
PHYSICAL REVIEW E 69, 036127 ~2004!
Critical frontier of the triangular Ising antiferromagnet in a field
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We study the critical line of the triangular Ising antiferromagnet in an external magnetic field by means of
a finite-size analysis of results obtained by transfer-matrix and Monte Carlo techniques. We compare the shape
of the critical line with predictions of two different theoretical scenarios. Both scenarios, while plausible,
involve assumptions. The first scenario is based on the generalization of the model to a vertex model, and the
assumption that the exact analytic form of the critical manifold of this vertex model is determined by the zeroes
of an O~2! gauge-invariant polynomial in the vertex weights. However, it is not possible to fit the coefficients
of such polynomials of orders up to 10, such as to reproduce the numerical data for the critical points. The
second theoretical prediction is based on the assumption that a renormalization mapping exists of the Ising
model on the Coulomb gas, and analysis of the resulting renormalization equations. It leads to a shape of the
critical line that is inconsistent with the first prediction, but consistent with the numerical data.
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I. INTRODUCTION

The triangular Ising model with equal nearest-neighb
couplingK in a magnetic field has the reduced Hamiltoni

H/kBT52K(
^ i , j &

sisj2H(
k

sk , ~1!

wheresi561, and^ i , j & indicates summation over all pair
of nearest-neighbor sites. According to the exact solution
Houtappel@1# of the triangular Ising model in the absence
a magnetic field, the antiferromagnetic model has no ph
transition at nonzero temperatures. The ground state is c
acterized by the condition that every elementary trian
contains spins of different signs. This constraint still leave
considerable degeneracy, to such an extent that the z
temperature antiferromagnet has a nonzero entropy.
ground state appears to have interesting properties. It
critical state as shown by exact calculations@2# of the spin-
spin correlation function which appears to decay as a po
law of the distance. A nonzero temperatureT.0 destroys the
critical state: the correlations then decay exponentially. Ho
ever, for sufficiently lowT, a sufficiently strong fieldH.0
induces a phase transition to a long-range ordered s
where the minus spins condense on one of the three su
tices. As noted by Alexander@3#, the threefold symmetry o
the ordered phase indicates that the transition belongs to
three-state Potts universality class. The nature of the tra
tion was confirmed by Kinzel and Schick@4#, using phenom-
enological scaling@5# and numerical transfer-matrix calcula
tions; see also Noh and Kim@6# and Tamashiro and Salina
@7#.

The critical line covers an infinite range ofK,0 andH. A
preview of our numerical data is given in Fig. 1. Since t
phase diagram is symmetric inH, we restrict it toH>0. For
K→2`, H→` while 6K1H remains finite, the mode
maps@8# onto Baxter’s hard-hexagon lattice gas of which t
critical exponents are exactly known, and they do indeed
1063-651X/2004/69~3!/036127~13!/$22.50 69 0361
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the three-state Potts universality class. The asymptotic f
of the critical line in this lattice-gas~LG! limit is

Kc~H !.2
1

6
H2

1

12
ln zc , zc5

1115A5

2
, ~2!

wherezc is the exact critical fugacity calculated by Baxt
@9#.

The critical line also extends toK→2` at small fields
uHu. The behavior of the critical line in this limit has a
tracted attention because of the above peculiar ground-s
properties, and the associated analytical and computati
difficulties. It has been conjectured@4# that the critical line
comes in vertically in the 1/K versusH/K diagram. In other
words, when the Ising temperature goes to zero, also
reducedcritical field Hc ~which includes a factor 1/kBT) was
supposed to go to zero. However, Nienhuiset al. @10# pro-
vided evidence thatHc instead approaches a nonzero co

FIG. 1. Numerical results for the (H,e2K) phase diagram. The
circles denote the data points for Ising temperaturesT.0 and the
square the so-called KT point atT50.
©2004 The American Physical Society27-1
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stant whenK→2`. This result is based on an exact ma
ping of the zero-temperature Ising model on a solid-on-so
~SOS! model @11#. Using renormalization arguments, Nie
huiset al.obtained several critical exponents associated w
physical fields. It was found that the reduced magnetic fi
is irrelevant: it does not immediately destroy the critical sta
at K52`.

This renormalization analysis is not rigorous but still co
vincing. Several of its predictions agree with exact calcu
tions @12# at H50. The renormalization picture has bee
extended to include a nonzero fieldH and Ising temperature
T, as well as next-nearest-neighbor interactions@10#. It pre-
dicts that for T50 the model undergoes an infinite-ord
transition to a long-range ordered phase at a finite value
the fieldH. In the SOS language this is a roughening tran
tion, in the universality class of the Kosterlitz-Thouless~KT!
transition@13#. The character of this transition was confirm
@12,14# and located atHKT50.266(10) by means of transfe
matrix calculations and phenomenological renormalizat
@12#. The associated finite-size-scaling analysis is proble
atic because of slow convergence due to logarithmic cor
tions at the KT transition point. Such corrections are poss
a reason why an analysis by de Queirozet al. @15#, without
such corrections, yielded a result that is not fully consiste
namely,HKT50.211(7)~for the correct interpretation of thi
result it is essential that the fieldH used in Fig. 1 and Table
I of Ref. @15# doesnot contain a factor 1/T @16#!.

The estimated critical fieldHKT at T50 appears to be
much smaller than estimates obtained atT.0. The question
thus arises whether the Potts critical line forT.0 connects
to the KT point atT50. It is noteworthy that the renorma
ization scenario given in Ref.@10#, which includes next-
nearest-neighbor interactionsKNNN , implies that the line of
phase transitions limiting the ordered phase in the (KNNN ,T)
plane doesnot connect to the transition line in the (KNNN ,H)
plane. Thus one may ask the same question for
(KNNN ,H) and the (H,T) plane. An answer to this questio
is provided by renormalization arguments presented in S
III. This approach also predicts the analytical form of t
Potts critical line forT→0 while H remains finite.

A different approach to find the shape of the critical li
of an antiferromagnetic Ising model in a field was formulat
by Wu @17# who noted that these models can be mapped
vertex models, and that these vertex models have symm
properties that impose restrictions on the analytic form
their critical manifolds. He also noted that the critical ma
folds of the exactly solved vertex models are determined
the zeroes of homogeneous polynomials in the ver
weights that are invariant under the symmetry group of
model. On the basis of the assumption that the latter form
the critical subspace also applies to vertex models that
equivalent with antiferromagnetic Ising models in a fie
@18#, one may thus attempt to solve for the unknown ind
pendent coefficients of the homogeneous polynomial,
number of which is dramatically reduced by symmetry
strictions. In actual applications, the number of equation
still not enough to solve all unknown coefficients, and ad
tional numerical input is required, for instance, from a n
merical transfer-matrix analysis.
03612
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This approach is more ambitious than the renormalizat
analysis in the sense that its aim is to describe thewhole
critical manifold. It has been applied to the Ising antiferr
magnets on the honeycomb lattice@19# and on the square
lattice @20#. The transfer-matrix data, with accuracies in t
order of 10210, could be successfully described by such
variant polynomials of relatively low order. Nevertheless o
may remark that these analyses did not provide solid e
dence for theexact form of the critical line of the Ising
antiferromagnet.

