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Critical frontier of the triangular Ising antiferromagnet in a field
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We study the critical line of the triangular Ising antiferromagnet in an external magnetic field by means of
a finite-size analysis of results obtained by transfer-matrix and Monte Carlo techniques. We compare the shape
of the critical line with predictions of two different theoretical scenarios. Both scenarios, while plausible,
involve assumptions. The first scenario is based on the generalization of the model to a vertex model, and the
assumption that the exact analytic form of the critical manifold of this vertex model is determined by the zeroes
of an 2) gauge-invariant polynomial in the vertex weights. However, it is not possible to fit the coefficients
of such polynomials of orders up to 10, such as to reproduce the numerical data for the critical points. The
second theoretical prediction is based on the assumption that a renormalization mapping exists of the Ising
model on the Coulomb gas, and analysis of the resulting renormalization equations. It leads to a shape of the
critical line that is inconsistent with the first prediction, but consistent with the numerical data.
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[. INTRODUCTION the three-state Potts universality class. The asymptotic form
of the critical line in this lattice-gad_G) limit is
The triangular Ising model with equal nearest-neighbor

couplingK in a magnetic field has the reduced Hamiltonian 1 1 11+55
Kl(H)=—zH-=Ing, (=——5—,
6 12 2
HikgT=—-K>, ssi—HY, sy, (1)
® I 7 where . is the exact critical fugacity calculated by Baxter

wheres;==*1, and(i,j) indicates summation over all pairs ~ The critical line also extends t§— —c at small fields

of nearest-neighbor sites. According to the exact solution byH|. The behavior of the critical line in this limit has at-
Houtappe[1] of the triangular Ising model in the absence of yracted attention because of the above peculiar ground-state
a magnetic field, the antiferromagnetic model has no phasgroperties, and the associated analytical and computational
transition at nonzero temperatures. The ground state is chagifficulties. It has been conjecturdd] that the critical line
acterized by the condition that every elementary triangle;omes in vertically in the ¥ versusH/K diagram. In other
contains spins of different signs. This constraint still leaves gyords, when the Ising temperature goes to zero, also the
considerable degeneracy, to such an extent that the zergsqycedcritical field H, (which includes a factor k5T) was
temperature antiferromagnet has a nonzero entropy. Thgpposed to go to zero. However, Nienheisal. [10] pro-

ground state appears to have interesting properties. It is Gged evidence thaH, instead approaches a nonzero con-
critical state as shown by exact calculatid@$ of the spin-

spin correlation function which appears to decay as a power (15
law of the distance. A nonzero temperatiite 0 destroys the

critical state: the correlations then decay exponentially. How-

ever, for sufficiently lowT, a sufficiently strong fieldd>0 02
induces a phase transition to a long-range ordered state

where the minus spins condense on one of the three subla 15 |
tices. As noted by Alexand¢B], the threefold symmetry of
the ordered phase indicates that the transition belongs to th ¢

three-state Potts universality class. The nature of the transi 0.1F
tion was confirmed by Kinzel and Schi¢4], using phenom-
enological scaling5] and numerical transfer-matrix calcula- 0.05 |

tions; see also Noh and Kifi6] and Tamashiro and Salinas
[7].

The critical line covers an infinite range <0 andH. A 0
preview of our numerical data is given in Fig. 1. Since the
phase diagram is symmetric kh we restrict it toH=0. For
K— —, H—o~ while 6K+H remains finite, the model FIG. 1. Numerical results for theH,e?) phase diagram. The
maps[8] onto Baxter’s hard-hexagon lattice gas of which thecircles denote the data points for Ising temperatidte<) and the
critical exponents are exactly known, and they do indeed fisquare the so-called KT point @t=0.
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stant whenK— —oo. This result is based on an exact map- This approach is more ambitious than the renormalization
ping of the zero-temperature Ising model on a solid-on-solicanalysis in the sense that its aim is to describe vitnele
(SOS model[11]. Using renormalization arguments, Nien- critical manifold. It has been applied to the Ising antiferro-
huiset al. obtained several critical exponents associated witimagnets on the honeycomb lattifg9] and on the square
physical fields. It was found that the reduced magnetic fieldattice [20]. The transfer-matrix data, with accuracies in the
is irrelevant it does not immediately destroy the critical state order of 10°*°, could be successfully described by such in-
atK=—oo, variant polynomials of relatively low order. Nevertheless one
This renormalization analysis is not rigorous but still con-may remark that these analyses did not provide solid evi-
vincing. Several of its predictions agree with exact calcula-dence for theexactform of the critical line of the Ising
tions [12] at H=0. The renormalization picture has been antiferromagnet.
extended to include a nonzero figitland Ising temperature  Application of this approach to the triangular Ising model
T, as well as next-nearest-neighbor interactifit@. It pre-  leads to some additional complications. First, the topology of
dicts that forT=0 the model undergoes an infinite-order the phase diagram is less simple, which relates to the fact
transition to a long-range ordered phase at a finite value dhat the lattice is not bipartite. Second, the three-state Potts
the fieldH. In the SOS language this is a roughening transicharacter of the critical line implies that corrections-to-
tion, in the universality class of the Kosterlitz-Thoulgg) ~ scaling converge less well in comparison with the Ising case,
transition[13]. The character of this transition was confirmed S0 that it is not feasible to reach the same degree of numeri-
[12,14] and located altl .r=0.266(10) by means of transfer- cal accuracy.
matrix calculations and phenomenological renormalization In this paper we compare the results of both theoretical
[12]. The associated finite-size-scaling analysis is problemapproaches to our numerical data for the triangular Ising an-
atic because of slow convergence due to logarithmic corrediferromagnet. In Sec. Il we formulate the invariant-
tions at the KT transition point. Such corrections are possiblypolynomial scenario and derive an exact restriction on the
a reason why an analysis by de Queigtal. [15], without  critical line which must hold if this line is analytic in the KT
such corrections, yielded a result that is not fully consistentpoint. We explicitly construct invariant polynomials of arbi-
namely,H+=0.211(7)(for the correct interpretation of this trary order in the Ising vertex weights whose roots exhibit
result it is essential that the field used in Fig. 1 and Table this behavior. A summary of the Coulomb gas scenario and
| of Ref. [15] doesnot contain a factor I [16]). an analysis of the renormalization-flow equations follows in
The estimated critical fieldHr at T=0 appears to be Sec. lll. The analytic forms of the critical lines predicted by
much smaller than estimates obtained at0. The question these two scenarios appear to be mutualiyonsistentfor
thus arises whether the Potts critical line o0 connects T—0 at finiteH. In Sec. IV we outline our transfer-matrix
to the KT point atT=0. It is noteworthy that the renormal- construction and present accurate results for the critical
ization scenario given in Ref10], which includes next- points. This section also includes a Monte Carlo analysis of
nearest-neighbor interactioh&yyy, implies that the line of  the criti_cal _ampl_itudes. An e_analysis and a discussion (_)f thgse
phase transitions limiting the ordered phase in tigny . T) results is given in Sec. V. Finally, we draw our conclusions in
plane doesot connect to the transition line in thé{y,H) ~ S€c- VI
plane. Thus one may ask the same question for the

