed (m™)

Equation (1) has been derived from Poiseville’s Equation (cfref. (4)). During
filtration the trapped particles form a filter bed on the membrane, the resistance (r.)
of which depends on the properties and concentration of the particles in the water.
In the case of a given concentration of a given type of particle it may be assumed that
the resistance rises in proportion to the through-flow volume:

S
I‘C =V, X (2)

in which S is a constant characteristic of the clogging properties of the water
(labelled ‘Silting Index’ by Millipore).

Combining (2) with (1) produces:

dt m V.S.

— = — (f+ —)

dv PA A

and after integration:

VAN

Ll
t= —— (L V+ —)
AP.A. 2A
t n.rf .S
-= —+ —V 3)
v P.A 2AP.A2

Equation (3) is the formula for a straight line in a graph in which t/V is plotted
against V, the slope being:
n

b= T PAZ S 4)

which is solely determined by:
a. the clogging properties of the analysed water (the constant S) and
b. the conditions under which the test was carried out, viz.

* the viscosity,, which varies with temperature;

* the pressure drop across the filter;

 the surface area of the filter.
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The membrane filter index (MFI) is now defined as the slope (b) obtained if the
experiment is conducted under standard conditions, i.e.

no
(MF)= — S )
2A P, A2,

The standard conditions are: n, = dynamic viscosity of water at 10°C =
1.31.103 Pa.S

APo = 2.10° Pa (c. 20 m H,0)

Ao = 13.8.10* m®
The standard filter surface area (Ao) is the through-flow surface area of a 47 mm
diameter Millipore membrane filter used in a Millipore filter holder (Swinnex or
Inline 47).
The slope of the straight line in the graph may be written as:

t,/Vs —t1/V1
b= — (©)
V2 -V1
in which V1 and V2 are two measurements of the through-flow volume at times t1
and t2 respectively. Combining (4), (5) and (6) yields the general formula for the
membrane filter index:

AP A t2/V2 —tl1/V1

Mo
MFh) = (—). (). *.
M AP, A, V2 -Vl

(N

If the measurements are taken under standard conditions (i.e.m = m,; AP = AP and
A = Ao), equation (7) becomes:

2/V2 —11/V1
(MF)=b= — (8)
V2 V1

The standard Millipore filter in which A, = 13.8.10"* m? may be used for recharge
research. At a depth of 7 m below ground level the groundwater in the Netherlands
is at a virtually constant temperature of approx. 10°C, so that it may be assumed that
M = mo- As may be seen from Table 1 variations of a few degrees from the average
groundwater temperature have little effect on the index. The most important
variation from test to test is the pressure under which it is conducted.

For the purposes of research into the suitability for recharge of a particular type of
groundwater, equation (7) can therefore be reduced to:

APo 2/V2 —t1/V1
(MFI) = - ) )
AP V2Vl

Annex 6B3 127




Table I Dynamic viscosity of water.

Temperature Viscosity x 10
0°C) (Pa.s)
5 1.52
6 1.47
7 1.43
8 1.39
9 1.35

10 1.31
11 1.27
12 1.23
13 1.20
14 1.17
15 1.14

To simplify the test t is measured in seconds and V in litres. This also produces
handy values for the MFI, which may then be expressed as (s.1-2). The pressure drop
AP can be expressed in any desired unit, provided that AP, = 2.10° Pa is expressed
_ in the same units.

Research in the Netherlands has indicated that the filter test does not always
entirely follow equation (3). At the beginning of the test the absence of a filter bed
allows extremely fine particles to get caught in the filter pores. When this happens
the filter resistance (ry) rises until the point at which a filter bed is built up, after
which the particles can no longer get through to the pores. It is from this point
onwards that a straight line is obtained in accordance with equation (3), the slope of
which determines the MFL. In certain tests the results also deviated from the straight
line towards the end of the test when the filter bed became compressed, as indicated
in Fig. 1. Deviation produced by clogging filtration occurs particularly in relatively
clean water and takes longer if a test (with the same water) is conducted with a lower
pressure drop.

ompression of
% comp

the filter
bed

ed filtration

clogging filtration

__>V

Figure | General relationship between t/V and V.
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3 Practical experience

Little practical experience has so far been acquired with MFI determinations in
respect of recharge systems. For this reason other experience with so-called ‘press-
ure’ wells must be drawn on. (The difference between recharging and pressure wells
is that in the former, groundwater is pumped back, while in the latter surface water,
either treated or untreated is used.)

Very clean water (e.g. tap water) has an MFI of 0.5-1 s/12. Highly treated surface
water has an MFI of c. 8 s/1? and causes little clogging in a pressure well. Surface
water which has been only partly treated has an MFI of 34 s/12 and results in rapid
clogging.

A number of measurements made in anaerobic groundwater produced MFI values
of approx. 0.5 s/12. In the case of one recharging test a value of 2.2 s/1? was initially
recorded in a pumping well that had just been drilled in anaerobic conditions; one
week later this value had fallen to 0.5 s/I2. There was no measurable increase in the
resistance of the recharging well during the 12 weeks over which the test was
conducted.

In the case of a recharge scheme in aerobic groundwater with a very low iron
content, MFI values of 2.7, 0.6, 2.5 and 8 s/12 were obtained in four pumping wells.
The last, comparatively high, figure was presumably caused by the presence of
slurry in the abstracted water (as shown by grey discoloration of the filter). This case
does not provide a solid basis for assessing the filter test because air was able to enter
the falling main in the recharging wells, with consequent gas clogging.

During the initial months of the recharging test conducted as part of project 8 (see
Chapter 11), the following general results were obtained:

* deep groundwater (iron-bearing): 2.5-4.5s/12

* shallow groundwater (mixed water): 15 —40 s/I2

Finally it should be noted that the particular batch from which the membrane filters
are taken and which way up they are placed in the holder can have some effect on
MFTI readings. These differences are, however, relatively small, and of little account
in the general assessment of the suitability of groundwater for injection.

To sum up, it may be said that water with an MFI of 8 s/12 or less is suitable for
injection purposes. If the MF1 is significantly higher, clogging problems are likely to
be encountered. It is not, however, possible to lay down a precise cut-off value. In
the case of a well that has just been drilled the MFI will often be higher during the
first few days than the value at which it ultimately settles.

It should be borne in mind when conducting a filter test that a low MFI does not
necessarily provide a guarantee against clogging. In the first place the composition
of the abstracted water can alter over time as a result of the dewatering of the
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surrounding area. Secondly the test can only provide indications of possible clog-
ging by suspended particles in the water. Another form of clogging — admittedly a
rare one — is described in the report on the recharge test in Chapter 11. Installation
defects can also result in clogging, e.g. through the admission of air beyond the
measuring point.

4 Implementation
4.1 Equipment (see Fig. 2)

Millipore membrane filters (HAWP 4700; 0.45 pm)
. Millipore Swinnex filter holder (SX00 04700)
manometer 0.40 mH,O

. tap (open and shut)

2 2-litre measuring flasks (plastic)

stopwatch

connection tubes and couplings

. thermometer

(Further research will be needed to indicate whether a reducing valve is required in
order to maintain constant pressure on the filter.)
Membrane filters and holders are obtainable from:

BgR Mo At o

— Millipore Nederland — Millipore Benelux
Ambachtstraat 6B Heliotropenlaan 10
3732 CN De Bilt B-1030 Brussels
tel. 0.30-764744 tel. 3222-158818

manometer %
fapA p———- M— — -~ tap C (open/shut)
XI:_> Millipore
valve B filter holder
AR

pumping well

(I RRRRRRRNRE]

measuring flask

pump

Figure 2 Circuit diagram of filter test (not to scale).
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4.2

Sl AN

10.
11.
12.

13.
14.

Operating instructions

. Switch on pump and allow to pump to waste until water is completely clear. If

necessary switch pump on and off several times. Thorough clearance pumping
will be required for new wells.

Connect equipment to A.