Application of this approach to the triangular Ising mod
leads to some additional complications. First, the topology
the phase diagram is less simple, which relates to the
that the lattice is not bipartite. Second, the three-state P
character of the critical line implies that corrections-t
scaling converge less well in comparison with the Ising ca
so that it is not feasible to reach the same degree of num
cal accuracy.

In this paper we compare the results of both theoret
approaches to our numerical data for the triangular Ising
tiferromagnet. In Sec. II we formulate the invarian
polynomial scenario and derive an exact restriction on
critical line which must hold if this line is analytic in the KT
point. We explicitly construct invariant polynomials of arb
trary order in the Ising vertex weights whose roots exhi
this behavior. A summary of the Coulomb gas scenario a
an analysis of the renormalization-flow equations follows
Sec. III. The analytic forms of the critical lines predicted b
these two scenarios appear to be mutuallyinconsistentfor
T→0 at finite H. In Sec. IV we outline our transfer-matri
construction and present accurate results for the crit
points. This section also includes a Monte Carlo analysis
the critical amplitudes. An analysis and a discussion of th
results is given in Sec. V. Finally, we draw our conclusions
Sec. VI.

II. O „2… INVARIANT POLYNOMIALS
IN THE VERTEX WEIGHTS

The mapping of the triangular Ising model on the 6
vertex model involves the introduction of bond variabl
bi j 50 or 1 between nearest-neighbor spins and summa
over the Ising variables@17#. Since the bond variables ar
independent, there are 26564 distinct vertices. But these
turn out to have only seven distinct weights

Ws1•••s6
5Ws5hs mod 2zs/2, ~3!

whereh5tanh(H) andz5tanh(K). These weights are ‘‘sym-
metric,’’ i.e., depend only on the number of covered bon
( j

NNbi j connecting a vertexi to its six nearest neighborsj.
The weights can take imaginary (s5odd,K,0) or real~oth-
erwise! values. The partition function of anN-site system is
a homogeneous polynomial of orderN in the weights:

Zvertex[ (
$bi j %

)
k

Ws1(k)•••s6(k) ~4!
7-2
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Both pertinent indices of neighboring verticesi and j in this
product are set equal to the bond variablebi j 50,1. The sum-
mation runs over all possible configurations of the bond v
ables. The partition function of the Ising model differs fro
Eq. ~4! only by a multiplicative factor which is nonsingula
for finite H andK:

ZIsing~H,K !52 cosh~H !N cosh~K !(3/2)NZvertex@$Ws~h,z!%#.

~5!

A crucial property of Eq.~4! is that the summation over on
of the bond variablesbi j is invariant with respect to any O~2!
transformation

R~u,«!5S cosu 2« sinu

sinu « cosu D ~6!

with respect to the indices of the connected vertices. H
det(R)5«561 distinguishes the SO~2! subgroup of proper
rotations ~«511! from the improper transformations~«
521! which also include a reflection. Application of th
transformation to all bonds connecting neighboring verti
~assuming periodic boundary conditions! leads to a partition
sum of the same form but with new weights

Ws
18•••s

68
8 5Rs

18s1
~u,«!•••Rs

68s6
~u,«!Ws1•••s6

, ~7!

where we use the dummy summation conventionsi50,1.
This gauge transformation preserves the symmetry m
tioned under Eq.~3!. However, only special O~2! transforma-
tions preserve the Ising weight parametrization expresse
the right-hand side of Eq.~3!. A trivial example is the reflec-
tion u50, «521 effectingWs(h,z)→Ws(2h,z). This cor-
responds to an external field inversionH→2H. Below we
will first discuss another less trivial transformation whi
also leads to weights of the Ising form~3! up to a common
factor. This will have consequences for the asymptotic
havior of the critical curvehc(z). In order to investigate the
assumption that the critical curve is a root of an O~2! invari-
ant homogeneous polynomial in the vertex weights, we
plicitly construct these polynomials of arbitrary order. Co
clusions about their compatibility with our numerical da
will be drawn in Sec. V.

A. Dual transformation

The O~2! transformation u5p/2,«571 changes the
weights asWs(h,z)→z3Ws(6sgn(z)h,1/z). This connects
~up to a nonsingular factor! the Ising weights~3! for physical
values ofuhu,uzu<1 to weights of the same form but wit
unphysical valuesuhu,uzu>1 corresponding to complex field
H6 ip/2,K6 ip/2. Extending the vertex model with weigh
~3! to all real values ofh,z the antiferromagnetic (z,0)
critical curve of this modelhc(z) has a physical and non
physical branch which are connected by the dual transfor
tion

~h,z!→~h,1/z! ~8!
03612
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and which is separated by the self-dual LG and KT points
z521. This is a rigorous result of seemingly little us
However, we will now demonstrate that, combined with t
assumptionthat the critical curve is analytical forz521,
this severely constrains the shape of the antiferromagn
branches of the critical curve forphysical values of h,z.
Consider the derivatives of a branch of the critical linehc(z)
at z521, assuming it is analytical there. Differentiating th
constrainthc(z)5hc(1/z) n times and recursively solving fo
the derivatives hc

(k)5]khc /]zkuz521 up to order k
51, . . . ,n one finds that eachodd order derivative can be
expressed as a linear combination of lowerevenorder de-
rivatives with integral coefficients. The expansion ofhc(z)
must take the form

hc5hc
(0)1

1

2m!
hc

(2m)@~11z!2m1m~11z!2m11#1•••.

~9!

Here m>1 is some integral number, i.e., the first nonva
ishing term is of even order. A notable feature of Eq.~9! is
that, if the critical line is analytical atz521, it mustsatisfy
dhc /dz50. We now consider the implications for the K
and LG asymptotic lines. First, the LG asymptotic relati
Eq. ~2! expressed in the variablesh,z reads

11h

12h
5

1

zc
S 12z

11zD
6

~10!

which indicates analyticity of the exact form of the L
branch of the critical line atz521. The firsttwo nonvan-
ishing terms in the resulting expansion

hc~z!512
zc

25
@~11z!613~11z!71•••# ~11!

are the same as in the expansion of Eq.~10! with m56. We
note that the LG asymptotic curve Eq.~10! is invariant under
(h,z)→(h,1/z) up to all orders. This is due to the dual sym
metry of the corresponding vertex model. Secondly, the
proach of the critical curve to the KT asymptotic line mu
also be of the form~9!. However, the integer valuem>1 in
this case is unknown. Expressed in the physical variab
H,K, we find alogarithmic divergence

K~H !5
1

4m
ln~Hc2HKT!1const. ~12!