(Knnn-H) and the H,T) plane. An answer to this question II. O (2) INVARIANT POLYNOMIALS

is provided by renormalization arguments presented in Sec. IN THE VERTEX WEIGHTS

[ll. This approach also predicts the analytical form of the

Potts critical line forT—0 while H remains finite. The mapping of the triangular Ising model on the 64-

A different approach to find the shape of the critical line vertex model involves the introduction of bond variables
of an antiferromagnetic Ising model in a field was formulatedb;; =0 or 1 between nearest-neighbor spins and summation
by Wu [17] who noted that these models can be mapped owver the Ising variable§l7]. Since the bond variables are
vertex models, and that these vertex models have symmetigdependent, there are®264 distinct vertices. But these
properties that impose restrictions on the analytic form ofturn out to have only seven distinct weights
their critical manifolds. He also noted that the critical mani-
folds of the exactly solved vertex models are determined by W
the zeroes of homogeneous polynomials in the vertex s
weights that are invariant under the symmetry group of the
model. On the basis of the assumption that the latter form ofyhereh=tanhH) andz=tanhK). These weights are “sym-
the critical subspace also applies to vertex models that angetric,” i.e., depend only on the number of covered bonds
equivalent with antiferromagnetic Ising models in a field szNbij connecting a vertex to its six nearest neighbojs
[18], one may thus attempt to solve for the unknown inde-The weights can take imaginarg+ odd, K<0) or real(oth-
pendent coefficients of the homogeneous polynomial, therwise values. The partition function of aN-site system is

number of which is dramatically reduced by symmetry re-a homogeneous polynomial of ordirin the weights:
strictions. In actual applications, the number of equations is

still not enough to solve all unknown coefficients, and addi-
tional numerical input is required, for instance, from a nu- 7 — W, 4
merical transfer-matrix analysis. verex {bEH} l_k[ s1(k)--5(K) @

...56=Ws= hs mod 225/2’ (3)

1
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Both pertinent indices of neighboring verticeandj in this  and which is separated by the self-dual LG and KT points at
product are set equal to the bond variaje=0,1. The sum- z=—1. This is a rigorous result of seemingly little use.
mation runs over all possible configurations of the bond variHowever, we will now demonstrate that, combined with the
ables. The partition function of the Ising model differs from assumptionthat the critical curve is analytical faa=—1,
Eq. (4) only by a multiplicative factor which is nonsingular this severely constrains the shape of the antiferromagnetic
for finite H andK: branches of the critical curve fgohysical values ofh,z.
Consider the derivatives of a branch of the critical Iméz)
Zising(H,K) =2 costiH)N costK)®2Nz, .. [{W(h,2)}].  atz=—1, assuming it is analytical there. Differentiating the
constrainth.(z) = h.(1/z) ntimes and recursively solving for

®  the derivatives h(0=gkh,/9z4,-_, up to order k
A crucial property of Eq(4) is that the summation over one =1, ... n one finds that eacbdd order derivative can be
of the bond variableb;; is invariant with respect to any(@) expressed as a linear combination of lovemenorder de-
transformation rivatives with integral coefficients. The expansionigfz)
must take the form
(0.5) (cosa —egsin 0) ©
R(68,e)=| . 1
sind & cosh h.=h{®+ mhg2m>[(1+z)2m+ m(1+z)2™ 1+ ..,
with respect to the indices of the connected vertices. Here, ©)

det(R)=s=+1 distinguishes the S@) subgroup of proper ere m=1 is some integral number, i.e., the first nonvan-
rotations (e=+1) from the improper transformationg  jshing term is of even order. A notable feature of @) is
=—1) which also include a reflection. Application of this nat if the critical line is analytical a= — 1, it mustsatisfy
transfor_matlon_to_all bonds Connec_t!ng neighboring \_/e_rt|ce§j he/dz=0. We now consider the implications for the KT
(@ssuming periodic boundary conditigrieads to a partition g | G asymptotic lines. First, the LG asymptotic relation
sum of the same form but with new weights Eq. (2) expressed in the variablész reads

1-2\©

!
WS;'L'
1+z

':Rsisl(a,s)' : ‘Rsése(gys)wsl...se, (7) 1+h 1

sl T-h= A (10

where we use the dummy summation conventiph0,1. which indicates analyticity of the exact form of the LG

T_his gauge transformation preserves the symmetry MeMBranch of the critical line az=—1. The firsttwo nonvan-
tioned under Eq(3). However, only special @) transforma- ishing terms in the resulting expansion
tions preserve the Ising weight parametrization expressed by

the right-hand side of Ed3). A trivial example is the reflec-

tion #=0, e=—1 effectingW,(h,z) —W(—h,z). This cor- ho(z)=1- é[(1+z)6+3(1+2)7+ o] (12)
responds to an external field inversibh— —H. Below we 2°

will first discuss another less trivial transformation which

also leads to weights of the Ising for(8) up to a common are the same as in the expansion of 8d) with m=6. We
factor. This will have consequences for the asymptotic benote that the LG asymptotic curve EG0) is invariant under
havior of the critical curvén,(z). In order to investigate the (h,z)—(h,1/z) up to all orders. This is due to the dual sym-
assumption that the critical curve is a root of a(®Qnvari-  metry of the corresponding vertex model. Secondly, the ap-
ant homogeneous polynomial in the vertex weights, we exproach of the critical curve to the KT asymptotic line must
plicitly construct these polynomials of arbitrary order. Con-also be of the forn{9). However, the integer valu@=1 in
clusions about their compatibility with our numerical datathis case is unknown. Expressed in the physical variables

will be drawn in Sec. V. H,K, we find alogarithmic divergence
. 1
A. Dual transformation K(H)= am In(H.—Hygy) + const. (12

The Q2) transformation 6=n/2,e=%1 changes the
weights asW(h,z)—z*Wy(*sgn(@)h,1/z). This connects This is the central result of this section. We emphasize that it
(up to a nonsingular factpthe Ising weightg3) for physical s based on the assumption that the KT branch of critical line
values of|h|,|z|<1 to weights of the same form but with is analytic atz=—1. Roots of @2) invariant polynomial
unphysical valuefh|,|z|=1 corresponding to complex fields equations, which we construct explicitly below, all have this
H=xin/2K=+im/2. Extending the vertex model with weights property and in the general case=1.