Regulate pipeline pressure with valve B (tap A should be fully open and tap C
closed). Ideally a pressure of around 20 mH,O should be obtained, but the test
can still be conducted with differing pressures.

Insert membrane filter in filter holder, taking particular care that the space
above the filter is properly de-aerated (by inverting the inflow section of the
holder).

Place filter holder over measuring flask.

Open tap C and start stopwatch (t = 0).

Note elapsed time for each litre of filtered water.

The measurement series must be continued until such time as t/V plotted
against V has become a straight line. In the case of very clean water 20 litres or
more will have to be filtered. If clogging properties are present in the water the
discharge will tail off quickly and the series can be terminated after a few litres.
Plot the observations on a graph chart after the first series and check that they
form a straight line. The duration of the test can be adjusted (either shorter or
longer) as appropriate for the second set of measurements and if necessary the
interval between measurements can be reduced (e.g. every 0.5 or 21).

Each test should produce two comparable sets of results. If necessary a third set
of measurements should be taken.

Note the pressure and temperature of the water in each test.

Carefully inspect the membrane filter after each test. Any white patches on the
filter indicates the presence of air bubbles, which reduce the flow-through area,
in which case the test should be repeated.

Note colour and any special features of the material screened out by the filter.
Number filters and retain for further laboratory testing as required.
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Annex 8A General calculation of total abstraction and infiltration dis-
charges

Introduction

In this section the total discharges from the dewatering and recharge systems (Q,
and Q, respectively) in the test problem have been calculated by means of fun-
damental equations (which may be obtained from any textbook on groundwater
mechanics). These equations do not, however, permit the optimal location of the
wells to be calculated; this must be done with the aid of more sophisticated tech-
niques (see following Annexes).

In order to apply these fundamental equations, the excavation and the building to
be protected must first be schematized into circles (see Figure 1).

The radii of the circles in the diagram (r, and r,) have been selected so that their

circumference is equal to the perimeter of the two rectangles (see appendix to this
Annex):

=20 00 sgpy, - CFd 3045y
™ ™ T ™
100.1 100,100
r
PR /] N b
2 / \ o
ER \ /ﬁ i &
— AN ™ I
_\L s 1\ D 2 S
/ \\
l\ SN I S
N / "
\\ /'/
|
Figure 1.

The distance between the centres of the two circles (1) is 200 \/ 2 = 283 m.
The drawdown (s) in a water-bearing formation in a semi-confined aquifer at a
distance r from the pumping well may be obtained as follows:
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Q r
: ) M
2akD I

S =

(kD — permeability factor (m?/day) and N = characteristic length = v kDc (m)).
If the circles are regarded as wells, the condition for (1), viz. that the diameter of the
borehol (2r,) should be small in relation to N, no longer holds. In these
circumstances formula (2) must be used (see ref. 1, pp. 101-103):

Qo ko ()

20kD  (rg) (ry) 2)
— K, —
™) N

Since the drawdowns s, and s, have been laid down for the two circles, the required
total discharges can now be found from the following set of 2 equations with 2
unknowns.

r ' 1
QK @ kS
ST r n * r I, @
27kD 1 1 2 2
—)K, (—) 2akD (—K, (—
(x) 1(x) m (x 1 (x)
Iy . r2
.9 x5 e kY
=
kD T "' 2kD T2 Iy
—)K, (— K (— 4
(x)l(x) (x 1(x) )

The following data have been filled in:
rp=159m;r, =9 m;1=283m;\ = 1000 m; kD = 750 m?/d

X Ko(x) K,(®) xky(x)
r/N = 0,159 1,98 6,09 0,97
/N = 0,095 2,48 10,42 0,99
I/\ = 0,283 1,43 3,26 -

See also (1), p. 147, wheres, = 10 mand s, = O m.
With the aid of the above data Q, and Q, may be calculated from (3) and (4):
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Q, (abstraction) = 39570 m3/day
Q, (infiltration) = 23330 m3®/day

Substitution in the calculation of a circle for a rectangular perimeter with a constant
drawdown

In order to apply equations adapted for axially symmetrical cases of groundwater
flow, the rectangles with a constant drawdown must be replaced by circles.

In order to replace a square with a circle, a radius may be selected which is the mean
of that calculated for the area:

ab
nr2=abo>1r=1—
7

and that calculated for the circumference:

a+b
2ar=2(a+ b)>r=
T
(see Figure 2).
N
b
o
Figure 2.

In the case of a rectangular shape, however, best results are obtained with a radius
calculated from the perimeter.

The above calculations have also been verified by simulation on carbonized paper
(see also Annex 8C). The results are summarized in the tabel 1, although this
substitution technique should be used with a certain amount of caution.
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Tablel Calculated and measured equivalents of radius  for the substitution of a circle for a rectangle with
sides a and b for discharge calculation purposes. The length of side a has been taken as 1 unit.

axb 1 (ab a+b } a+b iy
—-{—+
2 { o L L3
Ix1 0.60 0.64 0.59
1x3 1.13 1.27 1.26
x5 1.59 1.91 1.89
1x7 202 2.55 2.48
1x9 2.44 3.18 3.07
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Annex 8B Specimen calculations for a recharge system (analytical
calculations)

1 Introduction

It is assumed that, for certain reasons, the impact of a dewatering scheme must be
confined within certain limits. This means that the dewatering system and
associated recharge scheme must not be allowed to result in any variations in the
piezometric level outside the ‘zone of influence’. It must therefore be determined
where the recharging wells should be sited, and what their intake discharges should
be. A customary approach is for the number of recharging wells and their required
discharge to be planned on the basis of the anticipated drawdown. The precise
location and discharge of individual wells can then be optimalized by means of
groundwater elevation calculations.

In the technique discussed in this Annex, however, the location and discharge of the
recharging wells are solved directly from the boundary conditions to be satisfied. In
line with the customary practice in groundwater mechanics, recharging wells have
been termed sources and pumping wells sinks.

The method discussed below is only suitable in the case of water-bearing formations
where there is no leakage. The method can, however, be used to provide an initial
approximation for semi-confined aquifers. This approximation can then be checked
for accuracy by calculating the drawdown at a number of critical points with the aid
of well formulae for semi-confined aquifers (1).

Figure 1.
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2 Circular zone of influence around a sink

The shaded area in Fig. 1 is to be kept outside the zone of influence of the sink. The
zone of influence boundary may therefore be taken as the potential line for the
unshaded area. For the purpose of calculating the drawdown, this area may thus be
regarded as a circular island of radius R with a sink at (or near) the centre. If a
discharge Q is abstracted from the formation by the well, a quantity of water

Q
2aR

q= )]

will flow out of the shaded area, per unit of length, towards the sink across the zone
of influence boundary. If a specific discharge is infiltrated along the zone of in-
fluence boundary equal in volume to the discharge profile, the flow from the
hatched area will be neutralized. This will maintain a constant groundwater
elevation outside the zone of influence, with the total intake discharge being equal
to the total abstraction discharge. If infiltration should be lower by a fraction AQ,
the resultant effect on the hatched area can be calculated by assuming there to be a
sink with a tapping capacity AQ in the absence of any recharge.

In practice the specific discharge will often be discretized into n sources. The impact
of such discretization may, however, be disregarded at a distance with

7R

Figure 2.

In Fig. 2 the x-axis has been taken as the zone of influence boundary. The water-
table elevation is required to be kept constant in the shaded area. The x-axis is
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therefore the potential line. The flow outside the shaded area may be solved by
means of a mirror source. It may now be determined how much water flows across
the x-axis from the shaded area. As in section 1, a specific discharge may be applied
along the x-axis with the same discharge profile as that for the mirror source. The
flow in the shaded area in relation to the sink will then be zero, so that the
groundwater elevation in that area will be undisturbed.