This is the central result of this section. We emphasize tha
is based on the assumption that the KT branch of critical l
is analytic atz521. Roots of O~2! invariant polynomial
equations, which we construct explicitly below, all have th
property and in the general casem51.

B. O„2… invariant polynomials in the Ising weights

Now we explicitly construct homogeneous polynom
equations in the Ising weights which incorporate all the co
straints imposed by the O~2! gauge symmetry~including
7-3
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those discussed above!. Following Perk et al. @21# we
change to the eigenbasis of the SO~2! subgroup of rotations
~«511! via the 232 matrix asis i

5 1
2 (2 is i)

si:

Ws1•••s6
5as1s1

•••as6s6
As1•••s6

. ~13!

Note thatsi50,1 buts i561. In this basis the transforma
tion Eq. ~7! takes the simple explicit form («561):

As1•••s6
8 5eiu(s11•••1s6)A«s1•••«s6

. ~14!

For the symmetric vertex model, the seven compone
transform as As85eiusA«s , where s5s11•••1s650,
62,64,66. In this basis the Ising weights are complex:

A2k5~z11!32kF (
m50

k S 2k

2mD ~2z!m

1 ihAz(
m50

k21 S 2k

2m11D ~2z!mG , ~15!

where k50,1,2,3 andA22k5A2k* . Invariant polynomials
which transform with parity61 ~i.e., I 6→6I 6) have the
simple formI 65 1

2 ()sAs
ns6)sAs

n2s) ~or a linear combina-
tion of these! with exponents which satisfy(ssns50. A
minimal finite set of such exponents can be found wh
generate all other solutions by linear combination withinte-
ger coefficients. This implies that any O~2! invariant I 6 can
be generated as apolynomial function of a minimal set of
so-called fundamental invariants. These 14 polynomials h
been constructed in Ref.@21#. The crucial point is to elimi-
nate all dependencies due to polynomial relations betw
the fundamental invariants~called syzygies!, and further de-
pendencies introduced by the parametrization~15!. To gen-
erate invariants of parity11 we need to retain only fou
fundamental O~2! invariants of parity11 which can be
compactly be written in variabless512h251/cosh2 H and
u511z5eK/coshK

I 05A05u3,

I k5A2kA22k5u61u622kVk~u!s, ~16!

where

V1~u!54~12u!,

V2~u!54~12u!~2u24!2,

V3~u!54~12u!~3u24!2~u24!2. ~17!

The most general invariant polynomial of even ordere
>2 and parity11 in the Ising weights is

f 2e5(
j 50

e

I 0
2(e2 j )F(

l 50

j

cl
j I 2

l I 3
j 2 l1(

l 51

j

cj 1 l
j I 1

l I 2
j 2 l G . ~18!

Cross terms ofI 1 and I 3 have been eliminated using a pol
nomial relation. The (e11)2 coefficients in Eq.~18! corre-
spond 1-to-1 to an invariant expression in the Ising weig
of order 2e. To exclude a trivial factorization to an eve
03612
ts

h

ve

n

s

order polynomial, i.e.,f 2e5I 0
2f 2(e21) , we require c0

0Þ0.
Polynomial invariants ofodd order and parity11 can be
shown to factorize trivially,f 2e115I 0f 2e , and thus need no
be considered further. Finally, polynomial invariants of a
order and parity21 can also be discarded. We find that f
z521 such polynomials have no other root thanh561,
i.e., the KT point cannot be described. The expansion off 2e
in Eq. ~18! is not well suited to impose restrictions on th
coefficients from known properties of the critical curve
the triangular lattice Ising model. A more convenient b
equivalent expansion is obtained by replacingI k→I k2I 0

2 ,k
51,2,3 andcl

j→k l
j in Eq. ~18!. This gives the final explicit

form

f 2e5(
j 50

e F(
l 50

j

k l
jV2

l V3
j 2 lu2l

1(
l 51

j

k j 1 l
j V1

l V2
j 2 lu2l 12 j Gu6(e2 j )sj . ~19!

SinceVk(u)→42k21 in the KT (u→0, s512hKT
2 Þ0) and

LG (s,u→0) limit we can easily solvef 2e(s,u)50 for the
asymptotic relations betweens andu in each limit. We find
that consistent polynomials must satisfyk0

05243zck0
1,

wherezc is given by Eq.~2! ~LG! andk0
e5k1

e5k2
e50 ~KT!.

This already excludesf 250 as a candidate. We thus hav
(e11)22554,11,20,31 independent coefficients in a po
nomial of order 2e54,6,8,10, respectively. The asymptot
value of s in the KT limit is determined by sKT

54k0
e21/k3

e . This may be used to either extract this val
after a fitting procedure or as an extra constraint. One
verify from the general form Eq.~19! that the approach to
the KT value indeed takes the form Eq.~12! with m51. This
is dictated by the dual transformation property Eq.~8! com-
bined with the analyticity of the branches determined
f 2e50. Higher integer values form are also possible bu
require certain coefficients in Eq.~19! to be strictly zero,
which is not supported by the numerical data.

III. RENORMALIZATION ANALYSIS

A. Mapping on the Gaussian model

At zero temperature, the three spins of each elemen
triangle cannot have the same sign. Thus each triangle
two bonds between antiparallel spins and one bond betw
parallel spins. When all bonds between parallel spins
erased, one obtains a lattice tiling with rhombi. This tilin
can also be interpreted as a stack of cubes viewed from
~1,1,1! direction. Thus the zero-temperature antiferroma
netic triangular Ising model is equivalent with a solid-o
solid ~SOS! model @11#. The SOS model consists of heigh
variableshi wherei denotes the lattice site. The height va
ables assume integer values satisfyinghi mod 35ci , where
ci50, 1 or 2 denotes the sublattice of sitei. Apart from an
infinite constant, the Hamiltonian becomes
7-4
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H/kBT5K`(
^ i , j &

~12d uhi2hj u,1
!~12d uhi2hj u,2

!

2H(
k

~2d (hk mod 2,0)21!, ~20!

where we setK`→` so that the product (12d uhi2hj u,1
)(1

2d uhi2hj u,2
) restricts the height differences between neare

neighbor sites to 1 or 2. The Kronecker delta in the sec
term counts the numbers of1 spins.