(3) to all real values ofh,z the antiferromagneticz<0)
critical curve of this modeh.(z) has a physical and non-

physical branch which are connected by the dual transforma- o .
tion Now we explicitly construct homogeneous polynomial

equations in the Ising weights which incorporate all the con-
(h,z2)—(h,1/2) (8) straints imposed by the (@ gauge symmetryincluding

B. O(2) invariant polynomials in the Ising weights
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those discussed abogveFollowing Perk etal. [21] we
change to the eigenbasis of the @0subgroup of rotations
(s=+1) via the 2x2 matrix a , =3(—i0;)":

(13

W, =a ceeae o A .
S1 S $101 S6%6 01" Tp

Note thats;=0,1 buto;=*1. In this basis the transforma-
tion Eq. (7) takes the simple explicit forme(= = 1):

Ay, (19

— bt +o
—giflor e)AsUl_”gUe_

For the symmetric vertex model, the seven component

transform asA/=e€'%’A__, where o=0,+---+0s=0,
+2,+=4,+6. In this basis the Ising weights are complex:

k

2k
m§=:0 (Zm)(_z)

(—z)m},

A= (z+ 1)3{

k—1
+ihyz
m

(19

=0 \2m+1

where k=0,1,2,3 andA_,=Aj,. Invariant polynomials
which transform with parity=1 (i.e., | .—=*=1.) have the
simple forml .= %(H(,A?;’i H(,A?r‘”) (or a linear combina-
tion of these with exponents which satisfg ,on,=0. A

minimal finite set of such exponents can be found which

generate all other solutions by linear combination vititte-
ger coefficients. This implies that any(@) invariantl .. can
be generated as olynomialfunction of a minimal set of

so-called fundamental invariants. These 14 polynomials hav

been constructed in Ref21]. The crucial point is to elimi-

nate all dependencies due to polynomial relations between

the fundamental invarianigalled syzygies and further de-
pendencies introduced by the parametrizaiid). To gen-
erate invariants of parity-r1 we need to retain only four
fundamental @) invariants of parity+1 which can be
compactly be written in variables=1—h?=1/cosK H and
u=1+z=eX/coshK

|0:A0: U3,

le=AnA_ 5 =ub+ub~2Q, (u)s, (16)
where

Qy(u)=4(1-u),

Q,(u)=4(1—u)(2u—4)?,

Qz(u)=4(1—u)(8u—4)*(u—4)2. (17

The most general invariant polynomial of even ordex 2
=2 and parity+1 in the Ising weights is

i

>

j
jplpi—! j Iyj—!
I:ch|2|13 +|:210}+,I1I‘2 . (18

e
foe= jzo |g(e—1)

Cross terms of ; andl; have been eliminated using a poly-
nomial relation. The é+ 1)? coefficients in Eq(18) corre-

PHYSICAL REVIEW E69, 036127 (2004

order polynomial, i.e.fye=15f2e-1), We requirecy#0.
Polynomial invariants ofodd order and parity+1 can be
shown to factorize triviallyf ,o, 1 =1,f»e, and thus need not
be considered further. Finally, polynomial invariants of any
order and parity—1 can also be discarded. We find that for
z=—1 such polynomials have no other root thas =1,
i.e., the KT point cannot be described. The expansiof,of

in Eq. (18) is not well suited to impose restrictions on the
coefficients from known properties of the critical curve of
the triangular lattice Ising model. A more convenient but
equivalent expansion is obtained by replaclmg»lk—lé,k
S=1,2,3 andc|— «| in Eq. (18). This gives the final explicit
form

fzezz

j
{2 k1 Q505 u?
]=0

=0

j
+ K}HQ'leZ'uZ'*ZJ} ube=hgl, (19)
I=1

SinceQ,(u)— 421 in the KT (u—0, s=1—hZ;#0) and
LG (s,u—0) limit we can easily solve,.(s,u)=0 for the
asymptotic relations betweenandu in each limit. We find
hat consistent polynomials must satiskf=—43{.«},
where{. is given by Eq(2) (LG) andk§= k= «k5=0 (KT).
This already exclude$,=0 as a candidate. We thus have
%eJr 1)?—5=4,11,20,31 independent coefficients in a poly-
omial of order 2=4,6,8,10, respectively. The asymptotic
value of s in the KT limit is determined by skt
=4x& Y «§. This may be used to either extract this value
after a fitting procedure or as an extra constraint. One can
verify from the general form Eq(19) that the approach to
the KT value indeed takes the form EG2) with m=1. This
is dictated by the dual transformation property Eg).com-
bined with the analyticity of the branches determined by
f,e=0. Higher integer values fom are also possible but
require certain coefficients in Eq19) to be strictly zero,
which is not supported by the numerical data.

IIl. RENORMALIZATION ANALYSIS
A. Mapping on the Gaussian model

At zero temperature, the three spins of each elementary
triangle cannot have the same sign. Thus each triangle has
two bonds between antiparallel spins and one bond between
parallel spins. When all bonds between parallel spins are
erased, one obtains a lattice tiling with rhombi. This tiling
can also be interpreted as a stack of cubes viewed from the
(1,1,9 direction. Thus the zero-temperature antiferromag-
netic triangular Ising model is equivalent with a solid-on-
solid (SO model[11]. The SOS model consists of height
variablesh; wherei denotes the lattice site. The height vari-
ables assume integer values satisfyingnod 3=c;, where

spond 1-to-1 to an invariant expression in the Ising weightg;=0, 1 or 2 denotes the sublattice of siteApart from an

of order 2. To exclude a trivial factorization to an even

infinite constant, the Hamiltonian becomes
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andV,, in the Gaussian modg22], a number of properties of
HikgT=K.. >, (1— Slny—n,| V(1= jn,—n | 2) the triangular Ising model, including a part of the phase dia-
) gram extended in the direction dfz, have been derived
[10]. In this work we make use of the language of the Cou-
—H; (28(h, mod 2,0~ 1), (200 Jomb gas formulation23] to express the relevant scaling
dimensions. The appropriate parameters are the renormalized

where we seK,—o so that the product (% 5|hrhj|,1)(1 coupling constangr, and electric charges and magnetic

_ 5|hi—hj|,2) restricts the height differences between nearestghargesn' Their relation with the parameters of the Gaussian

. . ) model can be expressed as
neighbor sites to 1 or 2. The Kronecker delta in the second P

term counts the numbers af spins. gr=236/Tg,
The equivalence with the Ising mod€&l) makes it pos-
sible to express the height-height correlation funcfib) e=6lp, (26)
g(r):<[(hr_hO)_<h0_hr>]2> (21) m=q/6.
in terms of Ising correlations. From the exact results Kor . ) ) ) ) )
= —o, H=0, it follows [10] that In this language, the scaling dimensiofs,, associated with
the activity of chargesg,m) are
9
g(r)=—In(r)+const, (22 e> ggm?
’7T2 Xe,mzﬁ + 2 (27)

wherer is the distance between the correlated sites. This ) ]
result is very useful in the context of a renormalization map-From Eq.(25) we see thagr=2 for H=0. Since the Ising
ping by Nienhuiset al. [10] on the Gaussian model with témperature field is associated with magnetic chargés