Consider the complex potential function £ = & + i ¥, in which the stream function
¥ may be derived as follows:

=5 2
ax Ay

d

oy 9x

The complex potential function in the case of Fig. 2 may be expressed:

Q) = %{ In (z + 8) — In (z — i8)} )

inwhichz = x + iy.

The stream function may then be expressed as

Q X X
V = imaginary () = —.  {arctg (——)— arctg ( )}
2m y+98 y—d
Along the x-axis (y = O):
. Q 28x @
— o= — ——arct
G=0 o 8 EXZ - 8% )

In order to obtain the discharge crossing the x-axis, qy may be solved along the
x-axis (y = 0):

dy Q d 25x

= —=-——. — [arct
b dx 2 dx & éxz - 82;]

= &)
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Equation (5) gives the discharge profile required along the zone of influence
boundary (x-axis) in order to neutralize the impact of the sink in the shaded area in
Fig. 2. This discharge profile has been shown graphically in diagram 1 with positive

values for x. The dimensionless variables x/8 and —_'rr.i : di¢

7.0 . gy, have been plotted along the coordinate axes.

or, following equation (2),

In diagram 2 the infiltration discharge Q* between —x/8 and + x/38 has been plotted

against the absolute value of X/3.

5 1,00
il
a v
075
0,50
0,25
0
0 4 X 6
E——
Diagram 1
1,00
Q’ ]
4 0,75
050
0,25
0
0 b 6
X
]
Diagram 2
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On the basis of diagrams 1 and 2 it may be assumed that in practice it will generally
suffice to take a specific discharge between x = —68 to x = +63. The total
infiltration discharge will then be approximately 90% of the abstraction discharge. If
this discharge should be any lower the impact on the groundwater elevation in the
hatched area can be calculated as indicated in section 2.

4 Sink with two parallel straight zone of influence boundaries

No direct calculations with the aid of mirror sources can be made for the zone of
influence boundaries (potential lines) in Fig. 3. With the aid of the Schwarz-Chris-
toffel formula, the area zin Fig. 3 may be mapped onto a half plane in which the two
potential lines (DB) are presented as a single line (see Fig. 4).

The transformation formula is:

D C B
A K
0 yt 16 |8
L/" B LD A B
A \
Figure 3. Figure 4.

The complex potential in the { area is:

Q _
Q@ = —.In (§ S )
2m {— %
The stream function ¢ gives with £ = { + in
Q —2ny,. (§—%p)
Y() = —arctg g b b % (8)
™ (§—8W)? + 02 — n?,

The associated function in the area z does not provide any simple expressions for x
andy.
The variation of { along the zone of influence boundary in the { area (n = 0) gives:
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M= ) ©)
&€ v GG + %

In the z-plane it follows with:

€ T Ty T X
— = —.cos (—)e —
ax H H H

0y dy 1 Q  (n/H)cos(n . y/H)sin(w.5/H) 0
ax Eig_ E)—; - g éosh (n.x/H) — cos (n.y/H) . cos (w.S/H)} (1

Along the x-axis (y = 0), equation (10) becomes:

dy Q sin(m.8/H) 1
J - 2~I-I cosh (m.x/H) — cos (ﬂ.S/H)} (an

The discharge profile has been shown diagrammatically along the x-axis in Diagram
3 for a number of values of 8/H.

In Diagram 4 the infiltration discharge Q* between —x/H and +x/H has been
plotted against the absolute value of X/H for various values of 8/ H.

S Practical application

Although discharge measurements are often carried out for recharge projects, it
would certainly be impractical to specify and maintain the individual discharges for
each of the wells in a series. In the mathematical examples dealt with in sections 2-4,
no such individual discharge regulation was required. The wells were instead sited
along a potential line, so that, given constant pressure in the supply pipeline and a
correctly selected total infiltration discharge, the required discharge profile will be
self-regulating. This does, however, assume a constant infiltration resistance along
the entire well gallery. This in turn means that where the discharge per unit of length
is high, a greater number of wells per unit of length will be required. If an equal
nominal discharge is assumed in the case of wells of identical construction, the
required number of wells per unit of length may be derived from Diagrams 1 and 3.
The total discharge required to be infiltrated in a well gallery of a given length may
be derived from Diagrams 2 and 4.

The mathematical examples were confined to a single well, but if the dimensions of

the well system are small in relation to the distance from the zone of influence
boundary, the entire system may safely be regarded as a single well.
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In other cases a more accurate discharge profile along the zone of influence
boundary may be obtained by means of superposition.

‘ Diagram 3

Annex 8B8§ 147



D|D_
—_—————

075

0,50

!

yd
L

15

[}
o
w
>
N
xT

Diagram 4

6 Bibliography

(1)  Verruyt, A. Theory of Groundwater Flow. Macmillan 1970.

148 Annex 8B9




Annex 8C Calculations with the aid of an analog model (Teledeltos
paper)

T.N. Olsthoorn
AN.G. de Vogel

149



Contents

Page
151
151
153
154
155
155
156
156
156
160

150

—

OO0 INUN D W —

Summary

Method

Specific electric resistance of Teledeltos paper
Length scales used

Conversion of mA in the paper into real discharges
Withdrawal and infiltration discharges

Pumping wells

Recharging wells

Well siting

Conclusion

Annex 8C1



Annex 8C Calculations with the aid of an analog model (Teledeltos
paper)

1 Summary

The test problem has been solved by the use of a specially prepared type of paper
with a thin conductive layer (commercially available under the name of Teledeltos
paper). This type of paper can be used to indicate how many wells are required for a
dewatering scheme and recharge scheme, and especially where the wells should be
sited in order to obtain the desired results. The method may be used for both
confined and unconfined aquifers, and also in the case of semi-confined aquifers in
which the resistance of the surrounding clay and peat layers is sufficiently high.

N = / kDc must be approximately 2.5 — 3 x the largest relevant distance from the
dewatering scheme.

The analog method discussed below is based directly on the required situation, from
which it then follows where the wells must be sited in order to achieve the object in
question, the discharge of the wells having been selected beforehand on other than
hydrological grounds alone.

2 Method

The problem of the optimal siting of wells around an excavation and a recharging
scheme can be solved in a straightforward manner by the use of Teledeltos paper (a
special paper covered with a thin layer of conductive material). The discharge of the
wells can be selected beforehand on other than purely hydrological grounds.

The model works as follows. The paper is a two-dimensional horizontal
representation of the water-bearing formation. Differences in the piezometric level
are simulated on the paper by differences in electric potential.

A boundary with constant potential may be obtained by constructing an electrode
out of conductive silver paint. A copper wire is soldered to the paint, and the
electrode hooked up to a voltage supply. Lines which in reality connect up points
with the same groundwater elevation are represented in the model by lines of equal
electric potential; these may be traced with a voltmeter.

Once the path of the lines of equal groundwater elevation (isohypses) has been
established the path of the stream lines may be traced. This is done by drawing lines
cutting the isohypses at right angles, thus producing a rectangular network. A
preferable method, however, consists of solving the ‘inverse’ problem. This is done
by converting the isohypses into stream lines and vice versa, so that the stream lines
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can be traced with the voltmeter as isohypses. This is the method used here.

The test problem concerns a water-bearing layer fed from above through a semi-
permeable clay or peat layer, i.e. a semi-confined aquifer. The Teledeltos paper
cannot of course be fed from above, so that in this respect the model is not quite
accurate. The extent to which the model does nevertheless produce accurate results
is taken up below.

The drawdown resulting from the abstraction of groundwater from a semi-confined
aquifer may be found by the following equation:

Qo
2akD

S =

r
Ko (<) (1
A

If r < 0.3 to 0.4 \, this formula simplifies to:

Q, (1.123N)
s = In 2)
2qkD (r)

In the case of a confined aquifer, which the Teledeltos paper does represent accu-
rately, the formula becomes:

Qo
2akD

R
In (—) 3
T

Good results can therefore also be obtained with Teledeltos paper in the vicinity of
the centre of a dewatering scheme provided that the largest relevant dimensions of
the dewatering (or recharge) scheme are no more than approx. 0.4 \ and if a fixed
boundary is assumed at a distance R = 1.123\ from the centre of the project (Fig.