The equivalence with the Ising model~1! makes it pos-
sible to express the height-height correlation function@10#

g~r !5^@~hr2h0!2^h02hr&#2& ~21!

in terms of Ising correlations. From the exact results forK
52`, H50, it follows @10# that

g~r !.
9

p2
ln~r !1const, ~22!

where r is the distance between the correlated sites. T
result is very useful in the context of a renormalization ma
ping by Nienhuiset al. @10# on the Gaussian model wit
Hamiltonian

2H/kBT5
2p

TR
(
^ i , j &

~hi2hj !
21(

p
Sp(

i
cos

2phi

p
,

~23!

where the second summation contains so called spin-w
perturbations of the Gaussian model, i.e., a periodic po
tial acting on the Gaussian height variables. A term withp
51 originates from the discreteness of the height variab
in Eq. ~20!. A nonzero magnetic fieldH favors triangles with
only one minus spin; in the SOS model this leads to
energy alternation between even and odd heights. This m
on a spin-wave perturbation withp52 in the Gaussian
model.

The mapping of Eq.~20! to Eq. ~23! is not exact, so tha
the renormalized temperatureTR is in principle unknown.
However, the height-height correlation function of th
Gaussian model is known to depend onTR as

g~r !.
TR

2p2
ln~r !. ~24!

Comparison with Eq.~22! shows that

TR518 ~25!

for H50. OnceTR is known, several quantities of intere
can be calculated for the Gaussian model. These quan
include the scaling dimensions associated with the so-ca
spin-wave and vortex perturbations in the Gaussian mo
Since an elementary excitation of the Ising model, i.e.
triangle with three equal Ising spins, leads to an SOS he
mismatch of six units, the Ising temperature fieldt I is repre-
sented by the fugacityVq of the q566 vortices. On the
basis of the known results for the scaling dimensions ofSp
03612
t-
d

is
-

ve
n-

s

n
ps

ies
d
l.

a
ht

andVq in the Gaussian model@22#, a number of properties o
the triangular Ising model, including a part of the phase d
gram extended in the direction ofTR , have been derived
@10#. In this work we make use of the language of the Co
lomb gas formulation@23# to express the relevant scalin
dimensions. The appropriate parameters are the renorma
coupling constantgR , and electric chargese and magnetic
chargesm. Their relation with the parameters of the Gauss
model can be expressed as

gR536/TR ,

e56/p, ~26!

m5q/6.

In this language, the scaling dimensionsXe,m associated with
the activity of charges (e,m) are

Xe,m5
e2

2gR
1

gRm2

2
. ~27!

From Eq.~25! we see thatgR52 for H50. Since the Ising
temperature field is associated with magnetic charges61,
the Ising temperature renormalization exponentytI

52

2X0,151 is relevant. The system is thus disordered for
T.0. However, the exponentyh522X3,0521/4 associ-
ated with the uniform magnetic fieldH is irrelevant. Thus, at
T50 the system remains critical for a certain range of
Ising fieldH. In the renormalization scenario outlined in Re
@10# a phase transition to the long-range ordered phase
curs whenH grows large enough. In the SOS language t
ordered phase is flat, and transition is of the ‘‘roughenin
type, by duality related to the Kosterlitz-Thouless phase tr
sition @13#.

B. Renormalization flow

For an analysis of the renormalization flow at nonze
magnetic fieldH it is necessary to include the Coulomb g
couplinggR because the field, although irrelevant atgR52,
tends to suppress height differences, i.e., to increasegR . As
deduced in Ref.@10# such an effect can also be realize
without breaking the Ising symmetry, by the introduction
ferromagnetic next-nearest-neighbor interactions into
model ~1!. Although we restrict our numerical investigatio
to the two-parameter model~1!, the renormalization analysi
still requires a set of three nonlinear scaling fields, which
chosen as

t5
9

2gR
22,

h5a1H1a3H31•••, ~28!

t I5e2K1•••.

The constanta1 determines the scale oft which remains to
be determined. Apart from that, the expansion coefficientsa j
7-5
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are in principle unknown. The Ising temperature fieldt I is in
lowest order chosen as the Boltzmann factor of an elem
tary Ising excitation, i.e., a triangle with three equal spins
thus describes the activity of the magnetic chargesm561 in
the Coulomb gas. In order to describe the renormalization
these parameters in the immediate vicinity of the fixed l
h5t I50, the following renormalization exponents apply:

yt50,

yh522
9

2gR
, ~29!

ytI
522

gR

2
.

First we address the special caseT5t I50. Because of the
marginality oft we add a nonlinear term in the flow fort. In
differential form, the equations become

dh~ l !

dl
52ht,

dt~ l !

dl
52h2, ~30!

where l parametrizes the rescaling factorb as b5exp(l). In
principle one has an unknown amplitude in the second eq
tion, but we have disposed of it by a proper choice ofa1.
Thus, the scale oft is set such as to simplify the renorma
ization equations to Eq.~30!. The equation forh follows
from the usual formh85byhh after substitution ofb in terms
of l, of yh using Eq.~29!, andgR in terms oft. The sign in
the equation fort follows becauseh suppresses the heigh
differences in the SOS language. The flow equations~30! are
equivalent to those describing the Kosterlitz-Thouless@13#
and roughening transitions. Elimination ofl from Eq. ~30!
and integration yields the trajectory in theh,t plane as

h25t21c2, ~31!

where the constantc follows from the initial conditions
which are chosen ash(0)51/41dh, t(0)51/4. The physi-
cal motivation of this choice is that the KT transition lin
obeysh5t, so that we select a point at a distancedh to the
KT point of the nearest-neighbor model Eq.~1!. For small
dh one findsc2'dh/2. Elimination ofh in Eq. ~30! leads to

dt~ l !

dl
52t22c2. ~32!

Integration, substitution of the initial conditions, and som
rearrangement lead to the renormalization flow fort I50 as

t5
Adh/2

tan~A8dh1 lAdh/2!
. ~33!

Next we introduce a nonzero Ising temperatureT so that
also t I.0. It seems reasonable to assume that the renor
ization flow of h and t is not seriously affected for smallt I .
For simplicity we make a stronger assumption, namely t
the flow ofh andt is independent of that oft I . We first focus
on the question whether the three-state Potts critical line
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the (H,T) plane extends to the KT transition atT50, or, in
other words, whether there are points in the immediate vic
ity of (H5HKT ,T50) that flow towards a region where w
can be confident that a Potts-like transition occurs. For sm
dh/2 andt I the first part of the path will be governed by th
KT fixed point. We assume that the flow will bring the sy
tem to a boundary which separates the regions governe
the KT and Potts fixed points. This boundary is obviously n
determined in a quantitative sense, but this does not ma
for the present scaling argument. Let it be sufficient to defi
this region by requiring thath andt I reach values of order 1

We search for this region by choosing the~somewhat ar-
bitrary! renormalized temperaturegR53 where we have evi-
dence@24# that the Potts transition connects to the neighb
hood ofT5H50. The shape of the critical line atgR53 is
determined by the flow equations fort I andh, namely,

t I~b!5bytIt I ,
~34!

h~b!5byhh,

where one may takeytI
5yh51/2 as long ast I and h are

small so that the change ofgR can be neglected. Then
t I(b)/h(b) is constant along a flow line and can be chos
such that the model is critical, say for

t I~b!/h~b!5b, ~35!

whereb is a constant of order 1. For larger values oft I and
h the relation will no longer be linear but it is reasonable
expect, and in agreement with numerical results@24,25#, that
there is a fair range whereb is still of order 1.