Hamiltonian the lIsing temperature renormalization exponent=2
) orh —Xp1=1 is relevant. The system is thus disordered for all
_ _<m ha2 ;i T>0. However, the exponent,=2—X3,=—1/4 associ-
HikeT= Tr <,2J> (hi=hy) +Ep SPEi cos— (23  &ed with the uniform magnetic fiell is irrelevant. Thus, at

T=0 the system remains critical for a certain range of the
where the second summation contains so called spin-wavging fieldH. In the renormalization scenario outlined in Ref.
perturbations of the Gaussian model, i.e., a periodic poter[10] a phase transition to the long-range ordered phase oc-
tial acting on the Gaussian height variables. A term with curs whenH grows large enough. In the SOS language this
=1 originates from the discreteness of the height variablesrdered phase is flat, and transition is of the “roughening”
in Eq. (20). A nonzero magnetic fielt favors triangles with  type, by duality related to the Kosterlitz-Thouless phase tran-
only one minus spin; in the SOS model this leads to arsition [13].
energy alternation between even and odd heights. This maps

on a spin-wave perturbation withp=2 in the Gaussian

mo?ﬁg mapping of Eq(20) to Eq.(23) is not exact, so that For an .analy'sig of the renormglization flow at nonzero
the renormalized temperatuf is in principle unknown. magn.enc fieldH it is necessary to mclud_e the Coulomb gas
However, the height-height correlation function of the COUPliNggg because the field, although irrelevantgat=2,

Gaussian model is known to depend B as tends to suppress height differences, i.e., to incrgaseAs
deduced in Ref[10] such an effect can also be realized

Th without breaking the Ising symmetry, by the introduction of
g(r)= —Zln(r). (24 ferromagnetic next-nearest-neighbor interactions into the
2m model (1). Although we restrict our numerical investigation
to the two-parameter modél), the renormalization analysis
still requires a set of three nonlinear scaling fields, which are

B. Renormalization flow

Comparison with Eq(22) shows that

Tp=18 (25) chosen as
for H=0. OnceTyg is known, several quantities of interest t= i_z
can be calculated for the Gaussian model. These quantities 20r
include the scaling dimensions associated with the so-called
spin-wave and vortex perturbations in the Gaussian model. h=aH+azH3+ -, (28
Since an elementary excitation of the Ising model, i.e., a
triangle with three equal Ising spins, leads to an SOS height t=e?+....

mismatch of six units, the Ising temperature figlds repre-
sented by the fugacity/, of the q==6 vortices. On the The constant; determines the scale ¢fwhich remains to
basis of the known results for the scaling dimensionSpf be determined. Apart from that, the expansion coefficients
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are in principle unknown. The Ising temperature figlés in ~ the (H,T) plane extends to the KT transition &t 0, or, in
lowest order chosen as the Boltzmann factor of an elememsther words, whether there are points in the immediate vicin-
tary Ising excitation, i.e., a triangle with three equal spins. Itity of (H=Hy,T=0) that flow towards a region where we
thus describes the activity of the magnetic charmges=1 in  can be confident that a Potts-like transition occurs. For small
the Coulomb gas. In order to describe the renormalization obh/2 andt, the first part of the path will be governed by the
these parameters in the immediate vicinity of the fixed lineKT fixed point. We assume that the flow will bring the sys-
h=t,=0, the following renormalization exponents apply: tem to a boundary which separates the regions governed by
the KT and Potts fixed points. This boundary is obviously not

yt=0, determined in a quantitative sense, but this does not matter
for the present scaling argument. Let it be sufficient to define
yp=2— i (29) this region by requiring that andt, reach values of order 1.
29R’ We search for this region by choosing ttedmewhat ar-
bitrary) renormalized temperatugyi=3 where we have evi-
o 9r dence[24] that the Potts transition connects to the neighbor-
Yo~ 2° hood of T=H=0. The shape of the critical line ggk=3 is

determined by the flow equations fgrandh, namely,
First we address the special cabet;=0. Because of the

marginality oft we add a nonlinear term in the flow farin t,(b)=Dbut,,
differential form, the equations become (34)
h(b) =bYrh,
dh(l) dt(l) )
—ar Mt g =—h% (300 where one may takg, =y,=1/2 as long ag, and h are

small so that the change @y can be neglected. Then,
wherel parametrizes the rescaling factorasb=exp(). In  t;(b)/h(b) is constant along a flow line and can be chosen
principle one has an unknown amplitude in the second equasuch that the model is critical, say for
tion, but we have disposed of it by a proper choiceagf
Thus, the scale of is set such as to simplify the renormal- t(b)/h(b)= 8, (35
ization equations to Eq(30). The equation forh follows
from the usual formh’ = bYrh after substitution ob in terms
of I, of y, using Eq.(29), andgg in terms oft. The sign in
the equation fort follows becauséh suppresses the height
differences in the SOS language. The flow equati@® are
equivalent to those describing the Kosterlitz-ThoulEE3]
and roughening transitions. Elimination bfrom Eq. (30)
and integration yields the trajectory in thet plane as

where B is a constant of order 1. For larger valuestpoénd

h the relation will no longer be linear but it is reasonable to
expect, and in agreement with numerical resi2%,25, that
there is a fair range wherg is still of order 1.

Thus we consider a poinh(0)=1/4+ 6h, t(0)=1/4,
t,(0)= 6t, in the vicinity of the KT point and apply a trans-
formation such that the system flowsgg=3 ort=—1/2.
According to Eq.(33) the scale factor of this transformation

h2=t2+¢2?, (31) is b=exp()=exp(my2/6h). It follows from Eq. (33) that
(for small sh and ét,) the system is located near the KT
where the constant follows from the initial conditions fixed pointh=0, t=0 for most of the range df Therefore,

which are chosen as(0)= 1/4+ ¢h, t(0)=1/4. The physi- the flow of the Ising temperature fieldis determined by the
cal motivation of this choice is that the KT transition line exponenty; = 718 at gg=9/4 or t=0. Thus, atgg=3 it

obeysh=t, so that we select a point at a distan#eto the . .o the valug =b785t, = ex ;

= =exp(7m/4\25h) 6t . Sinceh
KT point of the nearest-neighbor model BEd). For small  _ —t=1/2 up to unimportallnt corrections E@EL) leads to
5h one findsc?~ sh/2. Elimination ofh in Eq. (30) leads to '

dt(l) _B_|_ 7”)
dl —t2—02. (32) 5t| 2eX[{ 4@ (36)