).

A 1,_123>\

Figure 1 Logarithmic approximation of Bessel function K.
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3 Specific electric resistance of Teledeltos paper

The specific electric resistance must be known in order to determine the relationship
between the size of the electric current in the model (found with the aid of an
ammeter) and the size of the groundwater flow in the real situation. If the resistance
is known the quantities of water to be abstracted, recharged or discharged can then
be measured.

The specific electric resistance of the paper can vary when measured along axes in
different directions, i.e. the paper may not be isotropic. Anisotropy can be
compensated for by using different length and width scales. It is then assumed that
the specific resistances in these two directions are the maximum and minimum
values or vice versa. For the sake of certainty measurements should be taken in at
least three directions.

The current has been measured by taking two sample strips of 100 x 100 mm? and
subjecting them to a voltage difference of 10 V (see Fig. 2). The respective current
strengths were:

Along the length of the paper roll: q¢; = 5.17 mA “
Along the breadth of the paper roll: gy = 4.38 mA

p; and p, may then be calculated as follows:

A% so that
p1= —
et Pl _ 9e2 (5)
v 02 el
P2 = —
9e2

10V
e

=10V Qpp= 438 mPA 1?2] ~0p1=517mA|
' R

IRy N

|-— 100 mm —| -—100mm——l

Figure 2 Sample strips in two directions.
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4 Length scales used

The paper is anisotropic in that the strength of the current through the two sample
pieces varies. In order to compensate for this variation, a different scale has been
used across the width of the paper from that along the length of the roll. The
relationship between the two scales must be such that if a part of the water-bearing
formation is represented on the Teledeltos paper, the strength of the current remains
constant irrespective of where that representation is drawn.

If a square section of the water-bearing formation of edge L is drawn on the paper
with the sides parallel to the directions of the specific resistance, a rectangle will then
be obtained with sides S,L and S,L, with S, and S, being the scale factors for these
two axes (in this instance parallel to the lengthwise and crosswise direction of the
paper respectively).

If the square section of the water-bearing layer is imagined as being bounded by two
impermeable walls, and if a constant difference AH in groundwater elevation is
maintained between two opposite sides, the total discharge will be:

AH
Gu = —-LKD = AH.kD (6)

irrespective of the two opposite sides between which the difference AH applies.
Since the paper is not isotropic, this must be taken into account. Along one axis the
specific current will be:

AV I AV sl ”
= — s -
CTSL T T s

while in the other direction:

AV I AH  $2 -
2 = . S L . = .
e sL 7 2 02 S

The relationship between the two scale factors may be obtained by equating (7) with
(8) and then substituting (5) and (4):

— = —= —= —=092 ®
S2 p2 gel  5.17

Given the width of the paper roll of 0.785 m, a scale of 1:2700 has been selected in
the lengthwise direction and one of 0.92 x (1:2700) = 1.2935 in the crosswise
direction of the paper. This makes the diameter of the circle of radius R = 1.123\ =
1123 m, which borders the flow model, (2 x 1123)/2935 = 0.77 m, which just fits
within the width of the paper.
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5 Conversion of mA in the paper into real discharges

Since the specific resistance of the paper used was not homogeneous, the actual
situation had to be portrayed by the use of differing scales. By substituting (11) in (7)
and (8) and filling in the measured values for q.; and gy for AV/p| and AV/p,
respectively (see (4)), it may be seen that g.; and g, have been made equal as a
result of the respective scales used:

Qe = 5.17.0.92 = 476 mA (10)
ez = 438.0.92 = 476 mA

This applies irrespective of the size of the square represented on the paper (see 6))
given a voltage difference of 10V.

If the value of kD (750 m?/d) is filled in in (6) together with a groundwater elevation
variation of 10 m (so that 1 m of groundwater elevation difference corresponds with
1V of voltage difference), it follows from (10):

qw = AHkD = 10 m. 750 m?/day = 4.76 mA

so that 1 mA = 1580 m3/day. an
6 Withdrawal and infiltration discharges

Fig. 3 illustrates the schematized measurement model, showing the specially
prepared conductive boundary of the area with radius R = 1.123\ = 1123 m and
the discharges from the excavation and at the object to be protected by recharge.
Since the electric potential along the boundary of the object to be proiected and the

boundary of the area as a whole must be kept equal (= zero), the object and the
boundary have been short-circuited by means of a connecting wire.

Figure 3 Discharge measurement.
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Currents I, an I, which are maintained by a 10 V power supply, have been
measured with an ammeter. I, is the abstraction discharge, i.e. the total discharge to
be pumped up from the excavation. A reading of 24.9 mA was obtained for I,, which
may be converted directly into the abstraction discharge by means of the equation
arrived at in the previous section.

I; is the total discharge for recharge purposes, for which a reading of 14.2 mA was
registered. I, — I, is the discharge flowing across the boundary towards the exca-
vation, i.e.

I, = 39300 m3/day (= 14.3. 105 m3/a = 1640 m3/h)

I, = 22500 m3/day (= 8.22.105 m3/a = 940 m3/h)

That is, 57% of the water must be recharged.

7 Pumping wells

The pumping wells selected have an individual tapping capacity of 60 m3/h. Given
a well diameter of 0.5 m, these wells achieve a drawdown of:

Q 1.123N
s = In ¢( ) (12)
20kD T
60 x24 1123
s = In ( ) =25Tm (13)
2xwx 750 0.25

Twenty-eight of such wells are required in order to abstract the required total
discharge of 1640 m3/h.

8 Recharging wells

The intake capacity (i.e. discharge) of the recharging wells has been arbitrarily fixed
at half that of the pumping wells. This means that 32 recharging wells with a 30
m3/h capacity are required to achieve the total discharge of 940 m3/h.

9 Well siting

After the isohypses were drawn (see Figs. 4 and 5), the problem was reversed in
order to determine the stream lines. This is done by converting the potential lines
into stream lines. By cutting the paper out along the boundary of the excavation and
the 5V potential lines, these lines automatically become stream lines (see Figs. 5 and
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Figure 4 Drawing the isohypses.
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Figure 5 Isohypses with electric circuit.
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6). The paper is then cut along a stream line which has been estimated as best as
possible. The two edges formed by cutting are made conductive, after which a
voltage difference is applied between them. Since the number of wells required
around the perimeter will have been determined as discussed in the previous
sections, a useful device is to make this potential difference equal to the number of
wells or to a constant number thereof. (The total voltage difference must however be
kept below 30-40 V in order to avoid electric shocks.) The stream lines from the
original problem are next traced with a voltmeter, and one (or more) well sited
between each pair of stream lines. The same is then done for the recharge project,
thus solving the problem of the optimal location of pumping and recharging wells.
Figures 4-6 illustrate the working methods, while all the measured stream and
potential lines have been brought together in the one diagram in Fig. 7.

S5V isohypse cut out

excavation

ANAAR A ANGAANS R AR

measurement of 28 stream lines as
cut along estimated stream line isohypses by the application of a
and boundaries made conductive 28V voitage difference between the
boundaries made conductive

.
Ll 1),

stagnation paint

section of
the 5V isohypse
(see Fig.9)

. 2 bordering stream
lines estimated as

best as possible measurement of 33

stream lines as
isohypses by the
application’ofa 33V
voltage difference
between boundaries
made conductive
(thick lines)

Figure 6 Procedure for the determination of stream line.
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10 Conclusion

A well-nigh optimal design for a dewatering/recharge project can in certain situ-
ations be arrived at fairly quickly (within one day) with the aid of Teledeltos paper,
some conductive silver paint, copper wire, a power source, voltmeter and ammeter.
The method may be regarded as producing an optimal result because it will provide
the correct number and location of pumping and recharging wells required to
achieve the desired object. This can moreover be done in such way that each well
will in fact abstract or inject the discharge selected for it on other than hydrological
grounds alone. Subject only to the constancy and value of the geotechnical
parameters, not a well too few or too many will be drilled, or be drilled in the wrong
place. The work required for obtaining the final result can moreover be appreciably
reduced by confining onself to a single isohypse and the points of intersection of the
stream lines with the excavation and the object being protected by recharge.