Thus we consider a pointh(0)51/41dh, t(0)51/4,
t I(0)5dt I in the vicinity of the KT point and apply a trans
formation such that the system flows togR53 or t521/2.
According to Eq.~33! the scale factor of this transformatio
is b5exp(l)5exp(pA2/dh). It follows from Eq. ~33! that
~for small dh and dt I) the system is located near the K
fixed pointh50, t50 for most of the range ofl. Therefore,
the flow of the Ising temperature fieldt I is determined by the
exponentytI

57/8 at gR59/4 or t50. Thus, atgR53 it

reaches the valuet I5b7/8dt I5exp(7p/4A2dh)dt I . Sinceh
52t51/2 up to unimportant corrections, Eq.~35! leads to

dt I5
b

2
expS 2

7p

4A2dh
D ~36!

which solvesdt I for all dh.0. This implies that the Potts
critical sheet connects to the KT point. The resulting ren
malization flow is sketched in Fig. 2. Substitution of Eq.~28!
andH5HKT1dH leads in lowest order to

K.
1

2 F ln
b

2
2

7p

4A2a~H2HKT!
G , ~37!

wherea is a function of thea j . This equation determine
the shape of the critical line near the KT point of the mod
~1! and is clearly incompatible with the prediction of th
invariant-polynomial scenario, Eq.~12!.
7-6
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IV. NUMERICAL METHODS

A. Transfer-matrix calculations

Most of the transfer-matrix calculations were perform
for T.0 so that we had to use a binary representation for
Ising spins, leading to a transfer matrix of size 2L32L for a
system with finite sizeL. We define the spin lattice on th
surface of a cylinder, whose axis determines the transfer
rection. We have used two choices for the orientation of
lattice: one set of bonds parallel or perpendicular with
spect to the axis. For the first case one may apply a dec
tion transformation to one half of the parallel bonds in ord
to construct a symmetric transfer matrix. However, the de
ration of antiferromagnetic bonds leads to complex weig
which we wish to avoid. We have thus used a nonsymme
transfer matrix, in combination with a suitable tridiagona
ization method to find the leading eigenvalues. These w
obtained for even linear system sizes up toL522, which
corresponds with an actual finite size of 11A3 nearest-
neighbor bonds. The second construction, with a set of ed
perpendicular to the transfer direction, leads to a symme
matrix when two layers of spins are added. This allows
use of the conjugate-gradient method which is, in our ap
cations, more stable than the tridiagonalization meth
Finite-size calculations withL multiples of 3 up toL524
were performed using this second construction.

A sparse-matrix decomposition was used for both c
structions. Most of the technique is already implicit in t
work of Nightingale @5#. Further details are listed in Re
@26# which concerns the case of the honeycomb lattice,
the essential steps are applicable to the triangular lattic
well. During the analysis of the results of both types of tra
fer matrix we found that they were mutually consistent. F
thermore it became clear that the second transfer matrix,
a set of bonds perpendicular to the transfer direction, allow
a somewhat more accurate analysis. In the following we
scribe the situation of the second construction.

For T50 the transfer matrix decomposes in a number
diagonal submatrices characterized by a conserved num
of ‘‘strings’’ so that the numerical diagonalization task sim
plifies. The transfer-matrix construction for this case h
been outlined in Ref.@12# and enabled the study of system
with linear sizes up toL527.

FIG. 2. Sketch of the renormalization flow in the parame
space of the renormalized couplinggR , the scaling fieldh, and the
Ising temperature fieldt I . The flow of gR and h is anomalously
slow near the pointgR59/4, h50: most of the growth oft I occurs
here.
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The magnetic correlation function along the coordinatr
in the length direction of the cylinder is defined asgm(r )
5^s0sr&. At large r, this correlation function decays expo
nentially with a characteristic length scalej that depends on
K, H, andL

gm~r !}e2r /j(K,H,L) ~38!

and can be calculated from the largest two eigenvaluesl0
andl1 of the transfer matrix

j21~K,H,L !5
1

A3
ln~l0 /l1!, ~39!

where the factorA3 is a geometric factor, i.e., the ratio be
tween the thickness of two layers added by the transfer
trix and the length of a nearest-neighbor bond. The sign
cance of these relations lies in the fact that the assumptio
conformal invariance@27# links j on the cylinder with the
magnetic scaling dimensionXm ~one half of the magnetic
correlation function exponenth!. In terms of the scaled gap

Xm~K,H,L ![
L

2pj~K,H,L !
~40!

one hasXm(K,H,L).Xm in the limit of largeL. Since the
three-state Potts universal value of the magnetic scaling
mension is known to beXm5 2

15 , and the transfer-matrix al
gorithm evaluatesXm as a function of its arguments, one ca
find a numerical approximation to the critical value ofK for
a given value ofH or vice versa. The shape of the critic
line prescribes the use of different ways in different regio
For smallH and largeuKu, the critical line is almost paralle
to the zero-field line, so that it becomes more efficient
solve forH than forK.

As a consequence of corrections to scaling, the solu
will not precisely coincide with the critical point. The effec
of an irrelevant scaling fieldu and a small deviationt with
respect to the critical value ofH or K are expressed by

Xm~K,H,L !5Xm1auLyi1btLyt1•••, ~41!

wherea andb are unknown constants,Xm5 2
15 , yi52 4

5 , and
yt5

6
5 for the three-state Potts universality class. Thus

solution forK of

Xm~K,H,L !5
2

15
~42!

which is denotedKc
(1)(H,L), depends on the finite sizeL

and the irrelevant field as

Kc
(1)~H,L !5Kc1c1Lyi2yt1••• ~43!

because the two correction terms in Eq.~41! must cancel and
t}Kc

(1)(H,L)2Kc . We thus generated sequences of itera
estimates ofKc by solving Kc

(2)(H,L) and c1(L) in the
equations

Kc
(2)~H,L !5Kc

(1)~H,l !1c1~L !l yi2yt ~44!

r
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for l 5L and L11. These sequences appear to conve
faster with increasingL than theKc

(1)(H,L). Remaining
corrections may be due to additional contributions to E
~41!, for instance scaling asL2yi. Thus we defined
Kc

(3)(H,L) by solving the equation

Kc
~3!~H,L !5Kc

(2)~H,l !1c2~L !l 2yi2yt ~45!

for l 5L and L11. Further estimates can be obtained w
correction exponents 2yi22yt , or by treating the correction
exponents as a free variable in which case three valuesl
have to be used. Several variations of this procedure w
tried which leads to some insight in the numerical inaccu
cies of the fitting procedure.