Integration, substitution of the initial conditions, and someWhich solvesdt, for all sh>0. This implies that the Potts

rearrangement lead to the renormalization flowtferO as critical sheet connects to the KT point. The resulting renor-
malization flow is sketched in Fig. 2. Substitution of E2g8)

B sh/2 33 andH=Hy;+ 6H leads in lowest order to
tan(\/8sh+1/sh/2) [ s _
Next we introduce a nonzero Ising temperatlireo that K=3|In3~ 4\2a(H—Hyep) |’ S
alsot,>0. It seems reasonable to assume that the renormal-
ization flow ofh andt is not seriously affected for smail. where « is a function of thee;. This equation determines

For simplicity we make a stronger assumption, namely thathe shape of the critical line near the KT point of the model
the flow ofh andt is independent of that df . We first focus (1) and is clearly incompatible with the prediction of the
on the question whether the three-state Potts critical line invariant-polynomial scenario, E¢12).
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- The magnetic correlation function along the coordinate
t / in the length direction of the cylinder is defined gg(r)
=(sgs;). At larger, this correlation function decays expo-
h ; nentially with a characteristic length scajehat depends on
: K, H, andL
i Gim(r)oce” L) (38)
and can be calculated from the largest two eigenvalugs
2 % &r and\ ; of the transfer matrix
FIG. 2. Sketch of the renormalization flow in the parameter 1
space of the renormalized coupligg, the scaling fielch, and the & 1(K,H,L) =—In(Ag/\q), (39
Ising temperature field, . The flow of gz and h is anomalously \E
slow near the poingg=9/4, h=0: most of the growth of, occurs
here. where the factor\/§ is a geometric factor, i.e., the ratio be-
tween the thickness of two layers added by the transfer ma-
IV. NUMERICAL METHODS trix and the length of a nearest-neighbor bond. The signifi-
_ _ cance of these relations lies in the fact that the assumption of
A. Transfer-matrix calculations conformal invariancd?27] links & on the cylinder with the

Most of the transfer-matrix calculations were performedmagnetic scaling dimensioX,, (one half of the magnetic
for T>0 so that we had to use a binary representation for thgorrelation function exponeny). In terms of the scaled gap
Ising spins, leading to a transfer matrix of siZzex?2" for a
system with finite sized.. We define the spin lattice on the X (K,H,L)=

. . . . m ] [} =
surface of a cylinder, whose axis determines the transfer di-
rection. We have used two choices for the orientation of the
lattice: one set of bonds parallel or perpendicular with re-one hasXq,(K,H,L)=Xy, in the limit of largeL. Since the
spect to the axis. For the first case one may apply a decordree-state Potts universal value of the magnetic scaling di-
tion transformation to one half of the parallel bonds in ordermension is known to b&y,= 75, and the transfer-matrix al-
to construct a symmetric transfer matrix. However, the decogorithm evaluateX, as a function of its arguments, one can
ration of antiferromagnetic bonds leads to complex weightdind a numerical approximation to the critical valuetofor
which we wish to avoid. We have thus used a nonsymmetri@ given value ofH or vice versa. The shape of the critical
transfer matrix, in combination with a suitable tridiagonal- line prescribes the use of different ways in different regions.
ization method to find the leading eigenvalues. These werEor smallH and largeK|, the critical line is almost parallel
obtained for even linear system sizes uplte 22, which  to the zero-field line, so that it becomes more efficient to
corresponds with an actual finite size of \BL nearest- Solve forH than forK.
neighbor bonds. The second construction, with a set of edges AS @ consequence of corrections to scaling, the solution
perpendicular to the transfer direction, leads to a symmetri#Vill not precisely coincide with the critical point. The effects
matrix when two layers of spins are added. This allows thedf an irrelevant scaling fieldi and a small deviation with
use of the conjugate-gradient method which is, in our applifespect to the critical value ¢ or K are expressed by
cations, more stable than the tridiagonalization method.
Finite-size calculations withh multiples of 3 up toL=24

were performed using this second construction. _2 . _ _a
. o wherea andb are unknown constantX,,= 15, ;= — 5, and
A sparse-matrix decomposition was used for both con-

6 . ;
structions. Most of the technique is already implicit in theytl_g. forf th; t?ree-state Potts universality class. Thus the
work of Nightingale[5]. Further details are listed in Ref. solution fork o

[26] which concerns the case of the honeycomb lattice, but 2

the essential steps are applicable to the triangular lattice as Xn(KH,L)=— (42
well. During the analysis of the results of both types of trans- 15

fer matrix we found that they were mutually consistent. Fur- . . 1 o
thermore it became clear that the second transfer matrix, Witwh('fhh |s-de|noted<]g( l)c(jH’L)’ depends on the finite size
a set of bonds perpendicular to the transfer direction, allowed" the irrelevant field as

a somewhat more accurate analysis. In the following we de- K D(H,L) =K +c,LY Vi ... (43)
scribe the situation of the second construction. ¢ ’ ¢

For T=0 the transfer matrix decomposes in a number ofyecause the two correction terms in E4jl) must cancel and

diagonal submatrices characterized by a conserved numbexk ((H,L)—K,.. We thus generated sequences of iterated
of “strings” so that the numerical diagonalization task sim- estimates ofk. by solving K.?(H,L) and c,(L) in the

plifies. The transfer-matrix construction for this case hasquations
been outlined in Refl12] and enabled the study of systems
with linear sizes up ta. = 27. KD (H,L) =K M(H, 1)+ cq(L)1Yi Y (44)

27¢E(K,H,L) (40

X(K,H,L)=X,+aulYi+btLYi+ - .-, (41)
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TABLE I. Extrapolated results for selected points on the critical 0.12
line.
01 f
No. H K No. H K
1 0.555) -23 20 1.85 —0.759438(2) 0.08 1
2 0.573) -2.2 21 190 -0.755049(1) v
3 0592 -21 22 195 -0.751498(2) o 0067
4 0.61@10) -2.0 23 2.0 -0.748715(2)
5  0.6344) ~19 24 21 —0.745199(1) 0.04 1
6 0.6582) -1.8 25 2.178 —0.744130(1)
7 0.688510) ~17 26 2.3 —0.744958(1) 0.02 1
8 0.72193) -1.6 27 2.4 —0.747586(1) . . . . . .
9 076071 —15 28 25 -0.751708(1) %4 05 06 07 o8 09 1 i
10 0.8 —-1.414(1) 29 2.75 —0.7673238%%) H
11 0.9 —1.2395(2) 30 3.0 -—0.78877744)
12 1.0 —1.11422(1) 31 3.25 —0.814514%3) FIG. 3. Finite-size solutions for the critical points, and our final
13 11 ~1.02100(1) 32 35 —0.8434661) gstimates in the regiop of small field a.nd temperaturg. The dashed
14 1.2 ~0.95030(1) 33 4.0 —0.908211%) I!nes connect the SO|l.JtI.OnS.ShOWI’] as triangles. Fromn rlg_ht to I_eft the
15 13 —0.896040(5) 34 45 —0.979103(2) I|_nes shovx{ data for f|r_1|te 5|z§ls:3,6, .. .24, The sol_n_j IlntaT with
16 14 0.8541752) 35 50 —1.05393402) circles indicates our final estimated result for the critical line.
17 15 -0.821890(1) 36 55 —1.131374®)
18 1.6 —0.797164(2) 37 6.0 —1.210583M) estimate was given adgr=0.266+0.010 in Ref.[12]. In
19 1.75  —0.771064(3) our present work we have reproduced these datilfg{L ).