7
excavation
_stagnation point
0,70
1,0

discharge per
well 30m3/h

discharge per well 80 m3/h

Properties of the ground

Figure 7 Results.
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Annex 8D Calculation by means of the finite element method

Introduction

In the finite element method the region to be studied is subdivided into a large
number of sub-regions or elements. The shape and dimensions of the elements are a
matter of choice, the selection depending on the geometry of the region under
consideration and the degree of accuracy required. Where there are large dif-
ferences in the hydraulic head (e.g. around pumping wells), the area will have to be
broken up into many small elements in order to obtain the required degree of
accuracy.

The corner points of the elements are taken as the modal points or nodes.
Assuming a two dimensional stationary flow equation

d 3 ) 3
— (kD i)+—(kD i)xQ=0 (H
0x 0x dy oy

and assuming there to be N nodes, an approximate solution ®;, may be defined for ®
as a linear combination of N Basic functions:

N
Q= 2 l‘biLi(X,)’) @)
1=

The functions L; are chosen in such a way that:

L;= latthenodej =1 |

L; = Oatthenodej = i

The coefficients ®; are therefore the values for the approximate solution ®y, at the
nodes i. These coefficients are now determined in such a way that the approximate
solution @y, is as close as possible to the true solution ®.

Mathematical formulation

Two methods, viz. the variational principle and the weighted residual method, may
be applied in order to determine the coefficients ®; in equation (2) in such a way that
the approximate solution @y, is as close as possible to the true solution for equation
(1). Both methods have been described in detail in the literature (Zienkiewicz, 1971;
Finalyson, 1972; Norrie et al, 1973).
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In principle these methods work as follows:
a. Variational principle

A function
o 99

F ('—_a I Qs xa }’)
ax  dy

may be found so that the integral of F over the area under consideration G:

1= { f FdG
JGI ©)

is minimal for the solution ® of equation (1). In this equation F takes the following
form:

ad RL)
=% {KD (—) + kD (—)) — ®Q 4)
ax dy

If we substitute the approximate solution ®y,in F, the integral I may be calculated by
carrying out integration element by element.
I is now minimalized with the aid of the coefficients ®; by assuming

ol
— =0 i=1N (5)
90,

(5) forms a set of N linear equations in the N unknowns @;. A solution may now be
obtained by means of well-known methods.

b. Weighted residual method
Substitution of the approximate solution @y, in (1) gives:

a E)CI)b 9 8<Db
R= —&kD —)+ —&D —)+Q (6)
0x 0x ay dy

In general R will not be equal to zero. The coefficients ®; of the approximate
solution ®;, are now determined in such a way that R is minimal.

This may be done in many ways. The best known method is that of Galerkin, in
which R is minimalized by making R orthogonal to the basic functions L;, i.e.

ffRLidG=0 i=1N 0
G
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Integration is once again carried out element by element.
(7) forms a set of N linear equations in the N unknowns ®;. A solution may now be
obtained by means of well-known methods.

Boundary conditions

Boundary conditions can be readily incorporated into the finite element method. If
a point has a fixed potential, the discharge Q can then be calculated from the
equation for that point. If the discharge Q is given, the potential for that point can be
calculated.

Recharge

The finite element method, using triangular elements, may be applied to the test
recharge problem (Fig. 1).

||80m%‘!00m i‘lOOm{

——t
Y €
1 L S
. E 0 o
% |
C 1 SR
v G .
A Lo kD= 750 m2/d
T S R=1000 m
O ¥
p N &

Figure 1 Site plan.

The test area was a 2 x 3 km site with the excavation and building in the centre of the
area. The boundaries of the area were maintained at a constant potential of Q = o.
The area was divided into 628 triangular elements with 337 nodes, the network
being made a good deal finer around the excavation and the building. Twenty
pumping wells were sited along the perimeter of the excavation, with the potential
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being held constant at —10 m, while twelve infiltration wells were sited around the
building, with the potential being held constant at 0 m.

The results of the calculations indicated a total required abstraction discharge of
41740 m3/d and an infiltration intake of 23670 m3 d. The distribution of the
discharges over the various wells is shown in Fig. 2.

Fig. 3 plots the isohypes in a portion of the test area. The fact that the —10 m lines
has not been drawn along the boundary of the excavation is a result of the interpo-
lation technique used for the calculation of the isohypses. The same applies to the 0
m line along the edge of the building.

2460 6%0 640

331 2480 5§70, L 260
1320 3607 290
1050 - 32300 430
940 L2570 /T

5740 1920 1820
910 = L1990
910 1 11630
990 - - 1480
1170 ~ 1500

¥
2660 1340 2890

Figure 2 Discharge distribution along excavation and building.
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’ Figure 3 Isohypses in portion of model region.
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Annex 8D Calculation by means of the well methods

1 The well method in general

The test problem has been solved by a method termed by its authors as the ‘well
method’.

The well method is the result of the attempt to find a way of directly calculating the
well discharges required in order to obtain the stipulated piezometric level at a
number of selected points.

The well method consists of an analytical calculation technique based on the
superposition principle. It may be used to solve problems for both confined and
semi-confined aquifers.

If certain minor adjustments are made the programme can also be used to tackle
problems relating to unconfined aquifers, as well as non-stationary problems. Be-
cause the method is analytical it is subject to the same advantages and disadvantages
as those applying to other analytical methods. Boundaries of all shapes can however
be readily introduced. In this respect the method is comparable to that of line
sources: see Annex 8F.

2 Development of the method

Provided that R is significantly higher than (ry), the groundwater elevation at point
i may, in the case of a confined aquifer, be written:

Q I} Qj Tjj Qy T
o= —1In (—)+ ... In ( ). .. In ( ) + &, Q)]
2akD R 2akD R 27kD R

(®, = @ resulting from rainwater alone; boundary conditions are created with
‘wells’.)
In the case of a semi-confined aquifer the equation becomes:

Q | Q; K Qn Tin
Ko (—)+... —— Ko (—)+... Ko (—) ()
2nkD N©2) 2q9kD A 2akD IN

(I)i=
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(all boundary conditions are created with ‘wells’).
For both types of groundwater systems we may therefore write:

D, =a;Q + 32 Q+..... a,JQJ + ....a, Qn + ¢, 3)

The coefficients a;; may be calculated directly by computer.

In the case of prescribed piezometric levels the only remaining unknowns are the
discharges Q| — Q.. (In the case of the test problem for a semi-confined aquifer &, —
0).

One possible approach is to prescribe the piezometric level to be achieved at n
points. This would then give rise to n equations with n unknown discharges, which
could be solved directly by computer. The solutions obtained in this way are not,
however, necessarily what was sought. The solutions might result in the stipulated
piezometric levels, but only at the expense of the groundwater elevation in other
places. The result is that wells with enormous abstraction discharges are often found
side by side with wells with exceptionally high infiltration discharges, thus produc-
ing a net result in line with the stipulated conditions.

POT. LINE
THROUGH Pj

POT. LINE
THROUGH P;

Figure 1. Figure 2.

It was consequently necessary to introduce a further constraint in such solutions.
The constraint selected was the direction of the potential line at a number of set
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points. This produced good results (see also (1) and (2)). This direction is given by
the angle o; made by the normal vector m} through the point P; on the potential line
through P; with the positive x-axis. The constraint imposed is that the component of
the vector which indicates the specific discharge g7 at P; at right angles to 1} should
be equal to zero.

The formula is defined:

n —
2 q;i sin (©
=t 7 y—a =0 )

in which i = the number of the point and j = number of the well.