Our final estimates of the critical points forT.0 are
listed in Table I. The apparent accuracy of the critical poi
is satisfactory for most of the field range, but it deteriora
rapidly at small fields. Nevertheless this region has our s
cial interest: we wish to determine how the Potts line co
nects to the KT point on theT50 line, because this is wher
the theoretical predictions~see Secs. II and III! are markedly
different.

We have also reconsidered the determination of the
point atT50 given in Ref.@12#. In that work, the finite-size
data for the critical fieldHKT were obtained by requiring tha
the scaled gap associated with the spin waves of perio
i.e., electric chargese561 were equal to the expecte
valueX1,052/9 at the KT transition. These estimatesHKT(L)
of the KT point, which were obtained for system sizes up
L527, were found to be considerably size dependent. T
were fitted according toHKT(L)5HKT1a/(b1 ln L)1cL22

which led to extrapolated estimatesHKT that displayed only
a remarkably small size dependence. On this basis, the

TABLE I. Extrapolated results for selected points on the critic
line.

No. H K No. H K

1 0.55~5! 22.3 20 1.85 20.759 438~2!

2 0.57~3! 22.2 21 1.90 20.755 049~1!

3 0.59~2! 22.1 22 1.95 20.751 498~2!

4 0.610~10! 22.0 23 2.0 20.748 715~2!

5 0.634~4! 21.9 24 2.1 20.745 199~1!

6 0.658~2! 21.8 25 2.178 20.744 130~1!

7 0.6885~10! 21.7 26 2.3 20.744 958~1!

8 0.7219~3! 21.6 27 2.4 20.747 586~1!

9 0.7607~1! 21.5 28 2.5 20.751 708~1!

10 0.8 21.414~1! 29 2.75 20.7673 233~4!

11 0.9 21.2395~2! 30 3.0 20.7887 774~4!

12 1.0 21.114 22~1! 31 3.25 20.814 5143~3!

13 1.1 21.021 00~1! 32 3.5 20.843 4661~2!

14 1.2 20.950 30~1! 33 4.0 20.908 2113~2!

15 1.3 20.896 040~5! 34 4.5 20.979 1030~2!

16 1.4 20.854 175~2! 35 5.0 21.053 9340~2!

17 1.5 20.821 890~1! 36 5.5 21.131 3743~2!

18 1.6 20.797 164~2! 37 6.0 21.210 5830~3!

19 1.75 20.771 064~3!
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estimate was given asHKT50.26660.010 in Ref.@12#. In
our present work we have reproduced these data forHKT(L).
We have not used the procedure that requires that the sc
gap is equal for two subsequent system sizes. Since all po
in the rangeH<HKT satisfy this scaling equation asymptot
cally, the solutions may converge to any point in this ran
depending on the corrections to scaling. This is another
son behind the discrepancy mentioned in Sec. I concern
an earlier result for the location of the KT point@15#. We
have used theHKT(L) data as input for several other iterate
fit procedures consisting of subsequent extrapolation s
according toL22 behavior, and powers of 1/lnL. These fits
led to results forHKT that were rather consistently close
0.26, with differences up to 0.02.

As an independent approach we have estimatedHKT from
the requirement that the scaled gap based on the mag
dimensionX0,1/3 is equal to the expected value 1/8 atgR
59/4. Since such fractional magnetic charges~correspond-
ing with vortices of strength 2! do not exist in this model,
this scaled gap cannot directly be calculated for a fixed s
tem sizeL. However, it can be obtained by combining fre
energy data for system sizesL53n61, wheren is an inte-
ger, as explained in Ref.@12#. The same extrapolation
procedures as above were tried, and led to results again
sistent with HKT50.26, but with differences up to abou
0.04. Our final conclusion isHKT50.2660.02, similar to the
value presented in Ref.@12# but with a slightly more conser
vative error estimate.

The numerical results for the critical points are combin
in Fig. 1, the phase diagram in the (H,e2K) plane. We remark
that for largeuKu and relatively smallH, the solutions forH
become strongly finite-size dependent and slowly conv
gent. This problem is apparently due to the proximity of t
KT transition at K52`. This is illustrated in Fig. 3, in
which a set of lines represent the finite-size solutions foL
53,6, . . . ,24together with the extrapolated critical line. O
the basis of our limited range of finite system sizes, the

l

FIG. 3. Finite-size solutions for the critical points, and our fin
estimates in the region of small field and temperature. The das
lines connect the solutions shown as triangles. From right to left
lines show data for finite sizesL53,6, . . .,24. The solid line with
circles indicates our final estimated result for the critical line.
7-8
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timation of the critical points thus becomes increasingly d
ficult for large uKu.

In order to provide further justification for our assumptio
that the critical line belongs to the three-state Potts univ
sality class~used for the determination of the critical point!
we perform a consistency test by calculating the conform
anomalyc at the estimated critical points atH51.5, 2.5, 3.5,
and 4.5. Iterated fits similar to those used for the calcula
of the critical points were applied. All these results are co
sistent with the exact valuec5 4

5 . The error margin varies
between a few times 1023 for H51.5 and a few times 1025

for H53.5. In comparison with previous work@6#, these
results further restrict the scale of possible deviations fr
three-state Potts universality.

B. Monte Carlo results

The apparent difficulty to obtain accurate critical poin
for small H by the transfer-matrix method invites furthe

FIG. 4. Specific-heat-like quantityC versus fieldH for two val-
ues of the Ising couplingK521.0 ~s! and21.5 ~h!. Both sets of
lines display data for system sizesL512, 24, 48, and 96. These tw
cases indicate that the amplitude of the divergence ofC decreases
with decreasing fieldH.

FIG. 5. Specific-heat-like quantityC versusH at Ising coupling
K521.053934, near the critical point atH55.0. In comparison
with Fig. 4, the finite-size divergence is much stronger.
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investigation by means of Monte Carlo simulations, whi
allow the use of much larger finite sizes. In particular w
determine how the critical amplitudes behave for smallT,
and make a comparison with the renormalization predicti
To this purpose we define a specific-heat-like quantityC,
i.e., the second order derivative of the free energy to a
rameter conjugate to an energylike density in the Ham
tonian, for which we may take the magnetization. Indeed
Ising field H drives the Potts-like transition to the ordere
state~except at the maximum of theT vs H curve! and thus
plays the role of the temperature in the Potts model. We t
defineC by

C5
]2f

]H2
5N~^m2&2^m&2!, ~46!

wherem is the Ising magnetization. Similarly, we define
quantity similar to the magnetic susceptibility of the Po
model. In theq53 Potts model, the zero-field magnetic su
ceptibility can be expressed in magnetization fluctuations

x5N^mP
2 &, ~47!

where mP
2 5n1

21n2
21n3

22n1n22n2n32n3n1 expresses the
Potts magnetization in terms of the densitiesni of Potts vari-
ables in statei. In the scaling context of the present scalin
analysis, the densitiesni may be defined as the number
minus spins on sublatticei. Thusx describes the response o
the model to staggered fields acting on the Ising spins.