We have not used the procedure that requires that the scaled
gap is equal for two subsequent system sizes. Since all points
for I=L and L+1. These sequences appear to convergén the rangeH <H yr satisfy this scaling equation asymptoti-
faster with increasing. than theK (H,L). Remaining cally, the solutions may converge to any point in this range,
corrections may be due to additional contributions to Eq.depending on the corrections to scaling. This is another rea-
(41), for instance scaling as.?i. Thus we defined son behind the discrepancy mentioned in Sec. | concerning

K&)(H,L) by solving the equation an earlier result for the location of the KT poift5]. We
have used thélr(L) data as input for several other iterated
KE(H,L)=KP(H,I)+cy(L)IZin (45)  fit procedures consisting of subsequent extrapolation steps

according toL ~2 behavior, and powers of 1/ln These fits
for I=L andL+1. Further estimates can be obtained withled to results foHkr that were rather consistently close to
correction exponentsy?2—2y;, or by treating the correction 0.26, with differences up to 0.02.
exponents as a free variable in which case three valués of As an independent approach we have estimetggfrom
have to be used. Several variations of this procedure werte requirement that the scaled gap based on the magnetic
tried which leads to some insight in the numerical inaccuradimensionX, ;3 is equal to the expected value 1/8 gy
cies of the fitting procedure. =9/4. Since such fractional magnetic chardgesrrespond-
Our final estimates of the critical points far>0 are ing with vortices of strength)2do not exist in this model,
listed in Table I. The apparent accuracy of the critical pointsthis scaled gap cannot directly be calculated for a fixed sys-
is satisfactory for most of the field range, but it deterioratesgem sizeL. However, it can be obtained by combining free-
rapidly at small fields. Nevertheless this region has our speenergy data for system sizés=3n=1, wheren is an inte-
cial interest: we wish to determine how the Potts line con-ger, as explained in Refl12]. The same extrapolation
nects to the KT point on th&€=0 line, because this is where procedures as above were tried, and led to results again con-
the theoretical predictionsee Secs. Il and lllare markedly  sistent withHyr=0.26, but with differences up to about
different. 0.04. Our final conclusion islxt=0.26+0.02, similar to the
We have also reconsidered the determination of the KWalue presented in Reff12] but with a slightly more conser-
point atT=0 given in Ref[12]. In that work, the finite-size vative error estimate.
data for the critical fieldH «+ were obtained by requiring that The numerical results for the critical points are combined
the scaled gap associated with the spin waves of period @y Fig. 1, the phase diagram in thel (€2) plane. We remark
i.e., electric charge®==+1 were equal to the expected that for large/K| and relatively smalH, the solutions foH
valueX; o=2/9 at the KT transition. These estimatégr(L) become strongly finite-size dependent and slowly conver-
of the KT point, which were obtained for system sizes up togent. This problem is apparently due to the proximity of the
L =27, were found to be considerably size dependent. ThelT transition atK=—o. This is illustrated in Fig. 3, in
were fitted according t¢dr(L)=Hyr+a/(b+InL)+cL™?  which a set of lines represent the finite-size solutionsLfor
which led to extrapolated estimatek that displayed only =3,6, ... ,24together with the extrapolated critical line. On
a remarkably small size dependence. On this basis, the fin#the basis of our limited range of finite system sizes, the es-
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0.35 0.2
-04 r
0.3
-1 F
O 025 e
-1.6 7
0.2 /
22 /M
015 1 1 ! 1 ! 1 -28 1 1 1
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.5 2.5 35 45 5.5
H InL
FIG. 4. Specific-heat-like quantit@ versus fieldH for two val- FIG. 6. Specific-heat-like quantit¢ versus system size on a

ues of the Ising couplingg =—1.0(O) and—1.5(0J). Both sets of  double logarithmic scale. Data are shown for system sizes 6
lines display data for system sizes-12, 24, 48, and 96. These two <192 at seven pointsH,K) on the critical line. The symbo®
cases indicate that the amplitude of the divergenc€ decreases representdd=0.61; V: H=0.658; X: H=0.8; A: H=1.0; O0: H
with decreasing fieldH. =1.5; O: H=2.0; B: H=5.0. The seven lines represent the fitted

) _ N _ ) ) _ results. The statistical errors are not shown in this figure. They do
timation of the critical points thus becomes increasingly dif-not exceed the thickness of the lines.

ficult for large |K]|.

In order to provide further justification for our assumption investigation by means of Monte Carlo simulations, which
that the critical line belongs to the three-state Potts univerallow the use of much larger finite sizes. In particular we
sality class(used for the determination of the critical points determine how the critical amplitudes behave for sniall
we perform a consistency test by calculating the conformahnd make a comparison with the renormalization prediction.
anomalyc at the estimated critical points Bit=1.5, 2.5, 3.5, To this purpose we define a specific-heat-like quan@ty
and 4.5. Iterated fits similar to those used for the calculation.e., the second order derivative of the free energy to a pa-
of the critical points were applled All these results are confameter conjugate to an energylike density in the Hamil-
sistent with the exact value= 3. The error margin varies tonian, for which we may take the magnetization. Indeed the
between a few times 10 for H=1.5 and a few times 10 Ising field H drives the Potts-like transition to the ordered
for H=3.5. In comparison with previous worf6], these state(except at the maximum of tiEvs H curve and thus
results further restrict the scale of possible deviations fronplays the role of the temperature in the Potts model. We thus
three-state Potts universality. defineC by

B. Monte Carlo results 2

((m?)—(m)? 46
The apparent difficulty to obtain accurate critical points &HZ N(m?) =¢m), 48

for small H by the transfer-matrix method invites further
wherem is the Ising magnetization. Similarly, we define a

0.8 quantity similar to the magnetic susceptibility of the Potts

0.7 model. In theq=3 Potts model, the zero-field magnetic sus-
ceptibility can be expressed in magnetization fluctuations by

0.6

x=N(mg), (47)
0.5
© where m2=n?+n3+nZ—n;n,—n,n3—nNzn; ex

0.4 p=N1+tN3+N3—NiN;—NyN3—N3n; expresses the
Potts magnetization in terms of the densitie®f Potts vari-

0.3 ables in staté. In the scaling context of the present scaling
analysis, the densities; may be defined as the number of

0.2 minus spins on sublattide Thus y describes the response of
the model to staggered fields acting on the Ising spins.