¥ ¥
0;; = arctg T &)
Xj — X
m v
Since — — < arctg (1) = — (6)
2 2

Qij must be increased by m if (x; — x)) < 0, L.e. for the second and third quadrants.
In the case of a confined aquifer, the specific discharge @ through well j at point i
amounts to:

l

Qj = —— &jj (7
2m rij

. . —> . . . . ..
in which e; represents the unit vector in the direction i-j. In the case of a
semi-confined aquifer this becomes:

o= Sk T ®)
LN

By substituting (7) or (8) in (4), equations are obtained with the same form as (3) in
which zero must be substituted for ®; and in which the coefficients a;j satisfy the
condition:

1

aij

.sin (eij —a) ®

2a| —
;
for a confined aquifer; and
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r?
aij =K _— .

A sin (B — ay) (10)
2aN

for a semi-confined aquifer.

3 Arriving at solutions

Solutions are now in principle obtained by siting n wells, stipulating the potential at
(n-k) points and prescribing the direction of the potential line at k points.

As far as the constraints are concerned, these points may be allowed to coincide. So
far we have always selected k = n/2. We have also seen thatk = 0 does not produce
good results for the test problem.

In order to solve the test problem 30 wells have been distributed along the perimeter
of the excavation and the building (see also Table 2). As shown in Fig. 3, a point has

y
(@590) ](3(_)0,529)

400X —e-- —
L —
¢
‘ ! R
-~
| . 1(300,300)

Figure 3 Distribution of the wells (.) and points (x) = normal vector.
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kD=750m2/d
R=1123m

Figure 4 Drawdown contours (m) drawn by computer and calculated by well method, for a confined
aquifer.

been selected between each pair of wells, the piezometric level and the direction of
the potential line being prescribed at those points (by means of the normal vector).
Calculations have been carried out for both confined and semi-confined aquifers. In
the case of a confined aquifer X = 1000 m has been replaced by R = 1.123\ = 1123
m.

Annex 8E6 175



4 Checking the results obtained

It will not always be certain that the desired solution has been obtained in each case,
for which reason it is essential for the results to be checked. This is best done by
filling in the calculated discharges in the basic equations (1) and (2), on the basis of
which the isohypse profile can be shown diagrammatically or be plotted by
computer. This will immediately expose any mistakes or irregularities. Checks of
this kind were carried out and are shown in Figs. 4 and 6.

kD=750 m2Ad
R=1123m

Figure 5a. Detail of Fig. 4.
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kD=750m2/d
R=1123m

/

Figure 5b Detail of the piezometric surface in the top right-hand corner of the excavation (see Figs. 4 and
5a).
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kD=750m%A4d
R=1123m

Figure 6 Drawdown contours (m) drawn by computer and calculated by well method, for a confined
aquifer.
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kD=750m2/d

Figure 7 Detailed section of the drawdown contours around the top of the excavation (see Fig. 6).
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It must be borne in mind that some of the irregularities may be due to the plotting
programme. Any doubts or questions about the solution or plotting can be over-
come by the enlargement of details, when faults in the plotting programme become
steadily less important.

This procedure is possible because the method of calculation is an analytical one,
whereby the piezometric surface is a continuous function (i.e. one which can be
calculated for each point). '

Detailed sections of the upper right-hand corner of the excavation are shown in
Figs. 5and 7.

5 Results of application to test problem

The results of the calculations are set out in the following tables and diagrams. Table
1, column | and Figs. 4 and 5 set out calculations for the test problem in the case of
a confined aquifer in which R = 1.123\ = 1123 m. Table 1, column 2 and Figs. 6
and 7 concern the same problem, but in this case calculated for a semi-confined
aquifer with A = 1000 m. The differences between the two cases turn out to be very
small:

Total Total
abstraction* infiltration*
confined aquifer 39000 22800 R =1123m
semi-conf. aquifer 39600 23700 X = 1000 m

*) discharges in m3/day

The more detailed drawings (Figs. 5 and 7) reveal the drawdown in the top right-
hand corner of the excavation to be 8.5 m instead of 10 m. This could be
compensated for in practice by the installation of another well or by distributing the
calculated discharges over a greater number of wells. Either of these would improve
the discharge profile along the perimeter.

The discharge profile along the perimeter may be derived directly from the results of
the calculations by dividing the discharges obtained by the length of perimeter to
which they refer. Once the discharge profile has been obtained the solution can be
optimalized by redistributing the wells, as done in the case of Annex C where the test
problem was solved by analog methods.

Bibliography

(1) Veer, van de, P. Calculation Method for Two-Dimensional Groundwater
Flow. Delft Prog. Rep., 2 (1976) pp. 35-49.
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Table 1 Calculated well discharges in the Table 2 Coordinates of the wells. Centre

case of confined and unconfined of the axes system in left-hand bottom
aquifers. corner of excavation.
A
) g
€ = £ §~ .
< T 9 % g
£5 5%s
573 3=
53 g8
Disch. Disch. No. Coordinates
No. (m3/day) (m3/day) x (m) y (m)
1 2592 2623 1 25 0
2 2638 2644 2 75 0
3 1943 1954 3 100 50
4 1501 1519 4 100 100
5 1632 1708 5 100 150
6 1925 1954 6 100 200
7 1809 1830 7 100 240
8 1900 1919 8 100 275
9 1493 1510 9 100 300
10 1914 1929 10 100 325
11 2090 2102 11 100 350
12 3345 3355 12 100 375
13 4355 4345 13 75 400
14 3657 3644 14 25 400
15 1804 1877 15 0 325
16 1375 1468 16 0 250
17 1334 1436 17 0 150
18 1694 1789 18 0 75
19 225 300
Total 39001 39606 20 275 300
21 300 360
19 —3225 —3246 22 300 440
20 —2446 —2518 23 275 500
21 — 462 — 669 24 225 500
22 — 262 — 503 25 200 462
23 — 647 — 874 26 200 425
24 —1357 —1523 27 200 387
25 —2344 —2364 28 200 362
26 —2523 —2525 29 200 337
27 —1832 —1826 30 200 312
28 —2024 —2018
29 2112 —-2106
30 —3535 -358
Total 22769 23700
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Annex 8F Calculation by means of the line sources method

1 Summary

In this calculation method well galleries are schematized into line sources.

If a piezometric level ®; is required at N points and a reference point with a
reference piezometric level is given or assumed, the specific discharges (i.e. dis-
charge per unit of length) o; of N positionally fixed line sources may be calculated,
together with an integration constant @,.

The method results in a set of N = 1 equations with N + 1 unknowns.

The method differs from the finite element method in that the equations for solution
are obtained from the boundary conditions rather than from the situational
descriptions in a large number of finite elements. The number of equations and the
number of unknowns are much smaller in the case of the line sources method than
in the finite element method. The matrix of the system of equations is nevertheless
completely filled.

This analytical calculation method is suitable for calculation of unconfined or
confined aquifers. The numerical approach in the case of semi-confined aquifers is
outlined in section 4 of this annex.

2 Complex potential

If a complex potential function Q is defined as & = ® + 1¥, in which ® is the
potential and V¥ the stream function, and if £ is made an analytic function of z (= x
+ iy), ® and ¥ will then satisfy Laplace’s equation. Q (z) describes a two-dimen-
sional stationary liquid flow through a homogeneous isotropic porous material.
The complex potential & may describe the flow in either an unconfined or a
confined aquifer.

This is done by altering the definition of the potential ®, viz:

— ® = k.D.g, for a confined aquifer

— & = % k.o for an unconfined aquifer

3 Line sources
The complex potential around a source is described by:
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-, = (Q/2 7). In (z-zy) e))

in which z, is the location of the source in the complex z-plane, Q the discharge
obtained, and &, the integration constant.

The complex potential describing a horizontal line source may be found by inte-
grating this function for a line segment.