The simulations used triangularL3L lattices with peri-
odic boundary conditions. We used a combination of
standard Metropolis algorithm and the geometric clus
method @28#. The latter method executes nonlocal upda
and leads to a faster relaxation. But it does not change
Ising magnetization. For this reason also Metropolis st

FIG. 6. Specific-heat-like quantityC versus system size on
double logarithmic scale. Data are shown for system sizes 6<L
<192 at seven points (H,K) on the critical line. The symbold
representsH50.61; ,: H50.658; 3: H50.8; n: H51.0; h: H
51.5; s: H52.0; j: H55.0. The seven lines represent the fitt
results. The statistical errors are not shown in this figure. They
not exceed the thickness of the lines.
7-9
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were included. First we sampledC in a suitable range ofH,
to study its divergence, at fixed values of couplingK which
are taken from Table I. The results are shown in Figs. 4
5 and show that the finite-size divergence ofC at the critical
line becomes weaker whenH decreases. In order to stud
this phenomenon in a more quantitative sense, we have
terminedC andx at several critical points taken from Tab
I for several system sizes. Results forH50.61, 0.658, 0.8,
1.0, 1.5, 2.0, and 5.0 are shown in Figs. 6 and 7.

Finite-size scaling of the free energy density of a syst
with finite sizeL can be expressed by

f ~ t,h,u,L !5L2df ~Lytt,Lyhh,Lyiu,1!1g~ t,h,u!, ~48!

wheret, h, andu denote the temperature, magnetic field, a
irrelevant field, respectively, andg the regular part of the
transformation. Differentiation off yields the scaling behav
ior of the quantitiesC andx as

C~u,L !5C01L2yt2dC~Lyiu,1!

5C01L2yt2d~b01b1Lyiu1b2L2yiu21••• !

~49!

and

x~u,L !5x01L2yh2dx~Lyiu,1!

5x01L2yh2d~b01b1Lyiu1b2L2yiu21••• !.

~50!

We have fitted the numerical data by these two equations
thus derived the amplitudes listed in Tables II and III. T
amplitudeb0 of the leading divergence ofC decreases with
field except close to the maximum of the critical line in t
(H,T) plane. At the maximum the fieldH fails to bring the
system into the ordered phase and the amplitudeb0 thus

FIG. 7. Susceptibilitylike quantityx versus system sizeL
(56, . . .,192) on a double logarithmic scale. Data are shown
seven points (H,K) on the critical line. From bottom to top:H
50.61, 0.658, 0.8, 1.0, 1.5, 2.0, and 5.0, respectively. The two l
for H52.0 and 5.0 coincide on this scale. The statistical errors
not shown in this figure. They do not exceed the thickness of
lines.
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vanishes. Also for the susceptibilitylike quantityx the am-
plitude b0 of the finite-size divergence, shown in Table II
decreases regularly when the KT point is approached.

The behavior of the amplitudeb0 at small field and low
temperature follows from the renormalization-flow analys
Starting from a point in the vicinity of the KT point, we
renormalize until we arrive at the boundary with the regi
dominated by the three-state Potts fixed point. LetbKT be the
corresponding scale factor. Since the specific heatlike qu
tity C is defined by means of differentiation of the free e
ergy to the uniform fieldH, we keep track of howH changes
under this transformation. The marginality ofdh at gR
59/4 is expressed by Eq.~31!: when we writeh5t1dh, it
is clear thatdh varies only by a factor of order 1 as long a
t is of order 1. In the context of scaling, we thus havedh8
'dh, where the prime indicates the value at the bounda
Within the Potts region we rescale the system to size 1 w
the remaining scale factorL/bKT

dh95S L

bKT
D 6/5

dh8'L6/5bKT
26/5dh, ~51!

where the Potts temperature exponent6
5 applies because i

corresponds with the Ising magnetic field. The behavior oC
follows as

r

s
re
e

TABLE II. Parameters describing the finite-size behavior of t
specific heatlike quantityC. The third column is the amplitudeb0 of
the leading divergent term. The amplitudes forH51.5,2.0 are rela-
tively small because the critical line runs almost parallel to the fi
direction. The column corresponding withbi ( i 51,2) are the irrel-
evant corrections amplitudes.

H C0 b0 b1 b2

0.61 0.188~2! 0.0026~2! 0.027~3!

0.658 0.196~2! 0.0039~3! 0.007~3!

0.8 0.192~3! 0.0126~4! 20.022~4!

1.0 0.151~3! 0.0285~6! 20.035~5!

1.5 0.097~2! 0.0254~4! 20.055~3!

2.0 0.084~3! 0.0029~3! 20.015~6! 20.097~2!

5.0 20.096~6! 0.131~2! 20.031~9!

TABLE III. Parameters describing the finite-size behavior of t
susceptibilitylike quantityx. The third column is the amplitudeb0

of the leading divergent term. It decreases regularly with the fie
The next columns shows the irrelevant correction amplitudesbi( i
51,2).

H x0 b0 b1 b2

0.61 217.5~18! 0.5281~12! 20.143~50! 16.3~16!

0.658 210.5~20! 0.5896~14! 20.142~55! 2.88~36!

0.8 218.7~37! 0.7675~24! 20.75~10! 18.1~33!

1.0 0.95~11! 0.9046~17! 20.164~25!

1.5 0.41~10! 1.1209~12! 20.103~24!

2.0 0.10~14! 1.2130~24! 20.003~34!

5.0 20.51~14! 1.2133~22! 0.070~37!
7-10
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C5
]2f

]h2
5L2d

]2

]h2
f ~L6/5bKT

26/5h,1!5L2/5bKT
212/5f 91const.

~52!

The susceptibilitylike quantityx is obtained by differen-
tiation of f to the staggered Ising field, which, as explained
Ref. @10#, is associated with a Gaussian spin wave pertur
tion of periodp56, i.e., with electric chargese561. The
exponent of the staggered field thus takes the value 22X1,0
516/9 at the KT fixed point. Therefore, at the boundary w
the Potts region we have

hst85bKT
16/9hst. ~53!

Within the region dominated by the Potts fixed point, t
magnetic exponentym528/15 applies. Renormalization wit
the remaining scale factorL/bKT leads to

hst95S L

bKT
D 28/15

hst85L28/15bKT
24/45hst ~54!

so thatx scales as

x5
]2f

]hst
2

5L2d
]2

]hst
2

f ~L28/15bKT
24/45hst,1!