0~14.8 29 s o1 P P s The simulations used triangularx L lattices with peri-

odic boundary conditions. We used a combination of the
standard Metropolis algorithm and the geometric cluster

FIG. 5. Specific-heat-like quantitg versusH at Ising coupling ~ method[28]. The latter method executes nonlocal updates
K=—1.053934, near the critical point #=5.0. In comparison and leads to a faster relaxation. But it does not change the
with Fig. 4, the finite-size divergence is much stronger. Ising magnetization. For this reason also Metropolis steps
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10 T T T TABLE Il. Parameters describing the finite-size behavior of the
specific heatlike quantit€. The third column is the amplitud®, of

the leading divergent term. The amplitudes b+ 1.5,2.0 are rela-
tively small because the critical line runs almost parallel to the field
direction. The column corresponding with (i =1,2) are the irrel-
evant corrections amplitudes.

\

H Co bg b, b,
0.61 0.1882) 0.00262) 0.02713)
0.658 0.19@2) 0.00393) 0.0073)
0.8 0.1923) 0.012@4) —0.0224)
1.0 0.1513) 0.02856) —0.0355)
2 15 0.0972) 0.02544) —0.0553)

L3 23 3.3 43 35 20 00843  0.00293) —0.0186) —0.0972)
InL 5.0 —0.0946) 0.1312) —0.0319)
FIG. 7. Susceptibilitylike quantityy versus system sizé
(=6, ...,192) on a double logarithmic scale. Data are shown for

seven points K1,K) on the critical line. From bottom to topd ~ vanishes. Also for the susceptibilitylike quantigythe am-
=0.61, 0.658, 0.8, 1.0, 1.5, 2.0, and 5.0, respectively. The two line®litude by of the finite-size divergence, shown in Table il
for H=2.0 and 5.0 coincide on this scale. The statistical errors arélecreases regularly when the KT point is approached.
not shown in this figure. They do not exceed the thickness of the The behavior of the amplitude, at small field and low
lines. temperature follows from the renormalization-flow analysis.
Starting from a point in the vicinity of the KT point, we
were included. First we samplétlin a suitable range dfl,  renormalize until we arrive at the boundary with the region
to study its divergence, at fixed values of couplikgvhich ~ dominated by the three-state Potts fixed point. gt be the
are taken from Table I. The results are shown in Figs. 4 andorresponding scale factor. Since the specific heatlike quan-
5 and show that the finite-size divergenceQoét the critical tity C is defined by means of differentiation of the free en-
line becomes weaker whead decreases. In order to study ergy to the uniform fieldH, we keep track of howd changes
this phenomenon in a more quantitative sense, we have dender this transformation. The marginality éh at gg
terminedC and y at several critical points taken from Table =9/4 is expressed by E¢31): when we writeh=t+ &h, it
| for several system sizes. Results f8=0.61, 0.658, 0.8, is clear thatsh varies only by a factor of order 1 as long as

1.0, 1.5, 2.0, and 5.0 are shown in Figs. 6 and 7. t is of order 1. In the context of scaling, we thus hajle
Finite-size scaling of the free energy density of a system= Sh, where the prime indicates the value at the boundary.
with finite sizeL can be expressed by Within the Potts region we rescale the system to size 1 with

4 A the remaining scale factdr/byt
f(t,h,u,L)=L"f(LYtt,LYrh,LYiu,1) +g(t,h,u), (48

6/5
wheret, h, andu denote the temperature, magnetic field, and 6h”=(—) Sh' ~ L%, &sh, (51)
irrelevant field, respectively, and the regular part of the byt
transformation. Differentiation of yields the scaling behav-
ior of the quantitiesC and y as where the Potts temperature exponénapplies because it
corresponds with the Ising magnetic field. The behavidC of
C(u,L)=Co+LM9C(LYiu,1) follows as
=Cot L& %by+byLYiu+ bl M+ ) TABLE Ill. Parameters describing the finite-size behavior of the
(49 susceptibilitylike quantityy. The third column is the amplitude,
of the leading divergent term. It decreases regularly with the field.
and The next columns shows the irrelevant correction amplitugjéis

=1,2).
xX(U,L)=xo+L¥ Iy (LYu,1)
= Xo+ L&~ 9(bg+ by LYiut byl Yiu2+ - - ), H Xo b by b,
(50 061  —17.518 0528112 —0.14350  16.316)
0.658 —10.520) 0.589614) —0.14255) 2.88136)
We have fitted the numerical data by these two equations anulg —18.7137)  0.767%24) —0.7510) 18.1(33)
thus derived the amplitudes listed in Tables Il and Ill. The1.0 0.9511) 0.904417)  —0.16425)
amplitudeb, of the leading divergence @& decreases with 15 0.4110) 1.120912) —0.10324)
field except close to the maximum of the critical line in the 2 g 0.1014) 1.213@24)  —0.00334)
(H,T) plane. At the maximum the fieldl fails to bring the 5g —0.5114) 1.213322 0.07037)

system into the ordered phase and the amplitbglehus
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22f 72 TABLE IV. Coefficients«](i=0, .. .,6j=1,2,3) of the invari-
C=—=L"9—f(L%0,.5N,1)= L%, "+ const. ant polynomialfg, Eq. (19). The condition for criticality read$s
oh? oh? o “ ~o0.
(52
Ko K1 K

The susceptibilitylike quantity is obtained by differen- —0.002942 307242 —0.097 656 582607  2.725 303 204 552
tiation of f to the staggered Ising field, which, as explained in
Ref.[10], is associated with a Gaussian spin wave perturba- K3 K3 K5
tion of periodp=6, i.e., with electric charges=*+1. The —0.000 000000017 0.000 351 055 639—0.020534 345 140
exponent of the staggered field thus takes the valieX2,

=16/9 at the KT fixed point. Therefore, at the boundary with K3 K2 K3
the Potts region we have 0.044 511 873 969 0.660086 779714  0.000 001077 354
' 6/!
he=bidhat. (53 K3 Ks ks

—0.002865984 972 —0.084578467922  1.000 000 000 000

Within the region dominated by the Potts fixed point, the
magnetic exponent,,,= 28/15 applies. Renormalization with
the remaining scale factdr/byr leads to V. FIT AND DISCUSSION