This gives:
+ IJ/2
Qj— @, = (0j/2m) § In(z-s) ds
—1/2
9) - ¢, = (Oj/Z'IT) {(z-lj/2) In (z-lj/2) —(z+ lJ/2) In (z+ lj/2) + lj} 2

in which o; is the discharge per unit of length of the line source, which is assumed to
be constant.

zj Zj+1

Figure | Line source along the real axis.

Consider an arbitrarily located line source.

Select a local set of coordinates z* = s+ ir in such a way that the origin is in the
middle of the line source and the real axis lies in the direction of the vector (Zj+1-Z)-
The point z is represented in the local set of coordinates by z* = (z-m;). exp(—i.a)).

The complex potential for an arbitrary line source may then be found if z* = (z-m;).
exp. (—i.«j) and oj are substituted for z and Q respectively and if equation (1) is then
integrated for —1;/2 to +1;/2:

Figure 2 Arbitrarily located line source.
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+1:/2

Q¥ — @, = (oj/ZTr}zf In ((z-m;). exp. (—~i.aj)—s).ds

J
= (oj/Z'rr){((Z-mj). exp (—i.aj)—lj/2).ln ((z-my).exp (—i.aj)—lj/Z)

—((z-mj). exp (—i.aj) + lj/2). ln((z—mj). exp (—i.aj)+ lj/2)+lj} 3)
If this is now written as

Q% — @, = Coefj(z)* oj, the potential  at a point i in a region with n line sources is
described by:

n
o, =0,+ = , Re{Coefj(i)}* o] 4)
J=

In an example with n line sources the above may be written in matrix form, reading
Re(Coefj(i)) for Coefj(i)

Coef, (1) Coef, (1) ... ... Coef, (1) 1 oy EDl
Coef, (2) Coef, (2). .. ... Coefy (2) 1 o, o,
Coef, (n) Coef,, (n) . .. ... Coef, (n) 1 o, @,
Coef, (ref) Coef,, (ref) . .. ... Coefy (ref) 1 , O or

Ready-to-use subroutines are available for most computers for solving the above.
The following example makes use of the IBM fortran subroutine GELG (Gauss
elimination).

4 Semi-confined aquifers

In the case of a semi-confined aquifer a two-dimensional description of the
groundwater flow in the horizontal plane does not satisfy Laplace’s equation and
cannot therefore be represented by a complex potential £ which is an anlytical
function of z.
The impact on the piezometric level (A®) of a well in an infinite plane may be
described as:

A Q '
B 2-nkDK° 2
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in which r is the distance to the well.

The impact of a line source on the piezometric level at a point with coordinates x;
and y; may be found by integration along the line source. If ¢ = Q/l and A® =
o*Coef{(i), it follows for a line source along the x-axis (see also Figure 3):

Xx= 4+ 1/2
Coef (i) = ’ d
2akD Sk A I )
x=-—1/2

since r; = / (x; — x)? + y;.

Hxiyi)

X
VT 1172
I~ T

Figure 3. l

An analytical solution for the integral of values of y; = 0 has not yet been found.
The line source method can nevertheless be applied to a semi-confined aquifer
provided that the coefficients Coef (i) for each i are determined by means of
numerical integration along the line source.

I 100m ' 100m| ’IOOml
1

©
o Nol
- A E
10 .9 S S
@, - A ~
o~ — q
~ S BUILDING
— 0 o
= B Wik
IS g
S Culculation (test problem)
~ m Confined aquifer.
™ kD value = 750 m?/day
®, =40 m.
™ ¢y = 50m.
| b
1 EXCAVATION Reference point (1425.-975)
— with @ . = 50 m.

Line source with number

Figure 4  Site plan of test problem.
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5 Test problem

Having been measured and calculated in a number of different ways, as discussed in
the preceding annexes, the test problem may now be approached by means of a set
of 22 line sources, 12 jocated around the excavation and 10 around the building (see

Figure 4 and Table | for the coordinates).

Piezometric levels of ®. and @}, are prescribed for the mid-points of the line sources
around the excavation and building respectively. For the calculation results see

Table 2.

Table 1 Coordinates of the line sources.

Line source No.

Starting point

Finishing point

1 0.0
2 100.00
3 100.00
4 100.00
5 100.00
6 100.00
7 100.00
8 100.00
9 100.00
10 60.00
11 0.0
12 0.0
13 200.00
14 240.00
15 300.00
16 300.00
17 300.00
18 200.00
19 200.00
20 200.00
21 200.00
22 200.00

0.0
0.0
100.00
200.00
240.00
280.00
320.00
360.00
400.00
400.00
400.00
200.00
300.00
300.00
300.00
400.00
500.00
500.00
460.00
420.00
380.00
340.00

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
60.00
0.0
0.0
0.0
240.00
300.00
300.00
300.00
200.00
200.00
200.00
200.00
200.00
200.00

0.0
100.00
200.00
240.00
280.00
320.00
360.00
400.00
400.00
400.00
200.00

0.0
300.00
300.00
400.00
500.00
500.00
460.00
420.00
380.00
340.00
300.00
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Table 2 Calculations results.

Line source Specific discharge
(m3/s/m)
1 0.4120693E-03
2 0.3573671E-03
3 0.3367194E-03
4 0.4750681E-03
5 0.5869337E-03
6 0.7293397E-03
7 0.8389605E-03
8 0.1225632E-02
9 0.9214291E-03
10 0.6336500E-03
11 0.2010681E-03
12 0.1809266E-03
13 —0.8996418E-03
14 —0.4806262E-03
15 —0.1478337E-03
16 —0.8316216E-04
17 —0.2107604E-03
18 —0.6653934E-03
19 —0.5975172E-03
20 —0.7293110E-03
21 —0.8328585E-03
22 —0.1222351E-02
Required pumping capacity 0.1498060E-04 cub.m/hour
Required infiltration capacity —0.9752246E-03 cub.m/hour

Return infiltration 65.099%

Cf. the values calculated for the same case by means of electric analog:
Required pumping capacity: 1640 m3/hour

Required infiltration capacity: 938 m3/hour

Return infiltration: 57%

Bibliography
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190 Annex 8F6




Diagrammatic representation of calculated line source strengths (test problem)

=.LLIJ.LI.U.LIJ]J
é E Dewatering arranged inwards. -3
: : Infiltration arranged outwards. H =10 mB/S/m
: E Scale: *:2500
T g 10 51 49
26
% 79
25
626,26 19185, 2
62 a2 12
19 20
20 18
22 e
83 16
23 1818 30 34
28
86 32
1A
89
L8
f Well diagram
47 Designed on the basis of the line source strengths on p. 5-2-1
88 All wells with a capacity of 60 m3/hour
24 25 pumping wells = 1500 m3/hour
16 infiltration wells = 960 m?®/hour
40 40 20 All measurements in metres.
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Annex 10A The elimination of methane from groundwater: some
estimates

1 Summary and conclusions

Groundwater pumped up in excavations often contains significant quantities of
dissolved gas, especially methane. If this water is returned to the soil in a recharge
system, gas bubbles can be released and clog up the system. The major problems to
which this can give rise may be avoided by eliminating the methane. A number of
estimates have been made in this annex of the dimensions of various pieces of
equipment that might be used:

1. Aspray column

2. A bubble column
3. A packed column
4. A settlement basin

See Figure 1.

WATER+METHANE METHANE WATER* METHANE

METHANE
peec=a BLOWER
o
H @d—l—% ool
o | P el
M_‘-__M‘-:Q/ LT-L-I:-.I.LL
| WATER | .
0 WATER  RETURN GAS FOR
| BUBBLE FORMATION
WATER + METHANE _
METHANE METHANE
OPEN |, PARTITIONS
PACKING
<:> (:) WATER
| WATER

Figure 1.
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All these appliances are based on the principle of providing sufficient contact
between the water and a gas phase, so that the methane over-saturation can escape
to the gas phase. This has been achieved artifically in types 1,2 and 3; in type 4 it is
achieved by bubble formation in the liquid itself.