5L26/15bKT
28/45f 91const. ~55!

According to Sec. III B, rescaling by a factorbKT results in
an Ising temperature fieldbKT

7/8e2K5b/2 so that bKT

}e2(16/7)K. For strong coupling the renormalization sca
bKT is large, which is indicative of the crossover pheno
enon close to the KT transition. There we need large sys
sizesL.bKT in order to reach the vicinity of the Potts fixe
point. The substitution ofbKT into Eq. ~52! and Eq.~55!,
leads to

C5L2/5e~192/35!K f 91const ~56!

and

x5L26/15e~128/315!K f 91const. ~57!

From a comparison of Eqs.~49! and ~56!, and of Eqs.~50!
and ~57!, we expect thatb0}e(192/35)K for C, and b0
}e(128/315)K for x, whenuKu is large enough. We thus expe
a linear relation between lnb0 and K for sufficiently strong
coupling K. A fit to the numerical data yields the slopes
about 2.8~1! for C and 0.64~4! for x. These slopes do no
agree accurately with the analytic values. This suggests
the Ising temperature used for the calculation of the am
tudes is not small enough. However, the qualitative am
tude dependence is reproduced, and the rough agree
suggests that we are not far away from the asymptotic
gime.
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V. FIT AND DISCUSSION

A. Roots of the O„2… invariant polynomials

The number of 37 critical points in Table I together wi
the additional KT point (h,z)5(hKT ,21) is sufficient to
attempt fits of O~2! invariant polynomials 19 up to order 10
We have not used data points 1 and 2 because of their lim
accuracy, and performed a least-squares fit to the remai
35 data points forz.21. We have also tried direct fits to
several subsets of these. In each case we have investig
the effect of enforcing the curve to pass through the
point, or to extract the value ofhKT from the fit. It is found
that the coefficients in the equationf 450 are not flexible
enough to even qualitatively fit the numerical data. The lea
squares fit tof 650 excluding the KT point consists of two
avoiding solutions, which lead to 2 disconnected ‘‘critica
lines which have unphysical ranges. Forz521 one line
terminates ath* '0.501.hKT . When enforcing the KT
point athKT50.25, the two avoiding branches repel one a
other even stronger. Direct fits to different subsets of criti

TABLE IV. Coefficientsk i
j ( i 50, . . . ,6;j 51,2,3) of the invari-

ant polynomialf 6, Eq. ~19!. The condition for criticality readsf 6

50.

k0
1 k1

1 k2
1

20.002 942 307 242 20.097 656 582 607 2.725 303 204 552

k0
2 k1

2 k2
2

20.000 000 000 017 0.000 351 055 63920.020 534 345 140

k3
2 k4

2 k3
3

0.044 511 873 969 0.660 086 779 714 0.000 001 077 35

k4
3 k5

3 k6
3

20.002 865 984 972 20.084 578 467 922 1.000 000 000 000

FIG. 8. Phase diagram in the (H,K21) plane. The symbols
denotes the Potts transition points;j the KT point; and the solid
line describes the fit of the expression based on the renormaliza
prediction for the critical line in the small field region.
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points lead to similar results. Fits to higher order equatio
f 850 and f 1050 display the same problems. Even mo
avoiding solutions enter. The numerical problems are cle
displayed by the values of the fitted coefficients, which sp
a range of many orders of magnitude. In summary, the ro
of invariant polynomial equations cannot fit the critic
curve. The main problem is the approach of the curve to
KT limit imposed by Eq.~12!: all such roots approach th
KT point vertically in the (h,z) plane, whereas the numeric
data in Fig. 9 indicate a horizontal approach.

Sufficiently far away from the KT point, the problem dis
solves, and our numerical data for the critical points can w
be approximated by means of invariant polynomials. For
ample, the polynomial of order 6 can reproduce the criti
points forH>1.5 within the error margins quoted in Table
The coefficients, determined by means of a least-square
are listed in Table IV.

B. The renormalization solution for small field

For small field we expand Eq.~37! and take into accoun
higher order terms in the physical fields. This leads to

2
1

K
5 (

j 51,2, . . .
aj~H2HKT! j /2. ~58!

The numerical data for the critical points forH<1.75 are
fitted satisfactorily~i.e., within the error margins quoted i
Table I! by this formula using six coefficients. The numeric
results and the fitted function are shown in Fig. 8. The val
of the coefficients are listed in Table V.

VI. CONCLUSION

The invariant-polynomial scenario formulated in Sec.
and the renormalization scenario formulated in Sec. III le
to analytic expressions for the critical line in the (H,T) dia-
gram that are mutually inconsistent forT↓0 at finiteH. This
shows that at least one of the underlying assumptions m
be incorrect. The renormalization prediction appears to s
cessfully describe the numerical data for smalluHu. Although
the asymptotic regime is not quite reached~as can, for in-
stance, be seen in Fig. 8 where the leftmost points beh
almost linearly instead of as a square root!, an asymptotic
expansion leads to an accurate description of the data,
allows a smooth extrapolation to zero Ising temperature
agreement with Eq.~37!. The analysis in Sec. IV B of the

TABLE V. Coefficientsaj of the expansion~58! of 2K21 in
powers of (H2HKT) j /2.

a1 a2 a3

0.487 432 0.119 116 0.765 066

a4 a5 a6

1.017 104 21.949 253 0.652 161
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critical amplitudes fits precisely in this picture. Thus o
analysis does not give reasons to doubt that the renorma
tion scenario correctly describes the essential physics of
model near the KT transition.

In contrast, the invariant-polynomial scenario does n
agree with the numerical data. It predicts a ‘‘vertical’’ a
proach to the KT point in the (h,z) diagram ~see Fig. 9!
where it should be horizontal. Our interpretation is that t
assumption of analyticity of the critical line in the (h,z)
parametrization is false at the KT point, so that the line c
not be described by the zeroes of a polynomial of a fin
order.

Since it now appears that the invariant-polynomial s
nario fails in the case of the triangular-lattice Ising mod
the question arises whether similar, apparently succes
analyses of the critical lines of the honeycomb- and
square-lattice Ising model in terms of invariant polynomia
@19,20# have to be reconsidered. Here we may point at
simpler topology of the (H,T) diagram for the honeycomb
and the square lattices: the critical line connects toT50 only
in the lattice-gas pointsH56`. In the case of the triangula
lattice model, crossover phenomena near the KT point
responsible for the nonanalytic ‘‘shape’’ of the critical lin
In the absence of such crossover phenomena, there i
inconsistency with the invariant-polynomial scenario, a
our present analysis has therefore no direct consequence
the work presented in Refs.@19,20#.
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FIG. 9. Phase diagram in the (h,z) plane~whereh5tanhH and
z5tanhK). The KT point is denoted asj, and the LG point, which
is Baxter’s hard-hexagon model, asd.
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