28/15 A. Roots of the O(2) invariant polynomials

hi=L2%% g, (54) The number of 37 critical points in Table | together with
the additional KT point §,z) = (hk,—1) is sufficient to
attempt fits of @2) invariant polynomials 19 up to order 10.
We have not used data points 1 and 2 because of their limited
accuracy, and performed a least-squares fit to the remaining
35 data points foz>—1. We have also tried direct fits to
several subsets of these. In each case we have investigated
the effect of enforcing the curve to pass through the KT

= %61%, 845" + const. (55 point, or to extract the value df; from the fit. It is found

that the coefficients in the equatidn=0 are not flexible

According to Sec. Il B, resca]ing by a factka results in enough to even qualitatively fit the numerical data. The least-
an lIsing temperature fie|db;/_f_5e2'<:ﬁ/2 so that byt squares fit tofg=0 excluding the KT point consists of two
xe~ (18K " For strong coupling the renormalization scale @voiding solutions, which lead to 2 disconnected “critical”
bkr is large, which is indicative of the crossover phenom-lines which have unphysical ranges. Foe—1 one line
enon close to the KT transition. There we need large systerierminates ath*~0.501>hy. When enforcing the KT

sizesL > byt in order to reach the vicinity of the Potts fixed point ath,t=0.25, the two avoiding branches repel one an-
point. The substitution oby into Eq. (52) and Eq.(55), other even stronger. Direct fits to different subsets of critical

leads to

"n__
h st

bKT

so thaty scales as

2 2
—&f L*da_

- f |_28/:|.%*4/4ﬁ¢1 ,1
{_}hgt ahgt ( KT st )

X

1.4
C=L%%(192135K ¢ 1 const (56)
12 F
and 1k
)(ZL26/1%(128/315Kf"+COI’]St. (57) _ 08 |
M
- "06f
From a comparison of Eq$49) and (56), and of Eqgs.(50)
and (57), we expect thatbyxe(1¥*X for C, and bq 04 |
= e(1283315K for v, when|K]| is large enough. We thus expect
a linear relation between Iy andK for sufficiently strong 0.2
coupling K. A fit to the numerical data yields the slopes as
about 2.81) for C and 0.644) for x. These slopes do not 0 0

agree accurately with the analytic values. This suggests tha
the Ising temperature used for the calculation of the ampli-
tudes is not small enough. However, the qualitative ampli- FIG. 8. Phase diagram in thed(K 1) plane. The symboD

tude dependence is reproduced, and the rough agreemef#notes the Potts transition poinMl;the KT point; and the solid
suggests that we are not far away from the asymptotic refine describes the fit of the expression based on the renormalization
gime. prediction for the critical line in the small field region.
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TABLE V. Coefficientsa; of the expansior(58) of —K tin -0.6 T T T
powers of H—H )2

2

& a a3 0.7t
0.487 432 0.119116 0.765 066
a
a, ag as —g 0.8
1.017 104 —1.949 253 0.652161 &

points lead to similar results. Fits to higher order equations
fg=0 and f,,=0 display the same problems. Even more
avoiding solutions enter. The numerical problems are clearly
displayed by the values of the fitted coefficients, which span '102 04 0'6 0'8 .
a range of many orders of magnitude. In summary, the roots ) ) ; )
of invariant polynomial equations cannot fit the critical tanh H
curve. The main problem is the approach of the curve to the F|G. 9. Phase diagram in thé,¢) plane(whereh=tanhH and
KT limit imposed by Eq.(12): all such roots approach the z=tanhK). The KT point is denoted &, and the LG point, which
KT point vertically in the f,z) plane, whereas the numerical is Baxter’s hard-hexagon model, @
data in Fig. 9 indicate a horizontal approach.

Sufficiently far away from the KT point, the problem dis- critical amplitudes fits precisely in this picture. Thus our
solves, and our numerical data for the critical points can welknalysis does not give reasons to doubt that the renormaliza-

be approximated by means of invariant polynomials. For extion scenario correctly describes the essential physics of the
ample, the polynomial of order 6 can reproduce the criticalmodel near the KT transition.

points forH=1.5 within the error margins quoted in Table I.  |n contrast, the invariant-polynomial scenario does not
The coefficients, determined by means of a least-squares fisgree with the numerical data. It predicts a “vertical” ap-
are listed in Table IV. proach to the KT point in theh,z) diagram(see Fig. 9
where it should be horizontal. Our interpretation is that the
B. The renormalization solution for small field assumption of analyticity of the critical line in theh,@)

parametrization is false at the KT point, so that the line can-

For small field we expand E@37) and take into account
b 437) not be described by the zeroes of a polynomial of a finite

higher order terms in the physical fields. This leads to

order.
1 ” Since it now appears that the invariant-polynomial sce-
- K=]_:122 aj(H—Hyp)'™ (58 nario fails in the case of the triangular-lattice Ising model,

the question arises whether similar, apparently successful,
analyses of the critical lines of the honeycomb- and the
square-lattice Ising model in terms of invariant polynomials

Table ) by this formula using six coefficients. The numerical [19,29 have to be reconsidered. Here we may point at the

results and the fitted function are shown in Fig. 8. The valueSIMPler topology of the i, T) diagram for the honeycomb
of the coefficients are listed in Table V. and the square lattices: the critical line connecf§+d0 only

in the lattice-gas pointsl = £ . In the case of the triangular
lattice model, crossover phenomena near the KT point are
responsible for the nonanalytic “shape” of the critical line.
The invariant-polynomial scenario formulated in Sec. Il In the absence of such crossover phenomena, there is no
and the renormalization scenario formulated in Sec. Ill leadnconsistency with the invariant-polynomial scenario, and
to analytic expressions for the critical line in thie (T) dia-  our present analysis has therefore no direct consequences for
gram that are mutually inconsistent fo 0 at finiteH. This  the work presented in Refg19,20.
shows that at least one of the underlying assumptions must
be incorrect. The renormalization prediction appears to suc-
cessfully describe the numerical data for snill. Although
the asymptotic regime is not quite reachi@d can, for in- We are indebted to Professor Fa Y. Wu and Professor
stance, be seen in Fig. 8 where the leftmost points behav@ernard Nienhuis for several illuminating discussions and
almost linearly instead of as a square jp@n asymptotic useful conversations, to Dr. Xue-Ning Wu for her valuable
expansion leads to an accurate description of the data, armbntributions in the earlier stages of this project, and to Dr.
allows a smooth extrapolation to zero Ising temperature iRlouke R. Heringa for his contribution to the development of
agreement with Eq(37). The analysis in Sec. IV B of the the geometric cluster algorithm used in this work.

The numerical data for the critical points fot<1.75 are
fitted satisfactorily(i.e., within the error margins quoted in

VI. CONCLUSION
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