In all four cases the required volume of the container has been estimated for the
treatment of 1 m?/s of water, with the over-saturation being reduced to approx. 1/10
of the original level. In the case of system 1 several thousand m® are required; for
systems 2 and 3 around 100 m®, while for system 4 a flat tray some 2 m deep and 20
m? in surface area is required. The last system would therefore appear the most
attractive.

It should be stressed that these are order of magnitude estimates; on no account
should a large-scale appliance be constructed without further tests.

2 Calculation of the transfer of methane from the liquid to gas
The local material flux of methane through a liquid surface is given by:
J =B (xx*)

Where  isa ‘material transfer coefficient’ (m/s)
x  is the actual concentration of methane in the liquid
x* is the concentration of the liquid which would be in equilibrium with
the gas phase.

(Le. transport becomes zero when the liquid has reached equilibrium with the gas.)
Since the gas in all four systems consists of methane at approx. 1 bar, x* is fixed (x*
= 50 x 102 kg/m?). The value of x varies within the appliance from the input
concentration (x, = 3-10 x*) to a value just above x*.
The value of the material transfer coefficient varies for the different systems.
1. For the transfer of droplets into gas:

B = 5D/t

where D is the diffusion coefficient of methane in water (= 10° m2/s)

where r is the radius of the droplets.

Withr=103m—-B =5x10° m/s.
2. For the transfer of water into bubbles B ~ 3 x 104 m/s.
3. In this case the water flows as a film over the packing; the transfer coefficient

here is in the order of B =~ 5 x 10> m/s.

4. See?2.
The transport of methane is equal to the integral of the flux over the available
interface A between the gas and the liquid. The interface in the various appliances is
approximately as follows:
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1. Interface per unit of volume of the appliance:

Jed

a =

r

where ¢ d is the volume fraction of the droplets (< 0.1) and r is the radius of the
droplets (= 10-3 m).

3x 10t
103

a= = 300 m2/m?3

2.3. The calculated interface is of the same order of magnitude.
In the case of 4 it is difficult to specify the size of the interface, although something
may be deduced from the behaviour of individual bubbles.

3 Calculation of container volume for 1, 2 and 3
Appliances 1, 2 and 3 achieve a particularly high degree of remixing of the liquid

phase. This means that the liquid concentration will be much the same everywhere,
and equal to the outflow concentration.

L.xg METHANE

/ 1

LIQUID % GAS

ME THANE
|

i

L, X1

Figure 2.

If M m3/s of water flows through the appliance the methane transfer is L(xy-X,),
which must be equal to B A (x,-x*). From this it follows:

*
Xy —x* I

Xg — X* 1+ N
B A = f a (container volume)

where N = — _—
L L
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In order to reduce over-saturation by a factor of 10, N must have a value of 9. If L =
1 m3/s the container volume for spray column 1 is as follows:

9L  9x1mds
container volume = — = — = 6,000 m3.
Ba  (5x10%m/s) (300 m2/m?)

While the required container volume does depend heavily on the estimated droplet
size, very large tanks will nevertheless be required. In the case of bubble column 2:

9L 9x1m3/s

container volume = — = = 100 m?
Ba (3 x 10* m/s) (300 m?/m3)

No remixing in the liquid occurs in the packed column.
In this instance over-saturation declines as follows:

*
X; —X

. o = €Xp (—N)
- X

(To simplify matters the derivation of this formula has been passed over.)

If x, — x*
= 1/10, N = 2.3, so that:

Xg — X*
23L 23 x1md/s

container volume = — = ——— = 150 m3
Ba (5 x 10 m/s) (300 m?2/m3

i.e. the same order of magnitude as the bubble column.

In the case of the settlement basin (no. 4) it has been assumed that very small
bubbles are dragged along in the channels between the partitions in the container.
These bubbles grow as a result of over-saturation and achieve an increasing slip
velocity in relation to the liquid. When the bubbles reach the left-hand edge of the
channel they float upwards against the partition and are released.

To begin with we may calculate the growth and the height of rise of a bubble in
relation to the liquid. For convenience sake over-saturation may be assumed to have
a constant value

X —x*
~1/2

X*
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The material transport to a bubble determines its rate of growth:

dr
BAgyp, (X — Xx*) = y.Apyp, "
t

whereby the bubble surface area A bub. disappears from the equation. The other
symbols are as before; y is the concentration of methane in the gas phase (y ~ 30
X*).

V(m/s)
03+ —=
—
02+ 74
01t
o 10° 210"
r{m)

Figure 3.

If the equation is solved for an assumed constant value for the over-saturation (x —
x*), we obtain the following formula for the radius of a bubble as a function of time:

B (x — x¥)
r= —t
y
x — x*
With ————— =~ 1/2andy = 30x* B = 3x 10 m/s,
x*

r—(1/2x 105 m/s) t.

The rate of climb of small bubbles is given by:

2 pler?
V= — &
9 n

where pl = 103 kg/m3 (fluid density)

g = 10 m/s? (acceleration of gravity)

n = 103 Ns/m? (fluid viscosity)
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therefore V.= (2/9 x 107 1/3) (r/m)?

In the case of bigger bubbles the rate of climb rises to a constant value of approx. 0.3
m/s (see Figure 4). This stage is however less relevant for out observations.

FLUID VELOCITY

v,
v o
I/_/ PATH OF BUBBLE

Figure 4.

This makes the height of rise of a large bubble in a stationary liquid:

t t 2 t 1 1
s = vdt = —x 10Mr2dt = —x 103 2dt = —x 1038
J g Grora= 5

Given a settlement basin with parallel inclined partitions, the bubbles must be able
to traverse the vertical distance between the partitions (=~ 5 x 102 m) during the
time which the liquid spends in the container. This means that the required time
spent in the container is:

t=(54x103x5x102%)?1/3 —20s
while the partition volume required is 20 m3.
In view of its attractiveness this solution has been worked out in more detail.

The flow between the partitions must not be turbulent, i.e.:

pua

< 500
n

Where u is the vertical liquid velocity and o is the vertical gap between the par-

titions.
Thus:
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500 x 103 Ns/m?

u< = 0.07m/s

103 kg/m3x3x 102 m

The settlement basin therefore requires a vertical corss-section of 1 m3/s — 15 m2,
which would seem perfectly feasible.
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Ir. A. J. P. van der Burgh, J. P. Bouwman and G. M. A. Steffelaar, 1962
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No. 12.  The Application of Piecewise Polynomials to Problems of Curve and Surface Approximation
Dr. Kurt Kubik, 1971
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No. 16.  Navigation Locks for Push Tows
Ir. C. Kooman, 1973

No. 17. Pneumatic Barriers to reduce Salt Intrusion through Locks
Dr. ir. G. Abraham, ir. P. van der Burg and ir. P. de Vos, 1973

202



No.

No.

No.

No.

.20.

2L

.22,

.23,

.24,

25.

26.

.27,

. 28.

.29,

. 30.

31

.32,

.33,

.34,

35.

Experiences with Mathematical Models used for Water Quality and Water Problems
Ir. J. Voogt and dr. ir. C. B. Vreugdenhil, 1974

Sand Stabilization and Dune Building
Dr. M. J. Adriani and dr. J. H. J. Terwindt, 1974

The Road-Picture as a Touchstone for the three dimensional Design of Roads
Ir. J. F. Springer and ir. K. E. Huizinga (also in German), 1975

Push Tows in Canals
Ir. J. Koster, 1975

Lock Capacity and Traffic Resistance of Locks
Ir. C. Kooman and P. A. de Bruijn, 1975

Computer Calculations of a Complex Steel Bridge verified by Model Investigations
Ir. Th. H. Kayser and ir. J. Brinkhorst, 1975

The Kreekrak Locks on the Scheldt-Rhine Connection
Ir. P. A. Kolkman and ir. J. C. Slagter, 1976

Motorway Tunnels built by the Immersed Tube Method
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No.36.  Wrong-way driving
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